G @ | TOGETHER

!{’\N i D/? L&y

=S~ vears | for a sustainable future
OCCASION

This publication has been made available to the public on the occasion of the 50" anniversary of the
United Nations Industrial Development Organisation.

’-.
Sy
B QNIDQI
s 77

vears | for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations
employed and the presentation of the material in this document do not imply the expression of any
opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development
Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its
authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or
degree of development. Designations such as “developed”, “industrialized” and “developing” are
intended for statistical convenience and do not necessarily express a judgment about the stage
reached by a particular country or area in the development process. Mention of firm names or
commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY
Any part of this publication may be quoted and referenced for educational and research purposes
without additional permission from UNIDO. However, those who make use of quoting and
referencing this publication are requested to follow the Fair Use Policy of giving due credit to
UNIDO.
CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION
Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria

Tel: (+43-1) 26026-0 * www.unido.org * unido@unido.org

mailto:publications@unido.org
http://www.unido.org/

PACROCORY BRESOLUTION TEST CHART
PLA TR B g ot PAR AR
TAMIUAR DR RE R Py SAATERIAL Tty

APV v b TE T Ty

13251 -

LINITED

UNIDO/IS. 440 <
UNITED NATIONS 10 February 1984
INDUSTRIAL DEVELOPMENT ORGANIZATION ENGLISH

GUIDELINES FOR SOFIWARE PRODUCTION
IN DEVELOPING COUNTRIES*

Earmann Kopets##
—

fhe views expressed in this paper are those of the author and
do not necesdarily reflect the views of the secretariat of UNIDO.
Mention of firm names and commercial products does not ieply the
endorsemsnt of UNIDO.

This document has been reproduced without formal editing.
##» Professor, Technische Universitaet, Vienna, Austria

V.84-81528

- . a——-—

Guidelines for Software Production

in Developing Countries

1. Introduction
1.1 What is "Software"?
1.2 The Rcle of Software and Hardware in

the Information Industry

2. The Need for a Software Policy in Developing Countries
2.1 Organization
2.2 The Establishment of Training Facilities

2.3 Standards

3. Organizing a Software Project
3.1 Project Phases
3.2 Software Effort Estimation
3.3 Team Organization
3.4 Project Control

3.5 A case study

4. The Software Developmeht Process
4.1 Requirements Analysis
4.2 Functional Specification
* 4.3 System Desigrn
4 .4 Programming
4.5 Testing and Integration

4.6 Maintenance

-— . -

- ii -

Appendix 1l: The UNIX+ system
Appendix 2: Structured Analysis and Design (SADT#)

Appendix 3: Glossary of some Software Terms

7. Bibliography

+ UNIX is Trademark of Bell Laboratories
++ ADA is a Trademark of the US Department of Defense

SADT is a Trademark of SOFTECH

Terms which are marked with an "*" are defined in the glossary

at the end of these guidelines.

!
i

1. INTRODUCTION

In the last thirty years, the information industry has becosme
one of the major industries in the industrialized nations.

It is the main growth industry and the driving

force for productivity gains in many other fields in the economy.
The "automation of information processing"” provides tremendous
opportunities. Significant improvements in many areas can be

realized, e.q.

- decision making

- production

- education

~ environmental monitoring
- medicine

- communication

etc..

But there has also been a considerable impact of the information

industry on the less developed countrie~, both direct and indirect.

The direct effect of the information induétry is the application

of computers in these countries in order to assist in the handling
and processing of information. Such applications range from
commercial data processing to scientific calculations, vroduction
contro?, process control etc.. However in countries, which do

not have an adequate infrastructure for the operaticn of computers
(i.e software* develcpment and maintenance) the installed hardware

base is of relatively little use.

The indirect effects have not all been positive. E.g. the applicatton

of computers in the automation of assembly line processes in the

industrialized countries has led to a considerable reduction in
the prices for these goods, since the amount of human labor has
been reduced. This does not only lead to some employment problems
in the developed countries, but also to some production problems
in developing countries, since it is difficult to compete with

these automatically manufactured goods on the world markets.

Generally speking, some of the negative consequences of the
"information age" will thus confront many -ocieties, particularly
those which do not actively address this new phenomenon. The
positive aspects of the "information revolution” can only materialize
if an active policy in respect to information processing 1is

formulated and executed.

It is the aim of the following report to introduce some
of the basic concepts of the information industry, particularly
the software* side, and to provide some Guidelines for software

production in the Developing Countries.

{

1.1 what is “"software*"?

The main mctivation for the first commercially available computers
was the need to assist the engineer in the solution of rather
simple numerical prcblems. In these application, the problem

structure and the solution algorithms* are well specified.

With a conventional calculator 1t is necessary to present
each step of the solution to the machine immediately

before it is executed. With a stored program* computer, one

can specify the necessary steps of the computation i.e. the algorith.-

in advance and store them in the machine. It is then possible
for the machine to execute all the steps of the computation
autononously. We call the specification

of the solution algorithm* in a machine readable

form a "program*". The notation, which is used for this
specification* is called the "programming language*". Programming
is thus concerned with the translation of a given aigofichm*

into a form, which can be stored and interpreted by a

computer.

The physical units of the computer, e.g. the processing element,
the storag: device, and Input/Output device etc., are called

the computer hardware, in short "Hardware*".

In order to make use of the Hardware, a set of programs and
a procedure with associated documentation, which tells the

user how to operate the programs, is needed.

—_————

The set of all computer programs, procedures and the associated
documentation pertaining to the operation of the computer,

is called the computer software, in short "Software#*”,

In the beginning of the computer era, the main difficulties
were concerned with the design* and implementation of the
physical machine, i.e. the hardware. Compared with this
enormous effort the development of thz -- at that time -— small

and well specified programs was relatively simple.

As time progressed, the problem of luilding reliable hardware

was attacked by many institutions and tremendc'is progress has
been made in this field in the last thirty years.

In the mean time, computers have been applied to the soiution

of large and complex problems, whicn are not as well specified

as simple engineering calculations. The task of specifying and
implementing the required software* has grown considerably.

Since about 1968, the problems associated with the specification
and implementation of large software* systems has been recognised
as 2 major challenge to the computer profession. A new field,
"Software Engineering"” has emerged as a discipline of its own

right.

A number of important developments has taken place in the
software* field since the first days of the computer. New
high level programming languages, which are more easily under-
standable to the human programmer, have ousted the low level
lanquages, which are implcmented by the hardware* engineer.
Special programs, the compilers, have been developed which
trarslate the high level language* representation of a proaram

to the required machine language* representation automatically.

Tt has beer found out that the management of large sof tware*
projects requires special attention. Therefore new
techniques for the management of large software* projects have

been developed.

fowever, taken all aspects together, the software* field
has not progressed as fast as the hardware* field. The
main obstacles for a wider znd more beneficial application

of computers are in the software* field.

1.2 The role of software* and hardware* in the

Information industry

In the early years of computing, the computer industry was
primarily based on the large central machines, the mainframes,
whose cost were generally well in excess of US $ 100.000 a
unit. The interaction with these mainframe computers was

limited to skilled professionals.

With the advent of the microelectronic revolution,
the prices of the computer hardware
dropped sharply. The following diagram shows the increase

of the cost-effectiveness of computer hardware* in the last twenty

_?(’ POCKET FULL
/ * 2 DUNCES
10? . 0.7 WATTS
« 2 INCHES.
/ « 29.000 TRANSISTCRS
10?1 _RooM Fuut t

|- 30 oA l
> 150 KILOWATTS -
|~ 80 FEET LONG THREE CROERS OF | |

years.
COMPUTER HARDYWARE TECHNOLOGY
8 RELATIVE COST EFFECTIVENESS N

10

107 @
= A <120umcEes
- 108 / « >103 TRANSISTORS
S e~ 1 WATT
= / o < 150 INCH
= 5 A
= 10 -
N ERA 1 (PRE-MICRD) £RA 2 (MICRO)
S
=
s
=

10
1 » 18,000 TUIES MAGNITUDE IMPROVEMENT
PER DECADE
. —
1935 1960 1965 1970 1315 1980 © 1985 1930

YEAR OF INTROOUCTION
/Musa,1983/ p. 6

-7 -

Powerful systems for commercial, scientific and engineering
applications can now be acquired for less than US S 10.000
The personal computer market, which has only been around for
about five years, is burgeoning. Machines in the price range
from a few hundred US $ upwards make the computer to a
product for the small business and even for the end consumer.
These developments have increased the general involvement of

the public with computers and software*.

Compared to this tremendous increase of three orders of magnitude
per decade in the cost effectiveness of computer hardware*, the
productivity gain in the field of software* was rather moderate,

as is shown in the following diagram.

HOUSING

-1 SOFTWARE (HOURLY RATE)
200 \

RATIO SCALE GASOLINE

100 |
20]
80
70]
60 -
50

40 LARGE MAINFRAME COMPUT RS

301 /

\\ .
20 /\ \\\
MINI-MICRO COMPUTERS T—— e
\\\ :
10 - i} T~
1965 1370 1975 1980 1985 1990

/Musa, 1983/ p.8

As a consequenc~ of these developments, the ratio of software*
costs to hardware* costs in conputer projects has changed

considerably over the past thirty vears.

100

60—

Percent ol total costs

%
oL s
R ARG
e
4{5’@?’:’?’:’}“‘ s : ’.»

Ry o e B e ot

x
C O (o o
b S S o RS

/Boehm, 1981/ p.18

About 90% of the effor:, which goes into the design, implementation
and maintenance of a computer project, is in the area of software¥*
(including mancgement). The hardware* part, that is the physical
equipment, améunts to only 10 %. At this point it is important

to remember that software* is basically an intellectuzl product.

The investment needed to create a software* industry is mainly in

the area of education and not in substantial capital equipment.

This s one of the reasons why there are challenging opportunities for
many countries in the area of software* engineering. The application
sof tware* has to incorporate the spacific legal and organizational
rules of a society. An accounting package, for eximple, must be
tailored to the requirements of the given legal system.

These local requirements can form the starting point for a software*
industry, which later on can be expanded to cover alsc standard

packages of wider applicability.

——————— e -

-3 -

It can be expected, that the information industry will have a
similar impact on the economy of less developed countries as
on the economy of highly industrialized countries, although
with a certain time delay. It is therefore reasonable

to look to the highly industrialized countries to get

an indication for the potential impzct and future of this industry.

In a recent report about software* engineering progress

which has been published by some of the best known experts :In
the fieid, the following has been said about the future of the
computer industry /Musa 1983,p7-8/:

"We observe that computers are becoming smaller and cheaper,
2nd that they are being distributed to a wider and wider population.

Important current trends include:
(1) Decreasing hardware* costs.

(2) Increasing share of computing costs attributable to

software*,

(3) Increasing range of applications, to the extent that the
dependence of society on computers is becoming more and

more critical.

(4) Continuing or ircreasing shortage of qualified software?*

professionals.

(5) Continuing lack of appreciation of the nature of software*
(it's not actnally "soft", it's rarely capitalized, it's

difficult to evaluate quantitatively).

(6)

(7]

(8)

(9)

- 10 -

Increasing development of distributed computing and convenient

network access.

Increasing availability of computing power, especially in homes.

A widening view of computers as an information utility;

anticipation of the "automated office”.

Increasing quality of interfaces to humans (voice, high speed

and high resolution graphics).

(10) Increasing exposure of nonprofessional people to computers.

On

the basis of these trends, we can extrapolate some future

Cevelopments:

(1)

(2)

Pervasive Consumer Computing

Computers will be extremely wide spread, both as multiple
purpose machines jin homes and offices and as dedicated
(embedded) machines for applications such as household
environmenc contrcl. Most of the users of these machines
will be naive--certainly the majority of them will not be

programmers

Information Utility: We will come to think of computers
primarily as tools for accessing information, rather than
primarily as calculating machines. Networks will provide

a medium for making available numerous public data* bases, both
passive (catalogs, library facilities, newspapers) and

active (newsletters, individualized entertainment).

Distributed applications such as electronic funds transfer

will become common. Electronic mail will reach.a substantial

fraction of the population.

(3)

(4)

(5)

Broad range of applications: The range of applications
will continue to broaden, and a2lmost all areas of societv
will be critically dependent upon computers. As a result
of this pervasiveness and criticality and widespread use by
nonprogrammers, much of the software* will provide packaged
services that require little, if any, programming. The
packages will be tailored to individual needs, but not
necessarily by indivicdual users. Turnkey systems will
become even more common in the business world, and there
will be substantial economic incentives for producing
general systems that can be applied to individual, possibly

idiosynscratic, requirements.

Changes in the Worx Tlace: Distributed systems and networks
will facilitate a distributed work place, but we doubt that
the norm for the office workers will be to work at home
instead of in an office-—computers will not replace human
interaction for decision making. The potential for software®*
deveiopment as a cottage industry will increase. Electronic
work stations will change the nature of work that now depends
on paper flow, and robotics will substantially change

manufacturing.

Changes in Education: We can already see the effects of
pocket calculators and personal computers on the teaching of
mathematics and many other subjects and on students'

expectations about the educational process.”

It has been estimated, that already nowadays more than 50 % of

the work force of some highly industrialized countries deals in

one form or ancther with information management. The potential

market of the computer industry, and particularly the software*

industry, is thus considerable.

The following diagram shows the percentage of the US working force

vhich will rely in one way or another on computers and software*.

Percentano of labor lorce

100

50

o/

/

-

Working with computers i,

~

e
Ve

7

e

"’

—

Recuired 12 have some

knowledse of how
computer works

-

1955 1972

Year

1985

/Boshm, 1981/, p.l3

The computer industry is thus the key to modern technology.

since many high technology products are based or depend on

the application of computers.’

Technology transfer without a

high level of computer literacy will be more and more difficult.

With respect to the overall computer and information processing

inductry of the future, computer software* will be the dominant

portion of an industry, which will grow to more than 10 % of

the GNP of the United States by 1990.

2. THE NEED FOR A SOFTWARE POLICY IN DEVELOPING COUNTRIES

As already mentioned before, the impact of the information
indust - on the developing countries is significant. In order
to realize the maximum bene€.it for the society, an active
information policy should be formulated and executed in every
country. This policy should try to take advantage of the
positive aspects of this new field and to avoid, or at least

reduce, some of their negative consequences .

Some of the positive aspects of the information industry, in
particularilv the software* industry, as seen from developing

countries, are:

- The functionality and user interface of a computer is determined
by its software*. A local software industry can thus produce
computer systems, which are well adapted to the needs of the

given society.

- Wich adequate software*, computers can protvide valuable assistance
in areas like general education, vocational training,
operation and maintenance of industrial equipment, just to

name a few.

- The development of software*, which is a work intensive
proce:'s, accounts for the major section of the new

information processing industry.

- Software production requires relatively little capital equipment.
The main requirements are interested people with good training

and quidance and access to computer hardware.

- - e

If no active information policy is persued, the following

negative consequences can result:

- Many beneficial applications of computers are not reaiized,
‘because there is little understanding about the capabilities

and potential of computers.

- Local job opportunities in the software* field are-missing and
some of the foreign currency is spent on software* products, which

--just as well--could be manufactured locally.

-~ The society becomes dependent on softwara*, which is supplied
from outside. This software* is not well adapted to the needs

of the local users.

An active software* policy is to address the following areas:
- organisation
- training

- standards

The development of policy gquidelines to cover these topics will

be the major concern cf the next sections.

2.1 Organization

The startup of any local software* industry has to be based on
the development of application software*. A substantial portion
of the application software* is specific to the local environment

and is thus a "protected"” market.

If we analyse the world-wide market for application software*, we
will find out that this market has some characteristics of a
"cottage industry". Small companies and sometimes even single
consultants play an important role in this market. If the startups
in the area of application software* are to be successful, it is
necessary to provide a cl.mate in which such a "cottage industry”

can blossom.

It is the responsibility of the political decisionmaker to
provide the organizational framework for such a climate. This can
be done by some organizational unit -- we will call it "office for
informa-ion technology®”. This office of information technology

should provide the following services:

- Monitor the market of information industry products
and new trends and developments. This will provide
valuable background information, both for the political

decision makers and software* developers.

- Formulate and, after approval, execute an initiative to
promote general "computer literacy”™. A necessary prerequisite
for the success of a new industry, such as software*, iIs a
general public awareness for the potential, the capabilities
and the risks involved. This is predominantly

an educational endeavor. A more detailed outline of

—_— -

such a "computer literacy® inititative will be given in the

following s:ction under the heading "training”.

- Initiate a research program* on information science and
specifically on software* technology. This is also an
educational endeavor and will be discussed in the following

section.

- Support interested individuals and startnp companies in the
area of software* technology with economic and legal advise,

as well as with some financial assistance.

- Set up the legal framework for the introduction and execution
of standards for the information industry. Standardization of
hardware, software* and the associated documentation can
substantially reduce the maintenance costs for information
industry products and improve the compatibility of the different
systems. Standards will be discussed in wmore detail in a

subsequent section.

The office cf information industry should not be a big
bureaucratic organization. It should be a small group of

highly competent experts which is responsive to their cl’ents.

2.2 The Establishment of Training Facilities

The most important result of an active Information Policy is
the general advancement of computer literacy in a society.

A high level of computer literacy is a solid base for good
computer applicaiions, a successful software= industry and
the critical appreciation for the benefits and risks of

this new technology. Since mary high technology products are
based on computers, a high level of computer literacy
provides also a positive climate for technology transfer in

general.

It must be the goal of a computer literacy initiative to bring
a high percentage of the youth in direct contact with computers
and software* at an early age. Personal computers should be
installed in all schools and students in the age of ten upwards
should have the possibility to use these machines in their
mathematics and science classes. Experience has shown that
students of that age have no oroblem in mastering the computer.
If there is some lack of trained teachers, computer assisted
instruction courses, which run on these small machines, can
fill part of the gap. Students, which thus develop a natural
relationship with the computer, will have no difficulty in

integrating the computer into their workplace at a later stage.

While it is important to introduce computers into the

general education system as early as possible, the retraining
of parts of the active workforce must not be overlooked. Many
job profiles are changed because of the introduction of
computers. It is irresponsible to fill new job positions

with new people only and to push those workers, who do not have

the necessary knowledge ir the new technologies, aside. The

- 153 -

persons, who have worked in a given position for a number of
years, have gained valuabie job experience which, combined with
some software* knowledge, is an important asset to society.

The computer and software* training of the adult population

must thus be included in the training programs.

The training of teachers and software* experts can only be
accompliished if a good technical base is available at the
Universities. It is tharefore important to introduce computer
science and software* .echnology curricula at the Universities.
These curricula should be application oriented and contain '
a significant portion of practical work on computers. There

is some danger, that computer science curricula are dominated
by mathematicians. It is felt here, that a good combination

of computer and software* courses, electrical engineering
courses, mathematics and logic courses, economics and management
courses and some work in an applicaticn field should form -

the core of computer science.

In order to keep the contacts with the international research
community, research work in the area of computer science

has to be conducted. The active participation at international
meetings and the cooperation with research institutions in
other countries are the prerequisites for the concinued
involvement in state of the art research projects. It is the
obligation of the research organisation to critically reflect
the state of the art in computer science and to provide
valuable inputs to the political decisionmaker in relation

to the state of the art of computer and software* technology.

Teaching computer and software* technology without the possibility
of practical work on the machine is a dangerous undertaking.

Since the lectures tend to become too theoretical, the student wil.

- 19 -

not grasp the elementary concepts and might shy away instead of

developing a positive attitude towards this n~w technology.

Therefere any software* education initiative must be supported
. by an initiative to provide the necessary computer hardware* for
the practical software* training on the machine.
Personal Computers and Profecsional Workstations form the
recommended hardware* base for this practical training. Because of the
good cost/performance ratio, their reliability and maintainability
and their user friendlyness they are to be preferred over big

central data* processing machines.

The low price of the modern personal computers makes it possible
that these machines are used in even a very small business. Stock
control, cost accounting and similar applications make it possible
for the small businessman to take advantage of this new technology
=2 ircrove his productivity over competitors not usine this

Tecnnolofy.

Computer and Software Training must therefore be included in

any curriculum of Vocaticn~l Training Schools. Emp.asis should
be placed on the application of computers in the particular
domain. The practical training on computers must play a dominant
role in the computer education. Students should be taught to
analyse their business activities in order to open their mind

for possible new computer applications.

A special program* on softwarzs* development should be organised
at the vocational scnool level. This is the topic of the next

section.

Education of software* Engineers

The primary cbjective of this section is to present a detailed
outline for a set of courses in core areas of software*
engineering. These courses are designed for students who

have finished their general education and are looking for a
sound vocational training in the area of software*, as needed

by government organisations and industry.

In developing this curriculum, a number of assumptions were

made:

~ scftware* systems are always components of larger hardware-
software*-people systems.

- software* development requires more interaction and communication
among people than in many technological endeavors

- the intellectual foundations of software* engineering are

computer knowledge, application knowledge, technical management

skills and communication skills.

The following core curriculum represents the minimal set of courses
needed for practical work in the area of -software* engineering. All
theoretical classes are supplemented by practical work in a computer
laboratory in order to bridge the gap between theory and practice.

If a students wants study commercial data* processing

applications or technical applications only, he can select

the course "Commercial Data Processing” or "Real Time Systems”

only. However, if time nermits, it is advantageous to take

both courses.

e

Class Lab

Introduction to Computer Programming 40 80
Programming Methodology 40 80
Commercial Data Processing or 40 80
Real Time Systens 40 80
Project Management 40 -
Case study - 200
Total 200 520

(160) (440)

The material presented in this curriculum on software* engineering
is sufficient for a one year training program. As an alternative
this software* engineering curriculum can be

combined with a training program* in some application area

(e.g. Accounting, Electrical Engineering, Industrial Engineering)
of about the same size. Together this will be sufficient

material for a two year training program. In this case we
propose, that the two programs are interleaved and spread over

the two year period.

Detail :d Course Description:

Introduction to Computer Programming

Duration: about 40 hours of classwork and about 83 hours of

laboratory work on a personal computer

Objective: -to understand the basic methods of programming
- to understand the functional units and components
of a computer
- Mastery of a programming language* (e.g. PASCAL*, BAS1C*
FORTRAN* etc.)

Course Contents. Pr.gramming: Algorithms and steps in algorithm*ic
Problem solving, Flowcharting, Basic concepts in the
programming language, variables, input-output,
statements and expressions, conditional statements,
loops, data* types
Services of an operating system, source and object
represencation of a program, compilation and assembly
Basic building blocks of a computer, Central
Processing unit, storage units, input output units,

Internal representation of data, binary arithmetic

Laboratory: Parallel to the class work the student has to
develop programs in the chosen programming language
such that the class work is w2ll supported by
the lab work.

Programming Methodology

Duration: about 40 hours class work and about 80 hours of

laboratory work

Objective: capability for'the architectural and detailed design
of software* systems, including data* design* techniques.
to evaluate the quality of 2 given design, elements of

programming style, basic testing :echniques

Contents: Design principles: Information hiding, data* and
control locality, decomposition criterie, concurrency
successive refinement, design* representations

Concurrency: Mutual exclusion, semaphor variables,

critical regions, event variables, messages, resource

sharing.

design* evaluation and “esting: Assessment of data
structures, walkthroughs, Implementation tools,
Test case design, test data* generators, regression

testing, Documentation techniques, manual preparation

Laboratory: 1In the Laboratory the students should work in small

groups (about 3 members) and implerent a little
software* project which has been specified by the
teacher. Care is taken tnat the design* documentation
and the user documentation is well prepared. A

detailed test report has to be generated.

Commercial Data Processing

Duration:

80 hours classwork and about 80 hours laboratory

work

Objective: Basic techniques of systems analysis in the

Contents:

commercial world, Data handling and data

base design.

System Analysis Methods: HIPO, SADT#,

Interviewing technigques, Functional Specifications
Man tachine interfaces in the office, text processing
and data®* preparation on a personal computer
Introduction to data* management, Functionality

of Data Base Systems, Data Access Methods,

File Design, Data security and recovery, Auditing

of Database systems, Restart and Recovery

~ v

Laboratory: Team work, Design of a simple commercial
application package, including Systems analysis
data* design* and implementation. Care should

be taken that the documentation is up to standards
Real time Systems
Duration: 40 hours lectures, 80 hours lab work

Objective: Design and implementation of real time systems,
such as process control system and systems for
the control of discrete manufacturing and
production control

Contents: Characteristics of process control systems,
data* collention, interfacing instruments to a
computer, basic concepts of control, real
time programming, reliability and safety of
control systems, man machine interfaces in
the control room,

Discrete manufacturing, Computer Aided Design,
Production Control Systems

Laboratory: Students, who select this course should have
the possibility to implement a software* system
for real time control on a small engfimental
pilot plant. Such a plant can be s2t up
with a small number of cheap instruments and can

be controlled with a personal computer.

Project Management

Duration: 80 hours of class work

Objective: To prepare the student for the task of Project
Management and Economic Evaluation of Software

2rojects

Contents: Project Planning: Software Lifecycle, Resource and
Schedule Estimation, Acceptance Criteria
Project Organization, Staffing, Project Monitoring,
Human Factors,
Prototyping, Reporting, Technical Communication,
Oral Communication, Report Writing, Presentation
Techniques, Cost of Documentation
Software Economics: Cost effectiveness Analysis
Cost Estimation Techniques, Cost Factors,
Documentation: User Documentation, System
Documentation, Maintenance Documentation, Standards
Legal Aspects: L2gal Agreements, the Software Developrment
Contract, Terms and Conditions, List of deliverables

Privacy of Information, Legal requirements

laboratory: There is no specific laboratory work included in this
course. The material which is presented in this class

should be applied in the practical project work

—_—— -

- 26 -

Case Study

Duration: About 200 hours of practical work

Objective: Specification,Implementation and Management of

a realistic software* project

Contents: During the project work the material which has been
covered in the classes should be applied in a realistic
software* development environment. Work in teams,
including project management and documentation of

industrial standard

Ty L

- 27 -

2.3 Standards

Many software* organisations are finding that the settineg of
standards for hardware* selection, communications, operating
systems, programming langquages, documentation, project
management etc. has a significant payoff. The compatibility
and the quality of the software* is increased, but more
important for developing countries, the training and maintenance

effort becomes much more effective.

On the other side, the stabilising effect of standards can also
hinder progress. In a dynamic field like data* processing,

new hardware* devices and software* procedures are continually
developed. The benefits of taking advantage of these new
developments must be carefully evaluated in relation to the
costs, which result from the modification of existing

standards.

The setting of standards is thus a delicate task, which has
to go on continuously. In the light of new develcpuents, it
must be carefully assessed which standards are to be rigorously

enforced and what areas are not yet ready fnr standardisation.

In this section we present some gquidelines for the

development of standards in the following areas:

Programming Languages

Operating Systems
- Computer Hardware

-~ Communication

—_—— e -

Standardisation in the areas of software* project management,

quality control and documentation will be discussed in subsequent

chapters.

Programming Languages

In the short history of cohputing, rany different programming
languages have been developed. Although most of the languages
did not gain wide acceptance, there are still so many different
programming languages around that there is a definite need

for standardisation.

The introduction of a new programming language* requires a
significant effort, particularly in zhe area of education and
maintenance. Programmers have to be trained in the new languace
and it takes some time until suffici=nt experience has been

gained to make good use of the language. The software*, which

is written in the new language* must be maintained, that is
modified and enhanced. Therefore a generation of "maintenance
progranmers” must also be trained in this new language. Compilers
for the new lanquage* must he installed and some systems programmers
mist take care of the interfaces between the compilers and the
operating system at hand. Purthermore, the introduction of the new
programming langquage* increases the incompatibility problem in

the area of application software*. It requires additional effort
to combine application packages, which are written in different
lanquages. Sometimes it is necessary to rewrite part or all

of an application in order to integrate this application into

an existing environment.

On the other side, there has been considerable progress in
lanquage* development over the past twentyfive years. The first
high level lanquages were designed for engineering and scientific
problem sclving on large central machines. The commercial
applications had different language* requirements for data*
maniﬁulation and thus gave rise to design* of some other programnming
languages. In the course of the years, more has been learned about
lanquage* design, such that a new generation of programming languages
based on these new insights, has been developed. With the advent

of the Personal Computer, the ease of use of programming language
became an important factor, such that another set of languages,
which concentrate on the ease of use in an intéractive environment

have become popular.

Besides these general trends, there is also some active marketing
in the area of languages by the computer hardware* manufacturers.
Since the effort to introduce a new language* is very significant,
a user organisation, which is khowledgeable in the software* of

a particular manufacturer is not likely to change to another

nanufacturer withnut good reason.

In the subsequent section we will discuss some of the more
important programming languages and try tovgivg some advise in

relation to their usage.

BASIC*

The Programming Language BASIC* has been developed some fifteen
years ago with the explicit goal of making it easy for the
novice programmer to use the computer. Since it is not difficult

to implement the BASIC* language* on a small computer, this langua.e

- v

_ 30 -

has gained very considerable support from the small computer
industry. It is by now the most widely available language* on

small personal computers.

The “"simplicity of use”™ of BASIC* is not achieved without a

high price. The BASIC* language* cdoes not support the concepts

of types and procedural and data* abstractions very well. It thus
is difficult to write large and complex programs in BASIC*.

Since the concepts of the first programming lanquage* do have

a decisive influence on the thinking pattern of a person, it is
difficult to retrain a programmer who has only worked in BASIC*

to take advantage of modern programaing concepts.

BASIC* as a first language* is thus dangerous. However, considering
the fact that most small computer mz2nufacturers support BASIC*, it

will be difficult to ignore BASIC* on the market place.
PASCAL*

The programming langquage* PASCAL* has been developed

for teaching computer science. It is a small language* with a
clean conceptual structure and a straichtforward syntax.

PASCAL* provides extensive support for data* typing, which is

a fundameatal concept in computer science. Having been designed
for the educational market, it is missing sqgenféqtu:es_yhich
are important in the commercial market, e.q. the need for

separate compilation and exception handling.

PASCAL* is also very successful in the Personal Computer

Market. The general acceptance of PASCAL* as a teacning language
is the motive for many computer manufacturers to support this
language* in their product line. 1In the last few years, some

dialects of PASCAL* which provide some additional functionality

have been developed. Bowever it is wise, to stay with the

standard PASCAL* language* in order to stay compatible with the

extensive PASCAL* software* market.

FORTRAN*

FORTRAN* is the "oldest®™ of the high level programming languages.
Some twentyfive years ago it was designed for engineering and
scientific problem solving. Since the language* can be implemented
efficiently, it has gained significant support from the engineering
community with the result, that a vast amount of scientific software?
has been written in FORTRAN* and is available on the worldwide
software* market. In order to eliminate some of the awkward
features of the original FORTRAN* language, it has been modified

and standardized. Even nowadays, the bulk of the engineering and
scientific software* is still written in FORTRAN* (the dominant
version is now the standardized FORTRAN* 77) and practically

all major computer manufacturers support this language. In the
world of engineering problem solving, FORTRAM* is the most important
language* and it is speculated here that the dominance of FORTRAN?*

is this application area will prevail into the forseeable future.

COBOL*

COBOL* is also a language* of the first generation. It pioneered
the development of data* description facilities and has become
the most important language* in the commercial data* processing
market. In contrast to FORTRAN*, which is concentrating on the
formula manipulation, the expressive power of COBOL* is in the
area of data* handling, file* manipulation and input output.

COBOL* programs are to a certain extent self documenting,

since the language* contains many meaningful (and long) keywords.
COBOL* has been standardized as early as 1960 .
CCBOL* does hold the same position in the commercial data*

processing market as FORTRAM* in the engineering market.

ADA ++*

In the last fifteen years the field of embedded computer
applications has grown considerably, but there has not been

a single programming lanquage* which has dominated this application
area. As a result many different programming lanquages and dialects
have been used for real time computer applications and process
control. In large organisations, like the US Department of
Defense, the use of many different lanquage* resulted in a
tremendous scfiware* maintenance problem. In order to reduce

this maintenance effort a decision has been made to develop

a new programming langquage* for embedded computer applications
which somehow combines the good features of the available
languages. The development effort for this new lanquage* started
around the middle of the seventies. About three years ago

the langquage* definition has been completed and the first

compilers are appearing on the market now. Since there is

a definite need f£or a language* for real time programming and
there is a very powerful sponsor-the US Department of Defense~

the success of this lanquage* is probable. However, it will

st’11 take a number of years, until this language* is generally

available.

ot
(V]
|

In the past, most operating systems, i.e the software* which
controls the operation of the computer hardware, have been
written in low level assembler languages. None of the
mentioned programming languages provides the expressive
power and efficiency, which is required in this application
area. In conjunction with the development of UNIX+, an operating
system which has been designed and implemented by Bell Labs,
a new systems programming language, C* has been defined and
used to implement the system software* of UNIX+. Wwith the
increasing popularity of UNIX+ in the personal computer
market, C* is gaining considerable support as a systems

programming languade.

Conclusion on the topic Programming Languages

Considering the present state of programming language* developmrent,

it is recommended to promote the following standardized languzges:

For the educational and training market: PASCAL*

Por the commercial market: BASIC*, COBOL*

For the scientific market: FORTRAN?*

For system programming, particularly on UNIX+: C*

There should be no restriction for the use of other languages,

e.g. LISP*, PROLOG* etc. in the research environment.

-

The further development of the programming language* ADA++* should
be carefully observed. As soon as there is a definite acceptance
of ADA++* in the higher developed countries, ADA++* should also be

introduced as a recommended programming language.

Operating Systems

The term "operating system” refers to the software* which
controls the execution of programs. It provides services such
as resource allocation, scheduling, protection, error management,
input output control and data* management. Although operating
systems are predominantly software*, it is possible tc implement

parts or all of an operating system in the hardware.

At the time of the large central machine, the operating systems
vere supplied by the hardware* manufacturers and delivered with
the hardware. One of the best known operating systems of that
time is the IBM Operating system 0S 360. It is a large monolithic
operating system providing all of the services mentioned above.

Similar Operating Systems have been provided by all major computer

manufacturers. However the interfaces between these operating systems

and the application software* are specific to a given manufacturer.
This difference is a source of incompatibility as soon as services
of the operating syscem are required,e.g. for input output, data

management etc..

————— -

With the advent of the Personal computer the era of the commodity

operating system started. Nearly all successful Operating systems

for the Personal computer market have been developed by companies,

which are independent from the hardware* manufacturers. The same
operating systems runs on a number of different machines, thus

providing the base for a degree of compatibility of the application
software* which has not been achieved before. With minimal modification
a given piece of application software* can run on a number of different
machines from different manufactures, provided they all use the

same operating system.

Since it is recommended in this report to concentrate on the small
computer market, some standards for operating systems have to be

established.

In the small computer market we can distinguish between two classes
of operating systems, the single task operating system and the
multitask operating system. A computer, which is equipped with

a single task operating system can only perform one function at a+
time. On the other side, the multitasking operating systems provides
the environment for the-parallel execution of a number of programs.
Given, that a system supports_multitasking, there is only a small
step to the mulfiuset éupport. Although quite a few single tasking
and multitasking operating system have been developed by different
manufacturers, only three of these operating systems have been

evidently successful on the iarket place.
CP/M

This is a disc operating system for microcomputers produced by

T

36

a company named Digital Research. CP/K stands for "Control
Program Monitor". Versions of this operating system are available
from a number of dif erent sources for a variety of microcomputers.
Nowadays, more than hundred different computer manufacturers offer

CP/M with their equipment.

CP/M is a single user single tasking operating system,i.e. it supports
only one user at a time doing a single program* execution. It provides
the following services:

~ file* management

- Input/Output support

- run time support for application programs

- error management

A variety of lanquage* processors have been developed for CP/i1, among
nthers

- BASIC*

- PASCAL*

- COBOL*

The amount of application software* which runs under CP/M is very
large, ranging from simple textprocessing software* to all kinds

commercial and scientific packages.

CP/M has only one rival in the single user single task market of
comparable popularity-- the MS/DOS Operating system from Microsoft.
fThe functionality of MS/DOS is in line with that of CP/M.

UNIX+

UNIX+ is a multitasking, multiuser operating system, which has been
developed by Bell Labs some ten years ago. With the introduction

of powerful persoral computers and workstations this operating system

is becoming a standard for the multitaking-multiuser market.

In addition to the standard features of an operating system UNIX+
supports a hierarchical file* system. Significant amounts of application
software* have been developed under UNIX+, particularly in the area

of textprocessing, software* development tools, languages etc..

The UNIX+ operating system is described in some detail in the

appendix.
Conclusion on operating systems

It is recommended here that the following standards for operzating

systems are considered

CP/M or MS-DOS as a single user, single tasking operating system

UllIX+ as an operating system'for the multitasking, multiuser market.

Computer Hardware

Although this report is mainly ccacerned with guidelines for the
software*, it is also necescury in this context to comment on hard-
ware standards and developments. The explosive Qroﬁth of the small
computer market has —- within a period of five years —- already 1-!
to the development of two generations of machines with widely
differing capabilities. The first generation of microcomputers was
designed on the basis of the 8 bit microprocessor, i.e. information
is processed in chunks of 8 bits. The new generation of machines
processes information in 16 and 32 bit units. Since this makes the

machines much more powerful it is recommended here to standardize

on machines of the latter kind.

Communication

Although the field of communication is also outside the scope of this
report, it is important to assess the future developments in the
communication market and its relationship with the computer and
software* industry. It is to be expected that the markets for
computer and communications equipment are going toc merge in the

near future. It is therefore wise to closely cooperate with the
plarning authorities for the communication policy and to consider

the formation of a joint committee for the establishment of

standards which relate to both fields.

-39 -

3. ORGANIZING A SOFTWARE PROJECT

The successful development of a software* product reguires
aAsound management approach and technical expertise. This
chapter is concerned with the management aspects of

a scoftware* project. The following chapter contains technical

advise.

The usual management methods are planning, organisation and
control. One reason for the frequent failures of software*
management is the difficulty of adapting these techniques

to software* projects. In the following section we will therefore
characterise some of the difficulties which are typical

for software* management.

If a comparison is made between the production of software¥*

and a more conventional product, then the first great

difference is the visibility of the result. The software* end-
product consists solely of a set of carefully documented
instructions for the computer -?‘.there is no tangible software*
product. The supervision effort required in determining
devélopment progress can be comparable with the development
effort. A subjective estimate thus has to be made on the

advice of the software* developer. The following figure shows

a typical example, which may be often observed in practice,

of how such an estimate corresponds to the actual situation.

- 40 -

100%

3
\
A
N
N
N

Estknotod complste
8
I\
&
AN

A
7/
7/
/
/4

0 L 2 60 80 100
Actinsily comptated

/Ropetz, 79/ p.98

The development of conventional products is constrained by the
laws of nature between relatively narrow limits (for example,

the properties of materials), whereas the limits for software¥*

are set by complexity and the ability of the human intellect

to cope with it. The constraints due-to complexity-are very
difficult to explain and qdéntify for people, who are not
experienced in the field of software* development. It is therefore
necessary that each computer specialist be highly self-critical
and be aware of his own limitations in any situation. The

lack of physical constraints is also responsible for the often
incorrect view, that software* is easy to change, does not require
a long development time and can easily be made to fulfill new

conditions.

- 41 -

The rapid advances in both hardware* and software* make the
software* planning task particularly difficult. By the time that
an extensive software* project has been successfully concluded,
economic grounds alone preclude a similar project on the

same software* and hardware* basis. The result is that experience
gained on an early project can only be adapted to a new project

with difficulty.

The development of a software* system is a unique process as
opposed to routine mass production. As with the construction of
every unique product, it is difficult to establish the usual
norms for progress and productivity. This may also be the
reason for the often extremely poor documentation and
maintainability of software*, since it is easy to underestimate
the effort required for documentation by adopting the attitude

that it is only for a single instance anyway.

The success or failure of a project depends to a large extent
on the personnel involvéd, due to the unusual difficulties

of planning and control already described. The variation of
ability between individuals is, however, particularly
pronounced in the software* field, variations of 1:10 and
more not being unusﬁal. ‘Software development requires
creative personnel wi'0 can work with accuracy. However,
creativity is often connected with personality traits which
can led to problems in personal relationships. Any formal
EDP training must be supported by project work that is at least
as intensive in order to gain full benefits. Due to the
rapid expansion in the field, however, it often happens that
the successful project worker is assigned to management tasks
and directly after gaininy the relevant experience is lost to
software* development. This danger is particularly acute in

less developed countries.

This chapter is to give some advice on the organisation of
software* projects. 1In the following chapter we will present
a model for the subdivision of a software* project into a
number of distinct phases. In the following section we will
present some methods for effort estimation and the assignement
of the overall effort to the phases introduced before.

The Team Organization will be the topic of the next section

before putting everything together in an integrated planning

system for project control.

- o ——

_43-

3.1 Project Phases

In this chapter we introduce the basic phases of a software*
project and discuss the scope of the activities in each phase.

The medel, which will be presented, is called the "Waterfall lodel
of Software Development®™. I: partitions the Software Develormert
Process into a number of distinct phases. Each phase

is terminated by a verification and validation (VV) activity.
Verification refers to the consistency between consecutive

phases. Validation refers to the consistency between the

phase and the real world problem statement.

This verification and validation activity is required in order
to reduce the probability of an error being introduced »
during the work on the given phase. Experience has shown, that
the cost for the elimination of a software* error increases

substantially with the number of the past phases involved.

- 1000 . T T T b

100}

N

-
—

Ralative cost to fix error
§
e
>
x
Q

Smaller software projects
f° 0- {Boehm, 1380}

z [~ &

i e ! ! ! 1

Requirements Oesign Code Oevelopment Acceptance Operation
. test test

Phase in which evor wes detected and corrected

/Boehm, 1981, p. 4 0/ Incriase in cost-to-fix or change software thioughout flilecycle

-~

The Waterfall Model, as discussed by /Boehm 1981/ distinguishes

between the following eight phases in the life cycle of

a software* product:

(1)

(2)

(3)

Feasibility

Determine the overall goal of the software* product and
evaluate the potential product in relation to other
alternatives, e.g. solutions without the use of a computer.
This phase has to include an economic evaluation of

the planned software* project, a rough

cost estimation and a benefit analysis.

Requirements

In this phase the requirements for the planned software*
product are established. This includes functional requirements,
interface requirements and performance requirements,

It is of utmost importance, that the end-user participates

in the establishment and validation of the requirements.

Functional Specification”

In-this phase, the functional design* of the system architecture
is undertaken. Considering the requirements, which have

been established in the previous phase, the system functions

are specified and a set of components (subsystems) and the
interfaces between the components are defined. Care must be
taken, that the proposed hardware* software* architecture will
meet the performance requirements specified above. At this tinme

a draft of the user manual has to be written.

(4)

(5)

(6)

(7

(8

Component Design

In this phase, each component is decomposed into a set
of programs, i.e. a sequence of about 100 executable
statements in the given programming langquage. Care nmust
be taken that the interfaces between the programs are
defined and verified against each other and against the
product design. The algorithm*s and data* structure for

each program* has vo specified during this pﬁase.

Coding

In this phase the actual coding of the programs, which

have been specified in the previous phase, 1is performed.
Each coded program* must be tested against the specification

which have been developed in the previous phase.

Integration

In this phase the tested programs are integrated in order
to generate the components specified in phase number 2.
The components are then inteqgrated in order the generate

the complete software* system.

Implementation

The software* system,-which has been-integrated and -tested
in the previous phase must now pe implemented in the user -
anvironment. The data* conversion, installation and

training of the user personrel is part of this phase.

Maintenance

Every successful software* system will have to be modified

as the real world requirements change. During the life time

of a software* product, these modifications will probably
require more resources than the original software* development

process.

A graphical representation of

-46_

the Waterfall Model is given below

———

The disciplined software* development approach, as outlined by the
Waterfall model, requires a good a priori understanding of the
problem to be solved. Otherwise, a considerable amount of effort,
which is spent during the early phases, carn be lost if, at a later
phase (e.g. the integration phase) the design* cannot be implemented

as planned.

If there is no good a priori understanding of the problem,

an incremental development strateqgy is the preferred alternative.
In this strategy only the essential subfunctions of the system
are developed in the first version of the system. After the
viability of this reduced system has been established, the
additional functions are added step by step. The development
process for the essential subfunctions can also proceed according

to the vaterfall model.

3.2 Software Effort Estimation

An estimate of the effort for a given task is a prerequircite

for any planning activity. It will be-clear by now, that software*
effort estimation is an extremely difficult matter. However, it

is necessary if a realistic project plan for a software* project
is to be made. In many ways, effort estimation and control is

the heart of software® management.

In our effort estimation we will measu.e the effort in the time
needed (man-month) in order to get a project done. The cost

estimation is a straightforward extension of this method, just

- 43 -

muitiplying the time by the current rate tor a man-month and
adding the additicnal expenses, e.g. computer time needed,

clerical assistance, travel cost etc..

The big difficulty in software* effort estimation is the
specification* of the size and complexity of a task in a metric
which is generally accepted and usable for further analysis.

Up to now, this metric is still the source code instruction,

a line of code in the programming language* chosen. Although
this metric is up to a lot of criticism, no better alternative
for measuring the size of a software* task has been generally
accepted. Software effort estimation can thus be broken down

into the following activities:

(1) to derive the size and difficulty of a software*

task from the functional specification
(2) to calculate the time required to perform the
given task with the human and technical resources

which are available

(3) to distribute the calculated time effort over the

deueldgment phases ‘outlined in thefp;éviOQSiéhapter
(4) to generate detailed plans in oraer to initiate,
monitor and control the progress of the project.
Size Estimation

Estimating the size of a software* product relies heavily on

the judgement of experienced performers. The software* analyst,

or estimator, normally breaks the total job into elements
that are estimated separately and then summarized into an
estimate for the total job. The estimating analysis and

synthesis may appear as & mental process or may involve an
explicit algorithm*. In =2ither case, an empirical database
should be used as an objective reference. It is up to the

estimator to use his judgement to account for the differences.

In general, we can distinquish between the following estimation

methods:

(1) Top Down Estimating
The estimator relies on the total size or the size of
large portions of previous projects that have been completed
to estimate the size or of all or large portions of the
project to be estimated. Historical data* coupled with
experience and intuition is used to account for the differences
between the projects. Among its many pitfalls is the substantial

risk of overlooking special or difficult problems that may be

buried in the internals of the project tasks.

(2) Bottom Up Estimating
The total jéb‘iéﬁbroken-down“intah:elative1Vismail4WOrk units,
until it is reasonably clear how and with wbat‘kiqd of
effort these units can be implemented. Each task is then
estimated and the sizes are pyramided to get the total project
size. An advantage of this technique is that the job of
estimating can be distributed to the people who can do
the work. A difficulty in this estimation method is the
missing total view of the project. Parts, which are common

to different units tend to get overlooke 1.

- 50 -

(3) Standards Estimating
The estimator relies on stancards of size, which have been
systematically developed. These standards then become
stable reference points, from which new tasks can be
calibrated. This method is accurate only, when similar
work has been performed repeatedly and good records are
available. The pitfall is that software* development

is normally not performed repeatedly.

It is gocd practice to apply more than one estimation technique
in order to cross check the estimate. The result of the
estimation procedure* should be a table, which contains the
main units of the software* system, their estimated sizes in
source language* instructions and thes difficulty in some form

of complexity rating as discussed below.
Complexity Rating

The following software* categories for complexity rating have
been selected based on experience /Wolverton 1972/. These software*
categories refer to functionally different kinds of software*

entities with different effort characteristics.

(A) Algorithmic units, which perform strictly algorithmic*
(logical, numerical etc.) calculations without any
ccnsideration for execution time, input output or large

data* management

(C) Control routines, which control the flow of execution and

are non time critical.

- 51 -

(D) Data management routines, which manage data* transfer

within a computer and its peripheral devices

(I) Input Output routines, which transfer data* between a

computer and its environment.

(P) Pre or Post Algorithmic Processing, which prepares and

manipulates the data* for or after algorithmic* processing.

(T) Time critical processing, which is highly optimized

machine dependent code.

In each one of these six categories we can distinguish between

the following difficulties:
Easy Medium BHard
The following table can serve as a rough reference for the relative

effort required for each one of these categories. This table

has to be modified as experience accumulatcs.

Degree of. Software Category

Difficulty A C* D I P T
Easy 1.0 1.4 1.6 1.2 1.3 5.0
Medium 1.3 1.8 2.1 l.6 1.5 5.0
Hard 1.5 2.0 2.3 1.8 1.7 5.0

If we multiply the estimated size of each software* unit with
the corresponding deqree of difficulty, we get the normalized

size of the units.

- 52 -

Environmental Factors

The effort, thch is required to prodﬁce a given piece of software®
depends on the product per se (normalized size) and on environmental
factors of the software* producing organization. Some examples

of environmental factors, which do have an influence on the

time required to complete a given task are:

- Qualification of the development Personnel

Experience of the development Personnel

- Development System at hand

Concurrent Jardware/Software Development

Although all of these factors are important, the qualification
and experience of the programmers seem to have the most significant
influence. The fcllowing table gives some indications of the

differences which have been observed a number of times

Experience of Qualification of Development Personnel

of Dev.Pers. below average average above average
little experience .5 7 1.0
average o | 1.0 2.0

very experienced 1.0 2.0 3.0

If a powerful software* development system is available the
productivity of a programmer can be increased by up to 50 3.

The concurrent development of software* and hardware* is normally
a sicnificant handicap, which can cut the productivity of

software* development to half.

If we multiply the normalized program* size with the environmental

factors discussed above, we get the Work Size of the Software

53

Job. In order to arrive at the time needed to implement this
Job, we have to divide the Work size by the applicable

productivity rate.

Productivity rate

A lot of experimental data* has been collected on software*
productivity. However, considering the many factors involved
it is very difficult to compare the productivity data* which
has been accumulated on different projects with different

people in different development environments.

Before establishing a local productivity data* base, which
takes all the local factors under consideration, the
following estimate of programmer productivity can serve

as a rough first guideline:

Considering the Work size as the base, it can be expected
that about 300 - 400 lines of source code
per month can be produced by an average programmer. This

time includes all activities in the following phases:

- Requirements

- Product Design

- Components Design
- Coding

- Implementation

The final documentation of the software* product is also

included in this productivity number.

54

Phase Distribution

This section deals with the assignement of the development
time to the different project phases introduced in the

pfevious chapter.
Boehm /Boehm,198l/ gives following phase distribution for

average software* projects:

Ef{ort Distribution

Product Size

Phase small medium large
(2KDSI) (32KDSI) (128KDST)
requirements 6 3 6 3 6 %
product design 16 % 16 & 16 &
conponent design 26 % 24 3 23 &
Coding 42 3 38 % 36 3
Integration 16 % 22 % 25 %
100 % 100 & 100 %

1 KDSI 1000 delivered source code instructions,

i.e all instructions which are written by the

programmer, excluding comments.

The schedule will normally ditfer from the effort distribution.
In the beginning of a software* project, during the requirements
analysis and system design* phase, only a small number of highly

experienced software*

4]
47

r=acizlists will verform 211 the werk. ne

component design* ard coding can be distributed to a large number
of professionals. Thus the first phases of a software* project
will take longer than the corresponding ratio of the

effort estimation.

The total schedule of a large software* project can be calculated

according to the following formula:
Total schedule (in months) = 2 * SQRT(Work size (in thousand SI))

For small and medium projects (those less than 100 manmonths),

this formula is not applicable.

The work distribution during the project durztion will differ
considérably according to the project phases. During the
system design* a small group of experts should be in control
of the complete design* task. Later on, during compdnent
implementation, the work can be distributed on a number of

people.

3.3 Team Organisation

It has been shown in the previous chapter that the producti&ity
ranges of the individual programmers are very significant
factors in the effort estimation procedure. Personnel
attributes and human relations activities thus provide by

far the largest source of opportunity for improving

software* productivity.

|
w
(62N
|

Normally, the project team is the preferred organisational
structure for software* development. All the talents, which
are necessary for the development of a softwcre* systen,
should be present in this team. For the time of the project,
the member. of the project team report to the project
nanager and are freed from all other duties. The project
team should consist of members of the software* development

department and the user organisation.

Boehm /Boehm 1981/ introduces five basic principles for

software* team staffing:

-~ The Principle of Top Talent

- The Principle of Job Matching

- The Principle of Career Progression
- The Principle of Team Balance

- The Principle of Phaseout

The Principle of Top Talent

The bulk of the productivity on a software* project conmes

from a relatively small number of highly qualified participants.
If there is an alternative, it is superior to use fewer,

but highly qualified people in order to get a software*

project done. A number of studies have shown that the

well known 20%/50% rule applies to software* development:

20% of the highly qualified people provide 50 % of the

WOTK.

The Principle of Job Matching

Although software* work is not repetitive, there is considerable
opportunity to transfer the experiences gained on one project

to another project of similar characteristics. This can

improve the programmers productivity considerably. It

is therefore important to carefully match the programmers

profile* to the job profile.

The Principle of Career Progression

Since the software* field is arowing rapidly, it is common
practice to advance the good programmer into management.
This can be a big mistake, since it is not definite, that

a good programmer will be a good manager. On the other
nard, some technical expertise, which has been available

to the organisation is lost. It is important to provide
career paths for technical experts so that they can achieve
a high social standing without turning into management.

A successful software* orgdhisation relies more on technical

experts than many other engineering organisations.

The principle of Team Balance

Software work is team work. System people and people from
the user organisation must cooperate harmoniously in order
to get the work done. It is a management duty to assign
the personnel in such a way to the project teams that

a balanced set of talents is available and no extrene

personality traits dominate the team.

The Principle of Phaseout

If some extreme personalities dominate the team in an
unproductive manner, it is important to phase these
persons out of the team as soon as possible. Otherwise
a considerable amount of the productive capacity of

the team will be used in order to resolve these

internal conflicts.

59.

3.4 Project Control

A prerequisite for the effective control of a software* project
is the availability of detailed project plans. It is assumed
that the project manager is responsible for planning from the
beginning of the project (requirement* analysis) until the

delivery of the end producc.

In the previous sections we have already discussed some of the
techniques for structuring a software* project, for software
effort estimation and workload distribution. We will now

put these things together in order to generate a comprehensive

project plan.

We distinguish the following sections in a project plan:

(1) Project overview
This section gives an overview of the project. It describes
in short words the main objectives of the project, the user
and develcpment organisation and explains the structure of

the plan.

(2) Phase Plan
The Waterfall model introduced in the beginning of this
lchapter can form the core of thc phase plan. 1In addition
to the project structure the phase plan must contain the
effort, both man and machine, which is needed for the
completion of each phase and the definition of some

tangible products, which are produced at the end of each

phase. Since these tangible products will normally

consist of project documents, the phase plan and the

documentation plan will be closely related.

(3) Documentation plan
The Documentation plan defines and is used for the
control of the Projeét Documentation. It is one of
the most important plans of a software* project.
The minimal set of documents, which have to ke produced

during a software* project are the following:

- Feasibility Study: The documentation of the
economic analysis of the proposed computer application

including a cost benefit calculation

- Requirenments Analysis: The documentation of the

requirements of the new system

- Functional Specification: The documentation of all
system functions, including input and output procedures,
logical data* base design, and the definition of the

acceptance test

= User Manual: This documentation includes all the
information which is necessary for the operation of
the system. A first version should be prepared

together with the Functional Specification.

- Program Documentation: It includes the information

which is necessary for the modification of the

the delivered software¥*.

(4)

(5)

(6)

(7)

- 61 —

Test plan. This plan contains all testing activities,
such as module tests, integration tests and acceptance

tests.

Organisation plan: This plan defines the specific
responsibilities of each person participating in the
project. It includes the estimated work effort and
the start and completion date for each project task.
The milestones in the organisation plan must be
coordinated with the documentation plan and

test plan, such that tangible results can be monitored.

Installation plan

This plan includes all activities which are concerned
with the installation of the proposed software* product.
The important topic of training of the users personal
can be either included in the installation plan or

can be dealt with in a separate training plan.

The installation plan must also contain all dates

concerning the physical system installation.

Reporting plan

This plan describes the reporting structure about
the project,i.e. the reports to the project manager
and the project steering committee. It is good
practice to introduce two types of project reports,
periodic reports and phase completion reports.

The periodic reports contain all the activities
which have been completed in the last reporting period
as well as an outlook on the next reporting period.
The question about potential problems affecting the
progress of the project should be part of every

project report. A good frequency for the periodic

report is about once a week. The phase reports are
produced at the end of each project phase. They
contain a comparison of the planned versus actual

effort required for the phase in question.

These detailed project plans form the backbone of the project
control. During the project, the project manager must monitor
the progress of the project in relation to these plans. If

a significant deviation between the planned and the actual
progress of the project is observed, it is good practice

to question all project plans and to iterate through

the planning phase once again.

3.5 A case study for organising a software* project

In this section we want to give a practical example for
the application of the effort estimation and project control

technigues.

Let us assume, that a company wants to develop a new
software* package for order processing. A feasibility analysis
has shown that such a package could result in savings of about

20.000 US S per year.

The package has to support the following fuactions

order entry on an online terminal

order processing

- data communication (transmission of the order data to the
accounting department).

- report preparation

Based on the experience with systems of similar functionality

and complexity, the following estimates for the program

size are made:

(1) Order Entry

This subsystem must support ten different CRT formats and
.about 40 different input records. Some plausibility

checks on the input have to programmed, as well as a number

of accesses to the order product file, order file* and

customer file:

—_— e -

64
Size estimation:

unit size complexity number total norm
CRT output 50 IM 10 500 800
input proc. 20 PM 40 800 1200
file access 10 DM 10 100 210

The abbreviations in the colums complexity are taken from
chapter 3.1 . Toutal stands for the total estimated size
and norm refers to the normalized size, i.e. the estimated

size multiplied by the difficulty factor from chapter 3.1l.

(2) order processing

In this subsystem the order has to be analysed and checked
for validity. The required papers for the warehouse have
to be printed and an order confirmation has to be sent to

the custormer.

Size estimation

unit size complexity number total norm
order anal. 200 AM 1 100 260
warehouse pap. 400 I,P H 1 . 400 610
order conf. 250 I,P i 1l 250 390

(3) Pata communication
In this subsystem the data communication protocol* between
the order entry machine and the accounting machine has

to be developed.

unit size complexity number total norm

protocol setup 200 I, T M 1 200 660

comm.error man. 300 I. T M 1l 300 990

- 65 -

(4) Report preparation
In this subsystem about 15 different management reports

have to be prepared.

unit size complexity number total norm
report prep. 40 AE 15 600" 600
file access 10 DM 10 100 160
report output 50 i 1 50 80

If we compare the estimated sizes and normalised sizes of

the four subsystems, we get the following results

subsysten estim, size norm. size
(1) Order Entry 1400 2210
(2} Order Processing 750 . 1260
(3) Data Communication 500 1€50
(4) Reporting 750 240
Total 3400 5960

e now assume, that we have two programmers available, one
beginner of average qualification and one experienced programmer

with average qualifications.

programmer norm size human factor work size
experience 3960 -2 1980
beginner 2000 .7 2857

Let us assume that the productivity rate is about 350 lines of

- 66 -

code per month. This gives a total effort for this project

of about 18 Manmonth.

If we now look at the effort distribution, we get

product design 16 % 3 MM
component design 22 % £ MM
Coding 40 % 7 M
Integration 22 % 4 MM
Total 100 % 18 MM

Ve now can fix some of the milestone dates of this project:

Only the experienced programmer will work during the product design,
such that aftar 3 month the prcduct design* (functional zpecification)
will be complete. This will be the first milestone.

The rest of the work will be done by the two programmers in

parallel, such that the whole project will be completed after

about 10 to 11 months.

Phase plan

This is a rather small software* nproject. I!Te will therefore

distinguish between the following phases

Feasibility to be done by the user organization

Requirements to be done by the user organization in cooperation
with the software* development nrganization. According
to chapter 3.2 the requirements phase will take about
6 $ of the project work, i.e. about 1 Manmonth in this

case. This effort is not included in the effort

estimation procedure.

- 67 -

Product Design to be done by the software* development organisation

According to our estimate 3 Manmonths

Functional specification* 4 man month effort, to be completed within

two month by the software* development organisation

Coding 7 Manmonth effort, to be completed within 3.5 months

by the software* development organisation

Integration and Implementation 4 Manmonths, to be completed

within 2 months by the software* development organisation

Documentation plan

The Requirements Analysis Document must be completed after

1 month at the end of the Requirement ohase.

The functional specification* document and a preliminary
version ~¢c the user manual must be completed after the

Product design* phase, i.e. 4 month after project start.

A preliminary version of the program* documentation has to
be completed at the end of the coding phase, i.e 9.5 months

after project start.

Test plan

The detciled procedures for the acceptance test will be
specified in the document "Functional Specificatioa”.
The component tests will be periormed during and at the
end of the coding phase.

The acceptance test will be performed at the end of the

integration phase.

Organisation plan

The organisation plan states that one specific programmer

will be assigned to this project for the first four months,

and after that date the selected second programmer .
will join. The first programmer will act as a project

manager. The key dates and milestones of the project

are those of the phase plan.

Installation plan

After the functional specification* (four months after project
start), the training of the user cersonnel will commence.
(Mote, that the preliminary version of the user manual is
completed by that time). The implementation phase of this
project will start ten months after project start with

active participation of the user. In case new equipment

has to be installed at the users site, this installation

must be completed nine month after project start.

Reporting plan
Reports about the progress of the project have to be prepared
every other week. At the end of each phase, a summary

report, giving a management overview over this phase,

will be provided.

W e

-6y -

The following time table gives an overview of the project

0 1 2 3 4
1234567 8901234567 8901234567 8901234567 890123456

Time (in weeks

after start)

Requirements Lrrr
Functicnal Sp. EEELEEEEFERE
component design dddddddad
dddddadd
Coding cececececeecee
ccceceeccceee
Integration iiiiiiii

........

11111111

4. The Software Development Process

The final chapter of these guidelines is concerned with the
technical aspects of software* development. It is to be
understood, that this chapter czn only give an overview

of the important technical topics. It is recommended

that the reader refers to the abundant software* literature,
part of which is referenced in the bibliography,

for further study.

The main emphasis of this chapter is on the Quality Control
aspects of software*. We will therefore develop some checklists
for each phase in order to help the software* engineer in

auditing his work.

4.1 Requirements Analysis

As already mentioned before, the first activity in a software?*
project is a feasibility analysis. Since such a feasibility
analysis is not typical for software* -— it must be performed
for any kind of investment -- it will not be discussed further
in this report.

The result of the feasibility analysis is a cost benefit

analysis of the proposed project and a coarse description

of the objectives of the new project.

- 71 -

The requirements analysis takes this specification* of the

project objectives as the starting point. The requirements

analysis phase can be structured into the following segments

(1)
(2)
(3)
(4)
(5)

review of the project objectives

review of existing methods and procedures

Preliminary specification* of the system requirements
Analysis of the preliminary requirements

Final specification* of the requirements

The result of the Requirements Analysis is the report on the

System Requirements. The following checklist is provided in

order to make certain that this report is complete:

Objectives of the computerized system

Analysis of existing methods, including a description of

the environment, in which the system will ultimately

operate. Includes rules and regulations, policies

critical aspects of this application.

Scope and penetration of the system as defined by organizational
boundaries, plans for organizational changes, concurrent
projects which might have an effect on this work.

Description of the typical system user, its background
experience, expectations and training requirements.

A general information flow chart of the application, showing
key inputs, outputs, volume estimates (average, peak, growth)
and time constraints which are critical. Areas or origination
and use of inputs and outputs is shown. The information
flowchart displays major decision points in the application.
Interfacing requirements. A detailed description of all
system interfaces which are given by the environment of the

new system. Possible changes in these interfaces mu't be

investigated.

- 72 -

- Security and Safety requirements: Privacy and restricted
access to sensitive data, reliability of the system
and the data
- Go-nogo criteria. Critical design* constraints which must
be met in order to install the system. This does not include
. performance parameters only, but also cost and development time.
- Statement of assumptions. Analysis in respect to the
criticality of these assumptions.
Once the systems requirements have been established, these
requirements must be validated. There are four criteria for
evaluating the requirements:
(1) consistency: is there a conflict between some of the
requirements ?
(2) completeness: Are there any functions which have not
been considered? Are there any constraints which may
have been overlooked?
(3) validity: Are the requirements needed to fulfill the
objectives of the "wider"” system?
(4) realism: Are the requirements realistic considering the

given environment?

There have been a number of tools and techniques developed

for the support of this phase. One of the best known methodologies
for the requirements analysis phase and design* phases

is SADT# --Structured Analysis and Design Technique.

This technique will be described in some detail in the

appendix.

An excellent overview concerning the different !Methodologies

for Requirements A...lysis and Design can be found in /Wassermann et
al,1983/.

4.2 Functional Specification

The Functional Specification is concerned with the process of
going from the statement of the requirements to a description
of the functions to be performed by the system. Since the
functional specification* involves the external design* of the

software, it is sometimes referred to as "product design®.

The following checklist should help the designer in preparing
a complete and consistent functional specification. A functional
specification* must contain:

- Identification of the objects which are visible at the
interface to the environment, including the attributes
and relationships of these objects.

-~ Identification of the functions which will operate on
these objects, including their donrain.

- Detailed specification of the inputs and outputs of these
functions including the formats and dialogue. The inputs
and outputs must be referenced in the information flow
chart of the requirements analysis.

- Detailed specification of the information which will be
stored in the system. The inputs used to create, update
or change this internal information must be identified
together with the data* elements they contain.

~ Detailed specification of the processing steps.

Decision tables, algorithm*ic formula or some kind of

Program Design language* can be used to represent

these algorithm*ic steps.

- 74 -

- Starting from the volume and timing information of the
requirements analysis, this section is concerned with
the performance characteristics of the planned software.

~ Specification of the procedures for system start up,
restart and error handling. Data base recovery
procedures after a system failure (e.g. by power failure)

- A data* dictionary defining all data elements, their
meaning and representation at the external interface
of the system. The plausibility checks for these data
elements should also be included. _

- The detailed procedure* for the acceptance test of the
software. The user may be called upon to provide the
test data* before a specified date.

- A chapter on the conversion of the "old" system to the

"new” system.
~ A project plan, as outlinedvin chapter 3 of these guidelines.

A revision of the cost benefit analysis, based on this

project plan must also be included.

-75_

4.3 System Design

In this phase the internal structure of the software is devised
to provide the functions specified in the previous stage. The
most important activities during the system design* are the
partitioning of the system into subsystems and the design

of the data* structures of the system.

Design is a creative activity. It is the link between analysis,
programming and operations. On the one side, it must fulfill
the functional specifications, whereas on the other hand it has
to meet the given technical requirements. According to /Collins
et.al 1982/ design* consists of the following steps:
(1) Understand the requirements
(2) Break the system into its basic components of data
and processes
(3) Design the logical structure of the system
(4) Adapt this structure to the physical implementation
constraints
(5) Specify the subsystems
In a data* oriented design, the first step after the analysis
of the requirements concerns the definition of the logical
data* structures. Starting from the inputs, outputs and
internal data* elements of a system the relationship between
these data* elements are established on the basis of the
conceptual model of the application environment. This work
is the basis for the design* of the logical data* structure.
The operations on the logical data* structure are the starting

point for the process deccmposition. Processes are identified

by following the flow of data* through tha system. Additional

requirements, eg. auditing requirements, will be implemented
through additional processes.
The final result of the system design* is the system design
report. It has to contain the following items:
- A general overview of the entire system
~ Subsystem description: a short description of each subsystem
including the input ané output data* of each subsystem, the
internal data* of each subsystem, the processing functions of
each subsystem,
- A system structure diagram showing all subsystems and their
interconnections.
- The description of all system data* elements and a cross
reference of data-processes.
- The description of all processes and their inputs/outputs
timing and volume analysis
- HMethods for implementing the data* security *énd privacy
requirements |
-A program* portfolio -~ for each program* in the system, the System
Design Report must contain all the information needed by the
programmer, including
* program* overview: a brief description how the program* fits
into the overall system
* A specification of the program* logic (algorithms*)
and the external datastructures, the semantics of the
internal states of the program
* Layout of the physical format of all input output, including
form design* and record definitions
* Error handling information, including error detection

requirements, error reporting strategy and restart

information

- 77 -

* Testing strategy, both for the program* test and the
integration test
System design* is an iterative process. Therefore it is
necessary to evaluate a design* before it is frozen. This can
be done by formal inspections or less formal design* reviews.
Any design* should be evaluated in relation to the following
criteria
(1) consistency and completeness in relation to the
functional specification
(2) complexity of the the components and interfaces
and component size
(3) stability of the interfaces in relation to possible
change requirements
(4) observability and testability of the design

(5) performance characteristics in relation to the

available hardware* environment

4.4 Programming

The programming effort starts with the analysis of the
System Design Report and the Program Portfolio by the
programmer. It normally consists of the following activities: .
--Logical Analysis
~ Design of the Control Structure and Internal Data Structure
of the Progran
— Desk Checking and Logic Review of the Program Design
- Coding and Documentation of the Coce
~ Compilation and Debugging of the Code
- Preparation oi Test Data and Module Testing
- Updating of the User and Operator Instructions
llext to a well-conceived design, the programming style has a decided
effect on the comprehensibility of a software system. There are,
of course, many ways in vhich a program may be written so that the
required data transformations are performed. It is the individual
programming style that finally decides which alternatives are
chosen and whether a program looks clear or confused. Programming
style determines the readability and therebj also the complexity.
Complezity is the main cause for software errors and the
unreliability of the end product. The most iﬁportant rule of
programming style requires that a program be simple, clear and
manageable. The clarity of the prograx can be improved, if
some of the following rules are obeyed:
~Physical Layout: The visual organisation of the program text
using separating lines and indentation has a very positive
effect of program readability.
~Maming: The choice of variable names is very important

for readability. Vhile variable names should be chosen from

a mnemonic and systematic point of view, they should also make

- 19 -

reference to the meaning of the variable. Starting from a problem
oriented base, the naming effort should be strictly controlled
by the project manager.

- Processing: In the processing section of a program one should
make use of tried and proven program segments, as far as possible.
The control elements in a program should be taken from the
limited set of constructs defined in the "Structured programming

rules", i.e. sequence, if then else and do while . In many

cases complicated branching can be awvoided by the use of'
simple logical operations on logical variables.

- Input OQutput: llany program errors can be traced back to badly laid
out input/output interfaces or a poor check of the input data.
Input formats snould be uniform and as free as possible. Similarly,
results should be presented with a meaningful text. The range
of input values should be kept as small as possible and reasonable
and should be che¢ked in the program.

- Testiné: Everv program should be designed in such a way that it
can be tested independently of the rest of the system. It is
therefore important to provide provisions for the observability
and control of the inputs, outputs and internal state rariables
of a program.

- Error handling: Every program should contain an error detection
and an error handling section. Errors, which cannot be handled
in the program should be reported to the calling program. The
inpe:nal state of the program should be set in a consistent
state.

~ Commenting: It is not easy to comment a program meaningfullyf
A program nay not only have too few comments, it may also have
too many. Each program should start with a block of comments
which should contain the following information:

* program indentification, version and author

* date of production and last modification

- v

* function of the program

accuracy statement (especially in real arithmetic)
input output description by example

example of calling sequence and parameter description
* arror handling

* assumptions regarding environment and module limitations
Furthermore, branch points within a program should be described

with reference to the algorithmic solution. Anv program section

that probably will have to b2 changed as a result of -program

(L

nodification should be hizhlightead.

o e—— -

i
!
b

4.5 Testing and integration

At the beginning of every software development some concepts of

what the system should do are formulated. The validation

of the software package constitutes confirmation that these concepts
are in fact fulfilled. The validation is a continuing process through

each stage of the software life cycle.

Even with simple programs only a vanishing small part of all
theoretically possible input cases can be exercised during the test
phase. This is why software testing can only show the presence

of errors, never their absence.

In order to make the test phase effective, it is important

to carefully select the test cases. Three approaches for test

case selection may be taken: to check the specified functions

of the program, to select the test cases on the basis of the

input distribution of the expected application, or to determine

the test cases on the basis of the internal structure of the actual
program. In the following sections these three test methods, the
functional test, the acceptance test and the structural tast, will ke

treated.

During functional testing the specified functions should be tested
individually and in combination. The software system is treated as »
‘black box' by means of which expected results are calculated for
given input values. The selection of relevant test cases on the
basis of functional testing represents the most effective 1 thod

of testing a program.

The acceptance test is based on the point of view of the actual

employment of the system by the user. The choice of test cases

- 32 -

is made by the division of the input space into application
related input regions. Important factors in choosing the test
cases are the problem specific input cases in the various regions
of the input space. The chief advantage of the acceptance test
lies in the.complete coverage cf the development chain through

a close cooperation with the user.

In the Structural test, the test cases are selected on the basis

of the internal structure of the program. This selection can

be made according to the following criteria

- Every instruction in the program* must be executed at least once

- Every branch point should be tested in each direction, at least
once

~ All control paths have to be tested.

Even the test of all control paths is not sufficient forrthe

complete coverage of the program.

Since none of the test methods is perfect -~ as a matter of
fact, there is no perfect test method known -- it is recommended

to use a combinaticn of m2thods for the tast case selectior.

The testing activitieé should be formulated in a test plan.

The components of a good test plan are:

~A listing of all functions that are to be tested

-a description of the test strategy that will be used

-test criteria that must be fulfilled, such as percentage of
branches, range of variables etc..

—-error rate that must be achieved before the system car be
classified as deliverable

-performance requirements expected for the complete system and

its components, such as response time etc..

- -

- ————

o ——

-a list of errors that the system must be able to tolerate
-guidelines for the documentation of the test results

-the expected results of the test cases

-procedures for sy :tem integration

-schedule for the test phase

Whereas with testing an attempt is made to establish confidence in
reliability of a program* by means of a point-by point check of the
input, another verification technique, the analytical program
proving, concerns itself with program* per se as opposed to just
the computational results using the program. The aim is to show by
formal means that the program* in itself is correct The current
situation with analytical software verification appears to indicate,
that in the near future it will not represent a viable alternative

to program* testing.

- 34 -

4.6 Maintenance

The analysis of the life-cycle of successful software systems

has shown that the cost of keeping the software operationai
significantly exceeds the cost of the initial software development.
The software effort which is needed to maintain an operational system
is commonly referred to as the "software maintenance effort®™. The
maintenance phase thus starts with the completion of the

acceptance test and continues until the system is discarded.

Software maintenance is significantly different from hardware
maintenance. In hardware* maintenance a hardware* unit which

has changed its physical performance due to ageing or environment
stresses has to be replaced by a new unit of the same type, i.e. the
same initial performance, whereas software rmaintenance always
implies the partial redesign* of an existing software product.

This redesign* becomes necessary for the following reasons:

(1) repair of residual design* errors. Since it is not

practically possible to exhaustively test or analytically verify

all properties of a program, there is always a certain probability
that residual design* errors be detected long after the system

has become operational. However, it is to be hoped that an improved
programming methodology will reduce this number of residual design

errors.

(2) Adaptations and functional enhancements. Everv successful
system becomes part of the environment it is destined to serve.
Since the real-world envircnment is continually changing, the

requirements of the system are also forced to change. "In real

life there is not a single, étatic well-defined problem but a

constantly changing problem whose definition is being altered by
information that actors recover from memory and by other information

from the environment's response to actions taken". /Simon 1971/.
In order to keep a system operational, it must be changed so

that it cerresponds with these modified requirements. Examples

of such changes in the requirements are:

~Hodification of the real world function which is modelled within
a system (e.g. implementation of a new income tax regqulation in a
payroll package).

-Availability of new hardware* (e.g. modification in the database
software to use a new disk drive with improved cost performance).

~Performance enhancements (eg. improvements in the response time
of a new on-line system).

Most of these changes are outside the control of the system
implementor. There is no hope that an improved software development

methodology can significantly reduce these change requirements.

On the contrary, the increasing integration of computer systems

within organisations will lead to a need for an increased
responsiveness to change reguirements. In the future, some
organisations might only be capable of surviving f their
computer systems can be modified quickly in response to a

changing market place.

- 36 _

Appendix 1l: The UNIX+ Systen

UNIX+ is a general purpose interactive operating system that
has been developed by Bell Labs. The first Edition of UNIX+
was -documented in a manual authored by Thomson and Ritchie
from Bell Labs in November 1971. It was implemented on a
Digital Equipment PDP 11/20 computer. Since that time UNIX+
has been implemented on a number of different computers
ranging from micros to big mainframes. It is now regarded

a standard operating systems for the more powerful micro-

computers.

In the very short history of the mass produced personal computer
experience has shown that only a small number of standard
operating system penetrate the market. Since, at the moment,
there are no real alternatives to UNIX+ as a standard operating
systam for powerful personal computers, it must be expected that
UNIX+ will become much more popular with the introduction of
more poverful mass produced personal computers. Already nowadays,

UNIX+ is supported by many different suppliers.

As far as possible, UNIX+ tries to hide the characteristics
of a specific machine. This results in a high compatibility

of the software written for UNIX+.
The main features of UNIX+ are:
- A hierarchical file* system which is independent of the

parameters of the physical storage device.

- Compatibility between the input/output and the file* systenm

—_——— e -

~ The ability to create asynchronots processes

-~ A flexible command language* which can be tailored to
the requirements of a given application environment

- A large amount of software from independent software
suppliers, including all major programming languages,
relational data* base systems, text processing software
and a variety of application packages.

-Communication support to connect UNIX+ systems together

In the following we will discuss the two most important
features of UNIX+, the file* system (which includes the

input output system) and the command language.

The UNIX+ file* systen

A file* system provides a facility to store information by name.

UNIX+ distinguishes between three kinds of files

Ordinary files

The ordinary file* is the standard for the storage of information
from a user program. No particu”ar structure of the information
is expected or supported in ordinary files. An ordinary file
consists simply of a sequence of characters, with lines demarcated
by the newline character. Binary program* files are seguences

of words as they will appear in the core memory of the computer.
If an application program* expects any stiucture of the file, it
is in the responsibility of the application program* to generate
this structure and interpret this structure. From the point of
the UNIX+ file* system, files do not contain any structure. Even
the structure imposed by the physical storage medium is hidden

from the user.

————— -

Directories

A directory is a file* that holds the names of other files

{or other directories). It thus provides the required mapping
between a filename and the file* itself. Each user has a directory
of his own files. He may also create subdirectories to contain
groups of files which are related to each other. A directory
_behaves exactly like an ordinary file, except that the operating
system controls the write access to this file. Provided the
user 1is privileged to do so, he can read a directory file

but may not modify it.

The starting point of the file* system is the root directory.
All files in the syétem’can be found by tracing a path from

the root directory to the next level of directories and so

on until the required file* has been located. The file systenm
of UNIX+ supports thus a hierarchical structure of files.

Files are named by sequences of 14 or fewer characters. When

the name of a file* is specified to the system, it may be

in the form of a path néme, i.e. a sequence of directory names.
A file* in UNIX+ does not exist in a particular directory.

The directory entry of a file* consists merely of its name,

its zttributes, and a pointer to the information of the file.
Thus it is possible to link the same file* to different directories.
The operating system maintains several directories for its

own use. Some of these directories contain the programs which
are for generél use. The execution of these programs can

be invoked by specifying the file* name of the appropriate
program* file. These file* names correspond to the system
commands. By writing new programs and linking them to

the appropriate directories, a user can develop his own

command language* tailored to his particular application

environment.

Special files

Special files correspond to input output devices. These files

can be accessed in the same basic way as ordinary files, though
with some restrictions e.g. it is impossible to write to
an input device. An access of a special files causes the activation
of the corresponding device. Each disk drive, each terminal or
communications line can be accessed through its special file.
The access *o special files can be protected, just as the access

to ordinary files. The advantage of treating I/O devices and
fiites the same way lies in the compatibility between I/O and
file* access. No special programming is needed to redirect I/0

to a file. The system calls to do I/0 are designed to eliminate

the differences between the various I/O devices and styles of access.
There is no logical record size imposed on a file.

UNIX+ does not provide for any file* locking.

The UNIX+ command language

UNIX+ provides a command line interpreter, which is called the
"shell". It reads lines typed by the user and inierprets them
as requests to execute other programs. The simplest form of
a command consists of the command-name followed by its
parameters:

command-name parl par2 par3
The shell separates the command name and the parameters into
two strings. The first string is the filename of the program
which is to be executed. This program* file* i: sought, brought
into main memory and started for execution. The arquments which
have been collected by the shell are made available to the
program. When the program* is finished, the shell continues its
own execution and informs the user with a prompt character,
If a file* with the name of the command cannot be found, then

the shell reports an error to the user.

- 30 -

When a user starts working on his terminal, the shell declares
the user terminal as the standard input output device. However,
the shell can dynamically change this assignment on the users
request. If one of the arguments of a command is prefixed by ">"
the shell will change the standard assignment of the output file
to the file* named after ">". Thus

> filex
means "place output on filex" instead of "on the standard output
device (i.e. the terminal)”. The symbol "<" has the corresponding
meaning for the standard input.
If a command is followed by an "&" the shell will not wait for
this command to terminate but will start a parallel task for
the execution of this command. In order to identify this new
task, the shell will return with a task identification
number. It is thus possible to start background processing,
The scheduling algorithm* in UNIX+ is designed to give good
response to the interactive foreground preccess in case the
background process is very processing intensive.UNIX+ also
provides special facilities for the communication between

parallel tasks.

A more detailed description of UNIX+ can be found in the

UMIX+ books /Bourne, S.R./, /Banahan et al/ in the bibliography.

-31 -

Appendix 2
SADT®* -- Structured Analysis and Design Technique /Ross 1977/

SADT® is a comprehensive methodology for systems analysis and

functional design.

It has been developed by the company SOFTECH in Waltham,

tlass. USA in the seventies. The principle author is D. Ross.

SADT® provides techniques and methods for:

thinking in a structured way about large problems

- representing the results of the analysis and design* phase
- communicating the results in a clear notation

- team work in the analysis and design* phase

- managing the analysis and design* phase
SADT# is based on seven Fundamental Concepts
(1) Understanding of Systems via Model Building

The in-depth understanding of a system is achieved by building
"models"” of system from well defined viewpoints. Such a model

is an abstract representation of the system, eliminating all
details which are unimportant for this specific viewpoint.
Different Aspect oS the system will be represented by different
models, e.q. a tModel may describe the Functional Characteristics
of a System, another model may be concerned with the Maintenance

Characteristics.

- 92 -

(2) Top Down Decomposition

Any SADT® hudel is developed from outside in. The Top level is
concerned with a complete, but very general description of the
system. At each level down, the concepts of the previous level
are refined and more details are brought in. SADT# limits the

amount of additional information that may be brought in at any

one level.
(3) Functional Modeling versus Implementation Modeling

The starting point is always a Functional Model of the pfoblem:

"ttThat is it?" as opposed to "How is it implemented?" . The
development of a clear and precise functional specification

before implementation is of critical importance to successful

system production. SADTz provides a notation distingquish between

a function and a mechanism used to implement this function. Sometimes
a mechanism may be so complex that it in itself warrants to

development of its own model.
(4) Dual Aspects of Systems

System may be described in many different ways. SADT# distinguishes
between two methods of looking at a system -~ its entities (data)

or its activities (processes). The corresponding models are called

a data* decomposition and an activity decomposition. The data
decomposition details the "things"™ of the system, while the
activity decomposition details the "processes™.

In the final phase of modeling a <orrespondence verification of

these two decompositions has to be performed.

10 fa f
= 22
I [z
= e

L2 [JLL e

=

- 33 -

(5) Graphic Format for Model Representation

SADT# provides a graphical language* to represent the analysis and

design. The main elements of this graphic lanquage* are boxes

and lines to connect the boxes. The number of elements on a diagram

is strictly controlled in order to prevent overloaded diagrams.
The interpretation of the boxes and lines between the boxes

is different for the "datagram™,i.e the data* oriented design* and
the "actigram", i.e the activity oriented design. In datagrams,
the boxes refer to data* elements and the lines to the activities
producing and consuming these data* elements. In actigrams,

the boxes refer to activities and the lines to the input and

output data* of these activities
(6) Support of Disciplined Team Work

The Analysis of Complex systems requires the cooperation of

many people. SADT# provides a set of rules for such a

team work. Each member of a team has to conform wita

the role assigned to him. Among the diffefent roles in

the teamwork we distinguish between

- the author who actﬁally writes the SADT# diagrams

- the reader who has to read and interpret the SADT? diagram

- the expert who has to provide the information about the system

- the secretary who has to record and file* all information

- the monitor who has *o monitor the progress of the SADT# project

and look after the conformance with the SADT?2 rules.

» -~

-394 -

(7) All Decision and Comments in Written Form

In SADT# all decisions and alternate approaches have to be
recorded in written form. Authors have to write the SADT#
diagrams and experts have to comment on thase diagrams in
written form. The diagrams have to be filed with the secretary.
This complete documentation of a project helps to.clarify

misunderstandings and reduces the number of iterations.

There are some software packages available which provide

computer assistance for the SADT# user.

95

Appendix 3 :
Glossary of some software terms

Most of the fcllowing definitions of software terms are taken from
IESE St. 729-1983 "IEEE Standard Glossary of Software Engineering
Terminology”", published by the Institute of Electrical and Electrcnics
Engineerg, Inc., 345 East 47th Street, New York, NY 10017, USA

£xplanatory remarks are added.

ADA++: A new programming language for real time applications

see z1so0 chapt. 2.3

algorithm: A finite set of well-defined rules for the solution
of a problem in a finite number of steps; for example, the
set of rules which have to be followed in the solution of

a mathematical equation.

application software: Software specifically produced for the user
of a computer system; for example, a payroll program or
a program for the control of a specific machine. Contrast

with system software.

assembly langquage: A machine specific language whose instructions
usually in one-to-one correspondence with the hardware instructions

of the computer.

BASIC: A programming languaqge which is simple to use, see

also chapt. 2.3

C : A programming language for systems programming, mainly in

UNIX+, see also chapt. 2.3

COBOL: A programming language used for commercial programming,

see also chapt. 2.3

change control: The process by which a change to the software is

proposed, evaluated, approved or rejected, scheduled, and
tracked.

conmand language: A set of procedural operators with a related
syntax, used to indicate the functions to be pérformed by

an operating system. Synonymous with control language.

comment: Information embedded within a computer program command
language or a set of data that is intended to provide
clarifications to human readers and that does not effect

machine interpretations.

conpile: To translate a higher order ».2nguage program into a form
which can be executed by the iachine. The corresponding
translation program is called a compiler. Contrast with

assembler, interpreter.

computer: A functional programmable unit that consists of one
Oor more associated processing units and peripheral eguipment,
that is controlled by interrally stored programs, and that
can perform substantial computations, including numerous
arithmetic operations or logic operations without humai

intervention.

-_—— -

concurrent processes: Processes that may execute in parallel on multiple
processors or asynchronously on a sinyle processor. Concurrent
processes may interact with each other, and one process may
suspend execution pending receipt of information from another

process or the occurrence of an external event.

data: a representation of facts, concepts or instructions in a
formalized manner suitable for communication, interpretation

or processing by human or automatic means.

data communication protocol: A set of rules definina the data
structures and the duration between events for the communication

between computers

design: The process of defining the software architecture, components,
modules, interfaces, test approach, and data for & software
system to satisfy specified requirements. Also: the results

of the design process.

efficiency: The extent to which software performs its intended

functions with a minimum consumption of computing resources.

embedded computer system: A computer system that is integral to a
larger system whose primary purpose is not computational;
for example, a computer system in an aircraft control

system.

execution: the process of carrying out an instruction of a

computer program by a computer.

failure: the termination of the ability of a functional unit

to perform its required function.

- 38 -

fault: An accidental condition that causes a functional unit

to fail to perform its required function.

file: a set of related records treated as a unit.

FORTRAMN: A programming language for scientific applications

see also chapt. 2.3

functional decomposition: A method of designing a system by breaking
it down into its conmponents in such a way that the components

correspond directly to system functions and subfunctions.

functional specification: A specification that defines the functions

that a system or system component must perform.

hardware: Physical equipment used in data processing as opposed
to computer programs, procedures, rules and associated

documentation. Contrast with software.

interface: a shared boundary between two or more subsystens or
a system and its environment. A specification that sets forth the

interface requirem=2nts is called an interface specification.

language processor: A computer program that performs such functions
as translating, interpreting, and other tasks required for
processing a specified proqramming lanquage; for example a

FORTRAM processor, a COBOL processor etc..

LISP: A programming language for Artificial Intelligence

applications, see also chapt. 2.3

machine language: a representation of instructions and data that is

directly executable by a computer.

PASCAL: A programming lanquage for teaching programming

see also chapter 2.3

procedure: a portion of a computer program which is named and which

performs a specific task

project plan: A management document describing the approach that
will be taken for a project. The plan typically describes the
work to be done, the resources required, the methads hto be used,

the schedules to be met and the procedures to be followed.

Program: The instructions which tell the computer what has to be

done.

Programming language: An artificial lanquage which can be usad

to express the instructions to a computer

PROLOG: A programming language Xor artificial intell.gence

applications, see also chapter 2.3

Protocol: see "cdata communication Pro*occl”

requirement: A condition or capability that must be met or possessec
by a system or system component to satisfy a contract, standard,
specification or other formally imposed document. The set of
all requirements froms the basis for subsequent development

of the system or system component.

specification: A consise statement of a set of requirements to be
satisfied by a product, a material or process indicating,
whenever appropriate, the procedure by means of which it may

be determined whether the requirements given are satisfied.

- 100 -
security: The protection or computer hardware and software from

accidental or malicious access, use, modification, destruction,
or disclosure. Security also pertains to to personnel, data
communications, and the physical protection of computer

installations.

software: Computer programs, procedures, rules and associated
. documentation and data pertaining to the operation of a computer .

system. Contrast with hardware.

software documentation: Technical data or information, including
computer listings and printouts, in human-readable form,
that describe or specify the design or details, explain the
capabilities, or provide operating instructions for using the
sof tware to obtain the desir2d results from a software

system.

software life cycle: The period of time that starts when .a software
product is conceived and ends when the product is no longer

avaiiable for user.

source program: A computer program that must be compiled, assenmbled,

or interpreted before being executed by a corputer.

system software: Software designed for a specific computer system
or family of computer systems to facilitate the operation
and maintenance or the computer system and associated programs;
for example, operating system, compilers, utilities. Contrast

with application software.

testing: The process of exercising or evaluating a system or syStem
component by manual or automated means to verify that it satisfie:
specified requirements or to identify differences between

expected and actual results.

- 101 -

Bibliography

/Banahan 1982/ Banahan, M.F.. Rutter, A., UNIX+ — the Book

Sigma Technical Press, Wilmslow, U.K., 1982

‘ /Boehm 1981/ Boehm, B.W., Software Engineering Economics

Prentice Hall, Inc., Englewood Cliffs, N.J., 1981

/Bourne 1982/ Bourne, S.R., The UNIX+ System, Addison Wesley
Publishing Company, London, 19282

/Buckle 1982/ Buckle, J.K., Software Configuration ilanagement
MacMillan, London, 1982

/Collins 1982/ Collins, G., Blay, G., Structured Systems

Development Techniques, Pitman, London, 1982

/Dunn 1982/ Dunn, R., Ullman, R., Quality Assurance for
Computer Software, Mac Graw Hill, New York, 1982

/Koupetz 1979/ Ropetz, H, Software Reliability, MacMillan,
London, 1979

/Musa 1983/ Musa, J.D., editor, Stimulating Software Egnineering
Progress, A Report of the Software Engineering Planning
. Group, in Special Issue of software Enginearing Technical

Committee Newsletter, Vol.7, No. 4 p. 1-26, May 1983

/tyers 1979/ Myers, G.J., The art of software testing
Wiley Interscience, MNew York, 1379

/Ross 1977/ Structured Analysis: A Langquage for Communicating
Ideas, IEEE Transactions on Software Engineering,
Vol. SE 3' NO. 1' Jan. 1977, p-16-34

/Shooman 1983/ Shooman, M.L., Software Engineering,
McGraw Hill Book Company, New York 1983

/Simon 1971/ Simon, H.A., The theory of problem solving,
Proceeding of the IFIP Congress Ljubljana, 1971, p.I.249 -266

/Soxerville 1982/ Sommerville, I., Software Engineering,

Addison Wesley, Reading llass, 1982

/Vlassermann 83/ Wassermann,A, Porcella, M., Freeman, p., "ADA++
Methodology Questionnaire Summary"”, Software Engineering

Notes, Vol 8, No. 1, Jan. 1983, p.51 - 99

/Yolverton 1972/ Wolverton, R.W., The cost of Developing Large
Scale Software, IEEE Trans. on Computers, June 1974, pp.615
- 636.

	Binder15.pdf
	0005A01
	0005A02
	0005A03
	0005A04
	0005A05
	0005A06
	0005A07
	0005A08
	0005A09
	0005A10
	0005A11
	0005A12
	0005A13
	0005A14
	0005B01
	0005B02
	0005B03
	0005B04
	0005B05
	0005B06
	0005B07
	0005B08
	0005B09
	0005B10
	0005B11
	0005B12
	0005B13
	0005B14
	0005C01
	0005C02
	0005C03
	0005C04
	0005C05
	0005C06
	0005C07
	0005C08
	0005C09
	0005C10
	0005C11
	0005C12
	0005C13
	0005C14
	0005D01
	0005D02
	0005D03
	0005D04
	0005D05
	0005D06
	0005D07
	0005D08
	0005D09
	0005D10
	0005D11
	0005D12
	0005D13
	0005D14
	0005E01
	0005E02
	0005E03
	0005E04
	0005E05
	0005E06
	0005E07
	0005E08
	0005E09
	0005E10
	0005E11
	0005E12
	0005E13
	0005E14
	0005F01
	0005F02
	0005F03
	0005F04
	0005F05
	0005F06
	0005F07
	0005F08
	0005F09
	0005F10
	0005F11
	0005F12
	0005F13
	0005F14
	0005G01
	0005G02
	0005G03
	0005G04
	0005G05
	0005G06
	0005G07
	0005G08
	0005G09
	0005G10
	0005G11
	0005G12
	0005G13
	0005G14

	0006A01
	0006A02
	0006A03
	0006A04
	0006A05
	0006A06
	0006A07
	0006A08
	0006A09
	0006A10
	0006A11
	0006A12
	0006A13

