OCCASION This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation. #### **DISCLAIMER** This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO. #### FAIR USE POLICY Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO. ### **CONTACT** Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications. For more information about UNIDO, please visit us at www.unido.org MICROELECTRONICS TECHNOLOGY: PROBLEMS AND PERSPECTIVES IN COUNTRIES OF WEST ASIA AND NORTH AFRICA. The paper is a result of a UNIDO sponsored mission in Iraq, Saudi Arabia UAE (Abu Dabi), Tunisia and Morocco. The author wishes to record his appreciation to the sponsors for making his trip possible, UNECWA officials for their assistance and encouragement and UNDP officers i visited countries for their help in administrative matters and for organising certain visits. Finally, the author would like to thank the members of the mission Mr Felix Hinc and Mr Hassan Charif for their excellent cooperation and many valuable discussions. The contribution of the latter deserves special mention due to his profound knowledge of the region and extensive contacts with key people in the field which were invaluable in achieving mission objectives. The mission was conducted in November-December 1983 and this paper is based on meetings with over a 100 people in 45 organisations spread over 25 days. The organisations covered include government ministries, national computers centres, major oil and mineral companies, investment and planning institutions, academic, R & D and manufacturing organisations. Since such an exercise was being attempted for the first time coverage has been extensive in order to obtain a perspective of the status, problems and potential for microelectronics in the region. However, these notes represent impressions of a 3 week visit only, at a given period in time, with the primary objective of preparing a backgroung paper for the experts meeting in Kuwait in March 1984. The countries in the UNECWA region and North Africa recognize both the need and potential for the application and development of microelectronics technology explicity is well ahead of the absorptive capacity of the region both in terms of infrastructure and human resources. Finance clearly is not a constraint, especially, in the oil exporting countries of the region. Consequently, the present situation does not tend toward a stable technological equilibrium and special efforts will be necessary both in terms of infrastructure development and local manufacture if the present rate of diffusion of the technology, assuming effective utilisation, is to be maintened. We ile special efforts to develop applications of this technology have been made in the public domain, as is evident from the chain of national computers centres that have been established, there is a considerable spread in the capabilities of individual countries. Thus, CNI in Tunis and IMEG in Casablanca/Rabat seemed to be considerably ahead of their counterparts in the other countries both in terms of human resources and methodology. Greater regional cooperation with the assistance of UNECWA/UNICO between these institutions could go a long way in not only rectifying the imbalance but further upgrading capabilities. In terms of industrial applications, the largest market for microprocessors based control systems was the oil production/exploration and mineral extraction/purification sectors. Thus, while ARANCO, Saudi Arabia the largest oil exploration/production company was an impenetrable fortress tied to primarily US vendors for the both hardware/software support, the situation in ADNOC, Abu Dabi, and PETROMIN, Saudi Arabia appeared relatively more flexible with greater potential for development of local capabilities to support their future requirements for microelectronics hardware and software. Similarly, OCP, Casablanca, Morocco and probably the Jordanian Phosphate Company are fare more open and keen to use / develop local capabilities. Another application area of considerable potential for the region was in the generation, transmission and distribution of electricity and the example of STEG, Tunis deserves to be supported and emulated. Finally, the largest potential for the application of microelectronics technology is in the education and office automation sectors as brought out succinctly in the paper of W.M. Turski provided the problem of standardisation of the Arabian character set can be swiftly and unambigously resolved. Herein also, lies an opportunity of volume manufacture of low cost bilingual terminals and microcomputers. The efforts of Saudi Arabia (Al-Farabi computers), IMEG (low cost micros for schools) and CNI (terminals) need to coalesced and catalysed effectively by UNIDO/ECWA. The manufacturing base in both the ECWA and North Africa region is presently very limited and would have to be considerably augmented to sustain an autonomous microelectronics industry. Given the gross national product of the region and its continuously increasing requirements for microelectronics products, there is a definite need to evolve a strategy for the development/manufacture of microelectronics products/components for the region. The present efforts at TV assembly at SADA, Morocco, SONELEC, Algeria or in Tunis and Syria nor the offshore assembly of components at SNRF, Morocco of their manufacture to a limited extent at SONELEC, Algeria constitute a viable or effective strategy for the future development. In the experience of the mission, Tunis was the only country where the potential to set up local manufacture on an integrated basis was being seriously examined, primarly, by BDET and API. Thus, 3DET was talking to both Jeumont Schneider. France to establish manufacture of EPARXS (10,000 lines per year) and to COMTERM, Canada, to manufacture terminals, while API wanted to establish of passive components i.e. resistors and capacitors. Both institutions, however, were clearly aware and concerned about the economic viability of these projects and were looking for a wider regional market. In the author's view, exclusively national strategies cannot be pursued by individual countries in the region since the requisite combination of high per capita income and population does not simultaneanusly co-exist. On the other hand, the electronics market for the region as a whole is substantial enough to pursue an economically viable developed and growing at a significant rate. Two sectors which need to be singled out are consumer electronics and communications. While it was not possible to obtain any quantitative data on the consumer sector, the fact that production of color TV sets exceeds 100 per day in both Morocco and Algeria, each with a population of 30 millions approximately and 50,000 in Tunisia with a population of 6-7 millions, the color TV market in the ECWA + North Africa region as a whole ought to exceed 1,5 millions sets per annum. If to this is coupled the demand for VCRs, combination sets, calculators, personnal computers and electronic watches, this market is estimated to be in the neighbourhood of \$\beta\$ 2 billions. An earlier ECWA/UNIDO study shows that the demand for telephone exchange lines is the ECWA regions is projected at 433,000 per annum during the period 1981-85 growing to 796,000 per annum between 1986-1990 with a matching demand for ECH channels. The corresponding demand for telephone sets has been estimated at 563,000 and 1,035,000, respectively. Further, the average annual investment in the regions networks has been estimated at \$886 millions (1981-85) and \$1,622 millions (1986-1990). The estimate is based on a educated conjoncture given the GNP, population, present level of assembly and visibility of these products. While no accurate estimates exist for the computer market in the region, Saudi Arabia alone has been importing equipment at the rate of \$ 100 million/year during 1981 and 1982. Similarly, the requirements for microelectronics, especially, microprocessor based process controls for the oil exploration/production is significant as discussed in the report of the mission. Further, standardisation of the Arabian character set could considerably stimulate the demand for micros and terminals in schools and the office, respectively. Given the above demand, production of a range of active and passive electronic components clearly appears to be a viable proposition. In the consumer sector for the type of products indicated above, components represent almost 40-50% of the value of these products. Similarly, in the area of switching, the cost of components per line for a system like the E 10 B of CIT-ALCATEL is \$ 125/line, namely 50% of the cost per line. While clearly a more detailed study is required to accurately assess present requirements and future demand in these
sectors, once this has been done, it would not be too difficult to extract a profile of component requirements both in terms of quantity and value. A pricri, it would appear that adequate demand exists for establishing a viable component industry. However, it must be recognized from the outset that such an industry would only be viable if it was established on a regional basis. Consequently, standardisation of hardware must constitute an important element of such a strategy. Clearly, the regional issues involved in an industrial strategy for microelectronics need a closer examination, which is not the purpose of this paper. Several suggestions have been made in Turski's paper for augmenting the software capabilities in the region. A complementary set of measures to upgrade the regions "hardware" capabilities is essential if a composite and autonomous microelectronics capability is to be established. These are discussed below: There are 2 major microprocessor families with extensive applications and software currently in vogue, namely, the 8 and 16 bit families of Intel and Motorola. The orientation of the former is primarily towards the personal computer market, and even more so after IRM's entry. Motorola's 6800 and 68 000 series on the other hand are more extensively used for industrial process control applications. The applications coverage and some of the hardware features of these series is summarized in Tables 1 and 2. There are several processor, memory, interface and controller modules together with debugging software packages and development support tools available. Several major semiconductor/system companies have thrown their support behind these series, namely, HITACHI, MOSTEK and THOMSON, thus providing the requisite back up to ensure its continued use. There is a need to establish a regional capability in systems integration around such a concept. In order to ensure effective implementation of such a concept a core group of the more willing users, partly identified above, together with a group of experts from the academic sector needs to be formed with necessary support from ECWA/UNIDO to prepare a feasibility report in terms of the regions requirements in the major application areas, i.e. on exploration/production, mineral extraction/purification and power generation/distribution, etc. Based on these findings a regional centre could be created with appropriate linkages for technology transfer both with OEM suppliers of such components and system suppliers. The key element in any future strategy to design and build electronic systems is the ability to design the silicon "chip". All IC's technology is built on the foundation of semiconductor device physics which provides the essential knowledge is semiconductor fabrication technology which allows the designed IC's to be physically constructed and above this in turn is the body of circuit and logic design knowledge. Various areas of knowledge in the manufacture of IC's have reached different stages of development, with the higher level design skills being the least highly developed. In fact, all the evidence available strongly suggests that these traditional skills will not enough for VISI, design methodology is in essence a search for the right approach to built computer-aided engineering systems that will go on to design the IC's semi-automatically. There is a shift from hardware concepts. It appears reasonably certain that the whole area of the design of highly concurrent systems will become one of the most rapidly developing technological fields of the coming year. All these changes are likely to affect the future structure of the industry in terms of being integrated both in terms of design and fabrication as at present. It is likely that design will become increasingly decentralised and the concept of the "silicon foundry" which does primarily fabrication develop. The emergency of the large custom and semi-custom markets in the eighties is a consequence of this change. Further, design automation systems in terms of both hardware and software in unbundled form are becoming increasingly available. The "work station" which is a low cost design system is becoming increasing viable and several of these systems are being marketed. While the concept of decentralised desgin works quite well in a "foundry" rich environment as has been demonstrated by the sucess of the "multi-project chip", in a developing country environment it is important that local design capabilities are supported by at least a pilot level "silicon foundry" with the capability to process wafers using at least one stable technology. Obviously, local design centres could still need to have linkages with other silicon foundries in both Europe and the USA. Since the concept of the "silicon foundry" is most prevalent in the USA a list of such foundries is summarized in Table III. A ISI design centre necessarily has 2 components, namely, hardware and software. In terms of hardware the most extensively used system by far is the VAX II/780. The system has the great advantage that most of the software packages available for ISI design can be directly implemented on it without any modifications. While it is not proposed to go into the details of the hardware configuration, the VAX II/780 uses graphic terminals which constitute the man machine interface. Depending on the configuration the hardware costs for establishing a design centre would be typically S 300,000. The design software could have to include a package for registrer level entry, a logic simulator (TEGAS, SPLICE, EPILOG), a circuit simulator, (SPICE), preferrably a processor simulator (SUPREME), an interactive graphics backage (CAIMA, GCI, etc...) a package for design rule check, a cell or element extractor from the lay out to verify or resimulate the logic, software for a PG tape output for mask fabrication and cell library with a data basis containing the requisite design rules i.e. layout and electrical. There are several vendors for such packages besides some of them are also available from universities in the USA. However, while integration of unbundled software from multiple sources is more economic it is also that much more difficult to implement. The output of a design centre is a PG centre from which the mask set for processing the "chip" is fabricated, either using a laser pattern generator or a E-Beam machine. While several mask fabrication shops are available in the USA and Europe, if it is decided to set up a pilot "silicon foundry" for wafer fabrication, then it could also be necessary to set a mask fabrication facility. As a first step it would be important to establish a regional design centre on a immediate basis for which requisite support should be provided by UNIDO. Such a centre should play a modal role in creating a chain of national design centres in a optimally cost-effective manner i.e. by shar. the software resources. In order to ensure synergy all national centres and the regional centre should be networked together or at least linked by electronic mail. It would then be possible to rapidly create a corps of designers in the region and thus lead to rapid diffusion of the technology. An important goal of such a programme should be software development, to upgrade the design tools and build the next generation of design automation systems. The second level of interconnection in a electronics systems is conventionnally provided using printed circuits boards (PCB), and they tend to have 2 or more levels for professional systems. The capability to design and fabricate double sided PCBs with through hole plating was only available at SNRF, Morocco a Thomson subsidiary. Similarly, the mission did not see any evidence of the design and fabrication of hybrid circuits through here again the assembly of thick film hybrids was being done at SNRF based on imported screened substrates and other active/passive components. While the ability to design and fabricate both the above components is a essential prerequisite to built microelectronics sub-systems/systems, equally important is the ability to populate and test these sub-assemblies. A regional centre needs to be established to fill this gap with additional important function of training personnel in these techniques from the countries of the region. Support for such a concept from existing/potential manufacturers of sub/systems needs to be sought in order to promote the above concept . Further, ECWA/UNIDO could provide the necessary technical inputs needed in planning such a facility. The region has several excellent schools of which the Technological University, Baghdad, UPM, Saudi Arabia and ENSET and ENIT, Tunisia deserve special mention. In terms of computing capabilities UPM is clearly ahead of all other institutions visited with a VAX II/780, further gives it a head sart to establish a centre for ISI design. However, as been pointed out while considerable emphasis was being placed on the applications and software aspects of microelectronics, there was an a finite need to augment the hardware aspects of the technology i.e. materials science, semiconductor device fabrication techniques, CAD for chip design etc... In this context the approach of The Centre for Integrated Systems (CIS), Stanford University is worth emulating. CIS seeks to integrate solid state research and fabrication on the one side with applications on the other. The intention is to merge the three disciplines of the electronics age computer science, information cience and physical science. In order to make the system synergistic it is proposed that the scientists working in solid state physics will investigate the fundamental principles of IC's and pass their results to the IC's engineers. These engineers will use that knowledge to design new devices and fabrication techniques, and give them to the application engineers, who turn will define new systems and integrate the chips into
complete functional systems. Concurrently, the computer and information scientists are developing the tools to design ant test the IC's and so on. The concept brings together all the composite skills and tools to solve the increasingly complex problems of tomorrow. The communications infrastructure in the ECWA region is being developed at a rapid rate. There is a general trend to shift to electronic switching systems, as witnessed in Morocco and Tunisia. Similarly, Jordan and Egypt have opted for CIT ALCATEL'S E 10 B system which is digital with Saudi Arabia having gone in for ERICSON. The impression gained by the mission was that Saudi Arabia. UAE. Tunisia and Morocco had relatively efficient telephone networks well integrated internationally. The launching of ARABSAT in october 1984 will further augment the region's capability for intra-regional communications. Consequently, the time is ripe to start planning for a multi-service national/regional network which can transmet voice, data and video signals, with the long term goal of establishing an integrated services digital network (ISDN). In particular the development of local area networks, packet switching, electronic mail and teletext/viewdata is of special significance. The need to establish common standards for the systems hardware/software is of crucial importance for the future development of microelectronics in the region and UNIDO with assistance from ITU could assist in commisioning a feasibility study in this area for the region. The application of microelectronics in the service sectors like education health and transportation is likely to produce the greatest social benefit. The awareness of this potential was highest in Morocco namely, at the Centre for Arabisation, Rabat and ANIT and ENSET in Tunis. There is a need to focus these efforts into a wider regional one and the methodology suggest in Oliphant's paper, "Microprocessor Applications in Developing Countries" (UNIDO, 1982), to establish a hierarchy of microprocessor applications development centres with the requisite hardware/software tools and suitable institutional support could form an useful basis for preparing an implementation plan for the region. The problems of equipment maintenance and the lack of availability of components spares was pointed out by several organisations. Equipment maintenance can be segregated into two categories, computers and other equipment. A specialised corporation to deal with computer maintenance has been quite successful in the indian context and a modified version of such a concept to meet regional requirements merits a cluser examination. Other electronic equipment covers a wide range and spectrum and includes analytical, measuring and medical instrumentation and its meintenance in view of the large variety of types and vendors is more difficult and no simple solution exists. The programme at ENIT, Tunis to train high level technicians for maintenance needs to be more closely analysed to determine the extent of its sucess and the need for further support and diffusion of the approach. Finally, all development programmes in the region seemed to suffer due to lack of component availability one possible solution to this problem could be to set up a regional component bank which stockpiles a list of priority components with support from ECWA/UNIDO. MICROPROCESSOR AND PERIPHERAL ### MICRO APPLICATION COVERAGE ⊃ S REFERENCE MANUAL TABLE 2 | | | | | num Featur | res Averlab
re Size Gate
n attown in p | | | | Maximum
Production | Cost Pur | | | |--|-----------------------------------|--|--------------------|--|--|---|---|------------------------|---|--|--|--| | Company
Contact Person | Me-G | WOS
S-G | Me-G PA | MOS
S-G | M-G C | MOS
Si-G | Bipoler | Prod.
Wuler
Size | Requirements
(S or waters
per year) | Prototype Run
(with prod cost,
If everlable) | Design Formet
from Customer | | | Acrian, Inc.
10000 Bubb Road
Cuperano, CA 95014
(408) 996-8522
Jim Huskens
VP of Mg. | у
Бұлп
(10 ₉ лп) | | | | ј
Бµт
(10µт) | | • | 2 | \$10,000·ye | nMOS: \$3,000
per 25 waters
CMOS: \$4,000
per 25 waters
Bipolar: \$25
per water,
per mask layer | Masks,
Celma tape,
PG tape | | | American Microsystems, Inc.
3800 Homestead Roed
Santa Clars. CA 95051
(408) 246-0330
Jeny Crosby
Product Manager,
COT Products | | J.Sym
(nMOS I)
Sym
(nMOS II)
Sym,
Gym | 7.5µm | | <i>ј</i>
7.5µm | /
5µm
(CMOS I),
3µm
(CMOS II)
single
or
double
metal | | ų | Working plate
plate input:
\$75,000 yr.
PG or Calma
ir.put: 10
times angi-
teering cost
for first year | Development
cost:
\$14,000 to
\$30,000 | Caima tape,
PG tape,
working plates | | | ASEA HAFO 66 Bovet Road Sari Mateo, CA 94402 (415) 574-5400 Anders Dejenfelt, Sales Manager | | • | • | | J
Syste
(Byste) | /
2µm
(10;:m)
CMOS:
SOS | · | * | One batch
(40 me-pate
CMOS waters
or 20 CMOS/
SOS waters) | \$20,000 (incl.
mask and water-
tab charges) | Masks,
PG tape,
CIF (PG tape
or CIF
preferred) | | | Cherry Semiconductor Corp.
2000 S. County Trail
E. Greenwich, RI 02818
(401) 885-3600
David Pryce
Marketing Manager | | - | | | | | finear,
ffL,
eptoelect. | r | 1/10 waters/
snorth | \$3000 per
engineering run
(10 waters)
Prod cost:
\$120 to \$160
per water
(1,000 to 5,000
waters/mo.) | Applican tape,
Calma tape,
masks,
scaled drawings | | | Citel
3050 Raymond Street
Senta Clara. CA 95050
(408) 727-6562
Gary Hess
Marketing Director | ار
5µm
(10µm) | /
3µm
(8µm)
4µm
(8µm)
5µm
(10µm) | /
5µm
(10µm) | ر
5 _{p.} m
(10 _{p.} m) | /
5µm
(10µm) | -/
3µm
(Ցµm)
4µm
(Ցµm)
5µm
(10µm)
5µm
2-łayer
poly | Linear
6μm,
f ² L
Sμm | 3° and 4° | Lot: 25
water starts | Variable | Calma tape,
masks,
PG tape | | | Comdial Semiconductor Serv.
1230 Bordeaux Drive
Sunnyvale, CA 94086
(408) 744-1800
Gery Kennedy
VP and General Manager | | /
Յրտ
(Ցրտ),
4րտ
(Ձրտ) | | | | / dum (Bum), dum (Bum), 2-layer poly, Sum (Bum) | | t. | 25 walers
(Comdul
apocalizes
in quick-
tumeround
prototyping) | \$7000 to \$8000 for Jum HMOS (10 or 15 duys) \$7000 to \$7000 for 4µm CMOS (10 or 15 days) Consult factory for other requirements | Calma tape,
CIF,
masks,
e-beam tape | | | Exar Integrated Systems, Inc.
750 Patoniar Avenue
Europycale, CA 94088
(460) 732-7970
Tiruston Awall | | J
Syam | | | Sport. | Sp.m | j
Linear, .
PL | * | 250
waterstyr. | Consult factory | Celma tapo,
masks
(pveterned) | | | Post White-
Processing
Services
(water
probing
packaging,
testing, etc.) | Normal
Tumeround Time | Water
Acceptable
Critens
(std. proces*
control mo stor) | Technical
Interaction
Between Foundry
and Customer | Availability of
Design Rules
for Venous
Processes | Must
Customer
Sign Non-
disclosure
Agreements | Simulator
Parameters
Available | Second-
Source
Agreements | WR
Foundry
Modify
Process? | Processes
Available Within
Next & Months | |--|---|---|---|--|---|--|---|-------------------------------------|--| | (none) | Masks to waters:
6 wis.
PG tape to waters;
10 wis. | Test monitors
supplied by
Acrush or by
customer | Intel engi-
neering raview;
updates as
required | A | Ves | Pricess emu-
lation support
via PRODEM
(similar to
SUPREM) | (none) | Ves | Rad hard me-
gate CMOS
June 1963
Sigate CMOS
(Spm): Nov. 1963 | | Probing.
packaging.
packaged-
part testing | PG tape to cut-and-
go's 4 to 5 wis
Database tape to
cut-and-go's:
5 to 6 wis.
PG tape to
packaged parts:
7 to 10 wis. | AMI process
control montor
on all waters;
will add
customer PCM
ill requested | Formal review
etter each
phase of AMI
development
cycle
(optional) | Avartable
for all
processes | Yes | ASPEC | In negobation
with several
companies | Yes
(V;
and
implants) | nMOS III (2µm):
3083
CMOS I (shrink
to 4µm) 3023
CMOS II (10V):
2083
CMOS III (2µm):
1084
EEPPROM process:
4084 | | Probing,
packaging,
packaged-
part
testing,
burn-in | PG tape to wafers:
6 wis (CMOS)
7 wis. (CMOS:SOS)
Add 3 wis for
packaging testing | ASEA HAFO-
supplied
process-
param modules
(PPMs) and
yiuld-
measurement
modules (VMM's) | Initial review | All processes
provided | Ves . | SPICE 2G4
and
SPICE 2G5 | Process is
RCA-
companble | Yes,
(large
order) | 4-inch process
time with dry
processing and
positive photo-
resist 4Q83 | | Probing, packaging, testing | 8 wks. (typical) Design rule cher'., 1 wk.; Mask generation, 2 wks.; Fabrication, 5 wks. | Chemy-
supplied PCM | Design reviews
to establish
crount
process
requirements | AJ | Maybe | ISPICE
(NCSS) | Yes
(not
specified) | Yes | (none
contemplated) | | Probing,
packaging,
packaged-
part testing | Masks to packaged parts (production parts, hybrai) nMOS pMOS 6-8 wks CMOS, 7-9 wks. | Citet- or
customer-
supplied test
circuit | Intal review | A.I | Ves | Electrical
(not simulator)
parameters
supplied | (not
specified) | Depends
on
individual
case | 4" bipolar
capability.
Dec 31, 1983 | | Probing,
packaging,
packaged-
part tosting | Masks to waters
(prototype):
5 wkg days (HMOS)
10 wkg days (CMOS)
Masks to tested
waters (Ory: 500):
15 wkg days | Comdust- o-
customer-
supplied test
device | Frital review | AS | No 、 | SPICE | Unofficially, process is compatible with several large semi-conductor suppliers | Open for discussion | 3-µm p-we?
CMOS (6-m metal
proh): 4053
3-µm n-we!!
CMOS process:
4083 | | Probing,
packaging,
packagod-
part testing | Masks to waters out:
4 to 6 wis.
Add 2 to 4 wis. for
tested devices | Example or customer-
supplied PCM (in-house PCM preferred) | Initial review
plus any
required
process
metrices | AI | Yes | (not
svalable) | Rohm
(parent
company
in Japan) | Yes
(negotable) | (not specified) | | | | | | num Feetu | res Aveleb
e S-ze Get
h shown in | |) | | Mountum
Production | Cost Per | Design Format
trom Customer | | |--|--------------------|---|---------------------------------|--------------------|--|--|--|---------------------------------|--|--|---|--| | Company
Contact Person | M-G | MOS
8-G | Me-G | vos
s-G | Me-G | MOS
8-G | Bipoler | Prod
Weler
Size | Procurements
(5 or weters
per year) | Prototype Run
(with prod cost
if available) | | | | Four-Phase Systems, Inc.
10700 N De Anza Bird
Cupertino, CA 95014
(408) 255-0900
Larry Regle
Marketing Manager | j
7µm | . ј
Sµm | S _p .m | | ./
7µт | J
Species | | * | (not
defi. ad) | Typical
engineering
qualification
run: 85,000 | Working plates,
PG or data-
base tape | | | General Instrument Microelectronics Division 600 W. John St., C.S. 620 Hicksville, NY 11802 (516) 733-3611 J.E. Edwards | | dens
(Syum) | | | | /
5pm
(10pm) | - | • | 50 waters | Prototype run
(including mask
costs): \$8000
(50 tested
protritypes or
\$ wafers out) | Cama GDSII tape
(preferred).
PG tape.
masks | | | GTE Microcircuits
2000 W. 14th Street
Tempe, AZ 85281
(602) 968-4431
Fred M. McWittams
Sales Managur,
Salcon Foundry | | J
Span | | , | | 4µm,
ISO ²
CMOS,
4µm | J
Linear | ٣ | 100
welers/yr.
(engineering
qual. runs:
25 welers) | Consult fectory | Calma tape,
masks,
PG tape | | | Flarris Semiconductor
P:O. Box 863
Melbourne, Ft. 32901
(305) 729-5681
Dennis Gaetano
Mgr., Mkg. Planning | /
Sµm
(15µm) | | J
Spm
(1Spm) | /
4µm
(10µm) | | /
Зµт
(Вµт) | /
STL,
2-layer
metal,
14µm
metal
pitch | 4°
MOS;
3°
b-
poler | \$100,000 ye. | Consult factory | PG tape or
Calma tape
(preferred);
masks | | | Hughes Aircraft Co.
Solid State Products Div
500 Supenor Avenue
Newport Beach, CA 92663
(714) 759-2964
P. Jennifer Huffer
Div. Advart. Manager | | | | | j
djem | /
3µm | | 3"
and
4" | 25-water
bits | Consult fectory | Calma tape,
PG tape | | | Intel Corp.
5000 W. Wiltams Field Road
Chandler, AZ 85224
(602) 961-8051
Bob Koehler | · | /
HMOSI
3.5µm*,
HMOSII
2µm* | | | | /
2µm°
CHMO6 | | 4" and 6" | 10,000
unts-yr.
("classical
foundry") | Consult factory | Applicon tape,
Calma tape | | | Marketing Manager International Microelectronic Products 2830 N First Street San Jose, CA 95134 (408) 262-9100 Bob Gerdner Marketing Manager | | /
3µm
(8µm),
4µm,
5µm | | | | /
Зыт
(Выт),
4ыт,
8ыт | • | ď | \$50,000 yr. | Prod cost
(Sµm CMOS):
\$6500 to \$6500
plus mask costs | Celma tape or
Applicon tape
(preferred),
masks | | | Marketing Manager Micrel 1235 Midas Way Surnyvale, CA 94086 (408) 245-2500 Stan Ericason Director, Sales-18ktg | | /
4µт
(10µт) | /
4µm
(10 _µ m) | /
4µm
(10µm) | ,*
4µm
(10µm) | /
4µm
(10µm) | /
Linear
TTL | r | 25 water
starts | Engineering run,
(25 water
starts): \$2500 | Database tape,
masks,
PG tape | | | Micro-Circuit Engineering, Inc.
1111 Farfield (Inve
W Palm Bouch, FL 33407
(306) 845-2837
Drk Schwebe
Marketing Manager | | | | | ј
Бјит
(10 _{ји} т) | /
Տատ
(10ատ) | bifet
and
biMOS
processes;
20V,
40V,
80V | e e | Order
sommoment,
\$100,000 | (consult factory) | Celme tape,
Cif,
masks,
PG tape | | ^{, &}quot;Intel M645 "effective channel length" which may be a lower number than the aquivalent "drain channel length" apecified by other vendors | | | • | | | | | | | | |---|--|--|---|---|---|---|---|--|---| | Processed | | | | | | | | | | | (water
protong,
packaging,
terting, etc.) | Normal
Sumeround Time | Weler
Acceptable
Criteria
(sid process
control monitor) | Technical
Interaction
Between Foundry
and Customer | Availability of
Design Rules
for Vanous
Processes | Must
Custome:
Sign Non-
disclosure
Agreements | Simulator
Parameters
Avertable | Second-
Source
Agreements | Wa
Foundry
Modity
Process? | Processes
Available Within
Next & Munitis | | Probing:
packaging:
packaged-
pari testing
burn-tr | Masks to waters: 4 whs (typical) Add 1 wh for 6.35embly/test of amed tots | Four-Phase or
customer-
supplied PCM
Wit also work
on a good
de-permater
backs | "Constant"
Interaction | All | No . | Available
(not specified)
but "serely
requested" | (no formal
egreenients) | Yes | Some 4"water production by 4083 Plans to increase volume in 4 µm Sigate CMOS process by 3083 | | Probing,
packaging,
packaged-
part
testing | Calma tape to waters:
8-10 weeks (typical)
Add 2-3 weeks for
packaged devices | Electrical
parameters
measured on
GI 'est
eleuctures | Initial review,
tohow-up
reviews as
required | All (3 _{µm} process specs not finel as of 4/25/83) | Yes . | (not available) | (no formal
agreements) | Yes
(within
firmts) | 3µm Signate
nMOS process
avait 4083
3µm Signate
CMOS process
avait 4083 | | Probing,
packaging | Masks to waters:
5-6 weeks (typical) | GTE-supplied
PCM | Periodic
process and
design reviews | AB | Ves | SPICE.
TEGAS | Made | Maybe
(depends
on size of
order) | 3 _m m, 2-layer
metal 5-pate
CMGS avail.
SQ83 | | Probing,
packaging,
packaged-
part
lesting,
burn-in | Calma tape to probed waters: 10-12 weeks (typical) Add 6-12 weeks for packaged, tested parts | (negotable) | Depends on
customer
requirements | Al | Yes . | SLICE
(Harris'
version of
SPICE) | (Rone) | Ves
of it
makes
"business
sense") | 2µm, 2-layer
metal CMOS,
under develop-
ment for gate
arrays, should
be avail, as
foundly process
by end of 1983 | | Probing
packaging,
packaged-
part
testing | PG tupe to mests:
,10 days
Mastis to finished
waters: 25 days | Standard
Huges PCM | Pariodic
process and
design reviews | 43 | Ves | SPICE
(worst-case
process
modules) | Yes (not
apacified) | Vas
(il volume
warrants il) | (nat specified) | | Protting,
packaged,
parkaged-
part
sisting,
character-
ization
(skew runs) | Database tape to tested waters (prototype run): 9-12 weeks | Intel PCM
ahrays stepped
into water | Intel prefers
to work
with
outstomers who
design chips
chips using
the ICEL ⁴
standard cell
program | All | Ves | ASPEC
(usually reqs.
non-disclosure
agreement) | No | No | (not specified) | | Probing,
packaging,
packaged-
part
testing,
burn-in | Database tape to packaged lested parts: 6 weeks (5µm) 7 weeks (3µm CMOS) (3 weeks cycle avail at added cost) | BMP PCM
(preferred) or
customer-
supplied PCM | Inital review
plus any
necessary
tollow-up | Al | Yes | Available
(not specified) | Comdial
(others in
negotiation) | Yes
(usually
for eng
prototype
sun only) | 2-layer poly
and 15V CMOS
processes by
4063 2-layer
metal by 4083 | | Probing,
packaging,
packagod-
pert
tosting,
burn-er | PG tape to waters
5-7 weeks (typical)
Add 3-4 weeks for
peckaged, tosted
devices | Morel- or
customer-
supplies PCM | Initial review,
tohowup
reviews as
required | All
(design rules
generally
supplied by
oustomer) | No (Micrel will sign non-drict for cust supplied nives) | (not available) | Will modify
process to be
mask compatible
with prime
source | Yos
(see left) | 4" waters by
4083 Schonky
TTL (3-u ep.)
by 4083 | | Probing,
packaging,
packaged-
part
testing | Calms tipe to —-
packaged tested
samplus: 7-11 weeks | MCE-supplied
PCM | Penadic
processidesign
neviews | AI . | Ves | SPICE.
ASPEC-G2 | Yes
Linear
Technology
Corp. | Ves | 3µm oxide
solate J Si-gate
CMOS by 12 83
20V detective
split types
by 12 R3 40V
detective
stol bipular
by 12 83 | | | | | | mum Featu | pes Aveleti
re Size Get
h ehown en | | .) | | Minimum
Production | Cost Par | Design Format
from Customer | | |---|----------|--|------------|------------|--|--|---|-----------------------------|---|---|---|--| | Company
Contact Parson | M+G | MOS
S-G | Mo-G | Mos
6-G | Me-G | MO.
S-G | Byoter | Prod.
Water
Size | Paquirements
(5 or waters
per year) | Prototype Run
(with prod cost,
if everlable) | | | | Mitel Semiconductor
360 Legyet Drive
P.O. Box 13320
Kanata, Ortano KZK 1XS
Canada
(613) 532-5630
Gene Cohen
Custom Prod. Line Mgr. | | | | | , | ~ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 4 | Water run:
20 waters
Order:
\$10,000 | (sec left) | Canta laps,
PG laps,
masks | | | Mosfet-Micro Labs, Inc.
Pern Centre Plaza
Ouekartown, PA 18951
(215) 536-2104
Robert O. Campbell
Marketing Manager | Эмля | /
3µ/h
(also
tung-
sten
gete) | /
Syrn | J
Sym | ý
Spm | /
3µm
(siso
amp-
son
gate) | - | 3" | Prod. cost:
\$2000 (me-
gate pMOS,
nMOS) to
\$3500 (Si-
gate CMOS) | (nee left) | PG Inpe,
masks | | | National Semiconductor
2900 Semiconductor Drive
Sarta Clara, CA 95051
(400) 737-6055
Richard Y. Barck
Dir. MOSALSI Midg. | J
Sum | /
Sure,
dum to
Sure | g
Bysta | | /
Туыт | Julia
Single
and
dual
poly,
Syun
dual
metal | PL, SV
Schottky;
5-100V non-
Schottky;
SV gatd-daps | € and
5° | Business per
family:
\$159,000 to
\$200,000 yr.
(Not inter-
asted in
prototype
business
only) | Prototype lot
charge (not
incl masi/lest
charges):
\$225-water
(me-gate)
\$350-water
(Si-gate) | Celms tape
(preferred):
Applican tape,
masks,
PG tape | | | NCR Corporation Microelectronics Div. 2001 Denfield Court Ft. Colons, CO 80525 (303) 226-9580 Dave Nowman Prod. Strategy Mgr. | | J
Syste
Simple
or
dust
motal | | | | /
3µ/n
(7.5µ/n)
single
or
dual
metal | | | 500 wafers
for non-sid.
processing;
100 wafers
otherwise | (consult factory) | Calma tape
(preferred);
PG tape,
masks | | | Nitron
10420 Bubb Road
Cuperino, CA 95014
(408) 255-7550
Robert Miller
VP, Mildg. and Sales | | | | | /
Տրտ
(12µm) | /
4μπ
(12μπ) | | 3"
and
4" | \$100,000 yr.
(including
sign-recur-
sing costs) | (consult factory) | Calma tape,
PG tape,
masks,
rendes | | | Plessey 1641 Kacor Avenue Irvine, CA 92714 (714) 540-9937 Peter Minett Product Midg Mgr | | /
5µm
(10µm),
6µm
(12µm) | | | | /
2.5 ₇ ,m
(Вµт),
4µт
(9 6µm),
5µт
(12µm) | J
3µm ECL,
4µm ECL | 3"
and ,
4" | \$50,000 yr. · | (consult factory) | Calma tape,
mesks,
PG tape | | | Polycore Electronics, Inc.
1107 Tournahne Drive
Newbury Part. CA 91320
(805) 498-8832
S.K. Leong
Vice President | | | | | /
7µm
(>20V
process
evail) | | /
Linear,
Pi-
defectno
isolation
combination
CMOS:
Brear | r | 24 water
engineering
lot | Engineering - nurs: \$3020 to \$6000 Production costs (avg.): \$100 water (CMOS) \$130 water (finear) | Worlung plates | | | RCA
Solid State Drv.
Rt. 202
Somerville, NJ 08875
(201) 665-6000
Jurgen W. Schwer
Mintg. Myr., Custom Products | | | | | ј
7 _р л | /
Зµт, -
Бµт
СМОБ/
ВОВ.
Зµт,
4µт, | | 4"
CJ'
SUMOS/
SOS) | (consult factory)
(RICA offers
toundry
services on
selected
basis only) | Evaluation-
tot costs
\$20,000-\$30,099
Tooling costs
\$10,000-\$20,000 | Celma tape | | | Semi Processes, Inc.
1971 N. Capital Ave.
Sen Ave., CA 95/132
(408) 945-1500
C.B. Detrick
Waler Service Mgr. | | | | | 4.Spm | J
4.Sµm | | r | (not
apacified) | Typical cost for evaluation num (CMOS megate): \$2500 | Masks | | | Pos' Wa'er | | | | | | | | | | |--|--|--|---|--|---|--------------------------------------|---|--------------------------------------|---| | Pricessing
Services
(we'er
pricing
puckeying,
escript etc.) | Normal -
Turnaround Time | Water
Acceptable
Critena
(std process
control monitor) | Technical
Interaction
Between Foundry
and Customer | Availability of
Design Rules
for Vanous
Processes | Must
Customer
Sign Non-
disclosure
Agreements | Simulator
Parameters
Available | Second-
Source
Agreements | Wile
Foundry
Mosky
Process? | Processes
Available Witten
Next 6 Monets | | Probing.
packaging
packaged-
part
secting | trasks to waters:
6 weeks (typical)
Add 4 weeks from
PG tape, add
2 weeks to packaged
parts | Metal PCM | Technical
general
meetings
gossible | AZ . | Ves | SPICE | GTE
Microonulis | Yes
(negotable) | (not specified) | | (services
evaliable
locally
elsewhere) | Masks to test
prouts 3 to
4 weeks | (Nexòle) | Interaction
with MML's
engineers/
technicians
as required | Selfs layout
rules for
\$250 | _ | (not available) | (sometimes) | Yes | High-votage
MOS, also
working wifi
V-groove LIOS | | Probing.
packaging.
packaged-
part
testing.
reliability
processing | Database tape to PCM-tosted waters: 6 to 10 weeks (depending on process) For packaged parts, add 4 to 6 weeks | Standard
National PCM | Instal and
follow-up
process/design
reviews as
required | AS | Ves | SNAP
(NSC internal) | Yes
(not specified) | Yes
(mnor) | 2µm double-
metal n-well
CMOS; mid 84 | | Probing.
packaging,
packaged-
part
assing,
burn-in | Calma tope to tested waters: 6 weeks (typical) | Prefers to
step-in
NCR PCM | evital review
Followup
structure as
necessary | Negotable | | SPICE | Not yet
(in negotation
with 3 large
companies) | Yes
(depends
on
volume) | Will be able to manufacture devices (with poly-to-substrate capactors) for analog functions in CMOS circuits by end of 1953 | | Probing,
packaging,
packaged-
part
tosting,
butti-in | Masks to tested waters 4 to 6 weeks From PC tape add 2 weeks, to peckaged lested parts; add 4 weeks | Nitron PCM
(preferred) or
customen
supplied PCM | Initial and
follow-up
process/design
reviews | For older processes | Yas | (not available) | Universal
Semiconductor
(Si-gate) | Yes
(within
hmits) | 3µm S-gate
CMOS available
by 1084 | | Probing,
packaging,
packaged-
part
testing | Masks to waters:
2 wks
PG tape to tested
devices: 6 wks | Plessey PCM | Inital review | A | Yes | SPICE | Yes
(not specified) | No | 2.5-µm CMOS
by end of 1983 | | Probing,
(packaging
in far East
and testing
can be
arranged) | Fast-turnaround engineering runs, masks to waters 2 wis (CMOS) 3 wits (knear) Add 2 to 3 days for sample packaging | Polycore-
supplied PCM | Intial review |
AI | No | (not available) | (no formal - agreements) | (es | (not disclosed) | | Probing,
packaging,
packagod-
pari
testrig,
burn-in | (not specified) | RCAs Water
Acceptance
Test (WAT)
onlenge | Instal formal
design reviews
(required) | AJ | · Yes | R-CAP | (no formal
agreements) | No | (none) | | Basic
testing | Masks to waters: 4
wks. (me gate CMOS)
6 to 8 wks.
(Si-gate CMOS) | Mulually
agreed-upon
PCM | Penodic
interestion | AI . | For Si-
gate CMOS
process
enly | | (not specified) | Yes | 5" water
production by
end of 1983 | | | | | | num Feet. | pes Avaitable
se Size Gere
habown in j | | .) | - | Minimum
Production | Cost Per | | | |---|-----|--|------|---|--|--|---|-----------------------|---|--|---|--| | Company
Corkect Person | MeG | MOS
6-G | Me-G | vos
s-g | M+G C | MUS
8-G | Bipoler | Prod
Water
Size | Requirements
(\$ or waters
per year) | Prototype Run
(with prodicost,
if available) | Design Format
from Customer | | | Silicon Systems, Inc.
14351 Mytord Road
Turon, CA 92650
(714) 731-7110 | | | | | /
7µm
(12µm) | (ghu)
3hu
1 | J
Ameton-
inotated
(12V V _{CE D}),
14µm | 4" | \$20,000/yr. | (consult factory) | Calms tape,
CIF,
masks,
PG tape | | | Bob Schultz
Director, Gustomer Servs | | | | | [
[| | | | | | | | | Solid State Scientific, Inc.
3000 Webs Road
Water Grove, PA 19090
(215) 657-6400
John J. Wunner
Director of Mag. | | /
Zpm | | | ./
6µm | J
3μm · | | 4" | \$250,000
over first
year | \$15,000 to
\$30,000 to
produce
packaged
prototypes
from PG
tape | Applicon tape,
PG tape | | | \$1C M.crotechnology
2270 S. 85th St., MD G1
Lnusyne, CO 50027
(303) 673-4307
Lon Hieff | | j
3µm
(1-
or 2-
inyer
metal) | | J
3µm
(1-
or 2-
layer
metal) | | /
3µm
(1-
or 2-
layer
metal) | | 4 * | 500 waters
or
82 ⁴ 0,000ys | \$10,000 for
first 20 waters | Calma tape,
Applicon tape,
CIF,
PG tape,
masks | | | Supertex, Inc.
1225 Bordeaux Unive
Summyrale, CA 94096
(408) 744-0100
Richard Segel | | | | | /
5µ/п
(10 _µ /п) | /
5µm
(10µm) | | 4" | Lot 24
waters | Engineering
lots: \$4800
to \$8400 | Masks | | | Vice Provident Sales Symertek (a subsidiary of Honeywell) 3001 Stender Way Santa Clara, CA 95054 (408) 748-7045 Dan Carlson COT Marketing | | /
2μm
(6.5μm),
3μm
(9μm),
5μm
(10 and
11.5μm)
single &
double
poly | | | · | J
2μm
double
poly
(6.5μm),
3μm
(9μm)
single &
double
poly | | £ | 5 water
nuns per
year
(20 waters
out per nun) | Production
cost: \$250 to
\$400 per water | Caima GDSII
(prefered),
PG tape,
masks | | | United Microelectronics Corp.
305/A Scott Boulevard
5 anta Clara CA 95050
(408) 727-9239
Troy Speers
Marketing Manager | | /
3µm
(7µm) | | | /
5µm
(10µm) | /
3µm
(8µm) | | e ^r | Production
nun: 24
wafers
(engineering
prototype
nun: 10
wafers) | Engineering
waters
\$200 each
(minimum 10) | Calma tape,
InG tape,
masks | | | Universal Semiconductor, Inc.
1925 Zanker Road
San Jose, CA 95112
(403) 279-2830
Barry Boutton
Sales Manager | | /
5µm
(10µm | | | | y
single
and
double
poly
3μm
(10μm),
5μm
(10μm) | | 4" | 500 waters
(ong-neering
nuri 50
water starts) | Engineering run \$15,000 plus tooling (\$25,000 plus tooling without product commitment) | Calina tape,
Applicon tape,
PG tape,
masks | | | VLSI Technology, Inc.
1101 McKay Drive
San Jose: CA 95131
(400) 942-1810
Tony Valenting
Manager, | | /
Зµт
(7.0µm)
HMOSI,
Sµm | | | | /
Sum
n-well
process
via
Japan
source | | * | Production
lots: 10 waters
Prototype
runs 5 waters
SAAP: product
waters (MPW)
20 packaged,
uniested
devices | MPW run
\$5000-\$7500
Typical wate:
rharpes (4
.4s: Dipolyh-
put) \$400 water
(5 um nMOS)
to \$700 water
(4 um CMOS) | CIF,
PG tabe,
Calma tabe,
(also masks
for standard
processing) | | | 7yMOS Corp
FO Bar 62379
Surriyalir CA 94088
(408) 730 8800
-Cirll Veughn
COT Metg. Manager | | | | | /
ՏբՊ
(10 _բ m) | /
5µm
(9µm),
3µm
(6µn)
en
dovel | | * | 6-water
prototype
nun plus 50
waters yr
(eng. proto-
type nun
10 waters) | 6-water proto-
type nun \$4800
to \$5000
Production
voluniar costs
\$270 to \$200 per
water | Database Inge,
PG Inje,
Hinsha | | | Post Water Processing Services (safer probing packaging lasting etc.) Probing packaging packaging packaging pathability tekability back-end generating | Normal
Tunaround Time
Masks to tested
waters 6 to 8 wks | Water Acceptable Oritina (8td process control montor) SSI or customer supplied PCM | Technical
Interaction
Between Foundry
and Customer
Initial design
review | Ave-tability of
Design Rules
for Vanous
Processes | Must
Customer
Sign hon-
disclosure
Agreements | Simulator
Parametors
Available
SPICE | Second-
Source
Agreements
(no formal
agreements) | Wite
Foundry
Modify
Process?
Yes
(depends
on
volume) | Processes
Available Within
Next 6 Muritis
Washed e-trittar
Dipolar process
available 4083 | |---|---|---|---|--|---|--|---|---|--| | Probing,
packaging,
packaged-
plant
testing,
qualification/
screening | PG tape to tested waters: 10 to 12 wis. | Shepped-in
fust sites
(source not
apecified) | Initial process/
design reviews,
further
assistance
as required | AI | Yes | MSINC
(SPICE
evaleble
econ) | nMOS process
compatible
with Standard
Microsystems | Yes
(depends
on
circum-
etances) | (none) | | Probing,
packaging,
packagid-
part
testing,
charac-
tenzation | Masks to tested waters: 2 wks. From PG tape: add 1 wk. From CIF or CAD database tape: add 2 wks. To tested pkg. parts: add 2 wks. | STC PCM | Various
process/
layou/design
www.saveleble | A | Yes | SPICE
MOS2
model
parameters | (available
but not
specified) | Yes | 2µm Si-gate
CMOS and nMOS
processes, 1 or
2-layer metal
by 4083 | | Custom
handling | Masks to fusted waters: 4 to 6 w/ks. (me-gate) 5 to 8 w/ks. (Si-gate) | Superiex-
Buppied PCM | Process
parameter
reviews | At | Yes | (not evailable) | No formal
agreements
(claims to be
mask compat-
ble with
Mitel, GTE,
and AMI) | Yes | 4μm S⊷gate
CMOS by 4O63 | | Probing,
packaging,
packageri-
part
lesting,
burn-in | Celms tape to waters:
10 wks.
From PG tape:
8 wks.
From masks:
3 to 5 wks. | Syneriek PCM required on at least 3 of 5 lest sites | Depends on a tomer requirements | AI | Required
for 2µm
and 3µm
processes | Provide SPICE
simulation
(but not
actual SPICE
model) | Some
(not specified) | Yes
(mp:ant
loveis
only) | 5"water
processing
capability by
1Q84 | | Probing,
peckaging,
packaged-
part
testing | Masks to waters:
3 wks
From PG tape:
add 1.5 wks.
To prockaged parts:
add 1.5 wks. | PCM
(source not
specified) | Initial design:
nute exchange/
review | AI | Yes | Some SPICE
and ASPEC
parameters
available;
not complete
for 3µm process | Mask
compatible
with AMI
Si-gate CMOS | Yes | 3μm 2-layer
metal and 3μm
2-layer poly
CMOS process
available by
4083 | | Probing,
packaging,
packaged-
part
terbing | Masks to probed waters 5 whs From PG tape add 2 wks; to packaged samples; add 1 wk. | Prefers Universal PCM stopped in, but will accept customer PCM | Infial review,
orcuri design
and CAD
support | AJ | Yes | SPICE2G | Siliconia
and Nitron
(others in
Regoliation) | No · | 2µm oxide-
isolated CMOS
by Dec. 1983 | | Prohing,
packaging,
packaged-
peri
tirsting | Database merge to packaged parts
(MPW), 4 m/s. Masks to waters (standatione product) 2.5 wits. | VTI-supplied
PCM | Process com-
patibility and
prototype
ventication
reviews | AJ | Ves | SPICE,
ASPEC | Ricoh Corp.
(Japan) | Yes
(V _T only
for low
vulume) | 2 5µms HMOSII avarable by 3023 3µm in with CMOS in August 1925 3µm bein tub CMOS 4063 24ayer metal CMOS ava lutin by end of 1443 | | Proting
packaging,
packaged-
part testing
high temp
and mill std
testing | Masks to waters: 3 to 4 wks Fts time to waters 5 to 6 wks And 1 wk for firsted prototypes | ZyMOS-supplied
PCM (nearly,
proprietary,
available to
other IC
makers) | Initial and
fotour on
fortows as
required | As | No | Most SPICE
parameters
available | Intel
(3-u HCMOS)
Lalls outer
processes
"industry
standard" | Slight
adjustments
only | 3 µHCMOS
avalithe in
2nd half of Esio3 |