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1. The term "software engineering" was coined at the same time and at the 

same conference which bro~ght into the open the deep concern with the growing 

software crisis. The conference was held in 1968. The chief symptoms of 

the software crisis were: software. unreliability, delays in meeting promised 

delivery time for software systems, difficulties in achieving desired 

functionality and performance of software, complexity of software systems 

and their resistance tc modification attempts, shortage of skilled programmers 

and - above all - alarming cost of software development and maintenance. 

2. The last fifteen years saw a dramatic decrease in the cost of all imaginable 

units of raw computing power: the dollar-per-KB and dollar-per-MIPS measures 

are falling in absolute terms, let alone discounted for inflation. Parallel 

to tltis trend, although running in the opposite direction, is a very rapid 

increase in hardwa~e capabilities and availability. A fixed amount of money 

buys not only much more hardware tod~y than 15 years ago, it also buys a 

much more sophisticated equipment. Software difficulties, then seen as a 

bottleneck in comp11t~r applications, have become the most important limiting 

factor today. For all practic~l purposes , the software costs are the foremost 

consideration when a new application system is contempiated. The policy 

of buying hardware to run available software systems has become almost the 

industry rule. The accumulated investment in software is already staggering 
. 10 11 and grows world-wide by some 10 - 10 US$ per year. 

). It should, therefore, come as no surprise that a very considerable 

effort is being put into improved methods of software design, implementation 

and maintenance. Qualified programmers being scarce the world over, assorted 

software tools, increasing the programmers productivity by automation of 

the more routine aspects of Lheir work, are conside1ed a very promising means 

of alleviating the software crisis. 

4. In this report we shall survey the main directions of software engineering 

a discipline of producing better software more economically. (It is important 

to consider both aspects simultaneously: ma~ing softw1re cheaper at the ex­

pense of its quality is just as absurd as improving its quality at a dis­

proportionate increase in costs). 
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The change in approach 

5. Arguably the most important change in the ~hole software scene over the 

last 15 years is the e1~ergence of consensus on the issue of software correct­

ness. It is by now universally accepted that correctness is the main criterion 

of software quality: no matter how good a piece of software is in all other 

respects (such as efficiency or robustness), if it is incorrect its value 

i$ nil. Without an accepted notion of ~hat constitutes the correctness of 

software, the insistence on software being first of all "correct" would be 

meaningless. 

6. A very useful notion of software correctness has been found in the 

logical notion of satisfaction that may exist between two formal systems. 

Roughly speaking, a system S satisfies system T if whatever follows from 

system T is a fact in system S. In more rigorous terms, we say that S satis­

fies T if there exists an interpretation I: T - S such that to each statement t 

deemed true in T the interpretation I assigns a provably true statement s 

in S: (t = true in T) implies (s I(t) - true in S). In practical terms, T is 

what constitutes a specification, S - the software. 

7. For example, statement t may say that SORT(x) is the sequence X rearranged 

so that its members are put in ascending order. Statement s may take a fcrm 

CALL PROC SHELL(INPUT(A)). If now the interpretation I is such that PRJC 

SHELL is the n~me of the Shell-sort routine, CALL den0tes an invocation of 

a routine, A is the name of a file, INPUT - an operation delivering the file 

listed as its parameter, then all that is needed to establish that s satisfies 

t is to prove - from the particular description of Shell-sort - that indeed 

its execution delivers the sorted version of its input parameter. 

8. Two observations are in order: 

(a) Using the outlined approach we assume tha~ ~he specification 

correctly reflects the user's requirements. 

(b) It is a matter of formal calculations to establish if a given 

software satisfies the given specification. 
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9. The first uf these observations clearly indicates that the burden of 

somehow verifyin~ whether or not the software meets the application needs 

is shifted from µrogra.11t1ing to specification analysis. The seco1.d one presents 

in a nutshell the methcdologi~al advance which is the cornerstone of software 

engineering: given the specifications, the correctness of remaining parts 

of the design and implem.?ntation process becomes a calculable question. 

10. We shall return to the specification issue later. Now, we shall consider 

the significance of correctness calculability. 

11. First attempts to exploit the notion of calculable correctness concen­

trated around programme verification, i.e. around a process which would 

take a specification and a programme, and - based on this information alone -

would attempt to calculate if tne prograrrme is correct. This approach has 

had a limited success only: the amount of formal calculations involved 

was formidable even in the case of pretty small programmes. For large 

yrogrammes it became prohibitive, even if human intervention was allowed 

to speed up some of the calculatiofis. 

12. Soon it transpired that a much netter policy to exploit the notion 

of calculable correctness is to devise such programming techniques which 

would guarantee prograrrur.e correctness by virtue cf the very construction 

process. Thus methods of building correct programmes from specifications 

started to appear. 

Specification-based methods of programmi'!8. 

13. Common to these methods is the view ~f specification as the most abstract 

description of all desired properties of the desired software. (By 1111.ost 

abstract" here we mean "free of all unnecessary detail".) The software 

design and implementation is s~en as a process of transforming such abstract 

description, by adding necessary details, i.nto a programme which is to preserve 

all properties contain~d in the specification. (Thus the main diffe~ence 

between the specification and the corresponding programme is that of detail: 

the specification is free of machine-oriented details but, of course, con­

tains all application-oriented one3.) 
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14. Methods which pursue this app1oach are known as top-down design methodolo­

gies, a name which refers to the fact that - after the software is successfully 

designed and implemented - the history of the construction process is not 

unlike a pyramid with the original specification occupying its swmnit and 

the working version of the i~plemented software being its base. When one 

ascends this pyramid (moving as it were in the direction opposite to that 

which the designer took) one sheds the implementation and design details until 

the refined, most abstract summit - the specification - is reached. 

15. Basically, the top-down programming methodology consists in repeated 

application of the following procedure: 

(a) Given a problem P, is it possible to express its solution in a 

reasonably concise fashion using primitive notions of the linguistic 

level at which we want to programrne? If yes, write the programme, 

if not, invent notions Pl, ••• , Pn such that 

(i) each of the notions Pl, ••• , Pn is well-specified, 

(ii) using these notions according to their specification it is 

possible to write a satisfactory programme for problem P. 

(b) Consider each of the notions p·_, ••• , Pn in ~urn as a new problem 

and repeat the procedure. 

This problem continues until all i1;v~nted notions are implemented in terms 

of primitives of the given programming level. 

16. The above given brief description of the top-down design and implementation 

methodology introduces two important techniques: that of structured programrning 

(or structured decomposition) and that o[ ~tepwise refinement. ~e rely on 

the first one when we decompose problem Pinto problems Pl, ••• , Pn, and on 

the other one when Ye consider each of th~ Pl, ••• , Pn as a new problem in 

itself, to be solved by the same method. 

17. Both techniques rely on sound mathematical principles which guarantee 

their correctness if certain rules of decomposition and refinement are observed. 

Consideration of the mathematical foundations of structured progralllfling and 

stepwise refinement have led to new concepts in pr0gramrning languages, such 
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as ADA, PASCAL or MODULA. These modern programming languages are designed 

explicitly so as to facilitate, and eTen in some instances: enforce a 

disciplined use of these techniques. It should be observed that vhile no 

programming language per se ever solves any software design problem, the use 

of a tool influences the vay in vbich its user works. Progr8.lllllling languages 

of yesteryears, FORTRAN, COBOL and BASIC lack the aechanism.s to support 

structured progr&m1ing and stepvise refinement. In such languages it is 

virtually iapo~sible and certainly very avkvard to use the techniques vhich 

emerged as the llOSt co_,n tool of modern sortvare engineering. 

Approaches to specification of software 

18. It has been firmly established that the early stages of softvare syste~ 

design are crucial for the eTentual system usefulness. This observation is, 

of course, directly related to the fact that it is precisely the specification 

vhich in the final count is taken as the fra11e or reference in vbich softvare 

correctness is established. Thud, all design/implementation techniques 

respecting the notions of correctness cannot but preserve any specification 

errors. Consequently, such errors become apparent only after the softvare 

bas been imple11ented and thus are Tery expensiTe to correct. This clearly 

underscores the need to Terify specifications, beth from. the point of viev 

of their imp!em~ntability and froa the point of Tiev of their relevance for 

the intended application. 

19. The Terification of s~ecifications vith reopect to their relevance poses 

a very subtle quertion of translation betveen (often fuzzy) intentions of the 

eventual uaer and (necessarliy foraal) expression of specificatious. Many 

techniqt.ea have been prnposed specifically orit:nted tovuds easing of this 

t~sk. In e•sence, these techniques assume that the prime author of the 

specifications is the eventual user, and - by proTiding a soaevbat restrictive 

means or ezpression - force bia to expresa his intentions in a fora that can 

be easily 11a11ipulated by f~l'll&l. method.a. Often such technique£ depend on 

graphic conTentfons (e.g. SAD'l'), whereby the u•er/author is preasetl to describe 

his ideas in fora of pre-designed and parti&ll.7 labelled diagrams. Freely 

added, user-invented lables express his intention• originally just by their 

mneaonic dgnificance. Gradually, &a the specifier is asked to complete more 
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detailed diagrams, the pre-designed structural dependencies betveen 

diagrams are explored by a "hidden'' analyser, vhich brings to the open 

all inconsistencies and many instances of design incomplet~ness. 

20. An entirely different approach to specification writing can be 

exemplified specification languages (such as CLEAR). In this approach, 

the recognition that a specification is in fact a formal th~ry of an 

application domain is made into the ma.in tenet and main mental tool as vell. 

Specificatiou languages provide aeans for relatively easy-tc-read descrip­

tion of theories and - more significantly - for combining thus described 

theories into larger ones. For example, given a formulation of a theory 

of optimality (for instance by means of linear programming principles) and 

a formulation of a theory of control ?f a chemical process, their combination 

will yield a formulation of a theory of optimal control of this process. 

(Naturally, not any two theories can be combined, it is up to the specification 

language designers to make sure that any combination expressible in the 

language "makes sense" and that absurd combinations vou:.d be inexpressible; 

exactly as ir. safe programming language it is impossible to execute sin(true) 

instruct ion. ) 

21. When many useful application d<>11ain concepts are captured by 

corresponding theories, a specification language may be indeed very useful: 

the specification of a concrete system may be obtained by a combination of 

"library theories" vith some specit'ic expressions written just for this 

system. The main advantage of this approach, apart from economy of design, 

is in the increased safety: library theories are knovn to be safe and the 

language includes many safety measures vhicb ll&ke it unlikely that the 

nonsensical combinations would be expressed by mistake. 

22. Both graphic and linguistic approaches to formal specification writing 

are well founded in deep theoretical research into such issues as abstract 

data types, algebraic theories, theory of models etc. The same kind of 

foundations are used by a number of software description techniques, such 

as VDM, commonly used for unambiguous definition of large software products, 

such as semantics of nev progr.JJ1111ing languages (CHILL, ADA) or special 

software svst~ms (CICS). 

-1 
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S ftvare life-cycle 

23. A software system written for a particular applicatio~ seldom can be used 

for an extended period without undergoing a number of changes. Among the many 

causes that necessitate software changes one can list the following: 

(a) The nature of the application itself changes (e.g. for a banking 

&pplication, the introduction of EFT facility changes dramatically 

the accounting procedures). 

(b) lev hardware elements are added to the system. and need to be 

incorporated into the class of devices supported by the software 

(e.g. colour screens are introduced into a system that used 

11anochromatic screens only: a new "dimenf;ion" must be added to 

all output and, perhaps, input functions). 

(c) An existing piece of saftvare is transferred to another environment, 

or the environmect itself changes (e.g. better educated operators 

are hired, for vhom the existing input procedures are too dull; 

new input procedures are required which would make the operators' 

task more appealing to new staff). 

(d) The scope of the application is enlarged (e.g. in a hospital 

computer system the ~ntensive-care unit computer services are 

to be linked to a previously separate medical record system). 

{e} The re~uireaents placed on the existing syst,,_ are ch~ed (e.g. the 

air-traffic control system aust be modified when the airport it 

•ervee start• acceptinf faster jets and thus the decision time must 

be reduced to accommodate the faster traffic). 

The list of causes can be, no doubt, extended. Even this incomplete list is 

sufficient to draw the unavoidable conclusion: changes in a live system are 

ind~ed necessary, quite apart from any r~edial changes due to its detected 

atortcomings and internally motivated 1:1oftvare improvements. 

24. An unfortunate tradition lumps unde-r the title "software maintenance" 

all activities related to software changes occurring after the original 

system has been succeasfully installed. It is impc,rtant to remember therefore 

that softlAJ"e maintenance is needed not because software deteriorate! in use 
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(there is, of course, no wear and tear of sortvare), but because its use 

for a dynamically changing application will be diminished unless the soft­

ware is modified. 

25. In fact, the usual presentation of sortvare life-cycle contains four 

major phases: 

(a) Conception 

(b) Design 

(c) Implementation 

(d) Maintenance. 

26. Largely due to the fact that the "maintenance" comprises future 

morli"i~11.tions, itR RhRrP. in thP. totfll elqlf!nditure is VP.?"Y lar«e. Jn 11811'.Y 

c~~cs the maintenance costs constitute more than three-quarters of the 

total investment in a software system. (This is a very important observation: 

a client buying a moderately-sized software system for, say $ 100,000 should 

not be surprised that the maintenance costs over the next rev years vill run 

up to$ 300,000. If he is not prepared to pay this "extra", almost certainly 

he will find himself tied to an ever decreasing useful piece of software. If 

he tries to economize, e.g. by assigning junior staff to maintenance activities, 

he may face a total disaster - the system may become hopelessly eutangled and 

virtually useless.) 

27. The main reason for the high cost or software maintenance is the 

(abundantly confirmed ~Y many a post-mortem analysis) fact that the 

complexity of softvare grows very rapidly with every change made to the 

original version, unless a conscious redesign erforts (also expensiYe) is made 

to reduce the complexity. Thus, each subs~quent change is harder to ll&ke and 

is more likely to introduce - in addition to the desired ones - lll8DJ' unforseen 

and often inple&s&!lt eff.ects. 

28. These observations lead to tvo inter-related software engineering 

problems: 

(a) Hov to design software in such a vay that it vould be relatiYely 

easy to modify? 

(b) Hov to modify an exieting software so as not to increase its 

complexity mor·e than absolutely necessary? 



- 9 -

29. The first or these issues is answered by modular and hierarchical design. 

The second - by controlled backtracking techniques - greatly facilitated by 

vell-designed progr&11111ing support environment~. 

Modular design 

30. A very general engineering principle calls for the final product to be 

assembled from easily replaceable parts. Thus a bicycle consists of a fra:ne, 

two vheels, pedals, chain etc. If the bicycle malfunctions, the cause of the 

trouble can usually be traced to one of these parts, and the faulty part can 

be replaced by another of the S811le type or, indeed, by any similar part vhicb 

fits. It is not unusual for a bicycle to have vheels of different make than 

the frame or even tvo different pedals. As long as the parts satisfy certain 

externally specified interface requirements, their internal construction is of 

secondary importance. Thanks to this principle, ve may put snov t:vres on our 

cars, thus obtaining a vehicle with rather different driving parameters, 

vithout actually having to change the engine or steering vheel. 

31. This general engineering principle translates in software design into a 

requirement according to which any software product should be built from 

relatively independent modules. Each module meets its ~pecifications if it 

is a correct module; a module specification is all that is externally known 

about the module. The functionality of the whole system obtains from the 

jnteraction of modules, the interaction itself being fully determined by 

modular interfaces. 

32. When designing a piece of software, one decomposes the design into ~ 

number or relatively independent units - modules. Having listed the external 

prcperties of each module, i.e. having formulated each module specification, 

one can prove the appropriateness of the decomposition by proving that the 

required properties of the vhole indeed follow fro~ the postulated properties 

of modules. This being established, each module in turn may be considered a 

nev designing problem. Thus, allowing for hierarchy of modules, ve see a 

complete analogy with the stepwise refinement technique, although this time 

the technique is expressed in terms of structured components or progr8DIDles. 
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33. A well modularized progr8Jllllle can be now relatively easily changed by 

replacement of a module by another, the fresh module sharing with the old one 

its interface specification, while differing in secondary considerations, i.e. 

in those which are not covered by the specification relied upon in the overall 

design. For instance, if we want to adapt our software to exploit the 

potentials offered by a new output device, ve can concentrate on the output 

module in which all relevant aspects or the given piece of software should 

be encapsulated. 

34. Naturally enough, not any haphazard hacking of the design into pieces can 

be considered a proper modularization. Sound engineering principles of modular 

design have been formulated, vhich facilitates making correct modularization 

decisions. The same principles ensure that a majority or errors can be 

localized vithin a module, thus the repair activities may usually be limited 

to a single module. 

~5. Since a module can by replace~ by any other module provided their 

functional specifications and interface characteristics match. there is 

a huge incentive to plan libraries of interchangeable modules, rather like 

a Mechano set, from vhich a variety of software products could be rapidly 

constructed. Modules that could be used in many different programmes are 

knovn as r?usable ones, and all successful software houoes possess substantial 

libraries or reusable modules from vhich a major part of any system within 

the specialization area of the house can be constructed. 

36. Some modern programming languages, notably ADA and MODULA, actively 

encourage modular programming. ADA, for example, was explicitly designed 

to permit independent compilation of modules, so that libraries of reusable, 

precompiled modules bay be accumulated. 

37. A number of design methods have been proposed which are based on the 

modular ~rogramming principle. Some or these are co .. ercially available as 

kits consisting of a large number of tools, i.e. special progr&mmes which 

assist programmers in their work on software design and implementation. In 

general, such coD1J11ercially available methods concentrate on a chosen guiding 

principle for modularization (e.g. data flov, calling hierarchy or input/output 

--1 
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transformation) which suggest~ a particular approach to structuring the 

desigr.. Identified modules are named and their main characteristics are 

specified. Then, the use of supplied tools enables one to display the emerging 

design in a coherent vay a.~d - more importantly - to check the consistency of 

the design by verifying that the specified properties of the modules placed in 

their respective structural positions indeed correspond to each other. 

Thus, for instance, if it follows from the design structure that a module M 

imports data named x, it is possible to check that there is at least one 

other module which e:xp~rts thus named data. Having identified such a module, 

say N, it is possible to check if modules M and N are structurally related in 

such a vay that data transfer between them is allowed. Similarly, it may be 

checked if data z, generated by a module K, is imported by any other module 

or presented as a system output. 

38. Most available tool-assisted modularization methods allow many such 

consistency checks to be run at several levels of detail, thus permitting to 

verify at lehst some aspects of the design before any detailed programming 

(on intra.modular level) is done. 

39. Another useful extension of modular programminp; techniques consists in 

substituting module surrogates for not yet implemented ~odules. Th~s, as 

the implementation progresses, one can animate the complete system even if 

only a part of its modules is actually coded: the remaining modules being 

replaced by surrogates, the whole system may be made to perform. Such 

animated execution allows to check some external properties of the system 

long before its implementation is completed and therefore to avoid at least 

some unpleasant surprises and - perhaps - to introduce design modifications 

before they become prohibitively expensive to carry out. 

Software modification 

40. Assuming that ve have a well designed and correctly implemented piec~ of 

software, any subsequent modification should start with a clearly specified 

request for modification. If the hiatory o~ the design is preserved (and 

again there are special software tools constructed specifically for the 

purpose of storing the software design history in a manageable form), it is 
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possible to identify the design step at vhich the dee:isions contrary to the 

requested modification vere made. (Such a step must always be there since 

otherwise the request could be met by the existing so~vare and thus no real 

change vould be in fact requested althowdl the rea~est may still have led to 
some programming, e.g. of an add-on extension of the available software.) As 

soon as the pertinent design step is identified we knov that all preceding 

steps can be safely preserved in the nev design, i.e. in the design aimed at 

satisfying the considered change request. If the subsequent steps of the old 

design are discarded, the incorporation of the requested modification may be 

viewed as a continuation of the preserved part of old design by a suitable 

sequence of the nev design steps. 

41. If there are many such mod~fication requests, ve are soon faced with 

a "forest" of designs - from each desio sten at vbich some chanp:e has been 

incorporated a nev br3.0ch is started. A suitable "navigation" tool is 

needed if the programmer is to be able to traverse freely the design "forest" 

and collect design steps along each particular branch. Again, such tools are 

commercially available. 

42. The main objective of controlling the software modification may be 

stated as a atability problem for software development: how to achieve the 

situation in which small changes in specification could be accommodated by small 

changes in the implemented software. 

43. Ro general solution of this problem is ltilOYD (and, according to many 

experts, such general solution may never be discovered). There exist, however, 

some design/implementation technique& which admit a partial solution of the 

stability problem. 

44. For instance, if every time an arbitrary decision is ll&de (selecting a 

particular branch) all feasible although discarded decisions are duly recorded 

and preserved in the design data base, subsequent design steps may include a 

"what if" analysis, forcing the programmer not to do anything detrimental to 

implementation of the rejected options. or - at the very least - to clearly 

mark subsequent decisions with comments informing about such past options 

vhich from now on become infeasible. If the design hiLtory is decorated 

with such co .. ents, a change request may be run against the tree of rejected 

-1 
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alternatives, yielding not only the level to which the design is to be 

backtracked, but also informing about the point at vhich the incorporation 

of the requested change becaae infeasible in tbe present implementation. 

Analysis of this information permits to guess roughly the amount of redesign 

effort needed to make the change. Changes that vould require too much 

effort may be then rejected, or - if undertaken - may be explicitly marked 

as difficult-to-implement and therefore expensive. It should be stressed 

once more that a proper management of software modification and change 

reque·;ts is probably the most iaportant aspect of software Pngineering as 

it is this phas~ o~ the software life-cycle in vhich the lion's share of the 

total expense is incurred. The general approach outlined above lll&J be viable 

on.iy if during its entire life-cycle a software system is supported by a 

comprehensive design and development docUlllentation in vhich all versions and 

mutations are recorded in a manner allowing for a relatively easy restoration 

of arbitrl'U'J' past states. It goes vithout saying that if such a support is 

to be of real assistance to progrwmners, it must provide the relevant informa­

tion in a form that permits machine-sssisted manipulation of a large numb~r of 

variants. Thus again we are led to consider the importance of software tools. 

Software tools 

45. There are several varieties of software tools more or less available on 

the market, many more tools are the property of software houses vhich use them 

for their internal purposes. 

46. Probably the most co111110n among commercially available tools are all 

sorts of editors, i.e. programmes that facilitate programme composition 

and prograllllle text 11&nipulation at a programmer's vork station (e.g. on a VDU). 

The editors range from pretty simple text manipulators to quite sophisticated, 

progr&llllling-language oriente~ structured editors th~t in addition to the 

fscilities provided by plain text editors include an active mode of assistance. 

In the latter mode, structured editor• proapt the progr&llliller as to proper 

instruction formats, check for syntactic completeness of phrases, warn against 

simple context-detectible errors etc. Nearly all varieties of programming 

editors take care of 1iaple yet laborious editing operations, such as textual 

substitutions, systl!IULtic renaaing of programming objects etc. Many never 

progr111m11ina editor• are geared to exploit di1pla.v facilities offered by 110dern 
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terminals, e.g. by providing the so-called multivindov option, whereby a 

programmer may divide the screen into several independent "windows", coilt!ucting 

in each of them a separate programme (or programme part) development. Thus, 

for example, a progr8lllller may deve1op the main programme in one window, a 

subrouting in another and an input/output handler in yet another. A fourth 

window may be used for display of pertinent parameters, such as the number 

of lines of code already generated, memory maps etc. Each Jf the windows may 

be zoomed in, therefore providing a more detailed view of a particular 

feature, contents of different windows may be merged, etc. A programming 

edit~r with multiwindow facility creates a fair analogy of programmer's 

desk top, with all assorted documents and scratch pads being available in an 

electronic form at the same time. 

47. Another kind of commonly used programming tools is represented by 

programme generators. For a variety of applications, working programmes are 

sufficiently stereotyped to permit their automatic generation from a suitable 

chosen set of design parameters. Such programme generators usually w~rk 

interactively, either in a dialogue (question and answer) mode or by menu 

selection technique, whereby a programmer is shown a number of options, 

depending on the circumstances selects one, thus fixing a design decisic~, 

which triggers a next level menu to be displayed. At the end of a session, 

the totality of decisions made determines a particular application programme 

which is then produced ready for operation. Progr8lllllles produced in this way 

are often a bit inefficient, but otherwise quite acceptable and certainly can 

be used as system prototypes. If their functional behaviour is fou.~d to be 

satisfactory, their performance may be impro'led in a number of ways, e.g. by 

optimizing the most frequently executed parts of the code. (Incidentally, 

programme optimization is another task that often may be left to a suitable 

software tool. ) 

48. Finally, we should not forget that the ev~r growing body of commercially 

av~ilable compilers, interpreters, decision-table processors etc. are all 

in fact software tool&. An extremely useful addition to this class of tools 

are programme transformation systems which accept a programme expressed in an 

abstract form and - guided by the progr&llllller - perform textual transformations 

aimed at replacement of abstract algorithms by concrete on~s. or at replace­

ment or less efficient parts of code by aore econoaic versions. The importance 
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of sur.h tools rests in the fact that progra1111e transfon1&tion systems are 

so designed that their action preserves the intended meaning of programmes 

being transformed. A progrumer ll8Y therefore try a nUJlber or transfon1&tions 

quite safely: evec if' he does not achieve the intended improvement, he 

certainly does not run a risk of' losing correctness of bis progruime. 

49. Another class of' software tools are those vhich gradually transform an 

initial design into a more and more progrme-like text. Some tools or this 

class accept, tor instance, graphic designs in form or interconnected, labelled 

boxes and represent them aa equiTillent linguistic structures more amenable to 

further textual refinement. (In addition to transroraations betveen Tllrious 

levels of abstraction, such systems usually perform a nuaber of' useful 

consistency checks.) 8earl.y" all software deeign methodologies advocated for 

general use rely on some tools or this cla~s. 

5c. The most sophisticated software develoiaent tools, in addition to all 

previously listed facilities end standard features (such as parsers, table 

generators and tile managers), incorporate also very advanced data bases in 

vhicb progrlUllle versions and mitations are stored for easy reference and 

11&11ipulation. 

51. It is custOll&ry to refer to a fully developped system or software supi>Qrt 

tools as program1e support environaent (PSE). Modern requirements for a 

programming language usua1ly include a specification for a PSE. Probabaly the 

best-knovn or them is the APSE - intended programming support environment for 

ADA. In fact, it is expected thnt the portability or ADA programme vill be 

achieved via functional equl~ent of' APSE installed at ne11.rly all computers. 

In this vay, not only the programea themsevels could be :ported, but also 

their PSE, which would allov for a further development of a programme to be 

ported fro• one installation to another. 

52. In addition to progr.-.e deaign/iapleeentation ~..ools, a well-developed 

PSE includea a variety or tools for progr ... e testing and debugging vhich 

greatly reduce ti11e and effort needed for the pre-release servicing of sof'tvar·e. 
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Ron-procedural languages and other adYanced concepts 

53. Classic prou-ing languages, COBOL, FORTRAI, PASCAL and eTen ADA, are 

based on the notion or assignment: as a res-Jlt or the executior or a 

statement, a variable is assigned a nev Till.ue. 'Ibis notion, a direct 

descendant of machine order ''execute and store", can be rightly described 

a.s the cornerstone or the von lleumann coaputer architecture. 

54. Rev architectural concepts, such as data-tlov 11&ehines, highly parallel 

computers and inference engines, find little use tor the notion or assignaent. 

Hence, in recent years a number or entirely different progruiaing languages 

have been proposed, based on very .mortbodox principles and incorporating 

more or less directly these architectural innovations vhich seem most proaising 

from the application point of viev. 

55. Arguably the most widely accepted of the nev line of progrmming languages 

is PROLOG, a language for progr81111ling in logic. Originally intended as a tool 

for computational linguistics, PROLOO is rapidly beca111ing the 11&in progruning 

language for artificial intelligP.nce, slowly replacing in this role the old­

time favourite, LISP. 

56. What an assignaent statement is to Ji'ORTRAJf or PASCAL, a Horn clause is 

to PROLOG. (A Horn clause is a special fora of a first order predicate calculus 

formula.) Its main coaputational advantage rests in the natural parallelis• of 

Horn clause evaluation, vhile its advantage for application programaing obtains 

from the observation that a Horn clause may be just as easily interpreted as 

a statement or a fact and as statement or a hypothesis to be verified ~~ed on 

other clauses. Close kinship of Horn clauses and relations vhicb ~rovide the 

foundations for cOlllaOnly used relational data bases is another bonus for PROLOG 

adherents: not only does it yield an easy interface between application 

progr8.lllllles and data bases, but also makes possible data base description by 

essentially same means as prograJlllle description. 

57, Data flow machines seem to provide a natural eTaluation aecb&ni•• for 

another brand of nev progra1111ing languages, the so-called applicative languages, 

exemplified by LUCID. Hardvare/softvare experiaent&l systems, e.g. ALIC!, are 

currently being built to explore nev and apparently very powerful concepts of 

data r1ov anl functional pro~ramming. 
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58. Finally, the Japanese Fifth Generation project, extremely influential in 

shaping the current research interests both in the USA and in Europe, favours 

highly parallel machine architectur~ harnessed to a multilevel hierarchy of 

specialized machines: data base machine topped with an inference engine 

( progrllJllllled in PROLOG} yields an expe!"t k.nmdedge base which, interfaced 

with very advanced input-output machines (such as graphic or visual computers 

and speech analysers and synthesisers), are to become intelligent computers 

e,,f the 1990s. 

59. Futuristic as such desi~ns may seen:, they do underline a new approach to 

computing: a merger of hardv4~e and softvare design, aimed at exploitation 

of the potentials made available by the abundance of cheap and very efficient 

large chip components. 

Softvare engineering management 

60. As soon as ve recognize that softv~re vriting has become the major 

component of the multi-billion dollar information processing industry, we 

must realize th~t this kind of industry generates its peculiar managerial 

problems and leads to specific managerial techniques. 

61. The peculiarities of the ~oftware industry are quite pronounced. First 

of .'lll, it is an industry alrJOst totally independent of any raw material& and 

almost zero-energy consumh1g. Apart from software tools - themselves produced 

within software industry - it does not require much investment in material terms. 

Its products are ofte;1 classified as intangibles, and - contrary to any other 

industry - most or its costs concentrate in design: the actual production 

(if one consid;;:rs the reproduction of once composed programmes as "production") 

costs arP practically nil. This should be contrasted not. only with usual 

inuustrial sectors, such as mining or manufacturing, but also with innovation­

intensive industries, such as civil engineering or drug industry. (A constructing 

firm may redesign a bridge ten times over, the cost of nine discarded designs 

is neglegible as compared with that of actually building a bridge on site. 

A software firm forced to redesign a major piece of software usually comes close 

to bankruptcy) • 
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62. In addition, nearly all resources needed for th'! softvare industry are 

people: highly qualified, vell educated softvare engineers. Hence, the 

managerial problems in this industry are almost exclusively pure problems of 

the vorkforcc management, vherP. the vorkforce in question is very independe~t 

and fully avare of its ovn value. 

63. To fully understand the ensuing managerial diffj~ulties, let us consider 

a simple example: a softvare team engaged to produce a system for an applica­

tion, is running behind schedule. The manager decides to accelerate the rate 

of progress and implements this decision by hiring more programmers. Instead 

or expected acceleration, the vork is slaved dovn as the fresh programmers 

need to b~ instructed abcut the system in production and the only available 

instructors are the programmers already on the job. Thus the nevly hired 

hands are unproductive because they are not "in" yet, vhile the old hands, 

burdened vith the additional task of instructing the nev-co~ers, become less 

productive. Hiring even more programmers may be disastrous. After a period, 

the nevcomers are integrated and the vork may resume in earnest (although the 

delay has grovn considerably). Bov, hovever, the manage~ent discovers that 

the enlargement of the team has blovn up the communication problems vhich grov 

as the square of the number of people on the project, and a sizeable portion of 

the total effort must be spent on overcoming the resultant communication 

clashes. Hiring an extra support team: secretaries, information officers 

and technical vriters compounds the difficulty. After another couple of 

months the management ~ealize that they are fighting an uphill battle: the 

effective rate of system production is invariant of the vork expanded, it 

se~•s to be solely determined by the original design and after it has been 

approved there is little that the management can do to influence the rate 

of fUrther development. 

64. A number of managerial techniques, including the spectacularly successful 

"chief programmer team" approach pioneered by IBM, has been proposed and 

found wseful. Still, the management of softvare projects remains a vexing 

problem and successful softvare aan~ers are - if an.vthirui: - even rarer than 

good programmers. 
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