

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at <u>www.unido.org</u>

RESTRICTED 23 DECEMBER 1989 Consillant: Kunden SAHNI Bededop Eff: As. ODn agen

PRODUCTION OF SALT IN SIERRA LEONE

FROM SALINE SILT

REPORT PREPARED FOR THE GOVERNMENT OF

SIERRA LEONE

BY

K. L. SAHNI (SALT EXPERT)

.....

0.1.11

EXPERT OF THE UNITED NATIONS INDUSTRIAL DEVELCEMENT ORGANIZATION AS EXECUTING AGENCY FOR THE UNITED NATIONS DEVELOPMENT PROGRAMME

This Report has not been cleared by the United Nations Industrial Development Organization , which does not therefore share the views presented (1)

(1) To be committed after clearance by the UNIDO

71. 11

TABLE OF CONTENTS

•

LIST OF ANNEXURES

ACKNOWLEDGEMENT

1.	INTRODUCTION TO THE COUNTRY	PAGE	1
2.	COMMON SALT PRODUCTION IN SIERRA LEONE		2-3
3.	RECOMMENDATIONS	••	4
4.	OBJECTIVE OF THE MISSION	••	5
4a.	EXTENT OF SALT BEARING SILT, DENSITY OF BRINE AVAILABLE	••	5-10
4b.	METHOD OF MANUFACTURE OF SALT, CHEMICAL COMPOSITION OF SALT, SUGGESTIONS FOR IMPROVEMENT.		
5.	STUDIES OF THE CLIMATIC CONDITIONS	**	11
6.	CONDUCTING OF CERTAIN EXPERIMENTS	••	12
7.	BOOKS AND REPORTS ON SALINE SILT	*;	13
8.	FINDINGS	.,	14

LIST OF ANNEXURES

•

.

٠

1.	Map of Sierra Leone	Page	15
11.	Uses of Common Salt	**	16
111.	Names of Villages, number of of households and number of persons in salt producing villages		17
IV.	Map of main salt producing areas	**	18
v.	Filtration Unit	**	19
VI.	Arrangement for collection of filtrate		20
VII.	Monthly and annual rainfall 1980-86	"	21
VIII.	Temperature	11	22
IX.	Relative Humidity	**	23

ACKNOWLEDGEMENT

.

>

I take the opportunity of expressing my deepest sense of gratitude to ,r. M. H. Kamali, Senior Industrial Development Field Adviser, Freetown and his staff there, Dr. J. G. M. Massaquoi, my counterpart there, Mr. M. Judt, Senior Industrial Development Officer, UNIDO Vienna, for their assistance in carrying out the assignment.

in the training

nt cu b

or other the

The set of the bound of the

1 1 10

a collection of the first

1 1i i 11 - 1 - 1 - i

THERE AN A 1

INTRODUCTION TO THE COUNTRY

Sierra Leone, covering an area of 27,925 sq miles (73326 sq kms) is situated on the West Coast of Africa. It is bordered on the North and North East by Guinea and on the South-East by Liberia. It is divided into four provinces - Eastern, Southern, Northern and Western area. It has 12 districts.

The Mende and Temne languages are widely spoken, but the majority of Sicrra Leone speak Krio as lingua Franca. English is the official lanugage.

Freetown, the capital and principal city, has a population of about 500,000. The other Chief Town are Bo in the Southern province, Makeni in the Northern province and Kenema and Safadu in the Eastern province.

On 27.4.1961, Sierra Leone became an independent state. In SEptember 1961, Sierra Leone was admitted to the United Nation. On 19 April 1971, Sierra Leone became a Republic with the President as Head of State.

The map of the country is at annexure I. Sierra Leone is a predominantly agricultural country with over 65 % of its population depending on farming and fishing. Rice is the basic crop as well ac tre staple food of the country. Other important crops for local consumption are cassava, maize, sweet potatoes, bananas, plantanes citrus and ground nuts. Coffee and palm kernels are the most important exports.

The currency of the country is Leones (Le.) One Le is equal to 100 cents. One US Dollar is equal to approximately 66 Le.

1.1.1

1

utiti i

11 11

1.0

and an an an entropy of the second entropy o

- 1 -

COMMON SALT PRODUCTION IN SIERRA LEONE.

(1) Common salt, or sodium chloride is a combination of two simple bodies- chlorine and sodium in the proportion of 35.5 parts by weight of the former with 23 parts of the latter. These figures represent the atomic weights or combining equivalents of chlorine and sodium respectively; so that 100 parts of salt will always be found to consist of 60.4 parts of chlorine with 39.6 parts of sodium. Salt does not resemble either of the elements of which it is composed. Chlorine is a yellow gas. Sodium is a metal of silvery lustre, capable of burning in the open air, and burning spontaneously in water. The chemical symbol of common salt is 'NACL' Na standing for natrium, the old name of sodium and CL for chlorine.

The specific gr_2vity of common s_2 is taken 2 to 2.25.155 specific gravity is its relative weight, compared, at the same temperature and pressure, with the weight of an equal bulk of distilled water, taken as standard with the fixed v_2 ue of 1.0. Owing to defective crystallization, it is hard to get two specimens of salt which will weigh alike.

Pratically in fact, however, it is twice as heavy as water.

Sodium chloride crystalizes in cubes, octahedrons, or intermediate forms. Manufactured salt has generally the appearance of an irregular, hollow, four sided pyramid.

Pure, anhydrous salt is colourless and transparent. Salt has sometimes pinkish or bluish tinge. These are from minerals or organic stains.

Its taste is saline- peculiar, conferring an agreeable flavour on all kinds of food.

There are many uses of common salt as will be seen from Annexure II.

1.10.1.1.1

The first sector and

The second second second second

2.

(ii) **PRODUCTION IN SIERRA LEONE**

The total population of the country is 3.7 millions as per 1985 Census. Taking the requirements of salt 5 kilogramms per person per annum, the total demand of this essential commodity of daily use works out to 18500 tonnes annually. Against this, the production of salt in the country is approximately 4000 tonnes. The remaining need is being met by imports from countries like U. K., West Germany, the Netherlands, and mainly from Senegal.

a contra contra de

1.1.1.1.1.1

The second

0.11

1.10.1

11 1 1 1 11 101

1 11

1 1

т. II — Т.

.

- 3 -

3. RECOMMENDATIONS

3-1 In order to increase the production of salt by the existing process, the following UNIDO/UNDP assistance is recommended.

(a) To supply small diesel pumps to the salt manufacturers of MAKIM^RA village (to begin with) to pump out rain water to commence manufacturing operations immediately after the rainy season is over. (para 4b-vi)

(b) To improve the method of transportation of brine from the main pit by pumping it into the storage tank for (i) filtration and (ii) to store brine for use in the rainy season. (para 4b-vi)

(c) To supply two evaporators to experiment in the months ofFebruary and March (para 6-i)

(d) To dig a pit about 5 metres deep in the silt area to examine if highly condensed brine could be had (para 6-ii)

3-2 UNIDO/UNDP may provide technical assistance in the form of a consultancy mission of three months (two of one and a half months each) for the above purpose.

3-3 Dr. J. G. M. Massaquoi be associated with the project and paid suitable renumeration/honorarium for supervising the execution of the above assistance. (para 7)

1 D

10.1.0

1 11

I I IIII

THEFT FOR THE

01.1

1.10.1.1

11 I II I

1 1 1

111

trating an end

i.

- 4 -

4. OBJECTIVE OF THE MISSION

Asses the extent of salt bearing silts and salt brine concentration at locations indicated by Sierra Leone authorities to have potential for industrial salt works and investigate the climatic conditions and soil characteristics at the site of the future salt works.

PERIOD OF MISSION

The short mission was from 18.12. 89 to 25.12.89.

4 A ASSESS THE EXTENT OF SALT BEARING SILTS AND THEIR CONCENTRATION

In fact, a lot of study has already been done in this regard. The data collected shows that the total area suitable for deposit of salt - laden silts in the country is estimated as 2347 km2. The list of villages where such silt is found is given at annexure III. Out of these 20 villages 11 are main salt producing which are shown in the map at annexure IV. The process of manufacture is given in para 4 B (ii) below. According to the study conducted, this silt contains about 8 % salt. Such silts are found at many places in other countries also and salt is made more or less by the same process bacause the content of salt in the silt is too low.

<u>4 B</u> As the rainy season was over some weeks ago, the manufacture work had not yet been commenced at any of the units. My visit to the most important and presently the biggest unit (Makimba) was arranged This village is 28 kms away from Freetown. 22 kms is tarred road and the 6 kms remaining is untarred and about 2 to 3 kms we had to walk to reach the site. The Manufacture work had not yet started but they will start in january 1990. At this source about 400 persons are engaged during the season in the salt industry, out of which 75 % are women.

The second se

In the c

THE THE DETERMINE THE THE

1 1

(i) Information Information (1) (1)

The various operations in the process were explained to me step by step and the examination carried out by me is explained below.

4 B (i) SOURCE OF BRINE

The mean mean to be to a larger

1 11 1

A stream called "YEGBET" flows during the rainy season, which ultimately flows into the sea. During high tide, there is inflow if sea water also in the area. The water of the stream covers an area of about 6 hectares around this village during the rainy season. After the rains are over, the silt there dries up with a white thin spongy layer over it, which is called locally the salt laden silt. Of this silt they scrap about 0.25" and use it for salt making by the process explained in para 4 B (ii) below. Some water of the stream remains in a few pockets (hereafter termed in the report as main pit) at the bed of the stream after the rains are over and that is used in manufacture of salt. The density of brine in the main pit at the time of my inspection was 0° Be. The soil of the area of silt was somewhat spongy but no white formation then existed. The density of brine in the small pit dug by the manufacturers in the area was 1⁰ Be. Obviously the initial concentration of brine is low.

i i indenti i i

a a contrate of the contra-

diffic or or or o

TE E DE DE LE

4 B (ii) PRESENT METHOD OF MANUFACTURE OF SALT

This type of method produces salt from salt-laden silts deposited at coastal estuaries of the river/stream. This method involves producing a highly concentrated brine from salt-laden silts which are collected from the tidal flats and creek beds. The salt is leached out from the silts by a percolation process. A filter funnel is packed with the silt and water from the main pit is poured upon it. As the brine filters through the silt, a greater part of the sodium chloride is carried away in solution and as the brine trickles down, it is caught in a wooden trough (locally known CALABASH) about 20 cms long 12 cms wide and made of wood of which normally boats are made. This process is repeated till the concentration of the filtrate is high. This condensed brine is very valuable for the manufacturer. It is them removed to their huts and boiled in a pan made of galvanized iron sheet on a specially designed stove (furnace) using wood as fuel. The brine is evaporated to dryness. Salt is formed which is then put in a perforated basket and water is sprayed over it and allowed to drain for a day or two and dried in the sun. The process of spraying salt with water is to remove magnesium chloride to the extent possible to improve the quality of salt chemically and also in appearance.

4 B (iii)

I TE REPAIL TO THE REPAIL OF THE

The percolation tank made locally consists of a funnel made with sticks and lined with wood leaves. The filter medium at the bottom is a collection of well placed rice straws resting on small sticks. The filter is usually placed over a wooden trough that collects the filtrate (see annexures V and VI) Leaching of salt can be a slow process in this method. But the obstacle can be hurdled with many more tanks been put to use simultaneously during the process.

The second of the second second

at a con-

THE I HERE WHEN WHEN IN A REPORT OF

- 7 -

4 B (iv) WOOD FIRE STOVE FOR BOILING CONCENTRATED BRINE

It consists of a pan 100 cms x 10 cms in size, made of galvanized iron sheet and placed on a specially designed wood fire stove, the platform of which is 150 cms x 75 cms x 30 cms made of stones and mud provide with a chimnev.

4 P (v) CHEMICAL COMPOSITION OF SALT

Analysis reports of indigenous production compared with salt imported from Senegal are available which are tabulated below:

	salt produced	imported salt
	at MOKIMBA village	from Senegal
CaSo4	1.061	0.247
MgSO4	1.331	0.034
MgC12	0.347	0 320
KCL	0.071	0.139
NaCl	97.050	99.64

The results show 97.50 % of sodium chloride in the locally made salt, which is fit for human consumption.

The salt seen by me however. showed that it was mostly powdery and contained plenty moisture. The appearance was white.

added to be an early to a control to the second second

DE LE LE TELLE LE LE

1.10

11 III III II I

reduced a second state of the second se

L L

TTO THE TO THE

111 101

- 8 -

4 B (vi) SUGGESTIONS FOR IMPROVEMENTS

According to a rough estimate, at Mikimba a batch of two with the help of children, produces 3 to 4 tonnes of salt per season. This production per family can be increased by 50 % if the following facilities are provided to them:

Presently they bring water from the main pit or small pits in the area to the filtration unit by buckets etc. If one or two reinforced cement concrete tanks are provided near the filtration unit they can pump brine from the main brine pit to the tanks and utilize it for manufacture of salt.

The same tanks they can fill up with brine before the on set of the rainy season and use it for filtration and boiling even during the rainy season to make salt. Of course only those manufacturers who reside near the units will be able to avail of the use of this brine.

The same diesel pump they can use for sprinkling brine from the main pit over the silt area after a few scrapings in order to make the area more saline.

At present, the manufacturers start the manufacturing operations in the middle of January and at that time the density of brine in the main pit is hardly 1 Grad Be. If the rain water from this pit is pumped out immediately after the rains are over, during high tide sea water which has the density of about 3 Grac Be. will enter the main pit resulting availability of somewhat higher density brine even during December and January. This will result in prolongation of the period of manufacture and availability of higher density brine and hence more production.

Notes: At the same village they have 4 units consisting of different groups of manufacturers. Therefore, facilities will have to be provided to all the four groups. To begin with providing facilities to this village may be considered. Approximately cost of the equipment proposed will be as under:

IN THE THE THE

11 I bit i

The second second second second

1.1.1

TTTT TOTTTTTTTTTTTTTT

1.1.1

11 11 11

. 9 -

	NAME OF EQUIPMENT	NO.		COST	
				US\$	
Item: 1.	PUMPS DIESEL 2 to 3 HP	5		5000	
	WITH EXTRA PIPES				
2.	RCC BRINE TANKS	4		8000	
	5000 LITRES EACH				
3	EVAPORATORS	2		1000	
5.		2		1000	
4.	DIGGING PIT	1		1500	
5.	MISC. AND UNFORSEEN	L.S.		2500	
	TRANSPORT FOR STAFF				
	TO GO SITE			3000	_
			TOT 1 1	21000	
			TOTAL	21000	US

THE FERRENCE METADO

.

at the contract

•

•

in t n

T T T MADE

5. STUDIES OF THE CLIMATIC CONDITIONS

For manufacture of salt by solar evaporation, it is necessary to make close observations of the meteorological data for that area based on which the period of the year suitable for salt production can be projected. It is mentioned that study in this regard has already been conducted:

The following tables are enclosed:

Monthly	and a	innua	al rainfall	1980	- 19	986	(annexure	V11)
	do	-	temperature	-	do	-	(annexure	VIII)
-	do	-	humidity	-	do	-	(annexure	1X)

Rainfall - It is the most important factor for consideration for setting up a solar salt work as one of the improved methods of salt production. The rain fall should be low and its distribution be restricted to only a few months leaving a long and dry weather for salt manufacture.

Relative Humidity - The lower the relative humidity, the greater is the rate of evaporation. Generally, humidity of 80 % or below is considered suitable for salt manufacture.

The annexures VII and IX will show that the rainfall and also the relative humidity in the area are very high and not suitable for setting up a solar salt work. A solar salt work was set up at Suen in this country in 1975 and had to be closed down after five years because making salt by solar evaporation in this country is not economically viable owing to unfavourable climatic conditions.

The second secon

THE THE REPORT

n ni

ui Li

- 12 -

6. PROPOSED EXPERIMENTS

разна найте н

6 (i) The months of January to March are however some what dry months. RCC evaporators can therefore be tried on experimental basis to evaporate the condensed brine to make sal: and save cost of wood used for boiling the condensed brine.

6 (ii) In the silt area a pit of about 5 metres deep be dug to ascertain if condensed brine is available at a lower strata. If available, the procution of salt at these places will increase in appreciable quantity. In fact, this is done in some areas to get condensed brine.

a ta ta conditional d

n i i i i i i i

7. The following reports on salt production in this country were shown to me for studies:

- 1. Technology choice in the informal sector. The case of salt production in Sierra Leone (Dec 1987) by Dr. J. G. M.Massaquoi.
- 2. Small scale industrial salt production from salt laden silts (April 1989) written by Mr. Yonas Abera and supervised by Dr. Massaquoi.
- Solar Evaporation of brine from salt laden silt by Alfred T. Gbakima and supervised by Dr. Massaquoi (1988 - 1989).

do an the car an

The first of the state of the block burn

1.1.11.10

It will be observed from the above that Dr. J. G. M. Massaquoi has been taking keen interest in development of salt industry in this country and has sufficient knowledge about it. He needs to be associated with any assistance etc. to be given in this regard to these salt areas.

THEFT IS A THE DESIGN OF MENTING AND THE FILTER.

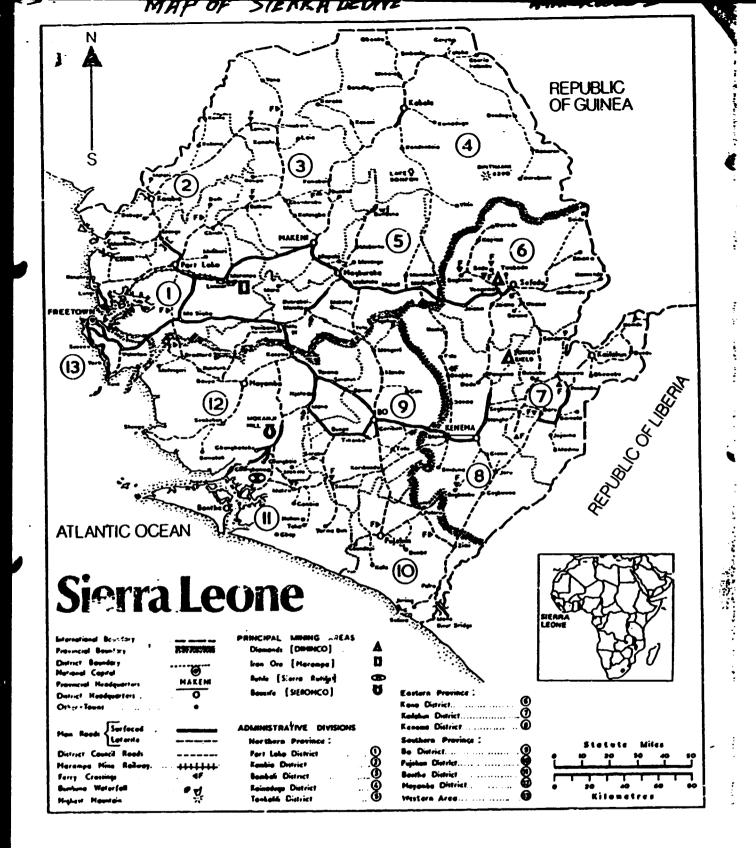
0.1.1.1

8. FINDINGS

TELEVICE ELLEVICE

the first state of the first state of the st

The climatic conditions in the country are not suitable to set up an economic unit of solar salt work.


The sodium chloride contents in the silt and also the initial density of brine available in silt areas are too low to take up production of salt from the salines silt in a large scale manner.

The production by the existing process is to continue by the existing agency. To increase further the production of salt, the number of units need to be enhanced by persuasion/providing facilities to the manufacturers and for the purpose is understood to be available.

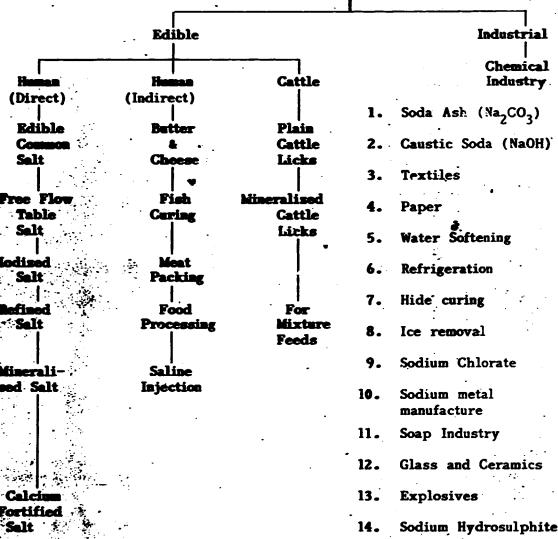
The second second is the second secon

11101

1.11

1 1 1 1 1

ш


TERM I THE

CHERTER HEALTH FULLER

THE REPORT OF THE PARTY OF THE

h I

Calci Fortified Salt

H

Edible

Contence

Salt

Table

Salt

Iodised

Salt

afined

Salt

Minerali-

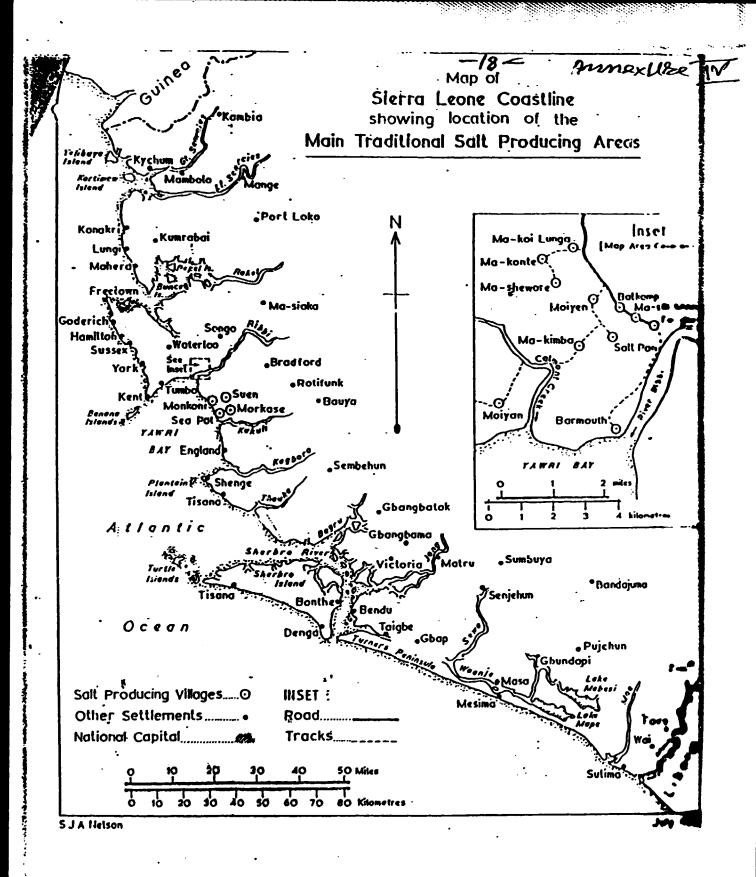
sed Salt

1 1

- 17 -

Number of households, persons and sex distribution - major salt producing villages

(Source: Provisional figures of 1985 national census)


Name of village	regio	istra n in loca		Number of househol	Number of ds person	Male s	Female
SUEN		chie ba dis		145	921	448	473
MORKASO I+II	13	**		20	181	85	96
SEA PORT	**	"		13	98	40	58
MANONI	••	"		6	40	21	19
BANGA GROUND		Chiel ba dis		67	434	221	213
MOIA		"		73	476	222	254
TASSO ISLAND		III, V Area	Vestern	580	3672	1952	1720
MAOMBI	York,	**		9	63	37	26
MOIYON	Koya,	**	11	34	268	131	137
MA-KOI LUNGA	**			19	112	53	59
BAIKOMP	••	11	**	15	162	86	76
MASILI MANI	"	**	н	28	172	78	94
MAKONKOBO		Wester distr		5	29	18	11
BANGA GROUND	**	"	**	3	13	9	4
FOLGOO	•	Wester Distr		75	547	292	255
MAKONTE	"	"	**	9	67	31	36
MASHOWORE	••	"	**	7	40	20	20
BARMOUTH	"	"	**	13	85	43	45
MAKIMBA	**	"	"	20	160	82	78
ROKAI/SALT PAN	···	••	**	16	102	49	53
TOTAL				1157			

TOTAL

.

\$

1157

1.11.1.1.1.1

-19-Annexue V C Silt and Brins Lining of leaves and rushes Concentrated Brine leacher out. polos Fic 2.2n Traditional Filtration Unit used by salt processors.

~ Trough locally Havin CANOE 25 Furmal Locally Known THENOI Fig.22.2b Arrangement for collection of filbrate. // xont OZN,

				infall	By Mete	orolo	gical S	tation,	1980 -	1986				nnexue	
	Monthly											(In 1	mm)		
Station	Month Iear	Jan	20p	Har	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Average	
Bonthe	1980 1981 1982 1983	1 0 0 %	25 12 0 Trace	29 18 8 0	114 88 106	466 254 283 308	628 420 798 688	1601 1058 965 1154 699	1387 618 974 1256 705	554 359 454 677 434	388 221 384 247 362	124 133 147 221 120	54 0 8	5436 3261 4101 4665 3518	
	1984 1985* 1986*	0 - -	3 - -	26 - -	218 - -	580 - -	371 - -	- -	-	-	-	-	-	-	
Freetown	1980 1981 1982 1983 1984 1985	18 Trace 0 0 0 0	21 15 Trace 10 0 30 Trace	Trace 76 Trace 3 O Trace 24	70 33 32 76 80 0 6	207 275 246 133 223 70 199	447 397 440 321 222 182	861 993 581 500 532 853 530	1144 599 1170 705 324 722 685	414 430 310 298 318 384 435	189 293 217 246 250 188 314	98 32 75 32 92 126 70	8 24 0 14 1 12 0	4377 3167 3070 2422 2141 2606 1731	1 00 1
Lungi	1986 1980 1981 1982 1983 1984 1985 1986	6 Trace 0 0 0	31 21 0 13 0 24 Trace	Trace 14 0 7 4 5 3	78 109 74 8 69 Trace 15	269 284 196 160 266 153 220	380 311 498 470 412 310 270	802 1086 556 526 463 555 564	767 514 1041 760 431 614 687	379 402 336 314 356 304 447	176 311 309 288 189 329 272	173 75 99 83 115 137 49	32 26 0 36 0 3 "Trace	3093 3153 3203 2665 2305 2135 2527	

Sources: Meteorological Headquarters, Freetown.

. . . .

4

Rainfall

•

• • •

Monthly rainfall is the monthly total of the daily amounts. Daily amount of rainfall is the measure of rain fallen in the 24 hours a.a. to 9 a.a. the following day. Я

• • ·

المتحدث

٤

.

Ē

Ē

-

Nonthly and Annual Temperature By Meteorological Stations, 1980 - 1986

and the second second

93

Degrees centigrade (°C)

+1.9

Station	Nonth Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Average
Bonthe	1980	27.2	27.6	27.8	28.9	27.7	26.7	26.1	25+3	26.5	27.0	26.9	26.5	27.0
	1981	25.7	26.2	27.3	27.6	26.7	26.5	24.7	25.1	25.6	26.7	26.8	26.8	26.3
	1982	27.1	27.5	27.7	28.4	27.5	27.0	25.3	25.7	27.0	27.2	27.5	27.1	27.1
	1983	26.8	27.8	28.5	28.3	27.7	26.5	25.7	25.9	26.7	27.3	27.4	27.5	27.1
	1984	26.8	27.7	28.2	28.0	27.5	27.3	26.6	26.4	27.2	27.6	28.3	27.8	27.4
	1985*		· b	-	-		•	-	-	-	-		-	
	1986*	-	-	-	-	-	-	•	-	-	-	-	-	-
Freetown	1980	27.7	27.0	27.9	28.5	28.3	26.4	26.4	26.2	26.5	27.0	27.1	26.8	27.2
	1981	27.0	27.0	28.1	28.5	27.6	27.2	25.5	25.7	26.2	26.9	27.9	27.3	27.1
	1982	26.4	27.4	27.7	28.5	27.8	27.2	26.2	25.6	25.9	26.6	27.3	26.8	27.0
	1983	26.8	27.9	28.5	28.3	28.3	27.1	26.7	26.2	26.7	26.8	27.8	27.2	27.4
	1984	26.9	27.1	28.1	27.9	27.6	27.1	26.3	26.7	26.5	26.9	•	26.2	27.0
	1985	26.0	26.6	27.3	27.8	27.6	26.8	29.1	25.0	25.8	26.9	27.0	25.9	26.8
	1986	25.9	11.3	11.5	11.9	27.9	26.7	25.6	20.8	25.9	•	•		15.6
Lungi	1980	27.1	27.0	27.6	28.7	27.7	25.9	25.9	25.8	26.4	26.8	26.8	26.3	26.8
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1981	27.7	26.6	27.5	28.0	27.0	26.7	25.1	25.4	25.7	26.0	27.3	26.2	26.4
	1982	26.4	27.3	27.9	28.5	27.5	26.7	25.5	22.7	26.1	26.2	26.9	26.1	26.5
	1983	26.2	27.7	28.6	28.5	28.4	26.4	26.1	25.4	26.0	26.7	27.7	27.0	27.7
	1984	26.4	27.5	28.0	28.2	27.2	26.2	25.4	25.6	25.9	26.2	-	26.0	26.6
	1985	26.1	26.6	27.4	27.3	27.3	25.6	24.6	24.9	25.7	25.7	26.7	-	24.0
	1986	25.5	26.5	26.1	27.4	27.1	25.4	24.8	24.9	25.4	25.7	26.0	25.8	25.8

Source: Meteorological Headquarters, Freetown

• Station non-functional in 1985 and 1986

#### Temperatures

The monthly temperature is the average daily temperature measured for the month. Average daily temperature is the mean of the maximum and minimum temperature observed for the day. The yearly average temperature is the mean of the 12 monthly average temperature.

E forester and a second se

1 - The second state of th

a serie de la s 

Annexme 1x

Nonthly Relative Humidity (%) Meteorological Station, 1980-1986

1.11

Station	Iear	Jan	Feb	Mar	Apr	Hay	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	4080	85	80	82	88	89	90	93	91	89	89	89 86	86
<b>Bonthe</b>	1980 1981	81	84	82	83	89	89	93 93	91	90	87	86	87
	1082		91	88	86	87	90	91 93	92	92	91 89 86	90 89 83	92 89 83
	1902	93 88	89	86	85	87 86	91	93	94	90 87	89	09	07 91
	1084	-85	80	86 82	84	86	87	90	91	87	00		
	1085*	-	•	-	-	-	-	-	-	-	-	-	_
	1982 1983 1984 1985* 1986*	-	-	-	-	-	-	-	-		-	-	-
			<b></b>	05	77	80	81	85	87	84	81	80	74 83 84 87
Freetown	1980	77 68	74	75	79	86	84	90	89	88	85	84	83
	1981	00	75	76 80	82	86	89	92	89	86 87 84 84	85 89 84	84 84	84
	1982	82	80	80	78	82	89 86	92 89 85 86	89 93 85 87 85	87	84	84	87
	1983	68	79	79 74	70	79	83	85	85	84	83 81		71 66 64
	1984	74	72	74	77 74	77	83 80	86	87	84	81	81	66
	1985	70	73	74 67	67	73	76	83	85	83	-	75	64
	1980 1981 1982 1983 1984 1985 1986	62	72	07	07				-				
	-					72	83	86	- 86	84	81	81	72 85
Lungi	1980 1981 1982	74	71	71	71	78 84	84	89	88	87	85	83 88 87	85
•	1981	73	76 85	77 80	79	83	89	92	91 .		89	88	90 89 69
	1982	90	85	80 80	79 74	84	80	89	93	90	88	87	89
	1983 1984 1985 1986	81	82	78	76	80	89 84	89 86	93 87 88 88	92 90 85 85	85 89 88 85 85 83	-	69
	1984	76	74	73	70 72	26	86	87	88	85	85	82 78	-
	1985	73 64	75 72	76 68	73 70	76 76	86 82	87 87	88	85	83	78	64

Source: Meteorological Headquarters, Freetown.

**Humidity** 

2

.

ىذ

The daily relative humidity is average relative humidity of the synoptic hears i.e. every three hears starting free 0000 to 2100 GHT. old to the total daily relative svorage relative bunidly for the