

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

18352 DP/ID/SER.A/ 16 May 1990 ORIGINAL: EN

DP/ID/SER.A/1349 ORIGINAL: ENGLISH

> -· .

• / .

REACTIVATION OF THE JUTE BAG FACTORY

SI/SIL/88/801

SIERRA LEONE

Technical report: Economic Viability of a Bagging Factory*

Prepared for the Government of Sierra Leone by the United Nations Industrial Development Organization, acting as executing agency for the United Nations Development Programme

Based on the work of C. Brown, expert in production management

Backstopping Officer: M. Farah Industrial Management and Rehabilitation Branch

United Nations Industrial Development Organization Vienna

* This document has not been edited.

NO. CONTENTS

ý

PAGE

٠

•

•

.

1	Introduction	3
2	Summary	4
3	Urena Lobata	5
4	Market Supply and Demand	9
5	Project Location	11
6	Factory Details	14
7	Production Machinery Power Requirements	25
8	Water Requirements	26
9	Capital Costs	27
10	Raw Material and Costs	27
11	Working Capital	28
12	Operation of Factory	29
13	Interest on Loan (Machinery)	32
14	Analysis of Monthly Running Costs	33
15	Conclusion	34

ANNEXURES

1	Details of Raw Jute Requirements	35
2	Labour Loading	36
3	List of Persons Contacted	39

INTRODUCTION

Jute bags are primarily used for the storing, transporting and exporting of produce such as coffee, cocoa, palm kernels, rice, ginger and groundnuts, which are traditionally packed in 'B' twill sacks. All sacks were imported at a cost of \$0.55 per bag and sold at \$0.80, before devaluation of the local currency. The current market price per bag is approximately \$1.17. (The exchange rate, w.e.f. 15th January 1990, is \$1 = 120 leones). It is estimated that a turnover of over 2 million bags per annum will be required.

A bagging factory, Jute Products Co. Ltd., was in operation for one year in 1977/78, which imported sacking 'B' twill cloth to make into bags. The factory had to close down due to various reasons, including foreign exchange problems for importation of raw material and machinery.

It is now proposed, with the purchasing of additional machinery, to produce sacking bags by processing fibre into fabric and fabric into bags using, initially, imported jute from Bangladesh or India and gradually reducing this once locally grown fibre, called Urena Lobata, became available. This would not only create a new cash crop but offer much-needed employment and, in the long term, effect a large saving in foreign exchange.

All Government officials (see Annex 3) with whom I had discussions were very keen on the project and stressed the urgent need for bags, especially in the rural areas. The owner of the old factory, Jute Products Co. Ltd., is an influential businessman, who has a sound knowledge of the bagging market in Sierra Leone and appears to have assets and connections to raise a portion of the capital for the expansion of the factory. The two leading companies in the private sector, which are the largest purchasers of sacking bags, also appear to have adequate assets and funds and may be interested to invest in the project.

-3 -

I. SUMMARY

Reactivation of Jute Bag Factory

The old factory buildings at Fr. stown are not large enough to accommodate the required number of machines for manufacturing fibre into bags. Other sites were inspected which were in close proximity to the production area of the urena lobata.

The present availability of the fibre, however, is insufficient to sustain a bagging factory, and the extra capital cost required to develop a new site with an already low return on capital investment for machinery alone would be an unwise move, unless additional funds could be raised.

It is suggested, therefore, that extension and development of the present site in Freetown should be taken in hand.

.

II. URENA LOBATA

A. Background

This fibre plant, which grows in a wild state in Sierra Leone, is widely used by the local people for making into hammocks, bags, ropes and fish nets. No attempt has been made to cultivate the plant. In 1974/75 the Ministry of Agriculture and Natural Resources showed interest in this plant and commenced production on a commercial scale, with the help of a small number of farmers, at their Newton Agricultural Centre. Unfortunately, the market demand was not there and it was therefore phased out. On my visit to the Newton Station I found only a few samples of the following:-

The Swamp-growing type

This can be cultivated and has a duration of 1-6 months from planting to harvesting, and can attain a height ranging from 6'-12'.

The Upland-growing variety

This plant has stronger fibre and can attain a height of up to 15'. It also grows to maturity in 6 months. Seemingly, this was the variety that was used for the urena lobata pilot project of the Ministry of Agriculture and Natural Resources in 1974/75. Retting time of both varieties is 14 days under ideal conditions.

B. Fibre Availability

In 1983 the Commonwealth Fund for Technical Co-operation submitted a detailed report on all aspects of this fibre and mention was made of areas most likely to succeed in the growing of this crop. Mambolo, in the north west, and Binkolo, further east, were favoured, and my visit to these areas was to ascertain the presence, in the wild or cultivated state, of urena lobata and to determine its agricultural and commercial viability.

Binkolo District

There are a number of areas here that are suitable for growing the urena fibre on a commercial scale. However, according to the Agricultural Officer, only a wild variety is growing at present.

Mambolo District

I was advised by the Paramount Chief of Mambolo that a scheme to produce urena lobata was started by the late Chief but because of a lack of demand was soon phased out, and the plant now grows in the wild state only. On inspection I found this to be correct and observed large areas of land which would be suitable for commercial cultivation.

At the Area Seed Multiplication Farm I visited I was shown samples of rope made from urena lobata (local name - fen fen) for their own requirements. Another fibre which they also produced, on a trial basis only, was Dashin (technical name not known) which I feel would also be suitable for weaving and manufacturing of bags.

Remarks

It is apparent that there is not enough urena lobata growing on a commercial scale in either of these districts to be able to give a constant supply to a bagging mill.

RECOMMENDATIONS

Implementation of a urena lobata fibre production project similar to the system being used by Aureol Tobacco Company to improve the qualtiy and yield of the tobacco leaf in Sierra Leone. The system has worked so well that the Company has not only ceased to import leaf but, in fact, exports its own local grown product.

The Aureol Tobacco Company financed and managed its own affairs, to begin with but, later, formed a subsidiary company called Rokel Tobacco Company, which is managed and operated at Makeni, as follows:-

- 1. Farmers who wish to join the scheme are registered.
- The farmer is encouraged to start off in a small way, say, with 1/10 acre, gradually increasing to, say, .5 or 1 acre.
- 3. The company, through its instructors, supplies all inputs to the farmer and a debit note is held on his account.
- 4. The instructor advises, supervises and generally assists the farmer in the sowing and planting, etc. He also organises the harvesting to enable the farmer to present the crop correctly to the market. The company provides transport and purchases all produce.
- 5. The produce is then weighed and the cost worked out. Cost of inputs, such as seed, fertiliser, equipment, etc. is then deducted, after which the farmer is paid.

At present, alongside the tobacco, the farmer is allowed to grow rice, groundnuts, or whatever, which is bought by the company, or could be purchased by the farmer at cost price. If, for instance, one bushel of rice seeds was supplied, then one bushel of rice is returned to the company, the balance being retained by the farmer.

The following is the company's management structure:-

- i) A General Manager in overall charge.
- ii) l Divisional Manager per 4860 acres.
- iii) 1 Area Manager per 1620 acres.
- iv) i Chief Instructor per 540 acres.
- v) l Senior Instructor per 180 acres.
- vi) 1 Instructor per 60 acres.

Since the farmer is permitted to grow a subsidiary crop alongside the tobacco, Rokel Tobacco Company could be requested to grow a small quantity of urena lobata for trial purposes which would enable us to assess and highlight problems, if any.

C. <u>Production Cost for Cultivating</u> <u>3 acres of Urena Lobata</u>				
Assumptions				
l month	=	26 working days		
Yield per acre	=	800 lbs		
Acreage required to produce				
l ton	=	$\frac{2240}{800}$ = 2.8 = 3 acres		
Daily wage	=	Le 50 per manday		
Production period	=	5 months		
Labour Cost				
Production cost	=	l man x 5 months x Le $50 = \text{Le } 6,500$		
Retting, washing	=	2 helpers x Le 50 x 21 days = Le2,100		
Drying and bundling	=	3 men x 3 days x Le 50 = Le 450		
Additional Input				
2 bags fertiliser (50 kg/acre) at				
Le 1,000 per bag for 3 acres	=	Le 6,000		
Seed Production Cost				
Spacing during field planting	=	6' x 6' or 1210 seedlings per acre		
Assuming even 50% germination				
Total amount of seed required	=	1210 x 2 x 3 (acres) = 7260/3 acres		
Seed collection cost	=	2 mandays		
Processing cost	×	3 mandays		
Cost in Leones at Le 50 per day	×	Le 250/3 acres		
Summary of cost				
Cost of growing crop	=	Le 6,500		
Harvesting, retting, washing	3	Le 2,100		
Drying and bundling	=	Le 450		
Fertiliser	=	Le 6,000		
Seed production	*	Le 250		
TOTAL	=	Le15,300		

-8-

.

1

.

.

I.

III. MARKET SUPPLY AND DEMAND

The major importer is the Sierra Leone Produce Marketing Board (SLPMB), and the following are the total bags imported by them over the past three years:-

Year	Qty. of Bales	Total No. of Sacks
1987	2,600	780,000
i988	2,000	600,000
1989	2,127	638,100

Private companies, however, are now allowed to import bags and, in the latter part of 1989, Lewis & Peat Produce Ltd. imported 668 bales, or 200,400 sacks/bags, bringing the total for 1989 to 838,500 bags.

At present Sierra Leone is importing rice which comes in bags, except for shipments from the USA which are bulk supplied, along with empty new sacks which are then filled in by local contract labour here. It must be assumed, therefore, that a large percentage of these bags will eventually land in the open market; this also applies to sugar bags which are being imported privately for the sugar factory at Magbass.

There is, however, a possibility that, with the high cost of rice, more rice will be produced locally and therefore the number of these imported bags will correspondingly reduce. Enquiries are in hand to find out whether the sugar company would acccept indigenously manufactured bags.

The following information was obtained from the Director, Projects Evaluation and Monitoring Service Unit in connection with the movement and storing of produce throughout Sierra Leone (coffee and cocoa excluded):-

-9-

nnual Production	Year	Bags Required
1,000 tons	1987/88	200,000
0,000 "	11	400,000
0,000 "	11	9,600,000
2,000 "	1988/89	440,000
5,000 "	11	1,500,000
5,000 "	1987/88	2,300,000
4,000 "	1988/89	280,000
9,000 "	11	380,000
6,000 "	"	120,000
1,200 "	"	24,000
7,000 "	п	740,000
0,200 tons		16,004,000 bags
	nnual Production 1,000 tons 0,000 " 0,000 " 2,000 " 5,000 " 5,000 " 4,000 " 9,000 " 6,000 " 1,200 " 7,000 " 0,200 tons	nnual Production Year 1,000 tons 1987/88 0,000 " " 0,000 " " 2,000 " 1988/89 5,000 " " 5,000 " 1987/88 4,000 " 1988/89 9,000 " " 6,000 " " 1,200 " " 7,000 " " 0,200 tons .

If the above figures are correct, we could take the grand total of 16 million bags and divide it by three (years), which would give us 5.3 million or, say, 5 million bags per year, and if we are to take a replacement ratio of, say, 30% - which is considered reasonable for wear and tear - this would give a market requirement of 1.5 million bags per year. This figure, therefore, along with the present export figures (on page 8) means that Sierra Leone itself has a market potential for over 2 million bags per annum.

Discussions were held with the representatives of the Mano River Union to establish their bag requirements but up to the time of this report there has been no further response.

There is certainly a market for 2 million bags per annum in Sierra Leone, which will increase considerably once the agricultural yield of produce improves.

IV. PROJECT LOCATION

At present there is a policy for decentralising industrial development away from Freetown, and it has been suggested that a factory which was sited where the urena lobata grew in abundance would have its advantages, such as the areas of Binkolo and Mambolo.

It must, however, be taken into account that the factory will require, initially, to import raw material over quite a considerable period and therefore the availability of a deep water port is essential. The length of time this facility will be required will largely depend on the successful growing of the urena fibre and ultimately its market price per ton, in comparison to imported fibre.

A. Binkolo District

This area is situated northeast of Freetown, a distance of approximately 121 miles of reasonably surfaced roads. The nearest provincial town is Makeni - only 10 miles before Binkolo - which has the necessary facilities such as water, drainage and electric power supply. The power supply, however, is irregular owing to overloading and therefore a bagging factory would only aggravate this problem.

The facilities at Binkolo are very poor at present; there is no mainline water supply, no power, nor any drainage system. However, a water line is being laid from Makeni and a project is in hand to build a power station which is expected to be completed in about two years' time.

Transport/Communication

The nearest deep water port for this area is at Pepel which has only a small gauge railway, carrying iron ore from Port Loko (not a seaport) to Port Pepel, a distance of 25 miles. There is no road link with Pepel and therefore to import jute bales by this way could be just as costly as by Freetown owing to the extra unloading and loading costs, plus railway charges which would be incurred at Port Loko. If, however, it is decided to build a factory in this area, the following will be the land and building requirements:-

3000^{m²} Main factory 400m² Office/Store 945m² Raw material warehouse 4345m 4 to 5 acres Land

There would seem to be a sufficient number of people in the area who could be recruited.

B. Mambolo District

This area is situated northwest of Freetown, a distance of approximately 120 miles on a reasonably surfaced road as far as Port Loko, after which it slowly deteriorates until it is only a rough track which apparently becomes unusable during the rainy season.

The facilities at Mambolo are very poor indeed, with only a few handpump wells for water, no drainage nor electric power, and there is no likelihood of any in the near future. It was observed, however, that there is a boat service from Mambolo to Freetown, 4 or 5 hours away, depending on the tides. Therefore it can be assumed that material could quite easily be conveyed to Freetown at a relatively low cost.

To build a factory at Mambolo would not be suitable.

C. Port Loko

Port Loko has all the necessary facilities, such as water, drainage and electric power though, because of heavy demand, a constant supply of electricity is not available and this situation is likely to continue for a considerable period. Port Loko has the added advantage of being in close proximity to Port Pepel and is well situated with the main roads to Makeni and Binkolo.

If it is decided to build a factory in this area, similar land and building requirements will be applicable as for the Binkolo district.

D. Freetown

The old factory site is situated in the industrial area of Freetown and consists of the following:-

Buildings	Construction	Floor	Size
2 Warehouses	Brick	Concrete	47m x 22m x 8m each
l Office/quarters	Brick	Concrete	26.12 x 15.46 x 2 (Top
			and bottom)

Facilities Power and water connections.

<u>Communications</u> The major road connecting Freetown with other up-country towns, via Waterlook, passes this site. Freetown harbour is only a few miles away.

Total ground area - 2.5 acres.

Building requirements

Main factory building100m x 30mWarehouse for raw material31.5m x 20m

Remarks

- The existing two warehouses would require to be joined and extended to acccommodate the extra processing machinery. The present floor area will require to be levelled.
- 2. A part of the office building could be converted into a store.
- 3. As there are quite a number of small workshops in the vicinity which could be utilised by the factory, the immediate requirement for a full workshop will not be necessary.
- 4. An area of approximately 1 to 1.5 acres which is lying vacant beside the existing property could be purchased if required.

V. FACTORY DETAILS

A. Present Machinery Position

It is well over ten years that the factory has ceased to operate, and the only machine left installed from that period is the John Shaw Baling Press. The remaining machines were stored when the factory was converted into a warehouse. All the machines have been located and will require to be checked and repaired where necessary; the availability of spare parts is being looked into.

Below is a list of existing machinery and equipment:-

1 Printing Machine
1 Hydraulic Press
17 Heavy Duty Sewing Machines
1 Air Compressor
1 Cutting Machine
1 Forklift Truck (medium size - unserviceable)

B. Machinery requirements for the Production of 2 million '_ Twill Sacks per annum

Factory to operate 3 shifts per day, each shift of $7\frac{1}{2}$ hours, 300 days per annum.

'B' Twill Sacks Specification

Length of sack	=	44"	(111.76 cm)
Width of sack	=	26 <u>1</u> "	(67.3 cm)
Weight of sack	÷	2.25 lbs	(1.02 kgs)
Weight of weft (light yarn)	=	12 lbs	(410 tex)
Weight of warp (heavy yarn)	=	32 lbs	(1,100 tex)
Cloth cut length per sack	=	91"	(231.14 cm)

Production Requirements

Working Hours

3 shifts x $7\frac{1}{2}$ hours x 300 days = 6,750 hours per year

Sack Requirements

'B' Twill sack contains 60% heavy ya	irn a	nd 40%	light yarn.
2,000,000 sacks x 1.02 kgs per sack	= 2,	040,00	kgs/annum
2,040,000 kgs per annum 6,750 hours per annum	=	302.22	kgs/hour
60% of 302.22 kgs	=	181.33	kgs/hour heavy yarn
40% of 302.22 kgs	÷	120.89	kgs/hour light yarn
An allowance of 10% must be made for	r was	te and	maintenance on heavy yarn.
Therefore: 181.33 kgs + 10%	E	199.46	say, 200 kgs/hour heavy yarn.
An allowance of $7\frac{1}{2}$ % must be made for	r was	ste and	maintenance on light yarn.
Therefore, 120.89 kgs + $7\frac{1}{2}$ %	=	129.95	say, 130 kgs/hour light yarn.
Total heavy yarn required per hour	E	200 kg	s
Total light yarn required per hour	=	130 kg	<u>s</u>

330 kgs

Sacks required per hour

2,000,000 sacks per annum 6,750 hours per annum

= 296.29 sacks/hour

Machinery requirements

 1 - O.D. Automatic Batch Mixer for mixing and supplying of batching emulsion to fibre softener.

1 - 64 Pair Roller Softener to process jute or kenaf fibre.

Carding: Heavy and light yarn = 330 kgs per hour

As local fibre will become available a Three Card System is required.

First Passage Card can produce 330 kgs per hour.

Therefore $\frac{330}{330}$ kgs required = 1.00 machines

Require therefore: 1 - First Passage Card - hand feed.

Inter. Passage Card can produce 200 kgs per hour.

Therefore $\frac{330}{200}$ kgs required= 1.65 machine= 1.65 machine

Require therefore: 2 - Inter. Passage Cards.

Finisher Card can produce 200 kgs per hour.

Therefore $\frac{330}{200}$ kgs required= 1.65 machines

Require therefore: 2 - Finisher Cards.

130 kgs per hour

First Passage Drawing Frame can produce 165 kgs/hour Therefore 130 kgs required 165 kgs per machine = 0.78 machines Require therefore: 1 - First Passage Drawing Frame Second Passage Drawing Frame can produce 165 kgs/hour Therefore 130 kgs required 165 kgs per machine = 0.78 machines Require therefore: 1 - Second Passage Drawing Frame Finisher Drawing Frame can produce 165 kgs per hour. Therefore 130 kgs required 165 kgs per machine = 0.78 machines Require therefore: 1 - Finisher Drawing Frame 200 kgs per hour Heavy Yarn First Passage Drawing Frame can produce 165 kgs/hour Therefore 200 kgs required = 1.21 machines 165 kgs per machine Require therefore: 2 - First Passage Drawing Frames Finisher Drawing Frame can produce 165 kgs per hour Therefore 200 kgs required = 1.21 machines 166 kgs per machine Require therefore: 2 - Finisher Drawing Frames.

Drawing

Light yarn

130 kgs per hour. Spinning - Light Yarn 12 lbs light yarn (410 Tex) on 4.3/4" Apron Draft Spinning Frame = 0.56 kgs/spdl/hr. 950 x 60 x 85 x 12 36 x 100 x 14400 x 2 = 232.14 spindles Therefore 130 kgs required 0.56 kgs per spindle = 2.42 machines 232.14 spindles required 96 spindles per machine Require therefore: 3 - 4.3/4" Apron Draft Spinning Frames 200 kgs per hour Heavy Yarn 32 lbs heavy yarn (1100 tex) on 5½" Sliver Spg. Frame = 1.21 kgs/spd1/hr. 850 x 60 x 85 x 32 36 x 100 x 14,400 x 2.2 = 165.28 spindles Therefore 200 kgs required 1.21 kgs per spindle = 2.06 165.28 spindles required 80 spindles per machine Require therefore: $2 - 5\frac{1}{2}$ " Sliver Spinning Frames. 130 kgs per hour. Winding: Light Yarn 12 lbs light yarn (410 tex) = 6.13 kgs/spd1/hr450 x 60 x 60 x 12 100 x 14,400 x 2.2 = 21.20 spindles Therefore 130 kgs required 6.13 kgs per spindle = 0.66 machines 21.20 spindles required 32 spindles per machine Require therefore: 1 - 32 Spindle Mackroll Winder

-18-

Heavy Yarn	=	200 kgs per hour
32 lbs heavy yarn (1,100 tex)		
$\frac{200 \times 60 \times 60 \times 32}{100 \times 14,400 \times 2.2}$	2	7.27 kgs/spl/hr
Therefore 200 kgs required 7.27 kgs per spindle	-	27.51 spindles
27.51 spindles 32 spindles per m/c	=	0.85 machine
Require therefore: 1 - 32 spindle Mackroll Winder		
Cloth yardage		
Sacks per hour required	=	296.29
246.29 x 91" cut length/sack 36	=	748.95 yards/hr (684.83 meters) per hour
748.95 (684.83 meters) per hour required	Ξ	12.48 yards/minute (11.41 meters) per hour
Beaming		

933A Dry Beamer can produce 1,600 yards (1463 meters) per hour

1

Therefore $\frac{719.07}{1,463}$ meters including 5% Corrugation required = 0.50 machine

Require therefore: 1 - 933A Dry Beamer 1 - 280 End Floor Creel

٦.

-19-

MLS 840 Loom on 'B' twill cloth

 $\frac{210 \times 60 \times 75 \times 2}{8 \times 36 \times 100}$

= 65.62 yards/loom/hr (60.00 mts)/loom/hr

.

= 11.41 machines

Therefore <u>684.83</u> meters required <u>60</u> meters per michine

To allow for down time, etc., the following is proposed:

12 - MLS 840 Looms
1 - Faking & Measuring Machine
24 - Long Cloth Roll up Units.

Damping

Damping machine can produce at 110 yards (100.58m) per min.

```
Therefore 11.41 meters required = 0.11 machines
100.58 meters per machine
```

Require therefore: 1 - 66" Damping Machine

Calendering

Calender can operate at 24 yards (21.94 meters) per minute on single width cloth, but by passing two widths through simultaneously, machine can give 48 yards (43.88 meters) per minute.

Therefore $\frac{11.41}{43.88}$ meters required = 0.26 machines

Require therefore: 1 - Cloth Calendering Machine.

Cloth cutting

Machine can produce 7.9 cuts or sack lengths per minute on single cloth, but by passing through two widths of cloth simultaneously, machine will give 15.8 cuts or sack lengths per minute.

Total sacks required per minute= $\frac{296.29}{60}$ = 4.93 sacksTherefore $\frac{4.93}{15.8}$ cuts (sacks) required= 0.31 machinesRequire therefore: 1 - Cloth Cutting Machine

Hemming

'B' twill sacks are hemmed at the mouth. Hemming machine can hem 150 sacks per hour. = 2.46 machines Therefore 296.29 sacks required 120 sacks per machine To allow for Special Maintenance System on hemming m/c. 4 - Hemming Machines + Tables Propose: Overseaming 'B' twill sacks are overseamed at sides. Overseaming machine can seam 80 sacks per hour. Therefore $\frac{296.29}{80}$ sacks required = 3.70 machines To allow for Special Maintenance System on overseaming m/c 5 - Overseaming Machines + Tables Propose: Printing Two-Colour Sack Printing machine can brand 900 sacks per hour Therefore 296.29 sacks required 900 sacks per machine = 0.32 machines Require therefore: 1 - Two Colour Sack Printing m/c. With the spinning production averaging 80% and weaving 75%, the finished bag production will be approximately:-= 6666.525 per day 296.29 bags per hour x 22.5 hrs. Therefore 6666.525 bags per day x 25 days = 166663.12 per month Therefore 166663.12 bags per month x 12 months = 1999957.4 bags/year

C. List of Machinery

.

.

•

.

Machinery	Quantity
O D Batch Mixer	1
64 Pair Roller Softener	1
First Passage Card	1
Inter. Cards	2
Finisher Cards	2
First Drawing Frame L.Y.	1
Second Drawing Frame L.Y.	1
Finisher Drawing Frame L.Y.	1
First Drawing Frame H.Y.	2
Finisher Drawing Frame H.Y.	2
4 3/4" Apron Draft Spinning Frames	3
5½" Slip Draft Spinning Frames	2
32 Spindle Mackroll Winder L.Y.	1
32 Spindle Mackroll Winder H.Y.	1
933 Dry Beamer	1
280 End Floor Creel	1
MLS Looms	12
Long Cloth Roll Ups	24
Faking and Measuring Machine	i
Damping Machine	1
Calender	1
Cutting Machine	1
Hemming Machines (in hand)	4
Overseaming Machines	5
Printing Machine (in hand)	1
5½" x 80 T.D. Flyer Twister	1
Baling Press (in hand)	1
S.S. Power Reel	1
Friction Disc Washing Machine	1
100 cu.ft. Air Compressors (1 in hand)	2

-22-

D. Production Process

The production process of bag making is divided into six main processes, namely, batching, carding, drawing, spinning, weaving and finishing. The fibre is received in a form of a compressed bale weighing 400 lbs. It is passed through a softener for initial treatment using emulsion oils for reducing abrasive properties of the fibre and then a carding breaking process to standardise fibre length.

After the above processes, the usual operation of spinning of the warps and weft for weaving on modern automated flat/round looms resulting in woven jute cloth. This would then be passed through damping, cutting, hemming and printing machines where bags would be printed according to end use requirements.

PRC TSS PRODUCTION CHART

MACHINERY		H.P. EACH	TOTAL CONNECTED H.P.
1	O.D. Batch Mixer	2.50	2.50
1	Softener	20.00	20.00
1	First Passage	20.00	20.00
2	Inter Cards	15.00	30.00
2	Finisher Cards	10.00	20.00
1	lst Drawing L.Y.	5.50	5.50
1	2nd Drawing L.Y.	5.50	5.50
1	Finisher Drawing L.Y.	5.50	5.50
2	lst Drawing H.Y.	5.50	11.00
2	Finisher Drawing H.Y.	5.50	11.00
3	4 3/4"Apron Draft Spinning	25.00	75.00
2	5 ¹ " Slip Draft Spinning	20.00	40.00
2	32 Spindle Roll Winders	5.50	11.00
1	Dry Beamer	13.00	13.00
1	Creel	0.33	0.33
12	MLS Looms	5.50	66.00
24	Long Cloth Roll-ups	0.50	12.00
1	Faking and Measuring Machine	1.50	1.50
1	Damping Machine	2.00	2.00
1	Calender	12.00	12.00
1	Cutting Machine	3.00	3.00
4	Hemming Machines	0.50	2.00
5	Overseaming Machines	0.50	2.50
1	Printing Machine	3.00	3.00
1	Baling Press	20.00	20.00
1	5 ¹ / ₂ " x 30 Flyer Twister	20.00	20.00
1	S.S. Power Reel	1.00	1.00
2	Air Compressors	30.00	60.00
20	Humidifiers	0.75	15.00
	Tota	1 connected	H.P. = 490.33
Plu Gra	s 15% for Lighting and Service nd Total	:S	= <u>73.55</u> = <u>563.88</u>

ī

.

.

VII. PRODUCTION MACHINERY POWER REQUIREMENTS

B.F. Grand Total	=	563.88
563.88 H.P. x .746	=	420.65 kw
Taking a diversity factor of 0.75, the actual loads	=	315.49 kw.
Therefore Total K.W. required	=	315.49

The manufacturers and suppliers of the above machinery are James Mackie & Sons Ltd., P.O.Box 149, Belfast BT12 7ED, Northern Ireland, U.K.

VIII. WATER REQUIREMENTS

O.D. Batch Mixer

Factory production	=	330 kgs
Batching emulsion	=	30%
30% of 330 kgs	=	99 kgs
79% of emulsion is water	=	78.21 kgs
78.21 kgs	=	78.21 litres/hour
78.21 litres/hour x 22.5	=	1,759.72 lts/day

Damping Machine

Water is applied to cloth at 4%		
47 of 330	=	13.2 kgs
13.2 kgs	=	13.2 litres/hour
13.2 litres x 22.5	Ŧ	297 litres/day

٠

.

Domestic

Allow 69 litres per day per person employed.

IX. CAPITAL COSTS

A. Land Purchase and Developments

and

B. Buildings

Quotations not received to date but estimated at \$2,000,000.

C. Factory

	Cost	Total
	\$	\$
Processing machinery	6,171,206	
Laboratory equipment	24,000	
Weighing scales	38,400	
Air compressors	38,400	
Workshop equipment	40,000	
Forklift truck	40,000	6,352,000

D. Pre-operating Expenses

Installation costs

48,000 6,4

6,400,000

X. RAW MATERIAL AND COSTS

The following types and quantities of jute fibre shall be required:-

Sack construction 'B' Twill.

Light Yarn 12 lbs = 40% of sack Heavy Yarn 32 lbs = 60% of sack Fibre Blend Light Yarn 12 lbs 50% long fibre-jute - medium grade type BWD 50% cuttings or low grade fibre type BWCB Fibre Blend Heavy Yarn 32 lbs 15% long fibre-jute - medium grade type BWD 85% cuttings, ropes - low grade long type BWCB

Details of calculations are shown in Annex 3.

Quantity of fibre required:

Type BWD	-	603.2 tons
Type BWCB	-	<u>1476.8</u> tons
Total requirements	-	2080.0 tons.

This includes an allowance of 4% process loss.

Costing

Type BWD at US\$ 410 FOB per ton		
Therefore 603.2 x 410	=	\$ 247,312
Type BWCB at \$ 230 per ton		
Therefore 1476.8 x 230	=	\$ 339,664
Total FOB Freetown	=	\$ 586,976
Freight and Insurance 5%	=	\$ 29,348
CIF cost	=	\$ 616,324

XI. WORKING CAPITAL

The working capital requirements have been estimated on the basis of the following:-

Finished Goods Stock

This has been set at one month's production.

Raw Material Stocks

Stocks of six months have been used.

Consumables Stock

A stock level of one month at replacement rate has been used.

XII OPERATION OF FACTORY

Labour

.

The working hours of the factory will be as follows:-

Working hours per shift	7 <u>1</u>
Total number of shifts per day	3
Total number of hours per day	22.5
Annual working days	300
Working hours per year	6750
Total number of employees:	419

Placement of workers is as follows:-

No.	Placement	Person	Total	Cost per person	Total Le
1	General Manager	1	1	25,000	25,000
2	Technical Manager	1	1	15,000	15,000
3	Engineer	1	1	10,000	10,000
4	Accountant	1	1	8,000	8,000
5	General Office	14	14	4,000	56,000
6	Supervisors	10	10	4,100	41,000
7	Skilled labour	115	115	3,500	402,500
8	Unskilled labour	225	225	2,700	607,500
9	Miscellaneous skilled	26	26	3,350	87,100
10	Miscellaneous unskilled	25	25	2,700	67,500
		419	419	-	1,319,600
	Monthly salary bill =	Le 1,31 12	<u>9,600</u> =	\$ 10,996	
	Annual salary bill =	<u>Le 15,8</u> 12	<u>35,200</u> =	\$ 131,960	
Details	s on Labour Loading see A	nnex 2			

Labour wages obtained from the Ministry of Labour

-29-

Direct Labour Costs

ı.

The direct labour costs extracted from the	data	abov	re amounts to
Le 13,976,160 per annum			= \$ 116,468
Indirect Labour Costs			
These amount to Le 1,859,040 per annum			= \$ 15,492
Overheads			
These amount to Le 3,000,960 per annum			= \$ 25,008
Insurance			
This amounts to Le 3,839,040 per annum			= \$ 31,992
Electric Power			
Power will be available from National Power	Aut	horit	y.
Consumption per hour			315 kw/hr
Hours per shift			71 hours
Number of shifts			3
Consumption per day			7087.5
Cost per unit			14
Cost for 3 shifts			99,225
Working days per month			<u>x 25</u>
Total cost per month	=	Le	2,480,625 or \$20,671
Months per year			<u>x 12</u>
Annual cost	=	Le	29,767,500 or \$248,062.5

Water

Water will be available from the Guma Valley Water Company (GVWC).

Le 160 per 1000 gallons 452.02 galls. = Therefore consumption for processing per day 2762.63 galls. = Domestic per day 3214.65 galls. 3.21 = Therefore 3214.65 x 160 rate 1000 Le 513.6 Cost per day = x 25 Working days per month Le 12840 or \$107 Cost per month x 12 Months per year Le154080 or \$1284 Annual cost æ

Consumables

This is largely the cost of grease, batch oil, emulsifier and lubricating oil andhas been estimated at \$64,572 per annum. Details are as follows:-

Batch oil	=	\$ 45600
Emulsifier	=	\$ 6480
Lubricating oil and grease		<u>\$ 12492</u>
		\$ 64572
Repairs and Maintenance	Ŧ	\$ 41340

With new machines and a good preventive maintenance programme, cost should be minimum. However, this figure will increase considerably after the first twelve months.

Depreciation

A depreciation rate of 1%, instead of 10%, has been used for machinery only.

Packing Cost

An allowance has been made to cover this.

Marketing Cost

An allowance has been made to cover this ~~st. The Company should sell direct to the market to obtain maximum profit.

Transport Cost

An allowance has been made to cover this. It is suggested that all movement of goods should be undertaken by contractors.

XIII. INTEREST ON LOAN (MACHINERY)

A very low market rate of 10% interest has been taken into account. Sierra Leone, being a member of the Commonwealth, could possibly be eligible for a concessionary loan from the United Kingdom if the machinery was purchased from Belfast.

(A)				
Variable Cost		Amount	Per Ton	
Raw jute	\$	51,348	\$ 296.30	30.8
JBO		3,800	21.92	2.23
Nonidet		540	3.11	0.31
Workers wages		9,705	56.00	5.70
Workers Provident Fund		486	2.80	0.28
Stores consumption		3,125	18.03	1.83
Lubricants		1,040	6.00	0.61
Repairing charges		320	1.84	0.18
Power consumption		20,671	119,27	12.15
Water consumption		107	0.61	0.06
Packing cost		1,500	8.65	0.88
Marketing cost		500	2.88	0.29
Transport cost		2,083	12.01	1.22
Interest on working capital		10,086	58.24	5.94
Factory/Admin. overheads	_	2,084	12.01	1.22
TOTAL (A)	\$	107,405	\$ 619.67	63.08%
(B)				
Fixed Cost				
Salaries	\$	1,291	\$ 7.44	0.75
Provident Fund		68	0.39	0.03
Depreciation at 1%		5,333	30.77	3.13
Insurance		2,666	15.38	1.56
Interest on loan at 10%		53,333	307.74	<u>31.35</u>
TOTAL (B)	\$	62,691	\$ 361.72	36.82%
Total cost (A + B)	\$	170,096	\$ 981.39	99.97

.

XIV. ANALYSIS OF MONTHLY RUNNING COSTS

Total bag production per ton	= 995
Present cost per ton	= \$ 981.39
Therefore \$ <u>981.39</u> 995	= \$ 0.98 per bag, say, \$1
Total bag production per month	= 166,663.12
Therefore 166,663.12 x Le 140 sale price	
per bag	= Le 23,332,836
Therefore Le $\frac{23,332,836}{120}$ (\$ rate)	= \$ 194,440.3 sale value
Therefore \$ 194,440.3 - \$ 170,096 mfg cos	t= \$ 24,344.3 profit per month

XV. CONCLUSION

It is clear from the running cost analysis that the return on capital investment will be negative. Normally, raw material usually represents 45 to 50% of the cost of manufacture but this balance has been altered, mainly due to high interest repayment for machinery and, therefore, unless this figure can be reduced it would not be a commercially feasible operation.

There is a possibility, however, of reducing this cost by applying for concessionary loan terms from the EEC, the United Kingdom or the Commonwealth Fund For Technical Co-operation. Another possibility is to purchase reconditioned or second-hand machinery if available.

However, taking a long term view, and with the possibility of reduced interest rates, a bagging factory would become a viable unit once the lccal fibre became readily available at a competitive price.

-34-

Details of Raw Jute Requirements

•

,

.

2,000,000 sacks x l kg per sack	= 2000 tons of fibre per annum + 47 process loss
Sack construction: 'B' Twill	
Light Yarn - 12 lbs - 410 TEX	= 40% of sack
Heavy Yarn - 32 lbs -1100 TEX	= 60% of sack
<u>Fibre Blend</u> - Light Yarn - 410 TEX/12 lbs	
50% Long fibre Jute/Kenaf - medium grade	- Type BWD
50% Cuttings or low grade fibre	- Type BWCB
Fibre Blend - Heavy Yarn - 1100 TEX/32 lbs	
15% Long Fibre - Jute Kenaf - medium grade	- Type BWD
85% Cuttings, ropes or low grade long fibre	- Type BWCB
Quantity of Fibre	
2080 tons x 40% = 832 tons - Light Yarn	- 410 TEX
2000 tons x 60% = 1248 tons - Heavy Yarn	- 1100 TEX
Light Yarn - 12 1b/410 TEX	= 832 tons
832 tons x 50%	= 416 tons of fibre - Type BWD
832 tons x 50%	= 416 tons of fibre - Type BWCB
Heavy Yarn	
32 lbs/1100 TEX - 1248 tons	
1248 tons x 15%	= 187.2 tons of fibre - Type BWD
1248 tons x 85%	= 1060.8 tons of fibre - Type BWCB
Total Fibre required	
Type BWD = 416 tons plus 187.2 tons	= 603.2 tons
Type BWCB = 416 tons plus 1060.8 tons	= 1476.8 tons
Total	2080.0 tons
Prices used are average prices for the perio	od January to March from R.E.B.

Willcox Ltd., London, U.K. dated 15.2.1990.

ANNEX 2

.

·

.

Labour Loading

lst, 2nd, 3rd = shifts per Day

Department	Unskilled			Skilled				
	lst	2nd	3rd	Total	lst	2nd	3rd	Total
Raw material stores	3	3	3	9	-	-	-	-
Transporting raw material from stores to mill	2	2	2	6	-	-	-	-
Fibre sorting and stricting	3	3	3	9	-	-	-	-
O D Batch Mixer	Operation of machine can be checked periodically supervision. Emulsion drum can be changed by oil and fork lift driver.						ally by y oiler	
Softener	3	3	3	9	-	-	-	-
Transporting to maturing area and card dollop weighing	3	3	3	9	-	-	-	-
Cards	5	5	5	15	-	-	-	-
Drawing	3	3	3	9	-	-	-	-
Spinning	6	6	6	18	-	-	-	-
Winding	9	9	9	27	-	-	-	-
Twisting/Reeling	1	1	1	3	-	-	-	-
Roll transport/ storage	2	2	2	6	. –	-	-	-
Beaming	3	3	3	9	-	-	-	-
Beam transport	2	2	2	6	-	-	-	-
Weaving	-	-	-	-	6	6	6	18
Beam Tiers	-	-	-	-	2	2	2	6
Cloth transport	2	2	2	6	-	-	-	-
Measuring, damping and calendering	5	5	5	15	-	-	-	-
Cloth cutting	2	2	2	6	-	-	-	-
Cloth transport	2	2	2	6	-	-	-	-

Labour Loading lst, 2nd, 3rd = shifts per day

Department	Unskilled			Skilled				
	lst	2nd	3rd	Total	lst	2nd	3rd	Total
Sewing and hemming	-	-	-	-	12	12	12	36
Printing	2	2	2	6	-	-	-	-
Baling	3	3	3	9	-	-	-	-
Finished goods store	3	3	3	9	-	-	-	-
Factory cleaners	4	4	4	12	-	-	-	-
Oilers	6	-	6	12	-	-	-	-
Can and bobbin transportation	3	3	3	9	-	-	-	-
Engineering: Mechanics								
Batching & carding	-	-	-	-	2	2	2	6
Preparing	-	-	-	-	2	2	2	6
Spinning & twisting	-	-	-	-	1	1	1	3
Winding & Beaming	-	-	-		3	3	3	9
Weaving	-	-	-	-	3	3	3	9
Finishing	-	-	-	-	5	4	2	12
Workshop	-	-	-	-	6	4	2	12
Electrical	-	-	-	-	l	1	1	3
Carpenter	-	-	-	-	1	-	-	1
Supervisors								
Selecting fibre, batching & carding	-	-	-	-	1	1	1	3
Preparing, spinning, winding, reeling and twisting	-	_	_	_	1	1	1	3

•

٠

•

•

.

٠

Labour Loading

lst, 2nd, 3rd = shifts per day

Department	Unskilled					Skilled			
	lst	2nd	3rd	Total	lst	2nd	3rd	Total	
Weaving & Finishing	g -	-	-	-	1	1	1	3	
Mechanical and Electrical	-	_	-	-	1	-	-	1	
Miscellaneous									
Gateman	2	2	2	6	-	-	-	-	
Watchman(Security)	4	4	4	12	-	-	-	-	
Stores Keeper	-	-	-	-	4	4	4	12	
Weighing Clerks	-	-	-	-	4	4	4	12	
Test House	-	-	-	-	1	-	1	2	
Drivers (cars,etc)	3	3	1	7	-	-	-	-	
Drivers (fork lift trucks)	-	-	-	-	2	2	2	6	

<u>Staff</u>

General Manager	1
Technical Manager	1
Engineer	1
Accountant	1
General Office	14

		Summary
Unskilled labou	IT	225
Skilled labour		115
Supervisors		10
Staff		18
Miscellaneous:	Skilled	26
	Unskilled Total	<u> 25</u> 419
	I.	
	T	1 1

ANNEX 3

List of Persons Contacted

GOVERNMENT

•

•

.

1.	The Honourable Ben Kanu	Minister of Industry & State Enterprises
2.	Mr A T Morgan	Director of Industries
3.	Mr A J Jalloh	Actg. Deputy Director of Operations and Service Division
4.	Mr M Bendu	Market Research Officer, Export Promotion Council
5.	Dr S M B Kano	Director of Social Affairs
6.	Dr Isaac Marve	Director of Economic Affairs, Mano River Division
7.	Dr Kargbo	Director of PEMSU/Man R & F
8.	Mr J B Mahoi	Commissioner, Ministry of Labour
9.	Mr T Gaujah	Principal Inspector of Produce
1).	Mr S Conteh	Manager, National Development Bank
11.	Mr A Sanor	Manager, Accounts, SLPMB
12.	Mr A E Turay	Manager, SLPMB
13.	Mr A R Wurie	General Manager, SLPMB
14.	Mr A Carew	Project Officer of National Authorising Office
15.	Mr N Cole	Customs & Excise Controller
16.	Mr Musa	Agriculturist, Newton Research Station
17.	Mr B Johnstone	Agro-Economist

PRIVATE

1.	Mr A Jalloh	Managing Director, Jute Products Co. Ltd.
2.	Mr F C Jones	General Manager, James International
3.	Mr M Taylor	Manager, Penguia Development & Finance
4.	Mr M Dodge	Managing Director, Lewis & Peat
5.	Mr M McNally	Manager, Finance, Aureol Tobacco Company
6.	Mr C R Thorpe.	Senior Communications Officer, Magbass Sugar Company
7.	Mr R Prasad	General Manager, Rokel Tobacco Company
8.	Paramount Chief of Mambolo	

-39-

ANNEX 3 (Continued)

.

•

.

AGENCIES

1.	Mr K C Hall	FAO Chief TechnicalOfficer
2.	Mr J Turay	FAO National Tree Planting Officer (Forestry)
3.	Dr P Schroden	Manager, Seed Multiplication Project
4.	Mr 7 Walters	VJO, Agricultural Project, Mambolo
5.	Mr S Pattoo	Chief Technical Adviser, UNIDO

T