TOGETHER
for a sustainable future

OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org

Prepared for the Government of Sri Lanka by the United Nations Industrial Development Organization acting as executing agency for the United Nations Development Programme

Based on the work of Kawal Dhari Consultant in residue analysis insecticide efficacy

Backstopping officer: B. Sugavanam, Chemical Industries Branch

United Nations Industrial Development Organization

Vienna
*This document has not been edited.
Mention of company ames and commercial products does sot imply the endorsement of the United Nations Industrial Development Organization (UNIDO).

TABLE OF CONTENTS

Page
Acknowledgement 1
Purpose of the projec: 2
Recommendations 3
Introduction 6
Evaluation of methods used for resting of insecticides 9
Field trials to establish efficacy of standard formulations 13
Upgradation of small, medium and large scale testing Lab testing
Collection of data, interpretation and standards 22
Pest pressures, threshold and PHI 24
Methodologies to stop development of resistance 27
Annexure - 1 : Common and trade names of insecticides used in agriculture 30
Annexure - 2 : Efficacy test protocols 32
Annexure - 3 : Protocols for evaluation of phytotoxicity of insecticides and fungicides - technical and formulation 55
Annexure - 4 : Empirical results for criteria in evaluating a pest management strategy 57
Annexure - 5 : Field evaluation of granular insecticides for rice yellow stem borer concrol 59
Annexure - 6 : Suggested sampling and thresh-hold Rice insects 62
Annexure - 7 : PHI and MRL - Sri Lanka 65
Annexure - 8 : ReferencesAnnexure - 9 : Brief details on course 'InsecticideEfficacy Testing and Evaluation'69

ACKNOWLEDGEMENTI

I wish to take this opportunity to express great satisfaction for having privilege to visit Sri Lanka, a hospitable and interesting country and to work with Scientists of Central Agricultural Research Institute (CARI), Gannoruwa, Peradeniya.

In particular, I would like to express my thanks to : Dr. S.P.R. :ieerasinghe, Director of Agriculture Dr. lf.H.J.F. Fernando, Addl. Dy. Director of Agri. (fies) Dr. (hiss) R. De Alwis, Registrar Pesticides, Sri Lanka. Dr. Di. Sikurajepathy, Dy. Director of Agriculture (Res) Dr. C. Kudagamge, Entomologi st, CARI i.rs. Indumathie Chandrasekara, Deptt. of Chemistry, CARI 1.:I. Hector B. Sernath, Assistant Director (PP)
kir. C.k..D. Dharmasena, Research Officer, Entomology, R..'rs. Padma Dassanayaka, Admen. Deptt., CARI

Finally, I thank UNIDO, Dr. S.F. Dhua, Regional Coordinator RENPAP, Shri R.S. K'athur, Chairman \& kanaging Director, Hindustan Insecticides Ltd., A. r. Jerzy B. Gorski, UNIDO country Director, Sri Lanka and Shri w. B. De Seneviratne UNIDC/UNDP, Sri Lanka.

PURPOSE OF TEE PRCJECT

To provide technical assistance to member countries in isia and the Facific in the safe development and use of pesticides. The consultant in association with the counterparts of Central igricultural Research Institute, Gar.noruwa, Peradeniya was expected to :

- evaluate methods used for testine of pesticides, particularl organophosphates, carbamates, pyrethriods etc.
- advise on conducting field trials to establish efficacy of standard formulation.
- advise to up-grade small,medium and large-scale testing to be undertaken under, available facilities with insecticide in crops of economic importance.
- advise in collection of data, interpretation and standards that are to be used.
- advise on pest pressure and thresh hold levels before taking decision on application of insecticides and also in observing harvesting time after application.
- advise on methodologies to stop development of resistance to pesticides.
and after completion to submit a typed draft report on
his findings and recomendations.

Havinç considered Sri Lenka iumedicie needs and priorities after discussion vith scientist and visit to scme research stations and keeping in viel: the resources and scientific manoower availatle at present, it is recomended :

1. Scientists available for insacticile efficacy testings are thinly distributed over different research stations throughout the country. Scientists wio are cuilified for undertaking such type of research work should be based at Central igricultural Research Institute (CABI) so that need based phase-wise research work-latcratory, insectary and field may be initiated on a continous basis for required number of years/ crop seasons.
2. There is no need fcr field testings, at present, in all agro-ecological regions. First,important agro-ecological regions on priority should be selected keeping in view the insecticides used and crops cultivated. Later field trials may be undertaken in all the regions.
3. Complete information on insecticides efficacy, phytotcxicity, compatability, assessment of crop losses, pre-harvest intervals, maximum residue limits (hals) anc acceptable deily intake (ADI) from countries, preferably similar to Sri Lanka, should be collected so that vorking protocols for Sri Lanka on different aspects may be drawn uJ after few pilot experiments. For this purpose national plant protection priorities arij resources are to
be kept in mind. Some basic informations are given in annexure 2 to 8 to facilitate decision making. For collecting such type of information/ data, UISIDO may be requested for sponsorship and while finalising the guidelines for Sri Lanka, the help of UNIDC Consultant may be sought, if required. Training of scientists/ research torkers is also essential and International Rice Res. Instithte (Irial) will be ideal. USIDC sponsored Pesticide Development Centre (PDC) in India can also be utilized.
4. After a judicious exercise on recomnendation No. 3, phase-wise testings-insectary, laboratory and field should be started. This will cut-down the expenses on efficacy testings as all insecticides may not be found suitable for field testings.
5. As efficacy aspects are also linked with residue and quality control ; analysis and residue laboratory of CARI should be strengthened so that maximum residue limits (MRLs' and pre-harvest intervals(PAI) are worked out. Scientists are tobe trained and these laboratories should be headed by a Ph.D. in the relevant field.
6. For tackling the problem of insect resistance, insecticides with complicated multiplicate resistance like diazinon should be avoided. Avoid or delay the use of dimethoate which acts as effective selector of resistance for pyrethroids. Sub-lethal doses should not be used in the field. Some chemical strategies to alleviate resistance in future are (a) Use of insecticides with multiple sites of action (b) Use of mixtures of insecticides with dissimilar modes of action that lack-iross-resistance potential. (c) alternations and rotations of such dissimilar insecticides. (d) use of additives that antagonize the adaptive value of the resistance mechanism (e) use of insecticides that display negatively-correlated cross-resistance.
7. Efficacy is always linked with safety, therefore, FiC code of conduct for using the pesticides should be practiced by effectively impl =menting moritoring anc reguletory activities.
8. There is a need for strongthening the rook on appliCation mettiods/ technology as it::ill reduce the load ō insecticises in the environnert as proper applicetion ::ill reduce the dose pir unit area.
9. i.ore effective lin': age should je estailishec between Eñomeloyy, Flant Patholory ans rigronomy Deptt. of Smỉl, so that entire plant protection proklems are tactled more efficiently. This step l:ill also help in insecticicie efficacy testings. Efficacy research work may be assigned to the candidates enrolled for Fh.D. degrees as it would gear up the research work, at least, at latoratory and insectary level. University of Feradeniya can collaborate such research work with CARI.
10. Division oi Entomolocy, こinI has skeleton facilities and for proper research tork more facilities and manpower are to be provided.

Agriculture is the main source of income in Sri Lanka, sumplying the basic domestic food requirements and accounting for can 58% of the country's exports. Rice is the staple food. Cther cultivated crops are maize, onion, chillies, kurakkan, cowpea, green gram, soyabean, black gram, groundnut, sesame, potato, ginger, turmeric, bushbeans, polebeans, cajsicum, tomato, cabbage, beetroot, carrot, radish, knolkhol, leeks, cauliflower, longbeans, bushitavo, okra, luffa, snakegourd, cucumber, pumpkins, brinjal, winged beans, and sugarcane. Rubber, coconut, cofoa, coffee, cloves, nutmeg cinnemon, caramum, citrunella, pepper are the export crops. Sineapple, banana, mango, passion fruit, line and oranges are the main fruit crops. The elevation varies from sea level up to 183 meters above sea level and the arınual rainfall varies from 75 cms . to 500 cms . while the temperature varies between 16 to $33^{\circ} \mathrm{C}$. Though, small country, Sri Lanka has 22 agro-climatic zones. There are 63 recommended varieties for 23 locally grown field crops and 79 for 23 locally grown vegetables.

The expanded use of insecticides resulting from targets of increased yields through improved production led to Government imposed import restrictions. linen these controls were lifted in 1977, the use of insecticides increased dramatically. The Government enacted legislation regulating pesticides and their use increased steadily from 2309 NI in 1980 to 4193 NT in 1983 and in 1988, 256 l:T technical insecticides valued US $\$ 2.14$ million and 531 MT formulated insecticides worth US $\$ 2.34$ million were imported. Same year, insecticide sale was 605 MiT . Niajor formulated insecticides imported in 1988 were monocrotophos and methamidophos and the major tech..
nical insecticides imported in the same year rere methamidophos, carbafuron and BPRC. Insecticides used in agriculture are oiven in Annexure 1. In health programe, for mosouito control, malathion 50 .. P, permethrin $25: \mathbb{P}$ and fenthion 85 EC are mainly used. In grain storage phoxim 50 EC and premiphos methyl 20 DP are used. Household insecticides are propoxur , propoxur + dichlorvos, permethrin + F3O, allethrin, d-allethrin, propoxur + dichlorvos + cyfluthrin, propoxur + dichlorvos + tetranethrin and natural pyrethrin.

All tipe of available pesticidal formulations are being used in Sri Lanka but, so far, there is no indigenous manufacture of technical grade pesticides. Pests of economic importance are given below:

Rice \quad| brown planthopper, rice bug, leaf folder, |
| :--- |
| stem borers, gall midge, rice blast, weeds; |

liaize | stalk borer, earvorm, cutworm, leaf blight, |
| :--- |
| root rot; |

Pulses bean fly, pod borers, caterpillar, leaf
folder, dry rot, collar rot;
Root- potato weevil, potato moth, cutworm, potato
Crops beetle, nematodes;
Chilies thrips, cutworm, vhitefly, aphids;
Coconut caterpillar, scale rhinoceros beetle;

Tea \quad| weeds |
| :--- |

The Department of Agriculture estimates that 20 to 30 per cent of the rice crop is destroyed annually by pest infestations. ihile pesticides are the most common and practical me.ans of pest control in the country, integrated pest management (IPM) is also practiced. IPM extension services are jointly operated in 13 districts by the Department of Agriculture through its Plant Protection Service and FAO to educate farmers in IPN technioues, emphasizing judicious and efficient pest control methods in case of paddy.

Pesticides are mainly used in food and cash crops such as rice, vegetables, cotton tobacco and chiliies, and less of ten used in plantation crops such as tea, rubber, coconut, sucaz-cane and spices. Rice is the heaviest consumer, particularly of insecticides, while herbicides are most extensively used in tea and rubber, and funçicides in vegetables.

Public and private comanies compete in Sri Lanka's pesticide market. Imports of $\mathrm{f}=\mathrm{m}$ mulated products and technical graae meterials as well as local formulation of prozucts are ccnducted by both the private sector and the Ce:lon Petrcleum Corporation (CPC) - a Government Institution engaged in importation, formulation and distribution of resticides in addition to petroleum procucts, line major firms market pesticides in Sri Lanka. Haylays Lid., Harrison \& Crossfield Lid., Lankem Ltd., and CFE have the hichest sales level.

The product performance data are required for registering the insecticides and only those provided by Government Institutions are accepted by the Registration Authority. The largest number of insecticides are used in domestic agriculture for which the Deptt. of Agriculture is responsible. Efficacy testine are conducted by Department of Entomology, Central Agricultural Research Institute (CARI) and different research stations of CARI. Departmerit of Entomology at CARI has limited scientific staff and still some sections are tobe established and Scientists recruited. hinimum facilities of efficacy testing of insecticide at lab. and insectary level are available but maintenance of the proper zemperature and humidity conditions are tobe improved. Available manpower for efficacy investigations are thinly distributed over different research stations of Deptt. of Agriculture, thus, no continuous and concentrated efforts are possible for phase wise studies like laboratory, insectary and field testing.

There is lack of continuity of the field trials and no efficacy protocols have been prescribed by the Department of Agriculture. There are al so no protocols of efficacy testings in the areas where insecticides are used for non-agricultural purposes. Much work has been done on the rice crop but only a fev: systematic studies have been made for the assessment of the crop losses due to insects and cost benefit ratio given by the use of insecticides.

Huch improvement is reauired in case of training the users for pronor application. Work on insect resistance to incecticides anci screening of resistant varieties
of the crop plants against insects is satisfactory. Statistical treatment of the data and documentation is generally poor.

Insecticides efficacy is linker also with other parameter like quality control and testing. This area too is in a very primary siage. with Department of Chemistry, CARI, there are two laboratories one for formulation and analysis and another for residues. At present there is no any work in the formulation and analytical lab. as the concerned scientist has gone abroad for training and in the residue lab. the following studies are being undertaken :

1) Determination of residue of diazion, malathion, fernthion, dimethoate, chlorpyrofos, carbophenthion and chlorfenvinphos in some vegetables. 2) Determination of pirimiphosmethyl and malathion in parket samples of greengram and compea. Out of five gas chromatolgraphs available with residue lab. only two are functional and there is acute shortage of spare parts and even solvents. In such a situation, investigations on maximum residue limits (h.SLS) to work out PHI (Pre Harvest Intervils) are difficult.

Another area where efficacy data are reouired is the registration of insecticides by Registrar Pesticides. ill orgenochlorine insecticides are banned for agricultural use. List of registered insecticides for agriculture is given in Annexure 1. Highly restricted and prohibited insecticides are :
Highly restricted : aldrin, BHC/Lindane, Chlordane, dieldrin (used for construction purposed). Prohibited : DJT, endrin, heptachlor, leptophos, organo mercurial compounds, parathion, 2,4,5-T, camphochlor, TDE, toxaphene, strychnine anc TEPF (not been used or registered in Sri Lanka).

Provisional permits are subject to such restrictions as distrioution for a limited duration, regional distribution, quantity restrictions or the concition specified in relation to use and/or application. Further modification of the regist:ation procedure has been made recently to expedite the registration of HO class II and IIT procucts as alternates for three class 16 insecticides currently recomr:ended for general case (monocrotophos, methamidouhos and omethoate). Festicices Registretion Scher:e hes the provision either to totally ban the pesticices, restrict its use to trained applicetors are issue to specific target apolications. For example la group of fumigrants (almuninium phosphide, methyl bromide and hydrogen cyanide) are allowed only for trained applicators and 1 b allowed only for special projects until such time a suitable alternative is found.

Sri Lanka is a member nation of the UN Body and has agreed to support the FAO Code of Conduct which outline the overall responsibility of member governments to allocate high priority and adequate resources for Pesticide Management, but trained manpower, s:pport facilites and financial resources in the Department of Agriculture, are very limited consecuently progress in slow.

Quality testing facilities are not in place in the country. The Registration Authority is therefore unable to check imports with any sample tendered at registration and has to depend on Quality Certificates submitted by basic manufacturers or formulators far exported Commodity Products.

There have been instances where such Certificates have been found tu be unreliable. In the case of certain procucts from doubtful sources, as a means of cross checking their $\mathcal{G}=1 \mathrm{ity}$ Certificates, the services of Independent Analysts such as Caleb Brett and S.G.S have been employed,
but this service too will soon be out of react of Registrar festicides as insepection fee currently at US $\$ 0.5$ per $k g$. of consignment will continue to rise and the importing comparies vill farm these additional costs down to the user, resulting in increased cost of production of crop produce.

Field efficacy testing of insecticides is a complex area and subject io variations by a number of factors. The users, proprietors and regulatory authorities have prime interest in such testings.
siany ecological factors affect the quality of field testing of insecticides. These factors include plot size, cultivar, site of field, choice of standard check insecticidcs, applica:ion methods, evaluation methods, and level of insect pressure. hethods for increasing insect pressure include planting time, fertilization, plant spacing, arificial lighting, insecticide induced resurgence on neighbouring plants, and artificial release of caging of insects in the fiel. Recormendations about insecticides should only be made after a reviev committee has evaluated the data collected under stardard conditions. Standard conditions should be specified to include the number of sites and seasons data are to be collected, the untreated level of insect pressure that represents a valid trst, the rates and volumes tobe tested, and the application methods to be used, giving special importance to farmers methods. Virus vectors require high levels of control. Effects on non-target mamals and fish, persistence, and resurgence activity must also be examined. A model field evaluation scheme of granular insecticides for the contrcl of yellow stem borer of rice is given in annexure-5. A field testing protocols of planthopper, lepidopterous, stem borers, leafhoppers in case of rice and cabbage caterpillar in cabbage crops are given in annexure - 2, . , which are applicable to all formulations and applied in the field.

Research workers adopt various methods of recording phyto-toxic effects. Under visual method low, slight, moderate, severe injury symptoms etc., on the plants are recorded. Symp toms like oil blotches on the leaves and leaf drop have been recorded of citrusplants. In wheat, severe buring effects accompanied twisting of leaves have been recorded. The organo - phosphatic insecticides such as
malathion employed to control the pests may result in yellowing, curling anc sroppinc of leaves although it is comparatively a safe material to handle anc shows little phytotoxicity to most plants. Dinitro comounds are highly phytotoxic. therefore, their use has been restricted to dormant sprays on orchard trees.

High temperature enhances the phytotoxicity. The phytotoxic effects are characterised by acute necrosis but no chronic injury. The lethal action on plants may be due to increased oxidative catabolism to a level beyc d the restoring por:er of phyto-synthetic anabolism. Chlorinated insecticides, in most cases, have been found to be associated in particular with BHC, especially in respect of cucurbitaceous plants. A general phytotoxicity protocol is given in annexure 3.

For its essential role in crop pollination, beekeeping, is an essential component of agriculture today. Pesticides are evidently another. i.ith either of the two, global food production would be seriously impaired. Yet beekeeping has been sustaining heavy \$osses through pesticide use since the advent of synhetic pesticides several decades ago. Pesticides, and especially herbicides, reduce the foraging areas available to the bees; the application of toxic insecticide on farmlands and in forests of ten makes it impossible for the bees to utilize potential forages; and worst of all, the insecticides frecuently kill bees, reduce colony strength and contaminate hive products.
:ihile beekeepers have no direct way of controlling the application of pesticides near their apiaries $0:$ within the flight range of their bees, some lines of action are still available to them to prevent damages : they $c a n$ ask for help from extension agents, for understandinc and cooperation on the part of the grovers. iit the same time, they must be fully alert to the potential damage that certain toxic insecticides can inflict on their colonies.

When bees are kept in or near areas where such insecticides are occasior.ally used, the beekeeper must be in a position to know in advance the insecticides used and their residual effect, what damaged they $c a n$ cause to the bees, and the time of application. Noving the colonies out of range of insecticice application temporarily is of ten one approach available to the b-eekeeper; in some circumstances he can prevent the bees from flying for seversl days, until the residual effect of the insecticide has subsided.

The recent devel opment of nev: "micromencapsulated" insecticide formulations, specifically designed for the controlled release of the proci: ct overtime, has created a nev: Dee poisoning problem. ihen such insecticides have been dusted on blooming crops, worker bees collect the particles, return them to the hive and store them in pollencells, The consequence is the poisoning of the entire colony. Honeybees react differently to different pesticides, and nost herbicides and fungicides are less toxic to bees than are insecticides. To the beekeeper, the most obvious sign of pesticide poisoning is the presence of an exceptional number of dead bees in-front of the hives. The followingfigures have been established as guidelines for assessing the extent of pesticide poisoning: 100 dead bees per day is the colony's normal death rate: 200-400 dead bees indicate a low level of pesticide poisoning; 500-1000 dead bees indicated a medium levei of pesticide poisoning; over 1000 dead bees indirated a high level of pesticide poisoning.

IV. UPGRADATION OF SLiALL MEDIU高 AiV LARGE SCALE TESTIIG

LAB TESTING

Proper planning is essential to ensure success in conducting laboratory, insectary and field insecticides studies. Rearing of test insects is a major input for ir:secticides evaluation studies in a laboratory or in insectary. Proper rearing technioue will ensure low insect mortality in untreatea control and decrease variation in successive tests. in efficient insect-rearing program is also available in field studies of insecticides. Field populations of insects are of ten not sufficiently large to provide valid data and cultured insects can be used to artificially infes: plants when field populations are low.
hiethods of rearing the stripped stem borer(Chilo scopressalis), yellow stem borer (Tryporyza incertulas), brown planthopper (Nilaparvata luaens), whitebacked planthopper (Sogatella furcifera), green leafhopper (Nephotettix, virescens), leaf folder (Cnaphalocrocis medinalis), caseworm (Nymohula depunctalis) and ricebug (Leptocorisa oratorius) h ave been developed at IRRI, where CARI staff c an be trained and information obtained.

Insecticide screening identifies comercially useable chemicals according to biological effectiveness and environmental impact. Screening techniques are becoming standardized as governments and international bodies exert their influence. Initial laboratory screening is a compromise to reduce the number of potential candidates before more expensive field screening. The methods should be fast, cheap 8 related to field conditions, but less rigorous without missing any
important compound. Laboratory technisues and guidelines on $c i n o l i c a t i n g ~ f a c t o r s ~ e x i s t ~ t o ~ t e s t ~ c h e r i c a l s ~ a c t i n g ~ a s ~$ stcmach or contact poisons, fumigants, chemosterilant $=$, ricrobial agents, juvenile hormones aric mimics, chitin inhibitors, phermones, and systemic poisons. Criteria for promotion of candidates to field testing should include comparable performance on stendard targets, safety, rapid metakolism, low toxicity to beneficials, anc economic feasibility.

Insectary Testinc

The initial screening of new insecticides and test for resistance to insecticides are done in the laboratory and insectary. Field trials require expensive work and land and are subject to many variables. Insectary studies will narrow the number of chemicals to a few promising ones which can then be tested in the field. Far this purpose, the methodology for determing L_{50} values of insecticides as given in Chapter 3 of the hianual for Testing Insecticides on Rice published by International Rice Research Institute (IRRI) which can be used in Sri Lanka as the agro-climatic conditions are more or less similar. Insecticides found promising in the laboratory should be further tested in the insectary for contact toxicity studies with precision spraying, foliar sprays, broadcast application of grarules, root zone application, antifeedant activity, ovicidal activity, fumigation activity and resurgence activity. Chapter 4 of kianual for Testing Insecticides on Rice published by IRRI should be consulted for such trials. It should be kept in mind that methyl parathion, diazinon and deltamethron cause resurgence of whitebacked planthopper. Phorate and carbofuron granules cause resurgence of rice leaf folder anc: sublethal doses cause resurgence of the armyworm,
Spodoptere liture in the laboratory.

Field testing

Field testing compares candidates with standard products and controls under close to realistic condiさions. The parameters investigated should include spectrum of activity, residual activi \bar{y}, crop tolerance dosage, formulation, application, waiting periods and cost perfar mance. Estaklishinc good field trials is a matter of experience, and influential factors include environment, local standard check treatments, untreated controls, volume applied. The distribution of insect populations should be uniform and precounts help in the proper allocation of plots through randomization. Data collection is also a compromise between statistical purity and cost consideration. The criteria of assessment for primary trials are degree of infestation and damage, but later trials must include data on yield and economic costs and returns.

Farmers compare the value of yield loss prevented with expenditure made. High cost treatments, if ever eronomically attractice seldom give complete protection. Lo: cost treatments may be attractive if insects occuring frequently are fully controlled. Therefore, recomended treatment should have reasonable cost (considering average cultivator/ consumers resources) and give return in excess of its cost. Following treatments should be included, in rice crop for the beginning in Sri Lanka, and field experiments designed for making recomasndations.
a zero insecticide treatment
a treatment equal to value of 200 kg . paddy
a treatment " " 400kc. "
a treatment n n 600kg. ${ }^{(1)}$

Above monitary values should be determined first in different agro-ecological regions and by proper assessment of rice crop losses due to insects in natural conditions,
cost-bereijts ratio may be woiked out. This will be a more convericing and practicai approach. Later on, criteria can be developed for other crops aiso. Sometimes a term avoidable loss is preferred which is computed as :

$\underset{\text { Avoidable }}{\text { loss } \%}=\frac{$| Yield in intensively |
| :--- |
| protected plot |}{Yield in intensively protected plot} - Yield in particular

Criteria for the economic evaluation of alternative pest management strategies for developinc countries as proposed by Vaibel and Engelheardt (1988) may also be applied in Sri Lanka at later stages by the extension entomologists. A brief summary of criteria is given in annexure 4.

Various techniques to measure the efficacy of insecticides by measuring the insect population and amount of plant damaged caused by the insects are available and can be suitably used. A high natural infestation of insect is desirable but sometimes the insects population are to ${ }^{\circ}$ low for reliable field testing of insecticides. In such a situation artificial infestation c an be made. Different techniques for the artificial infestation are given in above referred manual of IRRI. Field testing protocals for representative insects in case of paddy and cabbage crops are given in annexure 2 .

Application Technioues

The major problem with hydraulic spraying is the large range of droplet sizes, which increase loss through sedimentation and evaporation. Correct choice of nozzle and uniform pressure can greatly improve existing application through knapsack sprayers.

Controlled droplet application (CDA) can reduce dosage rectuirements ty $30-40 \%$, compared with knapsack spraying, by narrowing the spectrum of droplet size. It will thus not only reduce waste but also save time and labour. Its mejor draubacks are the recurrent costs of batteries and special formuletions. Researchers are attempting to reduce the energy required. Small droplets allow a reduction in the total volume of spray, but narror: swath widths are necessary to allow for change in vind speed and direction.

Electrostatic spraying reduces drift while retaining a small droplet size and a narrow spectrum of sizes. It also eliminates moving parts (i.e. the spinning disc of $C D i$) but requires special semicondurting formulations. Coverage of upper crop canopies is excellent but penetration is poor because the charged particles stick to the first grounded surface they strike. This is a source of ecological selectivity: if pests live on the upper canopy while natural enemies live below, the distribution of spray favours the natural enemies. Rice leaf-folder and G.H are thus potential targets, but BPH seems less susceptible. Precise timing of spraying and accurate information on the migratiois of BPH and its natural enemies, however, may make adequate control possible. A plications must be made when the natural enemies are kelow the canopy and BPH is still in the canopy tops after immigration.

The simplicity and ecologically precise control possible vith electrostatic sprayers are excitino, but further research is required. In addition, special formulations must be made available in their packaged form at the farm level.

Physico Chemical properties and efficacy

The relationship betreen physico-chemical properties of formulations and insecticidal activity is complex. To
optimise activity, the formulator must knor: precisely :here the acive m:teriai muct be loc:-ted to exert the biolocical effect. For contect action, one genezalisations can be made. For example; on non-porous surfaces, insecticide deposits which are in the farm of a solution are of ten more accessible to insect pick up than are particulate forms. The incorporation of low: vcletile licuid components into formulations such as ULVs can therefore enhance biological activity. However, on porous surfaces, solutions are readily absorbed. is a result, the active ingeedicnt beccmes less available for pick-up and contact action is reduced. For this reason, iPs and SCs are $:: i d e l y$ used for treatment of porous surfaces. Lipophilic solutions enhance penetration into many inseets.

Increasing viscosity of such solutions can decrease the rate of spread on leaves and in somecases lead to reduced penstration into insects. By enclogy, highly viscayssolutions and materials in particulate form are less readily absorbed by plant surfaces than solutions of low viscosity. Formulation techniques such as encapsulation c an be used to minimise uptake of liçid pesticides by substrates.

For solid ceposits, insecticidal activity is dependent upon pariticle size. Ceposits of 5 to $15 \mu \mathrm{~m}$ have been claimed tob \in most suitable for many substrates because they are relatively easily picked up and retained by insects. However, resistance of deposits to wash-off at least for essentially inscluble materials, has been found to decrease with increasing particle size. Thus deposits from SC formulations have been shown to be more persistent than from WPs.

V. COLLECTICi: OF DATA, IITERFRET:TICK AND STA:DAROS

It is essential that the presentation of the results should be standardised in order to facilitate understanding of the trials. Therefore, the data should preferaily incluse the following points :

1. Name of the experimenter and organisation responsible for the tri=1
2. Cbjective and location of the trial
3. Chei.ical name and formuletion
4. Pest, diseese or weed against mich tested

כ. Crops anc cultivars
6. Flan: growth stage
7. Soil tyme

ع. Experimental design, size and number of plots treated
c. fuplicetion methoo and equipment
10. Aبplication dates and rates
11. Volume of spray liquid or other carrier (tynes)
12. ireather conditions durinc and after treatment
13. Treatment of the plots with other crop protecting meterials, fertilizers anc other products
14. Application dates
15. Daṭes of assessment
16. Size anc frequency of sampling
17. Quantity and euality of the yield of the harvested crop
18. Any results on crop safety including. intervals tobe observed in orjer to avoid phytotoxic effects
19. Data assessment including significance
20. Interpretation and discussion on the results of the experiment in comparison with similar trials

Alv:ays an outline of an experiment should be prepared to avoid the omissions of any valuable information. Therefore, a mosel outiined of en experiment on rice yellow stem borer is given inannexure 5. FAO guirielines on efficacy data for the registration of pesticides for plant protection should also be utilised for general guidelines.

Statistical procedure should fit the specific protlems and needs of a given experiment．It shoulc not be applied ritualistically．Entomologists and statisticians working together must consider the foliowing protlems unicue te entomolcsical trials to achieve the most aכpropriate statistical mrocedure．

While grain yield data must ke collected aionc ：ïn dãa on insect incicence，two sources of variaticr， soil heterogeneity anc nonunifirm insect distritution， must be handled simultaneously．In addition，unlike soil heterogeneity，vitich can be effectively hincled by proper blocking，insect direction and distritution are uncr dic able． The primary types of data collected in an entomological trial are percentage añ count data，neither of nith can be expecteo to follow the normal distribution．Thus，appro－ priate modifications of stancard statisticきl procedu：es， such as data transformation（arc sine or logarithmic）and prokit á三lysis，are generally needed for application to
 produce large border ミffects，and cenerally reuire the use of plot sizes that are much larger then those normelly recuired ：or accurate yield determination．In afjeld trial，if the level of insect infestation is not high enough for a valio evaluation of insect control methocis，the resulting cata vould not be meaningful and should he dis－ carded．
iith the increased importance of IPl．．，the use of facturial experiments－rather than the traditional sjngie factor experiments，is expected to increase．Experimental designs suitable ：or factorial experiments，such as split－ plot designs，should bu considered．

VI.

 PEST FÑESSURËS, THRESHHCLD ARDD PHIDepartment of Entomolcgy of CiRI has recormended threshold limit for some insects in certain crops but mostly this information has been collected from the neighbouring countries having the same agro-ecological conditions. is tentative threshold limit and sampling procedure is given in annexure 6 in case of insects of rice thich should be verified and furth improved after suitakle cxperimentation at different levels. Fre-Harvest Interval. (PHI) have been recommenced in some crops in relation to specific insecticides but this has not been linked with residue data in relation to licximum Residue Limits (R RL). PHI 8 l:RL in case of some insecticides anc crops are given in annexure-7 as per Sri Lanka notification No. 433/9 Dec' $24,1986$. A brief summary of the monitoring activities in relation to post registration activities of pesticides are given below: which give the idea about the studies on this aspect:

Post Keqistration Monitoring Activities

Product quality at packing
On retail
Residue in food
Resticide use in accordance wi th label
Environmental impacts
Accidental poisoning

$$
\begin{aligned}
& \text { Inactive - lack of facilities } \\
& \text { Inac'cive - } \\
& \text { trained manpower. } \\
& \text { Inactive - } \\
& \text { Inactive - lack of full ime staff } \\
& \\
& \text { Inactive - lack of expertise \& } \\
& \text { manpower } \\
& \text { No or ganisational network for } \\
& \text { follow up. }
\end{aligned}
$$

Pre-harvest intervals are linked with residue levels, but unly residue labor atory with CARI has _very meagre facilities.

In Sri Lanka only three laboratories are available for pesticise :rork, Ceylon Institute for Scientific and Industrial Research (CISIR), Community liedicine Section of University of Colombo, and Central Agricultural Research Institute (C ini) of Department of Agriculture. The laDoratories of CARI his Formulation Analysis Laboratory and Residue Analysis Laboratory, which are responsible for providing information for the implementation of the pesticide control act.
I. Formulation ilialysis Laboratory

Quality control of pesticide is done in this laboratory. It concentrates on determininc the chemical and physical properiies such as active ingredient content, particle si=e, acidity, alkelinity, emulsion stability, flash point, wettability etc. of pesticide availa'le in the market. Services of fered are : 1) Analysis of pesticide formulations submitted by the registrar of pesticides. 2. Survey on the quality of mosquito coils in Sri Lanka. 3. Degradation studies of pesticicie formulations under different climatic conditions. 4. $H \because l p$ in the implementation of the Pesticide Act.

This laboratory is essential for the enforcement of the law on pesticides. The analytical methods are based on CIF C (Collaborative International Pesticide inalytical Council) hand books.

II. Residue Analysis Laboratory

The analysis, of insecticides residues in various commodities is being carried out in this lab. Activities are confined to service rendered 1. Analysis of samples submitted from time to time by the Department of Agriculture and various other sources. 2. Participating in the ring analysis organised by the Pesticide Residue Project, GTZ in Darmstadt, ;iest Germany. 3. An all island survey on organochlorine insecticide residues ir vegetables and fruits.
4. Survey on organo-chiorine residues in breast-milk.
5. Survey of chlinesterase levels in the blood of fermers who had recently been spraying insecticides. (this survey was only small and suffered fel: set-becks). 6. Survey of organo chlor: ne residues in drinking water. 7. Survey on pesticides usage by vegetable farm.rs.

Ho:: the attention is shifted to the use of organophesphate and carsamate pesticicies in agriculture. The work of these lebor-tories are severely handicapped by the lack of : (a) trained personnel (b) high quality reagents (c) literature anc information, and (d) eơipments and spares.

It should be kent in mind that hirl's are trade standards. Insecticides residues found sicnificantly over l.RL indicate the misuse of product. The concept of MRL should be treated as quite different from an ADI (Acceptable Daily Intake). MRL is applicable in trade and ADI at the point of consumption. Registrar of Pesticides vhile permitting a proposed use, should judge whether resulting residue intakes by consumers $:$:ill in practice fall : \because thin the $A D I$ and if necessary, proposed use patterns shoul: be modified.

Post registration monitorinc activities are inactive due to lack of facilities and trained manpower. quality Control and residue analysis facilities are to be strengthened immediately, to avoid misuse ans abuse of pesticides. A number of poisoning cases, thouch many of them need verifications, have been reported in Sri Lanka.

VII. METHODOLOGIES TO STOP DEVELCPIVEIT OF RESISTAICE

During the past 40 years insecticiode resistance pests have been controlled largely by the simplistic process of changing to newer type of insecticide to which the insect is still susceptible. The widening patterns of multiple resistance indicates that this is an increasingly dubious longterm solution. The discovery and development of new types of insecticides have $b=c o m e ~ i n c r e a s i n g l y ~ m o r e ~ r e g o r o u s ~$ and costly \equiv nd insecticide resistance has steadily eroded the marketable lifetime of new insecticioes. Cross and multiple resistance prejudice the effectiveness of new products even before they are m=rketed.

There are no conclusive prodfs of insect resistance to insecticides in case of agriculture in Sri Lanka, however, in case of health programmes, some cases have been reported but the resistance was not determined as per the FAO Plant production and production paper. Choices for a resistance management programmes will always have some uncertainties associated with them. Countermeasures that relate specifically to the proper choice and use of insecticides $c a n$ be decisive factors in coping with insect resistance or more realistically in preserving pests susceptibility.

To overcome this problem

1. honitor insect pest populations so that primitive succeotitili $\because \because$ levels are understood and early detection of sp: cific resistance becomes possible. Folloving steps should be taken to establish appropriate warning syetems for insecticides resistance :
a) Early detection of resistance through precise dosage mortality data to monitor the position (LD_{50}) and slope of dosage-mortality response.
b) Establish the levels of primitive susceptibility to a variety of insecticices of the insect from areas where insecticicies have not been used extensively, or if this is impracticable, study of closely related species that are not of economic importance.
c) Discontinue the use ${ }^{\text {f }}$ srecific insecticides whe ever the above parameters indicatsd thet a change in susceptibility has started.
2. ivoid the use of insecticide mixtures as they generally result in the simultaneously development of resistance, (each compound seems to develop the residual inheritance of the supporting genome for resistance in the other). li:ixtures may be effective in del cying resistance if (a) initial frequencies of resistance are slow. (b) the fraction escaping treatment is high relative to dominance and linkage anc (c) the insecticide mixtures are can $100 ;$ effective against treated susceptible homozyotes and nearly equal in persistance. If anyone of (a), (b) and (c) fails to hold, the mixtures loose much of their effectivenss and al ternation becomes the more attracive option. The last two factors, equal persistance anc complete effectiveness against treated susceptible homozyootes, are especially crucial to the success of mixtures.
3. Chcose a seơuence of suitable alternative insecticides based on genetic considerations of cross resistance and multiple resistance. A remedial insecticide choosen from cross resistance studies should always be available for example, methyl chlorpyrifos for tempephos in iHC vector control programms of Simuliure vecto of onchocerciases; chlorphyrifos for fenthion in larval control of Culex fatigans, the vector of filariasis; carbaryl + piperonyl butaxide for mal athion in the control of Pediculus humunus, the vector of endemic typhous. In agriculiure azinophos methyl for JDT in codling moth control, diazinon for aldrin in corn rootuorm conizol and permethrin and fenvalorate for $m \in t h y l$ parathion for Heliothis control are the examples. Incorrect choice of alternatives may be most damacing for future controi, therefore, first use insecticides with simle one factor resistance and limited cross resistance e.g. malzthion. Avoid insecticides with complicated multiplicate resistance, e.g. diazinon, avoid or delay use of insec-icides that act as effective selectors of resistance for other insecticices e.g. dimethoate for pyrethroids. Exploit alternative treatments wi th insecticides wiihout common major factors and
change insecticides before resistance develops. This latter point is particularly important when follo:ing DDT resistance due to the kdr mechanism with synthetic pyrethroids.
4. Extend the useful life of a satisfactory insecticide as long possible, but monitor susceptibility and replace the insecticide berore the control fails.
5. The use of slow release formulations should be discouragec because continous release of insecticide during the entire cropping season may lead to more rapid development of resistance and is tasteful at growth stages when no pests occur.
i.anagement strategies, that will extend the lifetime of the insecticicies now available, should be incorporated in IPA: programmes. Strategies for delaying resistance involve the rotation or the joint use of insecticides. In Chinese fruit orchards, for examole, three to five different insecticides are carefully rotated to delay the onset or resistance, Such strategies will need biological $\mathrm{k}: \dot{\mathrm{i}} \mathrm{s}$ dom, social cooperation, and economic constraints that can be achieved in large public heal th programs but that will be much more difficult to implement in agriculture.

References for further reading and plarining of good efficary testings are ©iven in Annexure 8.

In addition to the assicned job as per LNIDC job description, counterparts of CARI suggested that the consultant should deliver some lectures for the benfit of the Scientists of different rigriculture Research Stations and a short course on Insecticide Efficacy Testings and Evaluation was conducted on 17-18 Sept.' 90 and the details are given in Annexure-9.

Name of active ingredient \% and amount of a.i./l Acephate 30EC
Bacillur thuringiences $16,000 \mathrm{IU} / \mathrm{mg}$
Benfuracarb 3GR
BPL.C (50% EC) $500 \mathrm{~g} / 1$

Carbaryl 85\%: :P
Carbofuran 3\%G
Carbesulphan 20ST
Carbosulphan (29EC) $200 \mathrm{~g} / 1$
Chlorpyriphos ($20 \% \mathrm{EC}$) $200 \mathrm{~g} / 1$ Chlorfluazuron (5EC) 50g/l
Coumorin
Cyfluthrin (5EC) 50g/1 Baythroid 050 EC
Deltamethrin (25EC) $25 \mathrm{~g} / 1$
Diazinon 5GR
Diazinon 50EC (500g/1)
Dicofol (42\%EC) $420 \mathrm{~g} / 1$
Dimethoate (40% EC) $400 \mathrm{~g} / 1$

Endosulphan (35EC) 350g/1
Fenthion $50 E C(500 \mathrm{~g} / \mathrm{l})$
Fenvalerate (7.5EC) 75g/l

Irade Names

Orthene 300EC
Thuricide rip, Bactospeine
Oncol 3G
Bassa 50, 3Pi:C, tiopcin 50EG :'oricarb, Red star BPRC 50EC, Strike BPHC 50EC, Kiackarb Baycart, Harcros Bphic,
Sevin XLR, Carbaryl 85\% dicarbam, Sevin $85 S$
Curaterr 3G, Carbofuran, Furadon 3G
hiarshal
Miarshal 20EC
Niakfos, Lorsban, Pyrinex 20EC
Atabron

Decis
Basudin 5G
Basucin 50EC, Diazinon 50EC
Ǩel thane MF42
Roxion Harcross Demoro, Perfekthion EC, Red star Dimitex Rogor 40, Dimethoate 40,
Thiodan 35EC, Endosulphan 35EC
Baytex 50EC, Laybaycid 50EC
Sumicidin super 7.5\% EC

L．e th amicophics（60ミ0） $600 \mathrm{~g} / 1$	```i.ethamicopios 60 : SC, Bonitor 600 iorithion, Fillc=on, i.ethion Re: ster filoran, Tareren LC 60, i.ethejrin 50```
i．ethomyl（1E，心ミこ） $150 \mathrm{~g} / 1$	Lennate L
i．onocrȯophos 60 SL	Oarcros ：Uvecren
	l．onocrotophos $60.5 C$
	Rea star lonocrotophos
	l．onocron，luvecron
Cmethoate（ 50.0 O ） $500 \mathrm{~g} / 1$	Eclimat LC50
Oxyconoton methyl 50 Ei	l．etasystox R，EC
Phenthoate（ 50% OEC） $50 \% \mathrm{~g} / 1$	Elsan 50，Cicial
Pirimiphos methyl 50EC	Actellic 50EC
Firimiphos methyly 2 S0	．icetellic 2 dust
Permithrin（25EC）250g／1	Ambusky 25；\equiv C
Profenophos $500 \mathrm{~g} / 1$	selecron
Propoxur（20EC）200g／l	Unden 200EC
Prothipphos（50EC）500g／1	Tokuthion EC
Ouinalphos（25EC）250g／1	Bayrusil 25\％\％
	Ekalux 25EC
Sulphur 80\％． P	Thiovit，Sulphur $\equiv 0 \mathrm{i}$ ip
	Sofril 81，forisal，Red star
	Sulphur，
	Unisal
Thiodicarb $75:$ P	Larvin 75：P．
Thiodicarb 34EC	Larvin
Trichlorofon 50EC	Dipterex LC 5Cs＇
Euprofezin 25 ： P	A．ppl aud

EFFICAOY TEST PRCTOCOLS

Planthoppers in Rice

1. EXPERInERTAL CCIOITICNS

1.1 Selection of Crop and Cultivar, Test Crganisms

These test protocols are concerned with the effic evaluation of insecticicies for the control of Milaparvate lugens, Sogatella furcifera, Laodelphax striatella and other delphacids in $10:: l$ land rice, either ret-sown or transplar.ted. Use a susceptible cultivar, preferably a heavy tillering semi-dwarf cultivar.

1.2 Tri 2 Gonditions

Field trials :- The trials should be set up in a loviland rice -rea where paddies are likely to be infested. Heavy tillering cultivars, the use of nitrogen fertilizers and the use of a broad-spectrum insecticide earlier in the season stimulate the development of planthopper populations.

Since planthoppers tend to crowd, some disturtance by hitting hills before the experiment starts may be useful. The site of the experiment should not be at the edge of a field. The trial should start well before hopperburn develops.

Cultural conditions (e.g. soil type, fertilization, tillage, row spacing, water depth) should be uniform for all plots of the trial and should conform with local agricultural practice. Trials should be carried out in different regions with distinct environmental conditions and preferably in different seasons.

Ireatments

Test product(s), reference product(s) and untreated control, arranged in a randomized block or any other statistically suitable design. There may be additional remarks in specific eases. Each plot should be surrounded by a small ridge to prevent the insecticides from contaminating neighbouring plots throuch possible water movements.

1.3.2 Plot Size and Replication

Net plot size : at least 15 sq.m., but according to the formulation (e.g. dust) or application equipment, it may be necessary to use a larger plot size. Replicates : at least 4.

2. APPLICATION OF TREATRERITS

2.1 Test Product(s)

The named formulated product under investigation.

2.2 Reference Product(s)

The reference prociuct should be a registered product currently recomended for the control of planthoppers in rice. In general, formulation type and mode of action should be close to those of the test product, but this will depend on the aim of the particular trial.
2.3 liode of Application

2.3.1 Type of Application

Application should comply with good agricultural practice. The type of application will normally be specified on the label.

2.3.2 Type of Enuipmer.t Used

The equipment should be of a type in current use. It should provide an even distribution of prosuct on all plints in the plot or parts of the plot, as appropriate. Any deviations in dosage of more then 10% should be reported. Give full information on the tyoe of equipment and operating concitions (e.g. operating pressure) used.

2.3.3 Time anc Frequency of Application

The time and freourncy of apolication ::ill nozasily be specified on the (proposed) lakel. The number of applications and the date of each application should be recorded. Normally the product is applied wnen the population of planto hoppers rises, but before the development of yellowing or hopperburn. This may be during the tillering stage (Sogatories orizicola) or towards majurity of the rice plants (Nilaparvata lugens).

2.3.4 Doses and Volumes

The prosuct should normally be applied at the dosage(s) recommended on the (proposed) label. This will normally be expressed in kg (or \mathcal{l}) of formulated product per ha. For sprays, data on concentration ($\%$) and volume ($\mathcal{K} / \mathrm{ha}$) should al so be given.

2.3.5 Data on chericals Used Against Cther Pests

If other chemicals have to be used, they should be applied unifo=mly t : all plots, senarately from the test roduct and reference product. Fossible interference vith these should be kert to a minimum. Precise data on the applications should be given.

3.1 leteorological and Edaphic Dete
3.1.1 .eteorological Dats

Data on precipitation (type anc daily amount in mm) and temperature (daily aver ege, maxima and minima in ${ }^{\circ} \mathrm{C}$) shoulc be obtained from the nearest meteorological station or preferaఓly recorded on the trial si亡e. Additional data may be needed in soecific cases.

Throughout the trial period, extreme weather condiEions, such as severe or prolonged drought, heavy rain, late frosts, hail, etc., vhich are likely to influence the results, should al so be reported.

The standard meteorological data should be recorded around the time of application.

3.1.2 Eajaphic Datas

Depth of water layer, overflowing water, excessive algal grovith or excessive organic matter content of water or soil should be recorded.

3.2 TyDe, Time and Freguency of Assessment

3.2.1 Type

The number of planthoppers, nymphs and adults, is counted or assessed. A fast and reliable method is to strike or hit 4 rice hills vigorously and to assess or cornt the number of hoppers floating and jumping on the water surface between the 4 hills. Ten such places are observed at random within each plot.

Scales such as the following may be used :

Number of planthoppers on the water surface between 4 hills:

$0=0$		
$1=$	1 to	10
$3=$	10	to

or, on dir€ct seeded rice, per plant:
$1=0-5$
$3=6-10$
$5=11-25$
$7=26-50$
$9=$ over 50

For this puwoose a sticky toarc (e.c. $15 \times 15 \mathrm{~cm}$) held close to the shaken hills can also te usac. The akove methods are faster and more convenient then net sueeping or suction pump, esp:cially in a wet crop. If net sweeping or suction pump are preferred, they may be/the case if several hopper species or other insects sre involved./ used. This may be

The degree of kiling, yellowing or hopperburn should al so be recorded usinç a reting scale or assessing percentages.

3.2.2 Time and Frecuency of issessment

A preliminary assessment should be made immediately before treatment. Further assessments should be made 1-3 days and 1 week after treatment and then weekly if necessary.

3.3 Direct Effects on the Crop

The crop should be examined for presence or absence of phytotoxic effects. The type and extent of these should be recorded. In addition, any positive effects should be noted (accelerated ripening, increased vigour, etc.).

Phytotoxicity is recorded as follows :
a) If the effect can be counted or measured, it may be expressed in absolute figures, e.g. plent height;
b) in other cases, the frecuency and Entersity of damage may be estimated. This may be cione in cither of two ways: each plot is scored for phytotoxicity by referance to a scale : ih ich should be recorded;
each treated plot is compared with an untreated plot and \% phyto toxicity estimated.

In all cases, symptoms of damage to the crop should be accurately describ=d (siuntinç, chlorosis, deformation, etc). For further deteils, refer to the Guideline on Fhyto $=0$ xicity assessment vich also contains sections on incividual crops.

3.4 Effects on Cther Crcanisms

3.4.1 Effects on Cth 1 Fests

Any eiffects, posi"ive cr negative, on the incidence or other pests or diseases should be noted. Planthonpers are of ten associated ::ith virus diseases. Virus infestation should be recorded usinc a suitable rating scale or essessinc infest-tion percentages.

3.4.2 Effects on Cth er Non-target Craanisms

Any obs?rved effects on wilcilife and/ or beneficial arthropods shouid also be recorded.

3.5 Uulitative and/ or zuintitative Recordinc of Yield

Yield data adjusted to 14% moisture content should be recorded and provided.

4. Results

The results should $k \in$ analyed by apnroriate statistical methods anc: the statistical conclusions reported. Rav: deta should, however, al so be availatle anc the statistical methori should alvays be indicated. The repor: should be paesented in
a systematic form and shouid include an incerpretation of the results. See in particular the relevent section of FAC Guicielines on Efficacy Data.

II. Lepidopterous Stemborers in Rice

1.1 Selection of Crop and Cultivar, Test Oraanisms

These test protocols are concerned :rith the efficecy evaluation of insecticides for the control of :

```
Sciroonhage(Tryporyza) innotata
S. (T.) incertulas
Chilo suppressalis
C. Bolychrysus
Sesamie inferens
```

ihite rice borer Yellow rice torer striped rice borer dark-headed rice borer pink borer
and other leipdopterous stemborers on lowland rice, either wetso n or transplanted. Use cultivar, preferably a moderately tillering, semi-dwarf cultivar.

1.2 Trial Conditions

Field trials : The trials should be set up in a low land rice area v here paddies are likely to be infested and preferably during the main ($=$ rainy) season.

Cultural conditions (e.c. soil type, fertilization, tillace, rov spacing, water depth) should be uniform for all plots of the trial and should conform with local agricultural practice. Irials should be carried out in different regions lith distinct environmertal conditions and preferabl \because in different seasons.
1.3 Design and Lay-out of the Trial

1.3.1 Ireatr:ents

Test procucts(s), reference procuct(6s) and untreated control, arranged in a randorizzed block or an: other statistically
suitakle desic̣n. There may be additional remarks in specific cases. ihen systemic insecticides are involved, each plot snould be surrounded $t y$ a small ridce to prevent the incecticides from contaminatinc neishbouring plots th rouch possible water movements.

1.3.2 Flot Size and Reclication

liet plot size: $15 \mathrm{~m}^{2}$ but accordinc to the formulation (e.c.. dust) or application ecuipment, it may be necessary to use a larger plot size. Replicミtes : at least 4.

2. APFLICEITC: OF TEE:Ti.E:TS

2. 1 Iest Product(s)

The named formulated product under investigation.

2.2 Reference Procuctís)

The reference product should be a registered procluct currently recommended for the control of lepidopterous stemborers in rice. In general, formulation type and mode of action should be close to those of the test product, but this will depend on the aim of the particular trial.

2.3 l.ode of Application

2.3.1 Type of Apnlication

Applications should comply with good agriceltural practice. The type of application vill normally be specified on the label.

2.3.2 Iype of Ecuipment Used

The equipment shoulc be of a type in current use. It should provide an even distribution of groruct on all plents in the plot or parts of the slot, as approniate. iny deviations in dosage of nore than 10% should be reported. Give full inform:tion on the type of er?imment anc operėine conditicns (e.ce operating pressure) used.

2.3.3 Tine ar: Frecu oncy

The time anc fresurncy of epplicstion :ill normall: be specified on the proposed label. The number of ap:lications and the date of each application should ke recorded. The time and freguency dqend on the pest spacies anc local environmental conditions and circumstances. The young larvae haich and pentrate the leafsheath or stem. Larval attacks are not visible until dead hearts or white heads appear. The presence of a light trap may helo in predicting a pending outbreak.

2.3.4 Doses and Volumes

The product should normally be applied at the dosage(s) recommended on the (proposed) label. This will normally be expressed in kg (or 1) of formulated prorluct per ha. It may also be useful to record the dose in g of active ingredient per ha. For sprays, data on concentration (\%) and volume ($1 / \mathrm{ha}$) should also be given.

2.3.5 Data on Chericals used Against Other Pests

If other chemicals have to be used, they should be applied uniformly to all plots, separately from the test prociuct and reference prosuct. Possible interference viith these should be kept to a minimum. Precise data on the applications should be given.

3.1 R..eteorological and Ecizphic Datee

ミ.1.1 Reteorolocicel Data

Date on precipitation (type anc deily amount in mis) and temper in ${ }^{\circ} \mathrm{C}$) sinould be obtained from the nearest meteorological station or preferably recorded on the trial site. ridition may be needed in specistic cases.

Throughout the tizial period, extreme weather concitions, such as severe or prolonged drought, heavy rain etc., 叫ich are likely to influence the results, should al so be reported.

The standard meteorological data should be recorded around the time of application.

3.1.2 Edaphic Data

Depth of water layer, overflowing water, excessive algal growth or excessive organic matter content of water or soil should be recoz fed.
3.2 Iype, Iime and Frecuency of Assessment

3.2.1 Iype

Percentage dead heart and vinite head are calculated after examining 20 to 5 hills per plot. These hills may be in 2 or 3 rovis or randomly selected. if Stemborer infestation is high, dead heart and v.hite head percentage can also be visually assessed, however only by experienced personnel.

3.2.2 Iime enc Frequency

A preliminary assessment should be made immediately before treatment. Counts or assessments are done then symptoms are abundant; for instance, 2 and 4 weeks after treatment in directieeded rice; or 5 anc 7 weeks after transplanting for dead neart, and 10 days before harvest for white head.

3.3. Direct Effects on the Crop

The crop should be examined for presence or absence of phytotoxic effects. The type and extent of these should be recorjed. In addition, any positive effects should be noted (accelerated ripening, increased vigour, etc.).

Phytotoxicity is recorded as follows :
a) if the effect $c a n$ be counted or measured, it may be expressed in absolute fiçures, e.g. plant height;
t) in other cases, the frequency and intensity of damace may be estimated. This may be done in either of th:o viays : each plot is scored for phytotoxici $=y$ by reference to a scaie :nich should be recorded; each treated plot is compared vith in untreated plot an C_{i}^{\prime} phytotoxicity estimated.

In all cases, s.mptoms of damage to the croo should be accurately described (stunting, chlorosis, deformeiion, etc.). For furtiner details, refer ± 0 the Juiceline on Phytotoxicity Assessment (EFFC) which also contains sectons on individual crops.

3.4 Effects on Other Crcenisms

3.4.1 Effects on Cther Pests

riny effects, positive or negative, on the incirience of other pests or diseases should be noted.

3.4.2 Effects on other lion-target Organisms

Any observed effects on :ildilfe, and/or beneficial \exists rthropods should also be recorded.

3.5 Qualitative and/or Quantitative Recording of Yield

For each plot record yield in $\mathrm{kg} / \mathrm{ha}$ adjusted to 14% moisture content. If ditches have been made or paths have been cut earlier in the experiment, the 2 border rows or some 30 to 40 cm of each plot are not included (net plot).

4. RESLLTS

The results should be analyzed ky appropriate statistical methods and tre statistical conclusions reported. Raw data should, however, also be available and the statistical method should always be indicated. The report should be presented in a systematic form and should inciude an interpretation of the results. See in praticular the relevant section of FAO Guidelines on Efficacy Data.

2.3.3 Time anc Frecuency of rpplication

The time and freduency of apolication rill normally be specified on the (proposed) label. The number of applications and the dat of each applicition should be recorded. iommally, the product is applied $t h \in n$ the population of leashoppers rises, but be Zore the development of vilting or yellor:ing. This is

2.3.4 Doses and Jolumes

The product should norrilly be applied at the dosage(s) reconmenced on the (proposed) latel. This uill normally be expressed in lig. (or l) of formulated product per ha. It may al so be useful to record the dose in \mathbb{C} of active increcient per ha. For sprays, daté on concentration (ij) anc volume ($1 / \mathrm{ha}$) should also be given.

2.3.5 Date on Shemic 3 S Used icainst Other Pests

If other chemicals have to be used, they shou?d be appli=d uniformly to all plots, separately from the test product and reference product. Possible interference ::ith these should te kept to a minirrum: Precise data on the applications should be giveri.

3.1. lieteorological and Edaphic Da亡a

3.1.1 i.:eteorological Data

Data on precipitation (type and daily amount in mm) and temperature (daily average, maxima and minima in ${ }^{\circ} \mathrm{C}$) should be ob さained from the nearest meteorological station or preferably recorded on the trial site. fidditional data may be needed in specific cases.

Throughout the trial period, extren:e weather conditions, such as severe or prolonged drought, heavy rain, etc., which are likely to influence the resuits, should also be reported.

The standurd meteorolocical ciata shoula be recorded arourd the time of \mathfrak{f} ? full moon, $\equiv f$ ter heavy rainfall, anc often for no obvious reasons, leafhoppers st:arm at nicht time. This m:y interfere rith the trial. \therefore light trap at sone distance of the experimental site will record such events.

3.1.2 Edamic Jatz

jepth of ::تter layer, overflowinc ::ater, exce:sive alcal ero:: th or excessive orgaric ruatier conient 0 f water or soil should be recoried.

3.2 Iroe, Time anc Execuency of ..ssessmont

3.2.1 Type

The number of leafhoppers, nymphs and autults is counted or assessed. \therefore fast anc relizble methoc is to shake or hit 2 or 4 rice hills vicorously and to assess or count the number of hoppers floating and jumping on the ::i三ter surface between these hills. Ten such placis are observed at random within each plot.

Sc-les suchas the folloving may be used :
:iumber of leafhonpers on the water surface between the hit hille, or on the sticky board, or per board.

$$
\begin{aligned}
0 & =0 \\
1 & =1 \text { to } 5 \\
3 & =5 \text { to } 10 \\
5 & =10 \text { to } 25 \\
7 & =25 \text { to } 100 \\
9 & =\text { over } 100
\end{aligned}
$$

$1=0-1$
$3=2-5$
$5=6-10$
$7=11-25$
$9=$ over 25

For this purpose a sticky board (e.g. $15 \times 15 \mathrm{~cm}$) held close to the shoken hills c an also be used. In a dry crop the number of leafhoppers can also reliably be assessed by net sweeping or suction pump.

Leafhopper numbers are rarely high enough to cause yelloving. If thet haphens, however, the degree should be recorded using a rating scale or assessing percentages.

3.2 .2 Iime and Frecuency

a preliminery assessment shculd be made i-mediately before treatment. Further assessments shculd be made l-3 days and 1 week Ester treatment and then weekly if necessary.

3.3 Direct Effects on the Croo.

The crop should be examined for presence or ak serce of phytotoxic effects. The type end extent of these should be recorded. Ir accition, any positive ef̄ects shoulc de noted (accelerated ripening, increased vigour, etc.)

Prytotoxicity is recorded as follows:
a) if the effact can be counted or measured, it may be expressed in absolute figures, e.g. plant height.
b) in other cases, the frecuency and intensity of damagemay be estimated. This may be done in either of two riays: each plot is scored for phytotoxicity by reference to a scele which should be recorded; each treated plot is compared ::ith an intreated plot and z^{\prime} phytotexicity estimated.

In all ca:es, symptoms of damage to the crop should be accurately described (stunting, chlorosis, deformation, etc.) For furtherdetails, refer to the Guideline on Phytotovicity assessment "hich ilso conteins sections on irdividual crops. 3.4 Effects on other Orcanisms
3.4.1 Effects on other Fests.
iny ϵ feccts, positive or necative, cn the inciecnce of other peets or ciseases shoulc be noted. EI associcted with virus diseases. Virus infestation should be recorced using a suitable rating scale or ascessing infestation percentages.

3.4.2 Effects on other ion-terget $C=$ nenisms.

riny observed effects on :iildlife, and/or beneficial arthropods should also be recorded.

3．5 Wualitative and／or Guantitative ìecordin：of Yield． iot reauired．
 4．Resulte．

The results should $k e$ analyzed by appropricte stetisticel methods anci tife st＝tistic三l conclusions reyerted． $\bar{i} e$. ．cieta
 al：：三ys be inciceted．The report shoula 5 e rresenteci in e systernatic form anc shoulc incluje ar irterpretミtion of the results．Zee in carticul三r the relevant section of $\equiv \therefore \mathrm{C}$ Guidelines on ヨfficョcy Jetョ．

PLUTELLA XYLOSTELLA

1．1 Selection of Crop and Cultivar，Test Croanisms．

These test protocols are concerned with the efficecy evaluatior of insecticides for the control of caterprillars of Flutella xylostella（plutella maculipennis）on cabbage（Erassica oleracea and B ．chinensis）

1．2 Trial Conditions

Field tricls on crops with a uniform high infestation vith the pest．

Cultural conditions（e．g．soil type，fertilization，tillage， row spacing）should be uniform for all plots of the trial and should conform with local agricultural practice．The timing， amount and method of irrigation，if applied，should be recorded． Trials should be carried out in different regions with distinct enironmental conditions and preferably in different seasons．

1．3 Design and Lay－out of the trigh．

1．3．1 Treatments

Test product（s），reference product（s）ana untreated control， arranged in a rendomized block or any other statistically suitable dosign．There may be additional ramarks in specific cases．

1.3.2. Plot Size and Aeplication

Net plet size: at least 25 plants. Replicates: at least 4. Sometimes the beds are only 2-3rows wide and may even be surrounded by water. Under these and similar conditions the "border" row:s are includec in the trial, and the entire vijth of a bed may be used as a plot.

2. AFLIOTIC: CF T:E TiEi:TS

2.1 Test Froiuct(s)

The named formulated product uncer investigation.

2.2 Reference Product (s)

The reference product should be a recistered product currently recomended for the control of Flutella xylostelia. In general, formulation type and mode of action should be close to those of the test prociuct, but this will depend on the aim of the parti--cular trial.

2.3 liode of ipelication

2.3.1 Iype of Application

Applications should comply with good agricultural practice. The type of applications will normally be specified on the label.

2.3.2 Iype of Equipment Used

The equipment should be of a type in current use. It should provide an even distribution of product on all plants in the plot or parts of the plot, as appropriate. Any deviations in dosage of more than 10% should be reported. Give full information on the type of equipment and operating conditions (e.g. operating pressure) used.

2.3.3 Iime and Frequency of fpplication

The time and frequency of application will normally be specifiec on the (proposed) label. The number of applications and the date of each application should be recorded. Normally a sirst afolication vill be made when young caterpillers are present in sufficient numbers (e.c. l-3 young stage caterpillars per plant). A second aplication follows as required. Note the growth stage of the crop at treatment.

2.3.4 Joses End Volumes Used

The frociuct should normally be apolied at the dsoage (s) reco-rended on the (proposed)label. This lill normally be expressed in kg . (or l) of formulated orosuct per ha. It may also be useful to recorc the dose in g of active incredient per ha. For sprays, date on concentration (ij) anc volume ($1 / \mathrm{he}$) should also be given.

If a ther choricals $h a v \in$ to be used, tiney should be a elied uniformly to aii plots, separately from the test prouct and reference product. Fossible interference \because ith these shoulc be kept to a minimur.e Precise data on the applications shoulo te given.

3.1 ieteorolocical and Edaphic Data

3.1.1 ieteorological Data

Data on precipitation (type and daily amount in mn) and temperature (daily average maxima and minima in ${ }^{\circ} \mathrm{C}$) should be obtained from the nearest meteorological station or preferably recorded on the trial site. fdditional data may ke needed in specific cases.

Throughout the trial period, extrems weather conditions, such as severe or parolonged drought, heavy rain, hail, etc., $\because h i c h$ are likely to influence the results, should also be reported

The standard meteorological data should be recorded around the time of apolication.
3.1.2 Edaphic ت̈ata

Not applicable.
3.2 Iype, Time and Frequency of Assessinent.

3.2 .1 Iype

Count numbers of live caterpillars of different aces on all 20 plants in each plot. If other species then Pexyostella are present, record the species separately; ex... \geq whole plants.

```
O.2.2 Time emsi Fremency
    Prelirinary assessment : immedistely before tre=trient.
    lst assescment : l-j cisys :゙fter treatment.
    2nd Essessment : 7-14 dミys astar tre=tment.
    AdOtional assessments r:ey je use{ful, farticulerly for slow
acting products.
```


3.3 Direct Effects on the C=Op.

The crop should $k e \leq x a m i n e d$ for presence or absence of shyto t-xic effects. The type End extent of these should we recorded. In aciitior, any positive effects shouic be noted (acceler he ad formation, incresses vigour, leaf coloration etc.).
?hytotcxicity is recorded as follows:
2) if the effect c an be counted or measured, it may be expressed in absolute figures, e.g. plant height;
b) In other cases, the frequency and itensity of damage may be estimated. This may be done in either of two ways: each plot is scored for phytotoxicity by reference to a scale wich should be recorded ; each treated plot is compared with $^{+h}$ an untreated plot and phytotoxicity estimated.

In ali cases, symptoms of damace to the crop should be accuratel. described (stunting, chlorosis, deformation, etc.). For further details, refer to the EPPD Guideline on Phytotoxicity issessment which also contains sections on individual crops.

3.4 Effects on Other Organisms

3.4.1 Effects on Other Pests

Any effeets, positive or negative, on the incidence of other pests or diseases should be noted.

3.4.2 Effects on other ت̈on-target Crganisms

Any observed effects on :ilcilife and/or beneficial rrthropods should $\exists l$ so he recorded.

E. 5 Walitative andíor Quantitative Recording of Yicla.

Guantitetive yield recordin on the cuality of the projuct should be noted (t.c. narkot--ability of nrocuce).
4. RESLI-S

The results shculd be analysed hy ep-ropriate st-tistical rethods end the statistical conclusions renorted. こak deta shoule however, =1so he evailiale and the stetistical netioa should al way be indiçted. The report should be presented in a systematic form and shoulc include an interpretation of the resul亡s. See in particular the relevant section of Eic guidelines of efficacy data.

Protocols for evaluation of Phytotoxicity of Insecticides and fungicides - technical and formulation.

1. Trials should be conducted in two disferent agroclimatic zones. These zones are - Arid, Semi-Arid, Tropical, Coastal and Temperate/hilly.
2. Trials should be conducted in scientific manner using standard statistical experimental designs. Number of treatment (T) and Replication (R) should be such that the total degree of freedom (R\&T) should not be less than 12.
3. Recommended and 2-4 times higher then recommended dose should be used.
4. In case of seed soil treatment following observations should be recorded :
(i) Germination percentage (ii) Plumule and Radical growtn
5. In case of foliar spray, observations should be recorded as:
(i) Leaf injury on tips and leaf surface, wiltingy vein clearing, necrosis, epinasty and Hyponasty.
(ii) Leaf injury should be considexed on visual rating from 1-10 such as:

$$
\begin{array}{ll}
(0-10 \%=1, & 11-20 \%=2, \\
41-50 \%=5, & 51-60 \%=6, \\
81-90 \%=9, & 61-70 \%=3, \\
891-100 \%-10\} . & 71-40 \%=4 \\
=9 &
\end{array}
$$

6. Test plants strould be selected from eaci group of crops, i_{*} e. cereals -maize and paddy ${ }_{\text {F }}$ vegetables cucurbits (Tinda) and potato; Legumes? Pulses); fruits - grapes; apples and citrus; cilseeds groundnut and mustard; plantation crops - coffee and tea, and fibre crop - cotton.
7. Recovery of plants from damage and time required for recovery should be noted.
8. The phytotoxic studies of insecticides/fungicides cas: be undertaken either separately or while evaluaring their biomeffectiveness against pests/diseasss of the agricultural crops mentioned above. However, active ingredient in the technical or formulated meterial
should invariably be determined as the case may be and appropriate allowance should be made while prepering pesticide dilutions of required strength. Type of plant protection equipment employed should also be mentioned.
9. In case of technical grade pesticides, a suitable formulation is recuired to be made and diluted to the desired strength. Similar control samoles of the formulation of various pesticides should also be prepared for comparison purposes.

EIPIRICAL EESLLTS FCR CRITERI: IN EVALUTING

A PEST i.Ai:AGEI.ENT STRATEGY

No. Eriterion	Formula	$\begin{aligned} & \text { Empirical } \\ & \text { Yalue } \end{aligned}$
1. Potential loss	$a_{2}{ }^{2}-a_{2}{ }_{1}$	280
	$a_{2} z_{2}$	
2. Residual loss	$a_{1} z_{2}-a_{1} z_{2}$	4.98
	$\mathrm{a}_{1} \mathrm{z}_{2}$	
3. Control Efficiency	$\frac{\text { residual loss }}{\text { potential loss }}$	30.80
4. Reduction in loss (in not reached)	$a_{1} z_{2}-a_{2} z_{2}$	1.10
5. Production increase (AT reached)	$\begin{gathered} a_{1} z_{1} \\ a_{1} z_{1}-a_{2} z_{2} \end{gathered}$	1.93
	$a_{1} z_{1}$	
6. Actual benefit	increase in production + reduction in cost*	1.35
7. Potential benefi (AT reached)	$a_{2} z_{2}-a_{1} z_{1}$	6.38
	${ }^{a_{1}{ }^{2} 1}$	
The probability of state of nature-action threshold reached is 0.1; hovever, 70\%' offarmers apply pesticides in any case.		

The pay-off matrix in its simplest case consists of four sections and describes the economic result of the actions "treat" $\left(a_{1}\right)$ and "do not tredt" $\left(a_{2}\right)$ given the extension service forecasts "threshold reached" $\left(z_{1}\right)$ and "threshold not reached" (z_{2}) The pay_off($a_{1} z_{1}$) of the action (a_{1}) in the case of the forecast "action threshoid reached" (z_{1}) is the average net return for a production method geared to the action threshold. The same applies to the pay-off $\left(a_{2} z_{2}\right)$ which covers the cases in wich no treatment is carried out because the action threshold is not reached.

In the event that the action threshold is reached (z_{1}) but nevertheless no treatment is carriea out (a_{2}), the pay-off value $\left(a_{2} z_{1}\right)$ corresponds to the average of the net returns for the untreated plots. If, contrary to the extension service forecast "action threshold not reached" (z_{2}) treatment is nevertheless still carried out (a_{1}), the pay-off value ($a_{1} z_{2}$) corresponds to the averace net returns achieved by the farmers who treat their crops.

Field evaluation of granular insecticides for rice yellow stem borer control

Background informetion : The yellow stem borer, Tryporyza incertulas, is a pest that frequentiy causes deadheart damage abcve the economic ir.jury level. Because varietal resistance is only of a moderate level, insecticides are commonly used for contrcl. The effectiveness of currently recommended insecticides must be verified before revising current recommendations. Also new insecticides need to be tested to finc additional effective insecticides.

Objectives : To determine which of the currently recommended ミnsecticides should be delisted and whether any new chericals should be added.

Site : Central Agricultural Research Institute, Peradeniya, Sri Lanka.

Research Staff :
Experimental Procedure: Nine insecticides will be applied 5 times, in a field experiment, $10,25,45,60$ and 75 DT as a paddy water granular broadcast at 1.0kg a.i./ha. Deadheart counts will be made twice and whiteheads will be counted at harvest. Data on additional insects will be recorded. Yields will be recorded.

Treatrents :

1. Carbofuran 3 GR
2. Eendiocarb 5 GR
3. Gamma BHC + NIPC $6+4$ GR
4. Gamma BHC NTNC $6+3 \mathrm{GR}$
5. Isazophos 10 GR
10 . Untreated check

10 . Untreated check
2. Diazinon 10 GR
3. Gamma BHC 6 GR
4. Endosulfan 5 GR
5. Gamma BHC + Carbaryl 6+4G
.
7. Gamma BHC + NIPC $6+4$ GR
8. Gamma BHC + NTIKC $6+3 G R$

Experimental design and layout :

Randomized complete block with 4 replication (see field layout) Plot size $=4 \mathrm{X} 9 \mathrm{~m}$

Agronomic practices :

Variety
Planting

Spacing
Fertilizer/ha

Weeding
-IR 29
-Plant 14-day-old dapog-grown seedlings at 2 seedlings/hill on 15 November 1980
$-25 \times 25 \mathrm{~cm}$
$-E a s a l=14 \mathrm{KgN}+14 \mathrm{Kg} P+14 \mathrm{Kg} \mathrm{K}$
-25-30 days after transplanting
$(D T)=23 \mathrm{KgN}$

- Panicle initiation $=23 \mathrm{Kg} N$
-Hand weed when necessary

Field Layout

Byock - I	Block - II		
4	7	9	3
1	6	5	2
9	2	1	6
10	8	10	4
3	5	7	8
1	6	4	8
5	8	3	2
9	2	1	9
3	7	5	7
10	4	10	6
Block-III	Block-IV		

Special instructions :

1. Use insecticides not more than 1 year from date of manufacture. 2. Before the first insecticide application, make leaves to separate each plot and then throughout the experiment. 3. Haintain $2-4 \mathrm{~cm}$ of water in plots at all times. 4. Do not apply insecticide during heavy rains or winds. 5. Control rats as per recommended method. 6. Control birds.

Equipment, supplies, and personnel needed:
Equipment and Supplies : Power tiller, Meter tape, Seedlings, Abaca twine, Fertilizer, Insecticides, Balance (50 g sensitivity). Sweep nets, Data sheets, Bamboo stakes.
Personnel : Plot preparation - 5 labour days, Iransplanting10 persons for 2 ha, Plot maintenance - 1 person for week, Observations - 3 persons on sar.

Observations and sampling datcs :

1. Whorl maggot damage rating at 20 and 30 DT.
2. Deadheart counts at 20 and 40 DT. Check 20 randomly selected hills per plot, to determine percentage of each borer species present.
3. Whitehead counts at harvest. Check 20 randomly selected hills per plot.
4. Other insects. If populations of other insects or insect damage warrant, record : Green leafhoppers - Make 10 sweeps/ plot. Fiantiopopersshake insects of f the plants by tapping 10 plants/plot a insects that fall. Leaf folder and caseworm-Estimate percentage of damaged leaves on 10 .
5. Yield data. Take sample from a $3 \times 4 \mathrm{~m}$ area in tine centre of each plot.

Insects	Sampling	Ihresh-hold
hiole Cricket	Pull up 20 plants at rondom wi thin a field and record \% of infested hills.	$\begin{aligned} & \text { 10\% hills } \\ & \text { infested } \\ & \text { (25-40 DAS) } \end{aligned}$
Root aphids	Dig at the base of the plants symptoms of aphid attack and look for sign of aphids \% of infested hills.	$\begin{aligned} & 10 \% \text { hill } \\ & \text { infested } \\ & \text { (} 30-90 \text { DAS) } \end{aligned}$
Seedling maggots	Cross the field and remove 5 leaves from each plant in 20 random location or a total of 100 leaves.	15\% damage leaves (1-15 DAS)
Rice whorl maggot	Randomally select 20 hills and record number of eggs/ hill.	$\begin{aligned} & 2 \text { eggs/hill } \\ & (0-20 \text { DAS) } \end{aligned}$
Rice case warm	Look at the number of insect damaged \& undamaged leaves on 5 leaves from each of 20 hills chosen at random. Combine the damage caused by other leaf feeders with that caused by case warm.	50\% damaged leaves (0-20DAS) 15\% leaves damaged (20-50 DAS)
Rice green semilooper	-do-	-do-
Rice beetles	Randomally choose 20 hills to record the number of beetles	$\begin{aligned} & 2 \text { beetles/ } \\ & 20 \text { hills. } \\ & \text { (20-50 DAS) } \end{aligned}$
Rice-thrips	Pick 5 leaves from each of 20 randomally selected hills across the field and record the number of damaged leaves.	15\% damaged leaves(0-10DAS)
Rice gall midge	Field sampling is based on plant damage as a percentage of either damaged leaves or cut panicles. Randomally select 5 leaves or panicles in each 20 hills across the field.	50\% damaged leaves or cut panicles (0-10DAS)

Grass hoppers	Visit the field each week, picking 5 leaves from each of 20 randomally selected hills, across the field determine the percentage of damaged leaves or panicles. Leaf damages from grass hoppers and other defloating insects should be combined to form the thresh-hold value.	50\% damaged leaves/hill (0-20DAS)
Rice leaf folders	Randomally pick-up 5 leaves each of 2 hills across the field. Take note of leaf folder moths while walking acress the field.	```15% damaged leaves(20-50 DAS) 5% damaged leave (50-90 DȦS)```
Rice stemborers	Record the number of dead hearts and heal thy tillers in 20 randomally choosen hills across the field. Take note of moths while crossing the field.	10% dead hearts (0-50 Di.S) 5\% dead hearts (50-90 DAS)
Rice blackbug	Randomally select 20 hills across the field and count the numbers of adults and nymphs.	$\begin{aligned} & 5 \text { black-bug/hills } \\ & \text { (10-155 DAS) } \end{aligned}$
Rice hispa	ت $\operatorname{ije} k l y$ from transplanting to panicle initiation, count the number of adults and larvel mines in each of 20 randomally choosen hills across the field.	```4 adults/hill (0-80 DAS) 15 larval mines/ leaf(30-80DAS)```
Hiealy bus	Visit the field each week and look at the base of 20 hills across the field.	20\% hills writh mealy
Rice green horned caterpiller	Randomally pick 5 leaves from each of 20 hills across the field. Yielc loss in related to the degree of defoliation; therefore, there is no need to distinguish the leaves damaged by the insect from leaves damaged by other pests, e.g. armyworms, cutworms, grass-hoppers and rice skippers.	15% damaged leaves (30-70 DAS)

Rice brown plant hopper	Pick 20 hills at random across the paddy. Hit each hill several times with the hand and count the number of mature nymphs that fall on the water. Hature nymphs are brown and immature nymphs are v :hite.	115 mature nymphs/ tiller(0-115 DAS)
Rice white backed plant hoppers	Hoppers from 20 randomally selected hills or parts across the field.	115 mature nymphs/ tiller (0-1CODAS)
Rice green leaf hoppers	A) Swing the Sweep net in a "brush-stroke" (following are of a pendulum) for each sweep. The bottom of the net should penetrate the rice canopy during the sweep. Hake 10 sweeps (a sweep is one bass of the net across the plants, either to or from while following a diagonal line across the paddy. Take sweep net samples trice a week, from seedling stage to panicle initiation count the nymohs and adults	2 leaf hoppers/ sweep (0-60DAS)
	B) Each week randomally pick 20 hills across the paddy. Slap the plants with force several times wi th the palm of the hand. Count both nymphs and adults that fall on the water.	
	Calculate the average green leaf hopper number per hill.	
Rice seed bug	Sampling early in the morning or late in the afternoon from 20 randomally choosen hills across the paddy.	10 bugs/20 hills

[^0]PHI AND ARL -SRI LANKA

INSECTICIDE	CRCP	PHI	RRL
Carbofuran	Gourds.	14	1.0
	Banana	14	0.2
	Brinjal	14	0.2
	Onion	14	0.1
	Any other vegetable	14	0.2
Carbaryl	rourds	7	3.0
	Onion	7	2.0
	Brinjal	7	5.0
	Fotato	7	0.2
	Sweet Potato	7	1.0
	Any other vegetable	7	5.0
Dimethoate	kiung	14	0.5
	Soya Bean	14	0.5
	Bean	14	0.5
	Chillie	14	1.0
	Tomato	14	1.0
	Any other vegetable	14	1.0
Fenthion.	Gourd	14	1.0
	Onion	14	1.0
	Tea	14	0.5
	Any other vegetable	14	0.05
Methamidophos	Cabbage	14	1.0
	Beet	14	1.0
	Bean	14	1.0
	Bushitao	14	1.0
	Any other	14	0.5
	Potato	21	0.1
Methomyl	Bean	14	2.0
	Cowpea	14	2.0
	Any other vegetabie	14	1.0
Rionocrotophos			
	Bean	14	0.2 0.2
	Corpea	14	0.2
	Mung	14	0.5
	Soya Bean	14	0.05
	Ground Nut	14	0.05
	Chillie	14	D. 0
	Brinjal	14	0.5
	Gourds	14.	0.5
	Any other	14	0.2
	vegetable Eotato	21	0.05

Oxydemeton hethyl	Beans Soya Bean Courpea liung Chillie Brinjal Any other vegetable	$\begin{aligned} & 21 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \\ & 0.2 \\ & 1.0 \\ & 0.2 \\ & 0.2 \end{aligned}$
Phenthoate	Bean Chillie Any other vegetable	$\begin{aligned} & 14 \\ & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$
Profenophos	Cabbage Sean Fotato Any other vegetables	$\begin{aligned} & 14 \\ & 14 \\ & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \\ & 0.2 \end{aligned}$
Prothicphos	Cabbage Sean Potato Any other vegetable	$\begin{aligned} & 21 \\ & 21 \\ & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \\ & 0.05 \\ & 0.1 \end{aligned}$
Quinalphos	Cabbage Onion Tob acco Any other vegetable	$\begin{aligned} & 14 \\ & 14 \\ & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$
Trichlorfon	Gourds Any other vegetable	7	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$

PHI (Pre-Harvest Interval) MRL (Maximum Residue Limit)

REEERENCES

1. Agricultural Implementation Programme, A iorking Document 1987-88, R'inistry of Agricultural Devlopment and Research, Sri Lanka•
2. Altieni, l..A. (1984) Pest-i.anagement Technologies for peasants : a farming system approach. 1984 Crop Protection 3(1): 87-94.
3. Beekeeping in Asia, $F A C$ Agricultural Services Eulletin 68/4. FAC of US 1986.
4. Busvine, J.R., A Critical Reviem of the Techriques for Testing Insecticides, 2nd ed. Commonwealth igricultural Bureaux London, 1971 .
5. Crop loss assessment methods. FAC lianual or the Evaluation and prevention of losses by fests, diseases and weeds. FAC and CAB 1971.
6. Goodell, G. (1984) Challenges to International Pest lianagement Research \& Extension in the Third , ,orld. Do we really want IPM to work. Bull Entomile Soc. Amer. $30(3)$: 18-27.
7. Gomez, K.A. (1972). Technic̣ues for field experiments with rice. International Rice Research Institute, Loss Banoz, Philippines 46 P .
E. Gurdelines on efficacy data for the registration of pesticides for plant protection. FAO of UN '.1985) .
8. Kinmori, P.F. (1987). Crop loss assessment in a practical integrated pest control programme for tropical Asian rice. In Teng, P.S. ed. Crop loss assessment and pest management p. 225-241 Sh. Paul AP-S Press.
9. lianual for field trials in plant protection. Docur:ents, C'na-Geigy 2nd Edition (1981).
10. Peissig, \because....., Heinrichs, E.A., Litsinger, J.A. lioody, K., Fielder L rew: T. \because. and Earrion A. I. Illustrated guide to integrated pest management in Rice in Tropical Asia. International Rice Research Institute 1985.
11. Pesticide Assessment Guidelines Subdivision G. Product Performance (U.S.) Envi ronmental Frotection Agency ,rashington, D.C. (1982) Published by National Technical Informition Service of $\mathrm{U} . \mathrm{S}$. Department of Commerce.
12. Proceedings of the F C/IRRI vorkshop on Judicious and Efficient use of insecticide on rice. The International Rice Research Institute, Fhilippines, 1984.
13. Reichelderfer, K.H., Carlson, G.A. and Norton S. .i. (1984) Economic guidelines for crop pest control. FAC Flant Production and Protection Paper No. 58 Rome, Italy, FAC.
14. Reichelcierfer, K.H. Bottrell, J.G. (1985). Evaluating the economic and social implication of agricultural pests and their control. Crop Protection 4 (3): 281-297
15. Smith RoF. (1972) The impact of Green Revolution on Flant Protection in tropical and sub-tropical areas. Bull. Ent. Soc. Amer. 18:7-14.
16. Sun, Y.P.1950. Toxicity index-an impsoved me thod of comparing the relative toxicity of insecticides. J. econ. Entomol. 43:45-53.
17. Sun. Y.P. and Johnson. E.R. (1960). Analysis of joint action of Insecticides: co-toxicity ratio. J. econ. Entomol. 53:887
18. Sun, Y.P.(1966) Co-relation between 1 aboratory and field Data on testing of insecticides. J. econ. Entmol. 59: 1131-113.
19. Waibel, H. and Engelhardt (1988). Criteria for the economic evaluation of alternative pest management strategies in developing countries. FAO Plant Prot. Buli. 36(1): 27-33.
20. i.alker, P.T. (1983) The assessment of crop losses in cereals. Insect Sci. ADplic. 4(1-2): 97-104.

Ly No: NEERG
Division of Entomology
Central Agriciltural Research
Irstitute
P 0 Box 11
Peradeniye
$11^{\text {th }}$ Septerber, 1990.

```
DDR/AD: ISTI/Principal School of Agriculture
```

> A Short Course on Insecticide Efficacy Iesting and Evaluation 17th to 18th September, 1990

Insecticide efficacy testing and evaluation js the beginning to frame the opinion for field recomendations and economical use of insecticides to protect crops. Recognising this fact, RCERG plans to o:ganise a 2 day refresher course on above activity by availing the se:vices of visiting UNIDO consultant to Dept. of AEriculture, Dr. Kawel Dheri. The venue is at the In-Service Training Institute, Gennoruwa. Accommodation and meals will be provided from the 16th night untii the end of the programe.

Following topics will be dealt with:

17-09-90

$9.30-12.30 \mathrm{pm}$	- Evaluctior of dosage mortality data
$2.00-4.00 \mathrm{pm}-$	Evaluatire the toricity of mixtures of
	Insecticices

DP/RAS/88/031

REGIONAL NETWORK ON PESTICIDES FOR ASIA AND THE PACIFIC (RENPAP)

Technical report of Mr. Kawal Dhari

Introduction

Abstract

Under the activities of the regional project. UNIDO assigned a regional expert to visit Sri Lanka to look into the insecticide efficacy and how to avoid pesticides reaching non-target organisms.

Comments

The report mainly addresses to the protocol to be followed for carrying out bio-efficacy testing of pesticide formulations. The most important aspect is the data collection, interpretation of the results and the standards that are to be used for comparison. In a country like Sri Lanka where natural resources are vital to the economy and tourism being one of the major industries. it becomes a compelling necessity that hazardous chemicals, however essential, should be used in accordance with international protocol so that ecological damage is kept to the minimum.

The expert strongly recommends strategy for managecient of resistance to pesticides and also adherence to the Mayimum Residue Levels in crops. The author's recommendation to strengthen the Central Agricultural Research Institute should be given a serious consideration so as to minimize the adverse effects in the misuse of pesticides. The regional network project has set up Pakistan as the Technical Coordinator for eco-toxicology related to pesticides and Sri Lanka through the Regional Coordinator Unit in New Delhi could make use of the facilities to be provided to Pakistan by UNIDO.

[^0]: DAS: Days after sowing

