TOGETHER
for a sustainable future

OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org

A Survey of Telecommunications Services \& Industry

 Inputs Required by a National Public Switched Networkand for their Production

Potential for Regional Cooperation

A Report by TCIL for UNIDO

(interim)
FINAL

NOVEMBER, 1991

Telecommunications Consultants India Ltd.
(A Government of India Enterprise) UHIRANJIV TOWER, 3RD FLOOR, 43, NEHRU PLACE.

NEW DELHI-110019 INDIA
$: 992$

A Survey of Telecommunications Services \& Industry

Inputs Reauired by a National Public Switched Network

and for their Production

Potential for Regional Cooperation

A Report by TCIL for UNIDO (Interim)

NOVEMBER, 1991

Telecommunications Consultants India Ltd.
(A Government of India Enterprise)
Chiranjiv tower, 3rd floor, 43, nehru place.
NEW DELHI-110019 INDIA

Chief Consultant \& Editor
Devendra Kumar Sangal
Formerly
Secretary \& Director General
Telecommunications
Government of India

Associated Consultant
C.G. Subramanyan

Formerly
Director (Technical)
Electronics Trade \& Technology
Development Corporation of India Lid.

A survey of the Telecommunication systems and industry A report by TCIL for UNIDO

Table of contents

Nature cf various Telecommunications Networks \& services currerity in use in the world
2. Basic Structure and Components of National Public Switched Telephone networks. with capability to support plain old telephone, facsimile, and low speed data services.
3. Average cost per line of National Public Switched Telephone networks and of items and factors going into it.
4. Switching systems currently in use world-wide, an elementary generalised description of a modern SPC digital switching system, and components, machines. tools and testers. infrastructure and manpower required for its production as an assembly operation with typical international costs.
5. Jelly filled telephone aab!es, general constraction, and raw materials. machines. tools \& testers. infrastructure and manpower required for their production. with typical international costs
6. Transmission systems
?. Optical fibre systems
8. A typical digital radio transmission system. 8Mbis 120 channel PSK (Phase shift keying) Radio System
3. Oplical fibre and cables
10. Telephone sets
11. Components
12. Outline of production process, raw material, plant and machinery and manpower requirements for production of 250 million pieces a year of Resistors. carbon and metal film
13. Outline of production process. raw material. plant and machinery and manpower - requirements for production of 100 million pieces a year of Capacitors. Ceramic disc type
14. Oulline of production process, and raw material, and plant and machinery requirements for fabrication of about $30,000 \mathrm{sq} . \mathrm{m}$. of double sided. through hole. glass epoxy printed circuil boards

15
Integrated circuils
16. Summary, observations \& issues

List of drawings and cherts

1. Fig. 2.1 Concept of hierarchical Pubilc Switched Telephone Network (PSTN)
2. Fig. 2.2 A typical PSTN mopology
3. Fig. 4.1 Basic Functional Blocks of a Typical SPC Digital Switching System
4. Fig. 4.2 Block schematic of a typical Subscriber Line \& Trunk Group in the Subscriber \& Trunk Line Block
5. Fig. 4.3 Typical Duplicaied Time-Space-Time Switching Network for interconnecting 8192 channels of $64 \mathrm{~Kb} / \mathrm{s}$
6. Chart 4.4 Typical Process flow for production of a typical Digital Switching System from bought out components
7. Fig. 5.1 Typical construction of Poythene Insulated Jelly Filled Cable
8. Chan 5.4 Typical process flow for production of jelly filled cables

Block schematic of a typical $140 \mathrm{Mb} / \mathrm{s}$ Optical transmission system
11. Fig. 9.1

Block Schematic of a typical $8 \mathrm{MB} / \mathrm{s}$ Digital UHF radio ielay system

Schematic diagram of MCVD process for production of Optical Fibre Pretorm
12. Fig. 9.2 Schematic arawing illustrating the Outside Vapour phiast: oxidation process.
13. Fig. 9.3 Schematic drawing illustrating the vapour axial definition process.
14. Fig. 9.4 Schematic drawing illusirating the plasma chemical vapour process
15. Fig. 9.5 Schematic drawing illustrating the working of a fibre draw tower.
16. Fig. 9.8 Cross section of an optical fibre cable with Layer Siruclure
17. Fin 9.9 Cross section of an oplical fibre cable with tickel acket in V groove struclure.
18. Fig. 9.10 Cross section of an optical fibre cable with 'Ribbon structure'.
19. Fig. 9.11 Process flow for production of cables from brought out fibres.
20. Fig. 10.1 Block schematic of an electronic Telephone.
21. Fig. 10.3 Typical progress flow chart for production of Electronic Telephone
22. Fig. 12.1 Typical process flow for production of carbon/metal film resistors.
23. Fig. 13.1 Process flow for production of capacitors, ceramic disc type.
24. Fig. 14.1 Process flow for production of double layer printed circuit boards.
25. Fig. 15.1 Typical simplified process flow chart for production of integrated circuits.
26. Fig. 15.2 Typical process flow for assembly of integrated circuils.

List of Tables

1. Table 1.1 Distribution of Main Telephone Lines between different Continents.
2. Table 2.3 A brief indicative list of systems and products going into a PSTN.
3. Table 3.1 Per line component wise costs of a typical P.S.T.N.
4. Table 3.2 Summary of per line investment costs of a typical P.S.T.N. under broad categories.
5. Table 3.3 Identification of components contributing the maximum to per line cost of a typical PSTN : High density areas.
6. Table 3.4 : Medium density areas.
7. Table 3.
: Low density areas.
8. Table 4.5 Typical component Requirements per 200.000 lines of a typical digita! switching system.
9. Table 4.6 Typical dis!ribution of various types of IC's used in a typical digital telephone system.
10. Table 4.7 Typical production plant requirements for a typical digital switching system.
11. Table 4.8 Investment summary for a lypical plant for production of a typical digital switching system.
12. Table 4.9 Typical manpower requirements for a plant for production of a typical digital switching system.
13. Table 5.2 Typical Internatiorial prices for jelly filled telephone cables.
14. Table 5.3 Raw material requirements for production of jelly filled telephone cables.
15. Table 5.5 Machinery \& lools required for production of jelly filled telephone cables.
16. Table 5.6 Manoower requirements for production of jelly filled telephone cables.
17. Annex. 6.1 A parlial list of manutacturers of different iypes of telecom transinission systems.
18. Annex. 6.2 Common machines and lesters for an annual produclion of aboul 1000 ierminals/repeaters of Transmission systems of various lypes.
19. Annex. 7.2 A partial illustrative list of manufaclurers of optical fibre equipment.
20. Annex. 7.3 Typical international price of a typical $180 \mathrm{~km} .140 \mathrm{Mb} / \mathrm{s}$ optical fibre system.
21. Annex. 7.4 Component requirements for a typiical $140 \mathrm{Mb} / \mathrm{c}$ oplical fibre system terminal.
22. Annex. 8.2 Typical prices of an $8 \mathrm{Mb} / \mathrm{s}$ radio relay system in 600 MHz . band.
23. Table 8.3 Component requirements for production of a single typical 8 Mb / s UHF terminal
24. Annex. 9.6 Raw material inpuls required for production of preform for optical fibres by MCVD process.
25. Annex. 9.7 Plant \& Machinery required for production of preform for optical fibres by MCVD process.
26. Annex. 9.12 Raw material requirements for production of optical fibre cables from bought out fibres.
27. Annex. 9.13 Plant \& Machinery required for production of optical fibre cables from bought out fibres.
28. Table 10.2 Component Requirements for production of Telephone instrument.
29. Table 10.4 Production equipment requirements for telephone instrurnent from bought out component.
30. Table 11.1 An alphabetical list of components classified on a scaie of 1.5 by frequency of use and complexity.
31. Table 11.2 A few typical international directories of electronic comp;nents and their manufacturers and suppliers.
32. Table 12.2 Raw materials required for production of carbon/metal film resistors
33. Table 12.3 Plant \& Machinery requirements for production of cernerac disc capacilors.
34. Table 13.3 Plant \& Machinery requirements for production of ceramic disc capacitors.
35. Table 14.2 Reaw material requirements for production of double \leq je through hole PCB's.
36. Table 14.3 Plant \& Machinery requirements for production of double sided through hole PCB's.
37. Table 15.3 Raw material requirements tor production of I.C.s.
38. Table $\mathbf{1 5 . 4}$ Plant \& Machinery requiremeats for production of IC's.

CHAPTER 1

NATURE OF VARIOUS PUBLIC TELECOMMUNICATION NETWORKS \& SERVICES CURRENTLY IN USE IN THE WORLD

1.1

Intraduction

There is a wide variety of public telecommunication services. and the network's 10 provide them. currently in use in the world. However. there are four basic services of universal application and of parlicular interest to the developing countries These are:

- The plain old public telephone service (POTS)
- The public text or telex service
- The Facsimile (FAX) service
- The data service
- The message transter service

1.2

The Plain old telephone service
1.2.1 The subscriber leases a telephone connection from the service provider and using the teiephone iristrument can establish a call to other subscribers almost anywhert in the world and speak 10 them at will. The service providers buitd up a hierarchical network of switching nodes and t iansmission systems with international linkages :o permit this service. The network is known as the public swiched telephone nieiwork. PSTN). The basic function of such networks is establisment. inrough the transmission systems and switching nodes. at the will and command 0 ! the: Subscriber. of a two viire physical or electronic circuit. from end to end. for each call. to any other suhscriber any where in the world. tor exchange of voice communication
1.2.2 The POTS servict is used not only by int ousiness. industry and administrations but also by householders. The number of main telephone connections working from public networks in the world exceeds 500 million. an overwhelming majority of them however in the developed countries. The; avalabilty of trimphon. services in most of the developing countries has been very magars:
1.2.3 Table 1.1 indicates the distribution of main lelephone conntiflions in different continents and a tew of the most developed countries in them. as on : 1.1988 . The table stiows that the availability of telephones per 100 mhabitants in Africa and Asia is very low. While the position in Asia appears better Ithan in Africa. fact is that in Asia also most of the telephones are in Japan and Korea. Further. rven in Americas. and Oceania most of the available teiephones are in a few highly doveloped countries viz USA and Canaoa in Americas. and Ausiralia and New Taland in Oceania. Of late the rates of qrowth in the developing countres, have shown 11 tipuard trend

1.2 The telex service

1.2.1 The telex service is similar to the public telephone service except that the subscriber uses a teleprinter (or teletype as some call it) to exchange written iext communication instead of the voice communication. They lease a teleprinter connection and the service provider builds a hierarchical telex network using transmission systems and switching nodes with international linkages. In this case also a two wire physical or electronic ciruit is built up from end to end with the difference that while for effective voice communication in a PSTN such a circuit should be capable of effective transmission of a band width of 4 KHz , a telex circuit uses a much smaller bandwidth usually about 120 to 240 Hz .
1.2.2 This service is used largely by business, industry and administrations who have to exchange large volumes of text communications. The service is however being supplanted by the daia communication on one hand and facsimile service on the other. The number of main telex connections in the world is about 1.8 million. The growth of demand has been slowing down very significantly in recent years.

1.4 Facsimile service

1.4.1 In facsimile service any written lext or sketches or even pictures can be transmitted and received using special facsimile machines in place of a telephone instrument. on a connection established on the PSTN network. Unlike the telex machine where the text has to be transmitted character by character as in typing and there are problems of language and script, in facsimile a true copy of the original document is reproduced at the receive end. It is faster and free from restrictions of script eic. The service is basically used on the existing PSTN networks.
1.4.2 This service is becoming very popular among business. industry and administrations.

1.5
 Dala service

1.5.1 With the advent of computers. it has become necessary to transmit and transfer large volumes of information. (text, numerals, sketches, and graphs etc) rapidly. This is done in digital form. A variety of data services have come up provided through a variety of networks. However the public data network services can generally be divided into following categories:

Small and moderate speed data service upto 9600 bps on existing PSTN neiworks, with use of modems at the two ends.

Medium speed data service upto 64 Kbps using either special data networks based on packet switching concepls or newly emerging integrated services Digital Networks.

High speed services of over 64 Kbps over special broadband networks being built in some of the developed countries.
1.5.2

Data on PSTN: The subscriber establishes a physical (or electronic circuit) through the PSTN and then exchanges digital data via the modems at the two ends. The connection can be used both for voice communication with the telephones and for data communication via the modems, using suitable change over arrangements. This is an economical method for exchange of data communications at moderate speeds. since it does not call for a sederate connection from the subscriber premises to the network and also does not can or establishing a seperate network. However when large volumes of data have to be exchanged and higher speeds are tequired, seperate networks become necessary.
1.5.3 Data on seperate PSDN: Seperate special networks based on Packet Switching Concepts have been established in many countries providing a whole range of speeds upto 64 Kbps . The start up costs tended to be high. Apart from a separate special network, separate subscriber lines are needed for access to the networks. They however became highly economical once the demand buill up for higher speed data services. The development of integrated se,vices digital networks (ISDN) holds promise of integrating the separate PSTN and PSDN into a cost effective integrated network.
1.5.4 Data on ISDN: Over the years digital technology has been applied both for transmission and switching. PSTN's with digital switches and trunks have become highly cost effective compared to analog ones. As a next step digitalisation of subscriber line to handle both voice and non voice services has been developed. Each subscriber line is suitably multiplexed at the subscriber terminal into two 64 Kbps voice/data channels and one 15 Kbps signalling/data channel. Use of common channel signalling and linkages between PSDN and PSTN permit the three channels to be used simultaneously, the first two for voice or data, or high speed facsimile and the third for signalling and data. This has brought about an integration of the voice and non voice networks and has eliminated the need for separate subscriber lines for PSTN and PSDN.
1.5.5 ISDN service has been introduced on various scales in most of the developed countries, basically by building up ISDN networks as an overlay on the existing PSTN and PSDN networks. Though the demand even in these countries has developed only slowly and the cost has been substantial, continuous developments are taking place. Eventually the establishment of ISDN networks may cost no more than setting up the PSTN. The demand could also be expected to grow not only in the developed countries but in also the developing countries. Keeping this in view, as an ample precaution against absolosence. PSTN networks are being expanded and renewed using the digital switches and transmission media with provision for upgradation to ISDN.

1.6 The Message Transter Service

Telecommunication service basically started as a message transter service in the form of public telegraphs. While eventually it was overtaken by the telephonf service, it still has substantial utility as a form of business. administrative and personal communication. While seperate public telegraph networks have suffered a significant decline, need for a message service has been clearly recognized. The PSTN and ISDN networks are capable of supporting highly effective message transfer service by way of range, quality and cost of service. They can handle nol only the

Iraditional textual but also voice messages on a store and forward basis, through special computer based "user agents". "message stores" and "physical delivery access units". CCITT has made comprehensive recommendations on the subject. Electronic text and voice mail services have a significant potential and are of special interest to developing countries where public telegraph service is expected to continue to play an important role particularly in rural areas. They have the potential of integrating this service with the other communication services.

1.7 Observation

For the present, public switched telephone networks, based on fully digital switching and transmission systems, capable of supporting the plain old telephone. the facsimile, the data at moderate (upto 9600 bps), and in some cases medium (upto 64 Kbps) speeds, and the message transfer services, with potential for upgradation to ISDN. may be of the greatest interest to the developing countries.

The structure and the main components of such a network are discussed in somewhat greater detail in the text chapter.

Annexed:

TABLE 1.1 : DISTRIBUTION OF MAIN TELEPHONE LINES BETWEEN DIFFERENT CONTINENTS

Table 1.1 : Distribution of main telephone connections in different continents.

Table 1.1

Discribution of MAIN TELEPHONE LINES between different continents As on 1st January 1988

Continent
$\frac{\text { No. of Main }}{\text { Lines }}$

growth over previous year

7.9
4.1
3.7
$3 . \bar{z}$
E. E
2.9
14.7
5.3

40
4.0
$3 . ?$
5.
per 100 inhaioitants
1.16
23.70
51.99
52.4
3.10
40.34
20.85
22.57
30.57
43.63
45.95
2.1
[Source: Siemens International Telecom Statistics:1989]

- In Americas out of about 163 million main lines nearly 120 million were accounted for by USA, and about 13 million by Canada.
- In Asia out of aboul 89 million main lines over 49 million were accounted for by Japan. and another about 9 million by Republic of Korea.
- In Oceania out of about 8.6 million main lines. about 7 million were accounted for by Australia and about 1.4 million by New Zealand.

Thus in these three continents also. if the figures for these highly developed countries are taken out,the availability of main lines, in absolute numbers as well as per 100 inhabitants is at present extremely low.

Chapter 2

BASIC STRUCTURE AND MAJOR COMPONENTS OF NATIONAL PUBLIC SWITCHED TELEPHONE NETWORKS

2.1

Introduction

2.1.1 National public switched telepione networks consist of a hierarchical system of switching nodes or exchanges interconnected by groups of trunks or junctions over suitable transmission media. Appropriate user terminals at cusioner premises or public places are connected to this nelwork over subscriber lines. Under the aegis of the International Telecommunication Union and specially its Committee concerned with Telephony and Telegraphy. i:e CCITT, there has been considerable standardization in regard to the structure, the component systems and the interfaces. The Public Switched Telephone ne:works designed, constructed and operated in accordance with agreed CCITT recommendations will give highly satisfactory world wide telephone. facsimile and muderate speed data Iransmission service.

2.1 .2

The switching nodes and transmission media have evolved through a variely of analogue systems to the present fully digital ones. A combination of the digital switching and the digital transmission systems provides the most reliable and cost effeclive networks and has been assumed in all furiher consideration.

2.2

Network components and siructure

Fig. 2.1 illustrates the basic concept and structure of a national hierarchical Public switched telephone nelwork. The nelwork is essentially designed to establish. on demand. a physical circuit between the calling and called subscribers, to enable the iransmission of communication: voice. facsimile and moderate speed data. with reasonable level of privacy. and to breakdown the circuit when no more required. it consis's of following main functional components:

2.2.1 Subscriber apparatus

2.2.1.1 Indicated by a telephone instrument symbol in fig 2.1. it is the apparalus used by the subscriber to signal his requirements to the network and communicate with the called party. It may consist of a telephone instrument. a facsimile machine or a modem interfacing between the subscriber line and a data terminal n.g. a personal computer.
2.2.1.2 The basic function of the apparatus is to transmit and receive signals to indicate the connection requirements to the network and to convert the voice, or oplical scan of a document or the digital data into electrical signals capable of transmission on electrical circuits and vise versa.
2.2.1.3 Private Branch Exchange (PBX's): While strictly not a subscriber apparatus as defined above. PBX:s are an important piece of equipment at the subscriber premises particularly for the institutional subscribers. business or otherwise. They meet the need for considerable internal and external communication in such establishments. They are basically a switching node with certain special features and have deveioped in parallel with public switching nodes. Digital PBX's have now become universal and are rapidly replacing the existing installations of earlier equipment. Besides handling the traditional internal and external communication. they are able to support a whole range of voice and non-voice sentces and have become an important tool in office automation.

2.2.2 The subscriber line.

2.2.2.1 This consists of an exclusive. dedicated, 2 or 4 wire physical or equivalent circuit connecting the subscriber apparatus to the first switching node known as the subscriber exchange (SE in figure 1) or to a remote switching unit (RSU) which is a part of the subscriber exchange. located :emotely.
2.2 .22

The function of the line is to provide a path for the signalling and communication currents between the subscriber apparalus and the network. It may be provided physicaliy on a pair of wires or on an equivalent circuit derived through multiplexing on a pair of metallic conductors. symmetrical or coaxial. on optical fibres or on a radio system. As a physical pair it may consist of an open wire line. or a twisted insulated pair of conductors in a cable carrying many sucn pairs. The cable may be la:is underground directly buried or pulled in a duct or may be slung aerially on poies.
2.2.2.3 While the continuously rising costs. problems of reliability. the electromagnetic interference and the aesthetics have made the open wire lines totally obsolete. in general. physical copper pairs in cables continue to provide a highly cost eftective alternative. for subscriber lines for fixed installations. particularly in urban areas of high density. When using such physical pairs of wires. good transmission and signaling require a low resistance. usually a maximum of 1000 ohms. and a high insulation. usually a minimum of about 20 Kohms. The line has to be protecled from deterioration due to adverse weather conditions etc. It also needs protection from lightning strikes and contact with power lines. and a reasonable freedom from electro-magnetic 8 electro-static interference from other circuits. which could give rise to noise and or cross-talk. These requirements are met by choicr ol the conductor gauge. Insulating materials \& practices. moisture barriers. olectrostatic balancing and iwist of different pairs in differen! lays etc.
2.2.2.4 In many situations particularly in rural and remole areas of low densily. radio based systems. terrestrial or via the satellites. parlicularly the demand assignment multiple access systems. provide a more cost effective and roliable alternative. For the mobile service they are the only teasible alternative. considerable experimental and development work is also in progress for the use of optical fibres for subscriber lines
22.3.1 Every subscriber's line is connected to a subscriber exchange which is known as his parent exchange. All outgoing and incoming calls from and to the subscriber are routed through this exchange. The subscriber exchange has a small element exclusively dedicated to each sutscriber line, which provides the interface to the rest of the network. The main functions of a subscriber exchange are:
a) Continuously monitor the subscriber line, promplly detect the calling signal whenever the subscriber wants to originate a call and acknowledge the signal (by transmitting a distinctive tone known as dial tone).
b) Accept from the subscriber. signals indicating the calied line number. These used to be in the form of decadic dial pulses but of late, are. more and more frequently. in the form of dual tone multi-frequency signals. These are generated using electronic networks by operating appropriate switches by pressing alternative push buttons.
c) Determine :-. most appropriate direct route through the network to establish a through connectic: between the called and calling subscribers and monitor its establishment. In .ise of any corigestion enroute. check successive alternate routes iiii a final choice or back bone route is reached. If there is congestion even on this route. transmit to calling subscriber a route congestion signal. either a distinctive tone or a :ecorded ariouncement.
d) In case of an incoming call. lest whether the calted subscriber is free or engaged on another call. If engaged. indic ate this to the calling subscriber's exchange which then transmits a called subscriber engaged signal to the calling subscriber. If the called subscriber is free. transmit a calling signal which is a distinctive ringing current and results in a bell or buzzer sounding at the called subscriber's apparatus. A tone is alsc, fed back to the calling subscriber indicating that the called subscriber is free and is being rung.
e) When the called subscr:ber answers by lifting his hand set which automatically gives a signal to his exchange. establish the through connection for the calling and called subscribers to communicate.
f) The calling subscriber's exchange notes the call parliculars suiiably and monitors the call. When the calling subscriber signals the end of call by replacing his hand set. it intiates release of the connection through all the nodes. and also notes down the: duration of the call. It may store full details of the call.that is, calling number. called number, lime of commencement and completion of the call: or it may record only the chargeable call units to to the account of the calling subscriber. depending on the system of billing i.e. detailed or bulk.
g) The calls between subscribers connected to the same exchange are handled entirely vithin the exchange. Calls between two subscribers connected to two different exchanges in the same local or urban network may be routed directly between the two exchanges or via a tandem (shown in fig 2.1 by a rectangle marked TOM). The calls between two subscribers connected to two exchanges not forminn part of the same local network will be routed via one or more transit exchanges and the connecting trunks between them.
2.2.3.2 The number and location of the subscriber exchanges is determined by techno-economic considerations, such that the overall investment and operating costs of the local network consisting of the subscriber lines. the subscriber exchanges. the tandem exchanges and the junctions between all these exchanges is the least.
2.2.3.3 Mention has been made of Remote switching units. These are parts of the subscriber exchange located remotely and used to concentrate traffic from a number of subscribers and carried to the main exchange on a comparatively smaller number of junctions. They are used. to effectively reduce the average length of the subscriber line and thus its cost. On the other hand they add to the network cost by way of junctions and separate infrastructure: building, power, air conditioning etc. The number and location of Remote switching Units is decided so as to erisure that the overall cost of subscriber cables plus the additional cost of providing the RSU's is optimised. With the economies possible in provision of junctions through various digital media such units have become highly cost effective to serve fringe areas of low density in large urban centres and for serving a ciuster of a number of small townships each with its own remote switching unit controlled by a centrally located full subscriber exchange.
2.2.4 Tandem Exchange indicated by a rectangle marked TDM in fig 2.1
2.2.4.1 Tandem exchange accumulates small outgoing traffic from a number of exchanges and distributes incoming raffic from a number of exchanges into them. The basic justification for tandem exchanges arises from the fact that groups of small number of junctions are highly inefficient. Merging small volumes of traffic to and from a number of exchanges helps build up larger more efficient groups of jurictions. The number and location of tandems is decided by balancing the increase in investment and operating costs because of introduction of another switching stage and their reduction by subslituting a large number of small groups of junctions. to a smaller number of larger groups of more efficient junctions. thus ensuring the most economical configuration.
2.2.5 Transit (Trunk) exchange: indicated in fig. 2.1 by a triangle and a square marked 1 T and 2 T
2.2.5.1 Trunk transit is an exchange which basically handles transit traffic from and to other exchanges. subscriber and/or other transit. The economic jusification for such exchanges is the same as for the tandem exchange. except that they handle longer distance traffic. Depending on size and topography of the country.there may be a rumber of levels of transit exchanges in the hierarchy.
2.2.5.2 The lowest or first level of iransit exchanges are called primary transits. They switch traffic between subscriber exchanges or between subscriber and second level transil exchanges also known as secondary transit exchanges. In very large nelworks there may be even higher levels of transit exchanges known as tertiaries
2.2.5.3 The basic function of transit excianges is to trans:t traffic between other exchanges. For this purpose these exchanges receive signals indicating the called number. 'ind the most appropriate route to the called subscriber exchange. either direct or through other transit exchanges and exchange further signals about the progress of the call. Eventually a through communication channel is established from the calling subscriber. through his parent subsciiber exchange, through one or more transit exchanges. finally to the called subscriber through his parent subscriber exchange.
2.2.5.4 In addition to the basic transit function, 1 st level or primary transit exchanges are sometimes also entrusted the task of determining and transmitting to subscriber exchanges the call charge information or centrally recording the detailed billing information for a number of small subscriber exchanges, whose size may not justify the cost of these features. In these cases the control and monitoring of the long distance or trunk calls is transferred from subscriber exchange to the primary transit exchange. These exchanges are therefore also sometimes called trunk automatic exchanges.
2.2.5.5 With the adoption of stored programme fully digital technology and functional modularity, a large part of the hardware as well as sofiware of subscriber, tandem and trunk transit exchanges has become identical. Different exchanges can be suitably engineered with the same basic building blocks.with suitable additional modules to serve the special function for particular application. Further, the same exchange can also be configured to work partly as a subscriber exchange \& parlly as a tandem and / or transit exchange to route traffic from and to other exchanges permitting significant economies in building up networks. Such exchanges are appropriately called Integrated Local cum Transit Exchanges (ILT's).
2.2.5.6 The number and levels of transit exchanges in a national network is decided on the one hand by the ccuntry's size. the densities of population. telephones. and traffic in different regions, and on the other by comparative costs of switching and transmissien systems. Till recently the per channel cost of transmission systems compared to the per termination cost of switching equipment, was significantly higher. particularly in case of very long trunks. In the larger countries therefore. the national networks had been configured with 3 or sometimes even four levels of trunk transit exchanges. With digitalization of transmission systems, and in parlicular advent of optical fibre and satellite transmission systems. per channel cost of transmission systems has come down considerably and is becoming fairly independent of distance. The general trend now is to configure national networks with only iwo tevels of trunk transit exchanges namely the primary and the secondary. as shown in Fig 2.1.
2.2.5.7 Besides the functions of establishing through circuits for communication. exchanging signals for that purpose. and keeping an account of the usage by the subscribers for billing. the subscriber, tandem and trunk transit exchanges have also elaborate facilities for :raffic measurement. for supervision of calis and for maintenance and operation. The facilities include continuous monitoring of the various pieces of equipment. observing any lailures and identifying the faulty module with sultable alarms and print outs. They also include the monitoring and Iesting of the conditions of the subscriber lines and inter-exchange lrunks.
2.2.6.1 The international gateway excinange is another trunk transit exchange. with the speciality that all international traffic from and to subscribers in other countries is routed via the international gateway. Apart from the nortal function of providing a through circuit between the calling and called subscribers in the two countries. the gateway exchanges have facilities to record elaborate data and statistics for calls to and from different countries, to help settle accounts between the administrations of different countries and any international transit exchanges enroute.
2.2.6.2 The number of international gateway exchanges is generally determined by the size of the country. Most countries except the very large ones, or with very high international traffic. are able to do with only one.

2.2.7 Operator Services Switchboards (Indicated by a symbol of a desk marked OSS)

2.2.7.1 The trend basically is towards a fully automatic operation of the network under the control of the subscribers. However, occasionally operator assistance becomes inevitable, e.g. for failure reporting, directory inquiry, reverse call charging, and emergency services etc. It is usual to provide for subscriber access to operators by dialing short standard codes. The access circuits are terminated on suitable switchboards with a variety of facilities to provide the necessary assistance. The opetators have special access to the network and computerized information data banks. Iest facimies etc.
2.2.7.2 The number and location of operator sen: the network is decided on techno-economic considerations, and is essentially a judicious balance between economies arising from centralization of manpower and common facilities and the additional costs of switching and transmission in switching all operator assistance traffic to a central point.

2.2.8 Inter-node or inter-exchange trunks

2.2.8.1 Various exchanges (or switching nodes) are suitably connected to other exchanges by groups of circuits called trunks. In modern networks these are invariably digital four wire circuits derived through digital multiplexing on a wide variety of transmission media. symmetrical pair cables, coaxial pair cables. optical fibre cables. and radio relay systems. terrestrial and satellite based. working in different trequency ranges
2.2.8.2 The proviston of trunks between any two exchanges is decided by the community of interest, i.e. the anticipated traffic between them. However every subscriber exchange is essentially connected to its parent primary trunk transit exchange. every primary transit exchange is essentially connected to its parent secondary trunk transit exchange and every secondary trunk transit exchange is connected to every other secondary transit exchange in a two level transit hierarchy. These essenial trunks are known as the last choice or back-bone routes. In addition to these. depending on the community of interest and traffic anticipation. direct routes are provided between certain subscriber exchanges. from subscriber exchanges to
primary trunk transit exchanges other than their parent, and similarly from primary transit exchanges to secondary transit exchanges other than their parent. Such trunks are known as high usage trunks and are provided only if the traffic justifies a sufficiently large high efficiency trunk group.

2.2.9 A practical network

2.2.9.1 Fig 2.1 basically illustrates the concept of a hierarchical PSTN. It shows only two subscriber exchanges and only two each of the primary and secondary transit exchariges. It shows only one RSU from each of the subscriber exchanges and only one subscriber from each subscriber exchange and RSU. In practice a subscriber exchange may serve from a few to many thousands of subscribers. Similaily a RS'J may also serve from a few to a few thousand subscribers and there may be a number of RSU's parented to a subscriber exchange. The network may have from a few to thousands of subscriber exchanges. Each primary transit exchange will parent many subscriber exchanges and in turn a secondary exchange will parent many primary exchanges. There may be many secondary exchanges. In a very large network there might be even higher level (i.e. (ertiary) exchanges.
2.2.9.2

Fig 2.2 gives a typical distribution and location of various levels of switching nodes in an imaginary small country with five secondary level transit exchanges. Eachit of these secondary level transit exchangeshas a co-located primary and even a subscriter exchange. One of them marked A. has also co-located an international gateway exchange.

Each secondary exchange A. B. C. D. and E. has parented to it a number of primary exchanges and in turn each prinary has a number of subscriber exchanges parented to it.

Every secondary is connected to every other secondary and to its dependent primary exchanges by the backbone trunks. Every subscriber exchange is connected to its prirnary. In addition some of the exchanges parented to the same or an adjacent primary exchango have also direct trunks.

23

Neiwork plans
For effective and efficient operation. the design of network calls for consideration of many aspects. The service provider has to ensure that an access ronnection is provided to any prospective subscriber within a reasonable lime after quest. Further the network has to be so designed as to permit establishment. on demand. of a through circuil. physical or sultably derived on various alternative transmission systems or a combination thereot. between the calling and the called subscriber apparatus. from any where 10 any where. 10 enable transmission of communication voice, facsimile, and moderate speed data. with a reasonable level pf privacy: and to breakdown the circuit when no more required. This has to be achieved rellably and at minimum cost. Some of the issues to be considered are.
a) A realistic torecast over a reasonable period of likely subscribers. their location and the traffic between them.
b) A numbering plan. such that each subscriber has an iriernational unique number on which he can be called.
c) Selection of optimum number and locations for subscriber exchanges and a subscriber line nelwork plan to ensure an economic access from all prospective subscribers to the network.
d) A switching and routing plan, to enable establishment of through connections from any subscriber to any other subscriber economically and reliably with adequate redundancy to take care of any failures, or temporary route congestions.
e) A plan for internode and subscriber to network signalling.
f) A transmission plan to ensure high quality of error free transmission from end to end. irrespective of length of the connection and number of intervening nodes.
g) A charging plan i.e. method of charging for use of network. according to length of connection, duration. lime of day etc. and the system of recording i.e. by periodic pulse metering for bulk billing or detailed accounting with details of each connection established.
h) Choice of appropriate technologies and products for subscriber apparatus. subscriber lines. switching nodes and transmission trunks io ensure economy with reliability and maintainability in different lypes of situations like subscriber density. terrain. distances etc.
i) Dimensioning the nodes. irunk groups etc. to handle the anticipated traffic with a target grade of service.
i) Choice of sources of power particularly in rural and remote areas.
k) Plans for maintenance and nperation of equipment and network.

All these and many other issues besices the direct cost of equipment and materials have to be taken into consideration to achieve nuerall economies.

These plans are an essential inpul for proper planning. configuring and operaling the network. While not directly alfecting the manufacture of hardware. they are required to engineer the functional modules in the switching nodes and transmission media, and the soltware. Eventually they affect the network costs. future expandability. and introduction of new evolving services withoul major cost penalties

These plans are thus of vital importance for the successful operation a inetwork. Their more detalfod treatment is however. outside the scope of this survey.

2.4
 Major equibment aoing into the building up of a PSI network

The above is basically a very brief and elemetary description of the major functional components of a PST network. Each of these functional components is built up using a very large variety of products. i is impossible to list all of them in any brief report. However a brief list of products that go to build up the network is given in Table 2.3.

2.5

Average network Cost per line

The end product of the neiwork can be cosidered a subscriber connection at the subscriber premises which can be used by him for communication with any other subscriber any where in the world. Such connections are variously referred to as main line. main connettion or direct exchange line. The average investment cost of the network per main connection or direct exchange line is quite substantial and has been one of the inhibiting factors in adequate growth of Telecommunication networks in developing countries. In the next chapter the average investment cost per line for a national public switched telephone network and its breakdown to different components is discussed briefly with a view :o gain insigh:s into the possibilities its reduction.

Annexed:

Figures
2.1: Conceptual block diagram of a hierarchical PSTN
2.2: Typical mode network topology for a small country

Table

2.3: A brief indicative list of systems and products going into a PSTN

-.-- SUBSCRIBER LINES

—— INTER-NODE HIGH USAGE TRUNKS
FIG. $2 \cdot 1$

- INTER-NODE LAST CHOICE OR

BACKBONE TRUNKS

FIG. ? 2
A TYPICAL PS T N

Table 2.3

An indicative list of typical systems and products going into a National Public Switched Telephone Network

A. Subscriber Instruments

1. Telephone instruments

- Standard single line
- Extension plans
- Multi-line \& key systems
- with cordless extensions
- MARR \& Cellular mobile

2. Telex instruments

- Teleprinters
- P.C.'s with telex cards

3. Modems for different data rates for use with data terminals
4. Facsimile terminals
5. Private Branch Exchanges
B. Subscriber line components
6. Multi- pair cables

- For underground ducts, jelly filled polyethylene insulated unit iwin polyethylene sheathed unarmoured.
For direct burial. as above but armoured with with galvanized steel tape.
For aerial suspension

2. Jointing materials

- In line jointing modules
- Jointing closures

3. Ducting

- PVC. HDPE pipes \& accessories
- RCC materials

4. Main distribution frame for cable termination at exchanae:

- Iron work frame
- Terminal strips for mounling gas discharge tubes and lerminating cables and jumpers
- Gas discharge tubes for lightning \& power contact protection.
- Jumper wire

Table 2.3 (continued)

B. Subscriber_Line_(continued)

5. Cabinet. pillars \& D.P.s (flexibility points)

- Steel or plastic housings
- Insulation displacement type terminal strips.

6. Line Jack Units for terminating lines at Subs premises
7. Single pair cable (Drop wire), for leading in subscriber line from a D.P. to the Line Jack Unit.
8. Subscriber line carrier systems

9 Subscriber line radio systems e.g. single channel VtiF
10. Multi channel demand assignment radio systems e.g MARR and Celluiar mobile.

C. Switching nodes

1. Subscriber Exchanges, various sizes
2. Remote Switching Units
3. Transit \& Tandem Exchanges of various sizes
4. Integrated subscriber and transit exchanges
D. Trunks \& Junctions
5. Optical fibre systems

- Optical fibre cables
- Digital multiplex systems 8
- Optical line transmission systerns of various capacittes
- $\quad 2 \mathrm{Mb} / \mathrm{s} .30$ channels
- $8 \mathrm{Mb} / \mathrm{s}, 120$ channels
- $\quad 34 \mathrm{Mb} / \mathrm{s}, 480$ channels
- $\quad 140 \mathrm{Mb} / \mathrm{s} .1920$ channels
- $\quad 565 \mathrm{Mb} / \mathrm{s} .7680$ channels and even higher order

Various accessories

D.
 Trunks \& Junctions (cantinued)

2. Terrestrial Digital radio relay systems, various frequency bands \& capacities e.g.

- $4 \& 6 \mathrm{Ghz} 140 \mathrm{Mb} / \mathrm{s} 1920$ channel.
- $11 \& 13 \mathrm{GHz} 34 \mathrm{Mb} / \mathrm{s} 480$ channels.
- $2 \mathrm{GHz} 8 \mathrm{Mb} / \mathrm{s} 120$ channel.
- $400 \& 600 \mathrm{Mhz} 2 \mathrm{Mb} / \mathrm{s} 30$ channel and 10 channel systems.

3. Satellite based digital and analogue systems of various capacities in various frequency bands

- Large capacity multi channel systems
- \quad Single channel per carrier systems
- Demand assignment systems. Analogue \& TDMA

4. Accessories for radio relay systems.terrestrial \& satellite based:

- Antennas of various types
- Wave guides, cables 8 feeders of various types
- Steel and other towers of various heights and load capacities

E Accessories \& support equipment for all systems:

1. Main Power plant for switching nodes and transmission stations:

- Float chargers from mains 1048 or 60 volts D.C. various capacities.
- Standby batteries: Lead acid various sizes

2. A whole range of Test instruments. some of general application. others specialized for each type of equipment
3. Air conditioning plants of various sizes for exchanges \& transmission stations
4. Fire detection and fire fighting equipment
5. A wide váriety of equipment. Iransport, material handling, winches. and a wide range of lools for construction. installation and maintenance \& operation

Chapter 3

Average cost per line, of national PST network \& items and factors going into it

3.1

Essential Components of a PST Network

The main components of a national PSTN have been briefly discussed in chapter 2. The cost of each of these components spread over all the working subscribers' lines determines the average network cost per line. The network cost per line varies very widely from country to country and at different stages of development of the network in the same country. The actual cost of a specific line within the same network varies very widely from the average, depending upon the density of population and telephones. traffic, geographical topology and the location of the subscriber vis a vis existing network facilities.

3.2 Start up costs of a PST Network

3.2.1 The two essential requirements of an effective ard efficient national PSTN are:

- Ability to provide access by way of a subscription service within a reasonable time after receipt of request for such service, to every citizen who wants such access and is willing to pay for it at reasonable tariffs. and
- prompt and effective establishment of a through channel for communication with any other subscriber anywhere in the world. at the will and command of the subscriber.
3.2.2 These requirements call for establishment of at least a skeleton hierarchy of switching nodes and an international gateway, with transmission trunks connecting them, again at least the basic backbone routes, very early in the development. In addition in urban areas it is neccessary to construct the underground cable ducts along at least the main thoroughfares with certain minimum subscriber cables to provide for connections anticipated within a reasonable period.

The start up costs of a network therefore tend to be high. This makes. the initial per line cost high. which, however comes down as the start up costs get distribuled over more and more subscribers.
$3.3 \quad$ Factors affecting the cost per line in a malure PST Network
with a large base of subscribers and a slable growth rate
3.3.1 In a matuie network with a substantial base of subscribers and a tarly stable growth rate. the cost per line depends on the telephone density. size and ronology of the country, and the calling habits of the users i.e. busy hour

Iraffic in terms of simultaneous calls anticipated in different parts of the network which in turn depends on the busy hour calling rate and average duration of the calls. The network cost also depends on the target grade of service. All these are basic inputs for the engineer, g and configuration of the network. Good engineering and configuration, and proper selection of component systems can significantly reduce cost per line.

This brings out the importance of availabilty of well Irained and competent network engineers. independent of the suppliers of equipment.
3.3.2 Apart from the above, the cost per line will naturally depend on the input costs per unit (by way of equipment and services) which the country can command. This in turn will depend on the extent of competition the country can secure in its purchases.

3.4 Typical per line costs in a typical PST Network at an intermediate level of maturity

3.4.1 Table 3.1 summarizes typical per line cost and its breakdown under major components. for a typica! national PSTN at an intermediate level of development and maturity, with a base of between 500.000 to 1000.000 subscribers. The cost has been given for three types of areas in the network, high density. medium density and low density, the latter combined with difficult geographical topology such as hilly \& mountaneous regions or a collection of low population density islands. The table gives per line cost for each component in US\$ and as a percentage of total.
3.4.2 The cost have generally been based on the average international prices for equipment and supplies without any significant local government import duties or other taxes. prevailing during the period 1987-90. The networks have been assumed 10 have been engineered and constructed using digital switching and transmission.

The cost o! infrastructure namely land and buildings, takes into account the relatively less expensive land and construction costs in developing countries.

In regard to construction and installation costs. while on one hand the significantly lower manpower costs prevailing in developing countries, have been taken into account, on the other, higher costs of engineering \& supervision from suppliers. who in most cases. belong to the developed countries, and therefore rather cosily. have also been kept in view.
3.4.3 The figures in table 3.1 indicate that the overall network cosis will be of the order of 1000 US $\$$ per line in high density areas. 1200 US\$ in medium density areas and will be substantially higher of the order of US $\$ 2500$ per line in very low densily and geographically difficult areas.
3.5.1 The basic question before the proposed Bangalore meeting relates to the possibility of reducing the network investment costs in developing countries inrough:

- Joint action and cooperation among developing countries in procurement of telecommunication equipment
- Local or regional manusacture of equipment \& components going into them
3.5.2 Before going into these aspects perhaps it will be appropriate to reiterate three points which have already emerged:

1) A good network engineering \& configuration can significantly reduce the average network costs per line. For this. availability of competent network engineers independent of suppliers of equipment, is essential.
2) The unit manpower costs in developing countries are significantly lower than in developed countries. Availability of adequately trained and competent local manpower to undertake all the engineering, construction. installation. maintenance and operation will significantly reduce the average network cost.

3: Ability to secure adequate competition in purchase of equipment and services will help reduce the cost of essential inputs to the network.

3.5.3 Network segments requiring priority consideration:

While reduction in ccst of every segment of the network will contribute 10 overall reduction of costs, it stands to reason that areas contributing the maximum to the average cost, need priority consideration. To help identify such priority areas, the per line network costs have been summarised in table 3.2 under six broad headings:

1! Subscriber instruments
2) Subscriber Lines
3) Switching systems
4) Transmission media
5) Operator services boards
6) Construction \& installation

These costs have been further rearranged in tables 3.3, 3.4. \& 3.5 in descending order seperately for high. medium and low density areas. The tables indicate that:

- In high density areas, switching system costs lead with a 38.8% share followed by subscriber lines with a 21.4% share.
- In medium density areas the switching system costs still lead though with a smaller share of 32.3%. The Subscriber line costs are still next but with a much larger share of 30.9%
- In very low density areas the transmission media costs overtake and become dominant with a share of abo ' 60\%.

The above analysis indicates the possibilities of somewhat different priorities among the developing countries according to their geographical topology and population distribution.

3.5.4
 Local or regional manufacture of systems and components:

To hetp the Bangalore meeting to consider the possibilities of reduction ot cosis through iocal and regional manufacture of some of the equipment. a more detailed survey of important component systems and products going into the network has been undertaken in the following chapters. This includes a survey of the systems currently in use and being produced, their brief description, and an analysis of the essential inputs required for their production. by way of components and raw materials: machines. tools \& testers: and manpower. Some idea of their international costs has also been given. In a seperate chapter, a similar analysis of inputs required for some of the more important components themselves has also been undertaken.

Annexed: Tables:

3.1 Per line component wise costs for a typical national PSTN.
3.2 Per line costs for a typical PSTN summarised under a few broad headings.
3.3 Per line costs for a typical PSTN. headings rearranged in descending order of custs in high density areas.
3.4 Per line costs for a typical PSTN. headings :earranged in descending order of costs for medium densily areas.
3.5 Per line costs for a iypical PSTN. headings rearranged in descending order of costs for low density areas.

Table 3.1

Per line component-wise investment costs for a typical national public switched telephone network (PSTN) to provide plain old jelephone service (POTS) with capability to supoent lou speed (upto 2400 bos) data transmission and facsimile (FAX) service

Areas of \ggg
Network component

TYPICAL AVERAGE IAVESTMENT COST PER LINE High Density Medium Density Low Density USS ? USS ? USS ? ?
1.Electronic telephone with push button dialler, dial pulse/dtmf25
$2.4 \quad 25 \quad 2.1 \quad 25 \quad 1.0$
¿. Subscriber line on jelly filled copper conductor cables involving:
a) Terminal jack at subs. premises
b) Drop Wire \& fittings
c) Dist'n point
d) Cable duct PVC
e) Distribution cable *
f) Cable pillar
g) Primary cable
h) Main Dist'n Erame

4	0.4	4	0.3	4	0.2
15	1.4	20	1.7	25	1.0
5	0.5	8	0.7	8	0.3
50	4.8	80	6.6	0	0.0
80	7.7	150	12.4	150	6.0
5	0.5	7	0.6	0	0.0
60	5.8	100	8.3	0	0.0
4	0.4	4	0.3	4	0.2
					7.6

3. Switching nodes

a) Subscriber exchange	250	24.0	225	18.6	225	9.0
b) lst transit exchnage	60	5.8	70	5.8	80	3.2
c) 2nd transit exchange	25	2.4	25	2.1	25	1.0
d) International Gateway	20	1.9	20	1.7	20	0.8
e) Infrastructure: buildings,						
air-conditioning,						
power plant etc	50	4.8	50	4.1	35	1.4
Total switching_nedes.	405	38.8	390	32.3	385	15.4
Total carried over						
to next page	653	62.6	788	65.2	601	24.0

Per line component-wise investment costs for a typical national publie switched telephone network (RSTN) to provide plain old telephone service (ROTS) with capability to support low speed (upte 2400 bps) data transmission and facsimile (EAX) service

Notes:

* Items $4(a)$ to (c) also include cost of direct trunks among the subscriber, 1 st transit, and 2 nd transit exchanges themselves.
* Some trade-off is possible between items $2(e)$ and $4(a)$ in case of low density areas. There is an alternative of providing service from a more centrally located exchange close to the parent primary transit node, using higher cost single channel VHF subscriber radio or multi-access radio relay systems for shscriber line in place of copper cables and thus reducing the onst of trunks to the lst transit exchange. Such trade offs have io be considered to optimise the overall network costs in individual cases.

Table 3.2

SUMMARY OE
Per line investment costs for a typical national public switched teiephone network (RSTN) to provide plain old tslephone service (ROTS) with capability to support low speed (upte 2400 bps) data transmission and facsimile (EAX) service

Areas of \ggg
Network component

1 Electronic telephone	25	2.4	25	2.1	25	1.0
2 Subscriber line total	223	21.4	373	30.9	191	7.6
3 Switching nodes total	405	38.8	390	32.3	385	15.4
4 Transmission media total	170	16.3	180	14.9	1,580	63.2
5 operator services boards	20	1.9	20	1.7	20	0.8
6 Construct'n installat'n	200	19.2	220	18.2	300	12.0
Total	1043	100.0	1208	100.0	2501	100.0

Table 3.3

Identification of the components contributing the maximum to per line investment costs for a typical national public switched telephone network (ESTN to provide plain old telephone service (POTS) with capability to support lew speed (upte 2400 bps) data transmission and facsimile (EAX) service
(high density areas)

TYRICAL AVERAGE INVESTMENT COST PER LINE
Areas of>>> High Density Medium Density Low Density

3 Switching nodes total	405	38.8	390	32.3	385	15.4
2 Subscriber line total	223	21.4	373	30.9	191	7.6
6 Construct'n \& installat'n	200	19.2	220	18.2	300	12.0
Transmission media total	170	16.3	180	14.9	1,590	63.2
1 Electronic telephone	25	2.4	25	2.1	25	1.0
5 operator services boards	20	1.2	20	1.7	20	0.8
Total	1043	100.0	1208	100.0	2501	100.

Table 3.4

Identification of three components contributing the maximum te per line investment costs for a typical national public switched telephone network (PSTN) te provide plain old telephone service (ROTS) with capability to suppert low speed (upte 2400 bps) data transmission and facsimile (EAX) service (Medium density areas)

Areas of>>>
Network component
3 Switching nodes total
2 Subscriber line total
6 Construct' n \& installat' n
4 Transmission media total
1 Electronic telephone
5 operator services boards
Total

405	38.8	$\underline{390}$	$\underline{32.3}$	385	15.4
223	21.4	$\underline{373}$	$\underline{30.9}$	191	7.6
200	19.2	220	$\underline{18.2}$	300	12.0
170	16.3	$\underline{180}$	$\underline{14.9}$	1.580	63.2
25	2.4	$\underline{25}$	$\underline{2.1}$	25	1.0
20	1.9	$\underline{20}$	$\underline{1.7}$	20	0.8
1043	100.0	1208	100.0	2501	100.0

Table 3.5
Identification of three components contributing the maximum to per line investment costs for a typical national public switched telephone notwork (PSTN) to provide plain old telephone service (PoTS) with capability to support low speed (upte 2400 bps) data transmission and facsimile (EAX)
service
(10w density areas)

Areas of \ggg^{\prime}
Network component

4 Transmission media total
3 Switching nodes total
6 Construct'n \& installat'n
2 Subscriber line total
1 Electronic telephone
5 operator services boards
Total

TYPICAL AVERAGE INVESTMENT COST PER LINE High Density Medium Density Low Density US\$ \% US\$ \% US \% \%

170	16.3	180	14.9	$1, \frac{580}{}$	$\frac{63.2}{15.4}$
405	38.8	390	32.3	$\frac{385}{}$	$\frac{300}{12.0}$
200	19.2	220	18.2	$\frac{300}{191}$	$\frac{7.6}{1.0}$
223	21.4	373	30.9	$\frac{25}{20}$	$\frac{1.8}{25}$
25	2.4	25	2.1	$\frac{20}{20}$	1.7
20	1.9	20	1.7		
1043	100.0	1208	100.0	2501	100.0

CHAPTER 4

SWITCHING SYSTEMS

4.1

Introduction

The analysis in chapter 3 indicates that in a Public Switched Telephone Network (PSTN), the switching nodes contribute the maximum to the cost per line in both the high and medium density areas, and are a major cost component even in case of low density areas. In any consideration to reduce the neiwork costs, switching systems naturally take priority. In this chapter a brief survey is undertaken of the switching systems now in use worldwide. This is follawed by a brief generalised description of a typical system, and the major inputs required for an assebmbly plant for its manufacture viz. the major components that go into the production of a typical switching system, the machines, tools, testers and plant and the manpower required for such production. Rough estimates of costs are also indicated.
4.1

Switching systems in use worldwide

A wide variely of switching systems have been developed over the years and most are still in use, starting with manual switchboards. through elecromechanical step by step and common control systems, through SPC analogue systems to the fully digital systems.

4.1.1 Manual switching systems:

Ever since the invention of the Telephone by Alexander Graham Bell in 1876, there has been a conlinuous striving towards a cost effective network which will enable every person in the world eventually to have a telephone and converse on the same to anybody else anywhere. The service requires, besides the tetephone instrument itself, a pair of conductors between the two parties for such conversation. It immediately became obvious that we could not run a pair of conductors from every telephone to every other, and some form of a switching network was inevitable. A beginning was made with the manual switching, in which subscriber lines were terminated on jacks suitably numbered with connections between desired lines established through patching cords by telephone operators. A hierarchy of switching nodes all manually operated, with appropriate signalling, routing and transmission plans soon developed and provided a fai.iy effective service in the beginning. However. apart from suffering from lack of secrecy, such manual systems became quite cumbersome as the number of users grew. Search for some means of automatic switching oy various pioneers was on.

4.1.2 Step by step electro-mechanical switching systems:

Strowger switching system based on a two motion (vertical followed by rotary) switches was one of the earliest to be developed. in 1889, by Strowger, an underlaker. whose major motivation was diversion of his business through an operator, spouse of a competitor.The first practical exchange was installed in 1892. The system was perfected by various manufacturers and quite a few exchanges based on various versions of this technology are still in use. particularly in developing countries. In fact in India both manual switchboards and strowger step by step exchanges are still being produced and installed in small quantities because of their simplicily and low cost for quick provision oi service in low density areas. However, they fall short of the requirements of modern neiworks by way of quality and reliability of service, and because of their lack of flexibility in numbering $\&$ routing add substantially to the overall nelwork costs.

4.1.3 Common contiol electromechanical systems:

The need for some form of common control systems, which .dislinked the numbering and routing of calls was felt very early. Efforts were made in this direction using the available eletromechanical switches. Notable examples are the the Director system developed by the British Post Office using the basic Strowger switches. the Panel system developed by AT\&T in USA and the Motor Uniselector system of Siemens. Some of these were introduced as early as $1920^{\circ} \mathrm{s}$.

A real breakthrough in this direction became possible with the development of crossbar switches intially in USA and Sweden and later by others. The first crossbar exchanges under the name - No. 1 Crossbar system' were installed by AT\&T in USA in late 1930 's. Using the crossbar switches higly effective, efficient and reliable common control networks with nation and world wide subscriber dialing were built up in 1950's and 1960's. Millions of lines of subscriber exchanges and hundreds of thousands of trunks of transit exchanges were installed in almost all the developed countries and some in developing countries.

4.1.4 Stored Program Controlled switching systems

Reliable. effective and efficient as the common control systems using crossbar switches were. they consumed very large quantities of precious materials and required considerable effort in installation, maintenance and administration of the network. The mechanical components were subject to considerable wear and tear. They also needed large amount of accomodation, particularly at a premium in large urban centres. On the other hand the newly emerging electronics and computer technologies promised newer switching systems with minimum of moving parts,and considerablly less effort in mainteance and administration with possibilities of a whole range of new facilities. Soon atter the invention of the transistor, in 1950's. work started simultaneously, in many countries on what came to be known as stored program controlled (SPC) switching systems. For the switching network two alternatives were considered, one based on highly minitiaturized and hermitically sealed relay matix and the other based ori the newly emerging digital technology.

First trial installations started in USA in the beginning of 60's and the practicability of the idea was well established by mid 60 's. By mid seventies a number of systems were being manufaclured and installed by the leading Telecommunications manufacturers, most of them based on analogue switching matrix. A few million lines of these SPC Analog switches were installed in various parts of the world and are giving :xcellent service.

4.1.5 Stored Program (SPC) Digital Switching

4.1.5.1 While the SPC analogue systems using highly reliable relay matrices were being installed, work was concurrently going on for developing fully digital switches with the intention of elimininating all electro-mechanical moving parts and match with the highly successfull development of digital transmission systems. Millions of dollars were being invested in 1970's by all the leading telecommunication manufacturers to develop fully digital systems, and devices for them. The development of the integrated circuits gave a real filip to this development, and this development in turn gave a real filip to the development of eletronics.
4.1.5.2 By mid 70 's France had made a real breakthrough with its digital switching systems being devloped by CIT Alcatel and Thomson CSF in close cooperation with French PTT. These switches laid the foundation for the remarkable transformation of the French network during late 70 's and early 80 's.
4.1.5.3 By early 60 's most of the leading manufacturers had successfully completed and proved their digital switches. Since then each has won its own adherents based on various features including the cost and special efforts to woe particular markets. Each claims to have sold and installed millions of lines of local and thousands of trunks of transil exchanges. Most are manufacturing their switches to varying degrees in more than one country. Intense work is on to minitiaturise the devices. improve their reliability and build in new features. Everybody is working towards making his switch most modular and versatile for PSTN, for ISDN, for Cellular Mobile. and for what have come to be known as Intelligent networks. and make it cost effective for the entire range and size of applications.

4.1.6 Current situation

The current situation thus is that in different parts of the world a varying mix of earlier electro-mechanical systems, both slep by slep \& common control. and SPC analogue switches are still working. The new installations are dominantly of the SPC digital type. Some of the administrations are even taking up programmes of replacing the existing older switches irrespective of whether they have completed their useful ite

As iar as selting up of new production capacities is concerned it is today totally inconceivable to think of anything but the latest SPC digital switches. Accordingly in this report only these types of switching systems are being cosidered.
4.2.1 Following are some of the major SPC digital switches tarranged in alphabetical order) and their original developers and manufacturers:

a)	AXE	Ericsson of Sweden
b)	DMS	Nothern Telecoms of Canada
c)	E-10-B	Alcatel of France
d)	ESS 5	American Telephone Telegraph Corporation of USA
e)	EWSD	Siemens of Germany
f)	FETEX 150	Fujitsu of Japan
g)	NEAX 61	NEC of Japan
h)	System 12	Bell Telephone Manufacturing Cc of Belgium
i)	System X	Plessey \& GEC of UK

4.2.2 Besides tha above major systems, Haltel of ltaly, Nokia of Finland, Oriental Telecom Co of Korea and ITI and C-DOT cf India have also develnped SPC D:gital Switches, under the names iinea UT, DX 200, TDX, ILT and C-DOT RAX \& MAX respectively. In most cases they are available for small and medium size exchange applications. Work is going on in some other countries also towards development of their own switching systems.

4.2.3 SPC Digital switches for PBX application

The above is by and large the current position in regard to switching systems for public networks. Many more systems have been developed and are being successfully produced and marketed by a large number of companies for the special application as Private Branch Exchanges. However, the Private Branch Exchanges have not been listed as a component under the PSTN in chapter 3, because in most countries there is a growing trend for the subscribers to direclly buy these rather than lease them from the public service provider.
4.3

Brief Description of SPC digital switching systems
(This is necessarily a very elementary and general description meant as a brief introduction for the non-technical readers).
4.3.1 High Level of commonality among various systems

Because of close international cooperation in the ITU and its CCITT towards standardization. and the nature of the digital and SPC technologies. there is a considerable conceptual commonality between different SPC digital switching systems. In most cases the hardware and construction practices have developed along paranel lines and many of the electronic devices used are similar if not the same.

4.3.1

 Block SchematicFig 4.1 is a very generalised block schematic of a typical SPC digital exchange. All modern SPC digital systems are necessarily a highly sophislicated combination of hardware and software. However.in all systems, an attempt has been made to minimise complexity through adoption of functional modularity both in hardware and software. As figure 4.1 indicates at the overall level a digital exchange consists of three basic functional blocks.

- Subscriber Line and Trunk Block (SL\&TB)
- A Digital Switching Natwork Block (DSNB)
- A Central or Coordinating Processor Block (CPB)

Each block in turn consists of a number of functional modules. For purposes of control each block and some of the modules have their own dedicated microprocessors thus ensuring a highly distributed control \& effective modularity. The block \& module level microprocessors, of course. continuously communicate with and are contiolled by the central or coordinating processor. The three blocks are interconnected by physical and logical links or highways.

4.3.2 Subscriber Line \& Trunk Block (SL\&TB)

The Subscriber Line and Trunk block consists of a number of Line \& Trunk Groups of varying capacities in different systems. The Line and Trunk groups basically provide an interface between, on the one hand, subscriber lines and analogue and digitat inter exchange (or node) trunks with different signalling systems. and on the other, a digital switching network. It scans the lines \& trunks for on/off hook conditions, receives and transmits signals, and continuously monitors the correct functioning of its own modules.It also provides a point for concentrating (essentially low) traffic from the subscriber lines and when warranted from trunks.

Figure 4.2 gives a block diagram of a typical Subscriber line and Trunk block in a typical system. As can be seen it consists of:

- Subscriber Line Units (SLU),
- Analogue Trunk Line Units (TLU-A)
- Digital Trunk Line Units (TLU-B)
- Dual Tone Multi Frequency signalling, sending and receiving Unit (SU-DTMF).
- Tones/ Announcements, ringing current generating and sending Unit (SU-T\&R)
- A Subscriber \& Trunk line Group Switch (GS-SL\&T)
- A Link Interface Unit(SL\&T-LIU). and
- A Group Processor (SL\&T-GPU)
4.3.2.1 A subscriber line unit (SLU) serves to connect uplo 32 subscriber line interface circuits mounted on four modules or cards. serving 8 subscriber lines each. Each subscriber line interface circuit contains two miniature relays. a hybrid transformer and a codec per subscriber line. The circuit provides for line condition and offon hook detection.ring feed. ring trip and analogue to digital and digital to analogue conversion for each subscriber line.
4.3.2.2 An analogue trunk line unit (TLU-A) serves upto 16 analogue trunks. mounted on four modules or cards. Each card mounts devices similar to those for subscriber line card for signal detection, signal interface, 2 wire/4 wire . and analogue to digital and digital to analogue con:version.
4.3.2.3 A digital trunk line unit (TLU-D) provides an interface between the exchange and 32 digital (A-law) trunks. giving a $2 \mathrm{Mb} / \mathrm{s}$ channel.
4.3.2.4 The two SU's or signalling units provide for signal generation and sending on to the Subscriber lines and trunks. one for DTMF signals and the other for ring current and other tones and announcements.
4.3.2.5 The subscriber and trunk line group switch (GS-SL\&T) is a nonblocking one stage time switch designed to interconnect 512 channels. On one hand it connects the subscriber lines and trunks to the switching network for connection to subscribers and trunks served by other S\&TL Blocks, on the other it interconnects the SU's to the Subscriber \& Trunk line modules for transmission of necessary signals under control of central processor.
4.3.2.6 The subscriber and trunk line link unit (SL\&T-LIU) provides the interface between the group switch (GS-SL\&T) of the SL\&T Block and the switching network block on a duplicated $8 \mathrm{Mb} / \mathrm{s} 128$ channel PCM path.
4.3.2.7 The SL\&T Group Processor, typically a processor with 64 Kbytes memory for data and program storage. adapts information arriving from the Subscriber lines and trunks to the internal standard interface of the exchange and controls the SL\&T Group switch. It preprocesses some of the switching information e.g. the called subscriber number signals received from the calling subscriber and thus reduces the load on the central processor. Some of the more important functions performed by this دrocessor are:

1) Scan the line for on hook off hook conditions
2) Control subscriber line \& trunk circuils and group switch
3) Control signallig procedures
4) Perform timing operations e.g. for supervision \& metering
5) Convert external line/trunk signals to internal standard messages for central processor \& vice versa
6) Routine test line and trunk circuits, code generators, senders \& receivers
7) Monitor switching network functions
8) Measure bit error rates
9) Scan alarm indications on PCM transmission systems

4.3.3 Switching Netwok Block

4.3.3.1 The switching network provides for digital interconnection between subscriber lines and trunks terminated on different Subscriber Line \& Trunk blocks. Each such block is typically connected to the switching network Ihrough an $8 \mathrm{Mb} / \mathrm{s}$ path (128 channels of 54 Kilobits/s). For a voice path two such $64 \mathrm{~Kb} / \mathrm{s}$ channels have to be through-connected from calling to called subscriber module, one each for each direction of transmission.
4.3.3.2 The switching network consists of a combination of iwo lime and a space switch stage, and a network controller. The time switch stages serve to through connect the associated offering and serving channels by changing the time slots. The space swith stage on the other hand connects several time switches through space. It changes the position of the time division multiplex signals in space while keeping them in the same time slots.
4.3.3.3 The switching network consists of uniform time and space switch modules. whose number is decided by the size of the exchange and the traffic in erlangs. for example as shown in fig. 4.3, a switching network for interconnection of 8192 channels of $64 \mathrm{~Kb} / \mathrm{s}$ will require two stages of 16 time switches each with a capacity to switch 4 channels of $8 \mathrm{Mb}^{2}$ s and 4 space switches capable of switching 16 channels of $8 \mathrm{Mb} / \mathrm{s}$.
4.3.3.4 The switching network controllers control the time and space switches to establish and release connections according to instructions frum the central processor.

4.3.4 Central_Processor

4.3.4.1 Functions

The central processor. sometimes also called coordination processor. performs three categories of functions:
ai Switching functions, e.g.:

- Number analysis for routing and zoning
- Path finding including alternative routing
- Evaluating and generaling linetrunk messages
b) Exchange operation \& maintenance including man-machine communications. e.g.:
- Installing \& disconnecting subscriber lines
- Changing trunk group allocations
- Reading out call charge data
- Traffic measurements
- Testing. fault diagnosis
cl Safeguarding functions. e.g.:
- Locating \& blocking faulty equipment
- Chageover
- Recovery. alarm and fault recording
- Srilective or total automatic restarl

4.3.4.2 Component modules

The Central processor consists of a number of modules. each duplicated for reliability. Typically there are the following modules:

```
- Memory Unit (MU)
- Processing Unit (PU)
- Input/output processor (IOP)
```

Also associated are:

-	Message Buffer (MB)
-	Back up memory(BM)
- \quad Central Clock Generator (CCG)	
- \quad Operation \& maintenace devices (OMD's)	
- \quad Modems for remote Operation \& maintenace functions	

4.3.4.3 Information paths

The central processor has duplicated digital data paths to the Subscriber line \& trunk block processor. the switching controller in the switching nelwork. and to time switches for exchange of data and instructions.
4.3.4.4 Various manulacturers have developed their own switching processors for use as central processors. Some have deleloped a range of such processors with different capacities in terms of maximum number of BHCA (Busy Hour Call Altempts) they can handle, for use as a duplicated pair in different sizes of exchanges. Others have adopted multiple processor configuration $(n+1)$, with one single design of processor. to achieve the same result.

4.3.5 Configuration of different sizes of exchanges and for different applications

In the paragraphs 4.3 .1 to 4.3 .4 above a very brief survey has been undertaken of the hardware of a lypical digital switching system. The systems consist of three distinct functional blocks and each block consisis of a number of functional modules. These modules can be suitably put together to obtain exchanges for different applications and sizes.
4.3.5.1 Application-wise there can be three different classes of exchanges:

- Subscriber
- Transit
- Integrated subscriber cum transit.

The three versions can be achieved by suitably equipping the subscriber line and runk blocks.
4.3.5.2 Capacity wise there are three parameters to consider

The number of subscribers or trunks. which will determine the number of Sunscriber line \& trunk blocks and their modular content.

- The traffic in Erlangs, i.e. simultaneous number of calls during the busy hour. which will determine the number of time and space switch modules in tre switching network block and the maximum number of lines or trunks that can be connected to a subscriber line and trunk block.
- The busy hour call attempts. which will determine the type of central processor in systems in which different duplicated processors have been developed for different capacities or number of central processors in systems in which $n+1$ configuration has been adopted.
4.3.5.3 It has been claimed for almost every switching system on the world market that it can be suitably configured to be cost effective for practically any size, as a subscriber exchange from less than 100 lines to 100,000 lines and as a transit exchange from a few trunks to as many as 60.000 with BHCA anything uplo 600.000 to 800.000 . Very high reliability has also been claimed for the system as a whole and for individual modules, through choice of components and duplication of all critical functional modules.

4.3.6 Software

Paragraphs 4.3.1 to 4.3.2 have briefly covered the hardware of a typical digital switching system. In parailel and integral to the furctioning of the system is the software, a sort of decision matrix and instruction set.

4.3.6.1 Software modules

As in the case of hardware. the software in modern digital switchnig systems has been developed in funclional modules. The software can be broadly divided into two classes:

- The executive programs
- Data
4.3.6.2 The executive programs can be divided into three functional categories:
- Switening programs
- Operating programs
- Safeguarding programs

Under each of these heads will be tasks similar to those described under para 4.3.4.1 for the central processor. There are separate program modules for processors in each functional block to cover each of these categories of funclions.
4.3.6.3 Exchange data can be divided into equipment and function related. as also permanent, semi-permanent and variable.

Some idea aboul the extent of sollware, program \& data can be guaged from the tact that a lypical 20.000 line subscriber exchange with a BHCA of about 240.000 calls for a central processor memory of about 8 Mbytes. equal to about 40.000 pages of A. 4 size typed matter in single space.

4.4

 Prevailing prices for switching systems4.4.1 As mentioned in paragraph 4.3.5 switching nodes are built up by putting logether a large number of functional modules along with the necessary soliware. The Iraffic capacity in erlangs and BHCA and the network configuration vary very widely. 11 is therefore not possible to indicate a very precise per line cost for switching systems. Further the quotations given by different suppliers in the same tender tend to vary widely, as also quotations of the same supplier in different tenciers. Thus in International competitive bids, on an overall basis, quotations have differed from about 150 US $\$$ per line to 450 US $\$$ per line. However in general the actual orders placed in different countries seem to lie in the range of 180 to 250 US $\$$ per line FOB country of origin.

4.5 Manufacture of a typical digital switching system

4.5.1 As indicated in paragraph 4.3 above the basic hardware unit of a digital switching system is a module or printed card with a number of electronic components,active and passive mounted on it and interconnected to each other through conducting metal lines printed on the board. to perform a specific function in the system.

A number of these cards can be mounted in a frame. The connections between different cards are made through maleffemale connectors through a mother board or back plane, which is another printed circuil board, with suitable connectors mounted and interconnected.

A number of these frames are mounted on a rack. The connections between frames on the same rack and on other racks are made by means of conneclorised cables. Each rack has its own power 48 or 60 volts D C supply distribution for the various frames and cards.

The manufacture of the switching system hardware can thus be considered in two parts.

- Procurement of various components and their assembly on cards. trames and racks and their testing.
- Manufacture of components.
4.5.2 In general. the assembly line production of different types of electronic systems has become a fairly standard process with standard manual, semi-automatic and automatic machines for card assembly. and wave soldering and semi-automatic and automatic test set ups. On the other hand the manufacture of components involves a very wide variety of processes. some of them highly complex and critical. The high reliabiliy and performance repeatability requirements of components require a very high degree of automation and control.

In the remaining paragraphs of this chapter production process and inputs required for assembly production of a typical digital switching system are cosidered. Pioduction of some typical components is considered in another chapter.

4.5.3

Chart 4.4 gives a typical assembly production process chart for a typical digital switching system

4.5.4 The essential inputs for the assembly line manufacture of a digital switching system :

These can be considered under three categories as follows:

- A very wide variety and types of electronic components.
- A fairly well standardized range of testing and assembly equipment and the necessary infrastruciure.
A set of well trained and competent operators, testers, software and hardware engineers and managers eic.

4.5.4.1 Components and their cost

Table 4.5 lists the different categories of components. the number of types. and the quantity of each category of components used in a typical switching system for an annual production of about 200.000 lines of a mix of small, medium. and large sized subscriber exchanges. Also included is an indicative internationa! unit price for each component and an estimate of total cost of components per line. In view of the importance. and wide variations in prices of one category of components viz. I.C.'s table 4.6 undertakes a more detailed analysis of the types $\&$ their prices and arrives at an average price adopted in table 4.5.

The prices are based on certain budgetary quotations for component kits for a particular type of switching equipment during 1990. Significant discounts upto 10 to 15% may be feasible when purchased in bulk on regular basis. In respect of certain items particularly the IC's, prices tend to be high initially when a new device is introduced. but drop quickly with increase in sales volume.

4.5.4.2 Production machines, tools and testers

Table 4.7 gives a typical list of the testing and assembly equipment for two sets of assembly plants to produce 200.000 and 500.000 lines of a similar mix of small. medium and large subscriber exchanges per annum. A rough estimate of average international prices for such equipment has also been indicated. Table 4.8 summarises the cost of different classes of testing and assembly equipment and the infrastructure in a developing country.

4.5.4.3 Manoower:

A switching system assembly plant requires the services of operatives for the assembly work, testers and supervisors for detailed testing of modules in production and for system integration as a working exchange before shipment. technical staff for maintenance of machines tools \& testers and engineers for both the hardware and software. In addition as in any other plant, it will require managers. accountants. sales force and buyers.

Table 4.9 gives an estimate of the manpower requirements and annual cosis involved for the 200.000 and 500.000 lines p.a. plants in typical developed and developing countries.

4.5.5 Summary of Inpul requirements

4.5.5.1 Components

- Table 4.5 shows that the component requirements for assembly line production of 200.000 lines per annum of a mix of subscriber line exchanges will cost about US $\$$ 13.8 million or about US $\$ 69$ per line. This is a very rough estimate on the basis of prevailing international prices. FOB country of origin in small lots. Some discounts might be possible for large lots. Some additional expense will have to be incurred on freight and insurance. The two may balance out.
- The table covers basically the main exchange equipment only. It does not cover the main distribution frame which has been included under subscriber line in table 3.1. as also the standby batteries and float and charge rectifiers for the main 48 or 60 volts DC supplies. which have been included in the exchange costs.
- A further analysis of compcnent costs will indicate that the following items contribute the maximum to the component costs:
- Integrated Circuits roughly contribute about 28 to 30% of the total component costs
- Connectors of various types roughly contribute about 20 to 23% of the total component costs
- Transistors of various types contribute roughly 12 to 13% of the total component costs
- Printed circuit boards. hybrid micro circuits and cables are other large cost items each accounting for between 5 to 8% of the total component costs.

This analysis indicates need for priority attention to these items in any scheme of regional cooperation for production of components.

4.5.5.2 Plant. machinery \& Testers

Table 4.7 indicates that:
the investment required for selling up plants with 200.000 and 500.000 lines per annum assembly level production on plant. machinery and tools and testers will work out to about 7 and 11 million US\$ respectively i.e. about 35 and 22 US\$ of per line production per annum of this:

> the investment on basic infrastructure. land. buildings, environmental control.water \& power works out roughly at 2.5 and 3.8 million US\$ respectively.
> the investment on procurement of machinery.tools \& testers works out at about 3.6 and 5.9 million US $\$$ respectively. FOB country of origin. The freight. insurance etc may work out at 20% and erection. installation and test runs may involve another 20% of the procurement costs.

Chapter 4 Page $12 / 37$

- Bulk of the costs are in testing and software generation equipment rather than in assembly and production machines. In general, to take advantage of inexpensive manpower costs in developing countrie; simple machines. semi-automatic \& manual have been indicated, except where automation is essential to ensure quality and reliability.
- The capital recovery requirements @ 33% per annum (assuming a life of 4 years and a compound interest of 12%)work out to roughly 2.3 and 3.6 million US\$ respectively for the 200.000 and the 500.000 lines p.a. plants i.e. about 11.5 and 7.2 US\$ per line.

4.5.4.3 Manpower costs

Table 4.9 indicates the manpower requirements and their annuai cost. in a developed and a developing country respectively. It has been assumed that number and leve; of personnel required will be same but the Unit manpower costs. will vary very signiticantly between the developed and developing countries. The table estimates the figures at US $\$ 42$ and 3.6 for production of 200.000 lines a year and US\$ 30 and 2.5 for production of 500.000 lines a year.in a developed and a devlopin:g country.

This points to a significant potential for cost reduction by setting up plants in developing countries. At 200,000 lines per annum plant capacily the potential for saving works out to about 38 US\$ per line and at 500.000 lines per annum at 27 US\$ per line, which could be almost 30% and 22% respectively of the total production costs, in a developing country.

In practice. margin gets signiticantly reduced by resort to greater automation and increase in the size of production facilities in developed countries.

The advantage has also tended to be lost in many developing countries due to lairly heavy local tax imposts on imported inputs by way of capital equipment as well as components.

- Another important element of cost is the amount charged by the original developing company by way of knowhow and royalty to reimburse it towards the cost of development.

Annexed
Figures:
4.1. Basic functional blocks of a typical SPC digital switching system
4.2: Block schematic of a typical subscriber line and trunk block.
4.3: Typical duplicated TST switching network

Chant:
4.4: Typical process flow chart for assembly level production of a typical digitai switching system

Tables:
4.5: Typical component requirements for proauction of 200.000 lines of a typical digital switching system
4.6: Typical distribution of various types of Integrated circuils (IC's) for production of 200.000 lines of a typical digital switching system.
4.7: Typical plant (machines, tools and testers) required for 200.000 and 500,000 lines a year of a typical digital switching system.
4.8: An indicative estimate of tótal investment required in a p!ant for assembly level production of a typical digital switching systern
4.9: An indicative estimate of manpower required for assembly level production of 200.000 and 500,000 lines per annum oi a typical digital switching system and an estimate of manpower costs per line in a developed and a developing country

FIG 4.1 BASIC FUNCTIONAL BLOCKS OF A TYPICAL SPC DIGITAL SWITCHING SYSTEM

MAXIMUM

2. 32 - 256 SUASCRIBER LINES.
8×18 : 128 ANALOGUE TRUNKS
3. 30 - 120 OIBITAL TRUNKS per slat block.
n ≤ 7

SIGNALLING UNIT (DTMF)

SIGNALLING UNIT tones a ringing

FIG 4.2 BLOCK SCEMATIC OF A TYPICAL SUBSCRIBER LINE a TRUNK GROUP IN THE SUBSCRIBER 8 TRUNK LINE BLOCK

FIG $4 \cdot 3$ TYPICAL DUPLICATED T.S.T. SWITCHING NETWORK FOR INTER CONNECTING 8192 CHANNELS OF $64 \mathrm{~kb} / \mathrm{s}$

CHART 4.4

TYPICAL PROCESS FLOW CHART FOR PRODUCTION OF A TYPICAL SPC DIGITAL SWITCHING SYSTEMS (BASED ON ASSEMBLY FROM ENTIRELY BOUGHT OUT COMPONENTS)

PROCESS
(1) PREFORM \& KIT LOMPO NENTS FOR SO-150 different types of cards according to STSTEM
(2) LGAD COMPONENTS INTO P C B.
(3) CHECK LOADED PCB'S
(6) SOLDER
(5) CLEAN
(6) INSPECT, REWORK IF NECESSARY.
ill final card assembly

MOTHER
BOARDS KIT

 PREFORM \& COUNTING MACHINES
 KIT
(8) functional test.

SEMI AUTO CONVEYorised stations
loaded pcb COMPARATOR
wave soldering MACHINE
aquous cleaning machine

REWORK STATION
machanical assembly station.
in circuit tester

CABLES

CHART 4.4 (CONTINUED)

SYSTEM INTEGRATION
(1) FIT MOTHER BOARDS ON RACKS
(2) INTERCONNECT FRAMS ON SAME RACKS
(3) JACK IN FUNCTIONAL CARDS
(4) INTERCONNECT RACKS
(5) CONNECT POWER a LOAD SOFTWARE
(6) FUNCTIONAL, TRAFFIC LOAD TEST a heat Run

Table 4.5
TYPICAL COMPONENT REOUTREMENTS PER 200.000 IINES OF A TYRICAL DIGITAL TEIEPHONE SWITCHING SYSTEM IFOR A MIX OF SMALL_MEDIUM \& IARGE EXCHANGES)

Types Qty. ------ Average Price
Total Used Used Total
COMPONENT
ne. 1000001 USS per USS
s

1. Capacitors

Ceramic
Electrolytic
15

Metalised Polyester
Polystyrene Tantalum
15
2
23
2
3
5
2. Coils \& Transformers
Ch:okes
Line Transformers
Power Transformers
3. Connectors
Backplane (set of)
IC Sockets
Reverse Euro 64 pin
Reverse Euro 96 pin
Single row strip

7	0.2	250	100
1	2	250	100

50,000	0.4
500,000	3.6
92,500	0.7

3. Connectors

| Backplane (set of) | 8 | $0.0241000 /$ set | $2,400,000$ | 17.40 | |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| IC Sockets | 6 | 0.89 | $100 / 000$ | 8,900 | 0.06 |
| Reverse Euro 64 pin | 1 | 0.84 | $500 / 00$ | 420,000 | 3.05 |
| Reverse Euro 96 pin | 1 | 0.16 | $600 / 05$ | 96,000 | 0.70 |
| Single row strip | 1 | 1.14 | 760,00 | 86,640 | 0.63 |

4. Crystals
$\begin{array}{lllllll}\text { Oscillators } & 4 & 0.15 & 500 & \text { /00 } & 75,000 & 0.54\end{array}$
5. Diodes

East recovery	9	1.6	$40 / 000$	6,400	0.05	
General purpose	4	8.4	$20 / 000$	16,800	0.12	
Zener	8	10	$50 / 000$	50,000	0.36	
O. Eerrites	8	0.51	$100 / 100$	51,000	0.37	
Qot Cores	1	0.04	$100 / 000$	400	0.00	
Rods	1	0.04	$200 / 000$	800	0.01	

7. Hybrid Micro circuits

$\begin{array}{lllllll}\text { Resistor Networks } & 7 & 7.69 & 300 & 1000 & 20,700 & 0.15\end{array}$
8. IC's

SSI,MSI \& LSI's $20744 \quad 884 / 000 \quad 3,889,600 \quad 28.20$

* (IlIustrative range
indicated in table 4.6)

9. LED's \& LCD's $\quad 8 \quad 1.2 \quad 80$ 1000 $\quad 9,600 \quad 0.07$
10. Mechanical Hardware
kacks/Cabinets $\quad 10.003100 / f: \quad 30,000 \quad 0.22$
Fromes $\quad \because 0.016 \quad 50 \%: 80,000 \quad 0.58$
Total carried over to next page
$8.789,91563.73$

TYPICAL COMPONENT BEQUIREMENTS PER 200. 000 LINES

 OF A TYPICAL DIGITAL TELEPHONE SWITCHING SYSTEM (FOR A MIX OF SMALL MEDIUM \& LARGE EXCHANGES)Types Qty.
Average Price Used Used no. 1000001

Total
USS_per USS S

CCMPONENT

 $8,789.915 \quad 63.73$Total brought forward from previous page

11. PCB's						
Double Layer (VARIOUS)	v	0.61		/pc	915,000	6.63
Four Layer	1	C. 1		/pc	350,000	2.54
Mother Board	1	0.024			120,000	0.87
12.Relays Miniature						
2-changeover contact	1	2	800	1000	160,000	1.16
4-changeover Contact	1	2			360,000	2.61
13.Resistors Metal film		48			72,000	0.52
Wire wound	7	0.32		1000	800	0.01
14.Transistors	0	8.8			1,760,000	12.76
pcs						
15.Drives Winchester	1	600			120,000	
Cartridge	1	600			60,600	0.44
Omt i Contrcller	1	600		/pc	48,000	0.35
Monitors	1	600		/pc	36,000	0.26

16.Miscellaneous
zables, cable connectors,fuses,
screws, washers etc lot \quad lline $1,000,000 \quad 7.25$

Cost of Components per line USS
:2さs:
The above analysis of components etc required for 200,000
inces is based on the following produc: miz:

Nominal capacity of	No of	Total
Exchange, in lines	Units	Eapacity

10000	6	60,000
5000	12	60,000
2000	25	50,000
500	40	20,000
100	100	10,000
Totia	183	200,000

Table 4.5 (continued)

Netes Continued:

2. The types and quantities of components etc indicated above are essentially only typical and illustrative. The details of actual components used and quantities are a fairly closely quarded confidential information, and is available only through formal commercial/technical coilaboration agreements.
3. The prices of components in this and in next table are based on certain budgetary quotations for component kits for p:oducion of a particular switchi::g system during 1990. simiticant discount upto 10 to 15 . miry be feasible for purchase in buit on a reguiar basis.
4. In case of certain components, paricularly IC's, prices of new devices tend to be high initia: \because but drop rapidiy with increase in sales voiume.

Typical Distribution of various types of IC's used IN A TIPICAL DIGITAL TELERHONE SWITCHING SYSTEM (approximate quantities for 200,000 lines production)

Category	QTY.	Unit	Total
of	used	price	cost
integrated	(no.'s)	USS	USS
Circuits			

-Fa: TTE EASt
409,600
$0.7121,370$

Table 4.6 (continued)

Typical Distribution of various types of IC's used IN A TYPICAL DIGITAL TELEPHONE SWITCHING SYSTEM (approximate quantities for 2000,000 lines production)

Category	QTY.	Unit	Total
of	used	price	cost
Integrated	(no.'s)	USS	USS
Circuits			

B: TTL - High Speed

Type 1	33,560	0.120	4,027
2	12,585	c. 220	1,510
3	5,034	C.:20	604
4	58,730	6.220	7,048
5	125,350	C.:20	15,102
6	8,390	C.:20	1,007
7	79,705	$0 .: 20$	9,565
8	92,290	0.:80	16,612
9	1,678	C. 224	208
10	8,390	0.124	1,040
11	1,678	C. 224	208
12	58,730	0. 224	7,283
13	151,020	$0 .: 24$	18,726
14	218,140	C. $: 55$	33,812
15	16,780	0.220	3,692
16	8,390	0.180	1,510
17	8,390	c.2:0	1,762
18	117,460	0.200	23,492
19	12,585	C. 2.0	2,643
20	8,390	0.250	2,098
21	159,410	0.210	33,476
22	1,678	0.270	453
23	8,390	0.600	5,034
24	285,260	0.228	65,039
25	58,730	0.270	15,857
26	12,585	0.245	3,083
27	8,390	0.320	2,685
28	12,585	$\bigcirc 0$	3,020
29	20,136	\cdots	4,833
30	20, 975	\cdots	8,600
31	1,678	$\therefore \%$	755
32	37,755	$\cdots 0$	11,327
33	58,730	. 0	19,381
34	4,195	. $\%$	1,384
35	1,678	. ${ }^{\text {a }}$	503
36	1,678	$\therefore \%$	755
37	1,678	$\therefore 0$	7:5
38	226,530	. ${ }^{\text {: }}$	63.428
39	50,340	$\therefore 1$	20.136
40	2,517	\cdots	856
OTAT (F	2,002,693		413,309

Table 4.6 (continued)

Typical Distrioution of various types of IC's used IN A TYPICAL DIGITAL TELERHONE SWITCHING SYSTEM lapproximate guantities for 2000,000 lines oroduction)

Category	QTY.	Unit	Total
of	used	price	cost
Integrated	(no.'s)	USS	USS

Circuits
B. TTL -High speed (continued)
B.E.

Tipe 41

42

43

44

45 46 47 48 49 50 51 52 53 54 55
$2,002,693$

4,195	0.240	1,007
4,195	0.285	1,196
1,678	0.400	671
12,585	0.320	4,027
20,975	0.280	5,873
4,195	0.320	1,342
3,356	0.550	1,846
4,195	0.550	2,307
12,585	0.700	8,810
1,678	0.700	1,175
16,780	0.125	2,098
1,678	0.380	638
8,390	0.240	2,014
3,356	0.200	671
6,712	0.950	6,376

total TTL HS
$A C$ series $\quad 2,109,246 \quad 0.215 \quad 453,359$

Typical Distribution of various types of IC's used

 IN A TYPICAL DIGITAL. TELEPHONE SWITCHING SYSTEM foproximate quantities for 2000,000 lines productionl.| Category | QTY. |
| :--- | :---: |
| of | used |
| Integrated | (no.'s |
| Circuits | |
| C.TLL HIGH SREED HCT | |

Type 1	1,678	0.126	211
2	1,678	0.126	211
3	5,034	0.120	604
4	4,195	0.120	503
5	1,678	0.126	211
6	1,678	0.126	211
7	1,678	0.126	211
8	1,673	0.250	420
9	4,195	0.200	839
10	1,678	0.250	420
11	1,678	0.750	1,259
12	2,517	0.250	629
13	1,678	0.380	638
14	1,678	0.300	503
15	6,712	0.250	1,678
16	20,975	0.260	5,454
17	1,678	0.350	587
18	67,120	0.225	15,102
19	1,678	0.200	336
20	1,678	0.200	336
21	8,390	0.135	1,133
22	4,195	0.210	881
23	30,204	0.400	12,082
24	12,585	0.650	8,180
25	4,195	0.250	1,049
26	6,712	0.250	1,678
27	1,678	0.250	420
28	16,780	0.225	3,776
29	58,730	0.225	13,214
30	6,712	0.420	2,819
31	16,780	0.750	2,585
32	4,195	3.600	15,102
33	6,712	2.800	18,794
34	25,170	0.620	15,505
total TTL HS	335,600	0.410	137,680
HC: series	33,60		

Table 4.6(continued)

Pypical Distribution of various types of IC's used

IN A TYPICAL DIGITAL TELERHONE SWITCHING SYSTEM
(approximate quantities for 2000,000 lines production)

Category
of
Integrated
Circuits

D.TTL 7400 series

Type

1
2
3
4
5
6
7
8
9
10

29,365
8,390
25,170
1,678
1,678
6,712
6,712
1,678
6,712
3,356

0.160	4,698
0.160	1,342
0.160	4,027
0.400	671
0.500	839
0.155	1,040
0.155	1,040
1.500	2,517
0.400	2,685
1.500	5,034

$$
0.261 \quad 23,895
$$

E. VOLTAGE REGULATORS

Type
1
2
3
4

54,535
0.180
0.180
0.180
0.180
0.180

28,241
E. OP AMPS
type

168	0.590
25,170	0.550
25,170	0.400
33,560	0.160
18,458	0.120
1,678	0.750

99
13,844
2 25,170
10,068
4
5
$1,678 \quad 0.750 \quad 1,259$
cotal OP AMPS 104,204
0.315

32,854
G. IIMERS

Type	1	4,195	0.110	461
2	2,517	0.240	604	
3	1,678	0.50	839	
		8,390	0.22	1,905

Typical Distribution of various iypes of IC's used

IN A TYPICAL DIGITAL TELERHONE SWITCHING SYSTEM
(approximate quantities for 2000,000 lines production)

Category		QTY.	Unit
of	used	Total	
Integrated		(no.'s)	USS

Circuits
H. INTEREACE CIRCUITS

Type	1	12,585	0.275	3,461
	2	10,907	0.300	3,272
	3	1,678	2.000	3,356
	4	1,678	5.500	9,229
	5	1,678	0.700	1,175
	6	1,678	0.700	1,175
	7	16,780	0.500	8,390
	8	16,780	0.500	8,390
	9	1,678	0.200	336
	10	1,678	0.300	503
	11	1,678	5.000	8,390
total interface				
	uits	68,798	0.693	47,676
TELECOM CIRCUITS 12,585			1.350	15,990

J. MURS

Type
1
2
3
4
5
6
7
7
8
9
10

Total MUPS
K. Microprocessors Type
2
3
4
5
6
7
8

1,678	3.600	6,376
8,390	4.600	38,594
3,356	2.706	9,061
6,712	3.150	21,143
20,975	5.006	104,875
50,340	3.15	158,571
6,712	47.006	315,464
1,678	3.50%	$5,87 \%$
99,841	$6.6: \%$	659,957

Table 4.6 (continued)

Typical Distribution of various types of IC's used
IN A. TYRICAL DIGITAL TELERHONE SWITCHING SYSTEM
(approximate quantities for 2000,000 lines production)

```
Category
of
Integrated
Circuits
```

```
QTY.
used
(no.'s)
```


Total
cost USS
L. BAMS

Type	1	5,034	2.000	10,068
	2	16,780	3.000	50,340
	3	16,780	8.000	134,240
	4	8,390	7.000	58,730
	5	1,678	3.000	5,034
	6	469,840	1.100	516,824
	7	2,517	3.000	7,551
	8	2,517	3.000	7,551
	9	6,712	5.500	36,916
	10	4,195	5.500	23,073
	11	29,365	5.500	161,508
	R	563,808	1.795	1,011,834

M. PROMS/EPROMS

Type 1	3,356	7.000	23,492
2	8,390	0.600	5,034
3	1,678	5.100	8,558
4	1,678	10.000	16,780
5	16,780	2.400	40,272
6	11,746	3.300	38,762
7	8,390	2.400	20,136
8	6,712	2.400	16,109
9	6,712	2.400	16,109
10	6,712	2.400	16,109
11	6,712	38.000	255,056
12	1,678	10.000	16,780
total			
PROMS \&			
EPROMS	80,544	5.870	473,196

Table 4.6 (continued)

Typical Distribution of various types of IC's used IN A TYPICAL DIGITAL TELERHONE SWITCHING SYSTEM (approximate quantities for 2000,000 lines production)

Category of
Integrated Circuits

QTY.	Unit	Total
used	price	cost
(no.'s)	US\$	US\$

N. Other Ic's			
Type 1	67,120	0.420	28,190
Tpe	5,034	4.200	21,143
3	17,451	5.500	95,982
4	6,712	5.000	33,560
5	839	10.500	8,810
6	83,900	0.270	22,653
7	6,712	0.280	1,879
8	20,975	3.000	62,925
9	839	29.000	24,331
10	1,678	0.500	839
11	16,780	0.370	6,209
12	839	1.000	839
13	20,975	1.000	20,975
14	16,780	1.000	16.780
15	8,390	0.700	5,873
16	25,170	1.500	37,755
Total	300,194	1.295	388,742

SUMMARY

Type of IC

		26	409,600	121,370	0.296
A.	TTL Fast	55	$2,109,246$	453,362	0.215
B.	TTL HS HC Series	34	335,600	137,680	0.410
C.	TTL HS HCT series	91,451	23,895	0.261	
D.	TTL 7400 series	10	91,45		
E	Voltaye regulator	4	156,893	28,241	0.180
F	OP AMPS	6	104,204	32,855	0.315
G	Timers	3	8,390	1,905	0.227
H	Interface (CMOS)	11	68,798	47,672	0.693
I	Telecom circuits	1	12,585	16,998	1.351
J	MUPS	10	58,730	491,604	3.371
K	Microprocessors	8	99,841	659,957	6.610
L	RAMS	11	563,808	$1,011,834$	1.795
M	Proms/Eproms	12	80,544	473,196	5.875
N	Others	16	300,194	388,742	1.295
Total	$2074,399,884$	$3,889,310$	0.884		

Table 4.7

TYPICAL PRODUCTION
PLANT REOUIREMENTS FOR 200,000 \& 500,000. LINES.P.A. OF A TYRICAL DIGITAL TELEPHONE SWITCHING SYSTEM (FOR A MIX OF SMALL MEDIUM \& IARGE EXCHANGESI

Based on pure assembly \& testing operation
Required for

MACHINE/TESTER
A. INCOMING INSPECTION

1. RLC Meter
2. Device testers for
a) Active discrete devices
b) Transformers
c) Relays
d) Hybrid Micro Circuits
e) IC's TTL \& CMOS
f) IC's-Universal
g) Codec (P)
F)
h) LSI's
i) Memories
j) Crystals
k) Linear IC's
1) IC handlers
3. Miscellaneous

Total
B. Card Assembly-Kitting

1. Lead Forming Machines

a) IC Preforming Machines	2	3	3,000	6,000	9,000
b) Axial type comp. crop/		3	2,000	4,000	6,000
form machines c) Radial type comp. Crop/	2	3	2,000	4,000	6,000
Form machines	2	3	2,000	4,000	6,000
d) Universal Comp Preparat-	2	3	3,000	6,000	9,000
ion Machines ${ }_{\text {e }}$ Radial super jig for (d)	2	3	1,000	2,000	3,000
2. Comp. Counting M/C's	2	3	1,000	2,000	3,000
3. Tape Dispensers	6	10	500	3,000	5,000
4. PCB Offset Marking M/C's	2	2	1,000	2,000	2,000
5. Others				3,000	5,000
				32,000	48,000

TYPICAL PRODUCTION
RIANT REOUIREMENTS FOR $200.000 \& 500000$ LINES R.A. OF A TYPICAL DIGITAL TEIEPHONE SWITCHING SYSTEM IFOR A MIX OF SMALL MEDIUM \& LARGE EXCHANGESL

Based on pure assembly \& testing operation
Based on pure assembly \& testing operation
Required for
Total cost for

200 K	500 K	Cost/ Unit	200 K	500 K
no. no. US\$	US\$	US $\$$		

C. Card Assembly \& Wave soldering

1. Semi Auto Machines 30
2. Manual Stations
3. Conveyor belt systems per 10 stations
4. Loaded PCB Comparators
5. Vacuum Forming Machines
6. Wave Soldering Machines
7. Aquous cleaners
8. Main Lead Trimming M/c's
9. DI Water Plant
10.Rework Station
10. Others

Total
D. Final Card Assembly

1. Automator Lever Press
2. Rivetting Gun
3. Insert Machine
4. Power Screw Drivers
5. Flat Cables/Connector crimps
6. Thermal strippers
7. Pneumatic vices
8. Manual Torque Screw drivers
9. Hot Air Blowers
10. Others

30	38	20,000	600,000	760,000
66	72	1,500	99,000	108,000
9	11	2,000	18,000	22,000
8	10	3,000	24,000	30,000
6	8	7,000	42,000	56,000
2	2	15,000	30,000	30,000
2	2	15,000	30,000	30,000
4	5	7,000	28,000	35,000
2	2	7,500	15,000	15,000
15	18	1,200	18,000	21,600
lot			22,000	31,400

990,000 1,235,000

3	5	200	600	1,000
2	3	250	500	750
1	2	200	200	400
5	8	200	1,000	1,600
1	2	150	1.50	300
2	3	100	200	300
20	20	150	3,000	3,000
2	2	50	100	100
2	2	100	200	200
Lot	Lot		1,000	1,500
	Total		6,950	9,150

TYPICAL PRODUCTION
PLANT REOUIREMENTS FOR 200,000 \& 500,000 LINES P.A. OE A TYPICAL DIGITAL TEIEPHONE SWITCHING SYSTEM Based on pure assembly \& testing operation Required for Total cost for

	200K	500K	Cost/	200K	500K
MACHINE/TESTER			Unit		
	no.	USS	USS	USS	

E. IN-PRODUCTION TESTING \& SOETWARE RROGRAMMING

1. Dedicated H/W Tester	64	110	3,000	192,000	330,000
2. Logic Probes \& Pulsers	35	50	725	25,375	36,250
3. Oscilloscopes	35	75	3,000	105,000	225,000
4. Multimeters	60	120	150	9,000	18,000
5. Gang Programmers \& Eraser	3	3	7,000	21,000	21,000
6. Terminals	70	110	500	35,000	55,000
7. PSU's	30	60	300	9,000	18,000
8. BM Testers	9	18	10,000	90,000	180,000
9. CM Testers	1	2	10,000	10,000	20,000
10.BM Soak Testers	3	4	50,000	150,000	200,000
11.Multi BM Soak Testers	1	2	50,000	50,000	100,000
12.MICE	8	16	7,000	56,000	112,000
13.MDS	1	1	30,000	30,000	30,000
14.Rework Stations	6	12	1,500	9,000	18,000
15. IBM PC's	100	160	1,200	120,000	192,000
16. IBM PC/XT's	18	36	1,500	27,000	54,000
17. IBM PC/AT's	16	26	4,000	64,000	104,000
18.132 column printers	22	44	800	17,600	35,200
19.80 column printers	22	36	400	8,800	14,400
20.CAD stations \& accessorie	3	6	8,000	24,000	48,000
21. IBM PC Software	1	1	5,000	5,000	5,000
22.Micro Vax II cluster or					
equivalent	2	5	100,000	200,000	500,000
23.Micro Vax accessories	2	5	12,000	24,000	60,000
24.Micro VAX Software	1	1	75,000	75,000	75,000
25.Televideo systems	6	6	20,000	120,000	120,000
26. UPS (50 KVA)	1	1	30,000	30,000	30,000
27.Miscellaneous (set)	1	1	100,000	100,000	100,000

Total
$1,606,7752,700,850$

TYPICAL PBODUCTION

RIANT REOUIREMENTS EOR 200. 000 \& 500.000 IINES PAA. OF A TYPICAL DIGLTAL TEIEPHONE SWITCHING_SYSTEM (EOR A MIX OF SMALL MEDIUM \& IARGE EXCHANGES)

Based on pure assembly \& testing operation
Recuired for Total cost for

MACHINE/TESTER	200K	503K	Cost/ Unit	200K	500K
	no.	no.	US\$	US\$	USS
F. Rack Assembly kitting					
1. Power cable cutter	1	1	250	250	250
2. Pressfit inserting M/C's	1	2	1,000	1,000	2,000
3. Insertion force controlle	1	1	500	500	500
4. Retention force contoller		1	500	0	500
5. Connector repairing 500					
6. Sleeve marking machine	1	1	500	500	500
6. Sleeve marking machine	1	1	250	250	250
7. Wire prefeed system	$\cdot 3$	5	250	750	1,250
8. Auto twisted pair cut/ 1.250					
9. Crimping tool	1	1	100	100	100
10.Crimping jaws	1	1	100	100	100
11.Auto feeding crimping M/C	1	1	1,000	1,000	1,000
12. Hot air blower Gun	2	2	250	500	500
1: Others	Lot			2,00s	4,000
		Total		7,450	.11,450
G. Einal Assembly \& Wire wrapping					
1. Power screw drivers					
2. Automator Lever presses	2	2	200	400	400
3. Torque control device	1	2	250	250	500
4. Rivetiing gun	1	2	250	250	500
5. Soldering gun	1	2	250	250	500
6. Torque screwdrivers of					
7. Air controlled wrapping					
8. Cable set testing machine	1	1	350	350	350
9. Wrapping Pull off tester	1	1	200	200	200
10.Test Unit for Cords					
\& plugs	1	1	400	400	400
11.Rack trolleys	10	25	400	4,000	10,000
12.Others	Lot L			2,000	5,000
Total				11,300	23,950

Table 4.7 (conitnued)

TYPICAL PRODUCTION

PLANT REQUTREMENTS FOR 200,000 \& 500,000 LINES PA. OE A TYPICAL DIGITAL TELEPHONE SWITCHING SYSTEM (EOR A MIX OF SMALL MEDIUM \& IARGE EXCHANGESI

Based on pure assembly \& testing operation

MACHINE/TESTER	Required for			Total Cost for	
	200K	500K	Cost/	200K	500K
			Unit		
	no.	no.	USS	USS	uss

H. System integration, Simulation Tests, \& Heat

Runs of Critical Modules/blocks

1. Systern Integration
Plat forms
2
2. Trunk Call generators

2
3. Subscriber Call generators
$2 \quad 5 \quad 10,000 \quad 20,000 \quad 50,000$
4. Burn-in equipment $\quad 2 \quad 3 \begin{array}{lllll} & 10,000 & 20,000 & 30,000\end{array}$
5. Interface cables \& Misc Equipment lot lot

5	100,000	200,000	500,000
5	10,000	20,000	50,000
5	10,000	20,000	50,000
3	10,000	20,000	30,000
		20,000	50,000

6. Test equipment, software, p.c.'s,printers etc

2
3 100,000
200,000
300,000
Total
480,000 980,000
I. INFRASTRUCTURE

	$\begin{aligned} & \text { Required } \\ & 200 \mathrm{~K} \end{aligned}$	$\begin{aligned} & \text { for } \\ & 500 \mathrm{~K} \\ & \mathrm{a} \end{aligned}$		$\begin{aligned} & \text { Total } \\ & 200 \mathrm{~K} \end{aligned}$	$\begin{aligned} & \text { ost for } \\ & .500 \mathrm{~K} \end{aligned}$
	$\begin{aligned} & \text { Sq.m. } \\ & (000) \end{aligned}$	Sq.m. (000)	$\begin{gathered} \text { Cost, } \\ \text { Sq.m. } \\ \text { US. } \end{gathered}$	US\$	US\$
1. Land	50	50	10	500,000	500,000
2. Building	12	20	100	1,200,000	2,000,000
3. Electrical Instn	12	20	20	240,000	400,000
4. Environmental Control	12	20	20	240,000	400,000
5. Compressed Air distribut	ion Syst	m lot		100,000	150,000
lot 100,000 150,000					
6. Water Supply		lot		50,000	50,000
7. Others including handling and transport equipment, overhead cranes etc		lct		200,000	300,000

Total 2,530,000 3,800,000

Table 4.8

TYPICAL PRODUCTION
PLANT REQUIREMENTS FOR 200,000 \& 500,000 LINES P.A. OF A TYPICAL DIGITAL TELEPHONE SWITCHING SYSTEM (FOR A MIX OF SMALL MEDIUM \& LARGE EXCHANGES) Based on pure assembly \& testing basis

INJESTMENT SUMMARY

Machines \& Testers

A. Incoming Inspection
B. Card Assembly-Kitting
C. Card Assembly \& Wave Soldering
Total Investment
Cost for
$200 \mathrm{~K} \quad 500 \mathrm{~K}$
Lines P.A.Lines P.A.
USS
D. Final Card Assembly

474,100	849,900
32,000	48,000
990,000	$1,235,000$
6,950	9,150

E. In-Production Testing \& Software \& Data Generation
F. Rack Assembly Kitting
G. Final Assembly \& Wire Wrapping
H. System Integration, Simulation tests etc

$1,606,775$	$2,700,850$
7,450	11,450
11,300	23,950
480,000	980,000

J. Total Machines \& Testers (A to H)
$3,608,575 \quad 5,858,300$
K. Incidental expenses, Erection $\&$

Test runs © 40% of J
$800,000 \quad 1,200,000$
I. Infrastructure, land, buildings etc
$2,530,000 \quad 3,800,000$

Grand Total (J+K+I)
$6,938,57510,858,300$

Notes:

1. Above assumes international competitive prices with no local import duties and other tariffs.
2. For infrastructure comparatively lower costs prevailing in developing countries have been assumed.
3. Incidental \& erection expenses include about 20% on account of freight, and 20% on account of erection, installation and trial runs latter mostly carried out by local staff under supervision of suppliers: engineers.

Table 4.9

TYPICAL MANPONER REOUIREMENTS EOR

RRCDUCTION PLANT FOR $200,000 \& 500.000$ LINES R.A. OF A TYPICAL DIGITAL TELEPHONE SFITCHING SYSTEM IEOR A MIX OF SMALL MECIUM \& LARGE EXCHANGESL
 Based on pure assembly $\&$ testing basis

A: IN A DEVELORED COUNTRY

Manpower
Required for 200K 500K lines lines no. no.

Total
Cost p.a. for 200K 500K Lines Lines USS USS

1.Managing Director	1	1	100	100,000	100,000
2.Managers	3	5	60	180,000	300,000
3.Engineers	30	50	45	$1,350,000$	$2,250,000$
4.Testers $\&$					
Supervisors	40	70	35	$1,400,000$	$2,450,000$
5.Skilled operatives	150	275	30	$4,500,000$	$8,250,000$
6.Mat'l Handlers	10	20	25	250,000	500,000
7.Sales	5	8	45	225,000	360,000
8.Buyers	5	8	35	175,000	280,000
9.Accounts	8	12	35	280,000	420,000
Total				$8,460,000$	$14,910,000$

Per line
42.30
29.82

B: IN A DEVELOPING COUNTRY e.g. INDIA.

Manpower Required for 200 K 500 K Unit 200 K 500K lines lines US\$ Lines Lines no. no. (000) USS USS

1.Managing Director	1	1	12	12,000	12,000
2 .Managers	3	5	8	24,000	40,000
3.Enginters	30	50	6	180,000	300,000
4.Testers \&					
Supervisors	40	70	3	120,000	210,000
5.Skilled operatives	150	275	2	300,000	550,000
6.Mat'l Handlers	10	20	1	10,000	20,000
$7 . S a l e s$	5	8	5	25,000	40,000
8.Buyers	5	8	4	20,000	32,000
9.Accounts	8	12	4	32,000	48,000
Total	251	448		723,000	1,252,000
Per line				3.62	2.50

CHAPTER 5

JELLY FILLED COPPER CONDUCTOR TELEPHONE CABLES

5.1

Intreduction:

5.1.1 The anatysis in chapter 3 tables 3.2 to 3.5, indicates that the contribution of the subscriber line to the average overall per line cost of PSTN is substantial. In case of high and medium density areas it is only second to the lotal cost of switching nodes. The subscriber line contributes rouhgly 20 to 22% to the overall costs in high densily areas and about 29 to 31% in case of medium density areas.
5.1.2 Table 3.1 gives a somewhat more detailed break up of the elements going into subscriber line costs. It will be seen that in case of high density areas distribution and primary cables are estimated to account 13.5% out of about the 21% of the total share of subscriber line. In case of medium density areas they account for about 21% out of roughly 31% of the total share. In modern practice. both these cables are usually of the jelly filled type. though large quantities of older type paper insulated lead sheath cables are still working.

The reduction in cost of jeliy tilied cables is therefore of considerabie importarice.

5.2

Construction of jelly filled telephone cables

Fig 5.1 illustrates the construction of a typical jeliy-filled polyethylene insulated unit iwin telephone cable.

5.2.1
 Conductors

The low resistance conductors for telephone cables are predominanily of solid copper. round in cross section and usually of 0.4. 0.5. 0.63 and sometimes of 0.9 mm diameter. They are drawn to required diameter from annealed bright copper rods.

5.2.2 Conductor insulation

Each conductor is individually insulated with suitably coloured for identification) solid or foam polyethylene p:astic insu!ation of uniform thickness 10 ensure high insulation.

5.2.3 Twinning

Two insulated conductors are iwisted logether with a uniform lay 10 form a pair. The length of the lay of any pair has to be different from the lay of the adjacen! pairs to reduce cross la!k to the minimum.
5.2.4.1 A number of pairs are arranged together to form a circular core. In cables of 5.10 and 20 pairs. the required number of iwisted insulated pairs are stranded logether to form the circular core.
5.2.4.2 In 50 and 100 pair cables. i 0 and 20 iwisted insulated pairs are stranded logether to form units of 10 and 20 pairs. Each unit is suitably wrapped in a polyester, polyethylene or polypropylene tape in an open helical lapping. The tapes are suitably coloured to identify the units. 5 units of 10 and 20 pairs each are then suitably assembled together to give the circular core of the 50 and 100 pair cables repeclive!y.
5.2.4.3 In 200.300 and 400 pair cables. 5 units of 10 pairs each are stranded together and wrapped in a suitably coloured plastic lapping to form a super unit of 50 pairs. The requisite number of these super units are then assembled together to give the 200.300 and 400 pair cable cores.
5.2.4.4 In cables of 600 pair or higher size. 5 units of 20 pairs each are stranded together with an additional spare pair added and wrapped in suitable colnured plastic lapping to give super units of 100 pairs each. appropriate number of which are assembled together to give the core for required sized cables
5.2.4.5 Because of this practice of forming 10, 20, 50 and 100 pair units to give higher sizes of cables. such cables are known as 'Unit Iwin cables'. The formation of the units and their identification by coloured lapping is of considerable assistance in the field in jointing and branching cables as needed.

$52.5 \quad$ Petrolium ielly

The intersticial space of the cable core formed as above is filled with a suitable water resistant compound, main constituent of which is petrolium jelly. The main requirements of the compound are high resistance to water penetration. neutrality to copper conductor, polyethylene insulation, sheath and lapping tapes, and poly aluminium tape, non obscuring of insulating compound colours, freedom from unpleasant ndour and any toxic or dermatic hazards, and ready wipeability from the insulated conductors for reliable jointing.

5.2 .6

Poly-Al screen

To hold the petroleum jelly in place, the filled core is wrapped either longitudinally or in a closed helical lap with either a non-hygroscopic jelly impregnated paper or plastic tape.

The core is then wrapped either longitudinally or in a closed helical lap with a Poly-Al (aluminium coated with polythene/copolymer on both sides) tape to provide electro-magnetic screening/ shielding. To be effective it musi be electrically continuous throughout the length of the cable.

Immediately over the Poly-Al screen, a black polyethylene sheath of appropriate thickness is extruded to provide mechanical protection and a moisture proof barrier.

Above covers the construction of the basic jelly-filled, polyethylene insulated unit twin cables for use in cable ducts.
Chapter 5 page 3/11

5.2.8 Steel Tape Armouring

In very low density and rural areas. cables are often laid directly buried. In such cases it is usual to provide additional protection against mechanical damage. by way of two helical wrappings of galvanized steel tape, first one with a gap and the second evenly covering the gap. As a protection against damage during armouring process two close: lappings of waterproof cotton or plastic tape are applied over the sheathed core before armouring. The armoured cable is finally provided a polyethylene jacket or sheath.

5.2.9

Cable lenaths

Cables are supplied on drums in suitable lengths convenient for handling. However in the field it is necessary to have a continuous pair from the exchange to the subscriber apparatus. For this purpose the individual cable lengths are laid in the ducts or directly buried end to end. The ends of the cable pairs are suitably joined (earlier with twist jointing. later by soldering and now using in-length connectors). The joints are enclosed in suitable water tight sleeves or closures.

5.3 Cable prices and suppliers

Table 5.2 gives the international prices for a few typical sizes of cables based on information obtained regarding certain globai tenders. Cables are being manufactured by a very large numher of companies internationaily. Most of the recognized manufacturers of telecommunication equipment also manufacture telephone cables. Besides, a number of companies specialize in production of cables both for the telecommurication and power sectors, and still others produce only telecommunications cables.

5^ Jelly filled cable production and inputs required

Production of jelly-filled cables is a comparatively simple, and fairly well standardized process.

Table 5.3 gives a list of the important raw materials, their unit prices and quantities required for an annual cable production of 500,000 conductor Km in 4500 Km of sheath.

Chart 5.4 gives the basic process flow for the cable production.
Table 5.5 gives the basic machinery,tools and testers for a jelly-filled cable factory for an annual production as indicated above. Also indicated are the basic infrastructural requirements and an estimate of total investment.

Table 5.6 gives the manpower requirements for the above factory and likely annual manpower costs in a developed and a developing country.

Aınexed

Figure 5.1: Typical construction of polythene insulated jelly filled cable
Figure 5.2: Typical International prices for jelly filled cables of various sizes.
Figure 5.3: Typical Raw materials required for production of 500,000 conductor Km in 4.500 Sheath Km of armoured jelly filled cables

Figure 5.4: Typical process flow chant for production of Jelly filled cables
Table 5.5: Typical machinery, tools and testers etc. required for an annual production of about 500.000 conductor Km in 4.500 sheath Km of jelly filled cables

Table 5.6: Typical manpower requirements for an annual production of 500,00 conductor Km in 4.500 sheath Km of jelly filled cables

Table 5.2

Thoical International Prices for JELLY-Eilled Telephone Cables

Note: Above prices are based on quotations in certain international bids during 1990-91 and are subject to significant variaions on the basis of international copper prices.

Table 5.3
Baw materials required for production of About 500,000 conductor Km in 4500 sheath Km of jelly finled cables

Sl. No. Particulars	Qty Reqd M.T.	$\begin{aligned} & \text { Unit } \\ & \text { Price } \\ & \text { US\$/M.T. } \end{aligned}$	Total Cost US\$
1. Annealed Bright Copper Rods	930	3,000	2,790,000
2. High Density Polyethylene	360	1,500	540,000
3. Colour Master Binder	18	10,000	180,000
4. Colour Binder	5	3,500	17,500
5. Filling Compound	375	1,000	375,000
6. Polyester Film(core wrap)	31	4,000	124,000
7. Aluminium Laminate (Poly - Al)	170	3,000	510,000
8. Waterproof insulation tape	30	3,000	90,000
9. Low Density Polyethelene (LDPE)	1,000	2,000	2,000,000
10. LDPE Tape	112	2,000	224,000
11. Galvanized steel tape	1,900	700	1,330,000
12. Flooding compound	40	1,500	60,000

Total
$8,240,500$

Above requirements are based on following product mix.

Cable Size	Sheath Length	Conductor
No. of Conductor	Km.	Km.
Fair \quad Guage		

20	0.5 mm	250	10,000
50	0.5 mm	4,200	420,000
400	0.5 mm	30	24,000
600	0.5 mm	40	48,000
	Total	4,520	502,000

MATERIAL UEED
ERIONT ANMEALE D
COPPER MOADS E-9 mo
DIAMETER

HIGH OENSITY POLY ETHYLENE A COLOUR BINDER

Pancifys

2. DRAW WIRE TO REOD. OHAMETER $10.4,0.5$, 0.63 OR 0.9 mm

noo cmeaxdown MACMME
FILLAN COMPOUND
WON WYMOECOMC
WRAPPIMS TAPE

[^0]

Table 5.5

Machinery. Tools \& Testers required for production of about 500.000 conductor Km in 4500 sheath Km of jelly filled cables per annum Qty Unit Price Reqd
 Total Cost
 No. Rarticulars
 no.'s USS/RC. USS

A: Machines

1. Rod Breakdown Machine
2. High Speed Wire Drawing Machines
3. Tandem Insulating Machines
4. Twinning Machines with Pay Offs
3
5. High Speed repair \& rewinding Machine
6. Stranding (Drum twist) M/C
7. Sheathing, filling \& Jacketing M/C
8. Jelly Filling equipment
9. Cable repair line

8 Armouring Machine

100,000	100,000
100,000	200,000
600,000	$1,200,000$
110,000	330,000
100,000	100,000
950,000	950,000
685,600	685,600
500,000	500,000
100,000	100,000
150,000	150,000

4,315,600

B: Testing equipment

1. Automatic Cable test centre	1	330,000	330,000
2. Resistance Unbalance Meter	1	3,000	3,000
3. DC Resistance Bridge Meter	1	12,000	12,000
4. Insulation Tester	1	1,000	1,000
5. Multimeters	2	1,000	2,000
6. Thermal Analyser	1	30,000	30,000
7. Optical Micrometer	1	7,000	7,000
8. Extrusion Plastometer	1	7,500	7,500
9. Density Gradient Meter	1	5,000	5,000
10. ECSR Notching Jig with			4,000
Accessories			

Total B : Testing Equipment
401.500

	about 500.000 conductor Km in 4500 sheath Km			
	of ielly filled cables per annum			
	Particulars	$\begin{aligned} & \text { 2ry } \\ & \text { Reqd } \\ & 20.1 \end{aligned}$	Unit Price USS/PC.	Total Cost USS
C: Miscellaneous equipment				
1.	Fork Lift Trucks	- 2	10,000	20,000
2.	Mobile Cranes	2	10,000	20,000
3.	Process drums (Assorted sizes)	1000	Varicus	50,000
4	Mobile welder	1	5,000	5,000
5.	Air Compressor	1	10,000	10,000
6.	Weigh Bridge	?	3,000	3,000
7.	Misc (bins,trolleys, reels etc)	-ここ	100,000	100,000
Total C: Miscellaneous Equipment				208,000
D: INFRASTROCTURE$\begin{array}{cc} A x=a \quad \text { Unit cost } & \text { Total Cost } \\ S H & \text { USS/Sg } M \end{array}$				
1.	Land	100, 000	1	100,000
2.	Building	10,600	120	1,200,000
3.	Electric Power	10,000	25	250,000
4.	Environmental control	10,500	40	400,000
5.	Water Supply	10,000	10	100,000
6.	Misc(transport, Furniture etc) Lot			250,000
	Totai D: Infrastructure			$\underline{2.300 .000}$

SUMPAR: OF LIKELY P...TESTMENT

A: Machines	4,315,600
B: Testers etc	401,500
C: Misc. Equipment	208,000
D: Infrastructure	2,300,000
E: Handling, Installation \& Erectic: and trial runs e 40 of A to C	1,970,040
Tctal estimated investment	2.195,140

Nuces:

1. All prices are estimates of International Prices EOB country of origin; no frieght, insurance, local tazes etc have ifeen included.
2. Frifeght, insurance, installation stial runs under supervision of supplines have bern included under E.

Table 5.6

Manpower required_fer production of About 500.000 conductor Km in 4500 sheath Km of jelly filled cables per annum

		```All inclusive Annual Personnel Costs Developed Developing Country Country```			
	NO.	Unit	Total	Unit	Total
	Resi	Cost	Cost	Codt	Cost
	USS	US\$	USS	US\$	US\$
ミ..no. Particulars	no.	(000)	(000)	(000)	(000)
Wholetime reguiax personnel					
$\therefore$ Managing Director	1	100	100	12	12
2. Managers	4	60	240	8	32
3. Supervisors \& Testers	10	35	350	3	30
4. Operatives-Highly skilled	30	30	500	2.5	75
E. Operatives Skilled	30	25	750	2	60
6. Handlers	30	$<5$	750	2	60
7. Sales	5	45	225	5	25
8. Accounts	8	35	280	4	32
9. Buyers	5	35	175	4	20
10. Others	10	30	300	2.5	25
Total Annual cost	133		4,070		371

## Chapter 6

## Transimission systems

### 6.1 Introduction

6.1.1 The analysis in chapter 3 tables 3.2 to 3.5 , indicates that transmission systems used primarily for inter switching node trunks, also constitute a substantial element in the overall cost of the PSTN. They rank after Switching nodes and subscriber line components in case of High and Medium density areas with 16.3 and 14.9 © share in the overall network costs, predominate in case of low density areas with a share of about $60 \%$. In very low density areas, they can also be used, as a trade off. to provide substantial part of the subscriber line to serve the subscribers from a more central point and reduce the cost of switching and that of trunks between the subscriber and the first transit exchanges.
6.1.2 Unlike switching systems and subscriber line cables, there is a very wide variety of transmission systems in use and being produced worldwide. This is inherent in their very function. Transmission systems are used to provide links between switching nodes over diverse geographical terrain. They are used to provide trunks of various lengths from as low as one or two kilometers or sometimes even less to a few thousand kilometers nali way around the globe. They are used to provide from a few circuits from a smal: rural exchange to its parent transit exchange, to tens of thousands belween large transit exchanges serving large predominantly urban communities. Naturally, over the years many different systems have developed using different media. and technologies. each optimised for a particular apslication.
6.1.3 Initially the trunks were built on open wire lines with bare conductors of copper slung on insula'ors fixed on poles. Each pair of conductors provided a single crrcuit. From the beginning. to reduce costs. altempts were made to derive larger number of circuits from the physical pairs. As a first step, three circuits were derived from two pairs of wires using the phantom circuit concept. With the advent of electronics. multiplexing on the open wire lines was evolved. Due to cross talk and noise considerations only a few circuits could be derived. The normal practical maximum was about $16(12+3+1)$. Open wirt: lines were also subject to serious damagt: and deterioration of performance from weather. slorms etc. An effort was made to ust: underground cables. Certain carrier systems giving upto a maximum of athout 50 orcuits on a few test selected pairs in special quad cables became feasible.
6.1.4 A real break through came with the development of coaxial cables on the: one hand and radio transmission on the: other. With the coaxial cables. multiplexing upto a lew thousand circuils on a pair of coaxial tubes became feasible. In cass of radic, initially with the development of H.F. systems, it became possible to have: direct global communicatiori Later. with the development of systems in higher trfuency ranges multiplexing of a large numb $:$ of circuits became practical. capacity f. nerally matching what had becone: feacit)le on coaxial cables. These were all based
on the analog frequency division multiplexing. During the late $40^{\circ} \mathrm{s}$. and $50^{\circ}$ s and $60^{\circ} \mathrm{s}$ a very large number of coaxial cable systems in the 4 , and 12 Mhz bands giving 960 and 2700 channels were installed world widt anc are working satisfactorily. Similarly radio relay systems of varous capacitit:s in the VHF. UHF and Microwave bands have been installed during late 50 s uptill "arly 70 's.
6.1.5 The digital technology came to transmission systems in late 50's in the form of 24 and 30 channet $2 \mathrm{Mo}^{\prime} \mathrm{s}$ PCM systems for junction working over test snlected pairs in symmetrical cables. This was a major break through in bringing down the costs and improving the quality of junctions within large urban networks. Eventually it led to the development of the much more poweriul digital systems both for transmission and switching. The development of digital switching has alreády been considered in chapter 4. In transmission, higher order multiplex systems of 8, 34. 140. anc 565 Mb 's to give 30. 120. 480. 1920. and 7680 channels have been developed to work initially on coaxial cables and tater. on optical fibre cables. Digital systems upto 140 Mb s have also been used riffectively for radio transmission sustems. For the optical fibre applications even mather capacity systems of $2.26 \mathrm{~Gb} / \mathrm{s}$ with a canacity of over 30.000 channels have berr developed.
6.1.6 The advent of sputniks and satelites. brought about another major breakthrough in development of radio based transmission systems. The establishment of mirconave radio repeaters in space enabled dery large coverage and freed the transmission systems from the problems of distances. earth's curvature and terrain. Satellite based systems provide from one to housands of circuits from almost any point to any other point on ithe earth either direct or in combination with terrestriai media. While the systems intially were analog. digtal systems are coming more and more intc use.
6.1.7 A further development of special signticance has been the concept of sharing of radio channels on demand assignment basis. The concept has been applied succesfully to provide service economically to remote areas with low traffic, through Multi Access Radio relay systems. initially analog and later digital. The concept has been applied usefuily to satellite based channels also. The concept has also led to developement of an economic mobile service in the form of cellular syst ems. bringing closer to fulfillment the dream of every telecommunication eigineer of development of a persnnal pocket telephone for every one:

## 6.2

## The more important and cost effective transmission systems working and being produced:

For the multichanmel appliciti : for mter node lrunks.digital lechnolock has now been universail; adopted is cost elfective and gives much bette: quality and reliability than andion systr:m on any media. be they coa iat cables. optical fibres or radio systerm Among ".. media the choice depends to a large - "t.ent on the specific stuaton ates applicalon

### 6.2.1 Optical fibre systems

For new installations. Iransmission sys!ems on optical fibres are generally most cost elfective, particularly in normal flat terrain. For optical ibre applications. digital systems are available in $2 \mathrm{t} 1 \mathrm{bb} / \mathrm{s}$. $8 \mathrm{Mb} / \mathrm{s} .34 \mathrm{Mb} / \mathrm{s} .140 \mathrm{Mb} / \mathrm{s}$ and $565 \mathrm{Mb} / \mathrm{s}$ giving 30. 120. 480. 1920 and 7680 voice/data channels of $64 \mathrm{~Kb} / \mathrm{s}$ each. Very large number of these systems both land based and underwater. latter for inter-continental traffic. are being installed. $2.26 \mathrm{~Gb} / \mathrm{s}$ systems capable ol giving over 30.000 channels on a single pair of fibres, are also being installed in a few developed countries. Even higher order systems are under development.

### 6.2.2 Coaxial cable Systems

By and large no new coaxial cables are being laid. However. in situations where spare tubes alread, exist. or where it is intended to replace the existing analog coaxial cable systems. use of digital systems on the existing tubes provides a cost effective alternative to bulding up an entirely new infrastructure whether optical fibre or radio.

### 6.2.3 Terrestrial Radio systems

Augmentaion and upgradation of existing Radio based systems by installing digital systems using the existing infrastructure like towers and antenna is again cost effective compared to building up a totally new infrastructure even for optical fibre cables. Radio based systems. both terrestrial and satellite, also have an edge. even for new installations, in certain terrains and for certain applications. e.g., where very long distances are involved or there are features like high mountains or oceans to be crossed.

For radio relay applications. digital systems are available upto 140 Mbs. The smaller capacity ones are working in the VHF and UHF bands while the larger capacity ones e.g. The 34 Mbs and $140 \mathrm{Mb} / \mathrm{s}$ in the microwave range. The smaller capacity ones are of particulat interest to developing countries. since they are specially cost effective for low density applications.

### 6.2.4 Satellite based radiosystems

Satellite based systems have proved very cost effective 10 provide runks $0: \% \mathrm{r}$ large distances and 10 lint remote areas with low traffic or difficult g:ocraphical terrain. Satellite based systrms. using the internationally owned Intelsat satellites are being used for bulk of the mitercontinental raffic. They are also being ured effectively for martime mobile: servic: using another group of internationally owned IImarsat Satellites. Satellite based systems have also been used very aftectivel, by a number of geographically spread out developing coutries to provide mb: transult trunks and 10 link remots areas. and islands. either through their rxc:luswe mational satellites. or through requonally owned mult: national satellites or Wrough ircuits of transponders hired fron. the Intelast. White bulk of the existing systems in: analog, digilal technoirny is wia hemg increasingly adopled on satellite briod iy lums atso

### 6.2.5 Special radio based systems for subscriber line application

Single channel radio systems in VHF range have been found useful for providing a few remote subscriber connections. from an exchange. However, for a laiger number of connections spread over in a well defined area. demand assignment mult access systems. both analog and digital are more cost effective and are being installed in many countries. Cellular radio system is a special application of multi access systems specially designed and optimised for mobile and roaming service. Some developing countries. have effectively used the cellular radio/switching systems effective!y for the provision of subscriber lines in rural areas in combinaion with mohile service. Demand assignment sateilite based radio systems have also proved cost effective to provide subscriber cornnections in remote areas and have been used in mountaneous regions, islands and large plantation areas.

### 6.3 Manufacturers and suppliers of transmission systems:

Almost all the world's leading manufacturers of telecommunications Qqupmeril have developed and are manutacturing and supplying the entire range of transmission equipment. In addition many other firms, large and small, who do not produce other items of telecommunication equipment like switching. telephone insiruments etc.. have also developed and produce transmission equipment. Annexure 5.1 gives, an indicative non- comprehensive list of various producers of different types of transmission equipment. The hist is largely based on the catalogue of exhibitors at Telecom 87.

## 6.4 <br> Description, international prices and essential components going into assembly level production of typical transmission systems.

As indicated above a very large number of transmission systems of ?arous capacities for different applications are being produced and installed. It is not Dossibie to cover even typical systems of each type in this report. Only a few syst:ms have been selected for discussion in this report. A generalised description of thess systems follows in the following chapters. along with an approximate idea of thene international prices and the essential components going into their production :

> Chapter 7: A typical 140 Mb s oplical tibre system
> Criapter 8: A typical 8 Mh S dightal radio system
-ncs. Th: optical fibre cables are ussenthat for optical fibre transmission systems :3thech at: of special interest to developing countries. because of their cost effechi, er: ss for new installations. couplied with the potential for high reliability and 'uathe c' service they have also bere 'aren up 'n chapter 9 tor a more detaled praterar.

## Infrasiructure by way of plant and machinery for production of transmission systems

The infrastructure required by way of plant and machinery for assembly level production from bought out components and subsystems. for almost the entire range of electronic equipment particularly the transmission systems is almost identical. What differs are the set up and instruments required for the testirig of different systems.

The basic common infrastructure consists of arrangements for procurement of the different types of comporients, their iesting and preparation and kitting for loading on PCB's: automatic. semi-automatic or manual stations for loading the PCB's: comparator jigs for loaded PCB's: facilities for wave soldering, and cleaning of the soldered PCB's: visual and in-circuit testing of the PCB's and their repair when needed: and certain basic test facilities. These are listed for a medium sized operation in table 6.2 .

The special test facilities call for test set ups for the detailed functional tests on various functional modules and the integrated systems. For reliability it is desirable that the testing is aytomatic and microprocessor based with test results Jisplayed on suitable display panels. stored or made available as print outs as needed.

Annexed:
Annex 6.1: A partial list of manufacturers of Transmission equipment
Annex 6.2: A typical list of plant and machinery for production of transmission equipment

## ANNEX 6.1

A Partial list of manufacturers of different types of Telecommunication Transmission Systems

Name of Manufacturer	
ABC Teleinformatica S/A	
	Alcatel CIT
3 Amalgamated Wireless (Australasia)	
4 Andrew Corp	
5 ANT Nachrichtetechnik GmbH	
6 AT\&T	
7 AT\&T \& Philips	
8 Bharat Electronics Ltd	
9 BTM	
10 Budavox Telecommunication Co	
11 Dateno	
12 Ericsson	
13 Fujitsu Ltd	
14 GCEL	
15 GEC Telecommunications Ltd	
16 Gfriler AG	
17 GTE Telecommunicazioni SpA	
18 Harris	
19 Hasler Ltd	
20 Indian Telephone Industries itd	
21 Iskra	
22 Italtel	
23 Japan Radio Co	
24 kabekmetal electro GmbH	
25 Karkar Electronics	
26 Kokushai Electric Co Ltd	
27 Krone Aktiengesllschaft	
28 MET	
29 Motorola Inc	
30 Murray Teiecommunications Group	
31 NEC	
32 NKT	
33 Nokia Telecommunications	
34 Northern Telecom Ltd	
35 PCL	
36 Philips Kommunikations Industrie	
37 Samsung S \& T Co Ltd	
38 Siemens AG	
39 SF Ttelecom	
40 Standard Electrica SA	
41 Standard Elektrik Lorenz	
42 Standard Telefon og Kabelfabrik	
43 STC plc	
44 Tadiran Led	
45 Taihan Electric Wire Co	
46 Trirsystemes	
47 Troru:on CSF	
4, Thorr EMI Technology Group	
	9 Toshiba Corporation
	c) 7eT
	. Varian AG

Country
Brazil
France
Australia
UK
Germany
USA
Netherlands
India
Belgium
Hungary
France
Sweden
Japan
India
UK
Switzerland
Italy
USA
Switzerland
India
Yugoslavia
Italy
Japan
Germany
USA
Japan
Germany
France
USA
Ireland
Japan
Denmark
Finland
Canada
India
Germany
R.Korea

Germany
Canada
Spair.
germany
Norway
JK
Israel
P. Korea

Erance
France
IJ
Jarar.
France
Switzerland
Chapter 6 Page 6/10

## Annex 6.2

## Common machines \& testers for production of about 1000 terminals/

 repeaters of Transmission systems of various typesBased on pure assembly \& testing basis
MACHINE/TESTER

## A. INCOMING INSPECTION

1. RLC Meter
2. Device testers for
a) Active discrete devices
b) Transformers
c) Relays
d) Hybrid Micro Circuits
e) IC's TTL \& CMOS
f) IC's-Universal
g) LSI's
h) Memories
i) Crystals
j) Linear IC's
3. IC handlers
4. Miscellaneous

	Unit	Total
no.	Cost	cost
reqd.	USS	USS


2	7,500	15,000
2	15,000	30,000
1	15,000	15,000
1	5,500	5,500
1	1,300	1,300
2	600	1,200
1	60,000	60,000
1	3,500	3,500
1	1,500	1,500
1	7,000	7,000
1	20,000	20,000
2	7,000	14,000
2	15,000	30,000

Total A:
204,000

## B. Card Assembly-Kitting

1. Lead Forming Machines

a) IC Preforming Machines	1	3,000	3,000
b) Axial type comp. crop/			
form machines	1	2,000	2,000
c) Radial type comp. Crop/	1	2,000	2,000
Form machines			
d) Universal Comp Preparat-	1	3,000	3,000
Kon Machines	1	1,000	1,000
e) Radial super jig for (d)	2	1,000	2,000
Comp. Counting M/C's	3	500	1,500
Tape Dispensers	2	1,000	2,000
PCB Offset Marking M/C's	Lot		3,000

## Annex 6.2 (continued)

Common machines \& testers for production of about 1000 terminals $/$ repeaters of Transmission systems of various types

Based on pure assembly \& testing basis

		Unit	Total
MACHINE/TESTER	no.	Cost	cost
	reqd.	US\$	US\$

C. Component insertion \&ave soldering

1. Serri Auto Machines

10
20
3
3. Conveyor belt systems per 10 stations
4. Loaded PCB Comparators

3
5. Wave Soldering Machines
6. Aquous cleaners

2
7. Main Lead Trimming M/c's
8. DI Water Plant
9. Rework Stations
10. Others

20,000 1,500

2,000 6,000
3,000 9,000
15,000 30,000
15,000 15,000
7,000 14,000
7,500 15,000
1,200 4,800
20,000

Total C:
382,800
D. Card Assembly

1. Automator Lever Press	2	200	400
2. Rivetting Gun	1	250	250
3. Insert Macnine	1	200	200
4. Power Screw Drivers	3	200	600
5. Flat Cables,Connector			
crimps	1	150	150
6. Thermal strippers	2	100	200
7. Pneumatic vices	5	150	750
8. Manual Torque Screw			
drivers	2	50	100
9. Hot Air Blowers	2	100	200
10.Others	Lot		1,000
			3,850

(continued)

## Annax 6.2 (continued)

Common machines \& testers for production of about 500 terminals/ repeaters of Transmission systems of various types

Based on pure assembly \& testing basis

(continued)

## annax 6,2 (continuad)

common machines \& testers for production of about 500 terminals/ repeaters of Transmission systems of various types

Based on pure assembly \& testing basis

		Unit	Total
MACHINE/TESTER	no.	Cost	cost
	reqd.	USS	US\$

## G: Common testing equipment

1. Logic Probes \& Pulsers	2	725	1,450
2. Oscilloscopes	20	3,000	60,000
3. Multimeters	10	150	1,500
4. Gang Programmer \& Eraser	1	7,000	7,000
5. Terminals	10	500	5,000
6. PSU's	10	300	3,000
7. MICE	8	7,000	56,000
8. MDS	1	30,000	30,000
7. IBM PC's	20	1,200	24,000
8. IBM PC/XT's	6	1,500	9,000
9. IBM PC/AT's	4	4,000	16,000
10. 132 Column printers	6	800	4,800
11. 80 column printers	24	400	9,600
12. CAD stations \&accessories	2	8,000	16,000
13. IBM PC Software	1	5,000	5,000
14. UPS (50 KVA)	1	30,000	30,000
16. Climatic Chambers			

## SUMMARY

A: Inward goods inspection
204,000
B: Card kitting
C: Component insertion $\&$ wave soldering
D: Card Assembly
19,500
382,800
E: Rack assembly kitting
3,850

F: Final Assembly
7,950
6,700
G: Common test equiment.
328, 350
Total
953,150
Besides the above equipment, additional investment will be needed for cortain special tools and testers specific to the different
?.g. for rasio systems, opticsal fibre systems rete.

## Chapter 7

## Optical Fibre Systems

### 7.1 Introduction

As discussed in chapter 6, transmission systems are an important component of the PSTN. and among the transmission systems. digital optical fibre systems are today the most cost effective for normal flat terrain. Optical fibre cables and the electronic systems consisting of the optical line terminals and regenerative repeaters together constitute the digital optical transmission systems. A general description of a typical system, an approximate idea of the international cost of a typical system, and an analysis of the inputs required for the production of a typical optical line terminal follow.

## 7.2 <br> General description of a typical optical fibre transmission system

Fig 7.1 gives a block schematic of a typical $140 \mathrm{Mb} / \mathrm{s}$ digital optical fibre system, connecting two stations A and B with a repeater in beiween. While an $140 \mathrm{Mb} / \mathrm{s}$ has been shown. the $2 \mathrm{Mb} / \mathrm{s} .8 \mathrm{Mb}$ is. $34 \mathrm{Mb} / \mathrm{s}$ and higher order systems are essentially similar. As can be seen. the system consists of:

- Line terminal equipment. essentialiy identical, at the two end stations:
- The connecting optical fibre cable
- A repeater. While only one repeater is shown, depending on the length of the route there can be as many as needed. Typically for a $140 \mathrm{Mb} / \mathrm{s}$ system the repeater spacing is of the order of 50 Km .


### 7.2.1 Line Terminal equipment

The line terminal equipment essentially consists of wo parts:
a) A Digital multiplex section
b) An optical line terminal

### 7.2.1.1 Digital multplex section:

In a typical modern digital switching system. the inter node/exchange trunks emerge as a number of $2 \mathrm{Mb} / \mathrm{s}$ digital streams consisting of 30 digital channels of $64 \mathrm{~Kb} \cdot \mathrm{~s}$. each capable of supporling a single voice channel. For transmission over a $140 \mathrm{Mb} \cdot \mathrm{s}$ oplical fibre transmission system. these are multiplexed into a single 140 Mb s channel and at the receiving end demultiplexed back into $2 \mathrm{Mb} / \mathrm{s}$ channels. This is done in a series of multiplexers and demultiplexers. The lig 7.1 shows three stages of multiplexers demultiplexers. first one multiplexes 4 channels of 2 Mb s into a single channel of $8 \mathrm{Mb} . \mathrm{s}$. The second one multiplexes 4 such $8 \mathrm{Mb} / \mathrm{s}$ channels into one 34 Mh : channiel and the third and final one multiplexes 4 channels of 34 Mb s info
one of $140 \mathrm{Mb} / \mathrm{s}$. Demultiplexing of one $140 \mathrm{Mb} / \mathrm{s}$ channel into 64 channels of 2 $\mathrm{Mb}^{\prime}$ s takes place through the same series of multiplexers/demultiplexers in reverse order. Alternatively. skip mulliplex systems are also available in which 16 channels of $2 \mathrm{Mb}^{\prime} \mathrm{s}$ are multiplexed/ demultiplexed in a single stage to and from a $34 \mathrm{Mb} / \mathrm{s}$ channel.

Channels of various bit rates pass through a digital distribution frame from one stage of multiplex/demultiplex to another. This provides a point of flexibility and facility to drop and insert channels to different routes in a large station.

### 7.2.1.2 Optical line terminal

The optical line systems consists of 6 functional modules:
1)

Transmitter Convertor (XMT CONV): The basic function of this module is to accept the nominal $140 \mathrm{Mb} / \mathrm{s}$ in CMI (Coded Mark Inversion) code. convert it into mBnB e.g. 5B6B ccde. and add the additional digital channels for, order wire working, for transmitting supervisory information and signals for $n+1$ channel switching. collectively known as service data channels. The output from the Transmitter convertor is nominally $168 \mathrm{Mb} / \mathrm{s}$ in mBnB code.
2)

Electrical to Optical Convertor (E/O CON): The basic function of this module is to convert the 168 Mb is electrical signat into a $168 \mathrm{Mb} / \mathrm{s}$ optical signal suitable for transmission on an optical fibre. The module basically consists of a suitable light source (a light emitting diode or a laser diode) whose output is suitably modulated by the electrical signal. The $168 \mathrm{Mb} / \mathrm{s}$ optical signal is then fed to the optical fibre through a fibre distribution frame, which provides a flexibility point to enable connection of an optical line terminal to any fibre terminated on the frame. The connection is made by suitable optical parch cords.
3)

Optical to Electrical Convertor (O/E CONV): The basic function of this module is to receive the 168 Mb is optical signal transmitted from the other end on another optical fibre. convert it into $168 \mathrm{~A}, \mathrm{~b} / \mathrm{s}$ electrical signal and suitably equalise and amplify it. The heart of this module is a photodetector device usually a pholodiode
4) Receive Convertor (RCV CONV): This module receives the 168 Mbs electrical signal from the Optical to Electrical convertor, seperates out the service data signals, and converts from 168 Mb s mBnB coded signals into the CMI coded 140 Mb 's signal and delivers the same to the demultiplexers.
5)

Service Data Interface (SD INTF): This module interfaces belween the transmit and receive paths and the service channels viz. order wire phone corcuit. supervisory signals and $n+1$ line switching signals. In the transmit direction it receives the signals from various service channels, and multiplexes and treds. them to transmitter convertor. On the recerve side it receives the service data in diquat form from the recenve converior. demuitiplexes, it and delivers it io the difterent service: channels.

Alarm Control and Remote data interface (ACU \& RMT INTF) This module acts as an interface between the transmission and receive paths and display devices for system alarms and service data received from remote stations and repeaters. It receives signals from various devices locally and at remote stations, about their health etc and after suitable processing delivers them to an alarm display panel and to a central supervisory system panel when equipped ano to a portat.le control terminal. It also delivers it to the tranmitter convertor for transn:ission and display at other stations.

The line terminals are essentially the same at both ends with the different modules performing the same functions in opposite directions.

### 7.2.2 Optical fibre cable

Optical fibre cable consis's of a suitable number of optical fibres in pairs enclosed in a suitable sheath. The fibres are hair thin glass fibres fabricated to extremely close tolerances to a specification which permits light waves to travel in them. The construction of fibres and cables is discussed in greater detail in one of the foilowing chapters. One fibre is needed for transmission in each direction.

### 7.2.3 Optical repeaters

The light waves suffer attenuation while travelling in the fibre and at joints, bends etc. For error free transmission it is necessary that the signal does not fall below a certain level. A repeater is inserted before that limit is reached. The repeater converts the received attenuated signal to electrical signal, checks it for any errors and regenerates the optical signal for further transmission. The repeater thus essentially consists of two line terminals back to back without the code conversion function. As can be seen the repeater equipment consists of optical to electrical and electrical :o oplical convertors in either direction. These are essentially identical to the corresponding modules in the terminal equipment. Between the two convertors is the Branch module. This module has an error detector and a seperator and a combiner for the service data signals. The Service data and Alarm control and remote data interfaces are identical to those at the terminal equipment.

[^1]As brought out in chapier 4 in connection with the switching systems, it is extremely difficult to quote a standard international price for the telecommunications equipment. Prices quoted by different suppliers vary widely by an order of 2 to 3 times in the same tender, and by the same supplier in different tenders. Annex 7.3 summarises typical average prices at which orders have been placed for a typical $140 \mathrm{Mb} / \mathrm{s}$ equipment on the basis of an international tender.

## 7.5

## Components required for a typical $140 \mathrm{Mb} / \mathrm{s}$ optical line terminal

As seen in fig 7.1 giving the block diagram of a typical $140 \mathrm{Mb} / \mathrm{s}$ optical transmission system, the system consists of a number of subsjstems each of which in turn consists of a number of modules. For purposes of illustration. table 7.4 gives the typical component requirements for a typical optical line terminal consisting of the Transmit. Electrical to Optical. Optical to Electrical. and Receive convertors: the Service Data and Alarm Control and Remote Data Interface Units: and the associated power supply unit modules.

Though consisting of only 8 modules. the equipment calls for a large number and variety of components.

Annexed:
Annex 7.1: $\quad$ Fig 7.1 giving a block diagram of a typical $140 \mathrm{Mb} / \mathrm{s}$ optical fibre transmission system

Annex 7.2: A partial list of leading manufacturers of optical fibre transmission equipment

Annex 7.3: Typical prices for a $140 \mathrm{Mb} / \mathrm{s}$ Optical fibre transmission system

Annex 7.4: Component requirements for a typical optical line terminal forming part of the optical fibre transmission system

STATION - A
DIGITAL MULTIPLEX

REPEATER I $B$ MORE
SIMILAR AS NEEDED


FIG. 7.I SIMLiFIED BLOCK DIAGRAM OF A TYPICAL $14 C$

## SECTION 1



Table 7.2

## A partial illustrative list of manufacturers of optical fibre equipment

Name of Manufacturer	Country
1 ABC Teleinformatica S/A	
2 AT\&T	Brazil
3 AT\&T \& Philips	USA
4 Alcatel CIT	Netherlands
5 BTM	France
6 Ericsson	Belgium
7 Fujitsu	Sweden
8 GEC Telecommunications Ltd	Japan
9 GTE Telecommunicazioni SpA	UK
10 Gfeller AG	Italy
11 Hasler Ltd	Switzerland
12 Indian Telephone Industries Ltd	Switzerland
13 Iskra	Yugia
14 Italtel	Italy
15 kabekmetal electro GmbH	Germany
16 Krone Aktiengesllschaft	Germany
17 Murray Telecommunications Group	Ireland
18 NEC	Japan
19 NKT	Denmark
20 Nokia Telecommunications	Finland
21 Northern Telecom Ltd	Canada
22 Optel	India
23 Philips Kommunikations Industrie	Germany
24 STC plc	UK
25 Siemens AG	Germany
26 Standard Electrica SA	Spain
27 Standard Elektrik Lorenz	Germany
28 Standard Telefon og Kabelfabrik	Norway
29 Tadiran Ltd	Israel
30 Taihan Electric Wire Co	R. Korea
31 Telesystemes	Erance
32 Thomson CSF	Erance

Typical international price of a typical $180 \mathrm{Km} 140 \mathrm{mb} / \mathrm{s}$ Optical fibre System (Equipment \& cables)

S1 ne.

1. OPT LINE TERM $140 \mathrm{MB} / \mathrm{s}$
2. Order Wire equipment one for each terminal \& repeater station
3. Repeater regenerator equipment
4. Digital Multiplex equipment
4.1 4th order ( $140 \mathrm{Mo} / \mathrm{s}$ ) Mux
4.23 rd and 2 nd order ( 4 of 34 $\mathrm{Mb} / \mathrm{s}$ and 16 of $8 \mathrm{mb} / \mathrm{s}$ at. each end)
5. Fibre Distribution Frame
€. Digitai Distribution frame
6. Installation material

Terminal stations
$3,000 \quad 2$
6,000
0.92

Repeater stations
2,0003
6,000
0.92

Sub-total transmission equipment
8. Fibre optic cable, 12 fibre, jelly filled, metalless
9. Splicing material
9.1 Closures
9.2 Splice trays
10. Termination sets
10.1 Wall mountable splice centre
$2,900 \quad 180 \quad 522,000$
73,300
11.29
10. 2 rack mounting kit
10.3 splice trays
10.4 Fan out cord with D4 connector
$\begin{array}{ll}\text { Unit } & \text { Qty } \\ \text { Price } & \text { Reqd. } \\ \text { USS } & \text { CNO. }\end{array}$
$3,250 \quad 2$
$1,500 \quad 5$
$2,800 \quad 3$
8,400
1.29

2,200
2
4,400
0.68
$13,000 \quad 2 \quad 26,000 \quad 4.01$
5005
2,500
0.39
$3,000 \quad 2$
6,000
0.92

150200
30,000
4.62
$.50 \quad 200$
20,000
3.08

Sub-Tot al Fibre-optic cable \& accessor
?A.al Cable \& Fquipment
$575.660 \quad 88.71$
648.960 100.00
:י: chambl material investment cost
fri a fully equipped system

## Notes:

The above table does not include cost of infrastructure like building, environmental control, and main power supply equipment, as well as cost of laying of cable $\&$ installation of equipment.

In addition to equipment and cables, for installation and maintenance, following tools \& testers will also be needed. These can however be used in common for a number of systems in the same network.

Item		Unit Cost USS		Total Cost $\qquad$
1.	Special tools for equipment Installation	2,225	1 set	2,225
2.	Splicing machine \& accessories	-0,000	1 set	40,000
3.	Test Instruments	50,000	1 set	80,000
	Total			122,225

Table 7.4
Component requirements for a typical $140 \mathrm{Mb} / \mathrm{s}$ Optical fibre System Terminal

Component
1 Avlanche Photodiode Modules

Types	Oty.
used	Rqd.
(no.)	(no.)

2 Capacitors fixed
3 Capacitors variable
4 Coils
5 Connectors
6 Delay lines
7 Diodes
8 Dip Switches
9 Hybrid Circuits
10 Integrated circuits
11 Laser Diode Modules
12 Oscillators Voltage controlied
13 PCB's
14 Photo couplers
15 Relays
16 Resistors fixed
17 Resistors network
18 Resistors variable
19 Switches
20 Transformers
21 Transistors

In addition to above, iron work and connectors and cables of various types will also be required.
$\mathrm{V}=$ various

## Chapter

## A typical digital radio transmission system $8 \mathrm{Mb} / \mathrm{s} 120$ channel PSK (Phase shift keying) Radio System

### 8.1 Introduction

In chapter 6, various telecommunication transmission systems have been briefly discussed. Digital systems have become highly cost effective and provide high quality transmission. They are available for application on various media like symmetrical \& coaxial cables. optical fibre cables and radic. For radio application, both terrestrial and satellite, a whole range of systems from a few channels, as tew as 10 . to as many as 1920 are available in different frequency bands. In this chapter a simple description is attempted of a typical $8 \mathrm{MB} / \mathrm{s}$ radio system for 120 channels using PSK (Phase shift Keying) modulation in 600 Mhz (UHF) band, followed by a brief idea of international prices and an analysis of the main components required for the manufacture of the system.

## 6.2

## Simplified Functional description

Fig 8.1 is a simplified block schematic of an $8 \mathrm{Mb} / \mathrm{s}$ PSK radio system. Together with the appropriate digital multiplex system, it provides 120 two way voice/data grade $64 \mathrm{~Kb} / \mathrm{s}$ channels. On the transmission side, the system accepts nominal $8 \mathrm{Mb} / \mathrm{s} 120$ channel PCM stream from a digital multiplexer, adds to it additional bits for order wire supervision. BER measurement etc. PSK modulates it with a 600 MHz carrier frequency, amplifies the signal and delivers it to the antenna through a channel duplexing module. On the receive side. it receives the PSK modulated radio signal from the antenna through the channel duplex module, amplifies it. and demodulates it to give two parallel $4.352 \mathrm{Mb} / \mathrm{s}$ streams. It then combines the two parallel streams into a single $8 \mathrm{Mb} / \mathrm{s}$ signal. extracts out from it the order wire and supervisory bits. changes the speed to $8.448 \mathrm{Mb} / \mathrm{s}$ and delivers the signal to the demultiplex equipment.

Both the transmit and receive paths are fully duplicated and are available in hot standby for change over in case of any failure or serious deterioration of performance of the working channel.

As can be seen from the fig 8.1 the system consists of following functional blocks:

1) Trans Hybrid \& Receice Switching (TR HYB) Unit
2) Bipolar/Unipolar Conversion ( $B / U$ Conv) Unit
3) Multiplex (MUX) Unit
4) Up Convertor (Up Conv) or Transmitter Unit
5) Channel Duplexer ( $D \times C H$ ) unit
6) Down Convertor (DN CONV) or Receiver Unit
7) Synchronistion (SYNC) Unit
8) Demultiplex (Demux) Unit
9) Digital Order Wire \& Supervisory Interface (SV INTF) Unit 10) Control (CON) Unit

Each of these units in turn consists of one or more modules mounted on suitable Printed circuit bcards.

### 8.2.1 Trans hybrid \& Receive switching unit(TR HYB):

This is a unit common to the two transmitters and receivers, main and standby.

On the transmit side. this unit receives the nominal $8 \mathrm{Mb} / \mathrm{s}$ (actual $8.448 \mathrm{Mb} / \mathrm{s}$ ) digital signal from second order digital multiplexer and and using a hybrid transformer divides the signals in two halves to feed the iwo parallel transmit paths. main and standby.

On the receive side it connects one of the two receive paths. main or standby. through a mercury switch to the digital demultiplexer, under control of a control signal from Control CPU.

### 8.2.2 Bipolar/Unipolar Corvertor Unit (B/U CONV):

This is a duplicated unit. one for main and the other for standby system. but serving both the trans and recerve paths.

On the trans side, it converts the $8.448 \mathrm{Mb} / \mathrm{s}$ bipolar signal to a unipolar and a clock signal and delivers the two to the Multiplex unit.

On the receive side it converts the unipolar signal received by it from demultiplex unit into a bipolar signal and delivers it to the TR HYB unit for finally passing it on to the digital multiplex system.
8.2.3 Multiplex (MUX) unit:

MUX unit is exclusive to the trans path, one for each transmitter. It receives the $8.448 \mathrm{Mb} / \mathrm{s}$ unipolar signal from BUCONV and performs the following functions on the signal before delivering it to the UP Conv Unit: $8.704 \mathrm{Mo} / \mathrm{s}$ to enable insertion of additional bits. At BITS INS module. inserts additional bits for order wire. supervision. parity check eic into the data stream.

At Serial to Parallel (S/P Con) Convertor module, rearranges the $8.704 \mathrm{Mb} / \mathrm{s}$ single stream into two parallel 4.352 Mb s streams for PSK modulation.

### 8.2.4 UP CONV UNIT:

This again is a unit exclusive to each transmit path and performs the following functions on the iwo parallel 4.352 Mbs signals received from the MUX unit before deliverinct a radio frequency signal to the: Channel Duplexer unit for feeding to antenna:

- At the $T$ logic module performs the logics for differential modulation and signal waveform shaping.

At the Modulator module. an RF linear \& PSK modulator, modulates the signal wih a 600 Mhz RF carrier.

The 600 MHz carrier is generated using a synthesizer oscillator and buffer maltiplier module.

- Ar the Power Amplifier (PA) module. the modulated RF signal is amplified by a limear amplifier. The output is typically 2 watts. The signal is now passed on to th. Channel duplexer unit.

Channel Duplexer unit:
This is a unit common to both the main and the standby transmitters and recerver:

In the transmit pait it receives the modulated and amplified signals from the two transmit channels. main and standby, and at the diode switch switches one of them to the antenna through a oand jass filter. under the the control of trans contmi signal received from the CPU control module of the Control unit. The output of the annena is typically 1 watt plus.

In the recerve path. the unit recerves from the antenna. the Radio frequenct signal received from the other ena. The signal is seperated from trans signal ny a band pass filter and is fed to the two !eceive channels via a RF Hyoria.

### 8.2.6 Down Convertor:

This is a unit exclusive to each receive path and performs the following functurs on the received radio frequency signal to deliver two parallel 4.704 Mbs streath; :n the Synchronisation unit:
$A_{i}$ ine RF module. the received signal is amplified by a low noise amplifier. and mixed in an image cancel trne mixer with a signal generated using a sunthesizer oscillaivi. 10 give an intermediate frequency (IF) signal in 70 MHz h.ind The signal passes through a band pass filter and is amplified by an automatic gain cotrol (AGC) amplifier. The amplified IF signal then passes on to th: cemodulator module

- At the demodulator module, the signal is demodulated by synchronous detection and then fed to the Rx logic module.

At the Rx Logic module. two parallel $4.352 \mathrm{Mb} / \mathrm{s}$ signals are regenerated and passed on to the synchronisation unit

### 8.2.7 Synchronisation unit

This is also a unit exclusive to each receive path. The unt receives the signal from the down convertor unit and performs the following functions before
delivering it to the Demultiplex unit:

- At the P'S Conv module arranges the iwo $4.352 \mathrm{Mb} / \mathrm{s}$ parallel streams into a single. series 8.704 Mb 's stream
- At the Synch module recovers the frame synchronizing pattern which is used in Descram module for descrambling the data stream and generating timing pulses for seperation of auxialary bits in the demultiplex unit.


### 8.2.8 Demultiplex unit

This unit is also exclusive to each receive path. It receives the 8.704 Mbs signal and timing information from synchronous unil and performs the following functions before delivering a $8.448 \mathrm{Mb}^{\prime}$ s unipolar and a clock signal to the BJ unit.

Extract the auxialary bits. Order wire. supervisory. parity check etc. from the 8.704 Mb s signal

Convert the speed to 8.448 Mb s
The 8.448 Mb :s unipolar and clock signals are passed on to the $\mathbf{B} / \mathbf{U}$ unit. which. as already noted. is a common unit to the trans and receive paths. In the BU unit the Unipolar $8.448 \mathrm{Mb} / \mathrm{s}$ signal is converted back to bipolar signal and fed to the TR HYB Unit

- The parity check bit is used to monitor the bit error rate.
- The digital order wire and supervisory signals are passed on to the Control unit.

As already noted the TR HYB unit is common to the trans and receive paths. The $8.4: 8 \mathrm{Mbs}$ regenerated signal from both the receive channels is fed to this unit and at a mercury switch. one of them is selected and passed on to the digital multiplex system. under the control of a controi signal from the the supervisory unit.
8.2.9 Orderwire and supervisory interface

The order wire telephone speecn is converted in the PCM Codec module in 5.4kbs. stream and fed to the MUX unit in the trans via the control unit path for insertion in the trans channel. The $64 \mathrm{~Kb} / \mathrm{s}$ voice signal from distant end is received from the demultiplex unt and converted to analog speech and fed to the order wire Inlephon circuit.

The supervisory information consisting of various parameters (upio 12) about the various equipments is collected and converted into a $64 \mathrm{~kb} / \mathrm{s}$ digital channel and fed to the MUX unit in trans path tor transmission to remote station. The 6.4 Kh s supervisory information channel recerved from remote station is seperated at the DEMUX unit and processed and displaved at the the display panel. It is also ted to the: control CPU for control of switching of the trans and receive paths trom man to standby and vice versa.

The unit provides an order wire telephone circuit. a change over control circuit. an indicator and alarm circuit and a monitoring meter circuit and works in conjunction with the Digital orderwire \& Supervisory interlace unit.

### 8.3 Application as a repeater

The above system with a terminal at each end. and antenna mounted at an uptimum height can provide direct communication between two stations about 50 to 60 Km apart in a tlat terrain. For communication between stations situated further apart this can be done usirig repeaters each consisting of two terminal equipments connected back to back. Since the sigra!s are regenerated at each repeater, a fairly large number of such repeaters could be used without any significant deterioration in qualty of communication from end to end.

To provide centralized control and maintenace. of both the terminals and the repeaters. a centralised supervisory system is incorporated with a master unit at the designated central station and slave units at the repeaters and the distant station. Typically one master unit can control about 16 slave units. The supervisory information is processed by the supervisory interface module of the Digital orderwire \& supervisory interface unit for transmisston and reception over the radio systerr via the MUX and DEMUX units in the trans and receive paths.

### 8.4 Manufacturers

Many of the companies listed in table 6.1 in chapter 6 are manufacturing and supplying the equipment.

### 8.5 Pricing

The difficultes in quoting any specific figure for international pricing brought out in connection with switching equipment prices apply equally in this case. However to give a general idea typical prices at which some orders have been placed against certain international bids are indicated in Table 8.2 for a typical 200 Km route with three repeaters.

### 8.6 Components required for production of equipment as an assembly operation

To give a general idea about the the complexity of the system and ussential inputs required for its manufacture an analysis has been made of different lypes of components going into the different units for a single terminal with one ransmiller and one receiver. A summary is given in table 8.3

Annexed:

Fig 8.1: A simplified block diagram for a typical $8 \mathrm{Mb} / \mathrm{s} \quad(120$ channel) radio system terminal.

Table 8.2: $\quad$ Typical prices for an $8 \mathrm{mb} / \mathrm{s}$ radio relay system in 600 MHz band with duplicated transmitters and receivers as main and standby for a typical 200 km . route with 3 repeaters.

Table 8.3:
List of components required for different units of a typical terminal of $8 \mathrm{Mb} / \mathrm{s}$ radio system.



Typical prices for an $8 \mathrm{Mb} / \mathrm{s}$ radio relay system in 600 Mhz band with duplicated tranmitters and receivers as main and standby for a typical 200 Km route with 3 repeaters

Item	Qty． Read．	Unit Price	Total   Price
	ase．	USS	USS
1．Radio relay terminals one each at two terminal stations and two each at 3 repeaters	8	10，311	82，489
2．Supy Master unit	－	1，345	1，345
Supy slave units	；	899	3，595
4．Bit insercion \＆SV inty	5	1，082	8，652
E．Branching cir．for 0．w．	；	227	680
$\therefore$ Installation materials	＝	263	2，105
－Tools \＆accessories	E	73	365
E． 3 M Antenras	5	2，185	17，480
\＃．Feeder Cable sets	$E$	1，498	：1，985
ここここ			：28，696
Eex chanmel			2,072

Table 8.3

Component requirements of a single typical 8 MBps UBF Terminal

S:	Item	Qty Reqd (NO.)
i	Capacitors, fixed	762
2	Capacitors, variable	3
3	coils	114
4	connectors	114
$\equiv$	Couplers	12
$\underline{\square}$	Crystals	210
7	Diodes	210
3	Eilters	3
$\bar{\square}$	Euse holders	3
\%	Euses	4
$:$	Heat Sinks	8
3	HIF's Hybrid Circuits	11
$\because$	E.C. Sockets	3
:	Integrated Circuits (IC's)	279
O	Jacks	23
	EED's	33
:	Eocks	4
;	Mizers	46
2	?cB's	13
:	?notocouplers	13 3
$2:$	?WR Units	30
23	Relays fived	1076
23	Resistors, fized	$\begin{array}{r}1076 \\ \hline\end{array}$
25	Resistors Variable	37 193
26	Snort Plugs	193
27	Speakers	28
25	Switches	309
23	Terminals	309
\%	Test Jacks	5
$3:$	Transformers	6
32	Transformers, pulse	83
33	Transistors	14
34	U-Links	14

Bote: The above requirements are for an unduplica*ed sistem i.e. Eor i single transmitter and receiver with the neoessary common anits.

## Chapter 9

## Optical fibre and cables

## 9.1

## Introduction

It was noted in chapter 6 that digital transmission on optical fibre cables offers the most cost effective means of providing inter node trunks. Chapter 7 covered a typical transmission equipment for fibre optic application. In this chapter it is proposed to cover the basic construction and inputs required for the production of fibre optic cables.

### 9.2 Construction and production processes for optical fibres

 for telecommunications application9.2.1 Optical fibre for telecommunications applications consists of extremely thin solid fibres of silica/glass with a central core of about 50 micro meter diameter for multimode and of about. 8 micro meter for single mode fibres, and an outer cladding of an overall diameter of 125 micro meter. The fibres are provided with a suitable protective coating to avoid ingress of any impurities including moisture and provide mechanical strength. Both the core and cladding are glass but core has a higher refractive index. The relative refractive indices are such that most of the rays $0^{+}$light travelling in the core that may escape into the cladding layer suffer total refelection and are returned to the core. thus minimising the loss of light energy.
9.2.2

The reliability and repeatability of performance of fibres calls for ensuring accuracy in diameters and circularity and concentricty of the core, the cladding and the primary protective coat. The iolerances generally specufied for the fibre are

-	Core diam:	Plus Minus 6\%
.	Cladding diam:	Plus'Minus 2.4\%
.	Core non-circularity:	$6 \%$
.	Cladding non-cırcularity:	$2 \%$
.	Concentricily Error:	$6 \%$

### 9.2.3 Production of glass fibres involves highly sophisticated processes. In

 the first instance, a preform consisting of a solid cylinder with a central core and the outer cladding. of appropriate quality of glasses is fabricated by one of the several alternative processes. The preform is then drawn into thin fibres which are immediately provided with a primary protective coating. A number of leading companies have contributed to the development of the production technology. among them. STL Laboratories in UK. Nippon Sheet Glass Co.,Nippon Electric Company, and Nippon Telegraph and Telephone Corporation in Japan. Corning Glass Works and Bell Tomenphonr: Laboratories in IISA, and Philips Industries in Holland.9.2.4

Bulk of the optical fibres, at present being produced use one of the four vapour deposition processes viz.:

- Modified Chemical Vapour Deposition (MCVD) Process
- Outside Vapour Phase Oxidation (OVPO) Process
- Vapour Axial Deposition (VAD) Process
- Plasma Chemical Vapour Phase Deposition (PVCD) Process
9.2.5 Fig. 9.1 gives a schematic diagram of the Modified Chemical Vapour deposition (MCVD) process which involves:
- Heating of a rotating quartz tube from the outside by a number of gas burners moving along the length of the tube.
- Feeding of a number of gasses (Silicon Chloride. GeCl4. POCl3 and Argon) through the quartz tube.
Oxidation of the gasses by high temperatures and deposition of glass soot on the inner surface of the lube.
- Deposition of 60 to 70 layers of glass soot by repeated passing of the burners. Finally collapsing of the tube under high ternperature (of the order of 2000 degress centigrade) to form a sclid cylindrical preform.

Thus, the core glass is deposited from the gasses by vapour deposition process while the tube acts as the cladding.
9.2.6 Fig 9.2 gives a schematic of the Outside Vapour Phase Oxidation (OVPO) process, which involves:

- A rotating seed rod
- Feeding of raw materials through a set of burners.
- Collection by the rotating seed rod, of glass soot. formed by the flame hydrolysis process. at every pass of the burners.
- Forming layer by layer first the core and then the cladding.
- Removal of the hollow cylindrical preform from the seed rod and its consolidation and formation of the solid preform under dry high temperature conditions.
9.2.7 Fig 9.3 gives a schematic of the Vapour Axial Deposition Process which involves.
- A rotating seed rod which is gradually pulled up.
- Feeding through iwo sets of burners the core and cladding materials.
- Deposit below the rotating seed rod first of the core and later the cladding.
- Drying. consolidation and elongation of the preform.
- Overcladding by the rod-in-fube process.

Thr: process permits larger size preforms.
9.2.8 Fig. 9.4 gives the schematic of the Plasma Chemical Vapour Deposition process. which is a variation of the Inside Vapour Phase deposition process. The process substitutes the gas burners for heating the gases and formation of glass deposit inside the tube, by a plasma furnace. The furnace resonator creates microwave plasma in the tube with frequencies around 2.5 GHz . The process permits deposition of a large number, of the order of 1000 , of very thin layers resulting in an extremely smooth refractive index profile from centre outwards.

### 9.2.9 Fibre drawing

The preform made through one of the vapour deposition processes as above is used to draw the fibre of the required diameter on a fibre draw tower. Fig. 9.5 gives a schematic of the draw tower. The process involves:

- Feedirig of the preform into an induction furnace.

Melting of the preform at its bottommost end under high temperatures develoned in the furnace.
Molten portion dropping down by gravity and being drawn into the thin fibre by a pulling force applied by the pulling drum.

- Close control of the process to ensure uniformity of diameter. The diameter is closely and continuously monitored by a laser based mechanism. The information collected is used to control the preform feed mechanism, the temperature of the furnace and the speed of the pulling drum.

Maintenance of ultra pure environment and application of primary f.utective coating immediately to avoid ingress of impurities. Primary coating consists either of acrylates or silicone ard is cured either by ultraviolet curing or thermal drying.
9.2.10 There is considerable competition in the fibre market. Typically, high quality fibre is at present quoted at about US 10 Cents per meter. The quantity and therefore the cost of raw materials going into the production of fibres is quite small. However. the processes ior production of preform and for drawing of fibres, call for a high level of sophistication and auotmation by way of close control of chemical inputs. temperatures, speeds etc. to obtain the fibre of acceptable quality. The cost of process machines, Vapour Deposition Lathes and Draw Towers, is thus very high. Use of chemicals also requires significant control measures for environmental protection. The tabrication of optical fibre therefore is cost effective only at substantial production levels, usually over a hundred thousand fibre kilometers per annum. Tables 9.6 and 9.7 give typical figures for the inputs required for fibre fabrication by way of chemicals eic and the plant and machinery.
9.3.1 Primary coated fibres, by themselves lack body and strength for praclical application. To provide the necessary body and strength, the required number of fibres from one to 100 or more are put together in cable form. According to the application and requirements of strength. level of protection etc, cabling may irvolve provision of a secondary jacket, one or more strength members, water protection by way of jelly filling or provision for gas pressurization, sheathing, fillers. cushion materials. armouring etc.
9.3.2

Fibre Jacketing: As a first step the individual primary coated fibres are provided a secondary jacket usually of nylon, for further mechanical protection and strength. Two types of jackets, loose or tight, are used. Both have comparative advantages and disadvantages, and adherents. An extruding machine is used for the purpose.
9.3.3 Strength Members: To increase the strength, particularly the tensile strength of the cables to permit long lengths being pulled within ducts etc, strength members are added either at the centre of the cable or stranded along the periphery. The strength members may be in the form of steel wires or for metal free construction in the form of plastic monofilaments or special fibres like kelvar.
9.3.4 Water protection: Protection against moisture takes the form of either the jelly filling of the stranded cable core, enclosed in a suitable waterproof tape lapping or gas pressuriztion through addition of suitable perforated pipes.
9.3.5 Sheathing: Sheathing, usually of plastic material, provides a covering for the cable and holds its elements. fibres. strength members and water protection. An overall external sheath is essentially provided. In addition there might be an inner sheath as well, particularly when cables are armoured for direct burial in ground.
9.3.6 Armouring: Armouring in the form of steel tapes or wires or corrugated steel tubes provides extra protection for direct turial of cables in ground. It ation provides the only fully reliable protection against rodents. II is generally not provided when cables are to be laid in ducts.
9.3.7 Fillers: Fillers are provided in the cable structure when necessary to arheve: an overall round cross section.
9.3.8 Overall structure: Many variations have been devised in the overall structure of optical fibre cables and there are many adherents of each. Figures 9.8 to 9.10 illustrate three most frequently used structures, Layer. Tight jacket in V . Groove: and Ribbon, first two being generally used for small fibre count cables and the third for larger ones.

There is quite a keen competition in the optical fibre cables market. Depending on the overall structure desired the prices for metalless cables of an average of 10 fibres vary between 3 to 4 US $\$$ per meter.

### 9.5 Production of optical fibre cables from procured fibres

9.4.1 Chart 9.11 gives a typical process flow and the machines and materials required for production of small count, metalless cable of tight jacket in V-groove structure shown in fig. 9.9 without the armouring. Typical figures for raw material and plant and machinery requirements for an annual production of 2.500 sheath Km of optical fibre cable and international prices thereof are indicated in tables 9.12 and 9.13 .

Annexed:
Figure $9.1 \quad$ Schematic drawing illustrating the Modified Chemical Vapour Deposition process.
Figure 9.2 Schematic drawing illustrating the Outside Vapour phase oxidation process
Figure 9.3 Schematic drawing illustrating the Vapour axial deposition process
Figure 9.4 Schematic drawing illustrating the Plasma Chemical Vapour deposition process
Figure 9.5
Table 9.6
Table 9.7
Figure 9.8
Figure 9.9
Figure 9.10
Chart 9.11
Table 9.12
Table 9.13

Schematic drawing illustrating the working of a fibre draw tower
Raw material Inputs required for production of preform by MCVD process and drawing the fibres.
Plant and machinery required for production of preform by MCVD process and for fibre drawing Cross section of an optical fibre cable with layer structure.
Cross section of an optical fibre cable with Tight Jacket in V-Groove structure"
Cross section of an optical fibre cable with Ribbon structure•
Process flow chart for production of cables from bought out fibres
Raw material inputs for production of optical fibre cables from bought out fibres
Plant and machinery required for production of optical fibre cables from bought out fibres


FIG 9.1 Modified chemical vapour deposition process

$$
\begin{gathered}
61 / 2.3 \text { OVd } 6 \text { y3LdVHO } \\
\substack{\text { sasum } \\
\text { irrusurn }} \\
\\
\hline
\end{gathered}
$$



FIG. 9•3. Vapour axial deposition process


FIG. 9.5 Working of fiber draw tower

## Table 9.6

Raw Materials etc. required for production of $25,000 \mathrm{Km}$ of optical fibres by MCVD process

		Qty.   Unit	Reqd.   Qty	Unit   Cost   USS	Total   Cost   USS   (000)

## Table 9.7

Plant \& Machinery required for an annual Production of about $25,000 \mathrm{Km}$ of optical fibres per annum

	Item	Qty.   Reqd (no.)	Unit   Cost   US $\$$	Total Cost USS (000)
A:	Laboratory for testing raw materials	Lot		40
B:	Instruments for Fibre testing			
1.	Optical Time Domain Reflectometer	1		
2.	Geometry Test set	1		
3.	Mode Field Dia test set	1		
4.	Chromatic dispersion test set	1		
5.	Attenuation test set	1		
6.	Others   Total B	Lot		400
$c:$	Production Machinery			
1.	MCVD Lathes		100,000	600
2.	Fibre Draw Towers		200,000	400
	Total C			1,000
D:	Reels, Drums, carriages etc			400
E:	Total plant \& Machinery (A to D)			1,840
F:	Infrastructure			
1.	Land	10000	1	10
1.	Buildings	2000	160	320
2.	Power supply \& standby	2000	32	64
3.	Gas Storage Tanks	12	5,000	60
4.	Water Supply	10t		10
5.	Ventilation	lot		10
6.	Environmetal protection	lot		200
	Total F			674
	Total investment required (E+F)			2,514



FIG.9.8. Cross section of an optical fiber cable with Layer structure


FIG. 9.9 Cross section of on oplical fibre cable with fight jackel in V-groove structure



Table 9.12
Raw Materials etc. required for production of 2,500 sheath Km of metalless optical fibre vables with an average of 10 fibres each

Item
Qty. Reqd. Unit Total
Reqd. Cost Cost
Unit
Oty USS USS 10001

1. Optical fibre	Km	30,000	0.10	3
2. Strength Member (FRP)	Kg	31,250	24.00	750
3. Polypropylene	Kg	37,500	3.33	125
4. Filling Jelly	Kg	25,000	4.00	100
5. Polyester Tape	Kg	2,500	16.00	40
6. High Density Polyethelene Kg	75,000	1.67	125	
7. Nylon	Kg	43,750	22.86	1,000

Thus the raw material costs work out to about $2.143 / 2.5=856$ USS per Km or 86 US cents per meter.

## Table 2.13

Plant \& Machinery required for an annual production of about 2000 Sheath Kilometers of optical fibre cables of average 10 fibres each

Sl
Ne. Iterl
Qty. Unit Total Reqd. Cost Cost (no.) USS USS 10001

A: Inward goods inspection (other than fibres):

1. Melt flow index tester1
2. VISIO meter ..... 1
3. Colour analyser ..... 1
4. Differential Scanning Calorimnter ..... 1
5. Others ..... Lot
Total A100
B: Instruments for Fibre testing
6. Optical Time Domain Reflectometer ..... 1
7. Geometry Test set ..... i
8. Mode Field Dia test set ..... 1
9. Chromatic dispersion test set
10. Attenuation test set
11. Others ..... Lot:
Total B400
C: Production Machinery
12. Eibre rewinder100
13. Cable Rewinder ..... 200
14. Extrusion Line no 1 ..... 680
15. Extrusion Line no 2 ..... 640
16. Stranding \& filling line ..... 680
Total C ..... 2,300
D: Reels,Drums, carriages etc ..... 200
E: Finished Goods inspection
17. Walk-in Environmental chamber ..... 1
18. Torsion tester ..... 1
19. Impact tester ..... 1
20. Crash tester ..... 1
21. Flexibility tester ..... 1
rotal E ..... 400
E. Total plant \& Machinery (A to E) ..... 3,400

## Table 9.13 (continued)

Plant \& Machinery
required for an annual production of about 2000 Sheath Kilometers of optical fibre cables of average 10 fibres each

Item	Qty. Reqd. (no.)	Unit Cost US\$	Total   Cost USS   (000)
G:	Infrastructure		
1.	Land $\quad 10,000 \mathrm{Sq} \mathrm{m}$	1	10
2.	Buildings 2,000 Sq m	160	320
3.	Power supply \& standby plant		64
4.	Compressed air supply		16
5.	Chilled water		20
6.	Ventilation		20
	Total G		450
H.	Total investment required ( $\mathrm{F}+\mathrm{G}$ )		3,850

# Chapter 10 

## Telephone sets

## 10.1

## Introduction

Telephone instrument, though forming only a small fraction of the total cost of the PSTN, still constitutes a substantial investment. It is also the most visible part of ihe network. Its production from bought out components is comparatively simple and cost effective even at comparatively small volumes. It can therefore form the nucleus in a small way of the local production of telecommunications equipment in many small developing countries.

### 10.2 Block diagram and functional description

Figure 10.1 gives a simple block diagram of a modern electronic telephone instrument. It has the following functional units:
a) Line switch : It operates by the weight of the handset incorporating the transmitter and receiver. When the hand set rests on the hook, the switch disconnects the dial and the speech circuit from the exchange line. When the hand set is lifted it connects them to the line.
b) Tone Ringer: On receipt of Ringing signal from the exchange, a ringing tone generator produces an output signal that drives an electoacoustic transducer. which emits the alerting tone.
c) The electronic dial generates either the dual tone multifrequency or decadic pulses. A set may be equipped with one or the other or both with a common push button pad and a switch to change over from one to the other.
d) An integrated active network for coupling and decoupling the transmit and receive speech signals, for transmission on a two wire line, amplifying the transmitter output and sending it on the line, amplifying the receive speech signal and feeding it to the receiver.
e) Electro accoustic transducers serving as transmitter, receiver and ringers.

Above is the functional description of a basic telephone set used by a large majority of the subscribers. There are many other models with various features like hands free dialling. loud speaking, memory and abbreviated dialing etc.
10.3

Manufacturers of Telephone Instruments

Apart from all the major international manufacturers of telecommunication equipment. telephone instruments are being manufactured by a very large number of others. both on small and large scale. many of them in some of the developing countries.

## Prices

The prices and quality of telephone instruments vary very widely. Quality wise, there are sets fully meeting the CCITT transmission standards and high reliability with MTBF of 10 years or more and there are others with poor transmission quality and a rather poor record of reliability. In general, a basic but quality electronic instrument meeting the CCITT Iransmission standards and a satisfactory level of reliability is quoted at around 25 US\$.

### 10.5 Components required for production of an electronic telephone instrument

Table 10.2 gives a list of various components going into the production of a telephone set and typical prices for the same.

### 10.6 Process flow chant

Chart 10.3 indicates the process flow for assembly and testing of the telephone sets from bought out components.
10.7 Plant and machinery for production of telephone
instruments from bought out components

Table 10.4 gives a list of various machines. jigs, tools and testers required for assembly and testing of telephone instruments from bought out components with manual operations as far as possible, except where quality and reliabilty calls for automation, e.g. use of a wave soldering machine rather than hand soldering

## 10.8 <br> Economic level of production

With a reliable supply back up of components, an assembly plant could be economic for an annual production of about 50.000 to 100.000 sets. Production of some of the moulded components could become economic at an annual production of 100,000 to 200,000 sets.

Annexed:
Figure $10.1 \quad$ Block Scematic of a basic electronic telephone
Table 10.2 Component requirements for Decadic Pulse/DTMF switchable telephone instrument.
Chart 10.3 Process flow chart for assembly and testing of an electronic telephone instrument from bought out components.
Table 10.4 Requirements of machines,jgs and tools for assembly \& testing of electronic telephone from bought out components.


BLOCK SCHEMATIC OF AN ELECTRONIC TELEPHONE
FIGURE 10.1
cabla 10.2
COMPONENT REQOIREMENTS PER SET TELEPHONE INSTRUNENT DTMF/DIAL PULSE SWITCHABLE

Comoonents	$\begin{aligned} & \mathbf{T} \\ & \mathbf{Y} \\ & \mathbf{P} \\ & \mathbf{E} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \text { qty } \\ & n 0 . \end{aligned}$	USS per		$\begin{aligned} & \text { Total/set } \\ & \text { uSS } \end{aligned}$	
1. Capacitors, Metalized Plastic Fiim	10	12		1000	0.60	4.58
2. Capacitors, Electrolytic Aluminium	4	6		1000	0.48	3.66
3. Coras, Hand set, coiled	1	1	500	1000	0.50	3.82
4. Cords, Instrument, Straight	1	1	300	1000	0.30	2.29
5. Diodes	5	9		1000	0.23	2. 72
6 EE :	1	1	100	i000		
7. Hook Switches	1	1	100	100	E.OC	7.63
8. Housing farts Set of 13	1	1	2.5	/set	2.50	19.08
9. IC's Dialler	1	1	500	1000	0.50	3.82
10.IC's Speech	1	1	1000	1000	$\bigcirc .00$	7.63
il. IC's Ringer	1	1	500	1000	0.50	3.82
12. Keybooard Pusn cutcon	1	1	100	100	i. Ci	7.63
13.PCB's Single layer	1	1	600	1000	0.60	4.58
14.Quartz CrystalOscillato:	1	1	300	1000	0.30	2.29
15.R. Button	${ }^{1}$	$\stackrel{?}{2}$	200	1000	0.20	- -53
16.Resistors, Metal film (0.25w)	28	28	6	1000	0.17	1.28
17.Resistors, Metal film (u.50w)	2	2	5	1000	0.01	0.09
18.Transducers, Transmitter	1	1	850	1000	0.85	5.49
19.Transducers, Receiver	1	1	850	1000	0.85	6.49
20. Transducers, Ringer	1	1	200	1000	0.20	1.53
21.Transistors	4	5	120	1000	0.60	4.58
22.Varistors	1	1	120	1000	0.12	0.92
23. Miscellaneous set of screws, washers terminals, rubber shoes etc						
	1	1	0.6	/set	0.60	4.58
Total/set	70	79			:3.12	

TYPICAL PROCESS FLOW CHART FOR PRODUCTION OF ELECTRONIC TELEPNONE SETS (DTMF /DP SWITCHARLE)
(ASSEMBLY FROM BOUGHT COMPONENTS)


PRODOCTION EQUIPMENT REQUIREMENTS TELEPHONE INSTRUMENT DTMF/DIAL PULSE SWITCHABLE ASSEMBLY LINE ONLY, ALL COMPONENTS BOUGHT OUT


#### Abstract

Eollowing table gives the requirements of machines, tools, jigs and testers for a pure assembly plant with manual operations as far as possible, with an annual production of 100,000 to 200,000 sets on a single shift basis. All components have been assumed to be bought out as per the list at table 10.2

Typical prices unit total USS USS


## Machines \& Accessories <br> Qty no <br> A: Hand preparation of electronic components

1. Cutting \& bending jig \& tools for axial components belted 1
1200200
2. Cutting \& bending jig \& tools for components, singles 1
$1 \quad 100 \quad 100$
3. Cutting device for transistors 1
4. Straightening device for IC's12002005. Counting device for componentsbelted200200
5. Wire link cutter5050
6. Component testing \& preparationtables
25001,000

B: Componet insertion in PCB

1. Conveyorised stuffing stations :ith stuffing jigs
$10 \quad 800 \quad 8,000$

## c: Wave Soldering

1. Wave soldering machine $12^{\prime \prime}$ size with cleaning \& cutting facility $1 \quad 15,000 \quad 15,000$
2. Soldering frames for above $10 \quad 50$
3. Inspection \& Repair table 200 200
4. Soldering iron (temp. controlled) 1

50 50

Li: instrument issembly
i. Conveyorised Telephone set Assembly stations
$10 \quad 800 \quad 8,000$
2. Pneumatic Screwdrivers 6 600
3. Soldering irons

50 200

To:at Carried forward 34,500

Table 10.4 (continued)
PRODUCTION EQUIEMENT REQUIREMENTS TELEPHONE INSTRUMENT DIMF/DIAL PULSE SWITCHABLE
ASSEMBLY LINE ONLY, ALL COMPONENTS BOUGHT OUT

Typical prices
Machines \& Accessories
Brought forward
E: Testing, labelling \& packing

## E: Test equipment

1. Digital LCR meter
2. Digital capacitance meter
3. Digital precision ohmmeter for low resistance measurement
4. Insulation resistance tester
5. High voltage test equipment
6. IC,Transistors \& Diodes tester
7. In-circuit board tester taking upto 2048 points
8. Key board tester
9. Hook Switch life tester
10. Cord life tester
11.Ringer life tester
11. Tone Pulse Telephone analyser
12. Telephone tester with accessories including testing of transducers
13. General purpose multi-meters
15.Testing \& labelling table

Total
Infrastructure: Land, buildirg,
electric power, dust filtering,
office equipmet \& furniture
Tota: initial investment

135,000

250,000
385,000

## Chapter

## Components

## 11.1

## Introduction

11.1.1 A broad analysis of various types of components going into the production of a few of the important systems forming part of National Public Switched Telecommunication networks has been undertaken in chapters 4. 7. 8, and 10. The analysis. though necessarily limited to only a few systems, gives some idea of the very wide variety and range of components going into the telecommunication systems. Components generally appear to contribute about $30 \%$ of the total cost of production of the systems, actual figures varying somewhat from system to system. The cost of components is thus an important issue to be considered towards reduction of the cost of networks.
11.1.2 To bring the issues involved into better focus an attempt has been made to draw up a fairly comprehensive list of different types of components and classify them on a scale of 1 to 5 for the trequency of use and complexity of production processes. The results are presented in Annex 11.1

In regard to frequency of use, 1 represents infrequent use in a few systems. 5 represents use in large numbers. Klystrons are an example of components classified 1 and resistors, capacitors. integrated circuits and accoustic transducers are typical examples of class 5.

In regard to complexity of production processes, 1 represents very simple: production processes while 5 represents highly complex and closely controlled ones. Moulded parts are an example of 1 and the integrated circuits of 5.

In either case, the classification represents basically a subjective judgement of the editors. There could be some differences of opinion in regard to the classification. The editors however believe that the table will still be found useful as a starting point for the deliberations of the conference in respect of strategies for production of components in developm, countries.

## Sources of supply for components

The variety of comperients calls for a large variety of raw materials and processes for their manufactur. A very large number of companies in ditterent countres are manufacturng comp ithents. Almost all the major manufacture:s, of telecommunication equipments h.:t: component divisions. They manufacture components parlly for their own us.: and also sell internationally. There are atso a fairly large number of independent :!anufacturers producing only components. :Many specialize in specific types. Among the developing countries. Korea and Taiwan have built up a major electronics compmients industry. They also have a numberr of companies specializing in projects $t$. manufacture of the more common components. They undertake to design plants anc: mply the manufacturing equipment.

Electronic componert :iarket which also embraces the components for telecommunications is a multi-billion zollar one. With such a large market a number of international and national directortes and catalogues of electronics components are publisned oy independent publishers. and industry and business associations. A number of magazines and journals ca:-::ing to the electronics components and systems industry are also being published. In.:Sdition. most of the major manufacturers publish catalogues giving the specifications and operating characteristics of their products and prices. A number of business houses specialize in procurement and supply of components. They also undertake to form component kits fer systems on the basis of bill of materials prepared by the designer or manufacturer.

Annex 11.2 gives a very brief illustrative list of international arrectories of electronic components.

### 11.3 Typical processes, cect of raw materials and plant and machinery for aroduction of components

Purely for purposes of illustration zhapters 12 to 15 present typical process flow charts, raw material and plant and machinery required for 4 of the most frequently used components in telecommunication systems namely carbon metal film resistors. ceramic capcitors. printed circuil boards and integrated circuits. The information is necessarily somewhat sketchy and figures of costs purely illustrative based on budgetary quotes. They however serve to give an idea of the complexity of processes and the erder of investments involved.

## Annexed:

Annex 11.1 List of components classified as above
Annex 11.2 A brief list of international directories of electronic components.

## Annexed

Anne: ll.1 List of components classified as above
ANNEX 11.1
An alphabetical list of frequently used components in systems going into telecommunication networks also indicating on a scale of 1 to 5 the comparative frequency with which the component is used and the complexity involved in its manufacture from raw materials

S1 no. Name of component

$\therefore$ Acoustic Signalling devices, buzzers
2. Accustic transducers
3. Backplanes, motherboards
4. Batteries,
lead acid,maintenance free
rechargeable Ni Cd
5. Bubble Memory devices

1
6. Cable glands,locknuts, stapping plugs
7. Cable markers, sleeves, =ies
8. Capacitors:
ceramic 5
chip
electrolytic
high voltage
metallised paper film
mica
5
5
5
plastic (metallised polyesterine etc)
precision
radio frequency 3
sub-miniature 1
tantalum 3
trimmer 2
variable 2
9. Card frames 5
10. ornocto:s
circular
zcaxial
4
Elat cable 3
insulation displaceme: : 4
optical fibre 4
printed circuit boari 5
rack and panel 4
rectangular 4
radio frequency inter:orence shielded 2
sub-miniature
surface mount
11. Contactors
12. Comnters
13. Crjotals, oscilators
14. Delay Lines
in．alphabetical list $2=$ Erequently used components in systems going ints telecommunication networks aiso indicating on a scale of 1 to 5 the comparative frequency with which the component is used and the samoierity involved in its manufacture from raw materials

Rating on a scalt $0:-5$
Erequenc：Comole：iry
sfuse$-5$
i inear／ar．i：ogue
Microwave
Groeral
Interference ：ilter：
4
3
3
3
3
5
5
4
4
3
2
－ 3
$3 \quad 2$
－ 4

3
31．Kerboards
5
32．Kİstrons
$1 \quad 4$
j弓．Rnobs \＆dials
34．Lamps 3
\％．I．7．5．Niodes 2
$\therefore$ Gagretir corra
4

Yroharicas ra：es，ru $\because$ ，
abinets，patols ex

 e

$\therefore$ に．$\because:$ ぶ：
sun．effect
：ight emittirg
$\therefore$－power
？Oer rectifiers
Yaractors
スrrex
1 3 4 2 2

3
$\therefore$ こisplay controllers 2
：\％．＝isplays
ajpha numeric（Lom）
digital

$\because \because:$ ：
ミ．ジミ．
Seramic
Crystal
22．Eise holders
23．Euses
24．Headpnones
25．Heat sinks
26．Byorid circuits
27．Impatt oscillators
23．trductances
chokes \＆coils
chip i
29．Irtegrate ：：rcuits
Applicatirn spec：：：a（ASICS）
Custom
3
Applicatirn spec： E ：（ASICS）
Custom
2
Eigital
2
2
2
2
2
2
2
2
2
2
2
5
2


5

2
5
3

5
：
ANNEX 11．1（Continued）
In．alphabetical list $\overline{\text { If }}$ frequently used components in
systems going iñ：telecominnication netiorks
ajso indicating on a saaie of ： 505 tiee こomparative
Erequency with whic：： the component is used and the
complazity involved in its manuzacture from raw materiàs


39．$\because$ icrowave components passive semi－conductor
Moulded plastic par．．．
？anel meters
42 Permanent magnets
4j．Snotodiodes
44 2totoelectric cells：Fuines
；5．？lugs，sockets \＆Ja：
46．$=$ Etentiometers
＝rimmer
$\therefore$ ise wound
きッinこed Circu：Eoミ：：
kelays
coa：ial
miniature
reed
solid state
Resistor networks
49.
50.

Resistors
carbon film
compositior．
nign voltage
metal film
meval oride
precision
variable
voltage dependent
wire wodns
5：．Suckets
IC＇s
LED＇s
52．Solar celis
53．．25epper moto：：
S4．Sirge arrest．：s
55．ぶitches

Rating on a scaie oz：－5
Erenency Comble：in：
sf use

Rating on a scioe : $: 5$ Erequency Combliziz. of use of ornciutign

```
#
#
#
 Auototransformers 1
 constant voltagr. I
 current i
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
```


## ANNEX 11,1 (Continued)

```
Ar alphabetical list of frequently used components in systems going into telecommunication networks also indicating on a scale of 1 to 5 the comparat: \(\because\) frequency with which the comporent is used and tit combleaity involved in its manufacture from raw materials
```

    Ar alphabetical list of frequently used components in
    ```
 Ar alphabetical list of frequently used components in
 omplexity involved in its manufacture from raw materials
```

    omplexity involved in its manufacture from raw materials
    ```
```

        systems going into telecommunication networks
    ```
 systems going into telecommunication networks
 so indicating on a sca.e o. 1 to 5 the comparat.u
```

    so indicating on a sca.e o. 1 to 5 the comparat.u
    ```

\section*{ANNEX 11.2}

A brief illustrative list of international/national directories of electronic component producers and agents etc

Sl no Publishers
1. Elsevier Advanced Technologies
2. Electronic Industries Association of Japar.
3. Hearst Business Communications Inc.

Name of publication

International Electronics Directory
a) The guide to European Manufacturers, Agents Applications
b) Who's Who in Eiectronics
(USA)

Electronic Parts Catalogue
IC Master

\section*{Chapter 12}

Outline of production process, raw material, plant and machinery and manpower requirements for production of 250 million pieces a year of Resistors, carbon and metal film

\section*{12.1 \\ Introduction}

As seen in the analysis of component requirements for various typical telecommunications systems, a very large number of resistors carbon or metal film go into these systems. The annual consumption runs into billions of peices. The quoted prices vary between 12 to 20 US \(\$\) per thousand pieces.

\subsection*{12.2 Production process}

Chart 12.1 gives a somewhat simplified process flow for production of these: :-ststors from ceramic rods and other raw materials. The repeatability and reliability :equirements call for some automation and in-process testing and control. Table 12.3 gives the requirements of machines and test equipment for an annual production of about 250 million pieces. on two shift basis. Table 12.4 gives the manpower requirements for this plant along with approx manpower costs in a deveioped and a developing country.

\subsection*{13.3 Raw material requirements}

Table 12.2 gives the quantities and estimates of cost for 250 million pieces about 50 million of carbon film and 200 million of metal film.

\section*{13.4 \\ Observation}

The cost of raw materials per thousand pieces works out to about 2 ilS. Tr. : :apital recovery factor for the plant and machinery for an assumed life of four year: works out at about 1.3 USS. The manpower cost in a developing ccunlry is Inss that: : dollar but substantially higher in a developed country

\section*{Annexed}
\begin{tabular}{ll}
Chat: & Typical process flow for production of resistors. carbon and \\
meal film.
\end{tabular}

\section*{Raw Materials etc, required for oroduction of} 250 Million carbon/metal film resistors
\begin{tabular}{|c|c|c|c|c|c|}
\hline Item & & Ur Qty. & Qty & Unit Cost USS & \begin{tabular}{l}
Total \\
Cost \\
!S\$ \\
(:00)
\end{tabular} \\
\hline 1. & Ceramic Rods & Million & 252 & 175/M & 44.10 \\
\hline 2. & CRC Caps & Sillion & 504 & 102/M & \(E \pm .41\) \\
\hline 3. & Tirned copper Wire & Tonne & 40 & \(3.2 / \mathrm{Kg}\) & 128.00 \\
\hline 4. & Methane & Kg & & & 0.50 \\
\hline 5. & Nickel Chromium Powder & Kg & 250 & \(600 / \mathrm{Kg}\) & 150.00 \\
\hline 6. & Epoxy Paint & Tonnes & 40 & \(1.7 / \mathrm{Kg}\) & 68.00 \\
\hline & Paper Tape & Tonnes & 30 & \(1.4 / \mathrm{Kg}\) & 42.00 \\
\hline 8. & Marking Ink & Kg & 2.5 & \(10 / \mathrm{Kg}\) & 0.03 \\
\hline
\end{tabular}

\section*{Total}
484.03
```

Above is for a production 2F abcut 50 million carbon and 200
mi:lion metal film resistors
Cost oE raw materials wo:ks out to about US\$ 1.94 against an
interms: innal selling price oE about USS 15 per thousand pieces.

```

\section*{Table 12.3}

Biant a Machinery required for an annuai Production of about 250 million carbon/metal film resistors per annum
\begin{tabular}{|c|c|c|c|c|}
\hline & & \begin{tabular}{l}
Qty. \\
Reqd. \\
(no.)
\end{tabular} & Unit Cost US\$ & \begin{tabular}{l}
Total \\
Cost \\
USS \\
(000)
\end{tabular} \\
\hline \(A:\) & Esioratory Eov Eesting raw materials & Lot & & 10 \\
\hline \(3:\) & \multicolumn{4}{|l|}{Insirments for final testing} \\
\hline \(\vdots\). & LCR meter & 1 & & \\
\hline 2. & Insulation Tester & 1 & & \\
\hline 3. & Fign Voltage Tester & 1 & & \\
\hline 4. & cilimatic Chambers & 1 & & \\
\hline 5. & \begin{tabular}{l}
Noise tester \\
Tota: B
\end{tabular} & 1 & & 20 \\
\hline \(\therefore:\) & \multicolumn{4}{|l|}{こredisction Machinery} \\
\hline 1. & Cardonization chamie: & 1 & 15,000 & 15 \\
\hline 2. & Metallization chambe: & 2 & 150,000 & 300 \\
\hline 3. & Capping Machines & 4 & 10,000 & 40 \\
\hline 4. & Sorting Machines & 3 & 12,000 & 30 \\
\hline 5. & Helical grinding Macrines & 12 & 6,000 & 72 \\
\hline 0. & Lead Welding Machines & 8 & 12,000 & 96 \\
\hline 7. & Epory coating \& baking line & 3 & 40,000 & 120 \\
\hline 8. & Marking Machines & 3 & 6,000 & 18 \\
\hline 9. & Taping Machines & 2 & 5,000 & 10 \\
\hline \multicolumn{4}{|c|}{Total C} & 707 \\
\hline 2: & \multicolumn{3}{|l|}{T2tal Machines \& testers} & 737 \\
\hline \(\Xi:\) & \multicolumn{4}{|l|}{Infrastructure} \\
\hline 1 & Land & 5000 & 5 & 25 \\
\hline 2. & Buildings & 1000 & 160 & 160 \\
\hline 3. & Pover supply \& stardoy & lot & 32. & 32 \\
\hline \(\therefore\). & Ventilation & \(10 t\) & & 10 \\
\hline \multicolumn{4}{|c|}{Tota: E} & 227 \\
\hline \multicolumn{4}{|c|}{\(\because a 1\) investment required \(D+E\)} & 964 \\
\hline \multicolumn{4}{|c|}{! Sta recovery for a lise of 4 years a... 33 per armum} & 322 \\
\hline \multicolumn{4}{|c|}{} & 1.288 \\
\hline \multicolumn{5}{|r|}{say US. 1.3} \\
\hline
\end{tabular}

Table 12.4
Iypical Manpower requirements for production of 250 million Resistors, carbon \& metal film, in the plant as outlined
in Table 12.3 and typical annual costs in a developed and a developing country.

Annual costs in a
A: Developed Country
developed country
no. USS(000) USS(000)
Manpower requirements

B: Developing country
Annual costs in a developing country
no. US\$(000) USS(000)
Manpower requirements
1. Managers
2. Technicians
3. Quality Controllers
\begin{tabular}{rr}
5 & 5 \\
3 & 9 \\
3.5 & 7 \\
3 & 3 \\
4 & 4 \\
3.5 & \(?\)
\end{tabular}
5. Prociction Controller
6. Supervisors
3.5

Carbonization/matallization
Capping
Sorting
Grinding
Welding
Epozy painting \& marking
Paper taping \& packing
3
4. Material controller
7. Operators:
Carbonization/motallization
Capping
Sorting
Grinding
Welding
Epozy painting \& marking
Paper taping \& packing
8. Salfs \& Shipping

\section*{Chapter 13}

Oulline of production process, raw material, plant and machinery and manpower requirements for production of \(\mathbf{i 0 0}\) million pieces a year of Capacitors. Ceramic disk type

\subsection*{13.1 Introduction}

As seen in the analysis of component requirements for various typical êtô:manications systems. a very large number of ceramic capacitors go into these ivit.in: The annual consumption runs mio billions of pieces. The quoted prices vary :) thor: in to 30 US\$ per thousand pieces

\subsection*{13.2 Production process}

Chart 13.1 gives a somewhat simplified process flow for production of th.es. : :jacitors from basic raw materials. The repeatability and reliability E.f: ?:n....is cal tor considerable automation and in-process testing and control. F: : Ji. : \(\because\) : gives the requirements of machines and test equipment for an annual d, s. .is: of about 100 million prects. Tabis: 13.4 gives the manpower requirements :0: :...inir: on two shift basis.
13.3 Raw material requirements

Table 13.2 gives the quantities and esti:nates of cost for one million pieces oi capacitors.

\subsection*{13.4 Observation}

The cost of raw materials per thousand pieces works out to about 2 USS. The capital recovery factor for the plant and machinery for an assumed life of tour prats works out at aboul 3 USS. The manpower cost in a developing country is orimparathe but substantially higher in a developed country

Ann••••!
\begin{tabular}{|c|c|c|}
\hline Suar: & \(\because\) & Typical process flow for production of capacitors. ceramic disc type. \\
\hline Tabl. & \(\because \because\) & Raw material requirements for production of capacitors. ceramic disc type \\
\hline Tani- & \(\because:\) & Requirements of Plant a Machinery for an annual production of 100 million pieces of capacitors. ceramic disc lype. on 1:\% shifl basis. \\
\hline - :\%. & & Manpower requarements for annual production of 100 million pieces a yitar of capacitors. ceramic disc lype. on iwo shifl basis \\
\hline
\end{tabular}
A. PRODUCTION OF CERAMIC DISC ELEMENTS

MATERIAL USED PROCESS MACHINE USED

9. FIRE DISCS AT 1400 DEG.C TO SINTER

BOILER / MIXER

COOLING CHAMBER
fabricating machine
rolling machine

COOLING CHAMBER
vacuum
extruder

DRYING CONVEYOR

DISC FORMING. MA CHINE
electric kiln

ULTRASONIC SEPERATOR

CONVEYOR OVEN

SORTING MAChine
electric weighing machine CHAP IER 13 PAGE 2/B
MATERIAL USED PROCESS MACHNE USED

C: ASSEMBLE CERAMIC CAPACITORS

\section*{Raw material requirements for production of 1 mialion pieces of capacitors, Ceramic disc type}

The ras: raterial requirements work out to about US\$ 2, against
The sel:ing price of finished product of about US \(\$ 20\) to 30 per
lora pieces.

Equipment, machines, tools \& testers and infrastructure required Ecr an annual production of about 100 million Capacitors, Ceramic disc type on two shift basis
51. \(\because\) :achines, tools \& testers no.

A:

\section*{Machines}
Auto Assembly Machines
Auto Coating machines
Auto lead forming machines
Auto Marking Machines
Auto Printers
Auto Soldering Machines
Auto Testing Machines
F:uto waxing Machines
Eviling \& Mixing Machine
Eating Mixer
Cooling chamber
Disc Forming Machine
Erjer for seperator
Dryer for printer
Drying conveyor for
seperator
Electric Furnace (small)
Electric Kiln
Eabricating Machine
Ovens
Packing Machines
Roller Mixer
Sorting Machines
Ultrasonic Seperator
Vacuum Extruder

Total A:
427,500

Equipment, machines,tools \& testers and infrastructure required for an annual oroduction of about 100 million capacitors, Ceramic disc tyoe on two shift basis

Sl. Machines,tools \& testers no.
\begin{tabular}{lcc}
Qty & Likely cost \\
reqd & Unit & Total \\
(no.) & Price US\$ & US\$
\end{tabular}

B: Accessories for machines
\begin{tabular}{llrrr}
1. For Kiln (lot) & 1 & 19,000 & 19,000 \\
2. & For disc former & 30 & 450 & 13,500 \\
3. & Screen for printer & 200 & 35 & 7,000 \\
4. Templates & 600 & 35 & 21,000 \\
6. For Ceramic Capacitor & & & \\
& Assembly M/C (lot) & 1 & 7,300 & 7,300 \\
& & & & 67,800
\end{tabular}

C: Test Equipment for Q.C.
\begin{tabular}{llrrr}
1. & Temperature Coefficient & 1 & 28,000 & 28,000 \\
2. chamber & & & \\
3. Puncture Test set & 1 & 2,300 & 2,300 \\
Insulation resistance & 1 & 5,000 & 5,000 \\
4. Tester & & & \\
5. & LCR Meter 1Khz & 1 & 4,000 & 4,000 \\
6. & LCR Meter 1 Mhz & 1 & 15,000 & 15,000 \\
& Q meter & 1 & 5,000 & 5,000 \\
& & & & 59,300
\end{tabular}

\section*{D: INFRASTRUCTURE}
\begin{tabular}{lccr}
Sl. Item & \begin{tabular}{c}
Area \\
Sq.
\end{tabular} & \begin{tabular}{c}
Unit cost \\
US \(\$ /\) Sq.
\end{tabular} & \begin{tabular}{c}
Total cost \\
no.
\end{tabular} \\
& & & \\
1. Land \(\$\)
\end{tabular}

\section*{Table 13.3(continued)}
```

Eruiprent,machines,tools \& testers and infrastructure reguired
for an annual prcruction of about l00 million
Capacitors, Ceramic disc type on two shift basis
SUMMARY OF INVESTMENT REQUIREMENT
Item USS
A: Machines
427,500
5: Accessories for machines 67,800
C: Test Equipment for Q.C.
59,300
D: Infrastructure
105,000
@ 40% of A+B+C+D
263,840
Total estimated investment 923,440

```
Annual capital recovery factor for a life of 4 years with cost of
money at i2\% (@ 33\%)
 307,813
Per 1000 pieces on annual production of 100 miliion

\section*{Table 13.4}

\section*{Chapter 14}

Outline of production process, and raw material, and plant and machinery requirements for fabrication of about \(30,000 \mathrm{sq} . \mathrm{m}\). of double sided, through hole, glass epoxy printed circuit boards

\subsection*{14.1 Introduction}

As seen in the analysis of component requirements for various typical elecommunications systems. printed circuit boards are an essential input for the production of almost every module for every telecommunication system. Printed oircuit boards are used to mount and interconnect the various components reliably. the annlai consumption runs into millions of sq. meters of printed circuit boards. For anple sma: modules single sided boards are usual. For more elaborate ciruits. double sided on.: are used. Multi layer boards are often employed for large circuits. In this Whater a brief outline of processes involved. and mate:ials and machines and plant :cqured ior production of about 30.000 sq. meters of double sided boards has been ?Hemptec: Such boards are quoted a! about US \(\$ 125\) per sq. meter.

\section*{14..2 Production process}

Chart 14.1 gives a somewhat simplified process flow for production of ines. Printad circuit boards. The repeatability reliability and high precision call for a anh live: of automation and in process testing and control. Table 14.3 gives the qur:inl: ot machines and test equipment for an annual production of about 1.0 .000 sa. meters of these boards. It will be seen that the investment requirement © rather ?n even though only one machine of each type has been included.
1.1.3 Raw material requirements

Table 14.2 gives the quantities and estimates of cost for 1200 sq. meter of these boards to work out the cost per sq. meter.

\section*{13.4}

\section*{Observation}

The cost of raw materials per sq. meter works out to about 73 US \(\$\) Unch is rather high for a linished product being quoted at US\$ 125 per sa. metr: The ap:t: revery tactor for :he plant and machinery for an assumed life of four years Norm: ous: at aboul 16 US: per sq. meter.

\section*{Annexed:} Chart 14.1

Table 14.2

Table 11.3
Typical process flow for production of double sided through hole printed circuit boards for professional equipment.
Raw material requirements for production doubie side through hole PCB'S capacitors, ceramic disc type.

Requirements of Plant \& Machinery for an annual production of \(30,000 \mathrm{Sq}\). meters of double sided boards.

CHART 14-I
TYPICAL PROCESS FLOW FOR PRODUCTION OF DOUBLE LAYER PFINTED CIRCUIT BOARDS

HOT AIR LEVELLED

CHART 14-1 (Shest 2)
TYPICAL PROCESS FLOW FOR PRODUCTION OF DOURLE LAYER PRINTED CIRCUIT BOAROS
hOt AIR LEVELLED
MATERIA!S USED OPERATION MACHINES/FACILITY
FROM SHEET 1

\section*{Table 14.2}

Raw Materials etc. required for production e:
\(1,200 \mathrm{sq}\). meters of double sided through hole glass epoxy Printed Ciruit Boards

\begin{tabular}{cccc}
Qty. Reqd. & Unit & Total \\
Unit & Qty & Cost & Cost \\
& & US\$ & USS \\
& & \((000)\)
\end{tabular}

A: Lievnatory for testing raw

E: Irstruments for in process and final testing
I. Piaこing Thickness meter 1 8
2. Trrough hole tester 11
3. Nickel thickness tester 1
4. Visual Inspection i \(\quad 1\) Total B 27

C: Preivetion Machinery
\(\therefore\) Stesring \& fabrication
a) 2late shearing machine 1
a) Sircilar saw
c) Pin router
(i) ?ower press

6
1
2
2. Drisling \& routing
a) 2 Head CNC (large) 1180
b) 2 Head CNC (small) 1175
c) Single spindle \(\quad 1 \quad 60\)
d) Manual optical drill 12
e) Stack pinning machine 1
3. \(3 \because \because \operatorname{cring}\)

Denurrizg machine \(\quad 1\)
25
4. E.entroless automatic mp controlled plating line
\(1 \quad 175\)
5. Imaging
\(\begin{array}{lll}\text { a) Pumice cleaning } & 18\end{array}\)
b) Hot roll laminator

8
c) Double sided exposure unit 118
d) \(A D F\) developer

18
6. Elforoplating
a) \(\therefore\) asomatic \(m\) controlled
\(\therefore \therefore \cdot \because\) :-iytic r!ating line
1
175
B..'gring \& Etcring
a) ine stripper
()) Alkaline etching system 18
40
c) Acidic etching

36

Table 14．3（Continued）

\section*{Tipica：Eiant \＆Machinery refuired for an annual praciucian é
 \\ Printes Ciruilt Boards}
```

こも*
Q:%. Reqd. Unit ごこaこ
yn:E Qty Cost こos=
USS !O
(06)
z: Vachines continued
3. Su:ame treatment
a) Sin Stripping
9. Su:en printing
a)
\because:zvellareous
a) Rolier crye:
2
<: Punches, tools etc
set
: Jigs, fixtures et: set
Total C
\therefore: Total Plant \& Machines (A to ()
\#. I:Evas=ructure

```

```

a!ea. recovery per 1000 si, m.
.\therefore mor. 16 uS\$ per sa. mete:.

```

\section*{Integrated circuits}

\section*{Introduction}

The analysis of components going into the switching systems carried out in chapter 4 indicated that integrated circuits contributed the maximum to the cost of components in the system, over \(25 \%\). For a normal mix of 200,000 lines capacity 4.4 million IC's of over 200 types are used in a typical system. The analysis in chapters \(i\) and 8 indicates that IC's play an equally important role in Transmission systems. Though called a compoent, an IC is in effect a susbsystem or functional block. performing a complete function in the system. The complexitities of IC's range from the equivalent of a few transistors and diodes to the equivalent of thousands of component parts and they perform functions which vary from simple logic gates to amplifiers to complex central processing units. The equivalent component parts are not made seperately but share with each other the same processing. being fabricated on the same piece of silicon crystal.

The development of IC's has revolutionised electronics. telecommunications and computers. It has made possible the modern digital systems. improved tion reiabilit; and brought about tremendous economies in use of materials.

\subsection*{15.2 Fabrication of IC's}

Basically IC's consist of a single crystal of silicon, on which. through the processes of diffusion. ion implantation, metallization, and epitaxial growth, a complex structure is fabricated with areas which can be functionally identified as diodes. transistors, resistors, field effect devices, capacitors and interconnection wires. Fabrication involves extensive use, at highly sophisticated level of diverse scientific processes from physical chemistry, solid state physics. oplics. photography. and metallurgy. The result is a higly miniaturised production of entire subsystems on chips as small as 2 mm by 2 mm . A large number, upto 2000, of these are producod simultaneously on a single slice of pure silicon, known as water, about 100 mm ic. 150 mm diam. At some stages of the processing as many as 50 of such wafers are landiod logether, with a possible output of from 50,000 to 100,000 chips at a ime

\subsection*{15.2.1 Production of masks}

The production process of an IC starts with the production of a set of masks called tools in the industry, which in turn starts with the design of the circuit. The esseillal steps in the production of the masks and the nature of the masks is as follows:
1) Creation of a circuit design and schematic diagram indicating clearly: various dryices and their interconnection. This is nowadays carried out on a computer aided der.u; f: fablity and the final output is available on a tape. map. several sq. feet in size, defining accurately locations of various devices to be formed into the crystal. Each such device takes its own unique design and shape e.g.:
- multiple layers form transistors
- Iwo layers form diodes
- other structures form field effect devices
- interconnection pads are formed by a layer of positive metal or polycrystalline silicon
3)

The drawing is transferred onto a series of rubylith;. Rubylith is a very rigid. perfectly clear plastic carrying a surface 0 ' ruby red film which can be removed by a cutting process. Layers of the IC are defined as layers on the series of rubylith.
4)

Through a series of photo-reduction this rubylith map is reduced from several sq. feet to a photographic pattern 10 to 20 times the actual size of the silicon crystal. A final photographic process reduces the pattern accurately to the actual size of the crystal.
5)

Using a step and repeat photographic process, the map is reproduced many times. (as many as the number of chips on the wafer which may be upto 2000) on a slide equal in size to the silicon water.
6)

The end product is a set of photo masks of chrome or conventional emulsion on glass. Each mask is used to produce one of the layers that form the IC on the silicon wafer.

This set is used as a master from which copies are taken photographically for use in fabn ation process. The production of these masks is a highly sophisticated process and is generally entrusted to a few dedicated mask shops specialing in this work. The prices quoted for a set of masks, which may consist of anything from 10 to 20 depending on the nature of circuits. range between 50,000 to 100.000 US\$.

\subsection*{15.2.2 Fabrication of chips}

The actual fabrication of chips starts with silicon wafers of high purity of 100 to 150 mm diameter. The steps in fabrication are indicated in chart 15.1 and are briefly as follows:
1) The silicon wafer is cleaned and polished in a polishing machine.
2) A thin layer of silicon dioxide is tormed on the surface of the wafer in a controlled process in a furnace in presence of pure oxygen.
3) A thin layer of photo-resist material is applied uniformly over the silicon oxdr layer in a spinning machine.
4) An appropriate mask is accurately aligned with the water and pholographically exposed in a machine known as 'aligner'.

An ectchant is now tised to eliminate the silicon dioxide from the areas not defined by the above photolithographic process.
7)

A chemical clean up follows which removes the photolithographic materials and leaves the basic silicon with a silicon dioxide pattern on its surface.
8) In a diffusion furnace. dopant gases are now diffused at high temperatures. into the silicon areas not protected by silicon dioxide. Alternatively an ion implanting machine is used for achieving the same objective.
9) After each diffusion. the process starts over again with reoxidation of the surface. application of photoresist. exposure using the next mask, developing, etching. clean up and next diffusion. As many cycles as the masks follow. the last being the metallization and wi-dow masks which are used to provide the connection pads and define the boudaries of each IC chip. Chart 15.1 shows the reiterative process with 6 basic masks. As already mentioned the actual number may vary from about 10 to 20

Throughout the processing, continuous monitoring and control is undertaken. optically. chemically and electrically to maintain a high level of accuracy. For this purpose the masks have a few strategically located test patterns.

At mr. end of the process. waters are ready with the necessary IC's. Betore being passed on for assembly. each IC is tested \(100 \%\) on the wafer, and any defective ones are inked over. This is done using a prober.

\subsection*{15.2.3 Assembly}

Chart 15.2 gives simplified process flow chart for assembly of IC's in moulded plastic packages. The steps are:
1) Probe testing . if not already done.
2)

Dicing and seperation of IC's. This is done in scribling and dicing saw. The IC's are sorted out to seperate the defective ones and those carrying the test patterns. Latter are sent for further tests \& evaluation of the process.
3) Each chip is 100 small tor handling. It is therefore mounted on a substrate by a die bonding process.
4)

For external connection, aluminium microwires (1 mil i.e. 0.001 diameter: already connected to external leads in a frame, are bonded. either by the ultrasonic or thermal compression process. one on each connection pad. frame. is moulded into a plastic package. in a transfer moulding machine.
6) The external leads are now tinned to ensure high solderability.
7) The external lead frame is then cut away.

The chips are now ready. They are finally tested and packed for despatch.

\subsection*{15.2.4 Raw material requirements}

Table 15.3 gives a skeleton iist of raw materials with an overall approximatt: estimate of cost. for production of about 40 million IC's with an yield of aboul 80

\subsection*{15.2.5 Plant and mahinery required}

Table 15.4 gives a skeleton list of plant and machinery required for an annual production of about 40 million IC's of mixed complexity. Price estimates are highly approximate and give only an idea about the order of investments involved
15.3

\section*{Observation}

The fabrication of the IC's is a higly sophisticated process. It requires substantia: investments. For an annual production of 40 million IC's whose selling price will n e of the order of 40 million US \(\$\). the investment may be of the order of about 50 milion USS. At this level the plant may just about break even. A number of major manufacturers are turring out IC's in billions.

Annexed:
Chart 15.1 Typical simplified flow chart for production of Integrated circuit wafers.

Chart 15.2 Typical simplified process flow chart for assembly of IC chips.

Table 15.3 A skeleton list of raw material requirement.
Table 15.4 A skeleton list of plant and machinery required for an annual production of 40 million IC's of mixed complexity

CHART: 15.1
TYPICAL SIMPLIFIED PROCESS FLOW CHART FGR PRODUCTION OF INTEGRATED CIRCUIT WAFERS:

MATERIALS

CHART: 15.1 ICONTINUED)
TYPICAL SIMPLIFIED PROCESS FLOW CHART FOR PRODUCTION OF INTEGRATED CIRCUIT WAFERS.

CHART: 15.1 (CONTINUED)
TYPICAL SIMPLIFIED PROCESS FLOW CHART FOR PRODUCTION OF INTEGRATED CIRCUIT WAFERS:

CHART: 15.1 (CONTINUED)
TYPICAL SIMPLIFIED PROCESS FLOW CHART FOR PRODUCTION OF INTEGRATED CIRCUIT WAFERS:

test and despatch for assembly

CHART: 15.2
TYPICAL SIMPLIFIED PROCESS FLOW CHART FOR ASSEMBLY/ PACKAGING OF INTEGRATED CIRCUITS.

\section*{Table 15.3}

\section*{A skeleton list of raw materials required for production of about} 40 million IC's of mixed complexity
```

1. Silicon Wafers
100 mm diam
50,000
Lot
Approx cost US4
400,000
2. Urious chemicals
a) Cleaning agents
Hydrochloric acid
:Ydrofluoric acid
Sulphuric Acid
Ammonium Hydroxide
b) Photo litho chemicals
a) Polymer
a) Dopants
Arsene
Phosphine etc
Boron
Gallium
4) Yecallization chemicals
Aluminium Silicon
Aluminium Aluminium Copper
\#) Vapour deposition
::itrous oxide
Polysilicon
g) Oxygen
```

Table 15.4
Tyoical equipment requirements for an IC fabrication and assembly facility to produce about 40 million IC's of different comolerities

Sl no Machine/equipinent
A: Fabrication
1. Diffusion furnaces
2. Ion Implantors
3. Chemical vapour deposition system
4. Metal deposition system
5. Etch System, dry
6. Etch system, wet
7. Cleaning line
8. Lithography
a) Mask aligner
b) Wafer stepper
c) Wafer track (photo-resist coat'g \& devel'g)
i) Oven

Total A: fabrication
E: In process control \& monitoring
3. In-process control \& monitoring lot
10. Other Testing

Wafer mapping
Resistivity
Thickness
Elipsometer
Device characteristics
Scanning electron microscope

Unit Total
\(\begin{array}{cll}\text { No. } & \text { Price } & \text { Cost } \\ \text { reqd. } & \text { USS } & \text { US\$ } \\ & (000) & (000)\end{array}\)
\(\begin{array}{lll}32 & 27 & 853\end{array}\)
\(1,0003,000\)
2,000
2,500
1,333
1,333
2,000
\(8 \quad 167 \quad 1,333\)
\(3833 \quad 2,500\)
\(\begin{array}{rrr}6 & 200 & 1,200 \\ 6 & 17 & 100\end{array}\)
18,153

3,333
10,000
3

C: Assembly
10. Wafer prober
11. Assembly equipment lines each with:
a) Dicing saw 3
b) Die bonding 2
() wire bonding 2
i) Pactaging
ceramic
plastic
1
\(\because\) lead cutting
() lead tinning

Eunctional testing set up
\(1+1\)
Total C: Assembly

1,000
11,167
Chapter 15 page 11/12

Troical equipment requirements for an IC fabrication and assembly facilit: \(=0\) oroduce about 40 million IC's of different complexities per annum

S1 no \(\because\) :ins:ve/equipment
\begin{tabular}{cll}
& Unit & Total \\
No. & Price & Cost \\
reqd. & US\$ & US\$ \\
& \((000)\) & \((000)\)
\end{tabular}

D: Ir: rastructure
\begin{tabular}{lrrr}
1. Land & 125000 & \\
2. E:ilding & & \\
a) Clean area & 4000 & 2 & 8,000 \\
b) Air conditioned & 5000 & & 2,000 \\
& c) services & 15000 & \\
Power supply & Lot & & 3,400 \\
3. & & &
\end{tabular}
4. Pure gas supply
5. DI Water supply
6. Erisust
7. Eine procection \(\operatorname{Lot}(4,5,6 \& 7) \quad 1,200\)

Fatal D:
16,850

SUMMARY
\begin{tabular}{lll}
A: Fabrication & 18,000 \\
B: In process control \& monitoring & 13,000 \\
C: Assembly & 11,000 \\
D: & Infrastructure & 17,000
\end{tabular}

\section*{Chapter}

\section*{Summary, observations \& issues}

\section*{16.1}

\section*{Summary}
16.1 .1

In chapters 1 and 2 a quick survey has been undertaken of the structure of, and the major components systems that go into a national Public Switched Telephone Network, capable of supporting the plain old telephone. the facsimile. the low to moderate and even medium speed data and message transfer services. In Chapter 3 an analysis has been undertaken of the cost per line and major items that contribute to the cost. In chapters 4 through 10. a functional analysis has beren made: of a lew typical systems. digital switching. a few digital transmission systems. a telephone set. and the jelly filled telephone and optical fibre cables. followed by an analysis of the raw materials. components, the processes and machines and plant involved in their production. In chapters 11 through 15 a similar survey of the components that go into the systems has been underiaken.
16.1.2 The survey indicates that the network essentially uses five broad categories of systems viz. the subscriber apparatus. the subscriber line network. the switching nodes. the transmission systems. and the operator services boards. The materiats etc required for these constitute 80 to \(85 \%\) of the total cost of network. The engme:ering. and the construction and installation. which mostly consist of the manpower efforts. contribute the remaining 15 to \(20 \%\) of the network cost. The actual costs and their distribution between different component systems varies !Tables 3.3 to 3.5) from an overall about 1000 US \(\$\) per line in high density areas to over 2500 USS per line in low density areas with difficult terrain.
16.1.3 The overall network investment costs in developing countries have thus been substantial and have inhibited their effective growth commensurate with the infrastructural needs of the concerned countries. Given the important role the telecommunication services play in overall economic development there is need to reduce these costs and promote development of the national networks.
16.1.4 There can be considerable uniformity in the technology and products throughout the network in respect of the switching systems. the operator services boards. The subscriber apparatus and the subscriber line network. However the choice of transmission systems in different parts of the network will vary significantly according to the traffic and terrain.
16.1.5 Reduction in network costs calls for a number of strategies at various levels:

Reduction in procarement cosis through better competition among suppliers.
Oplimisation of network engineering

Tanitig advantage of low manpower cost in developing countries, both for network engineering and construction and for production of systems and components
16.1.6 Some of the systems and products are simple, easy to produce, and are used in large quantities e.g. telephone sets, jelly filled telephone cables, and certain hardware used in subscriber line networks. Some of the other systems are complex and call for substantial investments for production. Even in these, certain modules are simple, comparatively easy to produce and are needed in large numbers e.g. subscriber line module in switching systems.
16.1.7 Among the comporients, some are used in very large numbers, an average of : to 12 or more per line, white others are used only in small numbers. Among tivse used in large numbers some are comparatively simple to produce e.g. resistors, capacitors and coils, others are extremely complex to produce e.g. I.C.'s and transistors. Processes vary very widely, some involve simple mechanical operations like plastic moulding, metal forming etc. Others involve highly complex chemical. metallurgical, and photographic processes.
16.1.8 Construction practices and processes for assembly line production of electronic systems including telecommunication systems, have been fairly standardised. So are the plant and machinery required for this work. The investment required ti: basic assembly operations is also moderate. However the systems involve c: atod testing at the board and integration levels. The test instruments, and the test id ups vary very significantly and are comparatively highly costlier.
16.1.9 There are around 10 major multi-national corporations which produce almost the entire range of telecommunications systems generally of their own design and many of the more important components. There are however a significant number of others who produce various ranges of equipment and components. There are a number of major independent manufacturers of components. A number of developing countries have manufacturing industries of their own, produc ing some systems and components under licence frem the multi national corporations and a few of their own design.
16.1.10 Bocause of the many independent manufactures of components. there is a reasoncole competition and many components are available internationally at competiti. prices.

\section*{16.2}

\section*{Observations and issues}

All through the survey the basic objective of the conference to discover opportunities for economy and reduction in cost in building up and expanding the networks in developing countries through mutual cooperation by way of coordination in procurement and industry was kept in view. On the basis of this survey following observations are made and issues brought out for further examination and consideration by the conference.

A variety of systems go to build up the national networks. There are trade offs possible between them to achieve ma;imum economy in the overall investment. Careful design by way of number and location of subscriber and transit exchanges. the traffic routing. choice of systems etc. can contribute significantly to the overall economy.
2)

Manpower costs in developing countries are significantly less than those in developed countries, by a factor of 10 or more. Substantial manpower costs are involved in the design. engineering and construction of national networks, and production of systems and components. Maximizing the use of local manpower, and that from sister developing nations could lead to significant economies. What strategies could be adopted towards this objective?
3)

There are large material input costs in the network. by way of switching. transmission. subscriber line. subscriber station and other equipment. In many developing countries these have to be entirely imported, largely from developed countries. The costs depend to a very large extent on the level of competition beiween the suppliers a country is able to generate. The competition depends somewhat on:
- the magnitude of order or the size of the market.
- the terms of payment
- competence of the local engineers in drawing up the specification and cealuation of offers

In general. smaller developing countries are handicapped on all these counts. Cooperation in procurement could possibly increase competition by way of increase in the size of market and of pooling the technical and finacial experlise. How far is this feasible? What strategies could be adopted to promote this?
4)

The alternative of local or regional manufacture of systems and components can be considered. The major cost elements in manufacture are:
- Cost of raw materials and components
- Capital recovery costs on investment in plant and machinery
- Manpower costs
- Infrastructural costs. power, water. communications etc

System and process knowhow fees
a) The brief analysis of a few typical systems indicates that the raw materials and components are available internationally at competitive prices, in particular where these are not controlled by the manufacturers of systems or components themselves.
b) Thie capital recovery costs depend on the cost of capital goods. The capital goods appear to be available internationally at competitive prices.
c) In developed countries manpower costs appear to account for about 20 to \(25 \%\) of the total cost of production. With their comparatively lower manpower costs. develop ng countries have a natural edge. What strategies could be adopted to take advantaye of this edge?
d) In respect of infrastructure. developing countries are somewhat at a disadvantage. However a number of them have demonstrated that with a will they could build it up to support the modern industry at least on a selective basis.
e) The issue of system and process knowhow is however an imponderable one. Excluding this element of cost the developing countries appear to be in a position to effect significant economies by local or regional manufacture on a cooperative basis. In the short term there is no alternative but to negotiate with the manufacturers in developed countries. One needs to deliberate whether regional cooperation could help in securing better terms in such negotiations.
f) In the long term, the surest way to get around this problem is to develop own competence and knowhow. Again one needs to deliberate whether regional cooperation could be effective in the development of systems, devices and process knowhow and if so what form it should take and how it should be institutionalised.
5)

Quite apart from the benefit of reduced costs for own network. the analysis of the production requirements of both the systems and the components. seems to point to an opportunity, for the developing countries offering their services, for such manufacture in developing countries to the traditional multinational manufacturers. Some countries in East Asia have already taken advatage of this.
6)

The analysis of manufacturing processes and plants for the systems shows that the modern technology has significantly simplified and standardized the assembly of systems from components. The investments in purely assembly line production seem to be quite small. There are however very significant costs in regard to testing set ups. Firstly the cost of some test instruments appears to be large, and secondly there seem to be substantial costs involved in proprietary software of automatic test set ups. Developing countries could contribute by reducing these costs by developing their own software for such test set ups.
7)

The analysis of manufacture of systems and components clearly shows that with capital equipment and raw materials and components procured at international prices. the local manufacture could result in producion a! significant savings compared to the prevailing international prices even after paying for the system and process knowhow. However the experience in some countries has been that local production costs have been significantly higher. Could some of the following factors be responsible for this?

Significant taxes on import of both the capital goods and the ،aw materials and components

Employment of much larger number of operatives and support hands than needed, treating the industry as a soft option to generate employment
- \(\quad\)-omplicated procedures and delays in regard to procurement from abroad of raw materials and components leading to failure of the just in time. procurement and delivery systems and economies flowing from them.

Much higher costs of borrowings
Any proposals for regional cooperation in industry will perhaps need to address these issues.
8)

With a back up for assured and timely supplies of component kits, he assembly level production of a number of systems appears to be simple and cost effective even at moderate levels of production. Could this possibly become the nucleus of regional cooperation in production of components and k: ting tui iviai manufacturte of systems in participating countries?
9)

There have been useful achievements in regard to development of systems of special application to developing nations in some of the developing countries. How can other developing nations take advantage of the same? How could there be a freer exchange of informatio: and pooling of knowhow for mutual advantage?
10)

Many of the countries in the region have been procuring systems and equipment through international or limited international competitive bids. It is well known that different countries are paying significantly different prices. However there is very little authentic information available. Could there be a suitable data base for exchange of information not only on prices but also the perfermance of various systems? Will there be any legal problems in this regard? Could this become the beginning towards closer cooperation in procurement?
11)

The analysis in regard to requirement of components and their mandfacturing processes indicates that there is tairly large demand for some components and possibilities exist for their economic production in some of the developing countries. Could a bank of skeleton project reporis help entrepreuners in the countres in the region to evaluate the same for tatmithem up? Could a regionat data taje help?
12)

A number of systems and components are being produced in some: of the developing countries of the region. While international directories of components, and products being produced in developed countries are tairly readily available. same is not true for production in the developing countries within the region. Could a negranal d?ta bank help?
13)

The quality and reliability of components and systems in a network is of paramount importance. In local or regionat production quality has to be mamtaned. Could there be some regional cooperation in regard 10 aresunig the quality of products produced within the region and also to share the: intor ation and experiences, in this regard? specifications and an agreement to use the same systems. Is it feasible? How can it be achieved?```

[^0]: BEDDNG TAPE GALVANIZED STEEL TAPE

[^1]: 7.3

 Manufacturers of Optical fibre transmission systems
 A very large number of companies are producing optical fibre transmission systems. These include almost all the leading manufacturers of comprehensive range of telecommunications equipment and certain others. Table 7.2 lists some of the leading ones largely based on list of exhibitors at Telecom 87 at Geneva.

