

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION
Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria

Tel: (+43-1) 26026-0 · www.unido.org · unido@unido.org

OCCASION

This publication has been made available to the public on the occasion of the 50
th

 anniversary of the

United Nations Industrial Development Organisation.

DISCLAIMER

This document has been produced without formal United Nations editing. The designations

employed and the presentation of the material in this document do not imply the expression of any

opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development

Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its

authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or

degree of development. Designations such as “developed”, “industrialized” and “developing” are

intended for statistical convenience and do not necessarily express a judgment about the stage

reached by a particular country or area in the development process. Mention of firm names or

commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes

without additional permission from UNIDO. However, those who make use of quoting and

referencing this publication are requested to follow the Fair Use Policy of giving due credit to

UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

mailto:publications@unido.org
http://www.unido.org/

•

..

UNITED NATIONS

Dis tr.
LIMITED

PPD.99
19 December 1988

INDUSTRIAL DEVELOPMENT ORGANIZATION ORIGINAL: ENGLISH

•,

THE SOF'NARE l~]USTRY: DEVELOPING COUNTRIES M'D THE WORLD MARKET*

Prepared by the

Regional and Country Studies aranch

Industrial Policy and Perspectives Division

/

*The designation employed and the presentation of the material in this
doc~ent do not imply the expression of any opinion whatsoever on the part of
the Secretariat of the United Nations Industrial Development Orga .. 1ization
(UNIDO) concerning the legal status of any country, territory, city or area or
of its authorities, or concerning the delimitation of its frontiers or
boundaries. Mention of company names and commercial products does not imply
the endorseinent o~ UNJDO. This document has not been edited.

V.88-31689

•

..

•

- i -

Contents

INTRODUCTION

l. SOF'l'WARE: ITS NATURE AND SIGNIFICANCE

1.1 Definitions of software
1.2 The significance of software
1.3 Software as a commodity
1.4 Software and developing countries

2. OVERVIEW OF THE INDUSTRY

2.1 Types of software
2.2 Software producers
2.3 The size and structure of the software industry
2.4 The role of standards

3. THE EFFECTS OF HARDWARE TRENDS

3.1 Processors and memories
3.2 Architecture
3.3 Peripherals

4 • TRENDS IN SOF'l'WARE

4. 1 Overview
4.2 Operating systems
4.3 High-level languages
4.4 Fourth Generation Languages (4GLs)
4.5 Database Management Systems (DBMS)
4.6 Computer Aided Design (CAD)
4.7 The impact of artificial intelligence techniques

4.7.l Overview
4.7.2 Expert systems

5 • GENERAL PRODUCT ION STRATEGY

5.1 The stages of software prcduction
5.2 Product ideas
5.3 Choice of market
5.4 Investment costs

Footnotes

References

l

2

2
2
4
5

7

7
8

10
11

14

14
15
16

18

18
20
23
25
26
28
2~

29
30

32

32
32
35
38

40

44

•

..

INTRODUCTION

This study analyzes the software industry from the point of view of a new
entrant to what is now a complex and world-scale market. A new software
producer faces new opportunities and difficulties, and to be successful
requires a wide variety of skills.

Two main trends dominate the industry. The first is the growth of
software as a traded product, rather than an individual service. Software is
designed, produced, packaged and marketed on a large scale and in a
sophisticat~d way •

The second trend is the influence on software of technological change in
hardware. In general, hardware developments have moved ahead of software's
ability to exploit them fully. The variety and pace of hardware change means
that many opportunities exist for new software products.

UNIOO has for some time been emphasizing the importance of the software
industry for developing countries, and the need to j_ncorporate an awareness of
its significance in national technology poli~ies and programnes. UNIDO's
Technology Progranme has produced a number of documents dealing with several
technical aspects of software and its production, and detailed legal and
institutional questions have also been a particular focus.~/

However, the present study focuses on the techno-economic environment in
which software production takes place, attempting to analyze some of the
forces at work which create both difficulties and opportunities at the level
of the individual fi~m in the industry. The emphasis is on the mix of forces,
the interplay between hardware and software trends, both technological and
conmercial, the role of industrial policy in helping or hindering growth in
the industry, and the characteristics of a successful strategy at the level of
the individual firm.

The study begins with a r~view of concepts and definitions. Section 2
then analyzes the basic actors, the groups at work in the industry, and the
roles they play. Section 3 looks at recent trends in hardware, concentrating
on the relationship with software trends, the more significant of which are
examined further in section 4.

Section 5 concludes the study with a summary of findings in the form of
strategic considerations for software producers •

~I See, for instance, C. Correa, "Trends in connercialization of software
in developing countries" UNIDO/IS.574, H. Kopetz, "Guidelines for software
production in developing countries", UNIDO/IS.440, and, most recently, H.-J.
Schneider, "Software Production: Organization and Modalities",
UNIDO/IPCT.63. A regular coverage of ,;oftware is also found in the UNIOO
Microelectronics Mcnitor.

- 2 -

l. SOFTWARE: ITS NATURE AND SIGNIFICANCE

1.1 Definitions of software

Software is a set of instructions to a computer. It is thus
distinguished from for instance hardware, which is any component of the
computer itself or data which is what the computer uses or generates to make
output, which itself is the reason why the software is supplied to the
computer.

This definition, though of course it is not a rigorous one, has the major
advantage that it focuses on the use of computers as ~ process, and makes a
distinction between the ultimate product and the means of transformation.
Many alternative definitions exist such as that "hardware is what you can
touch, and software is what you can't touch". This however does not make
clear the distinction between software and data.i/

The first OECD study on software adopted a definit.ion which also follows
this approach, referring to " ••• a combination of data and instructions, many
being algorithms " !/ In the present study, however, we prefer to
adhere to a narrower definition both because it delimits to some extent what
is still a very large topic and also because of the quite different ru.irket
forces at work.

The same OECD study also p1·ovides definitions from the World Intellectual
Property Organization (WIPO) and from the International Standards Organization
(ISO). The WIPO definition appears to be rather broad, since it includes not
only computer programme but also descriptions of them and instructions for
their use. The ISO definition also includes documentation, and contains the
important additional statement "Software is independent of its carrier media."

At first sight the last statement appears unexceptionable, and seems to
be in conformity with the "intangibility" quality mentioned above. But it
raises some difficulties in the detail consideration of software and
especially its commercial aspects. In practice, software is not independent
of its "carrier media"• and the disembodied view of software is inadequate for
an understanding of the ways in which developments in software are related to
those in hardware, and of the ways in which software is marketed.

1.2 The significance of software

Whatever precise definition is used, the idea of a set of instructions is
almost always understood as the underlying nature of software. Instructions
are coimands to the hardware, and at .'\\ fundamental level of view it can be
seen that the hardvare determines what software is written. This is because
the set of all possible instructions is determined by the hardware: there is
no point in supplying an instruction that cannot be acted upon by the machine
which receives it.

The basic instructions which the machine understands (and is built to
understand) are c.illed the "machine language". They can usually be
represented by binary digits, i.e. a string of ls and Os; perhaps by
he.:.adecimal codes (numbers to the base 16). In any case, manipulation of
these codes is uaally sb1plified by a piece of software which allows the
progrannes to use either mnemonics such as ADD or STORE rather tban a string
of difficult-to-recognize digits. Such a programne, liSually called an
assembler would in turn be used to '"'rite another progra11111e which would allow
~re powerful commands, and so permit the instructions for mathematical or

..

•

- 3 -

other manipulations of data to be expressed in a form nearer to the formal way
in which such manipulations vo•1ld be described in speech or in writing.

The set of such formal instructions is usually called a high-level
language. Examples include COBOL, FORTRAN, C, Pascal, etc., and they are
discussed in more detail in Chapter 4 of this study. They are mentioned here
only to show the way in which software in one sense is indeed independent of
the hardware. A definition of C, for instance, usually says nothing about the
type of computer on which it can be used. In general, C at. a concept is
hardware independent, just as most other high-level languages are also.

However, for a computer progranner actually to use C on a computer, in
the sense of running a progranne written in C and obtaining results from the
data being analyzed, there bas to be a means of converting C instructions
(usually called statements) into the machine language of the compu:er
concerned. As noted above, this means of conversion is in fact another piece
of software, and it is usually called a compiler, since it takes all the C
statements and converts them to a set of machine coanands. (Another sort of
translator is called an interpreter: it converts line by line). Unless a
compiler (or interpreter) exists, C cannot be used on the computer in
question. Thus although in theory a piece of software may be machine
independent, it is not really so in practice.

There is a further problem whic.1 occurs not on] · with software but with
data also. This relates to the reading by the computer of software and data,
usually in the form of magnetic media such as diskettes and tapes. These
~hemselves are of course hardware, but the way in which the software and data
are stored on them varies much more than the hardware does. Thus a piece of
flexible plastic in the form of a disk, wrapped in a flexible cover, may be
identical for many different micro-computers, all of which are capable of
understanding the software written on it. And yet each of them may use a
different code to represent the characters and, mor~ probably, each will also
use a different way of laying out the data and software on the disk. Some
might use one number of divisions, some another. Some might ~se concentric
ring patterns and some a spiral pattern.2/

The role of software is not only, of course, in computers per se, ~ven
though these are being used as examples in the present discussion. Software
is the set of instructions stored in anything that is progrannable, and this
includes many different kinds of machinery and equipment, from machine tools
to telephone and communications equipment and dispensing and vending
machines. Increasingly such machines embody software to co~trol tteir
operations, not only because it is much easier and cheaper to solve many
problems in terms of prograamed microelectronic circuitry but also because it
makes it much easier to make changes in the way the machine operates and thus
to adapt it to different uses.

The case ot numerically-controlled machine tools is a particularly
important one: it is the spread of microelectronics whit;n hns al lowed these to
become even more flE:xible and powerful, even though the basic ideas go back to
the punch-cards used to change control of weaving equipment in the textile
mills of the la,:t century. The progrannable character of modern machinery
means that it can more easily be adapted to changes in the design or the
content of the product being prodl;ced, thus allowing for very rapid re-tooling
in the face of changes in demand patterns, competitive pressures or changes in
primary input costs. Software thus is a usually hidden but essential element
in many ~spects of manufacturing. The spread of robotisation, factory
automation, ~omputer-aided design and manufacturing (CAD/CAM), and computer

' ' '

- 4 -

integrated manufacturing (CHO means that software will have an even more
important role in the future, esrecially in the linking of the software
embodied in individual machines into a fully coamunicating and controlled
system of production.

It is, however, software for computers which is most easily discussed,
especially because here is most easily explained the concept of software as a
traded coamodity.

1.3 Software as a cODlllOdity

The International Standard Industrial Classification (ISIC) of the United
Nations is intended to cover all economic activities, and being based on a
structure first conceived in 1948, does not cover the production of software
anywhere. Equally, the United Nations Standard Industrial Trade
Classification (SITC), REvision 2, does not deal with software at all. This
is 1110re surprising because it dates from 1975.~" The exclusion of soft\olare
from classification systems may be partly because of its (relative) newn•!ss,
but a major reason must also be its intangibility as referred to earlier.-~
The easy option may have been taken of treating the software industry as a
service with no permanent tradeable outputs. This approach may explain its
exclusion from SITC, and its brief history may be the reason why it is not
found in ISIC.

Howe .. ·er, the fact is that software is i.ow an industry of global reach,
whose products are conceived, designed and marketed in a typical
manufacturing-type operation. The writing of software to order still
continues extensively and vi tl continue for a long time to come.!." But
increasingly it is the mass production of software as a tradeable good which
repr~sents the visible shape of the industry.

Complex issues arise, not just at the level of statistical
classification, but at the very practical levels of customs tariffs,
cross-border data flows, patents and copyright law. More fundamentally, they
arise in the questions of the nature and future shape of the industry, the
evolution of th' manufacturing process, and tt.e internationalization of
production. So rapidly is the role and nature of software developing that a
fully comprehensive view of its scope is not easy. However, certain
characteristics are visible which suggest that it can usefully be regarded as
an industry producing merchandise which is traded. Thi5 aspect of software is
growing rapidly. The industry is labour-intensive, but also skill-intensive.
In addition, tEchnological change affects this industry also: there is a
tendency towards increased capital inputs, al though clearly the overwhelming
character of the industry is that of a (skilled) labour-intensive one.
Technological c'1ange has also affected product life cycles, which are
continuing to shorten, but perhaps the biggest influence on this tendency has
been the increasingly fierce competition among producPrs. A search foe new
product ideas is a continuing necessity for survival.

With respec;: to technological change, thP. time needed for most
innovations is substantia~. !his is because of the labour- and skill-intensity
of software devP.lovment. Thu3, between the conceptual definitional stage of
the new software and its fauJ t-free, saleable form, a considerable Lime,
sometimes years, may bf' needed. New tools may allow for a shortening of
development time, b~th by incr.easing progranner productivity and by
simplifying the complex managerial tasks associated with large software
projects. llowever, one interesting effect of the long product rlevelopment
times tor new technological levels of aof tware is that the future shape of

- 5 -

software can be predicted with more confidence than for other products of
industry. Thus, areas of search for new opportunities can be more easily
identified. In general, the software industry, although many large firms are
found, rema.ns open to newcomers. It offers potentially large rewards for
innovation. Because of constant change in technology, it provides many niches
for which distinctive products can be developed.

1.4 Software and developing countries

For developing countries such considerations are particularly important.
Software skills are in any case necessary to maintain or improve the

• competitiveness and efficiency of all sectors of their economies, not just
manufacturing. However, only mastery of such skills can allow the developing
country to control the direction of its informatics tlevelopment as a whole,
since reliance on imported software will direct its production structures into
ways of doing things which are determined elsewhere. Titis can be a difficulty
not only from a cultural point of view. It can raise problems also in very
practical ways. Imported software may require data in a form in which it is
not usually kept in the country, or may assume a particular system of
accounting or taxation which is usual in developed countries •1/ To use them
may mean a complete alteration of patterns of work and ways of thinking.
Often the resulting confusion could wipe out any gains in efficiency made by
computerization. Even if this is not the case there is still the problem of
interfacing with other, manual systems which use the accepted national
approach to the problem in question.

Tite mastery of software skills becomes especially critical if the
informatics field is recognized as a main means by which developing countries
can increase their international competiveness. The developing countries'
cost advantages of low wages can be and in fact are being quickly eroded by
heavy investment in automation and CIM in developed countries. Developing
countries in any case face enormous problems of co-ordination in enabling
their economic and social systems to improve the living standards of their
people, and informatics technologies can contribute significantly to their
solution.

These arguments for infonratics development in developing countries are
well known. They are restated here because an additional point is to be made,
which is that, in evaluating the scope of software development in a developing
country, the external market has to be considered.

The expoi·t of software (which can be to another developing region or the
world market as a whole) has distinct advantages for developing countries
which require that it be seriously considered as a policy option. Firstly, it
should be recognized that software is an industry !ike any other with
advantages (and of course disadvant~ges) as a component of an export
strategy. But secondly, ttiere is the vital point that a concentration on
exporting software will promote quality and technological progress in the
domestic industry in general, in a way that concentration on, for instance,
clothing manufacture or food processing will not. This i£ because competition
in the latter field is based in so many ca;es on price alone, and in software
exports this can never be the case.

The improved quality of a software industry ori~nted to the external
market means in turn that the rest of the developing economy concerned then
has direct access to strategically important ccmponent.s for improving
organizational efficiency, increased produ:tivity, enhanced competitiveness,
and the flexibility needed to respond to rapid changes in economic conditions

- 6 -

The increased application of microelectrcnics, computers, teleconmunications,
and automation all require a mastery of softwar~ skills. A competitive
software industry in a developing country, which succeeds in selling software
products in a very chal\enging and rapidly shifting world market, is a
national asset which can contribute to most other economic activities within
t'1e country.

..

•

- 7 -

2. OVERVIEW OF THE INDUSTRY

2.1 types of software

In this section, ve attempt a statement of the kinds and classes of
software that are marketed, not in attempt at a definitive taxonomy, but in
order to provide the working language needed for a discussion of the actors in
the software industry, the roles they play and the strategies they follow.

As noted above, we are restricting our working definition of "software"
to include only instructions to the computer or other programuble device.
This, in fact, could make our definition of software the same as that of
"programaes", but it is probably better to regard software as a generic term,
covering all traded software. The units of software may be a programme or a
set of prograomes (sometimes called a "suite") if they are related to ane
another.

Software can be written by the user ("developed in-house") or it can be
acquired from an external supplier. ~<>111etimes this doesn't cost anything.
This can, of course, be the case if the software is illegally copied. But it
can also be the case if the software comes from a university, for instance, or
a voluntary group of users of a particular type of computer, or a professional
society. This is c~lled public domain software and is particularly important
for microcomputer software (such software can often be worth investigating,
before embarking on a major software development project).

In turn, the software acquired externally can either be written to order
to meet an individual requirement ("custom software") or j t can be already
written and o~ general offer. This is called packaged software.

The main types of software are systems software and applications
software. Systems software is the software which helps the computer to work,
and applications software is the software which does the work which makes the
co11put1?r useful. Thus, the payroll prograame, which calculates the monthly
salaries to be paid, is an applications progranne, while a disk utility
progranne, which organizes the various files of information in some way on a
magnetic storage device, is an example of systems software.

Systems software includes, most importantly, the operating system of the
computer. This is the software which governs the interact ion of all the
components, interrogating the operator's keyboard and writing to the screen
scheduling tasks, deciding on priorities, organizing storage, etc. Oferating
systems can be very rudimentary or extremely sophisticated. They are crucial
in that they usually determine the environment for any other software to be
used on the computer. An operating system is almost always present, and any
other software to be used on the computer has to be compatible with it. Thus,
to tak~ an example, MS-DOS is an operating system for computers of the IBM
Personal Computer type, and the software to be used with it is said to "run
under MS-DOS". If an operating sy'>~t::n is sufficiently sophisticated, there
may be no other systems software available or needed for the computer, but
more usually there will be so-called utilities to improve upon the tasks
carried out by the operating system or to supplement them. Another example of
systems software is a special programne to handle connunication with computer
terminals or with other computers or devices.

Application progrannes include packages for automating the calculations
involved in almost every field of human activity. A package is a term applied
to a more or less ~tand-alone computar progra11111e which offers full control of

- 8 -

input and output and of storage within th:? prograJlllle. It vi 11 typically be
able to carry out a wide variety of different tasks within a subject area. No
hard and fast rules separating progrannes from packages have been drawn up,
but the ability to issue alternative connands to a prop·anme may be the key
characteristic that deten:-.ines whether it is a packa1;c or not. Thus, a
spelling checker is probably a pro11,ramme: it takes a file of text and
compares each word against a dictionary to find errors. But word-processing
software is a package: there is usually a sufficient number of c .. oices of
things to do, e.g. to edit, merge, cut, paste, search, word count, etc.
(There will probably be a spelling checker incorporated, also).

As noted above, "packaged software" is something rather different. Here
the word package is used to emphasize that what is being sold is being treated
as a consumer good, a product which could be found on shelves in shops. The
software (usually on diskette, with a user's manual, wrapped in a box, is
marketed often with the same skills as are used to market any other
fast-moving consumer good).

The distinction between systems software and applications software is not
always absolute. A database package, for instance, is systems software in
that it is concerned with the organization of data and its storage, and it may
arrange all the data on the disk.i of the computer, superseding the existing
arrangement followed by the operating system. Similarly it may carry out
co111m111ications and other functions normally carried out by the operating
system. But a database prograJ1111e, from another point of view, is applications
software, because it usually provides tools for sortin~. selecting, totalling,
and, in general, what is called report generation, i.e. the carrying out, as
required, specific analyzes of the data in the database and the presentation
of the results in an acceptable form. Computer language software is also
difficult to classify: arguments for both points of view could be found.

But the distinction between systems and applications is still a useful
one, and will be followed in this paper. There is plenty of software which is
unambiguously of one kind or the other, and the classification helps to
analyze the industry in more detail, and its relation to the hardware
question. Secondly, the two types of software are increasingly being sold to
distinct markets. Systems software is largely bought by computer specialists
and professionals, and applications software more by non-specialists who are
interested in the computer only as a tool to assist in accounts, engineering,
medicine, law, customs clearance or some ether activity. It bas been
increasingly noted that even though the actual purchases of applications
software may be made, in a company, by the data processing t.epartment (i.e.
the traditional computer users) the choice may be as a result of pressure from
the non-computer staff who have identified the piece of software as useful for
their own work. The so-called end-users thus exercise increasing influence,
and marketing efforts are increasingly directed towards them.

2.2 Software producer~

The main types of producers are as follows:

Computer manufacturers
Software companies
Original equipment manufacturers (OEMSs)
Value added resellers (VARs)
System houses
Computer users

•

- 9 -

The computer manufact~rers are major producers of software. In the past,
computer manuf~cturers used to provide almost al i the software that :1as
available for the computer in question, apart from that written by the
purchaser. There was thus no so-called "third-party" software available.
Manufacturers have to ensure that thert i~ enough software available to
encourage tJUrchase of the machine, and this they do either Ly following an
existing hardware design, or by providing a version of a standa::-d O!)erating
system, for both of which sufficient software is considered to be available.

Software companies are difficult to classify. They range from very small
enterprises, with perhaps just the proprietor writing and selling the
software, to large multination.:-..is with complete international distribution
systems and full service and support :ietvorks. The coDIDOn characteristic of
software companies is the high ratio of skilled employment to fixed assets.
Certainly the company will have c::;mputers on which to develop the software,
but the main assets are its people. The R&D phase is the crucial and the
expensivr one: production costs have been low up to now, involving merely the
duplication of a tape or diskette. However, increased ccmpetition has led to
a more demanding market for documentation. The companies have to provide
detailed n~nuals and usually spend a good deal in making them attractive. The
need to prepare different language versions is a further cost of production.
In addition, sales and marketing expenditures in a highly competitive field
have become increasingly significant. Also, apart from documentation pEr se,
the purchasers of the software will expect, depending on its price, a range of
services to be provided by the software producer. This includes telephone
support (such as a "toll-free hot line") which pro\-ides the user with help and
advice. Other services provided can include newsletters, user groups, etc.
While the user may be charged a fee for some of these, there is usually a
subsidy from the software producer also.

The name OEM is misleading, since what OEMs do is to put together a
pac\age of hardware and software, put their own name on it and sell it. Thus,
an OEM might buy a basic computer from one manufacturer, memory and
peripherals from another, and software ·ram a third. The OEM may, however,
also produce or co11111ission extra software. The whole package is then marketed
as if it were the OEM's own product.

A VAR (Value added reseller) is rather different, being typically a
dealer who buys in all the hardware often by arrangement or exclusive
agreement with a single manufacturer, and then sells it on, with pernaps
proprietary software and training included. The VAR will specialize in a
particular application area, such as accounting, architecture, etc.

A system house is a more autonomous body because it does not carry out
purchase and resale activities. It is exlusively a service sector body. It
can advise on purchase, design systems, and carry out the necessary
progranming. This software production is thus typically done to order, meet
the needs of a particular client. It may, if successfu·, also Lead to the
production of a package sold again to other customers. The transition from
system houses to software companies is thus by no means unusual.

The computer user is the remaining category of software producer, which
is by far the largest. Computer users, especially of mainframe coll'puters,
often develop large quantities of software for use ·.,ithin the organization.
In fact, this is the overwhelming majority l'f all software ever produced.
Little of it, however, ever moves outside the organization in which it is
developed. There are exceptions, however, and a company, for instance, in a
quite different field may develop software that is marketable. In so far as

- 10 -

its release does not reduce the competitive advantage of the firm it can be a
profitable subsidiary activity. For instance, the McDonnell Douglas Company,
~hich makes aeroplanes, has developed a number of software products which were
originally for its own use in engineering design. It now sells these and has
moved into many other computer fields also, being a system house as well as
software producer. Many other examples can be found of the transition of the
compu\:er department of a company becoming an autonomuous system house and
software producer. The phenomenon is more coamon in the services sector.,
how\?ver, with ban"Ks, insurance companies. and accounting firms being typical
breeding grounds for such activity.

2.3 The size and structure of the software industry

Assessment of the size of the software market is very difficult, as is
the estimation of the vah~e of soft'lare production. The latter question is
particularly complicated due to the fact that, as noc:erl above, most software
is not traded, but developed within companies or institutions for their own
use.

Even considering only collllk?rcially handled 5oftware, however, the
statistical classifications used in industrial ~tatistic~ are usually
inadequate. A particularly intractable problem is caused by the fact that
much traded software is produced to order by system houses who will charge the
customer not only for the software itself but for a range of consultancy
services associated wit.h it, inclu1ing system ana!ysis and general business
services. If the system house is a computer bureau also, it might provide, as
part of a package, the actual data preparation and processing also. To
separate the specific software costs is not easy. A similar problem exists
with what is called "bundled" software, which is software sold with a computer
as a package deal, or provided free to purchasers of a particular computer.
International trade in software is equally difficult to measure because of the
similar lack of adequate classifications as well as the different treatments
of software for custom valuation purposes. The ease with which software can
be transmitted by telephone lines, for instance~ further complicates the
measurement of its international trade. Finally, the problem of software
piracy makes it difficult to envisage any fully statistically consistent
pictures of production and trade in software. The spread of pirated software
is due principally to the increased demand for pacicaged soft'it'are for the
millions of personal computer users.

In spite of these caveats, however, estimates of the value of software
can certainly be found. The OECD has been particularly active in this field,
and published a first survey in 1985. It drew on a wide variety of data
sources but was unable adequately to separate out specific software activity
from the services provided by system houses. A new study soon to appear gives
Sl)me alternative estimates.!/ Broadly speaking, the more country coverage
is increased, the less precisely is it possible to confine the figures to
software alone. Thus, for a total of 32 countries, the software market in
1984 was $US 26.6 billion, and in 1987 estimated for 29 of these countries to
total $US 48.8 billion. The country coverage could be wider, but then it
would not be possible to separate out all software from services or hardware
sales.

- 11 -

United States estimates give the world software market as having a value
of $US 30 billion, of which United States suppliers have an approximately
70 per cent share. Packaged software revenues amounted to 63 per cent of the
United States total revenues in 1985, and packaged software for personal
computers was the fastest growing segment. Other estimates include those of
United States revenu~ from overseas sales of software being over 20 per cent
of the total revenues, t~us amounting to about $US 4 billion. Packaged
software is 30 per cent of the United States total exports. The largest
software markets for United States exports are given as Canada, Western
Europe, and Australia . .!,·

Another world estimate comes from an authoritative private source, and
gives "software costs" as "$US 140 billion worldwide" in 1985. The figure is
given in the context of a discussion of software productivity, and clearly
includes in-house development of software. The writer refers to a present
growth rate of 12 pt'r cent per annum, and projects the world total to be
$US 450 billicn in 1995, with the United States share remaining at
50 per cent • .!.!!/

Perhaps becau~e of the statistical difficulties in coverage of the total
software market, :t is easier to obtain estimates of packaged software alone.
Thus, one estimate eives a world market projection os $US 22.3 billion in
1989, having been $ii5 5.8 in 1984. Of this packaged software, the share of
applications suftwarf'.: is 72 per cent in both years • .! .. !/

The ,.;tn1ct:ur-·1 of the industry is a complex one. Certai.1ly there are some
large firms, :inti U1P. tendency in recent years, especially in the United
States, has been for them to expand further by acquisitior.. In the first six
months of 1987, there were 137 acquisitions or mergers in the computer
service& field (here including companies in the software business). The
associated value of these agreements amounted to $US 2.1 billion. In the
previous full year, by contrast, there had been only 130 such arrangements,
with an aggregate value of $US 1.9 billion. 1·1/

Th~ce are reasons for this tendency: the principal ones being the human
capital assets of software companies. A team of unique talents will be
attractive for a takeover because they will bring benefits to the acquirini
company in a way in which a simple increase in recruitment would not. In tt
specific case of packaged software, a takeover will allow the acquisition of
product for which the development of something comparable would take years ana
for which success might be doubtful. But the single factor most influencing
the tendency towards mergers in the software business is that those within it
are best placed to identify opportunities. A software company is more
attractive to anoth~r one than to a financial conglomerate.

2.4 The role of standards

Two types of standards are found in the software industry. The firat is
the formal standard established by a national or international body. The
second is the de facto standard, which is a result of a particular piece of
hardware or software becoming so widely used that it is recognized as having
created a market. Examples of formal standards ihclude t.hose adopted by such
bodies as the American National Standards Institute (ANSI) and those of the
International Standards Organization (ISO). In many cases, and particularly
with ANSI standards, a national standard goes on to become internationally
accepted, with perhaps a version of it subsequently being adopted formally by
ISo.l.l/ Examples of de facto ~tandards include MS-DOS and the related
PC-DOS, both developed by Microsoft Corporation for tho IBM PC and compatibles

- 12 -

Tbe:i;e are operating systems, and therefore they effectively determine the
environment in which software to be used on these computers has to be
written. While being extremely widespread and having sold in the millions,
these standards have not been adopted by any body as such. Yet they have
influenced the creation of thousands of other software products intended to be
sold to those who use this operating system on personal computers.

A software standard is a definition of a concept, to be followed by those
who implement it as software. Thus, the standard for a progranning language
is a full definition of the language, its structure, its gramnar and syntax,
its statements and coamands. A software rroducer can produce a compiler which
exactly reflects the idea of the language, an·i can then describe it as "a full
implementation of the XYZ standard". Another software manufacturer can
produce a piece of software written in that language, using only that precise
version of the language defined in the standard. In principle, therefore, the
customer can buy the language compiler from one company and the application
prograane from another, if they both follow the same standard. If they do
not, however, and therefore, if the customer has no guarantee that they will
work together, he may decide to buy neither. Languages and application
software are a simple example. In practice, most application software is not
distributed with the so-called "source code" because this is often regarded as
proprietory information of the vendor, and to allow other to have access to it
would allow them to modify it rather than coming back to the original vendor
for help, and thus further business. It would also allow other companies to
imitate some of the particular tricks and embodied skills within the
software. More practical examples will be found in the area of compatibility
between application software and operating systems, or between two application
programmes. With respect to data compatibility, for instance, th.? highly
successful package LOTUS 1-2-3 stores its data in computer files in a certain
format. Another software manufacturer may advertise his product as able to
read files in LOTUS format, thus, this product will be inmediately attractive
to those who already have the LOTUS product. There is a curious secondary
effect, in that the very fact of a manufacturer proclaiming a product to be
compatible with LOTUS generates a further support for LOTUS as a standard • .!.!/

In general, the issue of standards is very important for software
producers, particulady those beginning in the business. To have a clearly
defined standard in the area of application can be very important for the
producer, because it provides him with some sense of the merket for the
product, and it provides him wi~h a relatively stable technical environment in
which his software developllk.nt can take place. Be can be reasonably assured
that if his product is a failure, it will not be because of its technical
unsuitability, but for some other reason. In principle, therefore, standards
can be just as useful to the software producer as they &re to the software
consumer. However, it is a fact that the setting of formal standards js a
complicated process of national and international negotiation, involving many
scientific conmittees at different levels. Typically, the major producers are
represented on at least some of the co11111ittees involved. They are in a
position to influence to some extent the adoption of the standard in such a
way that it includes areas in which they have particular competitive advantage
or particular skills. In any case, by being involved in the decision-making
process of the setting of the standard, they have access to information as to
the form the standard is likely to take. This gives them a competitive
advantage which is not enjoyed by the small and new producer of software.
From this poi~t of view, therefore, software standards are a disadvantage as
far as the n~w producer is concerned and have severe draw-backs for him or
her. Howeve~, it is clear that the benefits of standards outweigh the
disadvantages. The question must therefore rather be how best to mitigate the

- 13 -

disadvantages from which the small producer suffers. As has been seen9 the
setting of de facto standards is something with which the small producer is
not involved at all and his exploitation of the market opportunities they
create is even more difficult than with formal standards 9 since detailed
information on the product which is creating the standard may be very
difficult to come by.

- 14 -

3. THE EFFECTS OF llARDWAllE TRENDS

3.1 Processors and lle90ries

The processor is that part of a coeputer which carries out the programme
instructions which constitute software. Thus it will typically carry out
arithmetic tasks such as addition and multiplication, together with other
actions such as coeparison, branching and looping. These latter and siailar
tasks are particularly important because they allow the aachine the
flexibility in hardware terms that is consonant with the generality of
software.

The kinds of tasks that the processor can do vary widely in nwaber. Tvo
seeaingly contradictory trends exist in this field. One is to make more and
mmre sophisticated processors capable of a large number of tasks. This is
supposed to make software development easier, since the aachine language
progra11111er then has access to a nuaber of powerful tools. The other trend is
to reduce the number of instructions understood by the processor. Broadly
speaking, the fever the number of instructions intelligible to the processor,
the faster that processor can work, or perhaps more correctly, the faster that
software written for that processor can work. Such processors with reduced
instruction sets are called RISC processors •. !.!/

The microprocessor is a processor on a single chip. The design trends
noted above are intended to contribute to the speed of computing. Another vay
to do this is to speed up the processing itself, and a variety of
technological approaches are used for this. Increased integration of itself
reduces the delay in instructions being acted upon. The selection of new
materials, such as gallium arsenide can also increase the speed, but this
means new approaches to manufacturing, and gallium arsenide technology,
because of its cost, bas up to now been mainly confined to military
applications. Increasing the amount of information that the processor can
handle at any one time, its basic working unit, is another way of increasing
the processing speed. Thus, the earliest micropressors were 4-bit (such as
the Intel 4004), and these have been succeeded by 8-bit (such as the Zilog
Z80), 16-bit (such as the Motorola 68000) and 32-bit (such as the Intel
80386) • .!.!/ Thus, in terms of internal architecture, microprocessors have
reached the same level as minicomputers, for which a 32-bit processor is
usual. Another aspect of this is that it makes it easier and thus quicker to
handle large amounts of computer memory.

Not only has the facility with which large amounts of memory can be
handled increased, but the speed of the memory (i.e. the speed with which
information can be stored or retrieved' has also grown. Allied to this has
been a fall in the unit price of main memory, a fall which bas been steady for
many years. A temporary shortage in recent months has caused a departure from
this trend, but the underlying tendency continues to be downward, an
inescapable consequence of technology development and the search for a
differentiated product, with both these taking place in a fiercely competitive
environment.

The consequences for the software market have been very striking. In
fact, software can be said to have been struggling to keep up with what has
been happening in the hardware field. The capabilities of new computer
systems, given the processor and memory trends described, are of a different
order to most of the software available for them. This is partly because of
the general need to have access to the hardware in order to develop software
that fully exploits it: this software development can take several years.

- 15 -

However, a trend in s".Jftvare is towards more "user-friendliness... This
means, in general, that computers become easier to use. More of the user's
mistakes are corrected, more "help messages" are given, there is a tendency
for the user to be presented with a range of options rather than be compelled
to remember a series of cryptic coaaands. Growing computing power makes i'.:
possible to bring all these ideas to reality. A package has to be elegant,
slick and well-planned: the "surface" of the software has to be smooth. No
matter how good the central idea of the package is, it must still be
well-presented and easy to use if it is to have a chance of c0111Dercial success.

The availability of faster processors and more meJDOry means that the
software in turn mus. take full account of it ano, therefore, as well as
"user-friendliness", a second consequence of hardware trends is for software
to have more functions or features. The integrated package is one which
combines what wa.~ previously regarded as separate tasks for software. An
integrated package will allow for word-processing, graphic display,
spreadsheets, database, etc., all of vhich used to be separate packages. Even
vhere they remain separate, the competitive package will have extra features:
a word-processor will have facilities such as a spelling checker, outlining,
etc., for which earlier separate progrunes would have to have been bought.
The reason for the growth in integration or what is called the "increased
functionality of software" is the availability of space and speed in the
computer which uses it.

Recently a class of materials has been discovered which exhibit the
property of superconductivity, that is, of offering little or no resi~tance to
the movement of electrons at temperatures well above absolute zero.!.!/ This
will have important effects on the future microelectronic components, and it
will mean a greatly increased speed of operation for processors and memories,
as well as bringing great changes to teleco11111Unications and most other
informatics fields.

3.2 Architecture

We have spoken as though there were a single processor in a computer, and
that is the traditional picture. The so-called "von Neumann architecture" is
the internal design pattern roughly followed since the inception of modern
computers, where a single processor performs all the calculations and makes
all the decisions, one step at a time. In fact, however, this traditional
view has been gradually modified. Mainframes and minicomputers conaonly have
more than one processor, and even microcomputers although they have one
microprocessor will often have other processors to control screen graphics or
floating point calculations. However, it remains true that these processors
do not have equal status, and that one processor provides the main control.

Recently, hardware development has concentrated on the linking together
of several processors, perhaps very many to work in parallel. There are
conceptual and practical problems, but many of these can in principle be
solved by software. New languages and operating systems can allow for a new
kind of computer programning which takes advantage of the parallel processing
opportunities the new hardware configuration p~ovides.l.!/

A further development is in so-called neural computing, which is an
attempt to follow what is believed to be the way the brain itself works.
Rather than the binary logic at the heart of present day computers, the target
is tlie multitude of interconnexions such as are found in the brain, and the
switching processes based upon the attainment of a sufficient number of
control signals at each step. The reason for the interest is ultimately the

- 16 -

hope of attaining in hardware terms some of the useful characteristics of
huaan thought processes. While hardware development has still a long way to
go, some of the features can be explored in software terms.! .. !/ In
particular ideas of 11Ultiple association, such as the hW1an brain is so
readily capable of, have already influenced database design, as can be seen in
the development of hypertext systems.

Hypertext systems are a means by which information can be stored with
arbitrarily coaplex links between its coaponents. Thus, a paragraph of text,
for instanc~, instead of being stored under one keyword or even ten keywords,
could have everyone of its words as a keyword and the relationship between the
information contained therein and any other piece of information could be
followed there through a chain of links. It is this multiple connectivity of
information which is analoguous to the way which the human brain stores
information •. !.!/

3.3 Peripherals

Several striking developments are taking place in the field of
peripherals. With respect to mass storage, a notable tendency has been that
of the growth of optical stcrage systems. These are so called from their use
of a laser to read and also perhaps to write to a storage medium. The
advantages over the conventional magnetic storage systems such as hard disks,
floppy disks, tapes, are that they provide a much denser way of storing
information, that they are not subject to loss of data from magnetic fields,
etc. A single CD-ROM, which is the size of a standard audio compact disk, can
hold 600 megabytes of information, roughly the equivalent of 1,500 floppy
disks cf the standard size. A CD-ROM can be written only in the factory.
This makes them best suited for information systems which are relatively
permanent in nature, typically including such applications as legal
information, statistics, encyclopedias, etc. A more flexible type is the
so-called WORM which is an abbreviation for ''Write once read many times".
This is also an optical storage medium which can be written to once by the
computer user. When a WORM disk becomes full, it is simply set aside.1-.. !/

The full availability of optical disk storage awaits the arrival of a disk
which can be written to and erased by the computer to which it is attached.
Such a technology is still being developed, but is expected to be brought to
market in the next couple of years. The potential of these storage systems is
immense. They offer a means by which enormous amounts of data can be stored
and easily accessed by a computer user. This means the disappearance, in
years to come, of slow techniques such as storage on magnetic tapes of less
frequently used information, a practice which is called archiving. They mean
also that it will be perfectly practicable to store in character form every
document generated by the business, and thus every piece of information in the
business could be sear~hed for and analyzed by computer, inciuding, for
instance, all correspondence over a period of as many years as it is desired.
The introduction of scanners, which can read the type characters from paper
into the computer, means that it will be possible to store all correspondence
in this way, eventually including handwritten correspondence.

Such technology will provide enormous opportunities for software
developers. The opportunities wi 11 lie principally in providi .. ng too ls for
those who use this information, in order to allow them to make sensible use of
it. It is one thing to be able to acceu quickly all of tt:e relevant
information, it is another thing to be able to decide what is important or
whal is not. The user will still have to search through the material
available. Hence "intelligent" software which will help the user to make best

- 17 -

use of all the information is a promising field. It represents a q~alitative
change from the kind of software which manipulates the information, as present
day database systems do.

The so-called .. user interface .. has seen developments in several areas.
Particularly important is the growing use of graphics. It can be expected
that the screens of computer workstations will become larger, vill have higher
and higher densities, and will provide more and more information to the user.
the growth of such techniques as .. windowing" allows for the display of several
different information areas on the screen, including information about perhaps
different processes under "· ! . The increased hardware speeds mean that the
numerical calculations invc ~ ved in graphical displays can be carrie~ out in
more and more detail, and ~ois has led to increased sophistication in CAD/CAM
systems, for instance, wht..e diplays which can manipulate three-dimensional
images are more and more usual. The softlo'are developments associated with
this include the growth of ¥Mt are called object-oriented languages, since
the traditional mathematical languages such as FORTRAN often used to produce
graphics images, are inadequate for the kinds of sophisticated graphics
application now being j.eveloped. (A further push towards object-oriented
languages comes from the growth in artifical intelligence applications).
Thus, hardware developments in display technology have created a significant
market for software products, and one that will grow.

Coamunicat ions between workstations and computers, and between computers
themselves is another growth area where hardware developments have allowed for
the creation of very "'aborate networks. These networks in many casec.; span
countries and continen ·_;;. Where telecoamu.,ications have been I iberal ized, and
this is an increasing trend, the linking of computers has become co111DOnpiace.
Fibre optics developments mean faster co111DUnications of this kind. There are,
however, still very significant problems in data coaaunication which the
emergence of new standards has not yet overcome. Many different protocols
exist, differer1t computer manufacturers will follow different standards, and
national telecommunications authorities in many cases restrict the use of
standards to those specified by them, or refuse to allow the connection of any
equipment to the national network which has not been certified oy them. This
means that co11111unication software in general has many compatibility problems
to overcome. There remains also considerable scope for improved networking
standards which would allow for more flexible and faster communication between
different systems. An enormous number of niche markets is thus created, since
software to overcome particular compatibility problems, or to allow two pieces
of equipment to be connected together, may provide a neat solution to what is
an otherwise intractable problem or, alternatively, a relatively simple
problem which has been ignored by the makers of the equipment. thus, even the
confusion in the computer conwnunications field can bring benefits to the
software producer, although it is such a rapidly changing field that these
have to be continuously solved in new ways. h1 the longer term, the trend is
towards an ISDN (Integrated Services Digital Network) system, which will be a
public network to replace the existing separate telephone and dedicated data
networks. This is a tendency which will lead to increased standardization and
perhaps few~r opportunities of this kind. However, the process is not likely
to be completed in a short time. The spread of the Open System Interconnect
(OSI) standard is a further development which will influence co11111Unications
software significantly in the longer term.ll/ Again, the transition periods
may offer opportunities for the bridging of gaps.

- 18 -

4. t1lEMDS IN SOFTWARE

4.1 Overview

This section examines trends in software which are expected to have an
iapact or. world 11artets in both the short- and the mediwa-term. Software in
general can see a long delay between a theoretical advance and a commercial
application. This is for several reasons. Firstly, an advance may simply be
of no commercial interest. Secondly, the software advance may be rendered
redundant before it can be aarteted. For instance, a software advance that
speeds up a particular calculation or enables less storage to be used may well
be irrelevant in a context of rapidly falling hardware prices. Thirdly,
software has to encounter significant resistance in its traditional
consumers. Computer staff will have invested several man-years in the
constrdction of a particular application. The nev product, even if better and
cheaper, may still require conversion of the existing data, and time to be
spent in a transition period when both systems have to be kept working, tt·.e
old and the new. It can appear easier to keep the old system in operation.
The situation is worse when the product offers a more dramatic break with the
past: it may imply data st~uctures and system procedures which are so
different from what has gone before that they intimidate the potential user
vho has been conditioned by the existing system. The producers therefore
cannot move too much ahead of the users.

This is not to diminish the role of innovation in the industry, but it
must be realised that bottlenecks occur, and the absorptive ca:;>acity of the
market can be limited. Good ideas may have to wait their turn, especially if
their cost is high either in terms of purchase price or in terms of further
investment of own resources by the user.

There is nevertheless scope for innovation in software, especially when
it is associated with a hardware innovation. The best example is given by the
microcomputer. Its widespread availability generated a number of software
innovations, with products being produced which were qualitatively different
from mainframe and minicomputer software. Spreadsheets are a product of the
microcomputer era, which mig'·it better be called the personal computer era.
This is not only bec~use of the dominance of the IBM Personal Computer and its
clones, but also because the personal character of the comput'!r determined
much of the software which was written for it. Spreadsheets are targeted
towards the manager, accountant or clerical worker who ,.,orks with tables of
figures. At the simplest level, a spreadsheet will maintain the row and
column totals of the table, and can be set to automatically adjusted the
totals when any individual figure or group of figures is changed. In
practice, spreadsheets have grown more and more sophisticated: the
possibility to specify arbitarily complex relationships between table entries
and between groups of table, as well as the order and manner in which
recalculation can be carried· out has meant that spreadsheet coarnands have
evolved into programming languages. Nevertheless. the natural matrix
orientation of these spreadsheet languages gives them characteristics unlike
any of the widespread high-level computer languages such as Fortran, Cobol or
PL/l.

A further genre of personal computer software has been the integrated
package, where a nwnber of different functions (spreadsheets, database,
graphs, etc.) were combined in one and allowed the usP.r, for instance to move
data from the database to tl".e spreadsheet, to make calculctions from it and
then to draw graphs to display it. Previously these steps would have had to
have been carried out through the separate selection loading and running of

- 19 -

these different software packages. The integrated software package allowed
the user to computerise all his traditior.al office activities. A later
development was •he addition of other facilities, especially word-processing,
within the package.

A further feature of microcomputer software has been its "user-friendly"
character. Thts arises from two causes. Firstly, some of the individuals vho
pioneered the development of microcomputer hardware and software were partly
motivated by an individualistic feeling about the role of computing power in
general. They did not see it as something centralised and something that
should be accessible only to the initiated. ~ second and now dominating
feature is that the coamercial packaged software producers realise that they
are catering to a market the majority of vhose members have either no computer
experience at all or else are essentially self-taught. being accustomed only
to using other packaged microcomputer software. The consequence is that they
must at least maintain if not improve on a tradition of user friendliness.
This trend is reinforced by the hardware trends already discussed in Chapter
3. above, vhei-e the falling costs of memory and storage devices means that
software can be bigger and store more messages to be sent to the user, guiding
him or her through the use of the progranne or package in question and
explaining errors, not just pointing them out when they occur. This trend
further exemplifies the need for software developments in some cases to wait
on hardware developments, even though the inventive character of user-friendly
features may in fact be very low.

It is useful to make a distinction, in examining trends in software,
between evolutionary change and new technolo~y software. Evolutionary change
in software can be defined as change determined by improvements to previous
stages of the software, where the lines of descent are fairly visible. In
simple terms, improvements have been made to existing ways of doing things.
New technology software on the other hand refers to software developments
vhich are associated with using computers tu do things previously done in
other ways or not done at all. Here can be included most artificial
intelligence (A.I.) applications, such as image recognition, speech
processing, computerised translation, expert systems etc. It can be stretched
to include concepts of CAD/CAM and Computer Integrated Manufacturing (CIM),
vhich amount to new ways of doing tasks which had not previously been
automated. The point to be emphasized is that the first computerisation of
accounting, payroll, stockkeeping, etc. took place many years ago. New
software developments in such fields as these is evolu~ionary because it
accomodates to some degree at least the systems which are already in existence
and allows the exploitation of innovation without the perhaps painful
abandonment of existing systems.

The line between evolutionary and other software can be hard to draw in
some cases, especially when the software product incorporates features which
are partly evolutionary and partly not, such as the use of expert systems in
database applications. Why, then, make such a distinction? It is important
strategically because different markets are in question and it is important
also in investment t~rms. A new departure in software may, precisely because
it starts from scratch, involve considerable inputs to reach production
status. Financing tt.e development costs may be painful, since cash flow in
the early marketing stages may bl? slow. The evolutionary product, on the
other hand, may represent a repackaging of an existing product or its transfer
to another computer system. Software tools such as cross-assemblers may make
this ~rocess easier. Again the new evolutionary product may be able to take
advantage of elements of the software environment in which it applies, and
thus make use of improvements carried out by someone else. For instance, the

- 20 -

systems soft:.ware of a computer often undergoes continuous improvement by the
manufacturer. It may contain new and efficient ways of reading, copying,
comparing and checking data and displaying it, storing it, and printing it.
This sort of software is unglamorous and yet it involves a great deal of
detailed work. The astute independent software developer can take advantage
of much of this work and thus spare a good deal of the development time by
finding out how these parts of the system software work and allowing his own
software package to use them. As well as saving time in the development
phase, this will very often mean an increase in the speed of operation of the
finished progranne itself. Again, some parts of the system software may be
inefficient and the producer will decide to bypass them, approaching the
hardware directly. Such practices, however, have their dangers for the
software developer. The reason is that they can tie the product too closely
to the hardware of one computer manufacturer, or to one version of the system
software, an~ thus restrict the potential market and increase dependency.

4.2 Operating systems

As briefly mentioned in Chapter 1, the operating system provi~es the
necessary control and comnunication between the different parts of the
computer and its peripherals in such a way that it is accessible to the user.
The operating system provides a framework, more precisely a defined software
environment, in which applications software can be written. It also carries
out a lot of the tasks needed by the application e.g. control of the input and
output, and, in multi-user systems, time rharing, and automatic back-up and
recovery. This also means that an operating system defines a software market.

The point is worth emphasizing: the same operating system, if it is
available on different computers can (in principle) allow an application
written for one computer to run on another. Equally the same computer can use
more than one operating system, and an application written for one computer
will not run on an identical computer if the operating system beii.g used is
different. The operating system thus insulates the software developer (to a
large extent) from the physical computer. But it makes software development
less hardware-dependent only at the cost of making it operating-system
dependent. (The role of high-level languages in countering this tendency is
examined below).

In general a computer is supplied with operating systerm sot~ware

included, since a computer without an operating system is of interest to a
specialised few. Therefore it has almost always been the case that the
computer manufactu::-er supplies an operating system, usually written to take
advantage of whatever llardware features characterise the new computer (but
increasingly with an emphasis on distancing the user from hardware
considerations per se). At the same time, attempts are made to acco111110date
earlier versions of the computer and operating system, either by providing
that any software written to run under the old system will run under the new
one even if it does not use all the new features provided in the latest
version "upward compatibility", or else by supplying a set of software to
assist in the conversion process, that allows the old software to be
automatically changed so that it can function under the new system. This is
sometimes called an "upgrade path".

Operating systems are sometimes classified as multi-tasking,
multi-processing, multi-user etc. In market terms, the most vital distinction
is perhaps between multi-user and single user systems. Broadly speaking,
mainframe and minicomputers have multi-user operating systems. either in the

- 21 -

sense that the system can deal with a number of different tasks submitted to
it, or in the sense that many users are actually physically linked through
termina!s to the computer.

Multi-user systems are vhat are needed in ordinary economic activities.
Most of these involve exchange of information between those working in the
same organization. If the computer contains the organization's data in a
multi-user system then all the staff can in principle have access to the data
and change it as necessary. It is this relatively simple idea vhici- lies at
the heart of the database concept and explains the growth of this in recent
years .. !.!/ In practice, for most coanercial and industrial tasks, multi-user
systems are necessary, or soon become so.

It has often been remarked that personal computers, and especially those
based on the newer 32-bit processors, are more powerful than many
minicomputers. In some senses (that of calculating speed and memory
management speed) this is certainly true. But in another sense, that of
multipie use, this is not so at all. The typical per.;onal computer is not
designed to be shared. Only one person at a time can use it,-!.!/ and it is
not even designed to be userl sequentially, since there is little or no
security to protect unauthorized use or accidental destruction of the software
or data stored on the computer. The kinds of software available for personal
computers reflect this type of individualistic use and in general encourage it.

The gap between single-user and multi-user systems is bridged by
networks. A network is a combination of hardware and software, which allows
computers to be linked together, allowing for the easy transfer of data
between them. Personal computers, minicomputers and mainframes can all be
combined in networks in different combinations, allowing for the shadng of
information between !ifferent parts of an organization using different
computer systems. Networks thus provide a way out of the dichotomy between
single-user and multi-user systems. Each part of the network can, if
necessary, be established as an independent system but with the capacity to
exchange data with the other parts.

In practical terms, a form of networking tendency can be seen in the
growing emphasis on the linkage of personal computers with mainframes and
minicomputers. Workstations of considerable power are replacing the
traditional dumb terminal~. The personal computer system OS/2 Extended
Edition, which is being developed for the IBM PS/2 series of Intel 80386 based
microcomputers, will contain specific prov1s1on fo~ accessing mainframe
databases and downloading selections from them for analysis on the P5/2.

For mainframe and minicomputer operating systems, a significant trend has
been the growth in importance of the UNIX operating system. UNIX is notabl~
because it represents a standard that operates over mainframe and
minicomputers from different manufacturers. It is also increasingly available
for microcomputers as these eY'land in power and speed. Thus it offers a
bridge between all three cate6ories of computer and in principle allows
software developed for one type to be usable on all.

What is UNIX? An operating system is difficult to describe in a few
words, but it has one important characteristic, its multi-user orientation to
which particular attention was paid in its design. Another important feature
is its "piping" facility, which conceptualises data processing, input and
output in such a way that the user is not concerned with the physical
characteristics of devices and can freely and easily change his or her use of
them. UNIX is a large operating system because it contains many features that

- 22 -

are optional extras on other systems. It thus spreads standards into areas
such as security, data transfer, networks and other areas. The wide-ranging
and comprehe~sive nature of UNIX thus adds to its attractions.

Its critics say, among other things, that it is a cumbersome system which
requires a good deal of main memory in the computer to use it, that its syntax
is clumsy, that not enough good connercial applications software is available
to be run under UNIX, too many different versions of UNIX exist, and the
progress in spread~ng UNIX nas been so slow that better operating systems are
now available. None of these points are accepted by UNIX supporters, who
point out that memory prices hav~ fallen so much that the size of UNTX is no
longer an argument against it, that more user friendly interfaces to UNIX are
available, and that whereas in the past use of UNIX was concentrated in
academic and the scientific coD1DUnity, now much connercial software is
available for business applications.

UNIX is not only a technical phenomenon, however, it is an illustration
of che kinds of competitive tensions which characterize the world of hardware
and software manufacturers. As such, its history is confused, and its future
only slightly less so. At one stage it was regarded as a vehicle for
challenge by AT&T (its original developers) to the position of IBM ... ! .. V It
has also been seen as a means by which many other (mostly European) computer
manufacturers could mount a similar challenge, setting up a corporation
(X/Open) to do so •. !.!/ Another approach through the traditional standards
setting approach see!r.ed to bring consensus on a universal UNIX interface
(POSIX),·! .. !/ and involved several competing companies. However, a growing
conmitment on the part of IBM to its own form of UNIX, called AIX, and a
developing relationship between AT&T and Sun Microsystems,.!!/ may have been
among the factors leading to the formation of another body, t'le Corporation
for Open Systems, which united IBM with many other companies in a bid to
promote open systems based on the X/Open and Posix standards •. !.!/

The organization X/OPEN is worth mentioning in connexion with UNIX
because it shows a remarkable tendency on the part of several hardware
manufacturers, particularly European, to combine in what is essentially a
market-sharing strategy. The objective is to allow for the free movement of

f JO/ applications software rom one make of computer to another.~ By this
means a large colllllOn market in software can be created. If successful it
would greatly assist the survival of the smaller manufacturers of computers.
At present these have to go to considerable efforts to ensure that there is a
sufficient choice of software available for their computers. Given the
increasing development costs of software and the competition emerging from the
·nicrocomputing world, this is an ever more difficult task. For some
manufacturers, a commitment to X/OPEN, and to the development of UNIX as a
standard, may well have been the only course to follow.

It should be added UNIX is not the only operating SYl~tem c:.vailable for
different brands and types of computers. Another one, PICll. is an operating
system with embedded applications, data base manag~ment in particular.
Traditional distinctions between operating system COrnrN:;nds and data base
inquiry languages become blurred in such a context. Pick has done q1.1ite well
in specific cormiercial fields, but its role in mor.'! general applications is as
yet unclear.

What does all this mean for the potent,ial software producer? There are
two important lessons to be learned. The first is tbe increasing complexity
of operating systems. UNIX exemplifies all, this very well. In itself it is
complex, with many facilities and many ways of doing things. But as well as

--------~- --- - - -

- 23 -

this, there has been over the years an accretion of software which adds to or
expands on the basic facilities of the system. For instance, the IBM version,
AIX, has added half a mi 11 ion 1 ines of code to the original version of
UNIX • .u.·

This trend in complexity is also seen in OSl2. the operating system to
replace MS-DOS for personal computers using the Intel 80286 or 80386
microprocessor. MS-DOS was supplied on one diskette, while the Extended
Edition of OS/2 will need about 16. But it will include considerable database
and other capabilities.~/

Clearly this could make things difficult for the new software house. To
master fully the complexities of new operating systems may be beyond the
capabilities of a small company. It may not be able to discover all the
tricks and hidden short-cuts in the operating system which can be used to give
the package a unique character. Again, one of the reasons operating systems
are growing morE complex is that, as noted, they are incorporating more and
more functions previously regarded as extras to be provided as additional
systems software or as applications software. Databases and database access
software is a particularly strikbg example of this. The opportunities for
third-party software firms are therefore rtduced accordingly.

Apart from complexity, however, another clear trend is towards less
diversity in operating systems. The move towards a reduced number of
operating systems in the market is very clear. The UNIX trend is only part of
this picture. Ir. large-scale mainframes IBM has 75-80 per cent of the total
market, and has established the MVS and VM operating systems as the de ~cto
standard. In 1986, there were over 20,000 copies installed (which were
estimated to generate recurring revenues of $1,5 billion). 21·/

In minicomputers de facto standards are less clear with many
manufacturers having their own proprietary operating systems. Some forms of
UNIX can also be found, offered as an alternative to the manufacturers' own
operating system. However, IBM's System 3X computers have been predominant.
IBM was reported as giving the system 3X installed base as 220,000 world-wide
in 1986. The number of application packages available was given as 4,000.~/

In microcomputers the dominance of PC/DOS and the similar MS/DOS as
operating sytems is overwhelming. The only significant alternative is offered
by Apple Inc. The new operating system OS/2, already referred to, will soon
make an important impact, even though its final form will probably take some
time to appeC'lr.

The future horizon, therefore, offers some measure of stability for the
new software developer. The trend towards fewer operating systems means
larger potential markets. The hardware trends which may ultimately lead to
the disavpearance of the traditional ~inicomputer will further reinforce this.

4.3 High-level languages

High-level languages are so called because they allow the user to
co11V11unicate with the computer in a form closer to that used in normal
co11V11unication. High-level languages are increasingly important in the
software world because of the hardware advances referred to, and because of
the increasingly competitive character of the software market. We deal with
each of these points in turn. Since hPrdware change has meant faster
processors and mem.Jries, it means that it is more practicable to consider
using a high-level language in developing a piece of software. Previously, to

- 24 -

get suffic~ent speed in the final product it was often necessary to u::e
machine code or assembly language. This is in spite of the fact that most
programners prefer to work in high-level languages and it is quicker to
develc? and test ?rogracmnes in such languages. High-level languages also have
special characteri-;tics which make it less likely that the prrigramme will
contain mistakes.

Increased competition in the software market has given a further impetus
to this trend, because use of a high-level Language can shorten the
development time and can give access to a wider market. While a computer
maker probably offers a slightly different version of a high-level language,
the conversion from one system to the other can be straightforward enough,
provided the software developer adheres to some minimal definition of the
Language and avoids taking advantage of too many of the special features
offered in the computer manufacturer's compiler.

In general, the high-level languages ;n use are very old. Fortran and
Cobol have existed in different versions since the 1960s. They maintain a
strong user base and formal standardization procedures continue to add new
features and improvements to them. The rise of the microcomputer saw a
revival of BASIC, first developed also in the 1960s for educational purposes.
Business use of BASIC appears to have received an impetus from this. However,
there has been a lack of standards and a divergent growth of versions of BASIC
far more sophisticated than the original. The spread of new Languages is also
significant, however. These include C, ADA, and Pascal.

~ is the language in which the UNIX operating system was written. It is
thus scarcely new anymore, and yet in recent years has grown rapidly in
popularity and has moved outside the UNIX co11111unity. Its virtues are several:
it ·:an attain in many cases the speed of an assembly language while having
most of the features of a high-level language. It allows operations which are
characteristic of assembly language and machine code, permitting access by the
programmer to many aspects of the operating system and hardware devices. This
makes it suitable both for systems progra11111ing and for process control and
other real-time applications. The other advantages of C include a number of
sophisticated features such as pointers and data structures (as in Pascal) ar.d
list manipulation features (as in Lisp). For all these reasons, the language
appears to be being more and more widely used •. !.!/

Ada is a language developed for the United States Department of Defer.Ce,
which is now coming into wide use, including outside the military field. The
objectives of Ada were to have a single language that could be used for all
embedded applications. It would thus replace the use of assembly languages or
specialised languages for al L real-time applications such as weapons control.
All contracts awarded by the Department would stipulate the •Jse of Ada. Once
the standard had been defined, software manufacturers began to prepare Ada
compilers, the Departmen~ of Defenr;e set up a committee to "validate••
compilers, i.e. to confirm Lhat they met the required definition of the
language, and a large nwnber of compilers for different computers have already
been validated. Thus, in contrast to all other high-level languages, Ada's
development has been carefully controlled and standardized. The use of Ada is
another question: there are indications that because of the vE.ry wealth of
facilities available to the prograll'lller in Ada, it is perhaps unsuitable or at
least unnecessary for many programming tasks. This must mean that, at l•:aio;L
in civilian applications, the scope for the use of Ada may be limited.
However, interest in Ada and in related development has already extended far
outside the United States. In the future, as skills <iiffuse thr<rn~h the
convnercial computing community, preferences may emerge for the usP. of Ada i·

- 25 -

the progranmers' experience of what is undoubtedly a powerful applications
language i5 a positive one. Accordingly, the conclusion must be that Ada will
be an important influence in the commercial field, but that this is still some

J ' years away.-

Two other languages, Pascal and Modula-2, are both inventions of the
Swiss scientist Nikolaus Wirth. Pascal has established a significant user
base. It has advantages in many application areas, e.g. both in the
co11111ercial and scientific fields, although its success has been greater in the
former. An important feature of Pascal has been its adoption by many
academics as a more suitable language to illustrate good programming
techniques. The theoretical tr~nd to ... ards what is call "structured"
programming can be traced to the work of Dijkstral.1../, who has laid down
basic principles of the discipline. Pascal's advantage lies in the provision
of a large number of c0ntrol structures which allow for the application of
these ideas in practice in a way that other popular languages cannot do. By
meeting several of the criteria laid down for structured programming it found
ready acceptance among those who sought the reliability or verifiability of
computer programmes designed according to these principles. Pascal is
therefore a case where academic theory did indeed provide a certain impetus
for comme~cial popularity.

'.\tainframe acceptance of ~ascal has been less. Most major computer
manufacturers offer a Pascal compiler for their machines, but its use in
commercial data processing appears to be limited. The reasons for this are
that when change is contempiated (e.g. the replacement of an old system
written in COBOL) the designers are likely to be more attracted by the
increasingly common C language or by the features of a fourth-generation
language, since it may already accommodate features (such as screen handling
and a database query language) that are not part of the definition of PASCAL
(or of other high-level languages).

~odula-2 is intended to replace Pascal and to remedy its observed
defects. Its commercial prospects look mixed, partly because of the wide use
now being made of Pascal in those markets which might have used it. However,
its longe.;-term influence on language definition and the next generation of
computer languages may be considerable: the true modularity possible in it,
and the power of the user to define communications between different modules,
are features which are likely to be seen as very desirable in any future
definition of the corre~t functioning of a computer language.

4.4 Fourth Generation Languages (4Gl.s)

These are proposed by their producers as a replacement for the
tradit~vnal data processing languages (such as Cobol, RPG, PL/l, etc.) which
are ··egarded as third generation. (The second generation would include
assembler type languages which provide mnemonic and limited macro facilities,
i.e. one step removed from the first generation, the machine code used by the
first computers).

Fourth generation languages have to be distinguished from languages such
as Ada, wtiich provide a number of new concepts for practical use by
programmers. 4G~s are intended to reduc~ programming: the statements and
commands encapsulate many lines of Cobol or PL/l · le. Operations that might
ta\ce a large amount of space and t irne to spt:city in a third-generation
language can be conveyed in one or two lines, which are often in a form that
is nearer to English.

- 26 -

What might be called a subset of 4GLS is the progrannie or application
generator. This is essentially a compiler whose output is a Cobol program.
Give the set of co11111ands which it is desiret to implement, the program
generator then produces appropriate Cobol statements. The advantage of this
is that the code is portable (in principle) to another Cobol environment.
Another advantage is that the code produced can be examined and directly
modified in a way that is not possible with a normal compiler whose output is
machine code.

A number of features may be part of the 4GL: screen handling, data entry,
printing formats, database management, access and updating. All these
aspects, if they are included, will be distinctive. Standards, whether formal
or de facto do not exist at all in this area. Experience gained in one 4GL
may not be of much use in another. Here is a field, however, where
competition is increasingly fierce between different groups. The computer
manufacturers now of ten of fer some form of 4GL, but the large software
companies are also exten~ively involved.

The future for 4GLs is promising. The driving force is the shortage of
progranmers and the limited increases in their productivity, combined with
increasing pressures to computerise as many aspects of commercial life as
possible. Competition combined with the increasing complexity and changing
character of colllllercial data to force companies to improve and expand their
information systems. However, the typical effect of such pressures is a
growing backlog in the data processiug department of a company. 4GLs appear
to offer a fairly easy way out of this difficulty, since their main claim is
that applications can be developed far more quickly than by traditional
methods. The drawback is that they require a certain commitment of resources,
a certain arount of retraining of staff, and, most importantly an abandoning
in many cases of patterns of work which have been its use for perhaps twenty
years or so. In addition, the very pressures on data processing managers will
tend to limit their scope of action. Concerned with maintaining, modifying or
patching up existing systems they will not have time properly to examine the
alternative approach to problems offered by the 4GL.

The other highly significant feature of 4GLs is their convergence with
database management systems (DBMS). The 4GL may offer a DBMS of some kind as
an integral part of the language or "environment" (a somewhat vague term used
to describe anything from a user interface to a suite of prograrm1es marketed
by the same producer with some commonality of command structure and syntax).
Alternatively, the DBMS may offer sufficient facilities in terms of data input
and output and report writing, as well as data storage, so that its command
structure is in effect a 4GL.

A good illustration of the convergence is the spread of the SQL
language. This is used to access data from relational databases. Developed
by IBM, it has now become part of the X/Open standardization effort as well as
being defined in an ANSI standard. It is now available for n~ny DMBS systems
on mainframes, minicomputers and personal computers also.

4.5 Database Management Systems (DBMS)

The growth of the DBMS, and just as significantly, the broadening of its
definition may be seen ;i.s a process where software has developed to meet the
practical revealed needs of computer users. The third generation language
Fortran grew out of the need to express scientific relationships in familiar,
formula terms. Cobol was developed to the order of the United States
Department of Defence, but it grew again out of the need to express typical
corm1ercial calculations.

- 27 -

Third generation languages deal with atomistic data. They do not have
built-in methods of handling lists, or collections of data of different kinds
such as "name, rank and serial number". Equally important, the storage as
such is not defined. The languages are intended to process data i.e. to read
it into the computer, do something to it, and then write out the result,
whether to a screen, to a disk drive or to a printer. Even on-line systems
can be just a straightforward extension of this particular concept.

The DBMS provides a way to store data in such a way that some (or in some
cases all) of the relationships within the data are preserved and can be
followed through in searching it. It also provides a way in which the data
can be selected according tc different criteria and swrmarized. Typically
this swmnarization procedure will be in the form of printed tables of
results. In this case the stage is called "report generation". The DBMS may
also provide a wide number of other facilities. These facilities can include
a number of ways of dealing with the input of data, including its
specification with respect to form and content in such a way that only data of
the correct type can be entered, and only in certain circumstances and by
persons authorized to add or amend data in the database. The facilities can
also include a good deal of "housekeeping" functions invisible to the user or
the constructor of the database but nevertheless important in ensuring that
the storage media (for example, hard disks) are used in the most efficient
and economical way.

DBMSs can be classified in many ways, and they range from systems
essentially analogous to card-files of the conventional kind to other systems
of an elegance and complexity sufficient to exceed many ordinary comnercial
needs. A collSdOn classification scheme is to divide DBMSs into: three
categories: hierarchical, network, and relational. It is the last category
which is the focus of most new development and competition.

Relational databases are so called because they store the data in such a
way that connexions can always be traced and revealed as required. The
origins of relational DBMSs .:an be traced directly to the famous article by
Codd, which set out criteria for the establishment of the relational principle

h • • h • JI/ and pointed out t at no ex1st1ng system met t ese requirements.~

The basic idea of a relational database is that it treats all
relationships as composed of pairwise relationships. This allows all data to
be stored in the form of two-dimensional matrices (i.e. tables). Depending on
the data, it can therefore appear in more than one table. At first sight this
duplication (or indeed multiplication) of storage requirements appears very
wasteful. However. the design of the DBMS itself can minimize any
duplication, and in any case with the ra~idly falling costs of hardware this
criticism will tend to be less important • .!_/

In spite of the difficulties associated with transferring existing
systems, relational DBMs are now making a considerable impact. The main
reason for this is not so much the perceived virtues of relational technology
but the pressure for DBMS in general. The information within an organization
is incr£asingly seen as its most important asset, and easy and flexible access
to it is increasingly required. The role of dataprocessing departments is
tending more towards the construction and main.enance of a database and the
control and facilitation of access to it. Thus, dataprocessing becomes a
continuous task rather than the series of discrete "jobs" into which it used
to be decomposed.

- 28 -

4.6 Computer Aided Design (CAD)

Discussion of CAD is often bracketed with that of computer aided
manufacturing (CAM) although in practice it is usually CAD that is being
talked about vhen CAD/CAM is under review. This is because of the role of the
computer in automating the process of design, a fairly clearly delimited
sphere. Roughly speaking CAD/CAM means in practice the automation of the
design process in manufacturing. When CAD is combined with a wide range of
diverse informatics techniques such as robotics, remote sensing, process
control, numerically controlled machinery, automated stock handling, ordering
and inventory management then, provided all these processes are linked in a
co1m11en communication and control system, the whole approach is known as
computer-integrated manufacturing (CIM).!..!./

How can design be automated? Strictly speaking it is not the creativity
at the heart of the design process that is automated but rather a number of
mechanical tasks which the designer has to carry out in order to realise his
or her objective: a set of drawings and instructions for tooling up for tht
construction of the required object. The designer draws on the screen of a
computer terminal. When the result is satisfactory it can serve as the direct
input to production (e.g. by controlling the movements of a machine that cuts
or shapes some material according to the design that has been achieved). More
simply, the design can be produced as a drawing to be used by the production
designer.

Drawing on the screen is accomplished by allowing graphical input from
the designer and using a number of software and hardware tools. The graphical
input can take several forms: a digitised image of a handdrawn sketch can be
used, or a joystick, or a digitizing tablet, a mouse, or cursor keys. These
treat each point in the drawing as a series of co-ordinates to be afterwards
manipulated, the rough initial sketch being refined on the scre~n to a
finished design. Facilities for doing this vary with the sophistication of
the hardware/ software, but include for instance, the automatic joining of
points (line drawing), enlargement along a specified axis, rotation about a
specified axis, etc. The generation of three-dimensional objects (viewed, of
course, in two dimensions on the screen) is also included, (with a selection
of basic shapes provided as building blocks for the image). This allows an
object to be examined from any desired point of view, and can be a means, for
instance, of estimating the actual appearance of an experimental design, and
thus replacing the construction of solid models as may have been common
practice in many industries. A cup, a table, a box may, as a computerized
image be modified and re-examined and appraised in a way that allows he
designer rapidly to assess the acceptability in production or consumer terms
of a proposed desgin. (Another example from architecture is a package which
allows the user to design a building and "walk" through it: given the
structure of the proposed building the computer can calculate how it would
look not just from outside but from any position within any room of the
building also).

It is not perhaps surpr1s1ng that some of the most sophisticated
applications of CAD, in fact true CAD/CAM applications, are found in the
electronics field. The design of electronic circuits on a screen, with such
features as automatic minimization of interconnections, is now standard. The
output can range in sophistication from a printed design, to data in a
standard format, to sfecif ic control sequences for the machines which
manufacture the chip.!_/ Even in the highly specialized field however,
there has been a trend towards standardiza::.ion: a growing commitment to, for
instance, the ICES, MAP and OSI standards, together with sur.h ~~i'~~Q

- 29 -

standards as the Gerber data format and the Sun workstation as a .. platform ...
The growth of technical workstations has meant ~he increased availability of
large sophisticated processing power in individual units: it thus expands the
potential market, in unit terms, to a considerable degree. This has provided
an important stimulus for the creation of software companies in the design
field.ll.r

4.7 The impact of artificial intelligence techniques

4.7.l Overvit!w

The development of artificial intelligence (A. I.) technique is already
having important effects on the vorld software industry. While debate
continues at a theoretical level as to what is artificial intelligence and as
to whether there are limits to its future development, it has as its main
concern making computers replace some primary human function such as sight,
speech or analytical thought. An alternative definition is the following:

"A. I. is concerned with programing computers to perform tasks that are
presently (sic) done better by humans, because they involve such higher mental
processes as perceptual learning, memory organization and judgemental
reasoning. n!..l/

A.I. Techniques are influencing the following areas in particular:
- speech input and output
- pattern recognition
- expert systems

Why is A.I. becoming increasingly important? The first reason is that the
enhanced capability of computers makes possible the application of many A. I.
techniques which rely on a good deal of processing, typically in the form of
searching for a ma :ching pattern between input and some stored database. In
this sense the software development is driven by developments jn hardware.
There is also a growing demand for applications in speech and character
recognition, where the object is to 4utomate the process of data entry. (This
trend is of course encouraged by the growing availability of enormous mass
storage in the form of optical disks).

However, a definite if difficult to measure factor influencing the growth
of the A. I. market is the push from software producers. Many of these are
casting round for new product ideas. The personal computer market is
saturated with spreadsheets, wordprocessing packages, and integrated packages
of various kinds. The mainframe market still has many possibilities for
increased sales in the areas of DBMs and 4CLs in particular, but this market
is weighted heavily in favour of the computer manufacturers, and in favour of
larger companies who can field a sales force and provide service and support
tc a fairly conservative market. Thus, the search for new product ideas
enters the area of A. I. This is not, of course, the only area in which
activity in the development of new software products is taking place. However
it appears to many as the area which offers particular scope fnr innovation
and promises great re~ards for success.

Other factors influencing the growth of A.I. include advances made on the
theoretical side by researchers especially in universities who find the
aubject and the problems interesting. Specialized demands, such as those by
international organizations for automated translation and interpretation, or
the need to deal in data processing terms with a representationally complex
language such as Chinese also combine to give a further impetus to research in
this subject • .!..!/

- 30 -

Robotics and the automation of the manufacturing process are another
cause of the growing interest in A. I. applications. The constant search for
an iaproved competitive position and. espe~ially in developed countries, the
need to minimise total laboLr inputs to the production process have caused
accelerating interest and applications in this field. (Other factors at work
in the spread of automation of the production process include the need to
minimise use of materials through more efficient cutting, measuring, etc. the
need to speed up delivery times, the need to meet a wide variety of demands
for differentiated products, and the need to meet rapid changing de.nands or
changes in the relative costs ot inputs).

Robotics and automation are not per se a branch of A. I. But they
increasingly use A. I. tt-chniques • especially in such areas as sensing. This
means that machines are made to recognize objects or characteristics of
objects, either through direct contact or by v1s1on, where a digitized
television image of the object is captured and tested as to whether it matched
a pattern already known to the machine. and action is then taken
accordingly.il/

Automation also includes the speeding up of still manual tasks of
control, such as can be by speech input and output. For instance, instead of
having gauges and indicators, a machine could "speak" the temperature,
pressure or whatever. In difficult industrial conditions this may greatly
improve the carrying out of specialized tasks, since the operator is not
dis•~racted from them by having to monitor a dial, a graph or a digital
read-out. Similarly. speech input can allow control of a machine or a process
without the operator having physically to touch a button or a switch. Even
simple processes such as stocktaking can benefit from speech input, since the
stock-taker can simply call out the numbers and types of the items being
counted, rather than entering them at a keyboard, using barcode readers or any
other direct handling of the objects or equipment.

4.7.2 Expert systems

Expert systems are the branch of A. I. applications in most widespread
use. They are systems which attempt to embody human knowledge and expertise
in an accessible form, typically leading the user through a series of
questions to resolve a problem.~/ Expert systems are now a commercial
reality. All the main computer manufacturers offer products in this field.
The pioneering academic centres of expert system work, such as
Carnegie-Meller, Stanford, Edinburgh and Marseilles continue to lead the
university world in the subject, but the bulk of activity (often hidden) is in
the commercial field.

In hardware, it has been noted that many purchasers are turning away from
dedicated artificial intelligence workstations, and instead increasingly
taking the much cheaper option of buying a software package to run on an
existing personal computer such as an IBM PC or equivalent.!..!.~

In software the proliferation of expP.rt system shells continues. A shell
is the software needed to construct an expert system, and written in a
generalized form so that it can in principle be used for any subject area.
Shells are offered for sale at prices from several hundred dollars upwards,
and new ones almost invariably for microcomputers rather than for
minicomputers or mainframes. However, they vary very much in quality,
sophistication, and ease of use. Users alao continue to develop their own
e:<pert system software. For this purpose the Prolog progra11111ing language has
made considerable progress. However, the United States dominance in the

- 31 -

comiercial expert systems field means that the LISP languag"!! still is the
major one, since a heavy investment in this language has been made by software
developers and computer and workstation manufacturers.!..!/

The use of expert system shells will continue to increase, but it is
likely that a plateau will soon be reached. This is because some
disappointments can be expected: the naive business user who purchases an
expert system shell to be used on a personal computer will gradually realise
that he has bought merely a tool, and that the task of constructing a useful
expert system is a fairly long and demanding task that still lies ahead of
him •. !.!/ New shell products can in the innediate future offer improvements
only in fields where progress has from some points of view been already
sufficient to be going on with e.g. in faster inferencing, in more detailed
explanation of the processes by which decision were arrived at, in the
incorporation of more user-friendly techniques, etc. Progress can also be
expected in the area of constructing the knowledge base, allowing more
flexibility in the specification of rules, for instance. But the real
problems of expert system construction remain, strictly speaking, outside the
realm of software. The decisions as to how to limit the problem area, how to
ask the right questions of the human expert and how to decide what are the
important parts of his answers are difficulties which the present levels of
software development cannot easily deal with and from some points of view have
little if anything to offer.

For this reason a strategic choice for development in this areas would be
better in the areas of construction of the knowledge base rather than in the
design and implementation of another expert system shell. The construction of
knowledge engineering tools to detect inconsistencies at construction time, to
suggest gaps in the information supplied, to maintain check.lists of points to
be covered, and to detect and suggest promising lines of enquiry in the
interrogation of human expert are some of the types of software that could be
developed. To enter such a field of work for a software manufacturer may be a
promising route for some developing countries. Since experience is still
limited in both developed and developing countries, it any not be as difficult
to compete internationally as in some other fields. The capital equipment
costs are not high, even though there will probably be a foreign exchange
component.

- 32 -

5. GENERAL PRODUCTION STRATEGY

5.l The stages of software production

Traditionc.lly, software production has been described mainly in terms of
the design and implementation of coaputer systeas for use within an
organization or a complex piece of equipment. Much attention has been given
to stages of such an activity. A typical classification is the following
"software life cycle":.!.!/

Requirements analysis and definition
System and software design
Implementation and unit testing
System testing
Operation and maintenance

From this and similar points of view, the production cf software is
something which extends well beyond the actual design and writing of a
prograane. It calls for a nwnber of diverse skills including human
coamunication, personnel management, resources planning, etc., as well as the
traditional skills of the systems analyst or progranmer. Taken together in an
integrated way, the considered application of these selected skills has become
the discipline called "software engineering". The rise of the discipline is a
response to the growing complexity of the task. As a consequence of this
development, considerable examination has taken place of the various stages of
the development of a system, with rules and methodologies which can be applied
to the practicalities of software production. The allied question of the
costs of software development has also teen explored,.!.l/ especially in view
of the kinds of complex systems under development, often involving large teams
of staff and sometimes at different locations.

However, from the point of view of the software entrepreneur, the process
has not been as well analysed. The conventional analysis assumes that the
idea already exists of what the software is to do. It assumes also that, on
completion, the system will be used, perhaps after modification in the light
of the intended user's experience of the first version. But the software
entrepreneur faces two other stages: one is the initial one of deciding what
to produce, and the other is the later stage of trying to sell it when
completed. The task is essentially a speculative one. The intermediate
stages, of design and implementation, have some similarity of characteristics
whether the software is for internal use, is being prepared to order, or is to
be marketed as a package.

5.2 Product ideas

Ideas for new products come from an understanding of existing software
and perhaps also an understanding of another specialized area. The potential
software producer can be someone of a technical or professional background
whose idea for software derives from an understanding of the way in which a
computer can help in the work. Equally, if the potential producer has access
perhaps through preparing custom software or providing computer services to
some specialized company or institution, this may also provide ideas for new
products.

We can make a rough classification of ideas for new products as follows:

Invention
Replacement
Synthesis
Link-type
Captive
Local
Embedded
Custom

- 33 -

The first type, Invention, refers to the genuinely new idea for software,
something that has not been tried before. While in the early days of
computing much new software could have been put in this class, it is no longer
easy to come up with ideas which are genuinely original and at the same time
practicable. A good example is the spreadsheet progranme. The first of
these, VisiCalc was certainly an invention. The hardware conditions for its
invention were present in that it is a highly interactive concept: only the
availability of personal computers allowed it to be successful.! ... !/

The second type, Replacement, includes the presentation of existing ideas
in a new form. The improvement can relate to a number of different areas,
such as the speed of calculation. This is particularly important in database
software, were a select or soft can, if complex, consume considerable
resources. Speed is also important for compilers and for CAD software.ll/
Ease of use is another field where improvements can readily be made to an
existing idea. This is encouraged by developments on the hardware side
referred to earlier, where the user interface is enhanced by high-resolution
screens which can show features such as menus, icons, windows, etc., together
with mouse pointers, and speech input and output. An otherwise conventional
package can distinguish itself and gain a competitive advantage by making full
use of available features of the hardware and software. Ease of use is, of
course, a wider concept. It can include the provision of extra functions
within a new package to carry out operations which experience has shown are
necessary but tedious to perform with the existing package. Improvement can
also be in the area of removing restrictions on the size of the problem to be
handled by the software, these restrictions existing because of limited
imagination on the part of the original developer or hardware restrictions
which have been made irrelevant by new developments.

The third type, Synthesis, refers to the creation of a new class of
software products by the merging of the functions of separate classes. The
best example is the integrated package which can include most of the popular
office software functions word processing, spreadsheet, database, graphics,
conmunications, etc. As noted earlier, integration of this kind is a
continuing trend, brought about very often by the increased availability of
computer memory. Very often, the process of synthesis exploits the innovative
character of earlier products. What was a new idea, and was sold separately,
becomes a feature of the later package. There is, however, a sense in which
the combination of existing ideas also represents a new idea. For this reason
the search for new product ideas has to include consideration of existing
ones, with special attention being paid to the possible merging of ideas from
less obviously linked areas.

Link-type products represent a promising field for software development,
but it is one which changes very quickly. By a link-type product is meant one
which overr.omes improved conmunication between hardware and/or software
systems. The definition thus includes software to carry out such tasks as:
converting a file from one format to another, or translating some code from
one language to another. It could also include software to allow, for

- 34 -

instance, a computer to use a printer which had not been designed for this
type of computer. At first sight, the possibilities for this sort of product
might be thought to be limited in the longer term by the trend towards
standardi~at~on, but this is not so. Firstly, universal standards are still
years away, st=-:ondly even the best standard is made obsolete technological
change, and ~hirdly the very push towaras standards creates a need for
software products which allow non-standard hardware and software to
communicate.

Captive software is the name used to describe software products such as
"add-ons", which are software providing extra features or enhancements to
successful products. It can include also other products which are intended to
improve the performance of successful products, or, indeed, are intended to
monitor the performance of complex software in a way which ~ill allow
improvements in its use.~-~/ All these share a conman characteristic, that
they are depending on the success of another software product. Their
potential market size is determined by the number of copies sold of the other
product. More importantly, it is very vulnerable. For instance, the
producers of the original product may decide to bring out a new version which
incorporates most of the features of the add-on products. Again, a new
version may be incompatible with the existing version of the add-on. This may
not be intentional on the part of the producers of the main software but it
can nevertheless create considerable difficulties for those whose products are
supposed to work with it. For this reason such software products can be
called captive: they are wholly dependent on the success of another. In that
sense they are analogous to software products which are almost always either
hardware or operating system dependent, or both, but the difference lies in
their limited functionality: what they do for the user can be quite
restricted, and the need for the function as well as the product can be
eliminated at any time by developments outside their control.

Local software means the meeting of a particular national practice by
appropriate adaptation of existing software or software ideas. This can
amount merely to changes in the language of tne conmand structure or user
interface of a package. If, however, the language is very different there
will have to be more elaborate changes. Local business or governmental
procedures in the form of accounting, taxation, etc. represent the most co111110n
origins of local software. Although local software is usually produced in the
country concerned for that market (or else carried out for instance at the
European headquarters of a developed country software package producer). But
it does not have to be so, of course: a developing country software company
who produces a standard accounting package to meet the special needs of the
country has mastered many of the skills needed to do the same for another
developing country also.

Embedded software is that contained in a machine vehicle, or piece of
equipment. As such it is usually developed by or on behalf of the
manufacturer, and is similar to the final category, custom software in that
the aspiring software entrepreneur has to produce this product to order and is
essentially a sub-contractor. While the product itself is not marketed by the
software producer there is nevertheless, especially for the new producer, a
good deal of marketing involved, since it is necessary to convince the client
that the software company has the skills and experience to carry out the task
correctly and on time. The difference between embedded SQftware and custom
software is partly in the markets: manufacturers of capital goods and
consumer durables are the typical users of embe ided systems, while custom
scftware could be written for anyone. Embedded software is used by
microprocessor or microcontrollers built into the equipment. It is usually

•

- 35 -

very time-dependent and is usually written in assembler or in a special
control language (increasingly, Ada is being used). Embedded systems
construction may also in many cases require a much more detailed knowledge of
hardware considerations.

5.3 Choice of market

Clearly, the possible market will be partly determined by the idea for
the product. The idea may be in practice specific to a particular application
sector, a particular country or a particular type of computer or operating
system. To have as large a potential market as possible is of course
desirable, but in the case of software production it is ~articularly so
because of the low marginal costs involved in expanded production.

In terms of large potential markets, consideration must be given not only
to the installed base (the number of relevant computers in use) but the type
(mainframe, mini or personal computer). The price at which the product can be
sold varies accordingly, universely with the number installed: thus personal
computer software, unless highly specialized, can hardly be sold for more than
about US$ 600. Mini and mainframe software is considerably more expensive,
and in fact is often rented, thus giving the producer a certain control over
future revenues.!. .. V The question of pricing in general is also affected by
technological change: the shortening of product liie-cycles in the software
field means that pay-back periods have also to be shorter if they are to exist
at all.

A full understanding of the selected market is necessary and in
particular of the motivations of the potential software purchasers, which vary
widely depending on the context in which their computing work is carried out.
For instance, the IBM mainframe installations constitute a large and stable
market (with respect to minicomputers, a similar judgement can be made).
However, the mainframe installations also constitute a market which:

is concerned as much or even more with quality and service as with
price;
has already been targeted by many others;
is in fact fragmented, since so many software products have become
"standards" within this typical environment. It is not enough to be
compatible with MVS. There is other system software (in
teleprocessing, for instance) which has to be taken into account.
Sophisticated heavily marketed products such as database management
systems have specialised formats and imply certain ways of working.
Can the new product fit in with these?
is an evolutionary market, not very much open to significant
departures from established ways of doing things. This is principally
because of the need to keep established computer systems operating.
These have often entailed considerable investment costs and they
provide information flows which cannot be interrupted. For this
reason any new product has either to complement existing systems or
else provide a feasible way to replace the existing system in an
orderly manner. As noted earlier the computer manufacturers have to
provide a stable and secure environment for the purchaser. The user
has to feel that the equipment bought is not likely to become obsolete
quickly. In fact, as we have seen, it usually does become obsolete
quickly, in the sense that something both better and cheaper will
appear on the market soon after the purchase has been made. But it
can be said that the purchasers grudgingly accept this, if their
individual expectations are met, if the available equipmen~ is within

- 36 -

their budget, if it will l ne job it is intended for, and, most
importantly if it can either ~e physically upgraded (which is better)
or else will use the kinds of software that can also be used on the
next generation of the computer in question.

This last requirement means that the computer manufacturer has to provide
an "upgrade path". This can take several forms, but the simplest is a set of
prograames that convert software written for the old computer to software that
will run on the new. Such a conversion is not always necessary since the
hardware may have been designed to be "upward compatible". However, on other
occasions it may be necessary to abandon such compatibility in order to
exploit fully the possibilities of the new hardware design or components. It
is in these cases that the provision of an upgrade path is needed. Such a
path can also include the provision of hardware modifications, and the
prevalence and cheapness of integrated circuits in many items of equipment
makes this a relatively simple task, since the replacement of one IC by
another is a relatively simple matter. However the provision of software that
converts old systems to allow them to operate in the new environment is one of
the most usual ways in which an upgrade path is made available.

There are cases, however, in which an upgrade path is not provided by the
manufacturer. This can result from the purely prac~ical calculation that the
returns will not justify the development effort, but it can also be that the
benefits of the new technology are sufficiently obvious and significant for
the user to simply abandon his old systems, running them in parallel with the
new ones only until the latter have proved their reliability.

In other cases there may be a "generic" shift in the technology. An
example is the movement from 8-bit to 16-bit microprocessors, where the
earlier generation (8080, Z80 and 6800) was not compatible with the later
(8086, Z8000, 68000) in terms of the instructions understood. individual
manufacturers may have provided upgrade paths for their own series of
microprocessors, but many microcomputer manufacturers took the opportunity of
a technological shift to change their sources of microprocessors. Third-party
software companies, as well as chip manufacturers, offered p::-oducts,
cross-assemblers, which allowed the instructions of one microprocessor to be
translated into those of another. Thus, technological chang; created a gap
which was filled by third-parties. Many o~her gaps necessarily arise, as long
as the technology continues to develop, and such gaps always represent
opportunities for third-party manufacturers to provide a product which can
fill the gap and allow two previously incompatible pieces of equipment to
communicate with one another.

In considering markets, therefore, it is important to reiterate that
technological change creates markets in two distinct ways. Firstly, through
direct progress and the provision of new hardware it encourages new ways of
doing things and, accordingly, new software requirements, for software
products which exploit the possibilities of the new hardware. But there is a
second type of market, one created by the inconsistencies and discontinuties
of technological change. Progress continues in many directions, and led by
many different compi:mies in several countries. To reap the benefits of more
than one advance: simultaneously may mean for a new product developer, a
difficult problem of integration: how to fit together a sensor, a processor
and a memory management unit in such a way that it will be of interest to
users of another product that happens to be highly popular but with which no
suitable interface exists. Integration, harmonization, con111unication are all
goals of the movement towards hardware and software standards. But in the
absence of uniform acceptance of standards, and in the face of the continued

'

- 37 -

assault on standards represented by accelerating technological change, the
need persists for products to fill the gaps between the advances on different
fronts. The link-type product idea is only one manifestation of technolJgical
change, which increasingly determines the whole market environment • .!!./

It was pointed out above that simply to follow what appeared to be th~
largest or "standard" configuration of equipment may not necessarily be the
best approach. On the other hand to follow a more specialized market carries
its own risks. One of these i~ that the market may be about to be eroded, or
may be wiped out by the emergence of some new technology or a rival product.
Here the development time is crucial in a way that is not necessarily true for
~roducts directed towards a more stable or conventional market. In the latter
case, a product may still find buyers whether it appears in twelve months time
or eighteen months time. In a more specialised market, it may contract
rapidly as the technology changes and the total number of potential purchasers
can diminish rapidly. This is still the case even if the number of a
particular computer in use, for instance, remains the same. Although none are
iamediately abandoned on the announcement of the availability of some superior
product, decisions are nevertheless taken on future purchase. Once such
decisions are made, it is then only for very compelling reasons that any
software product would be bought for the existing computer. Even though it
may remain in use for another year or even more, the software market is
disappearing rapidly.

Being too near the frontier of hardware developments is equally risky,
since the new development may fail to attract a wide macket and the work that
goes into building software for it 1 togetl:ler with the consequent investment,
may be lost. However, mny promising niches exist at this frontier. New
developments in the mainstream of hardware are also important and here the
established manufacturer of software is often at an advantage over new
entrants. This occurs particularly, for instance, in the case of
microcomputers, whose manufacturers are anxious to launch the machine on the
market with as wide a software base (i.e. selection) as possible. This means
that they will make available to software companies a prototype version of the
new computer, or at least disclose to them the details cf the hardware and
operating system so as to allow the software manufacturer both to have a
product ready for market launch simultaneously with the launch of the comput~r
itself 1 and also to enhance the attractiveness of the computer to pot1?ntial
purchasers through the provision of software that exploits any special feature
of the new hardware design. The companies selected for this favoured
treatment are typically those who have produced successful packages in the
past, since too wide a distribution woulJ discourage some of the software
manufacturers who would feel that their competitive advantage was being lost,
and might also result in disclosure of any still secret aspects of the
hardware design.

Such a practice makes it more difficult for new entrants to compete. It
favours existing successful software companies. But the practice was not
developed for u. >ake of these companies, but rather by the hardware
manufacturers to ensure success for their products. Therefore, they remain to
some extent open to broadening their range of f;tvoured software companies 1

provided they are satisfied that the company entrusted with details of their
forthcoming product is capable of producing something worthwhile in the way of
software for it. If can therefore become very important to cultivate selected
hardware manufacturers 1 to demonstrate the software capabilities of the new
company and to convince the hardware developers tnat the connexion is worth
developing. Such a task may not be an easy one: it' can require in some cases
a physical presence in the same country as the hardware manufacturer or at

- 38 -

least very frequent visits to it. and for a small company in a developing
country this may be an overambitious undertaking, given the foreign exchange
costs of establishing a presence in North America or Western Europe.

However, some such contacts are essential for any software production
strategy targetted towards the leading edge of technology. 7o be familiar
enoug'a with present and future developments to be able to identify an emerging
software product opportunity is not easy when the research and development
activity is far away and so~times hidden for connercial reasons. B·;., there
are many methods of monitoring technological progress in this field which are
relatively inexpensive. Journals in electronics and computi~g are often
inexpansive because of the high quantities of advertising that they carry.
professional societies are usually very keen to expand their international
links and often have a proliferation of specialized interest groups which act
as a clearing house for information (and often standards) on particular
hardware or software topics. Again, hardware manufacturers often provide a
great deal of printed material on their own products or on technologies which
they use. This material is often free or else C~btS very little. Attendence
at large trade fairs, such as CeBit or Comdex, is a relatively easy way of
becoming familiar with a complex and rapidly changing market.~..!/

Co-operative arrangements for exchange of scientific and technological
information are found both within the United Nations system and as part of
other inter-governmental arrangements. UNIDO has actively promoted
infornation exchange both through the TIES system and more specifically in the
field of informatics technologies through schemes such as the REMLAC regional
microelectronics network for Latin America. The fledgling software company
can do worse than investigate official channels in its own country, to
discover what information systems are accessible as a consequence of
international agreements.

The question of software protection should also be mentioned. The
subject is a complex one since it includes technical as well as legal
considerations. The investment made by the producer has to be protected
through some system or systems which will prevent unauthorized copying of the
software. This can lead to a loss of potential revenues, and means to guard
against it range from physical protection of the software diskette to the
application of patent and copyright law.~/

5.4 Investment costs

The investment costs associated with software production include the
prov1s1on of hardware and software equipment. Clearly there will be a need
for computer hardware, the same as or better than that for which the software
will be written, although development hardware which can simulate the largest
hardware may else be a possibility in a few cases. Inefficient hardware or
limited access to it does not make it impossible to produce marketable
software but it adds to the development time. This might not appear to be so
much of a problem if local personnel costs are low, but if the product under
development is in any way sensitive to technological change, then development
time can be decisive in determining the success of the product. Too long a
wait may make it obsolete, or the problem it is to solve has been taken care
of by someone else.

Investment in software is at least as important for this reason, and for
others. The choice of the correct tools will not only reduce the development
line bµt will also make the final product more attractive and reliable.
Sof tw~u~e products are a,,ailable which are designed to assist in all stages of

- 39 -

the production of software, including design, p!"oduction, documentation and
maintenance. The product includes the following:~ .. !/

Design tools, which allow the conceptual structure of the software
system to be analyzed;
Optimizing compilers, which produce efficient object codes by
analyzing the source code for redundancies;
4GLs and application generators, which may also have a number of other
tools as features;
Screen generators;
Many torms of debuggers, which check the source code for errors;
Execution flow sunmarizers;
File cowparators;
Translators.

Many of the features found in such software tools are also to be found in
the new generation of software tools known as CASE (Computer Aided Software
Engineering). These include what are called progranmers workbenches or
analyst workbenches. The more comprehensive type is called an Integrated
Projects Support Environment (IPSE), capable of controlling large software
projects and ensuring consistency in the work of the different people involved
and generating comprehensive documentation for the product.

These products vary in capabilities and in price. Their potential
contribution to the success of the final product can, however, be very great,
and productivity improvements of 20 to 30 per cent have been cited of
IPSEs •. !.!!/ The cost of such tools may therefore be a centrally significant
feature of any detailed feasibility study for a software product, and the
savings in labour inputs and project time, as noted, must be taken into
account. This is so although estimating the work involved is difficult. Most
cost estimate methods for software production require the number of lines of
code as a starting point • .!.l/ It can also be important to follow design
procedures which allow generalized parts of the software to be used again in
subsequent products ("re-usable code").

The second main advantage of such tools, that they greatly reduce the
potential for errors in the final product, will have an impact on the cost
structure at a lager stage. A faulty product will not only give the new
producers an unfavourable reputation! .. Y, it may also lead in some cases to
liability for consequential damages. As a result, there has been a growth in
independent companies which for a fee will test a software product for errors
before it is marketed. Their customers include very large and successful
software producers.!.!/

- 40 -

FOOTNOTES

!/ At the level of machine language, however, this distinction can
become rather tenuous.

~I OECD (1985a), p. 20.

JI This is in fact the case with the IBM Personal Computer System/2 and
Apple Macintosh computers, both of which use the same size diskette (3.5").

~I See United Nations {1968) and United Nations (1975).

5/ Software is sometimes specifically referred to as an "intangible
(fixed) asset" in taxation regulations. See OECD (1986).

~I But not necessarily in familiar ways: the construction of "macros"
in spreadsheet applications, and even the storing of key sequences in a
f'1tlction key is a kind of prograDDing and thus amounts to software creation.

!J Schwarz (1987) cites the example of the Burmese Post and
Teleconmunications Corporation, which acquired payroll software that allowed
for far fewer standard deductions than are usual in Burma.

~I See Arossa (1988).

~I United States Department of Co11111erce (1986).

10/ See Boehm (1987).

11 / "Survey: Software Packages foe Business", Financial Times,
1 May 1985.

12/ "Survey: Computer Services", Financial Times, 15 October 1987.

13/ See also OECD (1987). For an illustration of the offi~ial standards
development process, see United Nations Economic Connission for Europe (1987),
p. 96.

14/ See Jackson, P., "Add-on flood keeps the tide flowing into Lotus
channels". Computer Weekly, 9 April 1987. Many successful co11111ercial
software developments can also lead to official standards subsequently, such
as IBM's database access language SQL, which is the subject of a proposed ANSI
standard.

15/ For detailed descriptions of some RISC processors, see Gimarc and
Milutinovic (1987). However, the article does not cover important new RISC
processors such as the Sun SPARC and the Motorola 8800.

16/ In fact, microprocessors do not always fit neatly into one of these
categories. The Intel 8088 was the heart of the original IBM Personal
Computer: it had a 16-bit calculating capability but an 8-bit data bus.

17/ See, for instance "Forget the hype, this is the real thing",
Computer Weekly, April 23, 1987. (Superconductors will in the longer term
have significant effects on the energy field also: see Official Journal of
the European Co11111unities, No. C 46/19, 18 1''ebruary 1988, pp. 19-20).

- 41 -

18/ Bernhard (1985). See also Labich (1988) for some c011111ercial issues
in parallel supercomputing and the role of IBM and Cray. On some differing
vievs on the future of parallel processing see "Titans engage in battle over
tomorrow's systems", Computer Weekly, 26 May 1988.

19/ For a simple swmaary, see Weber (1988).

20/ For an overview, see Conklin (1987). See also Nelson (1988).

21/ A 14 inch WORM disk holds 6.8 gigabytes (i.e. 6800 megabytes) and
typically costs $750 (1987). The 5.25 inch size, holding 0.8 gigabytes, is
bt:coming popular in "jukebox" systems. It costs $125. CD-ROM unit costs are
much lover, but there is a fixed cost of about $15,000. See IMC Journal, Vol.
24, No.4, 1988. However, mastering costs as low as $1,500 and duplication
costs of $2 have now been reported ("Nanobytes", Byte, August 1988).

22/ See United Nations Economic Commission for Europe (1987).

23/ The movement from a "Ptolemaic" to a "Copernican" concept of data
proce;sing is described in UNIDO (1988). For a general introduction to
datab.se ideas see Martin (1981).

24/ Multi-user operating systems
personal/microcomputers such as XENIX
Corporation. However, the overwhelming
single-user operating systems.

are available for many models of
(a form of UNIX) from Microsoft

majority of such computers have

25/ See "A tarnished Unix fails to lift AT&T", Computer Weekly,
16 July 1987.

26/ See Isaak (1986), reported in Data Processing Digest, October 1986.
See also "Group of ten challenges IBM", New Scientist, 27 November 1986. The
first step has been the preparation of the X/Open Portability Guide,
describing the ColllDOn Applications Environemnt (CAE).

27/ Posix is a standard for interfacing with UNIX, set by the Institute
of Electrical and Electronic Engineers (IEEE 100 3.1). See "Just wild about
Posix", Computer Weekly, 29 January 1987.

28/ See "Software: Why AT&T and Sun hooked up", Electronics, 29 October
1987.

29/ The Software Foundation is supported by Apollo Computer, Group Bull,
DEC, Hewlett Packard, IBM, Nixdorf, and Siemens. See IEEE Computer, July
1988, p. 62. Its work will be based on the IBM version of UNIX, called AIX.

30/ X/Open's work of standardization is concerned not only with UNIX but
with applications languages, so that an application may be written in a
certain form of COBOL or FORTRAN and then run on any X/Open standard computer
without the source code having to be changed. X/Open is including SQL (see
section 4.4) in the next version of CAE.

31/ IBM advertisment, Computer Weekly, 26 November 1987.

32/ See Malloy, R. (1988).

33/ See Fertig, R., "IBM sets its sight on greater software revenues",
Computer Weekly, 27 March 1986.

- 42 -

34/ See Fertig, R •• "\r'hat I.BM has in store for users", Computer Weekly,
11 June 1987.

35/ For a review of the C language, see the articles in BYTE,
August 1988 or Kernighan and Ritchie (1978).

36/ See Pyle (1981).

37/ See Dahl, Dijkstra and Hoare (1972) and Mille (1986).

38/ These criteria vere set out in Codd (1970). More recently, Codd is
reported as having encreased the number of rules to 166 features grouped in
13 classes. (See Computer Weekly, 8 October 1987).

39/ Except insofar as it contributes to a slovdovn in access times.

40/ For definitions of CAD, CAM, CIM, etc. see United Nations Economic
Coamission for Europe (1987), Annex I, pp. 149-158.

41/ See "Inside Technology''• Electronics, 29 October 1987.

42/ See "Feature: design automation", Electronics Weekly, 6 July 1988.

43/ See Jackson (1986), p.2.

44/ Automated translation has been a particular focus of interest at the
Coamission of the European Coamunities, vith the Eurotra project. See
Co•puter Weekly, 9 January 1986. For a survey, see Laub (1986).

45/ For a detailed account of pattern recognition techniques and
applications, see UNIDO (1986).

46/ See, for instance, Jackson 0986), and UNIOO (1986), and Gahan
(1988).

47 / See "AI woos MIS anew", Computerworld: Focus, l June 1988.

48/ For instance, a recent article (Capello et al., 1988) setting out
the conditions for a successful expert system project specifically mentions
the need for training in the LISP language. For a comparison of LISP and
PROL()l; see Tichy (1987).

49/ On problems of assessing expert system development see Socha (1988)
reported in Data Processing Digest, no.6, 1988.

50/ See Soamerville (1985), p.3.

51/ The best-known work on this subject is Boehm (1981).

52/ The initial succ1:sss of Apple as a manufacturer has in ftact been
attributed to the success of Visicalc. "Survey: Personal Coir.puters",
Financial Times, 14 September 1988.

53/ For example, in an advertisement for the DBMS Oracle, the speed of
selection, projection, and calculation is compared against that of selection
in Informix, another DBMS. (UNIX/WORLD, December 1987). In an advertisement
for Turbo Basic 1.1, both the speed of compilation and the speed of execution
of the object progra11111e are compared to those of QuickBasic (Microsoft).
(Personal Computer World, September 1988).

•

- 43 -

S4/ For instance, the very successful database softvare for personal
computers, dBase I I I. has engendered many other products: see .. dBase add-one .. ,
Personal Computer World, September 1988. Ihe operating system itself, MS-DOS,
has done the same, for instance with "shells .. to improve the user interface:
see .. Eight DOS Shells that Make Computing Easier .. , Infovorld, Vol.9,
January 19, 1987, reported in Data Processing Digest, 3/87. In the mainframe
side, a large number of performance monitors are available; one source gives
43 for IBM systems (Xephon Technology Transfer Ltd., Xephon Publications,
Autumm 1987).

55/ It is not an absolute control, because to raise rents too much would
open the door to a rival producer. But the inconvenience of transferring to
another software system would in any case deter many from changing.

56/ Filling gaps, as a strategy, involves an appreciation of many
aspects of hardware and software. It may also involve working with hardware
directly to such an extent that the operation may seem more like hardware
manufacturing. But in fact there is no physical transformation of the
materials, apart from the linking of chips and connectors together. The exact
pattern of linkage may be unique but it uses printed circuit board (PCB)
techniques that are well understood. The real contribution and the source of
value added comes from the software, which can be embodied in ROMs, EPROMs,
EEPROMs or ASICs.

S7/ Representation at these fairs of the new software co~pany is another
matter and often an expensive one. The average cost of the space for a stand
at CeBIT is Df1 200 per square meter, and to this must be added the
construction of the stand an many other associated costs. The total
expenditures of Siemens in 1989 was 8 million DM. See ""wlieviel ausgegeben
wird, um Geld zu verdienen", Computerwelt, Nr. S, 11 March 1988.

58/ See, for instance, Davis (1985). On the terms and conditions of
software sales, see UNIDO (1985).

59/ See Boehm (1987) and Sonmerville (1985). See also Roman (1986),
reported in Data _f!oc~sing Digest, 11/86, for some examples of COBOL tools
for an IBM environment.

60/ "IPSEs start to come into their own", Computer Weekly, 4 February
1988.

61/ See Rubin (1987), reported in Data Processing Digest, 8/87, and also
Boehm (1981).

62/ It has been suggested, however, that the maxim "any publicity is
good publicity" applies here, but this seems to be more in connexion vi th
large companies who can supply updates at relatively little cost to registered
users and thus get a good reputation for quality control. See "What's
bugging you", Practical Computing, July 1986.

63/ See "Software Makers Battle the Bugs", Fortune, 17 February 1986.

- 44 -

REFERENCES

Arossa, Lydia. Internationalization of software and computer services.
ICCP/OECD Report to be published in 1988.

Bernhard, Robert. C<>1aputer architecture: computing at the speed limit.
In Torrero, Edvard A. (ed.). Next-generation computers. IEEE Press, 1985.

Boebll, B.W. (1981). Software engineering economics. Prentice-Hall, 1981.

Boebll, Barry B. laproving software productivity. IEEE Computer, September
1987.

Codd, E.F. (1970). A relational model of data for large shared data banks.
Comaunications of the ACM, Volume 13, No. 6, June 1970.

Conklin, Jeff. Hypertext: an introduction and survey. IEEE Computer,
September 1987.

Cupello, J.M. and Mishelevich, D.J. Managing prototype knowledge/expert
system projects. Communications of the ACM, Vol. 31, May 1988.

Dahl, 0.-J., Dijkstra, E.W., and Hoare, C.A.R. Structured progranning.
Academic Press. 1972.

Davis, G.G. Software protection: practical and legal steps to protect and
market computer programs. Van Nostrand Reinhold, Nev York, N.Y., 1985.

Gahan, E. "The impact of expert systems". Industry and Development, No. 23,
1988.

Gimaric, Charles E. and Milutinovic, Vjelko M. A survey of RISC processors
and computers of the mid-1980s. IEEE Computer, September 1987, pp. 59-69.

Isaak, J. Designing a standard. Computer World: Focus, Vol. 20, 20 August
1986.

Jackson, P. Introduction to expert systems. Addison-Wesley, 1986.

Kernighan, B.W. and Ritchie, D.M. The C programning language. Prentice
Hall, 1978.

Labich, Kenneth. The shootout in supercomputers. Fortune, Vol. 117, No. 5
29 February 1988, pp. 37-40.

Lamb, J. Translation systems: bridging the language gap. Datamation,
Vol. 32, No. 1, l January 1986.

Malloy, R. First impressions: IBM's OS/2 extended edition. Byte, July 1988.

Martin, J. An end-user's guide to data base. Prentice-Hall, Inc., New
Jersey, 1981.

Mills, H. Structured progra11111ing: retrospect and prospects. IEE Software,
Vol. 3, No. 6, November 1986.

Nelson, Theodor ff. Managing i1m1ense storage. Byte, January 1988.

•

- 45 -

OECD 1985 a. Software: an emerging industry. Information Computer
Communications Policy No. 9. Paris, 1985.

OECD, Working Group on Accounting Standards. Working Documents, No. l:
Accounting treatment of software. 1986.

OECD. Standards in information and conmrunications technology. Paris, 1987.

Pyle, I.e. The Ada progranming language. Prentice-Ball International, 1981.

Roman, David. Classifying maintenance tools. Computer Decisions, Vol. 18,
30 June 1986 •

Rubin, Boward A. A comparison of software cost estimation tools. System
Development, Vol. 7, May 1987,

Schware, Robert. Software industry deve:opment in the Third World: Policy
guidelines, institutional options, and constraints. World Development,
Vol. 15, No. 10/11, 1987, pp 1249-1267.

Socha, Wayne J. Problems in auditing expert system development. EDPACS,
Vol. 9, March 1988.

Sonmerville, I. Software engineering. 2nd Edition. Addison-Wesley,
Publishing Country, 1985.

Tichy, Walter F. What can softvare engineers learn from artificial
intelligence? IEEE Computer, November 1987.

United Nations. International standard industrial classification of
all economic activities. Statistical Papers Series M., No. 4, Rev. 2.
Sales No.: E.68.XVII.8. New York, 1968.

United Nations. Standard international trade classification revision 2.
Statistical Papers Series M., No. 34/Rev. 2. Sales No.: E.75.XVII.6.
New York, 1975.

United Nations Economic Commission for Europe. Software for industrial
automation. UN Sales Publication No. E.87.II.E.19. 1987.

United States Department of Commerce. 1986 US industrial outlook. January
1986.

UNIDO (1986). Applications of pattern recognition and image processing
to industrial problems in developing countries. Prepared by TATA
Research Development and Design Centre. JJNIDO/IS.609, 14 February 1986.

UNIDO (1987). Expert systems: prospects for developing countries. Prepared
by A.K. Jain. UNIDO/IPCT.4l(SPEC), 23 September 1987.

UNIDO (1988). Software production: organization and modalities. Prepared by
Hans-Jochen Schneider. UNIDO/IPCT.63, 17 May 1988.

Weber, J. A window into the brain. Personal Computer World, March 1988.

