G @ | TOGETHER

!{’\N i D/? L&y

=S~ vears | for a sustainable future
OCCASION

This publication has been made available to the public on the occasion of the 50" anniversary of the
United Nations Industrial Development Organisation.

’-.
Sy
B QNIDQI
s 77

vears | for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations
employed and the presentation of the material in this document do not imply the expression of any
opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development
Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its
authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or
degree of development. Designations such as “developed”, “industrialized” and “developing” are
intended for statistical convenience and do not necessarily express a judgment about the stage
reached by a particular country or area in the development process. Mention of firm names or
commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY
Any part of this publication may be quoted and referenced for educational and research purposes
without additional permission from UNIDO. However, those who make use of quoting and
referencing this publication are requested to follow the Fair Use Policy of giving due credit to
UNIDO.
CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION
Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria

Tel: (+43-1) 26026-0 * www.unido.org * unido@unido.org

mailto:publications@unido.org
http://www.unido.org/

10 i e

= |z

20

4

= W“ 1.8

L2 s e

MICGROCOPY RESOLUGTION TEST CHANT
MATIONAL FORE AT OF L TAMDARD .
CTAMTVARIY HES§ R FICF RAATERIAL trting
APP e U TE T ARG b

A MM AN
289

INDUSTRIAL DEVELOPMENT ORGANIZATION

Distr.
LIMITED

UNIDO/IS.446
22 February 1984

ENGLISH

SOFTWARE ENGINEERING:

A SURVEY !

by

Wladyslaw M. Turski**
UNIDO Consultant*

» The views expressed in this paper are those of the author and do not
necessarily reflect the views of the secretariat of UNIDO.

Mention of firm names and commercial products does not imply the endorsement

of UNIDO.

This document has been reproduced without formal editing.

Ldd Professor, Institute of Informati-s, Warsaw University, and Department

of Computing, Imper-al College, London.

V.84-82124

- ii -

CONTENTS

The change in approach
Specification-based methods of programming
Approaches to specification of software
Softwvare life-cycle

Modular design

Software modification

Software tools

Non-procedural languages and other
advanced concepts in programming

Software engineering management

Page

o =~ MW

11

13

16
17

1. The term '"software engineering' was coined at the same time and at the
same conference which brought into the open the deep concern with the growing
software crisis. The conference was held in 1968. The chief symptoms of

the software crisis were: scftware unreliability, delays in meeting promised
delivery time for software systems, difficuities in achieving desired
functionality and performance of software, complexity of software systems

and their resistance tc modification attempts, shortage of skilled programmers

and - above all - alarming cost of software development and maintenance.

2. The last fifteen years saw a dramatic decrease in the cost of all imaginable
units of raw computing power: the dollar-per-KB and dollar-per-MIPS measures
are falling in absolute terms, let alone discounted for inflation. Parallel

to this trend, although running in the opposite direction, is a very rapid
increase in hardwar-e capabilities and availability. A fixed amount of money
buys not only much more hardware todcy than 15 years ago, it also buys a

much more sophisticated equipment. Software difficulties, then seen as a
bottleneck in comput:r applications, have become the most important limiting
factor today. For all practical purposes , the software costs are the foremost
consideration when a new application system is contempiated. The policy

of buyiné hardware to run available software systems has become almost the
industry rule. The accumulated investment in software is already staggering

and grows world-wide by some 1010 - 1011 US$ per year.

3. It should, therefore, come as no surprise that a very considerable
effort is being put into improved methods of software design, implementation
and maintenance. Qualified programmers being scarce the world over, assorted
software tools, increasing the programmers productivity by automation of
the more routine aspects of Lheir work, are considered a very promising means

of alleviating the software crisis.

4, In this report we shall survey the main directions of software engineering

a discipline of producing better software more economically. (It is important
to consider both aspects simultaneously: making softwire cheaper at the ex-
pense of its quality is just as absurd as improving its quality at a dis-

proportionate increase in costs).

The change in approach

5. Arguably the most important change in the vhole software scene over the
last 15 years is the emergence of consensus on the issue of software correct-
ness. It is by now universally accepted that correctness is the main criterion
of software quality: no matter how good a piece of software is in all other
respects (such as efficiency or robustness), if it is incorrect its value

ic nil. Without an accepted notion of what constitutes the correctness of
software, the insistence on software being first of all "correct' would be

meaningless.

6. A very useful notion of software correctness has been found in the

logical notion of satisfaction that may exist between two formal systems.
Roughly speaking, a system S satisfies system T if whatever follows from

system T is a fact in system S. In more rigorous terms, We say that S satis-
fies T if there exists an interpretation I: T - S such that to each statement t
deemed true in T the interpretation I assigns a provably true statement s

in S: (t = true in T) implies (s = 1(t) = true in S). In practical terms, T is

what constitutes a specification, S - the software.

7. For example, statement t may say that SORT(x) is the sequence X rearranged
so that its members are put in ascending order. Statement s may take a form
CALL PROC SHELL(INPUT(A)). 1If now the interpretation 1 is such that PROC

SHELL is the name of the Shell-sort routine, CALL denotes an invocation of

a routine, A is the name of a file, INPUT - an operation delivering the file
listed as its parameter, then all that is needed to establish that s satisfies

t is to prove - from the particular description of Shell-sort - rhat indeed

its execution delivers the sorted version of its input parameter.

8. Two observations are in order:

(a) Using the outlined approach we assume tha. the specification

correctly reflects the user's requirements.

(b) It is a matter of formal calculations to establish if a given

software satisfies the given specification.

9. The first of these observations clearly indicates that the burden of
somehow verifying whether or not the software meets the application needs

is shifted from programming to specification analysis. The secound one presants
in a nutshell the methcdological advance which is the cornerstone of software
engineering: given the specifications, the correctness of remaining parts

of the design and implementation process becomes a calculable question.

10. We shall return to the specification issue later. Now, we shall consider

the significance of correctness calculability.

11. First attempts to exploit the notion of calculable correctness concen-
trated around programme verification, i.e. around a process which would

take a specification and a programme, and - based on this information alone -
would attempt to calculate if tne programme is correct. This approach has
had a limited success only: the amount of formal calculations involved

was formidable even in the case of pretty small programmes. For large
programmes it became prohibitive, even if human intervention was allowed

to speed up some of the calculatiorns.

12. Soon it transpired that a much petter policy to exploit the notion
of calculable correctness is to devise such programming techniques which
would guarantee programme correctness by virtue ¢f the very construction
process. Thus methods of building correct programmes from specifications

started to appear.

Specification-based methods of programming

13. Common to these methods is the view >f specification as the most abstract
description of all desired properties of the desired software. (By "most
abstract” here we mean 'free of all unnecessary detail".) The software

design and implementation is scen as a process of transforming such abstract
description, by adding necessary details, into a programme which is to preserve
all properties contained in the specification. (Thus the main diffeience
between the specification and the corresponding programme is that of detail:
the specification is free of machine-oriented details but, of course, con-

tains all application-oriented ones.)

14. Methods which pursue this approach are known as top-down design methodolo-
gies, a name which refers to the fact that - after the software is successfully
designed and implemented - the history of the construction process is not
unlike a pyramid with the original specification occupying its summit and

the working version of the implemented software being its base. When one
ascends this pyramid (moving as it were in the direction opposite to that

which the designer took) one sheds the implementation and design details until

the refined, most abstract summit - the specification - is reached.

15. Basically, the top-down programming methodology consists in repeated

application of the following procedure:

(a) Given a problem P, is it possible to express its solution in a
reasonably concise fashion using primitive notions of the linguistic
level at which we want to programme? If yes, write the programme,

if not, invent notions Pl, ..., Pn such that
(i) each of the notions Pl, ..., Pn is well-specified,

(ii) wusing these notions according to their specification it is

possible to write a satisfactory programme for problem P.

(b) Consider each of the notions P°, ..., Pn in “urn as a new problem

and repeat the procedure.

This problem continues until all iuvented notions are implemented in terms

of primitives of the given programming level.

16. The above given brief description of the top-down design and implementation
methodology introduces two important techniques: that of structured programming
(or structured decomposition) and that oi stepwise refinement. We rely on

the first one when we decompose problem P into problems Pl, ..., Pn, and on

the other one when we consider each of the Pl,..., Pn as a new problem in

itself, to be solved by the same method.

17. Both techniques rely on sound mathematical principles which guarantee
their correctness if certain rules of decomposition and refinement are ohserved.
Consideration of the mathematical foundations of structured programming and

stepwise refinement have led to new concepts in programming languages, such

-5-

as ADA, PASCAL or MCDULA. These modern programming languages are designed
explicitly so as to facilitate, and even in some instances: enforce a
disciplined use of these techniques. It should be observed that while no
programming language per se ever solves any software design problem, the use
of a tool influences the way in vhich its user works. Programming languages
of yesteryears, FORTRAN, COBOL and BASIC lack the mechanisms to support
structured programming and stepvise refinement. In such languages it is
virtually impossible and certainly very awvkward to use the techniques which

emerged as the most common tool of modern software engineering.

Approaches to specification of software

18. It has been firmly established that the early stages of software system
design are crucial for the eventual system usefulness. This observation is,
of course, directly related to the ract that it is precisely the specification
which in the final count is taken a3 the frame of reference in vhich software
correctness is established. Thus, all design/implementation techniques
respecting the notions of correctness cannot but preserve any specification
errors. Consequently, such errors become apparernt only after the software

has been implemented and thus are very expensive to correct. This clearly
underscores the need to verify specifications, both from the point of view

of their implementability and from the point of view of their relevance for

the intended application.

19. The verification of specifications with respect to their relevance poses
a very subtle quertion of translation between (often fuzzy) intentions of the
eventual user and (necessarliy foramal) expression of specifications. Many
techniques have been proposed specifically oriented towards easing of this
task. In essence, these techniques assume that the prime author of the
specifications is the eventual user, and - by mroviding a somevhat restrictive
means of expression - force him to express his intentions in a form that can
be easily manipulated by formal methods. Often such techniquee depend on
graphic conventions (e.g. SADT), vhereby the user/author is pressed to describe
his ideas in form of pre-designed and partially labelled diagrams. Freely
added, user-invented lables express his intentions originally just by their

mnemonic significance. Gradually, es the specifier is asked to complete more

detailed diagrams, the pre-designed structural dependencies between
diagrams are explored by a "hidden" analyser, which brings to the open

all inconsistencies and many instances of design incompleteness.

20. An entirely different approach to specification writing can be
exemplified specification languages (suchk as CLEAR). In this approach,

the recognition that a specification is in fact a formal theory of an
application domain is made into the main tenet and main mental tool as well.
Specificatiou languages provide means for relatively easy-ic-read descrip-
tion of theories and - more significantly - for combining thus described
theories into larger ones. For example, given a formulation of a theory

of optimality (for instance by means of linear programming principles) and

a formulation of a theory of control of a chemical process, their combination
will yield a formulation of a theory of optimal control of this process.
(Naturally, not any two theories can be combined, it is up to the specification
language designers to make sure that any combination expressible in the
language "makes sense” and that absurd combinations would be inexpressible;
exactly as in safe programming language it is impossible to execute sin(true)

instruction.)

21. When many useful application domain concepts are captured by
corresponding theories, a specification language may be indeed very useful:
the specification of a concrete system may be obtained by a combination of
"library theories” with some speciric expressions written Jjust for this
system, The main advantage of this approach, apart from economy of design,
is in the increased safety: library theories are known to be safe and the
language includes many safety measures which make it unlikely that the

nonsensical combinations would be expressed by mistaxe.

22. Both graphic and linguistic approaches to formal specification writing
are wvell founded in deep thecretical research into such issues as abstract
data types, algebraic theories, theory of models etc. The same kind of
foundations are used by a number of software description techniques, such
as VDM, commonly used for unambiguous definition of large software products,
such as semantics of new programming languages (CHILL, ADA) or special

software systems (CICS).

-4

S ftware life-cycle

23. A software system vritten for a particular applicatior seldom can be used
for an extended pericd without undergoing a number of changes. Among the many

causes that recessitate software changes one can list the following:

(a) The nature of the application itself changes (e.g. for a banking
epplication, the introduction of EFT facility changes dramatically

the accounting procedures).

(b) Newv hardware elements are added to the system and need to be
incorporated into the class of devices supported by the software
(e.g. colour screens are introduced into a system that used
monochromatic screens only: a nev "dimension"” must be added to

all output and, perhaps, input functions).

(¢) An existing piece of saftware is transferred to another environment,
or the envircnmert itself changes (e.g. better educated operators
are hired, for vhom the existing input procedures are too dull;
nev input procedures are required which would make the operators'

task more appealing to new staff).

(d) The scope of the application is enlarged (e.g. in a hospital
computer system the intensive-care unit computer services are

to be linked to a previously separate medical record system),

{e) The reqguirements placed on the existing system are changed (e.g. the
air-traffic control system must be modified when the airport it
serves starts accepting faster Jets and thus the decision time must

be reduced to accommodate the faster traffic).

The 1list of causes can be, no doubt, extended. Even this incomplete list is
sufficient to drav the unavoidable conclusion: changes in a live system are
indeed necessary, quite apart from any remedial changes due to its detected

stortcomings and internally motivated software improvements.

24, An unfortunate tradition lumps under the title "software maintenance"
all activities related to software changes occurring after the original
system has been successfully installed. It is impcrtant to remember therefore

that softwvare maintenance is needed not because software deteriorates in use

(there is, of course, no wvear and tear of software), but because its use
for a dynamically changing application will be diminished unless the soft-

vare is modified.

25. In fact, the usual presentation of software life-cycle contains four

major phases:

(a) Conception
(b) Design
(¢) Implementation

(d) Maintenance.

26. Largely due to the fact that the "maintenance” comprises future
modi“'ieations, its share in the total expenditure is verv large. Tn many

Cuses the maintenance costs constitute more than three-quarters of the

total investment in a software system. (This is a very important observation:

a client buying a moderately-sized software system for, say $ 100,000 should
not be surprised that the maintenance costs over the next few years will run

up to $ 300,000. If he is not prepared to pay this "extra", almost certainly
he will find himself tied to an ever decreasing useful piece of software. If
he tries to economize, e.g. by assigning Junior staff to maintenance activities,
he may face a total disaster - the system may become hopelessly eutangled and

virtually useless.)

27. The main reason for the high cost of software maintenance is the
(abundantly confirmed oy many a post-mortem analysis) fact that the
complexity of software grows very rapidly with every change made to the
original version, unless a conscious redesign efforts (also expensive) is made
to reduce the complexity. Thus, each subszquent change is harder to make and
is more likely to introduce - in addition to the desired ones - many unforseen

and often inpleasant effects,

28. These observations lead to two inter-related software engineering

problems:

(a) How to design software in such a way that it would be relatively
easy to modify?

(b) How to modify an existing software so as not to increase its

complexity more than absolutely necessary?

29. The first of these issues is answered by modular and hierarchical design.
The second - by controlled backtracking techniques - greatly facilitated by
vell-designed programming support environments.

Modular design

30. A very general engineering principle calls for the final product to be
assembled from easily replaceable parts. Thus a bicycle consists of a frame,
two vheels, pedals, chain etc. 1If the bicycle malfunctions, the cause of the
trouble can usually be traced to one of these parts, and the faulty part can
be replaced by another of the same type or, indeed, by any similar part which
fits. It is not unusual for a bicycle to have wheels of different make than
the frame or even two different pedals. As long as the parts satisfy certain
externally specified interface requirements, their internal construction is of
secondary importance. Thanks to this principle, we may put snovw tyres on our
cars, thus obtaining a vehicle with rather different driving parameters,

without actually having to change the engine or steering wheel.

31. This general engineering principle translates in software design into a
requirement according to which any software product should be built from
relatively independent modules. Each module meets its specifications if it
is a correct module; & module specification is all that is externally known
about the module. The functionality of the whole system obtains from the
interaction of modules, the interaction itself being fully determined by

modular interfaces.

32. When designing a piece of software, one decomposes the design into e
number of relatively independent units - modules. Having listed the external
prcperties of each module, i.e. having formulated each module specification,
one can prove the appropriateness of the decomposition by proving that the
required properties of the whole indeed follow from the postulated properties
of modules. This being established, each module in turn may be considered a
nev designing problem. Thus, allowing for hierarchy of modules, we see a
complete analogy with the stepwise refinement technique, although this time

the technique is expressed in terms of structured components of programmes.

- 10 -

33. A vell modularized programme can be now relatively easily changed by
replacement of a module by another, the fresh module sharing with the old one
its interface specification, while differing in secondary consideratioms, i.e.
in those which are not covered by the specification relied upon in the overall
design. For instance, if we want to adapt our software to exploit the
potentials offered by a new output device, we can concentrate on the output
module in wvhich ali relevant aspects of the given piece of software should

be encapsulated.

34. Naturally enough, not any haphazard hacking of the design into pieces can
be considered a proper modularization. Sound engineering principles of modular
design have been formulated, which facilitates making correct modularization
decisions. The same principles ensure that a majority of errors can be
localized within a module, thus the repair activities may usually be limited

to a single module.

25, Since a module can by replaced by any other module provided their
functional specifications and interface characteristics match, there is

a huge incentive to plan libraries of interchangeable modules, rather like

a Mechano set, from which a variety of software products could be rapidly
constructed. Modules that could be used in many different programmes are
known as rusable ones, and all successful software houses possess substantial
libraries of reusable modules from which a major part of any system within

the specialization area of the house can be constructed.

36. Some modern programming languages, notably ADA and MODULA, actively
encourage modular programming. ADA, for example, was explicitly designed
to permit independent compilation of modules, so that libraries of reusable,

precompiled modules bay be accumulated.

37. A number of design methods have been proposed which are based on the
modular programming principle. Some of these are commercially available as
kits consisting of a large number of tools, i.e, special progremmes which
assist programmers in their work on software design and implementation. In
general, such commercially available methods concentrate on a chosen guiding

principle for modularization (e.g. data flow, calling hierarchy or input/output

e g O

transformation) which suggests a particular approach to structuring the
desigr. Identified modules are named and their main characteristics are
specified. Then, the use of supplied tools enables one to display the emerging
design in a coherent way and - more importantly - to check the consistency of
the design by verifying that the specified properties of the modules placed in
their respective structural positions indeed correspond to each other.

Thus, for instance, if it follows from the design structure that a module M
imports data named x, it is rossible to check that there is at least one

other module which experts thus named data. Having identified such a module,
say N, it is possible to check if modules M and N are structurally related in
such a way that data transfer between them is allowed. Sirilarly, it may be
checked if data z, generated by a module K, is imported by any other module

or presented as a system output.

38. Most available tool-assisted modularization methods allow many such
consistency checks to be run at several levels of detail, thus permitting to
verify at least some aspects of the design before any detailed programming

(on intramodular level) is done.

39. Another useful extension of modular programming techniques consists in
substituting module surrogates for not yet implemented modules. Thuas, as
the implementation progresses, one can animate the complete system even if
only a part of its modules is actually coded: the remaining modules being
replaced by surrogates, the whole system may be made to perform. Such
animated execution allows to check some external properties of the aystem
long before its implementation is completed and therefore to avoid at least
some unpleasant surprises and - perhaps - to introduce design modifications

before they become prohibitively expensive to carry out.

Softwvare modification

40. Assuming that we have a vell designed and correctly implemented piece of
software, any subsequent modification should start with a clearly specified
request for modification. If the history ol the design is preserved (and
again there are special software tools constructed specifically for the

purpose of storing the software design history in a manageable form), it is

T g

- 12 -

possible to identify the design step at which the decisions contrary to the
requested modification were made. (Such a step must always be there since
othervise the request could be met by the existing software and thus no real
change would be in fact requested although the request may still have led to
some programming, e.g. of an add-on extension of the available software.) As
soon as the pertinent design step is identified we know that all preceding
steps can be safely preserved in the new design, i.e. in the design aimed at
satisfying the considered change request. If the subsequent steps of the old
design are discarded, the incorporation of the requested modification may be
viewved as a continuation of the preserved part of old design by a suitable

sequence of the new design steps.

k1. If there are many such modification requests, wve are soon faced with

a "forest" of designs - from each design step at which some change has been
incorporated a nev branch is started. A suitable "navigation" tool is

needed if the programmer is to be able to traverse freely the design "forest”
and collect design steps along each particular branch. Again, such tools are

commercially available.

k2. The main objective of controlling the software modification may be
stated as a stability problem for software development: how to achieve the
situation in which small changes in specification could be accommodated by small

changes in the implemented software.

43, No genersl solution of this problem is snown (and, according to many
experts, such general solution may never be discovered). There exist, however,
some design/implementation techniques which admit a partial solution of “he
stability problem.

4k, For instance, if every time an arbitrary decision is made (selecting a
particular branch) all feasible although discarded decisions are duly recorded
and preserved in the design data base, subsequent design steps may include a
"what if" analysis, forcing the programmer not to do anything detrimental to
implementation of the rejected options. or - at the very least ~ to clearly
mark subsequent decisions with comments informing about such past options
vhich from now on become infeasible. If the design hiistory is decorated

wvith such comments, a change request may be run against the tree of rejected

alternatives, yielding not only the level to which the design is to be

backtracked, but also informing about the point at which the incorporation

of the requested change became infeasible in the present implementation.
Analysis of this information permits to guess roughly the amount of redesign
effort needed to make the change. Changes that would require toc much

effort may be then rejected, or - if undertaken - may be explicitly marked

as difficult-to-implement and therefore expensive. It should be stressed
once more that a proper management of software modification and change
reque;ts is probably the most important aspect of software engineering as

it is this phase ol the software life-cycle in which the lion's share of the
total expense is incurred. The general approach outlined above ma; be viable
oniy if during its entire life-cycle a software system is supported by a
comprehensive design and development documentation in which all versions and
mutations are recorded in a manner allowing for a relatively easy restoration
of arbitrary past states. It goes without saying that if such a support is

to be of real assistance to programmers, it must provide the relevant informa-
tion in a form that permits machine-assisted manipulation of a large number of

variants. Thus again we are led to consider the importance of software tools.

Software tools

LS. There are several varieties of software tools more or less available on
the market, many more tools are the property of software houses which use them

for their internal purposes.

k6. Probably the most common among commercially available toole are all

gsorts of editors, i.e. programmes that facilitate programme composition

and programme text manipulation at a programmer's work station {(e.g. on a VDU).
The editors range from pretty simple text manipulators to quite sophisticated,
programming-language oriented structured editors that in addition to the
facilities provided by plain text editors include an active mode of assistance.
In the latter mode, structured editors prompt the programmer as to proper
instruction formats, check for syntactic completeness of phrases, warn against
simple context-detectible errors etc. Nearly all varieties of programming
editors take care of simple yet laborious editing operations, such as textual

substitutions, systematic renaming of programming objects etc. Many never

programming editors are geared to exploit display facilities offered by modern

terminals, e.g. by providing the so-called multivindow option, whereby a
programmer may divide the screen into several independent "windows', conducting
in each of ithem a separate programme (or programme part) development. Thus,
for example, a programmer may develop the mein programme in one window, a
subrouting in another and an input/output handler in yet another. A fourth
vindow may be used for display of pertinent parameters, such as the number

of lines of code already gererated, memory maps etc. Each of the windovws may
be zoomed in, therefore providing a more detailed view of a particular
feature, contents of different vindows may be merged, etc. A programming
editor with multiwindow facility creates a fair analogy of programmer's

desk top, with all assorted documents and scratch pads being available in an

electronic form at the same time.

L7. Another kind of commonly used programming tools is represented by
programme generators. For a variety of applications, working programmes are
sufficiently stereotyped to permit their automatic generation from a suitable
chosen set of design parameters. Such programme generators usually work
interactively, either in a dialogue (question and answer) mode or by menu
selection technique, whereby & programmer is shown a number of options,
depending on the circumstances selects one, thus fixing a design decisicn,
which triggers a next level menu to be displayed. At the end of a session,
the totality of decisions made determines a particular application programme
which is then produced ready for operation. Programmes produced in this way
are often a bit inefficient, but otherwise quite acceptable and certainly can
be used as system prototypes. If their functional behaviour is found to be
satisfactory, their performance may be improved in a number of ways, e.g. by
optimizing the most frequently executed parts of the code. (Incidentally,
programme optimization is another task that often may be left to a suitable

software tool.)

48. Finally, we should not forget that the ever growing body of commercially
available compilers, interpreters, decision-table processors etc. are all

in fact software toole. An extremely useful addition to this class of tools
are programme transformation systems which accept a programme expressed in an
abstract form and - guided by the programmer - perform textual transformations
aimed at replacement of abstract algorithms by concrete ones, or at replace-

ment of less efficient parts of code by more economic versions. The importance

of surh tools rests in the fact that programme transformation systems are

so designed that their action preserves the intended meaning of programmes
being transformed. A programmer may therefore try a number of transformations
quite safely: ever if he does not achieve the intended improvement, he

certainly does not run 2 risk of losing correctness of his programme.

L9. Another class of software tools are those which gradually transform an
initial design into a more and more programme-like text. Some tools of this
class accept, for instance, graphic designs in form of interconnected, labelled
boxes and represent them as equivalent linguistic structures more amenable to
further textual refinement. (In addition to transforaations between various
levels of abstraction, such systems usually perform a number of useful
consistency checks.) HNearly all software design methodologies advocated for

general use rely on some tools of this class.

5C. The most sophisticated software development tools, in addition to all
previously listed facilities and standard features (such as parsers, table
generators and file managers), incorporate also very advanced data bases in
vhich programme versions and mutations are stored for easy reference and

manipulation.

51. It is customary to refer to a fully developped system of software support
tools as programme support environment (PSE). Modern requirements for a
programming language usually include a specification for a PSE. Probabaly the
best-known of them is the APSE - intended programming support environment for
ADA. In fact, it is expected that the portability of ADA programme will be
achieved via functional equivalent of APSE installed at nearly all computers.
In this way, not only the programmes themsevels could be ported, but also
their PSE, which would allow for a further development of a programme to be

ported from one installation to another.

52. In addition to programme design/implementation tools, a well-developed
PSE includea a variety of tools for programme testing and debugging which

greatly reduce time and effort needed for the pre-release servicing of software.

- 16 -

Non-procedural languages and other advanced concepts in programming

53, Classic programming languages, COBOL, FORTRAN, PASCAL and even ADA, are
based on the notion of assignment: as a result of the executior of a
statement, a variable is assigned a nev value. This notion, & direct
descendant of machine order "execute and store", can be rightly described

as the cornerstone of the von Neumann computer architecture.

54, New architectural concepts, such as data-flov machines, highly parallel
computers and inference engines, find little use for the notion of assignment.
Hence, in recent years a number of entirely different programming languages
have been proposed, based on very unorthodox principles and incorporating

more or less directly these architectural innovations which seem most promising

from the application point of view.

55. Arguably the most widely accepted of the new line of programming languages
is PROLOG, a language for programming in logic. Originally intended as a tool
for computational linguistics, PROLOG is rapidly becoming the main programming
language for artificial intelligence, slowly replacing in this role the old-

time favourite, LISP.

56. What an assignment statement is to FORTRAN or PASCAL, a Horm clause is

to PROLOG. (A Horn clause is a special form of a first order predicate calculus
formula.) Its main computational advantage rests in the natural parallelism of
Horn clause evaluation, while iis advantage for application programming obtains
from the observation that a Hornm clause may be just as easily interpreted as

a statement of a fact and as statement of a hypothesis to be verified based on
other clauses. Close kinship of Horn clauses and relations which provide the
foundations for commonly used relational data bases is another bonus for PROLOG
adherents: not only does it yield an easy interface between application
programmes and data bases, but also makes possible data base description by

egssentially same means as programme description.

S7. Data fiow machines seem to provide a natural evaluation mechanism for
another brand of nev programming languages, the so-called applicative languages,
exemplified by LUCID. Hardware/softwvare experimental systems, e.g. ALICE, are
currently being built to explore newv and apparently very poverful concepts of

data flow ani functional programming.

- 17 -

58. Finally, the Japanese Fifth Generation project, extremely influential in
shaping the current research interests both in the USA and in Europe, favours
highly parallel machine architecture harnesssd to a multilevel hierarchy of
specialized machines: data base machine topped with an inference engine
(programmed in PROLOG) yields an expert knowledge base which, interfaced
with very advanced input-output machines (such as graphic or visual computers
and speech analysers and synthesisers), are to become intelligent computers

of the 1990s.

59. Futuristic as such designs may seem, they do underline a new approach to
computing: a merger of hardware and software design, aimed at exploitation
of the potentials made available by the abundance of cheap and very efficient

large chip components.

Software engineering management

60. As soon as ve recognize that software writing has become the major
component of the multi-billion dollar information processing industry, ve
must realize that this kind of industry generates its peculiar managerial

problems and leads to specific managerial techniques.

61. The peculiarities of the software industry are quite pronounced. First

of all, it is an industry alrmost totally independent of any raw materials and
almost zero-energy consumifng. Apart from software tools - themselves produced
within sofiwvare industry - it does not require much investment in material terms.
Its products are ofte. classified as intangibles, and - contrary to any other
industry - most of its costs concentrate in design: the actual production

(if one considers the reproduction of cnce composed programmes as ''production”)
costs are practically nil. This should be contrasted not only with usual
industrial sectors, such as mining or manufacturing, but also with innovation-
intensive industries, such as civil engineering or drug industry. (A constructing
firm may redesign a bridge ten times over, the cost of nine discarded designs

is neglegible as compared with that of actually building a bridge on site,

A software firm forced to redesign a major piece of software usually comes close

to bankruptcy).

- 18 -

62. In addition, nearly all resources needed for the software industry are
people: highly qualified, well educated software engineers. Hence, the
managerial problems in this industry are almost exclusively pure problems of
the workforce management, where the workforce in question is very independent

and fully awvare of its own value.

63. To fully understand the ensuing managerial difficulties, let us consider
a simple example: a software team engaged to produce a system for an applica-
tion, is running behind schedule. The manager decides to accelerate the rate
of progress and implements this decision by hiring more programmers. Instead
of expected acceleration, the work is slowed down as the fresh programmers
need to bs instructed abcut the system in production and the only available
instructors are the programmers already on the job. Thus the newly hired
hands are unproductive because they are not "in" yet, while the old hands,
burdened with the additional task of instructing the new-corers, become less
productive. Hiring even more programmers may be disastrous. After a period,
the newcomers are integrated and the work mey resume in earnest (although the
delay has grown considerably). Now, hovever, the management discovers that
the enlargement of the team has blown up the communication problems which grow
as the square of the number of people on the project, and a sizeable portion of
the total effort must be spent on overcoming the resultant communication
clashes. Hiring an extra support team: secretaries, information officers

and technical writers compounds the difficulty. After another couple of
months the management realize that they are fighting an uphill battle: the
effective rate of system production is invariant of the work expanded, it
gseems to be solely determined by the original design and after it has been
approved there is little that the management can do to influence the rate

of further development.

64, A number of managerial techniques, including the spectacularly successful
"chief programmer team" approach pioneered by IBM, has been proposed and
found useful. Stili, the management of software projects remains a vexing

problem and successful software managers are - if anvthing - even rarer than
good programmers.

	0009A01
	0009A02
	0009A03
	0009A04
	0009A05
	0009A06
	0009A07
	0009A08
	0009A09
	0009A10
	0009A11
	0009A12
	0009A13
	0009A14
	0009B01
	0009B02
	0009B03
	0009B04
	0009B05
	0009B06
	0009B07
	0009B08
	0009B09

