

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

MICROCOPY RESOLUTION TEST CHART NATIONAL RUREAU OF STANDARDS STANDARD REFERENCE MATERIAL 1010a (ANSI and ISO TEST CHART No 2)

Contents

AND THE SCHEWER AND

1. General	1
1.1. Background Information	1
1.2. Needs of Energy Conservation	- 1
1.3. Grasp of Situation	2
1.4. Approach	19
2. Thermal Section	22
2.1. Neisurement	23
2.2. Analysis	48
2.3. Recommendation	81
Appendix 1. Steam table	96
Appendix 2. Overall heat transfer coefficient from	
solid surface	99
Appendix 3. Pysical properties of material	100
Appendix 4. Standard criteria of Japan acts	101
Appendix 5. Conversion factors	104
3. Electrical Section	108
3.1. Management of consumption of Electric Power	108
3.2. Electric Measurement and Analysis of Power Receiving	ng
and Power Distribution Facilities	110
3.3. How to Measure and Analyze Electrical Loads	119
3.4. Recomendation of Electrical Energy Saving	130
3.5. How to Measure and How to Use Instruments for	
Pnergy Saving	134

	1. Generál	1
- -	1.1. Background Information	1
	1.2. Needs of Energy Conservation	1
	1.3. Grasp of Situation	а. С. С. С.
	1.3.1. Promotional Setup for Energy Conservation	2 2
•	(1) Attitude of management toward energy conservation	2
÷	(2) Organization and control system	-
	(3) Training of employees	ن وي المراجع المراجع
	1.3.2. Energy management	
	(1) Collection and arrangement of energy-related data	
	(2) Preparation of measuring equipment	
	(3) Grasp of energy service situations	
	A. Understanding of Srevice Situation by circle graph	n ĝ
1	B. Energy consumption rate control chart	12
	C. Correlative chart of output, fuel service amount	±4
-	and Consumption rate	17
	D. Energy suplly flow chart	15
	E. Energy flow chart in plant	15
	F. Heat balance	16
	G. Waste heat actual condition graph	17
	H. Comparison between requirements for energy	
	supply and demand	18
	1.4. Approach	10
	1.4.1. first Step(Intensification of Energy Control)	19
	1.4.2. Second Step(Introduction of Energy Conservation	* 1
	Equipment)	20
	1.4.3. Third Step(Improvement of Process and System)	21
		· • •

- 11 =

C

¢...

--

Ç

	2.	Thermal Section	22
	2.1	Measurement	23
	2.1.1	How to use the measuring instrument	25
	(1)	Temperature	25
	(2)	0, enalyser	30
	(3)	Gaseous linear flow velocity by anemometer	31
	(4)	Pressure	33
	- (5)	PH and Electric conductivity	34
	2.1.2	Reasuring procedures	35
	(1)	Boilers	35
	(2)	Industrial furnaces	41
	(3)	Steam consumption facilities	45
	2.2	<u>Analysis</u>	-
	2.2.1	How to prepare the heat balance sheets with example	47
	(1)	Preparation of flow sheets	49
-	(2)	procedure of thermal accounting	50
х Де		Example 2.2-1 Q_h , Q_1 , A_o and G_o	52
		Example 2,2-2 m and G	53
		Example 2.2-3 Heat loss of flue gas	54
		Example 2.2-4 Dispersion heat loss	55
		Example 2.2-5 Heat loss of blow down	56
-	· · ·	Example 2.2-6 Heat carryed in of fel water	58
	2.2.2	2 How to solve the heat transfer problems with ex'le	60
- 	(1)) Overall heat transfer problems	60
	•	Example 2.2-7 Insuration	61
	(2)) Dispersion heat loss on piping systems	63
		Example 2.2-8 Insulation of pipe	63
	(3)) Reat exchanger problems	69
		Example 2.2-9 Design of heat exchanger	72

iii -

Ċ

alt bait "stigtur buch the second

ころうななないないないないないないないないないないないないないないないです。

1111年の日本の日本の日本の時間に、1111月1日

-

1.1

C

a)

in j

.

-		
2.2.3	How to estimate the steam consumption with example	B
(1)	Estimation of required steam for heating	
	Example 2.2-10 Heat content of material	
(2)	Estimation of dispersion heat loss from surface	
in an	of facilities	
(3)	Heat loss by evaporation from free surface of	· ·
	hut water vessels	
	Example 2.2-11 Heat loss by evaporation	
2.3	Recommendation	
2.3.1	Effects of O2 control	dir See
	Example 2,3-1 Fuel saving due to reduction C2	
2.3.2	Effects of the temperature of flue gas	
	Example 2.3-2 Heat saving of reduction of flue	
	gas temperature	
2.3.3	Effects of the waste heat recovery	
• · · · ·	Example 2.3-3 Installation of air preheater	
2.3.4	Rffects of the extensive insulation	
	Example 2.3-4 Insulation	
	Example 2.3-5 Insulation	
2.3.5	Effects of the condensate recovery	
•	Example 2.3-6 Codensate recovery system	
2.3.6	Effects of inner pressure control in furnace	
Append	ix 1 Steam table	·
Append	ix 2 Overall heat transfer coefficient from solid	
	surface	
Append	ix 3 Physical properties of material	
Append	ix 4 Standard criteria of Japan acts	
Append	ix 5 Conversion factors	
Append	ix 6 Quick Evaluation Figure for Boiler Operation	

- iv -

-

=

. .

1. 1. 1. 1. A. W. Sa

The providence of the second se

ર્શ્વસંદ્રપ્રદાર અધિકાર જે હતા કેટ રાજ

We are considered in the

. .

Ċ

3 <u>Ele</u>	ctrical section	108
3.1 <u>Na</u>	nagement of consumption of electric power	108
3.1.1	Procedures of energy saving	108
3.1.2	Technical matters for electrical energy saving C	108
3.1.3	Leader and partners to promote electrical	
	energy saving	108
3.1.4	Management of electric power consumption	109
(1)	The bases of electrical energy saving	109
(2)	How to grasp consumption of electric power	109
3.2 E	lectric measurement and analysis of power receiving	110
-	nd power distribution facilities	110
3.2.1	How to measure receiving facilities	110
3.2.2	How to analyze the electrical receiving facilities	s 111
(1)	How to decide capacities of the transformers	111
(2)	How to analyze the transformer losses	114
(3)	analyzing of transformer losses for energy saving	114
з.з <u>н</u>	ow to measure and analyze electrical loads	115
3.3.1	motors	115
(1)	Motor and it's application	115
(2)	Characteristics of three phase induction motors	117
(3)	Analysis of energy saving of motors	121
~~ (4)	Know-how to use equipments for saving energy	122
3.3.2	Electrical load (other than electro-motive force)	125
(1)	Electric heaters	125
(2)	Air conditioner (air cooler)	126
(3)	lighting	128
3.4 <u>R</u>	ecommendation of electrical energy saving	130

.

2

3.	5	How t	to measur	e and	how	to us	<u>e inst</u>	rumen	ts f	or
				كمخدا المصحد المت						

energy saving	2

3.5.1 How to measure

Addition which is the state of the

 \mathcal{L}

С

3.5.2 How to use instruments

F

134

134

134

1. General

1.1 Background Information

This guide book is designed for a plant engineer in charge of energy control of a factory to use as a manual for energy conservation diagnosis.

Based on the experiences of Malaysian factory-survey for energy conservation which Japanese specialists and Malaysian counterparts carried out for 9 factories in march 1983, the contents of this guide book has been prepared, describing important factors for easy Reference.

Accordingly, this manual could serve as a good guide book when the plant engineer of the factory diagnoses and promotes energy conservation.

1.2 Needs of Energy Conservation

Although energy is used in various ways, depending on its purposes, most of used energy is diffused in the atmosphere.

For example, the thermal efficiency of an industrial furnace which uses fuel is generally $20 \sim 40$ %. When steam is produced by a boiler, its thermal efficiency is between $80 \sim 90$ %. However, it is reduced to approximately 35% when converted into electric power after the steam has passed through a turbine, and so on. That is, the fuel is effectively used only by approximately 35% in order to produce the electric energy.

Energy conservation means to save energy by making use of the most of wasted or misused energy. If limited energy resources are carefully and effectively used, it would improve profits of businesses.

1.3 Grasp of Situation

If good seeds are planted in fertile soil and properly taken care of, fine crops can be expected in large quantity. However, if bad seeds are planted in sterile soil, the crops will be produced less or may not be harvested no matter how properly they are taken care of.

It should be noted that the same goes for energy conservation.

The below-mentioned "promotional setup" corresponds to the above soil, and "Grasp of energy control situation" to the seeds. Also, energy conservation methods and know-how correspond to "cares".

1.3.1 Promotional Setup for Energy Conservation

(1) Attitude of management toward energy conservation Most of manager is greatly concerned with energy conservation. However, what is more important is their attitude toward it. It is one of important factors to promote energy conservation. In order to effectively promote energy conservation, company's policies and measures on energy conservation should be clarified as follows so that it may be concretely and easily carried out.

- 2 -

- Proper organizational setup
- Training of employees
- Collection and analysis of operational data on energy
- Setting up energy conservation targets by the manager

It depends on the manager's will whether or not such a firm promotional setup can be realized.

(2) Organization and control system

When company set up a target toward energy conservation, at same time, it is necessary to set up an organization and a control system which facilitate effectnely promoting the compant's policies and measures on energy conservation depend on company's size.

For big factories, they can systematically investigate and assess their actual situation and promote energy conservation measures strongly, such as drafting of a practical plan, its practice and evaluation of results, through an energy management department, an energy conservation committee, an energy conservation project team, and so on. For smaller factories, however, they cannot take the same method as the big one, because an energy conservation specialist may be not available or there are not enough employees to be engaged for. In

this case, it is important to designate a persons in charge of energy conservation and provide their authority. When it comes to energy conservation control know-how, it is recommended to request for assistance of the specialist from outside. In Japan, activities of self-controlled small groups have been prosperous from long time ago. These days, all employees ranging from a factory manager to workers tend to participate in energy conservation activities. In this case, the workers at job sites who know the best on facilities and work procedure voluntarily find energy conservation measures with critical minds and cope with this problem. This method has been fruitful so far. In order to technically lead these energy conservation activities and to be a consultant of the workers, an energy conservation romotion committee has been set up with the president or factory manager as its leader. This committee drafts a practical plan and evaluates its results.

(3) Training of employees

Energy conservation cannot be realized by only the management. It becomes fruitful only when cooperation of employees is obtained. In spite of this fact, only some companies, such as joint venture company, actually trains their employees. Under these circumstances, it is difficult to promote energy conservation.

- 4 -

In the first training step, awareness is required to make the employees understand needs of energy conservation. For example, improve employees' conservation minds so that their cooperation may be obtained using various methods, such as providing explanations on energy circumstances, energy cost, an amount of energy used so on and upon starting a daily work or at a meeting in an office, putting up charts on the amount of energy used, energy consumption rates (to be stated later), so on in every office, or putting up improvement proposal system into effect. In the second training step, it is necessary for not only the management but also the employees to attend lecture meetings and institute classes outside their company and listen to basic know-how required for energy conservation and practical examples of other companies in order to broaden their fields of vision and make the most of information obtained for diversion of ideas and improvement of know-how. However, it is difficult to hold the lecture meetings and institute classes without cooperation from the governmental and business organizations.

1.3.2 Energy management

Energy management is a basic factor for promoting energy conservation. Energy conservation starts from the fulfillment of energy management.

- 5 -

(1) Collection and analysis of energy-related data

Quantitatively grasp an energy flow from the acceptance of energy resources, such as electric power. fuel, so on until energy transfer and consumption after the generation of energy, such as steam, electric power, so on. At the same time, it is also required to record and analyse productivity, a temperature, a pressure and a time corresponding to this energy flow.

In other words, if it is identified where and how much energy is lost, energy losses can be improved. These data also serve as basic information when determining priority.

Furthermore, optimum conditions for practicing energy conservation can be found by analyzing an increase or a decrease in the amount of energy used corresponding to changes of operational conditions. Effects will be naturally great, if the energy flow can be continuously grasped in the form of quantity per process and facility.

In this case, it is most desirable to express the amount of energy used by consumption rates. The consumption rate means an amount of energy used for a product lot and is expressed by the following formula. Energy consumption rate = <u>Amount of energy used</u> Output Units for the amount of energy used:

kcal, kWh, kg, l, m³, \$(cost), and so on Units for the output:

kg, l, m, m², m³, pcs, \$(cost), and so on When the energy is used in a form of fuel, it is called a fuel consumption rate, when in a form of electric power, an electric power consumption rate, and is a form of steam, a steam consumption rate. The energy consumption rate is a barometer of energy consumption efficiency. It is used for judging whether energy conservation measures are effective, and whether operation is proper.

(2) Preparation of measuring equipment

In order to diagnose the service condition of energy and promote energy conservation, it is necessary to quantitatively grasp the energy flow as mentioned above.

However, many factories do not have measuring equipment for this purpose, and therefore, the energy consumption cannot be measured not only for each process and facility but also for the whole factories. Also, even though they have the measuring equipment, some of them are left out of order or used without noticing their performance failures. Under these circumstances, it is difficult to judge

- 7 -

where and how to improve.

Even though some improvements are made, it is not clear if they are effective.

For example, there are very many cases that industrial furnaces and boilers are not equipped with fuel flow meters, or that the boilers are not equipped with feed water meters or steam flow meters even though they are equipped with the fuel flow meters. In this situation, diagnosing energy conservation requires know-how based on many experiences and assumption values are used in an analyzing process.

As for combustion condition, it can be visually judged by a flame color, flame shape, an exhaust gas color, and so on without the measuring equipments, if they have sufficient experiences and knowledge. Thus, the combustion condition can be optimumly improved. In this case, however, effects of improvement cannot be expressed as numerical values, and if a specialist is not available, the improved condition cannot be maintained.

As mentioned above, it is desirable to install minimum measuring equipment per process and facility. At least, it is necessary to install proper measuring equipment for correctly understanding the energy flow of the whole factory.

Make a check list of these measuring equipment, and periodically inspect and maintain so that correct values may be always indicated.

- 8 -

(3) Grasp of energy service situations

The first step of an actual work for promoting energy conservation is to grasp energy service situa-

That is, it is to know energy service situations; what kind of energy is used how much, where and how, and what kind of energy is discarded how much and where. For this purpose, it is necessary to have various measuring equipments such as a flow meter, a thermometer, a pressure gauge, a watt-hour meter and an lux meter, and a specialist (engineer). By analyzing these data, how to carry out energy conservation measures is judged, or its hints can be obtained.

A. <u>Understanding of service situation by circle graph</u> Classify energy service amount and its service charge into energy types and show their rates by means of a circle graph. Also, show service rates of the same type of energy per each facility and use by means of the circle graph.

 a) In Fig. 1.3-1, the energy service amount is classified into energy types and their rates are shown.

- 9 -

What is important to this graph is to express the fuel, steam and electric energy on the basis of the same thermal unit. As for its conversion rates, use values obtained from actual showings of a factory concerned. For example, if 12.5 kg steam is produced from 1 kg fuel oil having calarific valve of L0,000 kcal/kg by a boiler of the factory concerned, its conversion rate for steam is 800 kcal per kg. Examples of conversion rates:

Electricity 1 kWh = 2450 kcal Steam 1 kg = 800 kcal Compressed air 1 Nm³ = 600 kcal Water 1 t = 980 kcal

- 10 -

b) In Fig. 1.3-2, energy expense is classified into the energy types and their rates are shown as an example.

Fig. 1.3-2 Comparison of Energy Expenses

It is also important to compare each service energy in the form of its sum and consider which energy must be conserved first.

1

c) In Fig. 1.3-3, the steam is picked up as an example to show how the same energy is used.

Fig. 1.3-3 Processed Steam Service Situation (by uses) The point of observation can be narrowed by this figure when promoting steam **C**onservation measures.

B. Energy consumption rate control chart

1 I I I

Fig. 1.3-4 shows a daily output, a fuel service amount and a fuel consumption rate of a certain factory for a month. This is a control chart which is most basic in energy control.

Ш

1 1

Fig. 1.3-4 Fuel Consumption Rate Control Chart

C. <u>Correlative chart of output, fuel service</u> <u>amount and consumption rate</u>

Fig. 1.3-5 shows correlations among the output rate, fuel service amount and consumption rate, using the data in Fig. 1.3-4.

- 13 -

Fig. 1.3-5 Correlative Chart of Output and Fuel Consumption Rate

It is known from this chart that although the fuel consumption amount increases as the output goes up, the fuel consumption rate goes down. The chart also shows that actual data are scattered from correlative curves. However, if they can be equalized with lower ones, the fuel consumption amount can be reduced on the whole.

D. Energy supply flow chart

This chart is used to know how energy is branched and supplied through which route.

As for the steam energy, this chart is used for integrating pipes and preventing losses of radiant heat. If the chart has values inscribed such as pipe diameters and lengths, flow rates, steam pressures, and so on, it can be effectively used.

E. Energy flow chart in plant

If there is an energy flow chart which provides clear information on energy changes inside facilities such as temperatures, pressures and flow rates, it will help properly understand energy service and recovery situation.

Fig. 1.3-6 shows an example of waste heat recovery and generation facility from a distillation tower.

Fig. 1.3-6 Energy Flow

1 1

1

1.1

- 15 -

F. Heat balance

Carry out heat balance to know how energy is used, and where the energy is discarded in what form. As a result, energy conservation points can be clarified. Fig. 1.3-7 shows an example of steel material heating with improvement points added.

Fig. 1.3-7 Energy Flow by Heat Balance

1 1 1 1

G. Waste heat actual condition graph

When there are plural cases of waste heat in one factory, if their temperatures and rates are expressed by a graph, it makes clear how much waste heat exists corresponding to an energy level.

Fig. 1.3-8 Actual Situation of Waste Heat

1 11 1

Fig. 1.3-8 shows an example of a steel work. As it can be observed in the figure, there exists much waste heat ranging from a high temperature to a low one. However, these waste heat cannot be recovered all. If theoretically-possible recovery rates are shown at the same time, it will be convenient.

1 1

1 11 1

- 17 -

It is recommendable to review a waste heat recovery method, considering waste heat properties and easiness of recovery from high-temperature waste heat.

H. <u>Comparison between Requirements for energy supply</u> and demand

Compare the requirements of the energy-using side and the energy-supplying side about temperatures and pressures. In this case, if there is a surplus more than necessary on the energy-supplying side, the energy-supplying level can be reduced, and as a result, it improves energy efficiency and helps energy conservation.

- 18 -

Fig. 1.3-9 shows a comparison example on steam pressures. If a service pressure of a service place "C" can be reduced, a steam pressure surplus will increase as a whole and the pressure level of steam supply can be lowered.

1.4 Approach

If the present situation of energy consumption can be grasped, it leads to finding of many points where energy conservation must be carried out.

In order to solve these points, it is necessary to decide the priority of carrying out energy conservation measures, totally reviewing the following conditions.

- ° Amount of energy used
- ° Energy consumption rate
- ° Sum of investment
- ° Refundment period of the investment money
- ° Degree of difficulty from a viewpoint of capability
- ° Effects
- Continuity

However, it is general to carry out the energy conservation measures in the following order of the first step through the third step.

1.4.1 First Step (Intensification of Energy Control)

The first step is an energy control intensification method which bear effects without spending any expense.

This is the basis of energy conservation.

Its contents are review and observation of operation

- 19 -

standard, service standard, manufacturing standard, facility control standard and repair standard.

It is nothing but to make the most of each facility performance and maintain operation in the best condition from a viewpoint of energy efficiency.

In other words, it is to eliminate uselessness, unreasonableness and irregularity.

"Uselessness" means the condition that light is left turned on, or that combustion air is too much.

"Unreasonableness" means the condition that a motor is run with an overload, or that an excessive amount of fuel is combusted to quickly increase a temperature of a heated material with flame coming out of an opening of a furnace wall. It will cause many Jamages and troubles to facilities and equipments and consumes more energy.

"Irregularity" means the condition that operational requirements are not fixed due to the uselessness and unreasonableness.

Accordingly, it is essential to train and enlighten employees in order to produce satisfactory results in this step.

1.4.2 <u>Second Step (Introduction of Energy Conservation</u> Equipment)

This is a step to introduce special equipments for automation and use of recovered energy.

What can be named as examples are as follows;

- 20 -

recovery of waste heat by a heat exchanger, a combustion automatic control unit, a high-efficiency lamp, an automatic flasher for outdoor illumination, and so on.

Although an investment sum will increase in this second step because part of processes are required to be reformed, its effects are considerable great.

However, if the energy control in the first step has not been intensified, take note that sufficient effects may not be obtained.

1.4.3 Third Step (Improvement of Process and System)

When scrapping and building facilities, or when expanding their capability, it is required to introduce upto-date facilities having high energy consumption efficiency, and as a result, a large investment sum is necessary.

Examples:

- (1) Process omission Continuous casting, and so on in the steel industry
- (2) Use of heat in cascadeCogeneration, and so on
- (3) Conversion of manufacturing method NSP (New Suspension Preheater) kiln, and so on in the cement industry
- (4) Continuity

Continuous annealing and so on, in the steel industry

2. Thermal Section

The basic procedures for the thermal energy management in factories consist of the measurements, the records and calculations.

Direct cost reduction from the elimination of faulty products because of quality control results ultimately in energy saving. In the final analysis, therefore, the thermal energy management is a problem of engineering economics in factories. Each part of the investment in process division for energy saving, including the instruments, must be justified in terms of the contribution to make a profits on producing a reasonable products.

Therefore an adequate investment cost balance should be considered on between complete instrumentations which improve both product quality and operational efficiency, especially, thermal efficiency of each facilities consuming the fuel and some elimination of equipment which lead to enormous waste energy losses from operating trouble and downgraded products.

The preparation of the heat balance sheets is one of best approaching methods for energy conservation. In this guide book, mainly the methods of how to prepare the heat balance sheets have been explained in details.

- 22 -

2.1 Measurements

The principal measurements implemented on the thermal energy management are usually as follows ;

- (1) Flue gas from boilers or/and furnaces
- (A) 0_2 content
- (B) **Tem**perature
- (C) Flow rate
- (D) Pressure
- (2) Dispersion heat losses from the surface of facilities.
 - (A) Size or Dimension (area) and configuration
- (B) Heat flux
- (C) Surface temperature and ambient temperature instead of heat flux
- (3) Heat contents
 - (A) Mass or weight of objective materials
 - (B) Volume of objective materials
 - (C) Cross area and linear flowing rate in the ducts
 - (D) Pressure and temperature of the fluids
 - (E) Specific heat of respective materials corresponding to subjected temperature from the conventional reference books.
- (4) Steam consumption

It is desirable correctly to measure the directly recovered condensate after steam traps of steam consuming facilities. In practice it will be normal that such devices are not ready in use on almost of all factories. Then inevitably the amount of the steam consumed in the facilities should be indirectly estimated by the summation of the dispersion heat losses from the surfaces of facilities and required heat content of processed materials and facilities from initial to final processing temperature using above (2) and (3) methods.

2.1.1 How to use the measuring instruments.

We would like to leave the principles of measurements for the respective processing factors to the conventional text books and the operating instructions for the instruments or meters to the manuals prepared respectively by those instrument manufacturer as shown later at Annex.

As there are actually a lot of types of instruments and a slight difference in measuring same process factors, it is not possible that in this guide book, the instruction manuals for operation of all instruments which in present have been supplied in the world in ditails.

Then only the useful notes on measurement using respective sensers would be described in order to prevent to get the fault data. Practically the descriptions here mainly would be limited to the instruments used by our project team for Malatsia factory survey.

(1) <u>Temperature</u>

The choice of sensor instruments for the measurements is governed by the temperature range measured, the degree of accuracy required, the type of installation and the costs.

The temperature range normally covered by common measuring devices are as follows ;

Instrument for temperature	Temperature range
Bimetallic thermometers *	- 18 to + 540
Mercury-in-glass thermometers	- 35 to + 400
Gas-pressure thermometers	- 90 to + 430

- 25 -

Among	the above listed thermometer,	*marked meters		
	Optical pyrometer	+650	to	+ 2,750
	Radiation pyrometer*	- 18	to	+ 1,750
	Novel-metal thermometer	- 18	to	+ 1,600
	Base-metal thermometers*	- 18	to	+ 1,150
	Resistance thermometers	-200	to	+1,000
				7

have been used in diagnosing the assigned factories by this project team.

Generally speaking, on measuring the regular range of temperature for diagnosis, it is recommened that the "chromel-alumel thermocouple" as sensor which is often used considering the cost and accuracy. The following general notices have to be taken care on measuring temperature;

- (a) to choose correct pair of thermocouple,
- (b) to confirm on calibration in order to measure correctly the objective temperature,
- (c) to have a suitable temperature change,
- (d) to set the thermocouple sensor in the representative point of the measuring materials.
- (e) to seal the slit formed in circumference between the thermocouple rod and nozzle with a proper packing material to prevent the disturbance of atmosphere around the sensor as following sketch.

These notices one applicable not only the temperature measurement but also the measurements of pressure, the gas sampling for gas analysis, the flow rate with anemometer, so on.

(A) Internal temperature

On the energy conservation diagnosis, acturally, the temperature of the fluid flowing through the ducts, the temperature of the builded materials of facilities to obtain the heat content, the temperature of the atmosphere inside of furnaces so on, should be often measured finally in order to prepare the heat balance sheets. In this case, the above general notices are useful, especially (d) and (e).

(B) Surface temperature

For the measurements of surface temperature, special senser with spring would be utilized and the responsibility of its senser is so quick. Therfore this items can be measured without much care relatively. It is desirable to keep the senser on vertical position.

(C) Heat flux (kcal/m²hr)

Recently the direct measuring meters for heat flux have been supplied, therefor it has been easy to estimate the dispersion heat losses from the surfaces of facilities. In this project, one heat flux meter was used for the demostration purpose. In use of this meter, the most important notice is to be aware of the maximum allowable temperature of senser made of synthetic rubber, that is, 150°C.

- 27 -

The following other notices should be observed in using the heat flux meter;

- (a) to make sure the measureing surface temperature whether it is 150°C or not. Otherwise use another thermometer or body senses.
- (b) to contact the senser tightly to measuring surface with magnetic devices, chain binding or a proper methods.
 Do not press the center part of senser down.
 It is better to use the instruction book prepared by instrument manufacturere.
- (c) When measuring several points, it is recommendable to proceed the measurement from low to high temperature points.
- (d) to take the mean values since it is so hard to get the steady values in short time due to the fluctuation as follows;

Figure 2.2-2 Pattern of obtained value of meter

(D) Radiation thermometer

This instrument would be convenient on the measuring temperature on the surface where the senser can not be placed in fixed position, for example, as the surface of rotary kiln. In pracice, the values of temperature would be easily obtained, but the calivration to obtain the correct values of temperature is very sophisticated and troublesome works. On the measurements, the instruction manual book should be sufficiently reviewed in advance. Especially the careful considerations are necessary in estimation of the emissivity of respective surface materials.

In practice, although there are a lot of methods for the measurement of temperature, it would be enough for the initial diagnosis to learn only the following measuring techniques;

- (i) Atmospheric and/or material temperature using conventional thermocouples
- (ii) Heat flux using the heat flux meter, and surface temperature using the surface thermometer or radiation thermometer.

- 29 -

(2) <u>0</u>₂ analyzer

When the effectiveness of combustion plants be investigated, it is often necessary to analyse the flue gas into respective components. For instance, by flue gas analysis, the air ratio is computed and total amount of the flue gas is calculated as described in analysis session later.

The useful matters to be attended on the measurement for O_2 content in the flue gas using Galvanic cell are as follows ;

- (a) not to miss the conection of sampling rubber tube and gas inlet nozzle of the 0_2 analyzer,
- (b) to take care of the direction of fillter cell in way of the sampling tube line as follows;

Figure 2.2-3 Direction of sampling tube and filter

- (c) In the beginning, to justify and confirm the indicated value of ambient atmosphere as it is to come to 20.9, taking the sampling tube off from nozzle of the instrument.
- (d) After the value of 0_2 content of measured atmosphere come to steady, the value indicated in meter should

be recorded as the correct 0₂ content of the measured point.

- (e) furthermore in order to obtain more correct 0₂ content, it is better to repeat the above operation of
 (c) so as to confirm the 0₂ content of ambient air as 20.9.
- (f) if the different value from 20.9 would be observed on operation of (e), the measurement for 0₂ content at measured point should be repeated.
- (g) the sampling tube inserted into the duct for 0₂ content measurement should be made of stainless steel (SUS 316) lest the sampled 0₂ is consumed by the oxydation of the metal tube in higher temperature.

(3) Gaseous linear flow velocity by anemometer

In the calculation of heat balance, when the fuel consumtion rate are unknown, it is probably necessary to determine the magnitude of linear velocity at observed point in ducts.

The notices to be taken care on the practical measurement are as follows ;

- (a) to insert the probe rod into the observed duct vertically against the the direction of gaseous flow.
- (b) to place the probe on centre of the duct.
- (c) to pack the gap formed around the part of penetration through the duct.
- (d) to gain the maximum value in meter rotating the probe rod little by little.

(e) to choose and set the range of scale in meter.

Pigure 2.2-4Inserting procedure of senser rod and
selection of indication scale

4

(4) <u>Pressure</u>

Generally speaking, as there are a lot of methods as to measuring the pressure, on the selection it is desirable to follow to the suggestions of the skilled engineer on instruments.

The normal methods on the measurements of pressure in the process operation or the energy diagnosis are as follows ;

(i) Manometers

U-types, Barometer, inclined types and so on,

(ii) Elastic tranducers

Bourdon tubes, diaphragms, differential bellows and so on.

In practice, some of above pressuremeters have been installed in normal facilities of factories.

In this project, in order to estimate the inner pressure of the furnaces which are operated at pressure very close to ambient and to obtain the informations of waste energy the fine differential pressure indicator has been used.

In measuring, the notices to be taken care are as follows :

- (a) to confirm the pressure of measuring point to be under 1,000 mmH₂O,
- (b) to adjust the null pressure by using zero aduster under condition that H and L side are opento ambient.
- (c) to take care the gap formed in insert of the senser.

(5) <u>PH and Electric conductivity</u>

These instruments are utilized for the control of the boiler water quality by implementing the proper blowdown operation and/or preventing the corrosion and scaling of the surfaces of boiler tubes. The following matters are to be taken care,

- (a) to calibrate often the respective instrument by using the standard solution, in advance.
- (b) to measure the sample solution after cooling down till temperature directed in respective instruction manual books.
- (c) to clean alway the tips of the proves with distirated water.
- (d) to wash the tip of prove with next solution on subsequently the measurement of the different samples.

2.1.2 Measuring procedures

Although it is desirable on the termal energy conservation audits that the substantial measurements should be planed in accordance with the quantitative data, as the first it would be very useful to be aware quickly but roughly on the situations consuming the energy of the own factories by a visual or senuous audits without to be ready on special instruments. The data obtained from already installed instrument on the facilities should effectively be adapted on this visual audits as a preliminary surveys. In practice, according to the preliminary surveys the regular audits using the proper instruments would be implemented in effect.

- (1) Boilers
- (A) Preliminary audits with visual.

It is convenient that the preliminary surveys would be conducted on own boilers with the sequence of following ;

- (a) to walk and check one or two times around the boilers,
- (b) to be aware on the pressure or temperature of producing steam,
- (c) to touch the plam of hand to several points of the boiler surface,
- (d) to estimate roughly the temperature of boiler surfaces with the following senuous methods;
 - (i) under 50°C; to be able to keep up tatching the plam on the measured surface over 1 min.
 (ii) 50 to 100°C; to be able to tatch only for 0 to 2 sec.

- 35 -

- (iii) 100 to 300°C; to feel hot on approaching
 0.5 to 1.0 m close to boiler,
- (e) to check the color of the exhaust flue gas from the stack of the boilers,
- (f) to prevent the generation of the black smoke by adjusting the combustion air,
- (g) to check the working condition of the traps attached on the steam consuming facilities with visual or sound.

If the following events would be disclosed on the preliminary surveys, immediately the proper instrumental audits and improvements should be launched

- (i) the appearance of the black smoke from the stack,
- (ii) the much more area exposing on higher temperature than 100⁰
- (iii) the steam traps with faulty working.

(B) Diagnosis with instruments

Because of the preliminary surveys as before, the targets to be improved would be decided in effect.

On launching the energy conservation activities, in beginning, it is effective to concentrate the all resources of the factories in the simple improvement so as to obtain the clear results. The most foundamental thechnique for the energy conservation diagnosis is to estimate the amount of wasted energy and to convert it to the money. The common procedures for energy conservation diagnosis on miscelaneous industries would be described here.

- (a) Items of instrument or necessary data
 - (I) Fuel specifications
 - (i) <u>Practions of components with weight</u>
 C ; c %
 H ; h %
 - S; s**%**
 - (ii) Caloric values of fuels

Gross caloric value H_h ; kcal/kg or m^3 , Net caloric value H_1 ; kcal/kg or m^3 . Net caloric value is calculated according to the formula (1) of the section of analysis later.

(iii) Specific gravity or density

The data on the fuel specification are also available from the conventional reference books.

- (II) <u>Rate of fuel consumption</u> (1/hr or kg/hr)
- (III) <u>Rate of water fed to boiler or rate of produced</u> <u>steam</u> (kg/hr) On no data, the values are calculated alternatively from the amount of residue of heat balance.
 - (IV) <u>Heat flux or surface temperature</u>
 - (i) <u>Values of heat flux</u> $(kcal/m^2 hr)$

(ii) <u>Surface area</u> (m²)

to be homogenously representative of the values of above (i),

It's convenient to fill up the respective values of above (i) and (ii) on the calculation forms Table 2.2-1 and to draw the figure developing surface of facilities as Figure 2.2-5.

Table 2.2-1 Calculation format for dispersion heat loss

SANT OF PACILITY:

-

_ _ =

į 7 4 Ì

7

_ _

A,	0		/ 11*	°C	•c	°C	Keal/s ² of hr	Kenl/hr	HEAT LOGS (3) Keel/hr
	<u> </u>	1.51	/ 32/	3%		4.2	20.8		
A		2.738	1.032	<u> </u>	48		23.6		
A			534				13.9		· · · · · · · · · · · · · · · · · · ·
. A		"	528				17.5		
As			<u>537</u> 3952	¥					
<u> </u>	234	2,738	641	32			1.4.6		
B	202	· · · · · · · · · · · · · · · · · · ·	553			<u></u>	12.6		
в,		······	446	·····		16	10.2		
B			627	*	4.9	1.7	(3.5		
<u>8</u>		1.51 12.462	10 <u>22</u> 3,289			40			
F, F3		}+.806							
F.s	673	0. <u>882</u> 2.688	<u> </u>	· · · · · · · · · · · · ·	60		24.0		
	1165	}2.433		3 <i>2</i>		63 - 70-	18.5		
R.		0.255 2.688	489 2,859	¥	146	114			
Total		30.3 m ²	11,590						

NOTE: (1) : REAT LOSS - HEAT FLUX X AREA (2) & (3) : HEAT LOSS - h X AREA Z &T

٠

38 ١

.

٠

. .

Figure 2.2-5 Spreading surface map of boiler

(iii) With no heat flux meter, the values are roughly substituted by surface temperature and heat transfer coefficient h which in normal is approximately 10 to 20 kcal/m² °C hr using the following equation

Heat flux = $h x (T - T_0)$.

(V) <u>Temperature and O₂ content in flue gas</u> The procedure for the estimation of heat content carried out on togather with the flue gas would be described in ditails on the analysis session

later.

(VI) Amount of blow-down water

In practice, the operation of blow-down everywhere has been carried on following the instruction manuals of boilers without checking the boiler water quality. For example, the time of opening the valve or cock, 20 to 30 sec., of blowdown piping or the amount of depression of water column in level gauge The mass or weight of blow-down water is in normal

estimated by the boiler dimension and the amount of depression of level gauge as shown later.

(2) Industrial furnaces

The procedures consuming the fuel on the industrial furnaces are basically same as the above boilers. Then there isno special difference between the industrial furnaces and the boilers except higher temperature of products and wider surface area exposed to ambient than the boilers.

(A) Preliminary surveys

- (a) to walk and survey around the furnaces,
- (b) to be aware of hot surface area over 50°C,
- (c) to check the inner pressure of furnace so as to avoid the entry of ambient cold air into the furnaces with smoke or flame detector.
- (d) to check the color of flue gas from the stack.
- (e) to survey the drip leakage of fuel oil around the working burners.

(B) Instrumental audits

There are many different type of furnaces in accordance with the respective products. It is so hard to describe all different furnaces in ditails.

Here the procedures for diagnosis on the continuous and batch processes would be simply explained.

(B-I) Continuous processes

Generally speaking, the continuous process should be adapted on the mass production. On the ceramic industries, the turnnel kilns and rotary kilns are utilized as normal furnaces. Except the period of start up and shot down, the thermal conditions of continuous operation on furnaces always would be constant. Therefore, the measurement and thermal analysises for diagnosis of the continuous operation would be easily implemented using only the one set of data measured at any point of time.

- (a) Items of measurement and necessary data
- (I) **Fuel specification**
- (II) Rate of fuel consumption
- (III) Heat flux or surface temperature
 - (IV) <u>Temperature and 0₂ content in the flue or exhaust gas</u> Above items can be obtained by almost same procedure as the boilers.
 - (V) Processing materials
 - (i) Feed rate and discharged rate of the processing materials, for exaple, raw materials, products, carrying car and so on.
 - (ii) Inlet and outlet temperature of respective materials
 - (iii) Physical properties of processing materials They are necessary for the thermal analysis, that is Density or specific gravity, Specific heat,

Thermal conductivity and so on.

(iv) Thermodynamic properties on physical and chemical change of the materials through the production processes. For example, Reaction heat, latent heat, and so on. They should be search out from the conventional reference books.

(V) <u>Cooling fluids</u>

On some industrial furnaces, in order to avoid the overheat of the body and parts of furnaces, some cooling fluids, that is, air or water, are introduced into the furnaces, or sometime flow outside the wall surfaces of furnaces. In practice, these heat carried out togather with the coolants should be accounted as heat losses on the heat balance analysis. The necessary data are as follows ; Flow rate of coolant Leaving temperature of coolants Density and specific heat of coolants and so on.

(b) Summary

On the diagnosis of industrial furnaces with continuous operations,

- (I) to decide the boundary barrier for accounting of heat balances.
- (II) to estimate the amount of materials and heat flowing in or out through the decided boundary barrier,
- (III) to prepare the heat balance sheet, and
- (IV) to evaluate the operation of furnaces with thermal efficiency.

(B-2) Batch processes

On the batch operation of furnace, that is, shuttle kiln and so on, while the processed materials are fixed in furnace, the atmosphere inside the furnace is variable time ^{to} time with controlling the temperature pattern . Therefore the only one set of data at some point of time as the continuous processes will be no meaning and the data should be recorded always during the operation from beginning to ending for thermal analysis.

However practically if even the total amount of fuel consumption for one production cycle and the amount of products is available, the fuel consumption rate can simply be estimated. The evaluation and record of the fuel consumption rate are so useful for the production management.

The deffinition of the <u>fuel</u> <u>consumption</u> <u>rate</u> is as follows ;

F. C. R. = $\frac{\text{Amount of product (any unit)}}{\text{Fuel consumption (any unit)}}$

(B-3) Dryer

The procedure of diagnosis on the dryer would be substantially same as the above boiler and industrial furnace. Due to the limitation of paper, procedures are not repeated here.

- 44 -

(3) Steam consumption facilities

The procedures of diagnosis are completely different whether the steam is consumed for power generation or heating sourses. It is so important for the energy management on higher level, that is, national level to recognize the different between the work and heat. As the steam is consumed only as the heating sourse on the scopes of the survey for factories, the description would be limited only on heating processes.

(A) Items of measurement

According to the batch or continuous heating, there are some differences about items and procedures of measurement as the industrial furnaces.

- (I) Heat processing conditions
- (i) Steam temperature or pressure
- (ii) Required time for heat processing
- (iii) Physical properties of processed materials
 - Mass or volume
 - · Density or specific gravity
 - Specific heat
- (II) Heat content of facilities
 - (i) kind of material, weight and specific heat,
 - (ii) Temperature in begin and end,
- (iii) Heat pattern on the batch process.
- (III) Dispersion heat losses

The estimation of the item is almost same as boiler.

Precisely it is desirable that the values of (II) and (III) are measured by gathering the exhaust condensate water after steam traps.

- 45 -

(B) Steam traps and condensate recovery systems

The steam traps are the most typical devices for discharging the only condensate produced in steam consumtion facilities so as to prevent to escape the live steam which has higher caloric value than the condensate as shown on steam table.

Recently it has been popular to recover the heat of the condensate by recycling the condensate as the boiler water.

Asuming the complete recovery of condensate, the fuel consumption would be reduced by about 15 to 20 %. In otherwise, it would be so wastable not to notice the leakage of the live steam due to the fault traps.

(I) Check of steam traps

It is so easy to find out the fault traps on exhausting the condensate into open sewage with visual or sound. On the condensate recovery systems, the discover of fault traps should be implemented only with instruments, that is, "Stethoscopes" or "Ultrasonic detector" periodically by factory engineer or workers.

(II) Check of condensate recovery systems

On the case which the condensate discharged from traps would not be contaminated by any impurities. for instance, the case of indirect usage, it is desirable to recover as much condensate as possible. The condensate recovery is effective for saving not only the heat but also the chemical for boiler water treatment.

2.2 Analysis

The fundamental procedures for thermal energy management are the measurement, record and calculation the own process opration of facilities as described before. The measurement and record have been explained on previous section. The calculations of the amount of material and energy always should be based on the universal conservation principle.

Because of the importance of these calculation, the factory engineer engaging on energy management must be accustomed to the thermal acounting with the basic theory of thermal energy.

On assessing to a problems on energy management, the following knowledges would be required. ;

* The first principle of thermodynamics

• The practical acounting techniques.

2.2.1 How to prepare the heat balance sheets with example The energy is the essential resources on carrying out

the industrial processes.

The production of steam requires the conversion of the chemical energy in fuel through the combustion process. The energy which is thus transferred to water converts it to a substance at a higher energy level, that is, to steam. The energy of the steam may be used for heating purposes of some materials, resulting in a transfer of heat. It is essential that the energy should be accounted for analyzing the situation of energy consumption of facilities step by step. This is accomplished by prepareing the <u>energy balance</u>, which is made in a similar manner as the material balance. The energy balance should be described the following items ;

- how much is consumed in the respective steps of the processes, that is, boiler, furnace, dryer and so on,
- how much mey be converted to the different forms of energy, that is, petentical, electrical, sonic, chemcal or so on, and finally
- · what and how much is left over.

All forms of energy, such as mechanical, potential, electrical, chemical and thermal energy may be involved in any processing. the most important matter is usually thermal energy when dealing with combustion or calcination processes. Therefore this section would be mainly concerned with a accounting for thermal energy.

Although it is not necessary to follow the procedure described here on preparing the heat balance sheet, it would be convenient for biginner who wants to get even the roughly and quicklt information on energy cosumption data. You should notice in this procedures that many simplifications are involved www to the lack of correct data.

(1) Preparation of flow sheets

(A) Flow sheets

ŝ

The process schematic flow sheets in (Fig.2.2-6) or the block flow sheets in (Fig. 2.2-7) in fisrt, should be drawn with the directions of inlet and outlet flow of raw material, fuel, product and so on around the meadured main facilities.

Example of schematic flow sheet

(B) Boundary barrier

In general, the scope of barrier would be choosed arbitarily with considering the available data around the measured facilities so as to lessen unknown factors.

Figure 2.2-8 Choice of boundary barrier for balance

(C) Process conditions

As Fig. 2.2-6 the process conditions should be filled up on flowing lines in more ditail as possible.

(2) Procedure of thermal accounting

- (A) <u>Caloric value of fuel or combustion heat of fuel</u> According as whether the latent heat of moisture in flue gas or combustiongas would be consumed up, two kinds of caloric value should be utilised distinctively referring to the situation of accounting. In general, the figure in document supplied from oil dealer is often shown with a gross coloric value. Otherwise, in practical cases, the latent heat of moisture would not used up in the flue gas exhausted in the normal processes. Therefore the caloric value in energy management is a net value.
 - Gross caloric value ; complete use up
 - Net caloric value ; non use

(a) Net calorific value from gross value

Net value $Q_1 = Gross$ value $Q_h - 600 \times (9 \times h + w)$ (1) Here 600 ; latent heat of water

- 9; 18/2 ratio water mol.wt. to hydrogene m.w.
- w ; wt. fraction of water in fuel
- h ; wt. fraction of hydrogene in fuel
- (b) Gross calorific value from ultimate analysis of fuel

Gross value Q_h = 8,100 x c + 34,000 x h + 2,500 x s (2)
Here c ; wt. fraction of carbon in fuel
 s ; wt. fraction of sulphur
Net value is calculated by (1)

(B) Theoretical required air for complete combustion of <u>fuel</u> $A_0 \ Nm^3/kg \ F$ Though the value would be estimated by stochiometric theory and ultimate analysis, here for simplicity the value is estimate using "Rosin formula" as belows.

Description	G _o	A _o
Solid fuel	$\left(\frac{0.89 \times Q_1}{1,000} + 1.65\right)$ Nm ⁷ kg F (3)	$(\frac{1.01 \times Q_1}{1,000} + 0.5) \text{Nm}^3/\text{kg F}$
Liquid fuel	$(\frac{1.11 \times Q_1}{1,000}) \ \text{Nm}^3/\text{kg P}$ (4)	$(\frac{0.85 \times Q_1}{1,000}) \times Mm^3/kg P$ (8)
Gaseous fuel low heat value	$\frac{(0.725 \times Q_1 + 1.0)}{1,000} \times \frac{(5)}{Nm^3/Nm^3}$	$(\frac{0.875 \times Q_1}{1,000}) Nm^3/Nm^3$ (9)
Gaseous fuel high heat value	$\frac{(1.14 \text{ x } \text{Q}_1 + 0.25)}{1,000 \text{ Nm}^3/\text{Nm}^3} $ (6)	$\frac{(\frac{1.09 \times Q_1}{1,000} - 0.25)}{Nm^3/Nm^3 (10)}$

Table 2.2-2 Relation between Q_1 and (G_0 and A_0) Rosin Formura

The value G would be obtained using "Rosin formula". Example 2.2-1 When the ultimate analysis diesel oil is as follows ; C 86 🐔 . Η 13 % and 1%, S estimate Q_h , Q_1 , A_0 and G_0 of above fuel. Solution From (2)Gross value $Q_h = 8,100 \times 0.86 + 34,000 \times 0.13$ + 2,500 x 0.01 = 6,966 + 4,420 + 25 = 11,411 kcal/kg P From (1) and w = 0, Net value $Q_1 = 11,411 - 600 \times (9 \times 0.13 - 0)$ = 11,411 - 702 = 10,709 kcal/kg P From (8) of "Rosin formula" $A_0 = (\frac{0.85 \times 10.709}{1000} + 2.0) \text{ Mm}^3/\text{kg P}$ = 9.103 + 2.0 $= 11.103 \text{ Hm}^3/\text{kg P}$ From (4) of "Rosin formula" $G_{o} = \left(\frac{1.11 \times 10.709}{1.000}\right)$ = 11,887 Nm³/kg P

(D) <u>Air ratio</u> m

If assuming the complete combustion, air ratio m is

estimated according to following formula (11)

Air ratio
$$m = \frac{0.21}{0.21 - (0_2)}$$
 (11)

here 0₂; 0₂ content with mol. fraction or volume fraction

(E) Actual wet flue gas G
$$Nm^3/kg F$$

G = G₀ + (m - 1) x A₀ (12)

Example 2.2-2

On the boiler operation using diesel oil of Example 2.2-1, the 0_2 content in flue gas was 8%.

Estimate air ratio m and actual wet flue gas G.

From (11)

$$m = \frac{0.21}{0.21 - 0.08} = \frac{0.21}{0.13} = \underline{1.615}$$

From (12)
G = 11.887 + (1.615 - 1) x 11.103
= 11.887 + 0.615 x 11.103
= 18.715 Nm³/kg F

(F) Heat content carried out with flue gas

The specific heat of flue gas should accurately calcurated according to its composition and temperature. However, here as the simplified method, it is recomendable that the specific heat of flue gas on 100 to 300° C is unified as 0.33 kcal/m³ °C.

Heat content $Q = G \times C_p \times (T - T_0)$ (13) Here T; Temperature of flue gas ^OC

- T_c; Ambient temperature ^OC
- C_p ; Specific heat of flue gas, 0.33 kcal/m³ °C

Example 2.2-3

í

On Example 2.2-2, when the temperature of flue gas and ambient are 200° C and 32° C respectively, how much is the heat loss according to flue gas.

Solution

Heat loss Q = 18.715 x 0.33 x (200 - 32)
= 18.715 x 0.33 x 168
= 1037.6 kcal/kg
$$\mathbf{F}$$

- (G) <u>Calculation procedure on dispersion heat loss from</u> <u>surface of facilities</u>
 - (a) Sketch drawing presenting the body surfaces
 Sample sketch is as following Fig. 2.2-5
 - (b) <u>Cresponding the heat flux to the surface</u>
 On no heat flux meter, the surface tenperatures are measured to respective surface of facilities.as
 Table 2.2-1 and Figure 2.2-5.
- (c) Record

It is convenient to fill up the data to calculation format as Table 2.2-1

Suplemental procedure

(d) <u>Case of no heat flux meter</u>

It is useful procedure to obtain quickly the approximate dispersion heat lossas follows ;

- $(T T_{0})$
- The temporary heat transfer coefficients h are assumed as 10 to 20 kcal/m² hr ^oC.

However when the dispersion heat loss result in a large portion of output on the heat balance accounting.

this procedure is not recommendable.

- (e) <u>Calculation</u>
 - On the data of heat flux meter

Heat loss
$$Q = \sum_{i}^{\infty} (A_{i} \times \text{Heat flux})$$
 (14)

On no heat flux meter

Heat loss
$$Q = \sum_{i} (h_i \times A_i \times (T_i - T_o))$$
 (15)

Approximate heat loss

Min. loss =
$$10 \times \sum_{i} (A_i \times (T_i - T_o))$$
 (16)

Max. loss =
$$20 \times \sum_{i} (A_{i} \times (T_{i} - T_{o}))$$
 (17)

Example 2.2-4

According to Fig. 2.2-5 and Table 2.2-1 on heat flux, surface temperature, ambient temperature and respectively corresponding surface areas,

estimate the dispersion heat loss from the surfaces.

Solution

Following the calculation format, The dispersion heat loss is obtained as table 2.2-1

On reference, the value of heat transfer coefficient h calculated from reversely the value of the heat flux are presented. (H) Heat loss carried out with blow down water

A amount of blow down water is measured with the dimention of boiler and the depression of water column of level gauge. Heat loss is estimate as follows; Heat loss Q = B x C_p x (T - T_o) (18) = B x 1.0 x \triangle T

here

B; weight or volume of blow down water kg or litre
1.0; specific heat of liquid water kcal/kg ^oC
△T; Differential temperature between steam
temperature and ambient

Example 2.2-5

Some boiler is operated as follows ;

Cycle of blow down operation ; each 4 hrs, Depression of water column ; 1/2 inches and Rate of fuel consumption ; 40 kg/hr. The dimension of boiler is as belows

Sketch of boiler

Solution

 $\sin \theta = 200/850 = 0.2353$ $\theta = 13.6^{\circ}$ $\cos 13.6^{\circ} = \frac{x/2}{850} = 0.97$ x/2 = 826 mm x = 1652 mmCross area A = 1.652 x 0.0125 = 0.0203 m²

Vol. of blow down B = 0.0206 x 3.500 = 0.0723 m³ Enthalpy of steam at 8 kg/cm² G = 660.8 kcal/kg Enthalpy of water at $32^{\circ}C = 32.56$ kcal/kg Heat content of blow down Q

 $Q = (660.8 - 32.56) \times 72.3 = 45,422 \text{ kcal/4 hrs}$ Converting the basis of heat content to kg of fuel

$$Q = \frac{45,422}{40 \times 4} = \frac{283.9 \text{ kcal/kg P}}{40 \times 4}$$

(I) Heat content carried in by boiler feed water

When the boiler water is fed over ambient temperature, the heat content of fed water should be counted as input heat. The value on basis of kg of fuel is calculated as follows

 $Q = \{W \times C_p \times (T - T_o)\}/F \quad kcal/kg F \quad (19)$ here W; amount of fed water kg/hr F; rate of fuel consumption kg/hr T; temperature of fed water ^OC C_p; specific heat of water kcal/kg ^OC

Example 2.2-6

When a boiler is operated following condition, estimate the heat carryed in by the feed water. Feed water rate ; 600 kg/hr Feed fuel rate ; 40 kg F/hr Temp. of fed water ; 60 °C Ambient temp. ; 32 °C

Solution

From (19)

$$Q = \frac{600 \times 1.0 \times (60 - 32)}{40} = \frac{420 \text{ kcal/kg F}}{40}$$

(J) Preparation of heat balance sheet

Description	Input		Output		
	kcal/kg F	%	kcal/kg F	%	
Input Fuel (net) Feed water (60 ⁰ C)	10,709 4 20	96.2 3.8			
Output					
Flue gas			1,038	9.3	
Dispersion heat loss			290	2.6	
Blow down water			284	2.6	
steam (balance)			9,517	85.5	
Total	11,129	100.0	11,129	100.0	

Table 2.2-3 Example of heat balance sheet

- 58 -

(K) Drawing of energy flow diagram

í

Although it is sufficient to make the energy balance sheet for the energy management, furthermore it is more desirable to draw the energy flow diagram in order to let even the factory executive easily in glance understand as belows ;

Above descriptions are all regarding to boiler. In practice, we must evaluate the heat content of solid materials. Fortunately, the estimating procedures would be almost same as above. The specific heat of solid materials necessary for accounting the heat balance would be listed in appendix.

2.2.2 How to solve the heat transfer problems with examples

We would like to leave the basic theory of the heat transfer, insolving the conduction, radiation and convection, to the conventional text books about heat transfer. Here only the following practical techniques would be explaind so as to let the factory engineers alone easily solve the problems frequently taking place in energy audits.

- (1) Overall heat trasfer problems
- (2) Dispersion heat loss on piping systems
- (3) Heat exchangers

We would like to expect that almost of all factory engineers become familiar with the techniques as soon as possible.

(1) Overall heat transfer problems

The overall heat transfer is a phenomena to let the heat transfer from a fluid out of hot solid wall to a fluid out of cold solid wall.

The amount of heat to be transferred is calculated by the following equation

<u>Transfered heat</u> $Q = K \times A \times (T_1 - T_2)$ (20) here A ; heat transfer cross area (m²) $T_1 \& T_2$; fluid temperature of hot and cold

side respectively

K ; overall heat transfer coefficient

Now assuming that the wall is composed with many layer of materials whose thermal conductivity are $\lambda_1, \lambda_2, \lambda_3 \cdots$ and whose thickness are b_1, b_2, b_3, \cdots , the overall heat transfer coefficient is defined as follows;

$$\frac{1}{K} = \frac{1}{h_1} + \frac{b_1}{\lambda_1} + \frac{b_2}{\lambda_2} + \frac{b_3}{\lambda_3} + \dots + \frac{1}{h_2}$$
(21)

$$\frac{T_1 \qquad h_1}{t_1 \qquad t_2 \qquad t_3 \qquad t_4 \qquad t_n \qquad t_{n+1} \qquad t_{n+$$

Example 2.2-7

A wall of furnace is composed of following materials. The temperature of atmosphere in furnace is 1,300 °C, and the film transfer coefficient h_1 is assumed as $1,000 \text{ kcal/m}^2 \text{ hr}$ °C. On other side, respective values on ambient are 30 °C and 10 kcal/m² hr °C. How much are the temperature of the boundary furfaces of the respective materials, that is, t_1 , t_2 , t_3 , and t_4 .

In order of hot side,	λ kcal/m hr $^{\circ}$ C	b m
Refractory brick (1)	1.3	0.3
Insulation brick (2)	0.2	0.14
Red beick (3)	0.35	0.24

- 61 -

Solution

•

You must keep in mind that the heat flow rate everywhere in wall is constant.

$$Q = K \times A \times (1,300 - 30)$$

here assuming $A = 1 m^2$,

$$\frac{1}{K} = \frac{1}{1,000} + \frac{0.3}{1.3} + \frac{0.14}{.2} + \frac{0.24}{0.35} + \frac{1}{10}$$

= 1.718
$$Q = \frac{(1,300 - 30)}{1.718} = 739.2 \text{ kcal/m}^2 \text{ hr}$$
$$Q = 1,000 \text{ x} (1,300 - t_1)$$
$$1,000 \text{ x} (1,300 - t_1)$$
$$1,000 \text{ x} (1, = 1,000 \text{ x} 1,000 - 739.2)$$
$$= 1,299,000$$
then
$$t_1 = \frac{1,299}{0} \frac{^{\circ}\text{C}}{^{\circ}\text{C}}$$
$$739.2 = 1.3/0.3 \text{ x} (1,299 - t_2)$$
$$t_2 = \frac{1,128.4}{0} \frac{^{\circ}\text{C}}{^{\circ}\text{C}}$$
$$739.2 = 0.2/0.14 \text{ x} (1,128.4 - t_3)$$
$$t_3 = \frac{610.8}{0} \frac{^{\circ}\text{C}}{^{\circ}\text{C}}$$

739.2 = 0.35/0.24 x (610.8 -
$$t_4$$
)
 $t_4 = 103.8 \,^{\circ}C$

These obtained values are checked as next equation.

$$739.2 = 10 \times (103.8 - 30)$$

= 737 OK
(2) Dispersion heat loss on piping systems

In order to estimate the effectiveness of the insulation for preventing the dispersion heat from the surface of the piping systems, the calculated dispersion. heat per 1 m of pipe length and 1 hr is presented according to the insulation thickness, steam temperature and pipe size. in Fig. 2.2-10.

The dispersion heat and the effectiveness after insulating the bared pipe are presented in Fig.2.2-11 to Fig. 2.2-16.

The definition of effectiveness $\gamma \not\in$ is as follows ;

$$\gamma = \frac{\mathbf{Q}_{0} - \mathbf{Q}}{\mathbf{Q}_{0}} \times 100 \quad \text{(22)}$$

 Q_0 and Q are the dispersion heat kcal/m hr before and after respectively.

Example 2.2-8

How much of the dispersion heat loss on bared pipe and insulated pipe with regular material by 100 mm of 80 A (3 B) on 300 $^{\circ}$ C of steam temperature.

Solution

In Fig.2.2-10, a point of horizontal axis at 300 ^oC is raised up and crossed at 80 A (3B) line. From the point, it is moved horizontally to vertical axis and read the dispersion heat loss with kcal/m hr This value is of bared pipe.

Next, in Fig.2.2-13, a point of 100 mm of horizontal axis is raised up and crossed at 300 $^{\circ}$ C line, then read the dispersion heat loss with insulation.

Thickness of Insulation, Dispersion Heat Loss and Insulation Effectiveness

Figure 2.2-11 Insulation effectiveness for 25A(1") pipe

1.0

1

- 65 -

Figure 2.2-12 Insulation effectiveness for 50A(2") pipe

Figure 2.2-13 Insulation effectiveness for 80A(3") pipe

Figure 2.2-14 Insulation effectiveness for 100A(4") pipe

.

Figure 2.2-15 Insulation effectiveness or 150A(6") pipe

Figure 2.2-16 Insulation effectiveness for 250A(10") pipe

A08 100A 150A 200A Valve Size 25 A 50A Surface Area cf Valves (m²) 0.131 0.349 0.211 0.455 0.776 1.137 (m) 1.22 1.11 1.25 1.28 1.50 1.68 equivalent length

Equivalent length of Valves and Flanges for dispersion heat.

Table 2.2-4 Valves

-

•

Flange Size	25A	50A	80A	100A	150A	2001
Surface Area of Flange (m ²)	0.057	0,083	0.113	0.139	0.235	0.301
(m) equivalent length	0.53	0.47	0.42	0.39	0.45	0.44

Table 2.2-5 Flanges

1

Furthermore, the effectiveness value on the countermeasure of insulation easily is obtained on upper graph line.

Dispersion heat loss in bared $Q_0 = 1,250$ kcal/m hr Dispersion heat loss with insulation

Q = 90 kcal/m hr

From the difinition of effectiveness,

$$7 = \frac{Q_0 - Q}{Q_0} \times 100$$
$$= \frac{1,250 - 90}{1,250} \times 100$$

= 92.8 🗲

From the upper grapg of Fig. 2.2-13,

7 = 93 %

End of Example

In general, there are many kinds of the pipe fitting parts, that is, many kinds of valves and franges in the piping in factories. The estimation of such parts are substituted by equivalent length of each parts as table 2.2-4 and 2.2-5 as shown later.

(3) <u>Heat exchanger problems</u>

On conducting the energe conservation activities, it often happens that the heat exchanges to recover the exhausted heat, for example, economizer which heat up the boiler feed water to some degree of temperature, the air preheater which heat up the combustion air for the burner and the hot water recovery which is installed in hot sewage lines, should be planed. Here, in order to obtain the preliminary and rough informations regarding to the dimension or capacity on heat exchanger are described. If in practice you want to install the heat exchanger for energy conservation, you had better consult with a plant engineering or heat exchanger manufacturers about the actual plans.

(A) The simplified design procedures on Heat exchangers

(a) Draw the schematic flow sheet

The flow condition, for example, direction (in or out) temperature, amount of flow material and so on, must be filled up on flow sheet as belows.

Figure 2.2-17 Economizer installation

- 69 -

(b) Mean temperature difference

In order to decide the size, dimension or capacity, for the simplicity of design the reasonable mean temperature difference should be calculated as belows,

In practice,

if $\Delta t_1 / \Delta t_2 < 1.5$

the mean temperature difference may be substituted with a arithmatic mean as follows ;

$$\Delta \mathbf{t} = \frac{\Delta \mathbf{t}_1 - \Delta \mathbf{t}_2}{2} \tag{23}$$

and if $\Delta t_1 / \Delta t_2 > 2$

as the proper temperatire fifference, log. mean temperature difference should be utilized as belows

$$(\Delta t)_{1m} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}}$$
(24)

$$=\frac{\Delta t_1 - \Delta t_2}{2.3 \log \Delta t_1}$$
(25)

On even the cross flow heat exchanger, log mean may be adapted.

(c) Typical overall heat transfer coefficient

It is very difficalt to assign the coefficient as fixed value, because this coefficient is variable depending to the terms of operation, the physical properties of flowing material of both fluids, the configuration of heat exchanger and so on.

Typical value

Flue gas	VS	Water	30 kcal/m ^{2 o} C hr
Plue gas	78	air	15 kcal/m ^{2 o} C hr
Hot water	VS	Water	100 kcal/m ² ^o C hr

- 71 -

Example 2.2-9

Some factory, the installation of economizer on operating boiler for heat recovery from exhaust flue gas is being planed as Fig. 2.2-17. assuming the heat efficiency of economizer or heat exchanger is 90 %, estimate the temperature of the feed water to boiler and calculate roughly the area m^2 of heat transfer in economizer.

Solution

Next we must calculate the theoretical transferred heat from flue gas to water, Q kcal/hr.

 $Q = 7,500 \times 150 \times 0.33 = 371,250 \text{ kcal/hr}$ here 150; the temperature difference of flue gas

0.33 ; rough specific heat of fluegas The temperature of feed water to boiler is as belows

 $t = \frac{371,250 \times 0.9}{6,000} + 32 = 87.6 \circ C$

Calculation of log mean

 $\Delta t_1 = 300 - 32 = 268$ $\Delta t_2 = 150 - 87.6 = 62.4$

$$(\Delta t)_{ln} = \frac{268 - 62.4}{2.3 \log \frac{268}{62.4}} = 141.2 \ ^{\circ}C$$

Choosing 30 kcal/m² $^{\circ}$ C hr as the typical overall heat transfer coefficient, the area of heat transfer is estimate as belows

transfered heat Q = 371,250 x 0.9
= K x A x
$$\triangle$$
 T
= 30 x A x 141.2

Then

End of example

Almost of all heat exchangers can be approximately designed as above procedure.

Therefore more descriptions are skiped.

- 2.2.3 <u>How to estimate the steam consumptions with example</u> As previously explained, here the steam is consumed only for heatng some materials. After all, the steam for heating is consumed with the following two ways.
 - Substantially required steam for heating the processing materials including the heat content of facilities, and
 - (2) The balanced steam substructing the above required steam from input steam. This heat of steam is completely dispersed to ambient atmosphere and call it waste.

Sometimes, it happens that a amount of heat is recovered from a exhausted heat. It may be considered that this recovered heat is equivalent to the reduction of input heat. Therefore the ratio of (1) to the input heat is called as the efficiency of the heating operation of facilities.

The actual energy conservation activities with regard to the steam consumption are to raise the efficiency or to depress the waste part of heat among the input energy which is obtained by substructing the recovered heat from the initial input heat.

(1) Estimation of required steam for heating

(A) <u>Processing materials</u>

The 1 kg of steam is to be equivalent to 550 kcal.

(a) On only one material

- 74 -

$$S = \frac{Q}{550} = \frac{W \times C_p \times (T - T_0)}{550}$$
 kg (26)

(b) On a few of materials

$$S = \frac{\sum Q_{i}}{550} = \frac{\sum \{W_{i} \times C_{pi} \times (T_{i} - T_{o})\}}{550} \quad kg \quad (27)$$

here

W and W_i ; amount of materials kg C_p and C_{pi} ; specific heat of respective maerials T and T_i ; required temperature ^{O}C Q and Q_i ; Required heat kcal S; amount of required steam kg

In general, the steam consuming facilities are composing of many kinds of material. Then quantity, temperature and specific heat of respective material should be evaluated and calculated with the almost same equation as a single material as above. In the biginning survey, it may be useful and convenient

that one value of each component as a mean would be adaped to respective materials.

However, on the continuous processing of long period, the heat content of facilities on start-up period may be neglected in order to come to a negligible amount of heat comparing to the total heat of input steam in unit period.

Example 2.2-10

A factory is processing waste tyres for reuse on following operation schedule,

	Big tyre	Small tyre
Weight of a piece kg.	60	30
No. of curing machines	10	6
No. of batch per day	7	16

Temperature of initial raw waste tyre is 30 ^OC. Estiamte the substantially required amount of steam per day in this factory.

The steam for curing process is supplied at 180 °C.

Solution

The specific heat of rubber is available with conventional reference book.

The specific heat of rubber ; $0.25 \text{ kcal/kg}^{\circ}\text{C}$ Q = (60 x 10 x 7 x 0.25 x (180 - 30)) -(30 x 6 x 16 x 0.25 x (180 - 30)) = 157,500 - 100,000 = 257,500 kcal/day S = Q/550 = 257,500/550 = <u>468.2 kg steam/day</u>

(B) Material constituting of facilities

The procedure of estimation is almost same as above (A).

(2) <u>Estimation of dispersion heat loss from surface of</u> <u>facilities</u>

This procedures have been described already at 2.2 Analy sis, 2.2.1, (2), (G) Calculation procedure on dispersion heat loss from surface of facilities. This term is skiped.

(3) <u>Heat loss by evaporation from free surface of hot water</u> vessels

In practice, the rate of the evaporation of water the free surface variable according with the atmospheric conditions, that is, humidity, wind blowing, ambient temperature and so on and then absolutely the correct values of the heat loss due to evaporation are hardly obtained.

Although the data of Figure 2.2-21 as shown later about a dispersion heat loss from freewater surface are extremely rough because of neglecting completely of any atmospheric conditions over the free water surface, it would be sufficient to estimate the heat loss using Figure 2.2-21 on the first stage of the energy management.

Example 2.2-11

In some textile factory, a treatment of fibre are continuously operated in hot water bath vessel whoese dimensions are as follows ;

```
length ; 4,5 m
Width ; 1.5 m
depth : 1.2 m
```

Bath temperature is 90 °C and the hot water surface is completely exposed to ambient.

How much are the heat loss per hr due to the evaporation from the free surface of vessel and calculated required steam by this heat loss.

Solution

Using Figure 2.2-21 and assuming half agitation because of disturbance on pathing the treated fibre in the hot bath at 90 $^{\circ}$ C

Agitation ; 9,000 kcal $/m^2$ hr No disturbance ; 7,000 kcal $/m^2$ hr Taking the mean value, Dispersion heat loss per m² and hr is as follows ; (9,000 - 7,000)/2 = 8,000 kcal $/m^2$ hr

Total free surface area is

4.5 x 1.5 = 6.75 m^2 Then the heat loss is as follows ;

 $Q = 7,000 \times 6.75$

= 47,250 kcal /hr

The required steam compensating this heat loss is

S = Q/550 = 47,250/550 = 85.9 kg/hr

1

1

1

1 1

- 79 -

i

2.3 Recommendation

In this section, the following values are applied on all examples as common in order to avoid the complexity on a lot of different factors of operation conditions.

Price per heat of 1,000 kcal ; 0.05 M\$ Ultimate analysis of fuel

C : H : S = 86 ; 13 : 1

 Q_h ; 11,411 kcal/kg F = 11,500 kcal/kg F Q_1 ; 10,709 kcal/kg F = 10,700 kcal/kg F A_o ; 11.103 Nm³/kg F = 11.1 Nm³/kg F G_o ; 11.887 Nm³/kg F = 11.9 Nm³/kg F Ambient temperature ; 30 °C Working hours per day ; 16 hr/day Working days per year ; 330 day/year Fuel consumption per hour ; 400 kg/hr

2.3.1 Effects of 0, control

Example 2.3-1

 0_2 content of a flue gas on some boiler was 8 %. If it could be redused till 3 %, how much are the fuel savings by this improvement, assuming that the temperature is not change and the rate of fuel consumption is 400 kg F/hr.

Solution

Let ' mark indicate the factors after the thus improvement.

Air ratio
$$m = \frac{21}{21 - 8} = 1.615$$

 $m' = \frac{21}{21 - 3} = 1.167$

Actual vol. of wet flue gas

 $G = G_0 + (m - 1) \times A_0$ = 11.9 + (1.615 - 1) x 11.1 = 11.9 + 6.8 = 18.7 Nm³/kg F G_0 = 11.9 + (1.167 - 1) x 11.1 = 11.9 + 1.9 = 13.8 Nm³/kg F

Saved heat per kg F,

 $Q = (18.7 - 13.8) \times 0.33 \times (200 - 30)$ = 4.9 x 0.33 x 170 = 274.9 kcal/kg F Per hr Q = 274.9 x 400 = 109,960 kcal/hr \$ = 109,960 x 0.05/1,000 = 5.498 M\$/hr Per day Q = 109,960 x 16 = 1,759,360 kcal/day \$ = 5.498 x 16 = 87.97 M\$/day Per year Q = 1,759,360 x 330 = 580,588,800 kcal/year \$ = 87.97 x 330 = 29,030 M\$/year

2.3.2 Effects of the temperature of flue gas

In practice, it is not so easy to depress the temperature of flue gas on a point leaving the boiler except a fuel would be burned in excess beyond the design capacity. It often happens that a higher temperature of flue gas results in a insufficient heat transfer ability on boiler tube surface because of a short of surface area or a lot of the scale on the boiler tubes.

If the temperature of flue gas would be over 300 °C in spite of a resonable operations, that is, proper O_2 content, not so much of a fuel feed rate, and so on, you should better check and remove the scale on boiler tube surfaces in order to recover a ability of heat transfer. Especially, on the smoke tube type boilers which are frequently adapted on a small or middle size enterprise, there is no chance to remove the sticky scale depositing on the surface outside of boiler tubes except the perod of of overhaul in regular official inspection. Then the quality control of boiler water should be always taken care.

Example 2.3-2

The temperature of flue gas before the descaling the boiler tubes was 250 °C After the descaling the temperature of flue gas has been operated appropriately at 160 to 220° C until next overhaul after one year. Assuming that the temperature of flue gas rises up graduately and homogeneously according to a operation hours and 0_2 content is keeping at 5 % in constant, how much is the amount of saving fuel?

_ 82 _

<u>Solution</u>

From (11)

 $m = \frac{2\lambda}{21-5} = 1.3125 \approx 1.31$

From (12)

 $G = 11.9 + (1.31 - 1) \times 11.1$ = 11.9 + 3.4 = 15.3 Nm³/kg P

From (13), saved heat per kg F,

$$Q = 15.3 \times 0.33 \times (250 - \frac{160 - 220}{2})$$

= 15.3 x 0.33 x 60 = 302.94 kcal/kg F

Per hr,

Q = 302.94 x 400 = 121,176 kcal/hr \$ = 121,176 x 0.05/1,000 = 6.06 M\$/hr

Per day,

 $Q = 121,176 \text{ x}_16 = 1,939,000 \text{ kcal/day}$

 $= 1,939,000 \times 0.05/1,000 = 96.95 \text{ M}/day$

per year,

 $Q = 1,936,000 \times 330 = 639,870,000 \text{ kcal/year}$

\$ = 639,870,000 x 0.05/1,000 = 31,994 M\$/year
Saved fuel per year, SF ; <u>saved fuel</u>

SF = 639,870,000/10,700 = 59,800.9 kg F/year

- 83 -

2.3.3 Effects of the waste heat recovery

In spite of the complete descaling and the appropriative burning operation with clean burners, the temperature of the flue gas hardly fall down to suitable temperature, under 300 $^{\circ}$ C, it would be desirable to install the economiser or the air preheater in the way of the exhaust ducts.

Example 2.3-3

Now, after the descaling at the periodical overhaul the temperature of flue gas hardly has fellen down to under 300 $^{\circ}$ C, actually it has been 320 $^{\circ}$ C. The installation of the air preheater in way of exhaust duct line has been planed to save the fuel consumtion. It is expected that the air for combustion is rised µp to 120 $^{\circ}$ C.

How much is the amount of the saved fuel in this im-

and how much is the area m^2 of air preheater?

Solution

To draw the schematic flow sheet of improvement,

From (11)

$$\mathbf{m} = \frac{21}{21 - 5} = 1.31$$

Actual required air volume for combustion

$$A = m \times A_0 = 11.1 \times 1.31 = 14.5 \text{ Nm}^2/\text{kg F}.$$

From (12)

$$G = 11.9 - (1.31 - 1) \times 11.1 = 15.3 \text{ Nm}^2/\text{kg F}$$
.

Asuming mean C_p of air at 30° to 120° C as 0.25 and the efficiency of air preheater as 90 %, from heat balance,

14.5 x 0.25 x (120 - 30) = 15.3 X 0.33 x (320 t) x 0.90

t = 248 outlet temp of flue gas after preheater

 $Q_w = 15.3 \times 0.33 \times (320 - 30) = 1464.21 \text{ kcal/kg F}$ Recovered heat Q_r per kg F,

 $Q_r = 14.5 \times 0.25 \times (120 - 30) = 326.25 \text{ kcal/kg F}$ As a primary approximation, recovered heat per year

 $Q_{rv} = 326.25 \times 400 \times 16 \times 330 = 689,040,000 \text{ kcal/year}$

\$ = 689,040,000 x 0.05/1,000 = 34,452 M\$/yeay
However in precise, this value should be estimated as follows;
assuming the practically required heat for processing and the
dispersed heat loss from surface of facilities are constant with
no relation to installation of preheater.

Schematic flow sheets of before and after inprovement are as

Let X be a amount of the saving fuel per hour. Then A and B are before $400 \times (10,700 - 1,464.2)$

after $(400 - X) \times (10,700 + 326.25 - 1,464.2)$

Both equations must be equal due to the assumption

 $400 \times (10,700 - 1,464.2)$

 $= (400 - X) \times (10,700 + 326.25 - 1,464.2)$

Solving the linear equation, The X, saving fuel is as follows

X = 13.64 kg P/hr

Then a mount of saving fuel per year is as follows

$$Q_{ry} = 13.64 \times 10,700 \times 16 \times 330 = 770,605,400 \text{ kcal/year}$ =770,605,400 \times 0.05/1,000 = 38,530 M$/year$$

Preliminary design of air preheater

Draw the temperature pattern.

Log mean temp. difference is 320° C Flue gas as follows $\Delta t = \frac{290 - 128}{2.3 \log \frac{290}{128}}$ $\Delta t_1 = 290^{\circ}$ C $\Delta t_2 = 120^{\circ}$ C $= 198.3^{\circ}$ C. 30° C Air 120° C

From heat balance,

Q kcal/he = 326.25 x 386.36 = Area x 15 x 198.3 kcal/hr Required area,

$$\operatorname{Area} = \frac{326.25 \times 386.36}{15 \times 198.3} = 42.4 \text{ m}^2$$

For allowance, design area is 20 % up,

Design area = 42.4 x $1.2 = 50.9 = 51 \text{ m}^2$ If unit price (per m²) of air preheater, would be assumed as 1,000 M\$/m² on this improvement, the "Pay back years" is as follows;

Pay back years = $\frac{1.000 \times 51.0}{38,530} = 1.3$ years

2.3.4 Effect of the extensive insulation

The most easy countermeasures for energy conservation would be to prevent the dispersion heat loss from the surface of the piping systems or the facilities with the suitable insulations. The countermeasure with respect to piping systems already the ditail descriptions have been done in analysis section.

In first, the most useful skill is to be familiar on the calculation of how much the waste heat is. Thus skills would be learned through the examples laters.

Example 2.3-4

A refractory brick wall of 20 cm thickness (λ_1 thermal conductivity 1.0 kcal/m hr ^oC) is to be insulated with a layer of insulation materaal (λ_2 thermal coductivity 0.1 kcal/m hr ^oC and allowable max. temperature 800 ^oC). What is the thickness of this insulation material under following condition ;

Temp.of inner surface of furnace ; 1,000 °C Ambient temp. ; 30 °C Film heat transfer coef. of outside wall ; $10 \text{ kcal/m}^2 \text{ hr}$ °C

Solution

Given the allowable max. temperature 800 $^{\circ}$ C for insurating material, the boundary temperature between insulation and the refractory brick, t_2 can be presumed as 800 $^{\circ}$ C, the amount of heat conduction through the wall in unit hr and unit area,

A amount of heat transfer through the wall is everywhere constant. Then

$$Q = \frac{\frac{t_2 - t_3}{\frac{b_2}{\lambda_2} + \frac{1}{h_2}} = \frac{800 - 30}{\frac{b_2}{0.1} + \frac{1}{10}}$$

= 1,000 kcal/m² hr ^oC

Solving a linear equation

1,000 x
$$(b_2/0.1 + 1/10) = 770$$

10,000 x $b_2 = 670$
 $b_2 = \frac{670}{10,000} = 0.067 \text{ m}$
 $= \underline{67 \text{ mm}}$

Example 2.3-5

An existing insulation wall as shown in the figure belows has the following particulars ;

temp at wall surface of high temp. side ; 600 °C Thermal conductivity of insulation wall

0.20 kcal/m hr $^{\circ}C$

Its thickness (b₁); 0.20 m

Film heat transfer coef. of cold ambient side (h_2) 10 kcal/m² hr ^oC

Ambient temp. (T_2) 30 °C

MICRCCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS STANDARD REFERENCE MATERIAL 1010a (ANSL and ISO TEST CHART No. 2) In view of conservation of energy, it is decided to reduce the existing heat loss to a half. To achieve this, an additional layer of more effective insulation material will be installed at the outer surface of existing wall.

Given that the thermal conductivity of existing insulation material and the temperature at wall surface of high temperature side un-changed, the thermal conductivity of the additional insulation material (λ_2) 0.10 kcal/m hr ^oC, the film heat transfer coef. at the outer or cold surface of it similar to the existing one, what is the thickness (b_2) of the additional insulation wall?

$$\begin{array}{c|c} & \lambda_1 & \lambda_2 \\ \hline & & \lambda_1 & \lambda_2 \\ \hline & & & h_2 \\ \hline & & & h_2 \end{array} \xrightarrow{\mathbf{T}_2 = 30 \ ^{\mathrm{o}}\mathrm{C}}$$

Solution

Let the heat loss of the existing insulation wall be $Q_1 \text{ kcal/m}^2 \text{ hr}$,

$$Q_{1} = \frac{600 - 30}{\frac{1}{h_{2}} + \frac{b_{1}}{\lambda_{1}}} = \frac{570}{\frac{1}{10} + \frac{0.20}{0.20}} = 518.2 \text{ kcal/m}^{2} \text{ hr}$$

Let the heat loss after comletion of additional insulation wall be $Q_2 \text{ kcal/m}^2$ hr,

$$Q_2 = \frac{600 - 30}{0.1 + 1.0 + \frac{b_2}{0.1}}$$

$$= \frac{570}{1.1 + 10 \times b_2} = \frac{Q_1}{2} = 259.1 \text{ kcal/m}^2 \text{ hr}$$

Solving above equation

$$b_2 = 0.11$$

2.3.5 Effects of the condensate recovery

The thermal energy contained in the generated steam would be consisting of a latent heat of about 80 % of total heat content of steam and a sensible heat of about 20 % of total heat content of steam involving in condensate.

If the sensible heat of condensate completely would be recovered as boiler feed water, the fuel saving of about 20 $\stackrel{<}{\scriptstyle \sim}$ might be expected in calculation.

The values of latent and sensible heat of steam are presented at appendix 1 Sceam tables.

When the condensate is recovered as the thermal source of feed water to boiler, a amount of fuel fed to boiler would be reduced by the same heat value as the recovered heat by the condensate.

recovery

A few examples of the condensate recoery systems would be shown as belows ;

Figure 2.3-2 Open recovery system with only steam trap

Figure 2.3-3 Open recovery system with trap and pump

1

1

Example 2.3-6

Some boiler up to the present has been operated without to completely recover the condensate flowing from the steam consuming facilities with following condition ;

Boiler efficiency 85 %

Temp. of steam 179 °C

Fuel consumption rate 400 kg F/hr

In order to develpe the energy conservation activitis, the adaption of the condensate recovery system has been considered. The main specification on the condensate recovery systems are as follows ;

Recovery ratio ; 90 % Temp. of return water to boiler ; 80 °C Allowable pay back year in finance; 1.5 years

- (1) How much is the saving fuel by this improvement per year?
- (2) How much is allowable on the investment of the condensate recovery system.

Solution

Heat consumed on generating steam

 $Q = 10,700 \times 0.85 = 9,095 \text{ kcal/kg } \mathbb{F}$

Required heat for steam at 179 °C from water at 30 °C

S = 660 - 30 = 630 kcal/kg steam

Steam ratio

Q/S = 9,095/630 = 14.43 kg steam/kg F amount of recovered condensate

14.43 x 0.9 = 13.0 kg condensate Recovered heat by recovered condensate 13.0 x 1 x (80 - 30) = 650 kcal/kg P Annualy recovered heat

 $650 \times 400 \times 16 \times 330 = 1,372,800,000 \text{ kcal/year}$ Annualy saved fuel cost

1,372,800,000 x 0.05/1,000 = <u>68,640 M\$/year</u> Allowable investment cost for condensate recovery system

$$68,640 \times 1.5 = 102,960 M$$

End of example

When the condensate under high temp.and pressure is is opened into the low pressure zone, a part of condensate generate a lower flash steam. The resultant flash steam can be used at alternative place as steam.

The relation of pressure after and before flash is shown as belows ;

xe.	പ്രം			Pressu	re zfi	ter fl	ash			
ks/a	6	0	0.3	0.5	1.0	1.5	2	3	4	5
	1	3.7	2.5	1.7	-	-	-	-	-	-
	2	6.2	5.0	4.2	2.6	1.2	-	-	-	-
48	3	8.1	6.9	6.1	4.5	3.2	2.0	-	-	-
13	4	9.7	8.5	7.7	6.1	4.8	3.6	1.6	-	-
ļ	5	11.0	9.8	9.1	7.5	6.2	s.o	3.1	1.4	- 1
Lor	6	12.2	11.0	10.3	8.7	7.4	6.2	4.3	3.0	1.3
þ	8	14.2	13.1	12.3	10.8	9.5	8.3	6.1	4.8	3.4
e H	10	15.9	14.8	14.2	12.5	11.2	10.1	8.2	6.6	5.3
122	12	17.4	16.3	15.5	14.0	12.7	11.6	9.8	8.2	6.9
r.	14	18.7	17.6	16.9	15.4	14.1	13.0	11.2	9.5	8.3
4	16	19.0	18.8	18.1	16.6	15.3	14.3	12.4	10.9	9.6

Table 2.3-1 Amount of flash steam (wt. %)

- 93 -

2.3.6 Effects of inner pressure control in furnace

When the pressure in furnace is in the plus side and too higher than ambient pressure, resultant flame causes heat loss. When the pressure in furnace is in the minus side, the cold air outside the furnace enter into the furnace and cools down the inside of the furnace, which results in heterogeneity of temperature pattern. The opening hole of the furnace wall should be as small as possible and , at the same time, the furnace pressure around the opening hole should be held at about $\pm 0 \text{ mmH}_20$

- 94 -

Annualy recovered heat

Creatic tree

 $650 \times 400 \times 16 \times 330 = 1,372,800,000 \text{ kcal} \text{ Avenue}$ saved fuel cost 1,372,800.000 - -Annualy saved fuel cost

Allowable investment cost for condensate recovery

68,640 x 1.5 = 102,7 End of examp When the condensate under high temp.and pressure is the low pressure zone, a part of condensate The resultant fla.sh stear is opened into the low pressure zone, a part of condensate generate a lower flas can be used at alternative place as steam.

The relation of particle after and before flash is shown as belows ;

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
12.2 11.0 10.3 8.7 7.4 6.2 4.3 3.0 1.3
14.2 13.1 12.3 10.8 9.5 8.3 6.4 1 .8 3.4
10 15.9 14.8 14.2 12.5 11.2 10.1 8.2 E. 5.3
12 17.4 16.3 15.5 14.0 12.7 11.6 9.8 8.2 7.6.9
14 18.7 17.6 16.9 15.4 14.1 13.0 11.2 9.5 R
16 19.0 18.8 18.1 16.6 15.3 14.3 12.4 10.9 9.6

1 1
Appendix 1

Steam table (pressure base)

(the socisty of mech. eng. Japan) Piessure Temp Specific Volume Spec. Weight Specific Enthalpy Pressure °c m³/ke kg/m³ at mmHg kcal/kg at ۳. ø r . 1/2 h h.. , p 0 0 1 0 7 4 6.699 0.00100006 131.62401 0 0075974 6.722 600 42 593 70 0 010 12,737 0 015 11.0 89.6244 68.2556 603.07 605.02 0.00100052 0.011158 12,770 590.30 587.78 0.015 0 020 14.7 0.00100119 0.014651 17.236 0 020 0.025 18.4 20,779 0.00100189 55.2671 585.77 0.018094 20.808 606.57 0.025 0.030 22.1 23.775 0.00100258 46 5177 0 021497 23.800 607.88 0.030 584.08 0 035 25.7 26.362 40.2134 35.4496 0 00100325 26.383 28.662 0 024867 609 00 609.99 582.62 0 035 0 040 29 4 0 00100390 0.028209 0.040 581.33 30.69 0 045 33.1 0.00100452 31,7199 6.031526 30,705 610.87 0.045 580.17 0.050 36.8 0.00100511 32.55 28.7184 0 034821 32,560 611 68 579.12 0.050 0 055 40.5 34.25 0 00100569 26 2495 24.1820 34.260 35.831 37.292 0.038096 612.41 0.055 578.15 0 060 44,1 35.83 0.00100625 0 041353 613.09 577.26 0.060 0 065 47.8 37 29 0.00100677 22.4247 0.044594 613.72 0 065 576.42 0.070 51.5 38 66 0.00100729 20.9122 0 047819 38.659 614.30 575.64 0.070 0 075 55.2 39,95 0.00100779 19 5962 0.051030 39.944 614.85 0.075 574.91 41.16 0.080 58.8 0.00100827 18.4405 0 054228 41.158 615 37 574.22 0.080 0 085 62.5 42.32 0.00100873 17 4173 0 057414 42.307 615.87 573.56 0 085 66.2 69.9 0.090 43 41 0 00100919 16.5048 0 060588 43 400 616 33 572.93 0 090 0.095 44 45 0.00100963 15 6859 44 442 616.78 0.063752 572.34 0 095 73.6 80.9 88.3 0 10 45 45 0.00101006 14.9467 0.066904 45.438 617.20 571.76 0.10 0.11 47 32 0.00101089 13 6647 0.073181 47.307 49.035 618.00 618.73 570.69 0,11 49 05 0 00101167 12 5910 0.079472 569.69 0.12 0.13 95.6 50.67 0.00101242 11.6781 0.085630 50.645 619 41 568.77 0.13 0.14 103.0 52,17 0.00101314 10.8923 0.091808 52,152 620.05 567 89 0.14 110.3 0.15 53,59 0.00101384 10.2084 0.097958 53 569 620 64 567.07 0.15 0 16 54.93 0.10408 54.908 56.177 621.20 621.74 0.00101451 9 60776 566.30 565.56 0.16 0 17 125.0 56.20 0.00101515 9.07588 Т 0 18 132.4 57.41 0 00101577 8 60149 0.11626 57.385 622.24 564.86 0.18 58.56 0 19 139.8 6 17568 0.00101638 0.12231 58 536 622.72 564.18 0.19 0 20 0.21 0.22 147 1 59.66 0.00101696 7.79127 0 12835 59.637 623.18 563 54 0.20 154.5 60.72 0.00101753 7 44247 7 12450 0.13436 0.14036 60.692 61.706 623.62 624.04 562.92 0.21 161.8 61 73 62,71 0.00101808 562.33 0.22 0.23 169.2 176.5 0.00101862 6 83340 0 14634 62.681 624.44 561.76 0.23 0.24 63.65 0 00101915 6.56588 0 15230 63.621 624 83 561.21 0.24 0.25 183.9 64.56 0 001 01966 6.31916 0.15825 64.528 625.20 560.67 0.25 0.26 191.2 65 43 0 00102016 6.09088 0 16418 0.17010 65 405 625.56 0.26 560.16 198.6 66.28 0.00102065 5 87903 66.254 67.076 625.91 559.66 0 28 206.0 67 10 0 00102112 5.68183 0.17600 626.25 559.17 0 28 ! 0.29 213.3 67.90 0.00102159 626.57 5.49795 0 18189 67.875 558.70 0.29 0.30 220.7 68.68 0.00102206 5.32592 0 18776 68.650 626.89 558.24 557.79 0.30 228.0 235.4 69.43 70.16 0.31 0.00102250 5.16466 0.19362 69 404 70 138 70 852 0.31 627.20 0.32 0.00102294 627.50 627.79 557.36 0.33 242.7 70.88 0 00102337 4.87065 0.20531 556 93 0.33 0.34 250.1 71.57 0.00102380 4 73624 0.21114 71.549 628.07 556.52 0.34 0.35 257.4 72.25 0 00102422 4 60929 0.21695 72.228 628.34 556.11 0 35 0 36 264.8 272.2 279 5 72.91 0.00102463 0.22276 0.22855 0.23434 4 48919 628 61 628.87 555.72 555 33 0.36 4.37538 4.26739 73 540 0 38 74 19 0.00102543 629 13 554 95 0 38 0 39 74.81 286 9 0.00102582 4.16478 0 24011 74 793 629.38 554.58 0.39 0 40 75 42 294.2 0.00102623 4.06715 6 24527 75 400 629.62 629.86 554.22 0 40 0 41 0 42 301 6 76.01 0 00102659 3.97413 0 25163 75 994 76.576 553 86 553 51 0,41 308.9 76.59 0 00102696 3 88542 0.25737 630.09 0 42 043 316.3 3.80371 0 60102732 0.26311 77 146 630 32 630 54 553.17 0.43 3236 77 72 0.00102769 3.71973 0.26884 77 706 552.84 0 44 0.45 331 0 78 27 0.00102805 3.64225 0.27456 78.255 630.76 552.51 0.45 0 46 0 47 338 4 345.7 3.53804 3.49688 3.42861 78.80 0.00102840 0.28027 78 794 79.323 630.97 631.18 552.18 0.46 79.33 0.00102875 Q.28597 0 48 353.1 79.85 0 00102909 0 29166 79 847 631 39 551.55 0 48 0.49 360 4 80.36 0.00102943 3 36304 0.29735 80.353 631.59 551.24 0 49 0.50 3678 80 86 3 30001 0.00102976 0.30303 80.855 631.79 0.50 0.52 0.54 0.56 550.94 0.52 387.5 81,84 82 78 81,835 82 784 83,704 0 00103042 3 18101 0 31437 632.18 550,34 0 00103106 3.07056 0.32567 632.55 0.56 411.9 83 70 0 00103169 2 96117 0 33695 549,21 632.91 84.59 426 6 0 00103231 2 87185 0.34821 84.597 633.26 548.66 0.58 0 60 441 3 85.45 0 00103291 2 78214 0 35944 548.13 85.465 633 60 0.60 0.62 0.64 456 0 470 8 0 67 86.29 87,11 2 69804 2 61904 0.37064 86.309 87 131 0 00103350 547 62 633.93 0 64 0 00103407 614 74 547 11 0 66 485 5 7 54469 2 47457 87 91 0.00103464 0.39298 87.931 634.55 546 62 0 66 0 68 500.2 A8 69 0 00103520 0 40411 88 712 634 36 546 14 0 68 0 70 514 9 89 45 0 00103574 2 40834 0 41522 89 474 635 15 545 6R 0 70 0 72 529 6 544 3 90 19 0 00103628 2 34567 0 42632 90 218 545 22 544 77 072 635 43 0 74 90.91 0.00103681 2 28629 0 43739 90 945 635 7: 0 76 559 0 573.7 91.62 0 0010 1733 2 22994 2 17639 0 44844 91 657 635 98 544 33 0 76 0 78 92 31 0.00103784 0 45948 92 353 636 25 543 90 0 78 0 80 588 4 92 99 0.00103834 2 12544 0.47049 93 034 636 51 543 48 543 06 0.80 082 607 2 617 9 93 65 94 00 0 00103883 2 07689 0 48149 93 701 94 355 636 76 0 82 0 00103933 2 03059 0 49247 542 65 0 84 0 86 632 6 94 94 0 00103980 637.25 1 98637 0 50343 44 207 542 25 0.86 0.68 95 56 0.00104028 1 94410 0 51438 95 626 637 49 541.86 0 88

Press		Temp.	Specific V	Olume	Spec Weight	Spec	the Entra	10	Pressure
P		i	بن	v	1/2	<i>h</i> .	h caling h	•	•1 p
0.90	662.0	96 18	0.00104074	1 90365	0 52531	96 244	637.72	541 48	0 90
0.94	6914	97 37	0.00104166	1.86490	0.53622	96 850	637 95	541 10	0 92
J.96	706.1	97.95	0.00104211	1 79211	0 55800	97,445	638.17	540.72	0 94
0.98	720.8	98.53	0.00104255	1.75787	0.56887	98 606	638 60	540 00	098
1.00	735.6	99.09	0.00104299	1.72495	0.57573	99.172	638.81	539 64	1.00
1.03323	760.0	100.00	0.00104371	1.67300	0.59773	100.092	639 15	539.06	1 03323
1.05	772.3	100.45	0.00104406	1.64799	0.60580	100 547	639.33	539.00	1.03525
1.10	809.1	101.76	0.00104510	1.57780	0.63379	1.1.869	639.81	537.94	1 10
1.15	845.9	103.03	0.00104611	1.51353	0.66071	103.143	640.27	527.13	1.15
1.20	802.7	104.25	0.00104710	1.454/5	0.68754	104.373	640.72	536 35	1.20
1.25	919.4	105.42	0.00104805	1.39995	0.7143:	105.561	641.15	535 59	1.25
1.30	956.2	106.56	0 00104899	1.34952	0.74101	106.711	641,57	534.86	1 30
140	1079 A	107.67	0.00104991	1 30270	0.76764	107 826	641 97	534.14	1.35
1.45	1066.6	109.78	0 00105167	1.21845	0 82072	108.907	642.35 642.73	533.45 532.77	1.40 1.45
1.50	1103.3	110.79	0 00105253	1.18041	0 84717	110 980	643 OG	537.11	1.50
1.55	1140.1	111.77	0.00105337	1,14474	0 87356	111 974	643 44	531 46	1.55
160	1176.9	112.73	0 00105419	1.11123	0 89990	112.943	643.78	530.84	1.60
1,70	1250 5	114 57	0.00105500	1.07969	0.92619	113.887	644.11	530.22	1 65
1 76	1987 0		0.00103373		0.37243	114.809	644,43	529.62	1 70
1.75	1324 0	115.46	0.00105657	1.02184	0.97863	115,709	644.74	529.03	1.75
1 85	1360.B	117.18	0.00105804	0.335249	1.0048	116.588	645.04	528.45	1.80
1.90	1397.6	118.01	0.00105883	0.946134	1.0569	117,448	645.34 646.62	527.89	1.85
1.95	1434.5	118.82	0.00105956	0.923405	1.0829	119,114	645.90	526.79	1.95
2.00	1471.1	119.61	0.00106028	0.901776	1,1089	119.921	646.18	526.26	2 00
2.10	1544.7	120.39	0.00106099	0.881167	1.1349	120.712	646.44	525.73	2.05
2.15	1581.5	121.91	0.00106169	0.861508	1.1508	121 487	646.70	525.22	2 10
2.20	1618.2	122.64	0.00106305	0.824784	1.2124	122.248	647.20	524.71 524.21	2.15
2.25	1655.0	123.36	0.00106372	0.807606	1,2382	123 779	647 46	677 77	3.75
2.30	1691.8	124.07	0.00106438	0 791151	1.2640	124,449	647 69	523.74	2 30
2 JD 2 A0	1728.6	124.77	0.00106503	0.775373	1.2897	125 157	647.92	522.76	2.35
2.45	1802.1	126.13	0.00106567	0.760230	1.3154	125 853 126 537	648,15 648 37	522 29 ·	2 40
2 50	1838 9	126 79 3	0.00106692	0 7 2 1 7 0 4	1 7667				
2.55	1875.7	127.44	0.00106756	0,718252	13977	127.211	648 59	521.38	2.50
2.60	1912.5	128.08	0.00106817	0.705300	1,4178	128 527	649 01	520 49	2 60
∡ 65 2.70	1949.2 1986 0	128.71	0.00106877	0.692821	1.4434	129.169	649 22	520 05	2 65
-				0.080/89	1.4689	179.802	649.42	519.62	2 70
2 80	20228	129.94	0.00106996	0.669180	1.4944	130 426	649.62	519.19	2.75
2 85	2096.3	131.14	0.00107055	0.657972	1.5198	131.041	649.82	518.77	2.80
2.90	2133.1	131.73	0.00107171	0 636676	1.5707	131.647	650.01	518.36	2 85
2.95	2169.9	132.31	0.00107227	0.626552	1.5960	132.835	650.38	517 55	2 95
3.00	2206.7	132.88	0.00107284	0.616754	1.6214	133,417	650.56	517 15	3.00
3.10	2280.2	133.99	0.00107395	0 598074	1.6720	134 558	650.92	516 36	3.10
3.30	∡373.8 2427 7	135.08	0.00107504	0 580523	1.7226	135 670	651.26	515.59	3.20
3 40	2500.9	137,18	0.00107716	0.548419	1.730	136.755	651 59 651 91	514 84	3.30
3 50	2574.5	138 19	0.00107819	0 533697	1 8737	138 950	657.77	612.20	
3 60	2548.0	139.18	0 00107921	0.519765	1.9239	139.862	652 53	512 67	3.50
3.70	2721.6	140.14	0 00108021	0 506563	1.9741 1	140 852	652.83	511,97	3 70
3.90	2793.1	141 09	0 00108119	0 494031	2.0242	141.821	653.11	511 29	3.80
			0 00100210	u =82120	2.0742	142,771	653,39	510.62	3.90
= 00 4 10	2942.2	142.92	0.00108312	0.470785	2.1241	143.702	653 66	509.96	4 00
4.20	3089.3	144 68	0.00108406	0.439984	2.1740	144.614	653.93	509.31	4 10
4.30	3162.9	145.54	0.00108591	0.439840	2.2736	145.510	604.18 664.42	508 67	4.20
40	3236.5	146.37	0.00108681	0.430431	2.3233	147.252	654.68	507.43	4.40
4 50	3310.0	147.20	0.00108770	0.421426	2.3729	148,100	654.92	506 82	4.50
4.00	3383.6	148,01	0.00108859	0.412800	2.4225	148.933	655.15	506.22	4.60
4 80	35307	140.50	0.00705946	0.404528	2.4720	149.752	655.38	505.63	4.70
4.90	3604.2	150.35	0.00109117	0.388963	2.5709	150.558	675 60 655.82	505 04	4 80
5 00	3677.8	151.11	0.00109202	0.381672	2 6203	162 121		503.00	6.00
5 20	3824.9	152.59	0.00109367	0 367786	27190	153 457	656 44	502 20	500
5 40	3972.0	154.02	0 00109529	0.354932	2.8174	155 137	656 84	501 70 1	5 40
5 60 5 80	4119.1	155.41 156.76	0.00109688	0 342965	2 9158	156 576	657 22	500 64	5 60
				0 331/93	20129	15/975	65/58	499 60	5 80
	44174	158 06	0 00109997	0 321345	+ 31119	159 338	657 93	498 59	6.00
6 OC 5.20	4560.5	159 36	0.00110142	0 311644	1 2 2009	120	· · · · ·		
6 OC 6.20 6 40	4560.5	159 36	0 001 10147	0 311546	3 2098	160 666	658 27 658 60	497 60	6 20
6 OC 6 20 6 40 6 60	4560.5 4707.6 4854.7	159 36 160 60 161 82	0 00110147 0 00110295 0 00110439	0 311546 0 302338 0 293669	3 2098 3 3076 3 4052	160 666 161 962 163 227	658 27 658 59 658 90	497 60 1 496 63 1 495 67	6 20 6 40 6 60

1

1

1 I

				· Jusc. vergint		CITIC ENTRAID	`` 	
•1 \$	тс г	v m³/	^{/k} g	1/v ⁻¹	ν.	kcal/kg h**	,	
7 00	164 17	0.00110723						<u> </u>
7 20	165 30	0 00110861	0.270458	3 6974	165.672	659.49	493.82	; ;
7 40	166 (1	0 00110997	0.263528	3.7947	168.012	660.05	492 03	. :
7.60	167.50	0.00111132	0.256952	3.8918	169.146	660.31	491,16	1 7
	.00.50	0 00111203	0 230/00	3 9868	170.257	660.56	490.30	; '
8.00	169.61	0.00111396	0.244751	4 0858	171.347	660.81	489 46	, E
8.20	170.63	0.00111525	0 239081	4.1827	172.417	661.05	488.63	
8.60	172.62	0.00111779	0.228506	4.3762	173.467	661.28	487,81	
8 80	173.58	0.00111903	0.223567	4,4729	175,511	661.72	486.21	
9.00	174.53	0 00112026	0.218840	4 5696	176 508	661 97	485 47	; ; e
9.20	175 46	0.00112148	0.214311	4.6661	177.487	662.14	484,65	
9.40	176.38	0.00112268	0.209968	4.7626	178,451	662.34	483.88	
9 80	178 17	0.00112505	0.201795	4.9555	179,399	662.53 662.72	483.13 487 38	
							-01.00	:
10 20	179 90	0.00112622	0.197945	5.0519 ·	181.252	662.90	481.65	1 10
10 40	180 74	0 00112852	0 190675	5 2445	183-051	663.25	480.92	1 10
10 60	181 57	0 00112966	0 187238	5 3408	183 930	663 42	479.49	10
10.80	101 40	0.00113078	0 183924	5 4 3 7 0	184 796	663 58	478 79	: 10
11 00	183.20	0 00113189	0.180727	5 5332	185.654	663.74	478 09	. 11
11.20	184.00	0.00113299	0.177639	5 6294	186.498	663.90	477.40	: 1
11.60	185 56	0.00113518	0.174656	5.7255	187.331	664.05 664.30	176.72	! !!
11 80	186.33	0 001 13625	0.168984	5,9177	188 965	664.34	475 38	1
12.00 E	187 08	0 00113733	0 155784					•
12.20	187.83	0.00113838	0.163670	6,1099	189.766	664.48 664.62	474.72	1 1
12.40	188.56	0.00113943	0.161137	6.2059	191,340	664.75	473.41	1 1
12.60	189 29	0.00114048	0.158682	6.3019	192,113	664.88	472.77	1 1
		0.00710131	0.196300	0.3979	192.877	665.J1	172.13	1
13.00	190.71	0.00114254	0.153990	6.4939	193.632	665.13	471.50	1 1:
13.20	192.10	0.00114356	0.151747	6.5899	194.379	665.25	470.88	1
13 60	192.79	0.00114558	0.147452	6.7819	195,117 195 R48	665.37 665.49	470.25	
13 80	193 46	0.00114658	0,145394	6.8778	196,570	665.60	469.03	1 1
14 00	194.13	0.00114757	0 147704	: 6.0729	107 005			
14.20	194 79	0 00114855	0.141447	7 0698	197.205	665.81	468.42	
14 40	195 45	0.00114954	0.139553	7.1657	198 693	665.92	467.23	1
14 80	196 09	0.00115051	0.137709	7.2617	199.386	666 02	466.63	1 14
			0.133313	1.3577	200.072	666.12	466.05	1 14
15.00	197.37	0.00115244	0.134163	7.4536	200,752	666.22	465.46	1 1
15.40	198.61	0.00115435	0.132457	7.5496	201.425	666.31	464.89	1 1
15.60	199.23	0.00115529	0.129173	7,7415	202.751	666.49	463.74	
15.80	199.83	0.00115623	0.127591	7.8375	203.405	666.58	463.18	1
16.00	200.43	0.00115717	0.126047	7.9335	204.053	666 67	462.61	, ; 14
16.20	201.03	0.00115810	0.124540	8.0295	204.696	666.75	462.05	1 1
16 60	202.20	0.00115903	0.123069	8,1255	205.332	666.83	461.50	1
16 80	202.78	0 00116086	0.120227	8.3176	205.963	666 9°	460.95	1 1
12.00	202.26	0.00116177					400 40	1 1
17 20	203 93	0 00116268	0,117513	8 4137 8 5097	207,209	667.07	459 86	1 1
17 40	204 49	0 00116358	0.116201	8.6058	208 433	667 21	458 78	1
1780	205 60	0 00116447	0,114917	8,7019	209 038	667.28	458.24	i 1
			V. 1 73002	0.7980	209.638	667.35	457.71	1
18 20	206 15	0 001 16625	0.112434	8.8941	210.233	667.42	457.19	: 11
18 40	207.23	0 00116802	0.111231	8.9903	210.823	667.48	456 66	าน
18.60	207.77	0.00116890	0.108901	9 1826	211.990	00/.55 667 A1	455.42	10
18 80	208.30	0.00116977	0.107772	9.2788	212.566	667.67	455,11	
19 00	208.82	0.00117064	0.106666	0 1761	212 124			1
19.20	209.34	0.00117151	0.105582	9.4713	213,706	667.79	454.08	!!
19 60	210 28	0 00117237	0.104519	9.5676	214.270	667.85	453.58	1
19 80	210 88	0 001 17408	0.102457	9 76039	214.830	667.90	453.07	1
20.0					307	00/.¥3	≈ 32.37	1 19
20.5	211 39	0.00117493	0.101455	98566	215.937	668.01	452.07	20
21 0	213 86	0.00117914	0 6967239	10 339	217 299	668.13 668.25	450.83	20
215	215 06	0 001 18122	0.0945176	10 580	219.953	668.36	448.40	2
4 4 .V	410.24	0 00118327	0 0974081	10 822	221.248	668.46	447.21	22
22 5	217 40	0 001 18531	0 0903891	11.063	222.522	668 55	446 03	
230	218 54 219 44	0 001 18733	0.0884548	11 305	223 776	668 64	444.87	1 22
24 0	220 76	0 00119133	U UB63999 () ()848194	11,547	275 012	668.72	443.71	2
24 5	221 84	0 001 19330	0.0831094	12 032	440 279 227 428	008 50 668 97	442.57 441 44	24
25.0	222 01	0.00110534	A 191 444-					1 24
25.5	273 96	0 00119720	0 0814653 0 0798811	12 275	278.611	668 93	440 32	25
				1	449.111	no5 99	439 22	: 25
26.0	224.99	0 00119913	0.0783601	12 762	730 928	669.05	418 12	1

1

1 I.

П

•

,

•

٠

•

T _s	60	80	100	120	140	160	200
Т	30	50	70	90	110	130	170
h _c	5.2	5.8	6.3	6.8	7.0	7.4	8.0
h _r	5.6	6.4	7.1	7.8	8.4	9.2	12.0
$h = h_c + h_r$	<u>10.8</u>	12.2	13.4	14.6	15.4	16.6	<u>20.0</u>

Appendix 2	<u>Overall</u>	heat	transfer	coefficient	from	solid	surf'ce
------------	----------------	------	----------	-------------	------	-------	---------

Notes T_s; Surface temperature

 ΔT ; Temperature difference = $T_s - T_o$

 h_c ; Heat transfer coefficient regard to convection h_r ; Heat transfer coefficient regard to radiation h; Overall heat transfer coefficient = $h_c - h_r$ T_o ; Ambient temperature 30 °c

	·	·		
Physical	Specific	Specific	Thermal	Allowable
property	gravity	heat	conduct'y	Temp.
Unit	(-)	kcal/kg ^O C	kcal/m hr ^o C	C
Steel	7.85	0.11	45.	400
Cupper	8.95	0.09	320.	400
Aluminum	2.70	0.22	175.	250
Clay (Soil)	2.0	0.28	0.5	-
Red brick	1.5	0.24	0.6	400
Refractory B.	2.0	0.25	1.0	1400
Asbesto	0.5	0.20	0,05	650
Rock wool	0.20	0.20	0.04	600
Glass wool	0.20	0.16	0.04	350
Perlite	0.25	0.30	0.05	650
Ceramic fibre	0.20	0.20	0.25	1500
Polystylene	0 03	0.30	0.03	80
Rubber	1.00	0.34	0.13	150
Limber	0.3	0.60	0.09	100
Cotton	0.081	0.31	0.05	100
Wool	0.10	0.30	0.03	100
Glass	2.2	0.18	0.60	300
Concrete	2.0	0.21	1.00	200

1 1

1

Appendix 3 Physical Properties of miscellanious materials

1 . **.**

. . . .

Appendix 4 <u>Standard criteria presented in Japanese acts for</u> the energy conservation

(1) Standard air ratio m

(A) Boilers

í

Item		Loading	Standard Air Ratio				
		Katio X	Solid Fuel	Liquid. Fuel	Gaseous Fuel	BFG or etal	
For	Elec. Supplier	75–100	1.2-1.3	1.05-1.1	1.05-1.1	1.2	
iler	Steam Generated over 30 Ton/hr	75-100	1.2-1.3	1.1-1.2	1.1-1.2	1.3	
8 ม	From 10 to 30 Ton/hr	75-100	-	1.2-1.3	1.2-1.3	-	
ot he	Under 10 Ton/hr	75-100	-	1.3	1.3	-	

(B) Industrial furnaces

Item	Stand. Air Ratio
Metal Foundry Melting Furnace	1.3
Continuous Steel Slab Furnace	1.25
Metal Heating Furnace except above	1.3
Continuous Heat Treatment Furnace	1.3
Gas Producer and Gas Furnace	1.4
Petroleum Heating Furnace	1.4
Thermal Cracker and Reformer	1.3
Cement Kiln	1.3
Almina and lime incinerator	1.4
Continous Glass Melting Furnace	1.3

ī.

Temperature incide Durnage Oc	Criteria of Surface Temp outside		
raiperature inside runate (Ceiling	Side Vall	
1:300	140	120	
1.100	125	110	
900	110	95	
700	90	80	

(2) The criteria of the surface temperature outside furnace

(3) The criteria of the temperature of exhaust flue gas on boilers

		Criteria of Waste Flue Gas Temperature					
Item		Solid Fuel	Liquid Fuel	Gaseous Fuel	BFG etal		
for R	lect. Supplier	145	145	110	200		
5	Steam Generated over 30 Ton/hr	200	200	170	200		
r Boil	From 10 to 30 Ton/hr	-	200	170	-		
othe	Under 10 Ton/hr	-	320	300	-		

- 101 -

(4) The criteria of the temperature of exhaust flue gas and

¥1ma Gao	(V	Criteria of	for Refe	redce
Temp. oC	Capacity	Recovéry Ratio %	Vaste gas Temp ^o C	Preheated air Temp ^o C
500	A B	20	200	130
600	A B	20	290	155
	A	30	200	260
700	B	25	330	220
	C	20	370	180
	٨	30	370	300
800	B	25	410	250
	C	20	450	205
	٨	35	400	385
900	В	25	470	285
	C	20	530	230
	٨	40	420	490
1000	B	30	520	375
	C	25	570	315
	٨	40		
OA6L	В	30		
1000	C	25		1

the recovery ratio

Note * ; A. Nominal capacity, over 20,000,000 kcal/hr

B. Nominal capacity, from 5,000,000

- 20,000,000 kcal/hr to
- from 1,000,000 C. Nominal capacity
 - 5,000,000 kcal/hr to

Appendix 5 Conversion factors

(1) Length equivalents

¢m	m	in	(ţ
1	1 × 10-*	0.3937	0.03281
1×10 [#]	1	39.5	3.261
2.540	0.02540	1	0.08333
30.48	0.3068	12.000	1
30.30	0.3030	11.930	0.9942

1 mile = 80 chain = 1760 yard = 5280 ft

(2) Area equivalents

cm²	B 3	in ²	ft²	
1	1×10-4	0.16600	0.0010764	
1×104	1	1650.J	10.764	
6.452	6.452 × 10-4	1	0.006944	
929.0	0.09250	144.00	1	
\$18.3	0.09183	i 42.3 3	0.9684	

(3) Volume equivalents

dro ² (lit)	m³(kl)	ít ^s	I sal	US gal
1	1 × 10-3	0.03531	0.2200	0.2642
1 × 10 [#]	1	\$5.31	220.0	264.2
28.32	0.02832	1	6.229	7.480
4.546	0.004546	0.16054	1	1.2010
3.785	0.003785	0.13368	0.8327	1
180.39	0.18039	6.370	39.68	47.65
27.83	0.02783	0.9827	6.121	7.351
	· 1	i I		

1

(4) Mass equivalents

1

1

1

	Onder	0		, Yes			Ten		
		INTERACTION.	Leniy.	(1) of the opening	Aver.	Bert	Lax.	Hetra	
Sfa		N 15 • • • • • • • • • • • • • • • • • • •	3. 2 0. 001294 1.00714 13. 17 14. 31.0000 31.00000 31.0000 31.0000 31.0000 31.00000 31.000000 31.00000 31.00000 31.0000000 31.00000 31.000	1.092 0.00375 0.00375 1.215		0.041102 0.0.7143 0.0.3125 0.0.3125 0.0.3125 0.0.3125 1.0.4114 1.0005 1 1.12 1.142 0.01102		0.001 0.0.3110 0.0.3205 0.0.3753 0.0.4555 0.0472 1.046 1 0.0.1	1,000,00 9,01-00 31,1 37,5,1 453,50 997,184 1,014,047 1,000,007 1,000,007

1

1

1

1 1

1

I.

(5) Density equivalents

C.pra.	Kept m.n.	là pra. b.	Lyrak	là pra.pl.	LA. per W. L. pal.	Tens (200 B.)	Tes (DBA)	Thes (meline)
1 0.001 27.45 0.03402 0.00100 0.1110 1.107 1.329	1,000 1 27,000 16,92 0,952 117,0 1,197 1,197 1,197 1,197	0.00031 0.0003143 0.0003145 0.00032145 0.000322 0.00032 0.0003 0.00032 0.0003	62.8 0.6530 1,728 1.65764 7.64 7.64 7.64 7.64		8.345 0.000045 201 0.000051 1 0.002 11.00	0.6428 0.6428 × 10 ⁻⁺ 2.30 0.01370 0.0105 0.0005 0.1000 1 1.12	0.755 0.755 × 10~ 0.0354 0.0354 0.0354 0.0354	1.6400 6.001 27.63 0.0000000 0.0000000 0.0000000 0.0000000

(6) Pressure equivalents

Mdyne/cm ²	kg/cm ²	kg/cm ² lb/in ² stm		Hg.	(C°C)	Vater	(1 5°C)
(bar)				TO	in	m	in
1	1.0204	14.514	0.9869	0.7506	29.55	10.213	402.1
0.9900	1	14.223	0.9672	0.7355	28.96	10.009	394.0
0.06890	0.07031	1	0.06600	0.05171	2.036	0.7037	27.70
1.0133	1.0340	14.706	1	0.7605	29.94	10.349	407.4
1.3324	1.3595	19.337	1.3149	1	39.37	13.607	535.8
0.03364	0.03453	0.4912	0.03340	0.02540	1	0.3456	13.00
0.09791	0.09991	1.4211	0.09663	0.07349	2.693	1	39.37
0.002487	0.002538	0.03610	0.0024564	0.0018005	0.07349	0.02540	1

(7) <u>Flow rate equivalents</u>

lit/sec	m,\pr	123 /00 0	I gal/min	UB. gal/min	í⊮/hr	(t ³ /800
1	3.6	0.001	13.198	15.850	127.13	0.03531
0.2778	1	2.778×10-4	3.605	4.403	35.31	9.810 × 10-*
1000	3600	1	1.3198 × 104	1.5650×104	1.2713 × 10 ⁴	\$5.31
0.07578	0.2728	7.577 × 10-4	1	1.2010	9.632	0.002676
0.06309	0.2271	6.309×10-4	0.8327	1	8.021	0.002228
7.866 × 10-3	0.02832	7.865 × 10-4	0.10361	0.12466	1	2.778 × 10-4
28.32	101.94	0.02832	\$73.7	448.8	3600	1

(8) Force or weight equivalents

1

£7	dyns	kg	lb	poundal
1	980.0	1×10-3	u.002205	0.07088
1.0204 × 10-3	1	1.0204 × 10-4	2.250 × 10-4	7.233 × 10 ⁻¹
1×10 [#]	9.8 × 10 ⁴	1	2.206	70.88
458.6	4.445 × 10 ⁴	0.4596	1	32.15
14.108	1.3825 × 10 ⁴	0/14108	0.03110	1

i.

0

1.1

Joule =10 ^r erg	kg-m	ft-lb	k₩-hr	PS-br	IP-br	lit-atm	keal	B.t.u.
1	0.38906	0.7011	9.778×30-7	8.117×30-7	8.735×30-7	9.000 x 10-1	2.00×10-4	9.600×30-4
9.809	1	1.580	9.723×30~*	8.101×10-4	8.0F1×30-*	9.673×30-4	2.841×30-8	9.305 x 30-4
1.3549	0.33836	1	8.166×30-7	6.317×30-7	5.667×30-7	0.053073	8.307×30-4	1.3845×30-1
8.6 × 104	8.678×383	3.667 x 38*	1	23886	1.3630	8.869×304	388.0	3438
3.648 × 30*	2.708×10 ⁴	1.8648 x 39*	0.1965	1	0.500	2.613×304	62.5	5530
3.005 x 30*	2.780 x 30*	1.9623 × 30*	0.1471	1.6139	1	3.660 × 104	61.3	34
301.30	38.349	16.10	2.615×10-4	3.837×30-5	3.774×30~9	1	2.431 × 10-3	9.005×30-1
4186	477.1	2000	1.3628 × 30-9	1.000 x 20-4	1.000 x 30-8	an	1	1.969
3854.8	397.48	TRUS	3.000×30-4	8.884×30-4	3.539 x 30-4	30.400	6.3636	1

(9) Energy, work or heat calorie equivalents

(10) <u>Power equivalents</u>

kg-m/sec	(t-lb/sec	PS	B	kcal/sec	B.Lu./sec
102.04	0.7361	1.3596	1.3410	0.2389	0.9480
1	7.233	0.013324	1.3142 × 10-*	2.341 × 10-3	9.291 × 10 ⁻³
0.13825	1	1.8422 × 10-3	1.8169 × 10 ⁻³	3.237 × 10-4	1.2845 × 10-3
75.05	542.8	1	0.9663	0.17570	0.6973
76.09	550.4	1.01 3 9	1	0.17814	0.7070
427.1	3.000 × 10 ⁴	5.691	5.613	1	3.909
107.63	778.5	1.4341	1.4145	0.2520	1
	kg-m/sec 102.04 1 0.1382s 75.05 76.09 427.1 107.63	kg-m/sec ft-lb/sec 102.04 0.7381 1 7.233 0.1382s 1 75.05 542.8 76.09 550.4 427.1 3.000 × 10 ⁹ 107.63 778.6	kg-m/sec ft-lb/sec PS 102.04 0.7381 1.3596 1 7.233 0.013324 0.13826 1 1.8422 × 10 ⁻³ 75.05 542.8 1 76.09 550.4 1.0139 427.1 3.000 × 10 ³ 5.691 107.63 778.6 1.4341	kg-m/sec ft-lb/sec PS H ³ 102.04 0.7381 1.3596 1.3410 1 7.233 0.013324 1.3142 × 10 ⁻² 0.13826 1 1.8422 × 10 ⁻³ 1.8169 × 10 ⁻³ 75.05 542.8 1 0.9863 76.09 550.4 1.0139 1 427.1 3.000 × 10 ³ 5.691 5.613 107.63 778.5 1.4341 1.4145	kg-m/sec ft-lb/sec PS H ³ kcal/sec 102.04 0.7381 1.3596 1.3410 0.2389 1 7.233 0.013324 1.3142 × 10 ⁻² 2.341 × 10 ⁻³ 0.13828 1 1.8422 × 10 ⁻³ 3.237 × 10 ⁻⁴ 75.05 542.8 1 0.9863 0.17670 76.09 550.4 1.0139 1 0.17814 427.1 3.000 × 10 ⁵ 6.691 6.613 1 107.63 778.5 1.4341 1.4145 0.2525

(11) Thermal conductivity

kcal/m·hr·°C	cal/cm⋅sec.*C	B. L. u./it.br. P	B.t.u./in·hr·"F
1	0.002778	0.6720	0.05600
580	1	241.9	20.16
1.4881	0.004136	1	0.06535
17.857	0.04960	12	1

(12) Heat transfer coefficient equivalents

k cal/m ² · hr ·°C	cal/cm ² ·sec·°C	B.Lu./iti-hr-*F
1	2.778 × 10-*	0.2048
8.6 × 10 ⁴	1	7374
4.882	1.8562×10-4	1

1 1 1 1 1 1 1 1 1

1

1 1 1

Annex List of Instruments for Thermal Energy Conservation

No. of It ens	Name of Instruments	Main Measuring ⁽²⁾ Comportents	Specification of 1) Instruments	Anticipated Pactors for Energy Conser- vation Survays from Measured Data.	Alternative Instruments	
ı	Heat Insulation Tester (Heat Plux Meter)	Dispersion Heat Plux from heated Surface of Pacilities Kcal/m ² hr	Range of Heat Flux ; 0 to 5,000 Kcal/m ² hr Allowable Temp. of Sensor.; -20 to 150°C	 Outlet fraction on Dispersion Heat Loss Confirmation of effect on improvement by Insulation 	Surface Thermometer (assuming empirical heat ?ransfer coefficient)	
2	Pocket Therm- meter (with Sensor for Jurface and rod Themocouple)	Temperature ^O C of heated Surface, Space or Material with proper Sensor	Range -50 to 600°C	1 Outlet fraction on Dispersion Heat Loss in case of no Heat Flux Meter 2 Heat Content of entering or leaving Fluids and Solid Materials	Other pair of Thermo- couple as sensor Bimetal Thermometer with Rod-sensor	
3	Portable Thermo- Indicator	Temperature ^{OC} of higher Temp. Range of Space or Material	Range 0 to 1,200°C	1 Almost same as above No. 2 Thermometer 2 Supplemental Thermometer of above.	mV Meter Other pair of Thermo- couple as sensor	
4-1	Portable	Temperature ^{OC} of_Surface or Mater'1 to be difficult on	Range 50 to 500°C	1 Almost same as No. 2 Thermometer 2 Combustion Control by measuring Frame Temperature	Radiation Pyrometer Optical Pyrometer Two Color Radiation Ther-	
4-2	Thermcaeter	for ex., Comb'n frame high speed moving material	Range 200 to 1,500°C) Frompt comprehension of Temp. pattern on Equipment Surfaces		
5	Thermopetter	Temperature oC	Range O to 400°C	Quick and Easy Determination of Sur- face Temp. Equipment covered by Steel Plates.		
6	Portable Oxygen Meter (Galvanic Cell Type)	O2 Content ≶ in Flue Gas on Fuel Combustion	Range O to 25% 02.	 Puel Combustion Control with 02 ≠ in Flue Gas. Outlet fraction of Waste Rest Loss carried out with Flue Gas from Stack. 	Orsat Chemical Analyser CO ₂ Absorption Analyser Zirconium O2 Analyser	
7	Hot-wire Anemometer	Wind Linear Velocity a/sec	Range Low; 0 to 5 m/sec High; o to 50 m/sec	Flowing Gas Volume, then its Heat Con- tent.	Orifice Plow Meter Pitot Tube Plow Meter Venturi Plow Meter	
8	Digital Pressure Gauge	Difference makro	Range -50 to -50mmH ₂ 0	Energy-saving Operation by Control of inner-pressure in Furnace	Smoke Test U thbe Pressure Gauge with Water Column	
9	Pocket Conduct1- vity Meter	Conductivity s/cm of boiler feed water	Renge 0 to 20 ms/cm (20,000 s/cm)	1 Reviewing of Blow-down Operation. 2 Preventing unnecessary Blow-down water 3 Monitoring of Scale Comporment.	Chemical Analysis	
10	Pocket PH Meter	PH of boiler feed water	Range O to 14 PH	1 Menitoring of Anidication of Boiler Water 2 Reviewing of Blow-down Operation		
11	Ultrasonic Audio- Visual Checker	Detection of Steam Leakage of Trap, Valve and Piping	Sensive and Easy Detecting system with Audio and Visual	Quick detection of spoiled Steam Traps and Steam Leakage of Piping Systems	Stathoscopes	

Notes 1) ; Instrument with similar specification as above may be also applicable for similar survays.

_

 f On actual measurement, the operation-manuals which are prepared by instrument supplier should be sufficiently reviewed.

.

.

- 107 -

3.1 Management of consumption of electric power

3.1.1 Procedures of energy saving

Essential procedures for energy saving in various factories are as follows;

- (a) To grasp kind and quantity of consumed energy, monthly and in each division.
- (b) To analyze the data of electric power consumed in whole factory. That of noticeable equipments and that of countermeasure for saving energy.
- (c) To decide countermeasures and implementation of saving energy.
- (d) Check and follow-up of result of saving energy.
- (e) To train electric measurement procedure (load factor, power factor, etc.), methodology of saving enerry and information about energy consumption.

3.1.2 Technical matters for electrical energy saving

Technical subjects for electrical energy saving in factory are as follows;

- (a) To prevent electric ohmic losses in equipments and distribution lines.
- (b) To utilize electric power effectively for electromotive force and electric heaters of various equipments and machines.

3.1.3 <u>Manager and partners to promote electrical energy</u> <u>saving in factory</u>

Manager of saving energy must be able to do electric measurements and analysis of problems in the saving energy,

Usually he should have on the job training experience in saving energy, also cooperative partners are required in factory.

3.1.4 Management of electric power consumption

- (1) The bases of electrical energy saving
- (a) Always keep electrical equipments in safe place.
- (b) To examine if energy is being used economicaly.
- (c) Electric equipments must always be utilized at high efficiency for working.
- (d) Always switch off equipments not working. Whole factory employee must cooperate.
- (2) How to grasp consumption of electric power

We always have to check various kinds of items as follows;

Description	Item of checking
Grasp of the situation of electric consumption	 Recording power consumption for every month. Recording daily load and peak demand Culculation of power factor of factory Examination of the cause of various changes of power consumption
Understanding of the cont- ractual power system	 5) Contracted power factor 6) Cost of electric charge system by electricity authority
preparation table on the right items	 7) Calculation of electric power consumption rate (kWh/ton) of major products 8) Calcuration of the ratio of electric power to total cost

-109-

Reduction	9) Reduction of target of electric power
of target and	consumption rate and carrying out
carrying out	10) Obtaing the information on electric
	energy saving

Table 3.1 To grasp various checking items for energy saving

Above checking items should be examined periodically (once a year), or be reivewed in case factory production has changed.

3.2 <u>Electric measurement and analysis of power receiving</u> and power distribution facilities

3.2.1 How to measure receiving facilities

Energy saving in power receiving, transformers and distribution facilities are required always to be of optimum capacities, suitable voltages, high power factor and distribution lines with the least loss.

We always have to check various kinds of items as follows;

	Items of checking	remark
General	 Ventilation of various equip- ment rooms 	
Facilities of power receiving and distri- bution	 2) Optimum capacity of transformers should be identified 3) Optimum systems of distribution line should be identified 4) Contracted power should be checked 	Fig. 3.1 Fig. 3.2

- 110-

Voltage and and power fac- tor	 5) Rating voltage of various equipments and supply volt- age must be identical 6) Power factor should be kept high 	Fig. 3.3 Fig. 3.4
Phase balance	7) Current of neutral wire in3 phases are must be assmall as possible	
Indicators and measure- ments	8) Indicators for measurement must be calibrated and kept well maintained	
maintenance	 9) Standard maintenance procedure of major equipments should be made and maintained well 10) Cleaning of equipments 	

Table 3.2 <u>Measurement and check item of power receiving</u> system for energy saving

3.2.2 How to analyze the electrical receiving facilities

(1) How to decide capacities of the transformers

1 1

Generally, capacity of transformer for various lots of motors and other loads are calculated by the formula below;

Capacity of \geq conbined = Total sum of x demand transformer \geq max. load = <u>mounting load x factor</u> where demand = <u>maximum power demand (kW)</u> factor = <u>total rated output of load facilities (kW)</u> < 1 diversity = <u>sum of max. power demand of individual loads(kW)</u> factor = <u>total rated output of load facilities (kW)</u> < 1

1 1

1

1 1

т т

Figure 3.3 <u>Relation between power factor of motor</u> and supply voltage

at full loads

1.1

(2) How to analyze the transformer losses

Losses of transformer are as shown below. It has to be as small as possible.

```
Losses of \vdots output capacity
transformer \vdots of transformer(kVA) x (1 - efficiency)
```

= Iron loss (Wi) + Copper loss (Wc)

Examples of efficiency of transformers are shown in figures 3.1 to 3.4.

Generally, maximum efficiency of transformers is obtained with 60% to 70% of rating output loads. On the other hand, iron losses of transformers are constant as far as supply voltage are constant. But copper losses are in propotion to the square of load current and usually rate of iron losses per copper losses are 1 : 4 at full loads.

- (3) Analyzing of transformer losses for energy saving
- (A) Decreasing loss of transformer for improved power factor

Saving power = P x $(1 - \gamma)$ x 0.8 x $\left\{ \left(\frac{L_2}{P}\right)^2 - \left(\frac{L_1}{P}\right)^2 \right\}$ x h (kWh/year)

-114-

(B) Reducing loss for changing capacity of the transformer

Reducing loss for changing capacity of the transformer is as follows;

Saving power = L x $(\frac{1}{\eta_i} - \frac{1}{\eta_2})$ x h (kWh/year)

- were L : loads of transformer (kW)
 - γ_{i} : efficiency of existing transformer
 - η_{\star} : efficiency of changed transformer
 - h : working hours per year
 - (C) Decreasing of the distribution line loss

Decreasing loss of distribution line and equipments are explained below.

- (a) Optimum load for distribution line and equipments.
- (b) Improving power factor better be done on motor side.(see figure 3.4)
- (c) Try to make the three phases balanced as possible.(output voltage of transformer, load current of each distribution lines)

As the losses on line increase, voltage of line down, vibration and baking-out of motor are feared, therefore, line losses should be minimized.

3.3 How to measure and analyze electrical loads

- 3.3.1 Motors
 - (1) Motor and it's applications

Electric motor are widely used in allmost all electrical equipments. Because mechanical force are obtained effectively, easily and conveniently, but power factor prior to accumulate loads in factory is usually low. This is due to lots of small motors or light loads for big motor etc.. Therefore we have to know characteristics of motors well. How to choose of motor and how to check of motor or application equipments are shown in the following table 3.3.

		Items of checking
condition of electric loads		 Measurement of voltage, current and consumed power for major loads. Calculation of power factor and load factor for major loads. Check of alarming systems for light loads of big motors
flow cont- rol (pumps, blowers, etc.)		 4) Valves being To be replaced by small always used capacity motor. 5) Flow always To be equipped with spe changing ed gear box
ed loads of eq- uip- Ai ments re	Air comp- ressors	 6) Discharged pressure to be as small as possible 7) Basical loads for big compressor, and remainder with smaller machines, in parallel operation. 8) Air leakege have to be checked periodically and must be stopped.
maintenance		9) Maintenance of major equipments should be made periodically. (cleaning, measuring temperature, dust, vibration, noise and coupled condition, lubrication, etc.)

Table 3.5 Measurements and checking items of load equipments

(2) Characteristics of three phase induction motors

(A) Efficiency and power factor of motors

According to specification of JAPAN JIS C 4210 efficiency and power factor of induction motor in full loads are shown in table 3.4, but above values to which special attention should be prid are changing by supply voltage and load factor. These are shown in table 3.5 and figure 3.5 to 3.7.

(B) Losses of induction motors

Loss of three phase induction motor can be calculated as follows;

Losses = input power of motor (1 - efficiency) (kW) generally loss of squirrel cage motor is divided as shown in figure 3.8.

-117-

output	4 p	ole (%)	6 pole (%)	
rating (kW)	efficie- ncy	power factor	efficie- ncy	power factor
5.5	82.5	77	82	72
7.5	83.5	78	83	73
11.0	84.5	79	84	74.5
15.	85.5	79.5	84.5	75
18.5	86	80	85.5	76.5
22.	86.5	80.5	85.5	76.5
30.	87.0	81.0	86.0	77.5
37.	87.5	81.5	-	-

Table 3.4Efficiency, power factor of 3phase squirrelinduction motors

(200 V, 50 hz, enclose type motors)

		supply voltages			
		0.9x ^{normal} volts.	normal volts.	1.1x ^{normal} volts.	
starting torque		81 %	100 🔏	121%	
total	total current		100	93	
revolu	ution speeds	98.5	100	101	
effi- cien-	full loads	decrease a little	100	increase a little	
çy (see fig.7)	below 0.5 loads	101-102	100	98-99	
power factor (see fig. 3.3)		102-103	100	95-97	

Table 3.5 <u>Influence of supply voltages for induction</u> motor.

1 1

Figure 3.7 Efficiency of induction motors

Figure 3.8 <u>Example of analysis on loss of standard</u> <u>induction motor</u>

(3) Analysis of energy saving of motors

(A) <u>Relation of load and losses of motor</u>

Losses/year =
$$\left\{ 0.44 \times 1 + 0.56 \times 1 \times \left(\frac{P_{i}^{2}}{P}\right) \right\} \times h$$
 (kWh)
where 1 = P x (1 - 7) : loss of motor in full loads (kW)
P : rating of input power of motor (kW)
= rating of output power / η
 γ : efficiency of motor in full loads
Pi : input power of motor (kW)

- 0.44 : iron loss factor of motor including stray load loss, mechanical loss
- 0.56 : copper loss factor of motor
- h : working hours per year
- (B) <u>Decreasing loss of advanced efficiency by changing</u> <u>motors</u>
- (a) Calculation of loss from efficiency of motors

Losses/year = L x
$$\left(\frac{1}{l_{i}} - \frac{1}{l_{2}}\right)$$
 x h (kWh)
where L : load of output power of motor (kW)
 η_{i} : efficiency of the existing motor (see fig. 3.5)
 η_{2} : efficiency of the motor after changing
(see fig. 3.5)

(b) Calculation of loss from iron loss and copper loss

Losses/year = $(L_1 - L_2) \times h$ (kWh)

<u>losses of existing motor</u> (see fig. 3.8) $L_1 = l_1 \times 0.44 + l_1 \times 0.56 \left(\frac{l_1}{l_1}\right)^2$ (kW) <u>losses of after changing motor</u> (see fig. 3.8) $L_2 = l_2 \times 0.44 + l_2 \times 0.56 \left(\frac{l_2}{l_2}\right)^2$ (kW)

1.1

where l₁ : loss of existing motor in full loads (kW)
l₂ : loss of after changing motor in full loads (kW)
i₁ : corresponding current of load of existing
 motor (A)
i₂ : corresponding current of load of after
 changing motor (A)
I₁, I₂: rating current of each motors (A)

(C) <u>Calculation of the effect of changing of supply voltage</u> for saving energy

These losses are calculated by (B)-(a) formulation and figure 3.7.

- (4) Know-how to use equipments for saving energy
- (A) <u>Revolution control of motor for rotating machines</u>

In equipment of pump, blower and fan the relation of the amount of flow (Q), pressure (P) and electric consumed power (W) of equipments were formulated by revolution (N) as follows;

$$Q \propto N$$

 $P \propto N^2$
 $W \propto Q \times P \propto N^3$

Generally value and damper are used for flow control of air, water and various fluid in factories. Losses are induced by increasing exhaust pressure of fluid. Therefore capacity of the equipments should always be conformed to using condition and revolution speed of motor be controlled suitably without value to lessen the loss.

How to choose flow control are given in table 3.6 below;

			······	
	pole changing	coupling by eddy- current	control of volt- age (th- yristor)	control of primary voltage and frequency
range of rev- olution speed per rating	$ \begin{array}{c} 1 : 0.7 \\ 5 \\ 1 : 0.75 \end{array} $	0.1~1.0	0.7~1.0	0.11~1.0
suitable cap- acity of motor	small middle	small low vol- tage	small low vol- tage	all
effect of energy saving	middle	middle	middle	large
maintainabil- ity	well	very well	very well	well
feature	non cont- inuous changing of speed	efficien- cy was decreased proporti- onal to speed	can be mild sta- rting inexpens- iveness	expensive- ness

Table 3.6 Major control of rotating speed of motors

(B) <u>Air compressors</u>

General items to be checked for energy saving are shown before in table 3.5.

(a) <u>Consumed power by air compressor</u>

Characteristics of air compressor of reciprocating motion type is shown in figure 3.9.

According to figure 3.9 and documents, power consumed by compressor is proportionate to the product of amount of compressed air by compressor and exhaust pressure. Therefore, in order to obtain more compressed air with the same amount of consumed power, lower exhaust pressure should be applied, and intake air of lower temperature and lower pressure is

Figure 3.9 Characteristics of 37kW air compressor

(b) How to measure leakage for compressed air system

In no working hour, first put the compressor switch on and measure necessary time (t_1) through 2 points (low to high) by pressure gauge, then put the compressor switch off (stop) and measure necessary time (t_2) through the same 2 points (high to low). Then calculate loss as follows;

Losses/year = $P \times \frac{t_1}{t_1 + t_2} \times h$ (kW)

where	Р	consumed power of air compressor in working (kW)
	t,	time of increasing pressure through 2 points
		(sec.)
	tz	time of decreasing pressure through 2 points
		(sec.)
	h	: working hours of compressor (hour)

(not including idling hours)

(C) <u>Others</u>

In factory the idle hour of motor must be prevented. Measures should be taken as follows;

- (a) Install alarming system the idle hours of motor.
- (b) Install switch at place where on-off operation is easy.
- (c) Make process and equipments be operated automaticaly.
- (d) Reduce working time by improved tools and layout of processes.

3.3.2 Electrical loads (other than electro-motive force)

(1) <u>Electric heaters</u>

Most of electric power are changed from the fuel energy, so total efficiency of heat are not good. Usually converting factor is represented by 1 kWh = 2450 kcal = 860/efficiency of electricity generation.

Therefore generally electrical energy is used in the following three cases only and in other cases fuel energy must be used.

- (a) Case of precision control of temperature in the furnace.
- (b) Case of electrostatic heating, electromagnetic heating, electric arc heating and heating by infrared ray.

(c) Some special furnace for atmospheric controls.

Also facility of the electric heaters have to be coverd by insulation and radiation of heat have to be reduced as much as possible. Then heat efficiency to be improved for the

-125-

electric furnace by precision control and uniform temperature of furnace must be kept. In addition, cut off switch of electric equipments while not working and maintenance of equipments have to be kept well.

(2) <u>Air conditioner (air cooler)</u>

In ASEAN countries air conditioner is used widely and operation rate of cooler is very high. In particular, in the case of a factory having some coolig section, rate of cooling power consumption to total power consumption is comparatively high. Therefore energy saving of air conditioner is important.

(A) Heat loads of cooler and loads decrease

Heat loads of cooler of factory and office is shown in figure 3.10.

In JAPAN summer time usually we try to save energy as follows;

- (a) To decrease heat of sun light and transmissive heat from high temperature bodies.
- (b) Intake air of ventilation to be limited to minimum amount and to be dry and cool.
- (c) Heat dissipating apparatuses such as compressor and heating equipments located in air conditioned room to be replaced to non air conditioned space. And some generated heat of equipments should be released out of air conditioning room by ventilating fan.

-126

Figure 3.10 <u>Heat load of air conditioner</u>

(B) Check items of air conditioner

How to check, how to operate and their effects of air conditioner are shown in table 3.7.

	purpose	procedure	effect
target of tempe- rature	set up of temperature and it's controling	 To stop cooling dur- ing non working hours To raise set up temp- erature 	decreasing 1°C corresponds to 8-10% saving
main- tena- nce	increaed efficiency of air co- nditioner	 3) To clean air filters periodically 4) To test water and clean water tube 	to prevent increasing pressure of ventilating fan

-127-

		5) 6)	To improve ventilat- ion of cooling tower To prevent draft from opening space	to prevent sca- ling decreasing 25% corresponds to 6% power saving
others	controling of maximum demand	7)	Decreasing to use while peak demand hours of whole factory	to increase lo- ad factor of factory
	optimum size of coolig fan	8)	Rotating control of cooling fan	

Table 3.7 Check items of air conditioner

(3) Lighting

1

In factories security and productivity have to be kept. Then improve the lighting effectively.

(A) Check items cf lighting

How to check and how to measure lighting for energy saving are shown in figure 3.11.

(B) Analysis of electric power for lighting

Electric power of lighting is shown by the following formula;

	size (W)	lighting flux (lumen)	consumed power (W)	total ef- ficiency (lumen/W)	average life (h)
incandescent lamp	60 100	485 1520	40 100	12.1 15.1	1000 1000
fluorescent lamps(white)	40 110	3200 9500	49 140	65.3 67.9	10000 10000
fluorescent mercury lamp	400	24000	425	56.5	12000
metal halide lamp	400	32000	445	71.9	6000
high pressu- re sodium lamp	400	46000	450	102.2	9000

Table 3.8 Characteristics of various kinds of lamp

T T T T

-129-

bright- ness(lux)	place	working
3000		
2000 -	panel board of control room	product of precision machine, electronic parts and printing factoryclosed visual work
1000 _	design, drawing	inspection of textile, typese- ttingand asse ble work fine visual work
500	control room	normal visual work example; assembling, inspection, and testing
200 -	electric and air conditioning machine room	rough visual work example; packing
100 -	way out (in), lobby, stair and lavatory	very rough. visual work
50 -	store and facil- ity of out door	loading and unloading
30		
20 -	out dcor street of the premise	
10 J		

ł

1

Figure 3.12 Lighting standard in JAPAN JIS z 9110 (extract)

3.4 <u>Recommendation of electrical energy saving</u>

Recommendation of electrical energy saving are shown in table 3.9.
		ecommendable items	State requiring measu- res	Main measures	Effect on power saving
	1)	to determine power savi- ng target (power consum- ption rate, etc.)	in case of no target or obsolete target	to determine target	
General items	2)	to cut off switches when not necessary (transformer, motors, lam- ps and air conditioners)	low load or no load	load re-distribution, change of facility capacity, installat- ion of switches,etc.	remarkable
	3)	maintenance, cleaning of equipment	lots of dirt in factory insufficient maintenan- ce	to determine mainte- nance items, to mai- ntain periodically	remarkable
	4)	to review contracted power	when actual power dema- nd is much different	contract to be chan- ged	
	5)	optimum capacity of tra- nsformer	load factor less than 0.5	to change transform- er capacity,or re- distribution of load	transformer loss decreas- es
eceiv- ng and istri- ution	6)	to rationalize transfor- mer voltage on low-vol- tage side	in case defference bet- ween actual and rated voltage≥5%	to re-locate tap of transformer	efficiency, power factor of motor, life of lamps are influenced
acili- ies	7)	to raise power factor of entire factory	in case power factor falls outside 0.9 <power factor<="" td=""><td>to install adequate condenser for impro- vement of power fac- tor</td><td>electricity charge changes</td></power>	to install adequate condenser for impro- vement of power fac- tor	electricity charge changes
	8)	to minimize voltage-down on distribution line	in case voltage-down ≥5%	load re-distribution	same as 6)

• •

.

	1			1	
	9) to wat automs	cch maximum demand atically	in case of comparatively large factories	installation of sup- ervisory equipment at place of incomi- ng panel	contracted power can be secured
	10) to select adequate motor capacity		load factor < 0.5	motor replaced by small one	high power factor and efficiency
Load facili- ties	11) to keep high power factor of main facility		power factor<0.7	high load factor, ditto rational supply voltage	
	12) to su load a	pervise light- automatically	in case of light-load of large motor	installation of lig- ht-load supervision equipment	
	13) optimum capacity and optimum revolution speed of large motors of pump,		in case valve is always slightly open	to change motor ditto capacity to be correct one	
	DTOMEI	', Ian, etc.	in case flow rate fluc- tuates often	to control motor revolution speed	ditto
	14) exhaust pressure of compressor and air lea- kage on compressed air line		case of exhaust pres- sure≥8kg/cm [®]	study for lowering ditto applied pressure	
			in case of leakage in pipes and valves, etc.	to stop leakage	ditto
	air con-	15) temperature set for the room	in case room temp.≤19 ℃	make room temp. ≥19°C	cooling load decreases
	ditioner	16) heat load of room and air- conditioner	in case there are condu- ction heat from outside into room and heat pro- duced in room	to insulate bldg. equipment producing heat to be put out of room	ditto
	1	l	1		

-132-

17) high efficien- cy operation and maintenancein case of much draftto minimize draft and wentilation to clean water cool- ing machine and ven- tilation filter.etc.Electric heater18) to limit electric heating to special usein case general furna- ce byheating wire is usedto change to heating by fuel or steamenergy cost decreases19) sufficient illuminance lighting19) sufficient illuminance and insufficientin case lamps and app- aratuses are dirtedadoption of lamps, maintenance which is easy, and ofhighlow power cost			•	1		
Electric heating18) to limit electric heating to special usein case general furna- ce byheating wire is usedto change to heating by fuel or steamenergy cost decreasesheater19) sufficient illuminancein case illuminance is insufficientto obtain sufficient illuminanceimproved pro- ductivity and safetyLighting20) good maintenance and indention of highin case lamps and app- aratuses are dirtedadoption of lamps, maintenance which is easy, and ofhigh			17) high efficien- cy operation and maintenance	in case of much draft in case of bad mainte- nance	to minimize draft and ventilation to clean water cool- ing machine and ven- tilation filter, etc.	ditto
heating to special and used heater heating to special and used 19) sufficient illuminance in case illuminance is insufficient in case illuminance is insufficient illuminance is illuminance is	Flectric	18) to 3	limit electric	in case general furna- ce byheating wire is	to change to heating by fuel or steam	energy cost decreases
Lighting 20) good maintenance and in case lamps and app- adoption of lamps, low power maintenance which is cost easy, and ofhigh	heater	hea 19) suf	ficient illuminance	used in case illuminance is insufficient	to obtain sufficient illuminance	improved pro- ductivity and safety
efficiency lamps	Lighting	20) goo ado ef:	od maintenance and option of high ficiency lamps	in case lamps and app- aratuses are dirted	adoption of lamps, maintenance which is easy, and ofhigh efficiency	low power cost

Table 3.9 Main recommendable items for power saving

4

-133-

• --

3.5 <u>How to measure and how to use instruments for energy</u> saving

In electrical energy saving, as electricity can not be seen and moreover can not be contacted, measurements of equipments are very important.

3.5.1 How to measure

Electric measurement are only one of solutions of problem for electrical energy saving and mistake for safety must not be permitted. Therefore, instruments of measurement should be well knowne. On the other hand, characteristics of equipments are examined by name plate i.e, voltage, consuming power, current and power factor etc.. Then examination and calculation items are shown in table 3.10.

3.5.2 How to use instruments

Specifications, precautions on measuring instruments for energy conservation are shown in table 3.11.

-134-

		Measuring items	Calculation	Rating by name-plate
Receiving and distribution	Receiving Wh	kWh, times/ 1 revolution	kWh/h	revolution /kWh
	transformer and main switch	P, E, I, phase balan- ce, temperature	cosø, LF,	kVA, E, I
	capacitor	E, I, phase balance, temperature	kVAr	kVAr
	main distribu- tion line	I, tempera- ture		
Load	p anelboar ds switch	P, E, I, phase balan- ce,	I per rat- ing, cosg	I
	main load or large motor	P, E, I, load durat- ion and per- iod (inter- mittent load)	cosφ, LF	Pr, Η, Ε, cos <i>φ</i>
	electric heater	P, E, I	thermal eff.	P ₇ , E, I
	special load	P, E, I		Pr, E, I
	load far from power source	Е	Voltage-dr- ops	P ₇ , E, I
	illuminance of workshop	Lux change in period (6 monthes)	illuminance decrease	

P :electric consumed power (kW) P_r :rated power (kW) E :voltage (V) I :current (A) $\cos \varphi$:power factor = $P/\sqrt{3} \times E \times I$) LF:load power per rating power = $(\sqrt{3} \times E \times I)/kVA$ (transformer) = P/P_r (motor)

Figure 3.10 <u>Measurements, calculation and survey items required</u> for power saving

Items of using	Name of instrument	Specification	constraction and sppli- cation	caution
voltage current power	Clip-on AC power meter	range of measurement AC voltage :200/600 V current :20/200 A power : 20/200 kW indicater :digital source :battery (using hour 15/1 set)	this instrument consists of a current sensor inclu- ding battery and three lead wires. It is used to measuring of balanced 3 phase and single phase AC circuit in hot line	don't contact battery and lead wire while measur- ing. in case of measurement of power make sure of corre- ctly wire connection see instruction manual
voltage current power reactive power	Clamp-on power HI tester	range of measurement AC voltage :200/600 V current :200/1000A power :200/1000 kW reactive power :200/1000kVAr indicater : digital source : AC 100/240 V	this instrument consists of 3 current sensors, 4 lead wires and main body. It is used to measuring of 3 phase AC circuit of 3 or 4 wires in hot line (3- wattmeter methode)	don't over load the met- er circuit. in case of measurement of power make sure of corre- ctly wire connection (color of lead wire and clampsensor also rota- ting of phase etc.) see instruction manual
integrat- ing power and current	Integrator	display :six digit (max. 999999) input voltage : 2 V time setting range :1-99 min. or hours power : 100 V AC,	this instrument displays integrated power and current by connecting Clamp-on power HI tester	can not be used to measu- re reactive power avoid introducing exces- sive input. see instruction manual
voltage, current, resistan- ce of circuit	Multitest- er	range of measurement DC voltage :0.25-1000 V current :25 A-10A AC voltage :10-1000V current :10A Ohm :2-20 M	this instrument consists a DC ammeter, battery, 2 wire and main body.	always make certain the range setting of instru- ment. before using , it make sure that test the fuse by ohm range
illurina- nce	Lux-meter	display :digital range of measurement x 1:0~1000 lux x10:0~10000 lux	pocketable selenic photo-cell type	it never use below 0°C and upper 40°C atomosph- eric temperature
		atomosphere temp. 0-40Č R.H 80 %		

Table 3.11 List of measuring instruments

(using during factory survay in Malaysia)

-136-