

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION
Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria

Tel: (+43-1) 26026-0 · www.unido.org · unido@unido.org

OCCASION

This publication has been made available to the public on the occasion of the 50
th

 anniversary of the

United Nations Industrial Development Organisation.

DISCLAIMER

This document has been produced without formal United Nations editing. The designations

employed and the presentation of the material in this document do not imply the expression of any

opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development

Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its

authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or

degree of development. Designations such as “developed”, “industrialized” and “developing” are

intended for statistical convenience and do not necessarily express a judgment about the stage

reached by a particular country or area in the development process. Mention of firm names or

commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes

without additional permission from UNIDO. However, those who make use of quoting and

referencing this publication are requested to follow the Fair Use Policy of giving due credit to

UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

mailto:publications@unido.org
http://www.unido.org/

1.0 ' 'lt2 8 11111~5~
3 2

11111
2
·
2

j,,

I.I 11111

20

111111.~

111111.
25

111111.
4

111111.
6

MIU!O(;Ol'Y HF ';(JI I; T ION T f '; T U 11\;1 l

~ J 1\ T I (ir J 1\ I f \: If l f i• I I (l f ' r "r j[) A~ l r) .
T1Vjf1/,rH1 flf If ~If rJr f r,1/1Tf 1111\1 111 111.1

,\rJ',I I' 11 ,(l II .I (t!f11i; rJ ,'

UNITED NATIONS
INDUSTRIAL DEVELOPMENT ORGANIZATION

~FTWARE ENGINEERING& l &Jr A SURVEY .:J

by

Wladyslaw M. Turski**
UNIDO ConGultan~*

Distr.
LIMITED

tlNIOO/IS •446
22 February 1984

DIGLISH

* The views expressed in this paper are those of the author and do not
necessarily reflect the views of the aecratariat of UNIDO.
Mention of firm names and commercial products does not imply the endorsement
of UNIDO.
This document has been reproduced without formal editing.

** Professor, Ir.etitute of Informati-::s, Warsaw University, and Depart119nt
of Computinq, Imper~al College, London.

V.84-82124

- ii -

COftlii'S

The change in approach

Specitic~tion-baaed mrthocla ot progremdng

.Approaches to specification ot software

Software lite-c7cle

Jloclular design

Software modification

Software tools

Jlon-proceclural languages and other
advanced concei>t• in programing

Software engineering management

Page

2

3

5

7

9

11

13

16

17

-1
~

1. The term "software engineering" was coined at the same time and at the

same conference which bro~ght into the open the deep concern with the growing

software crisis. The conference was held in 1968. The chief symptoms of

the software crisis were: software. unreliability, delays in meeting promised

delivery time for software systems, difficulties in achieving desired

functionality and performance of software, complexity of software systems

and their resistance tc modification attempts, shortage of skilled programmers

and - above all - alarming cost of software development and maintenance.

2. The last fifteen years saw a dramatic decrease in the cost of all imaginable

units of raw computing power: the dollar-per-KB and dollar-per-MIPS measures

are falling in absolute terms, let alone discounted for inflation. Parallel

to tltis trend, although running in the opposite direction, is a very rapid

increase in hardwa~e capabilities and availability. A fixed amount of money

buys not only much more hardware tod~y than 15 years ago, it also buys a

much more sophisticated equipment. Software difficulties, then seen as a

bottleneck in comp11t~r applications, have become the most important limiting

factor today. For all practic~l purposes , the software costs are the foremost

consideration when a new application system is contempiated. The policy

of buying hardware to run available software systems has become almost the

industry rule. The accumulated investment in software is already staggering
. 10 11 and grows world-wide by some 10 - 10 US$ per year.

). It should, therefore, come as no surprise that a very considerable

effort is being put into improved methods of software design, implementation

and maintenance. Qualified programmers being scarce the world over, assorted

software tools, increasing the programmers productivity by automation of

the more routine aspects of Lheir work, are conside1ed a very promising means

of alleviating the software crisis.

4. In this report we shall survey the main directions of software engineering

a discipline of producing better software more economically. (It is important

to consider both aspects simultaneously: ma~ing softw1re cheaper at the ex­

pense of its quality is just as absurd as improving its quality at a dis­

proportionate increase in costs).

- 2 -

The change in approach

5. Arguably the most important change in the ~hole software scene over the

last 15 years is the e1~ergence of consensus on the issue of software correct­

ness. It is by now universally accepted that correctness is the main criterion

of software quality: no matter how good a piece of software is in all other

respects (such as efficiency or robustness), if it is incorrect its value

i$ nil. Without an accepted notion of ~hat constitutes the correctness of

software, the insistence on software being first of all "correct" would be

meaningless.

6. A very useful notion of software correctness has been found in the

logical notion of satisfaction that may exist between two formal systems.

Roughly speaking, a system S satisfies system T if whatever follows from

system T is a fact in system S. In more rigorous terms, we say that S satis­

fies T if there exists an interpretation I: T - S such that to each statement t

deemed true in T the interpretation I assigns a provably true statement s

in S: (t = true in T) implies (s I(t) - true in S). In practical terms, T is

what constitutes a specification, S - the software.

7. For example, statement t may say that SORT(x) is the sequence X rearranged

so that its members are put in ascending order. Statement s may take a fcrm

CALL PROC SHELL(INPUT(A)). If now the interpretation I is such that PRJC

SHELL is the n~me of the Shell-sort routine, CALL den0tes an invocation of

a routine, A is the name of a file, INPUT - an operation delivering the file

listed as its parameter, then all that is needed to establish that s satisfies

t is to prove - from the particular description of Shell-sort - that indeed

its execution delivers the sorted version of its input parameter.

8. Two observations are in order:

(a) Using the outlined approach we assume tha~ ~he specification

correctly reflects the user's requirements.

(b) It is a matter of formal calculations to establish if a given

software satisfies the given specification.

- 3 -

9. The first uf these observations clearly indicates that the burden of

somehow verifyin~ whether or not the software meets the application needs

is shifted from µrogra.11t1ing to specification analysis. The seco1.d one presents

in a nutshell the methcdologi~al advance which is the cornerstone of software

engineering: given the specifications, the correctness of remaining parts

of the design and implem.?ntation process becomes a calculable question.

10. We shall return to the specification issue later. Now, we shall consider

the significance of correctness calculability.

11. First attempts to exploit the notion of calculable correctness concen­

trated around programme verification, i.e. around a process which would

take a specification and a programme, and - based on this information alone -

would attempt to calculate if tne prograrrme is correct. This approach has

had a limited success only: the amount of formal calculations involved

was formidable even in the case of pretty small programmes. For large

yrogrammes it became prohibitive, even if human intervention was allowed

to speed up some of the calculatiofis.

12. Soon it transpired that a much netter policy to exploit the notion

of calculable correctness is to devise such programming techniques which

would guarantee prograrrur.e correctness by virtue cf the very construction

process. Thus methods of building correct programmes from specifications

started to appear.

Specification-based methods of programmi'!8.

13. Common to these methods is the view ~f specification as the most abstract

description of all desired properties of the desired software. (By 1111.ost

abstract" here we mean "free of all unnecessary detail".) The software

design and implementation is s~en as a process of transforming such abstract

description, by adding necessary details, i.nto a programme which is to preserve

all properties contain~d in the specification. (Thus the main diffe~ence

between the specification and the corresponding programme is that of detail:

the specification is free of machine-oriented details but, of course, con­

tains all application-oriented one3.)

- 4 -

14. Methods which pursue this app1oach are known as top-down design methodolo­

gies, a name which refers to the fact that - after the software is successfully

designed and implemented - the history of the construction process is not

unlike a pyramid with the original specification occupying its swmnit and

the working version of the i~plemented software being its base. When one

ascends this pyramid (moving as it were in the direction opposite to that

which the designer took) one sheds the implementation and design details until

the refined, most abstract summit - the specification - is reached.

15. Basically, the top-down programming methodology consists in repeated

application of the following procedure:

(a) Given a problem P, is it possible to express its solution in a

reasonably concise fashion using primitive notions of the linguistic

level at which we want to programrne? If yes, write the programme,

if not, invent notions Pl, ••• , Pn such that

(i) each of the notions Pl, ••• , Pn is well-specified,

(ii) using these notions according to their specification it is

possible to write a satisfactory programme for problem P.

(b) Consider each of the notions p·_, ••• , Pn in ~urn as a new problem

and repeat the procedure.

This problem continues until all i1;v~nted notions are implemented in terms

of primitives of the given programming level.

16. The above given brief description of the top-down design and implementation

methodology introduces two important techniques: that of structured programrning

(or structured decomposition) and that o[~tepwise refinement. ~e rely on

the first one when we decompose problem Pinto problems Pl, ••• , Pn, and on

the other one when Ye consider each of th~ Pl, ••• , Pn as a new problem in

itself, to be solved by the same method.

17. Both techniques rely on sound mathematical principles which guarantee

their correctness if certain rules of decomposition and refinement are observed.

Consideration of the mathematical foundations of structured progralllfling and

stepwise refinement have led to new concepts in pr0gramrning languages, such

- 5 -

as ADA, PASCAL or MODULA. These modern programming languages are designed

explicitly so as to facilitate, and eTen in some instances: enforce a

disciplined use of these techniques. It should be observed that vhile no

programming language per se ever solves any software design problem, the use

of a tool influences the vay in vbich its user works. Progr8.lllllling languages

of yesteryears, FORTRAN, COBOL and BASIC lack the aechanism.s to support

structured progr&m1ing and stepvise refinement. In such languages it is

virtually iapo~sible and certainly very avkvard to use the techniques vhich

emerged as the llOSt co_,n tool of modern sortvare engineering.

Approaches to specification of software

18. It has been firmly established that the early stages of softvare syste~

design are crucial for the eTentual system usefulness. This observation is,

of course, directly related to the fact that it is precisely the specification

vhich in the final count is taken as the fra11e or reference in vbich softvare

correctness is established. Thud, all design/implementation techniques

respecting the notions of correctness cannot but preserve any specification

errors. Consequently, such errors become apparent only after the softvare

bas been imple11ented and thus are Tery expensiTe to correct. This clearly

underscores the need to Terify specifications, beth from. the point of viev

of their imp!em~ntability and froa the point of Tiev of their relevance for

the intended application.

19. The Terification of s~ecifications vith reopect to their relevance poses

a very subtle quertion of translation betveen (often fuzzy) intentions of the

eventual uaer and (necessarliy foraal) expression of specificatious. Many

techniqt.ea have been prnposed specifically orit:nted tovuds easing of this

t~sk. In e•sence, these techniques assume that the prime author of the

specifications is the eventual user, and - by proTiding a soaevbat restrictive

means or ezpression - force bia to expresa his intentions in a fora that can

be easily 11a11ipulated by f~l'll&l. method.a. Often such technique£ depend on

graphic conTentfons (e.g. SAD'l'), whereby the u•er/author is preasetl to describe

his ideas in fora of pre-designed and parti&ll.7 labelled diagrams. Freely

added, user-invented lables express his intention• originally just by their

mneaonic dgnificance. Gradually, &a the specifier is asked to complete more

--~

- 6 -

detailed diagrams, the pre-designed structural dependencies betveen

diagrams are explored by a "hidden'' analyser, vhich brings to the open

all inconsistencies and many instances of design incomplet~ness.

20. An entirely different approach to specification writing can be

exemplified specification languages (such as CLEAR). In this approach,

the recognition that a specification is in fact a formal th~ry of an

application domain is made into the ma.in tenet and main mental tool as vell.

Specificatiou languages provide aeans for relatively easy-tc-read descrip­

tion of theories and - more significantly - for combining thus described

theories into larger ones. For example, given a formulation of a theory

of optimality (for instance by means of linear programming principles) and

a formulation of a theory of control ?f a chemical process, their combination

will yield a formulation of a theory of optimal control of this process.

(Naturally, not any two theories can be combined, it is up to the specification

language designers to make sure that any combination expressible in the

language "makes sense" and that absurd combinations vou:.d be inexpressible;

exactly as ir. safe programming language it is impossible to execute sin(true)

instruct ion.)

21. When many useful application d<>11ain concepts are captured by

corresponding theories, a specification language may be indeed very useful:

the specification of a concrete system may be obtained by a combination of

"library theories" vith some specit'ic expressions written just for this

system. The main advantage of this approach, apart from economy of design,

is in the increased safety: library theories are knovn to be safe and the

language includes many safety measures vhicb ll&ke it unlikely that the

nonsensical combinations would be expressed by mistake.

22. Both graphic and linguistic approaches to formal specification writing

are well founded in deep theoretical research into such issues as abstract

data types, algebraic theories, theory of models etc. The same kind of

foundations are used by a number of software description techniques, such

as VDM, commonly used for unambiguous definition of large software products,

such as semantics of nev progr.JJ1111ing languages (CHILL, ADA) or special

software svst~ms (CICS).

-1

.,
- I -

S ftvare life-cycle

23. A software system written for a particular applicatio~ seldom can be used

for an extended period without undergoing a number of changes. Among the many

causes that necessitate software changes one can list the following:

(a) The nature of the application itself changes (e.g. for a banking

&pplication, the introduction of EFT facility changes dramatically

the accounting procedures).

(b) lev hardware elements are added to the system. and need to be

incorporated into the class of devices supported by the software

(e.g. colour screens are introduced into a system that used

11anochromatic screens only: a new "dimenf;ion" must be added to

all output and, perhaps, input functions).

(c) An existing piece of saftvare is transferred to another environment,

or the environmect itself changes (e.g. better educated operators

are hired, for vhom the existing input procedures are too dull;

new input procedures are required which would make the operators'

task more appealing to new staff).

(d) The scope of the application is enlarged (e.g. in a hospital

computer system the ~ntensive-care unit computer services are

to be linked to a previously separate medical record system).

{e} The re~uireaents placed on the existing syst,,_ are ch~ed (e.g. the

air-traffic control system aust be modified when the airport it

•ervee start• acceptinf faster jets and thus the decision time must

be reduced to accommodate the faster traffic).

The list of causes can be, no doubt, extended. Even this incomplete list is

sufficient to draw the unavoidable conclusion: changes in a live system are

ind~ed necessary, quite apart from any r~edial changes due to its detected

atortcomings and internally motivated 1:1oftvare improvements.

24. An unfortunate tradition lumps unde-r the title "software maintenance"

all activities related to software changes occurring after the original

system has been succeasfully installed. It is impc,rtant to remember therefore

that softlAJ"e maintenance is needed not because software deteriorate! in use

I ~
- 8 -

(there is, of course, no wear and tear of sortvare), but because its use

for a dynamically changing application will be diminished unless the soft­

ware is modified.

25. In fact, the usual presentation of sortvare life-cycle contains four

major phases:

(a) Conception

(b) Design

(c) Implementation

(d) Maintenance.

26. Largely due to the fact that the "maintenance" comprises future

morli"i~11.tions, itR RhRrP. in thP. totfll elqlf!nditure is VP.?"Y lar«e. Jn 11811'.Y

c~~cs the maintenance costs constitute more than three-quarters of the

total investment in a software system. (This is a very important observation:

a client buying a moderately-sized software system for, say $ 100,000 should

not be surprised that the maintenance costs over the next rev years vill run

up to$ 300,000. If he is not prepared to pay this "extra", almost certainly

he will find himself tied to an ever decreasing useful piece of software. If

he tries to economize, e.g. by assigning junior staff to maintenance activities,

he may face a total disaster - the system may become hopelessly eutangled and

virtually useless.)

27. The main reason for the high cost or software maintenance is the

(abundantly confirmed ~Y many a post-mortem analysis) fact that the

complexity of softvare grows very rapidly with every change made to the

original version, unless a conscious redesign erforts (also expensiYe) is made

to reduce the complexity. Thus, each subs~quent change is harder to ll&ke and

is more likely to introduce - in addition to the desired ones - lll8DJ' unforseen

and often inple&s&!lt eff.ects.

28. These observations lead to tvo inter-related software engineering

problems:

(a) Hov to design software in such a vay that it vould be relatiYely

easy to modify?

(b) Hov to modify an exieting software so as not to increase its

complexity mor·e than absolutely necessary?

- 9 -

29. The first or these issues is answered by modular and hierarchical design.

The second - by controlled backtracking techniques - greatly facilitated by

vell-designed progr&11111ing support environment~.

Modular design

30. A very general engineering principle calls for the final product to be

assembled from easily replaceable parts. Thus a bicycle consists of a fra:ne,

two vheels, pedals, chain etc. If the bicycle malfunctions, the cause of the

trouble can usually be traced to one of these parts, and the faulty part can

be replaced by another of the S811le type or, indeed, by any similar part vhicb

fits. It is not unusual for a bicycle to have vheels of different make than

the frame or even tvo different pedals. As long as the parts satisfy certain

externally specified interface requirements, their internal construction is of

secondary importance. Thanks to this principle, ve may put snov t:vres on our

cars, thus obtaining a vehicle with rather different driving parameters,

vithout actually having to change the engine or steering vheel.

31. This general engineering principle translates in software design into a

requirement according to which any software product should be built from

relatively independent modules. Each module meets its ~pecifications if it

is a correct module; a module specification is all that is externally known

about the module. The functionality of the whole system obtains from the

jnteraction of modules, the interaction itself being fully determined by

modular interfaces.

32. When designing a piece of software, one decomposes the design into ~

number or relatively independent units - modules. Having listed the external

prcperties of each module, i.e. having formulated each module specification,

one can prove the appropriateness of the decomposition by proving that the

required properties of the vhole indeed follow fro~ the postulated properties

of modules. This being established, each module in turn may be considered a

nev designing problem. Thus, allowing for hierarchy of modules, ve see a

complete analogy with the stepwise refinement technique, although this time

the technique is expressed in terms of structured components or progr8DIDles.

I -
- 10 -

33. A well modularized progr8Jllllle can be now relatively easily changed by

replacement of a module by another, the fresh module sharing with the old one

its interface specification, while differing in secondary considerations, i.e.

in those which are not covered by the specification relied upon in the overall

design. For instance, if we want to adapt our software to exploit the

potentials offered by a new output device, ve can concentrate on the output

module in which all relevant aspects or the given piece of software should

be encapsulated.

34. Naturally enough, not any haphazard hacking of the design into pieces can

be considered a proper modularization. Sound engineering principles of modular

design have been formulated, vhich facilitates making correct modularization

decisions. The same principles ensure that a majority or errors can be

localized vithin a module, thus the repair activities may usually be limited

to a single module.

~5. Since a module can by replace~ by any other module provided their

functional specifications and interface characteristics match. there is

a huge incentive to plan libraries of interchangeable modules, rather like

a Mechano set, from vhich a variety of software products could be rapidly

constructed. Modules that could be used in many different programmes are

knovn as r?usable ones, and all successful software houoes possess substantial

libraries or reusable modules from vhich a major part of any system within

the specialization area of the house can be constructed.

36. Some modern programming languages, notably ADA and MODULA, actively

encourage modular programming. ADA, for example, was explicitly designed

to permit independent compilation of modules, so that libraries of reusable,

precompiled modules bay be accumulated.

37. A number of design methods have been proposed which are based on the

modular ~rogramming principle. Some or these are co .. ercially available as

kits consisting of a large number of tools, i.e. special progr&mmes which

assist programmers in their work on software design and implementation. In

general, such coD1J11ercially available methods concentrate on a chosen guiding

principle for modularization (e.g. data flov, calling hierarchy or input/output

--1

- 11

transformation) which suggest~ a particular approach to structuring the

desigr.. Identified modules are named and their main characteristics are

specified. Then, the use of supplied tools enables one to display the emerging

design in a coherent vay a.~d - more importantly - to check the consistency of

the design by verifying that the specified properties of the modules placed in

their respective structural positions indeed correspond to each other.

Thus, for instance, if it follows from the design structure that a module M

imports data named x, it is possible to check that there is at least one

other module which e:xp~rts thus named data. Having identified such a module,

say N, it is possible to check if modules M and N are structurally related in

such a vay that data transfer between them is allowed. Similarly, it may be

checked if data z, generated by a module K, is imported by any other module

or presented as a system output.

38. Most available tool-assisted modularization methods allow many such

consistency checks to be run at several levels of detail, thus permitting to

verify at lehst some aspects of the design before any detailed programming

(on intra.modular level) is done.

39. Another useful extension of modular programminp; techniques consists in

substituting module surrogates for not yet implemented ~odules. Th~s, as

the implementation progresses, one can animate the complete system even if

only a part of its modules is actually coded: the remaining modules being

replaced by surrogates, the whole system may be made to perform. Such

animated execution allows to check some external properties of the system

long before its implementation is completed and therefore to avoid at least

some unpleasant surprises and - perhaps - to introduce design modifications

before they become prohibitively expensive to carry out.

Software modification

40. Assuming that ve have a well designed and correctly implemented piec~ of

software, any subsequent modification should start with a clearly specified

request for modification. If the hiatory o~ the design is preserved (and

again there are special software tools constructed specifically for the

purpose of storing the software design history in a manageable form), it is

- 12 -

possible to identify the design step at vhich the dee:isions contrary to the

requested modification vere made. (Such a step must always be there since

otherwise the request could be met by the existing so~vare and thus no real

change vould be in fact requested althowdl the rea~est may still have led to
some programming, e.g. of an add-on extension of the available software.) As

soon as the pertinent design step is identified we knov that all preceding

steps can be safely preserved in the nev design, i.e. in the design aimed at

satisfying the considered change request. If the subsequent steps of the old

design are discarded, the incorporation of the requested modification may be

viewed as a continuation of the preserved part of old design by a suitable

sequence of the nev design steps.

41. If there are many such mod~fication requests, ve are soon faced with

a "forest" of designs - from each desio sten at vbich some chanp:e has been

incorporated a nev br3.0ch is started. A suitable "navigation" tool is

needed if the programmer is to be able to traverse freely the design "forest"

and collect design steps along each particular branch. Again, such tools are

commercially available.

42. The main objective of controlling the software modification may be

stated as a atability problem for software development: how to achieve the

situation in which small changes in specification could be accommodated by small

changes in the implemented software.

43. Ro general solution of this problem is ltilOYD (and, according to many

experts, such general solution may never be discovered). There exist, however,

some design/implementation technique& which admit a partial solution of the

stability problem.

44. For instance, if every time an arbitrary decision is ll&de (selecting a

particular branch) all feasible although discarded decisions are duly recorded

and preserved in the design data base, subsequent design steps may include a

"what if" analysis, forcing the programmer not to do anything detrimental to

implementation of the rejected options. or - at the very least - to clearly

mark subsequent decisions with comments informing about such past options

vhich from now on become infeasible. If the design hiLtory is decorated

with such co .. ents, a change request may be run against the tree of rejected

-1

, .,
- .LJ -

alternatives, yielding not only the level to which the design is to be

backtracked, but also informing about the point at vhich the incorporation

of the requested change becaae infeasible in tbe present implementation.

Analysis of this information permits to guess roughly the amount of redesign

effort needed to make the change. Changes that vould require too much

effort may be then rejected, or - if undertaken - may be explicitly marked

as difficult-to-implement and therefore expensive. It should be stressed

once more that a proper management of software modification and change

reque·;ts is probably the most iaportant aspect of software Pngineering as

it is this phas~ o~ the software life-cycle in vhich the lion's share of the

total expense is incurred. The general approach outlined above lll&J be viable

on.iy if during its entire life-cycle a software system is supported by a

comprehensive design and development docUlllentation in vhich all versions and

mutations are recorded in a manner allowing for a relatively easy restoration

of arbitrl'U'J' past states. It goes vithout saying that if such a support is

to be of real assistance to progrwmners, it must provide the relevant informa­

tion in a form that permits machine-sssisted manipulation of a large numb~r of

variants. Thus again we are led to consider the importance of software tools.

Software tools

45. There are several varieties of software tools more or less available on

the market, many more tools are the property of software houses vhich use them

for their internal purposes.

46. Probably the most co111110n among commercially available tools are all

sorts of editors, i.e. programmes that facilitate programme composition

and prograllllle text 11&nipulation at a programmer's vork station (e.g. on a VDU).

The editors range from pretty simple text manipulators to quite sophisticated,

progr&llllling-language oriente~ structured editors th~t in addition to the

fscilities provided by plain text editors include an active mode of assistance.

In the latter mode, structured editor• proapt the progr&llliller as to proper

instruction formats, check for syntactic completeness of phrases, warn against

simple context-detectible errors etc. Nearly all varieties of programming

editors take care of 1iaple yet laborious editing operations, such as textual

substitutions, systl!IULtic renaaing of programming objects etc. Many never

progr111m11ina editor• are geared to exploit di1pla.v facilities offered by 110dern

. ' - .llJ -

terminals, e.g. by providing the so-called multivindov option, whereby a

programmer may divide the screen into several independent "windows", coilt!ucting

in each of them a separate programme (or programme part) development. Thus,

for example, a progr8lllller may deve1op the main programme in one window, a

subrouting in another and an input/output handler in yet another. A fourth

window may be used for display of pertinent parameters, such as the number

of lines of code already generated, memory maps etc. Each Jf the windows may

be zoomed in, therefore providing a more detailed view of a particular

feature, contents of different windows may be merged, etc. A programming

edit~r with multiwindow facility creates a fair analogy of programmer's

desk top, with all assorted documents and scratch pads being available in an

electronic form at the same time.

47. Another kind of commonly used programming tools is represented by

programme generators. For a variety of applications, working programmes are

sufficiently stereotyped to permit their automatic generation from a suitable

chosen set of design parameters. Such programme generators usually w~rk

interactively, either in a dialogue (question and answer) mode or by menu

selection technique, whereby a programmer is shown a number of options,

depending on the circumstances selects one, thus fixing a design decisic~,

which triggers a next level menu to be displayed. At the end of a session,

the totality of decisions made determines a particular application programme

which is then produced ready for operation. Progr8lllllles produced in this way

are often a bit inefficient, but otherwise quite acceptable and certainly can

be used as system prototypes. If their functional behaviour is fou.~d to be

satisfactory, their performance may be impro'led in a number of ways, e.g. by

optimizing the most frequently executed parts of the code. (Incidentally,

programme optimization is another task that often may be left to a suitable

software tool.)

48. Finally, we should not forget that the ev~r growing body of commercially

av~ilable compilers, interpreters, decision-table processors etc. are all

in fact software tool&. An extremely useful addition to this class of tools

are programme transformation systems which accept a programme expressed in an

abstract form and - guided by the progr&llllller - perform textual transformations

aimed at replacement of abstract algorithms by concrete on~s. or at replace­

ment or less efficient parts of code by aore econoaic versions. The importance

- i:; -

of sur.h tools rests in the fact that progra1111e transfon1&tion systems are

so designed that their action preserves the intended meaning of programmes

being transformed. A progrumer ll8Y therefore try a nUJlber or transfon1&tions

quite safely: evec if' he does not achieve the intended improvement, he

certainly does not run a risk of' losing correctness of bis progruime.

49. Another class of' software tools are those vhich gradually transform an

initial design into a more and more progrme-like text. Some tools or this

class accept, tor instance, graphic designs in form or interconnected, labelled

boxes and represent them aa equiTillent linguistic structures more amenable to

further textual refinement. (In addition to transroraations betveen Tllrious

levels of abstraction, such systems usually perform a nuaber of' useful

consistency checks.) 8earl.y" all software deeign methodologies advocated for

general use rely on some tools or this cla~s.

5c. The most sophisticated software develoiaent tools, in addition to all

previously listed facilities end standard features (such as parsers, table

generators and tile managers), incorporate also very advanced data bases in

vhicb progrlUllle versions and mitations are stored for easy reference and

11&11ipulation.

51. It is custOll&ry to refer to a fully developped system or software supi>Qrt

tools as program1e support environaent (PSE). Modern requirements for a

programming language usua1ly include a specification for a PSE. Probabaly the

best-knovn or them is the APSE - intended programming support environment for

ADA. In fact, it is expected thnt the portability or ADA programme vill be

achieved via functional equl~ent of' APSE installed at ne11.rly all computers.

In this vay, not only the programea themsevels could be :ported, but also

their PSE, which would allov for a further development of a programme to be

ported fro• one installation to another.

52. In addition to progr.-.e deaign/iapleeentation ~..ools, a well-developed

PSE includea a variety or tools for progr ... e testing and debugging vhich

greatly reduce ti11e and effort needed for the pre-release servicing of sof'tvar·e.

- 16 -

Ron-procedural languages and other adYanced concepts

53. Classic prou-ing languages, COBOL, FORTRAI, PASCAL and eTen ADA, are

based on the notion or assignment: as a res-Jlt or the executior or a

statement, a variable is assigned a nev Till.ue. 'Ibis notion, a direct

descendant of machine order ''execute and store", can be rightly described

a.s the cornerstone or the von lleumann coaputer architecture.

54. Rev architectural concepts, such as data-tlov 11&ehines, highly parallel

computers and inference engines, find little use tor the notion or assignaent.

Hence, in recent years a number or entirely different progruiaing languages

have been proposed, based on very .mortbodox principles and incorporating

more or less directly these architectural innovations vhich seem most proaising

from the application point of viev.

55. Arguably the most widely accepted of the nev line of progrmming languages

is PROLOG, a language for progr81111ling in logic. Originally intended as a tool

for computational linguistics, PROLOO is rapidly beca111ing the 11&in progruning

language for artificial intelligP.nce, slowly replacing in this role the old­

time favourite, LISP.

56. What an assignaent statement is to Ji'ORTRAJf or PASCAL, a Horn clause is

to PROLOG. (A Horn clause is a special fora of a first order predicate calculus

formula.) Its main coaputational advantage rests in the natural parallelis• of

Horn clause evaluation, vhile its advantage for application programaing obtains

from the observation that a Horn clause may be just as easily interpreted as

a statement or a fact and as statement or a hypothesis to be verified ~~ed on

other clauses. Close kinship of Horn clauses and relations vhicb ~rovide the

foundations for cOlllaOnly used relational data bases is another bonus for PROLOG

adherents: not only does it yield an easy interface between application

progr8.lllllles and data bases, but also makes possible data base description by

essentially same means as prograJlllle description.

57, Data flow machines seem to provide a natural eTaluation aecb&ni•• for

another brand of nev progra1111ing languages, the so-called applicative languages,

exemplified by LUCID. Hardvare/softvare experiaent&l systems, e.g. ALIC!, are

currently being built to explore nev and apparently very powerful concepts of

data r1ov anl functional pro~ramming.

- 11 -

58. Finally, the Japanese Fifth Generation project, extremely influential in

shaping the current research interests both in the USA and in Europe, favours

highly parallel machine architectur~ harnessed to a multilevel hierarchy of

specialized machines: data base machine topped with an inference engine

(progrllJllllled in PROLOG} yields an expe!"t k.nmdedge base which, interfaced

with very advanced input-output machines (such as graphic or visual computers

and speech analysers and synthesisers), are to become intelligent computers

e,,f the 1990s.

59. Futuristic as such desi~ns may seen:, they do underline a new approach to

computing: a merger of hardv4~e and softvare design, aimed at exploitation

of the potentials made available by the abundance of cheap and very efficient

large chip components.

Softvare engineering management

60. As soon as ve recognize that softv~re vriting has become the major

component of the multi-billion dollar information processing industry, we

must realize th~t this kind of industry generates its peculiar managerial

problems and leads to specific managerial techniques.

61. The peculiarities of the ~oftware industry are quite pronounced. First

of .'lll, it is an industry alrJOst totally independent of any raw material& and

almost zero-energy consumh1g. Apart from software tools - themselves produced

within software industry - it does not require much investment in material terms.

Its products are ofte;1 classified as intangibles, and - contrary to any other

industry - most or its costs concentrate in design: the actual production

(if one consid;;:rs the reproduction of once composed programmes as "production")

costs arP practically nil. This should be contrasted not. only with usual

inuustrial sectors, such as mining or manufacturing, but also with innovation­

intensive industries, such as civil engineering or drug industry. (A constructing

firm may redesign a bridge ten times over, the cost of nine discarded designs

is neglegible as compared with that of actually building a bridge on site.

A software firm forced to redesign a major piece of software usually comes close

to bankruptcy) •

- 18 -

62. In addition, nearly all resources needed for th'! softvare industry are

people: highly qualified, vell educated softvare engineers. Hence, the

managerial problems in this industry are almost exclusively pure problems of

the vorkforcc management, vherP. the vorkforce in question is very independe~t

and fully avare of its ovn value.

63. To fully understand the ensuing managerial diffj~ulties, let us consider

a simple example: a softvare team engaged to produce a system for an applica­

tion, is running behind schedule. The manager decides to accelerate the rate

of progress and implements this decision by hiring more programmers. Instead

or expected acceleration, the vork is slaved dovn as the fresh programmers

need to b~ instructed abcut the system in production and the only available

instructors are the programmers already on the job. Thus the nevly hired

hands are unproductive because they are not "in" yet, vhile the old hands,

burdened vith the additional task of instructing the nev-co~ers, become less

productive. Hiring even more programmers may be disastrous. After a period,

the nevcomers are integrated and the vork may resume in earnest (although the

delay has grovn considerably). Bov, hovever, the manage~ent discovers that

the enlargement of the team has blovn up the communication problems vhich grov

as the square of the number of people on the project, and a sizeable portion of

the total effort must be spent on overcoming the resultant communication

clashes. Hiring an extra support team: secretaries, information officers

and technical vriters compounds the difficulty. After another couple of

months the management ~ealize that they are fighting an uphill battle: the

effective rate of system production is invariant of the vork expanded, it

se~•s to be solely determined by the original design and after it has been

approved there is little that the management can do to influence the rate

of fUrther development.

64. A number of managerial techniques, including the spectacularly successful

"chief programmer team" approach pioneered by IBM, has been proposed and

found wseful. Still, the management of softvare projects remains a vexing

problem and successful softvare aan~ers are - if an.vthirui: - even rarer than

good programmers.

	0009A01
	0009A02
	0009A03
	0009A04
	0009A05
	0009A06
	0009A07
	0009A08
	0009A09
	0009A10
	0009A11
	0009A12
	0009A13
	0009A14
	0009B01
	0009B02
	0009B03
	0009B04
	0009B05
	0009B06
	0009B07
	0009B08
	0009B09

