

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION
Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria

Tel: (+43-1) 26026-0 · www.unido.org · unido@unido.org

OCCASION

This publication has been made available to the public on the occasion of the 50
th

 anniversary of the

United Nations Industrial Development Organisation.

DISCLAIMER

This document has been produced without formal United Nations editing. The designations

employed and the presentation of the material in this document do not imply the expression of any

opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development

Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its

authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or

degree of development. Designations such as “developed”, “industrialized” and “developing” are

intended for statistical convenience and do not necessarily express a judgment about the stage

reached by a particular country or area in the development process. Mention of firm names or

commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes

without additional permission from UNIDO. However, those who make use of quoting and

referencing this publication are requested to follow the Fair Use Policy of giving due credit to

UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

mailto:publications@unido.org
http://www.unido.org/

1 _ 1.0

111.1

! : 11111
2 2

)' -

l!lllJ-Q_

11111_ 1.a _

111111.
25

111111.
4
_ 11111-~6

r,11',fl(Jf;(JI"(llf ',(J[llfi(IN ff ',f f:ll,\flf

r j ;, r I ' I r j ' .. '· ~ ~ I I I I I ... ' I ' I r '\ r j i • \ ~ ~ r '
I :, r j r : ,\~I' 11 ~ I f ~ J f ~ j' ' • ,1 ,\ l f ~ 11 ;, I ''I' I I

; ' r ; ' I I • ~ T I • I ' ! .. ' ~ I I r j

'

•

•

UWITED NATIONS
IBDUSTRIAL DEVEIDPMEifl' ORQATIZ1'l'I0lf

I GUIDELIJIES 10R SOPNARE PROD'JCTIOlf

L ll DBV'EU>Plm COOl'l'RIES-

Distr.
LIMITED

mm>O/IS .. 440 ~
10 February 1984

ENGLISH

• 'l'h• view• expreand. in thi• paper are thoH of the author ani
d.o not neceaArily reflect th• view• of the uont&ri&t of UllIDO.
Mention of firm mme• an4 ~rcial proclucta cioe• not i"PlY the
endorHMnt of UIIDO.
Thi• document baa been reproduced without formal ecliting •

.,. ProfeHor, Techniache Uniwrait&et, Vienm, Auatria

V.84--81528

Guidelines for Software Production

in Developing Countries

1. Introduction

1.1 What is "Software"?

1.2 Th~ Rcle of Software and Hardware in

the Inf ormativn Industry

2. The Need for a Software Policy in Developing Countries

2.1 Organization

2.2 The Establishment of Training Facilities

2. 3 Standards

3. Organizing a Softwa~e Project

3.1 Project Phases

3.2 Software Effort Estimation

3.3 ~earn Organization

3.4 Project Control

3.5 A case study

4. The Software Development ProcP.SS

4.1 Requirements Analysis

4.2 Functional Specification

4.3 System Desigr.

4.4 Programming

4.5 Testing and Integration

4.6 Maintenance

- ii -

Appendix 1: The UNIX+ system

Appendix 2: Structured Analysis and Design (SADTt)

Appendix 3: Glossary of some Software Terms

7. Bibliography

+ UNIX is Trademark of Bell Laboratorie.a

++ ADA i~ a Trademark of the US Department of Defense

SADT is a Trademark of SOFTECH

Terms whjch are marked with an •*• are defined in the glossary

at the end of these guidelines.

•

•

•

1. INTRODUCTION

In the last thirty years, the information industry has becJme

one of the major industries in the injustrialized nations.

It is the main growth industry and the driving

force for productivity gains in many other fields in the economy •

The •automation of information processing" provides tremendous

opportunities. Significant improvements in many areas can be

r~alized, e.g.

- decision making

- production

- education

- environmental monitoring

- medicine

- communication

etc ••

But there has also been a considerable impact of the ·information

industry on the less developed countr ie·, both direct and indit:(.:ct.

The direct effect of the information industry is the application

of computers in these countries in order to assist in the handling

and processing of infor4.ation. Such applications range from

com~ercial data processing to scientific calculations, production

contro~, process control etc •• However in countries, which lo

not have an adequate infrastructure for the operation of computer:-.

(i.e software* develcpment and maintenance) the installed hardware

base is of relatively little use.

The indirect effects have not all been positiv~. E.g. the application

of computers in the automation of assembly line processes in the

- 2 -

industrialized countries has led to a considerable reduction in

the prices for these goods, since the amount of human labor has

been reduced. This does not only lead to some employment problems

i, the developed countries, but also to some production problems

in developing countries, since it is difficult to compete with

th.ese automatically manufactured goods on the world markets.

Generally speking, some of the negative consequences of the

"information age" will thus confront many ~ocieties, particularly

those which do not actively address this new phenomenon. The

positive aspects of the "information revolution" can only materializc:~

if an active policy in respect to information processing is

formulated and executed.

It is the aim of the following report to introduce some

of the basic concepts of the information industry, particularly

the software* side, and to provide some Guidelines for software

production in the Developing Countries.

'

•

•

•

- 3 -

1.1 What is •software*•?

The main motivation for the first commercially available compute~s

was the need to assist the engineer in the solution of rather

simple numerical problems. In these application, the problem

structure and the solution algorithms* are well specified.

With a conventional calculator it is necessary to present

each step of the solution to the machine immediately

before it is executed. With a stored program* computer, one

can specify tbe necessary steps ot the computation i.e. the algoritb .. , ·

in advance and store them in the ruachine. It is then possible

for the rnacrine to execute all the steps of the computation

autonomously. We call the specification

of the solution algorithm* in a ~achine readable

form a nprograrn*". The notation, which is used for this

specification* is called the "programming language*". Prograrn~ing

is thus concern~d with the translati0n or a given algor i chm*

into a form, which can be stored and interpreted by a

computer.

The physical units of the computer, e.g. the processi~g element,

the storag~ device, and Input/Output device etc., are called

the computec hardware, in short nHardware*n.

In order to make use of the Hardware, a set of programs and

a procedure with associated documentation, which tells t~e

user hJW to operate the programs, is needed.

-- -

.
- 4 -

The set of all computer programs, procedures and the associated

documentation pertaining to the operation of the computer,

is called the computer software, in short •software*•.

In the beginning of the computer era, the main dif f ic!1l ties

were concerned with the design* and implementation of the

physical machine, i.e. the hardware. Compared with this

enormous effort the development of the -- a~ that time

and well specified programs was relatively simple.

small

As time progressed, the problen of Lu ilding reliable hardware

was attacked by many ins ti tut ions and tremend0·1s progress has

been made in this field in the last thirty years.

In the mean time, co~puters have been applied to the solution

of large and complex problems, which a=e not as well specified

as simple engineering calculations. ?he task of specifying and

implementing the required sof twar~* has grown consider~bly.

Since about 1968, the problems a3sociated with the specifi~ation

and implementation of large software* systews has been recognised

as a major challenge to the co~puter profession. A new field,

•software Engineering" has emerged as a discipline of its own

right.

A number of important developments has taken place in the

software* field since the first days of the computer. New

high level programming languag2s, which are more easily under

standable to the human programmer, have ousted the low level

languages, which are implc~ented by the hardware* engineer.

Special programs, the compilers, ha~e been developed which

trarslate the high level language* representation of a pro9ram

to the required machine language* repre~entation automatically.

..

•

•

- 5 -

!t has beer. found out that t.~e management of large software*

projects requires special attention. Therefore new

techniques for the management of large software* projects have

been developed •

However, taken all aspects together, the software* field

has not progr.essed as fast as the hardware* field. The

main obstacles for a wider end more beneficial application

of computers are in tha software* field.

- 6 -

1.2 The role of software* and hardware* in the

Information industry

In the early years of computing, the computer industry was

pr_imarily based on the large central machines, the mainframes,

whose cost were generally w~ll in excess of US $ 100.000 a

unit. The interaction ~ith these mainframe computers was

limited to s~illed professionals.

With the advent of the microelectronic: revolution,

the prices of the computer hardware

dropped sharply. The following diagram shows the increase

of the cost-effectiveness of computer hardware* in the last twenty

years.

-~

10

1

-

ROOM FUll

COMPUTER HAROWAPE TECHNOLOGY
RELATIVE COST EFFECTIVENESS

i

v
ERA 1 (PP.E-MICRQ) /

!../ PDCXFT FUll

/ • 2 DUHCES
• 0.1'WATIS
• 2 IHCHES

/ v SYST(M·Dl't·A-CHI?.

/ • 1-2 DUHCE5
• >10~ TRAHSlSJORS·
• - 1 WATT
• < 1sa1rtca

- .

ER~ 2 (MICRO)

• 29.00!l TR~HSISTORS),/
r -..... v ~l. __ • 30 TOllS

• 150 XILOWAns
• 80 FEET lOHG THREE ORDERS OF ..__

L;~
MACHITUDE IMl'RO~EMEPIT
PER DECADE

-- -
1955 1960 1965 1970 1975 1980 198S 1990

YEAR OF l~TP.ODUCTIO~
/Musa, 19 83/ p. 6

•

- 7 -

Powerful systems for commercial, scientific and engineering

applica.tions can now be acquired for less than US S 10. 000

The personal computer market, which has only been around for

about five years, is burgeoning. Machines in the price ranqe

from a few hundred US $ upwards make the computer to a

product for the small business and even for the end consumer.

These developments have increased the general involvement of

the ~ublic with computers and software*.

Compared to this tremendous increase of three orders of magnitude

per decade in the cost effectiveness of computer hardware*, the

productivity gain in the field of software* was rather moderate,

as is shown in the following diagram.

500

.400

300

200

RATIO SCALE

100
90
80
70
60
50

40

30

20

10

SOFiWARE (H'JUnLY RATEJ
\

LARGE MAINFRAME COMPUT ~RS

/
1""'-- __

MINl·MICROCOMPUTERS ~ -----

"'-
-:-.-_

--~-r-~~~~-.-~~~~---~~~~~·~~~--.~--~--~--__;;~=-=~
1965 1g:-o 1975 19ao 1985 1990

/Musa, 19 83/ p. 8

- 3 -

As a consequenc~ of these developments, the ratio of software*

costs to hardware* costs in computer projects has changed

consi3erably over the past thirty ye~rs.

100

80
~rclware

!I
0

60 .. -2
0
c 40 ..
~

20

0
1955 1970

y,,,,
/Boehm, 1981/ p.18

About 90% of the effort, which goes into the design, implementation

and maintenance of a computer project, is in the area of software*

(including man~gernent). The hardwace* part, that is the physical

equipment, amounts to only 10 %. At this point it is important

to remember that software* is basically an intellectu~l product.

The inve~tment needed to create a software* industry is mainly in

the area of education and not in substantial capital equipment.

This :·.s one of the reasons why there are challenging opportunities for

many countries in the area of software* e!lgineer ing. The applie.;a ti on

software* has to incorporate the sp~cif ic legal and C>rganizational

rules of a society. An accounting package, for exc.mple, must be

tailored to the requirements of the given legal system.

These local requirements can form the starting point for a software*

industry, which later on can be expanded to cover also standard

packag~of wider appl~cability.

..

- 1 -

It can be expected, that ~1e information industry will have a

similar impact on the economy of less developed countries as

on the economy of highly industrialized countries, although

with a certain time delay. It is therefore reasonable

to look to the highly industrialized countries to get

an indication for the potential impc:ct and future of this industry.

In a recent report about software* engineering progress

which has been publir.hed by some of the best known experts :n

the fieid, the following has been said about the future ~f the

computer industry /Musa 1983,p7-8/:

"We observe that compute~s are becoming smaller and cheaper,

e.nd that they are being distributed to a wider and wider population.

Important cur.rent trends include:

(1) Decreasing harcruare* costs.

(2) Increasing share of computing costs attributable to

software*.

(3) Inc=easing range of applications, to the extent that the

dependence of society on computers is becoming more and

TP.ore critical.

(4) Continuing or ir.creasing shortage of qualified software*

professionals.

(5) Continuing lack of appreciation of the nature of software*

(it's not actually "soft", it's rarely capitalized, it's

difficult to evaluate quantitatively).

~ --~- --- ...

- 10 -

(6) Increasing development of distributed computing and convenient

network access.

(7) Increasing availability of computing power, especially in homes.

(8) A wideninq view of computers as an information utility;

anticipation of the "automated office".

(9) Increasing quality of interfaces to humans (voice, high speed

and high resolution graphics) •

(10) Increasing exposure of nonprofessional people to computers.

On the basis of these trends, we can extra?olate some future

cevelopments:

(11 Pervasive Consumer Computing

Computers will be extremely wide spread, both as multiple

purpose machines S.n homes and off ices and as dedicated

(embedded) machines for applications such as household

environment: contrcl. Most of the users of tht!S~ machines

will be naive--certainly the majority of them will not be

programmers

(2) Information Utility: We will cor.ie to think of computers

primarily as tools for accessing information, rather than

primarily as calculating machines. Networks will provide

a medium for making available numerous public do.ta* bases, both

passive (catalogs, library faciliti~s, newspapers} and

active (newsletters, individualized entertainment).

Distributed applications such as electronic funds transfer

will become cor.unon. Electronic mail will reach a substantial

fraction of the population.

(3) Broad range of applications: The range of applications

will continue to broaden, and almost all areas of society

will be critically dependent upon computers. As a result

of this pervasiveness and criticality and widespread use by

nonprogrammers, much of the software~ will provide packaged

services that require little, if any, programming. The

packages will be tailored to individual needs, but not

necessarily by indt·.ricual users. Turnkey systems will

become even more common in the business world, and there

will be substantial economic incentives for producing

general systems that can be applied to individual, possibly

idiosynscratic, requirements.

(4) Changes in the Work I'lace: Distributed systems and networks

will facilitate a distributed work place, but we doubt that

the norm for the off ice workers will be to work at home

instead of in an off ice--co~puters will not re?lace human

interaction for decision making. The potential for software*

development as a cottage industry will increase. Electronic

work stations will change the nature of work that now depends

on paper flow, and robotics will substantially change

manufacturing.

(5) Changes in Education: We can already see the effects of

pocket calculators and personal computers on the teaching of

mathematics and many other subjects and on students•

expectations about the educational process."

It has been estimated, that already nowadays rnot"e than 50 \ of

the work force of some highly industrializec countries deals in

one form or another with information management. The potential

market of the computer industry, and particularly the ::;of tr.rare*

inaustry, is thus considerable.

The follo~1ing diagram shows the percentage of the us working force

which will rely in one way or another on computers and software* •

..
~
.!!
~

0
A
~

a 50
0

~ c ..
~

//

Workinq wi~ com:;iu~ /

Yur

/
/

/

-----R~ired t:> "--
knowlt<!'.;• of haw
compu~worb

/Boehm, 1981/, p.19

The computer industry is thus the key to modern technology.

since many high technology products are based or depend on

the applrcation of computers. · Technology transfer without a

high level of computer literacy will be more and more difficult.

With respect to the overall computer and information processing

indu~try of the future, computer software* will be the dominant

portion of an industry, which will grow to 141o:re than 10 ' of

the GNP of the United States by 1990.

- 13 -

2. THE NEED FOR A SOFTWARE POLICY IN DEVELOPING COUNTRIES

As already mentioned before, the impact of the information

indust r on the developing countries is significant. In order

to realize the maximum benPf ~t for the society, an active

information policy should be formulated and executed in every

country. This policy should try to take advantage of the

positive aspects of this new field and to avoid, or at least

reduce, some of their negative consequences •

Some of ~~e positive aspects of the information industry, in

particularily the software* industry, as seen from developing

countries, are:

- The functionality and user interface of a conputer is determined

by its software*. A local software industry can thus produce

computer systems, which ere well adapted to the needs of the

given society.

- Wit:.h adequate: software*, computers can pro,·ide valuable assistanc~

in areas like general education, vocational training,

operation and maintenance of industrial equipment, just to

name a few.

- The development of software*, which is a work intensive

proce; ·s, accounts for the major section or: the new

information processing industry.

Software production requires relatively little capital equipment.

The main requirements are interested people with good training

and guidance and access to computer hardware.

- 14 -

If no active information policy is persued, the following

negative consequences can result:

- Many beneficial applications of cocputers are not realized,

~ecause there is little understanding about the capabilities

and potential of computers.

Local job opportunities in the software* field are missing and

some of the foreign currency is spent on software* products, which

--just as well--could be manufactured locally.

- The society becomes dependent on software*, which is supplied

from outside. This software* is not well adapted to the needs

of the local users.

An active software* policy is to address the following areas:

- organisation

- t.:-aining

- standards

The development of policy guidelines to cover these topics will

be ·the major concern cf t.he next sections.

- 15 -

2.1 Organization

The startup of any local software* industry has to be based on

the development of application software*. A substantial portion

of the application software* is specific to the local environment

and is thus a •protected" market.

If we analyse the world-wide market for application software*, we

will find out that this market has some characteristics of a

"cottage industry". Small companies and sometimes even single

consultants play an important role in this market. If the startups

in the area of application software* are to be successful, it is

necessary to provide a cl~mate in which such a "cottage industry"

can blossom.

It is the responsibility of the political decisionmaker to

provide the organizational framework for such a climate. This can

be done by some organizational unit -- we will call it "off ice for

informa~ion technology". This office of information technology

should provide the following 5ervices:

- Monitor the market of information industry products

and new trends and developments. This will provide

valuable background information, both for the palitical

decision makers and software* developers.

- Formulate and, after approval, execute an initiative to

promote general "computer literacy". A necessary prerequisite

for the success of a new industry, such as software*, is a

general public awareness for the potential, the capabilities

and the risks involved. This is predominantly

an educational endeavor. A more detailed outline of

- 16 --

such a wcomputer literacy" inititative will be given in the

following s.~ction under t.'le heading w training".

- Initiate a research program* on information science and

specifically on software* technology. This is also an

educational endeavor and will be discussed in the following

section.

- Support interested individuals and start•tp companies in the

area of software* technology with economic and legal advise,

as well as with some financial assistance.

- Set up the legal framework for the introduction and execution

of standards for the inforraation industry. Standardization 0:
hardware, software* and the associ3.ted docunentation can

substantially reduce the maintenance costs for information

industry products and improve the conpatibility of the dirferent

systems. Standards will be discussed in ~ore detail in a

subsequent section.

The off ice cf information industry should not be a big

bureaucratic organization. It should be a small group of

highly competent experts which is responsive to their cl:ents.

- 17 -

2.2 ~he Establishment of Training Facilities

The most im:_JOrtant result of an active Information Policy is

the general advancement of com~uter literacy in a society.

A high level of computer literacy is a solid base for good

computer applications, a successful software,.. iudustry and

the critical appreciation for the benefits and risks of

this new technology. Since many high technology products are

based on computers, a high level of computer literacy

provides also a positive climate for technology transfer in

general.

It must be the goal of a computer literacy initiative to bring

a high percentage of the youth in direct contact with computers

and software* at an early age. Personal co~puters should be

installed in all schools and students in the age of ten upwards

should have the possibility to use these machines in their

mathematics and science classes. Experience has shown that

students of that age have no problem in mastering the computer.

If there is some lack of trained teachers, computer assisted

instruction courses, which run on these small machines, can

fill part of the gap. Stu~ents, which thus develop a natural

relationship with the computer, will have no difficulty in

integrating the c0mputer into their workplace at a later stage.

While it is important to introduce coraputers into the

general education system as early as possible, the retraining

of parts of the active workforce must not be overlooked. Many

job profiles are changed because of the introduction of

computerz. It is irresponsible to fill new job positions

with new people only and to push those workers, ~ho do not have

the, necessary knowledge ir. the new technologies, aside. 'l'h~·

- 13 -

per~ons, who have worked in a given position for a number of

years, have gained valuable job experience which, combined with

some software* knowledge, is an important asset to society.

The computer and software* training of the adult population

must thus be included in the training programs.

The training of teachers and software* experts can only be

ac~omplished if a good technical base is available at the

Universities. It is th•!refore important to introduce computar

science and software* ..:.echnology curricula at the Universities.

These curricula should be application oriented and contain

a significant portion of practical work on computers. There

is sone danger, that computer science curricula are dominated

by mathematicians. It is felt here, that a good combination

of computer and software* courses, electrical engineering

courses, mathematics and logic courses, economics and management

courses and some work in an application field should form

the core of computer science.

In order to keep the contacts with the international research

community, research work in the area of coraputer science

has to be conducted. The active participation at international

meetings and the cooperation with research institutions in

other countries are the prerequisites for the continued

involvement in state of the art research projects. It is the

obligation of the research organisation to critically reflect

the state of the art in coraputer science and to provide

valuable inputs to the political decisionmaker in relation

to the state of the art of computer and software* technology.

Teaching computer and software* technology without the possibility

of practical work on the machine is a dangerous undertaking.

Since the lectures tend to become too theoretical, the student wil 1

- 19 -

not grasp the elementary concepts and ~ight shy away instead of

developing a positive attitt1de towards this n~w technology.

Therefore any software* education initiative must be supported

by an initiative to provide the necessary computer hardware* for

the practical software* training on the machine.

Personal Computers and Prof e::sional Workstations form the

recommended hardware* base for this practical training. Because of the

good cost/performance ratio, their reliability and maintainability

and their user f riendlyness they are to be pref erred over big

central data* processing machines.

The low price of the modern personal computers makes it possible

that these machines are used in even a very small business. Stock

control, cost accounting and similar applications make it possible

for the smdll businessman to take advantage of this new technology

~~= i~~rove his oroducti~ity Jver co~netitors not usin~ this

Computer and Software Training must therefore be included in

any curriculum of Vocatic!l?l Training Schools. Emp:-.asis should

be placed on the application of computers in the particular

domain. The practical training on computers must play a dominant

role in the computer education. Students should be taught to

analyse their business activities in order to op~n their mind

for possible new computer applications.

A special program* on software~ development should be organised

at the vocational scnool level. This is the topic of the next

section.

- 2Q -

Education of software* Engineers

The primary cbjective of this section is to present a detailed

outline for a set of courses in core areas of software*

engineering. These courses are designed for students who

have finished their general education and are looking for a

sound vocationnl training in the area of software*, as needed

by governm~nt organisations and industq•.

In developing this curriculum, a number of assumptions were

made:

- scf tware* systems are always components of larger hardware

sof tware*-people systems.

- software* development requires more interaction and communication

among people than in many technological endeavors
. .

- the intellectual foundations of software* engineering are

computer knowledge, application knowledge, technical nanagem~nt

skills and communication skills.

The following core curriculum represents the minimal set of courses

needed for practical work in the area of-software* engineering. All

theoretical classes are supplemented b'J practical work in a computer

laboratorv i~ order to b~id~e the gao b~tween theory and practice.

If a students wants study commercial data* processing

applications or technical applications only, he can select

the course "Commercial Data Processing• or "Real Time Systems•

only. However, if time riermits, it is advantageous to take

both courses.

"·· _ .. : -·-·. VY~l.Y ... --;.We

- 21 -

Introduction to Computer Programming

Programming Methodology

Commercial Data Processing or

Real Time Systems

Project Management

Case study

Total

Class

40

40

40

40

40

200

(160)

Lab

80

80

80

80

200

520

(440)

The material presented in this curriculum on software* engineering

is sufficient for a o~e year training program. As an alternative

this software* engineering curriculum can be

combined with a training program* in soc~ application area

(e.g. Accounting, Electrical Engineering, Industrial Engineering)

of about the same size. Together this will be sufficient

material for a two year training program. In this case we

propose, that the two programs are interleaved and spread over

the two year period.

Detail0d Course Description:

Introduction to Computer Programming

Duration: about 40 hours of classwork and about. 80 hours of

laboratory work on a personal computer

Objective: -to understand the basic methods of programming

- to understand the functional unit~ and components

of a computer

- Mastery of a programming language* (e.g. PASCAL*, BASIC*

FORTRAN* etc.)

- '.22 -

Course Contents. Pr_;~amming: Algorithms an~ steps in algorithm*ic

Problem solving, Flowcharting, Basic concepts in the

programming language, variables, input-output,

statements and expressions, conditional statements,

loops, data* types

Services of an operating system, source and objecL

represen~ation of a prograu, compilation and assembly

Basic building blocks of a computer, Central

Processing unit, storage units, input output units,

Internal representation of data, binary arithmetic

Laboratory: Parallel to the class work the student has to

develop programs in the chosen programming language

such that the class work is w~ll supported by

the lab war k.

Programming Methodology

Duration: about 40 hours class work and about 80 ho~rs of

laboratory work

Objective: capability for the architectural and detailed design

of software* systems~ including data* design• techniques.

to evaluate the quality of a give~ design, elements of

programming style, basic testing :echniques

Contents: Design principles: Information hiding, data* and

control locality, decomposition criteri~, concurrency

successive refinement, design* representations

Concurrency: Mutual exclusion, semaphor variables,

- 23 -

critical regions, event variables, me~sages, resource

sharing.

design* evaluation and ~esting: Assessment of data

structures, walkthroughs, Implementation tools,

Test case design, test data* generators, regression

testing, Documentation techniques, manual prepa~ation

Laborat~ry: In the Laboratory the students should work in small

groups (about 3 members) and i.mpleir ant a little

software* project which has been specified by the

teacher. Care is taken tilat the design* documentation

and the user documentation is well prepared. A

detailed test report has to be generated.

Commercial Data Processing

Duration: 80 hours classwork and about BO hours laboratory

work

Objective: Basic techniques of system~ analysis in the

commercial world, Data handling and data

base design,

Contents: System Analysis Methods: HIPO, SADTt,

Interviewing techniques, Functional Specifications

M3~ ~achine interfaces in the off ice, text processing

and data'* preparation on a personal computer

Introduction to data* management, Functionality

of Data Base Systems, Data Access Methods,

File Design, Data security and recovery, Auditing

of Datab3se systems, R~start and Recovery

- 2J. -

Laboratory: Team work, Design of a simple conunercial

application package, including systems analysis

data* design* and implemeutation. Care should

be taken that the docume~tation is up to standards

Real time Systems

Duration: 40 hours lectures, 80 hours lab work

Objective: Design and implementation of real time systems,

such as process control system and systems for

the control of discrete nanufacturing and

production control

Contents: Characteristics of process control systems,

data* colJe~tion, interfacing instruments to a

computer, basic concepts of control, real

time programming, reliability and safety of

control systems, man machine interfaces in

the control room,

Discrete manufacturing, Computer Aided Design,

Production Control Systems

Laboratory: Students, who select this course should have

the possibility to implement a softwar.e* system

for real time control on a small e~rperimental

pilot plant. Such a plant can be s~t up

with a small number of cheap instruments and can

be controlled with a personal computer.

- 25 -

Project Management

Duration: 80 hours of class work

Objective: To prepare the student for the task of Project

Management and Economic Evaluation of Software

?roj ects

Contents: Project Planning: Software Lifecycle, Resource and

Schedule Estimation, Acceptance Criteria

Project Organization, Staffing, Project Monitoring,

Human Factors,

Prototyping, Reporting, Technical Communication,

Oral Communication, Report Writing, Presentation

Techniques, Cost of Documentation

Software Economics: Cost effectiveness Analysis

Cost Estimation Techniques, Cost Factors,

Documentation: User Documentation, System

Documentation, Maintenance Documentation, Standards

Legal AsFects: Lagal Agreements, the Software Devel~Fment

Contract, Terms and Conditions, List of deliverables

Privacy of Information, Legal requirements

laboratory: There is no specific la}?oratory work included in this

course. The material which is presented in this class

sho~ld be applied in the practical project work

- 26 -

Case Study

Duration: About 200 hours of practical work

Objective: Specification, Implementation and Management of

a realistic software* project

Contents: During the project work the material which bas been

covered in the classes should be applied in a realistic

software* development environment. Work in team.:;,

including project management and documentation of

industrial standard

------.....__ _ _.,-,,...

- 27 -

2. 3 Standards

:·lar-.y software* organisatior.s are findini;: that the setting of

standards for hardware* selection, communications, operating

systems, programming languages, documentation, project

management etc. has a significant payoff. The compatibility

and the quality of the software* is increased, but more

important for deveioping countries, the training and maintenance

effort becomes much more effective.

On the other side, the stabilising effect of standards can also

hinder progress. In a dynamic field like data* processing,

new hardware* devices and software* procedures are continually

developed. The benefits of taking advantage of these new

develop~ents must be carefully evaluated in relation to the

costs, which result from the modification of existing

standards.

The setting of standards is thus a delicate task, which has

to go on continuously. In the light ot new develGpuents, it

must be carefully assessed which standards are to be rigorously

enforced and what areas are not yet ready fnr standardisation.

In this section we present some guidelines for the

development of standards in the following areas:

- Programming Languages

- Operating Systems

- Computer Hardware

- Communication

Standardisation in the areas of soft~are* project management,

quality control and documentation will be disr.ussed in subsequent

chapters.

Programming Languages

In the short history of computing, r..any different programming

languages have been developed. Although most of the languages

did not gain wide acceptance, there are still so many different

programming languages around that there is a definite need

for standardisa~ion.

The introduction of a new programnin9 language* requires a

significant effort, particularly in ~e area of education and

maintenance. Programmers have to be trained in the new languaqe

and it takes some time until sufficient experience has been

gained to make good use of the lang~age. The software*, which

is written in the new language* must be maintained, that is

modified and enhanced. Therefore a generation of •maintenance

programmersn must also be trained in this new language. Compilers

for the new language* must ':>e installed and some systems programmers

m•.;st take care of the interfaces between the compilers and the

operating system at hand. Furthermore, the introduction of the new

programming language* increases the inco~patibility problem in

the area of application software*. It requires additional effort

to combine application packages, which are written in differ~nt

languages. Sometimes it is necessary to rewrite part or all

of an application in order to integrate this application into

an existing environment.

- 2} -

On the other side, there has been considerable progress in

language* development over the past twentyf ive years. The first

high level languages were designed for engineering and scientific

problem solving on large central machines. The commercial

applications had different language* requirements for data*

manipulation and thus gave rise to design* of some other programming

languages. In the course of the years, more has been learned about

language* design, such that a new generation of programming languages

based on these new insights, has been developed. With the advent

of the Personal Computer, the ease of use of programming language

became an important factor, such that another set of languages,

which concentrate on the ease of use in an interactive environment

have become popular.

Besides these general trends, there is also some active marketing

in the area of languages by the computer hardware* ~anufacturers.

Since the effort to introduce a new language* is very significant,

a user organisation, which is knowledgeable in the software* of

a particular manufacturer is not likely to change to another

nanufacturer with,,ut good reason.

In the subsequent section we will discuss some of the more

important programming languages and try to giv~ .some advise in

relation to their usage.

BASIC*

The Programming Language BASIC* has been developed some fifteen

years ago with the explicit goal o~ making it easy for the

novice programmer to use the computer. Since it is not difficult

to implement the BAS IC* language* on a small computer, this languc,' ~~

---._ ~ -

- 30 -

has gained very considerable suppo~t from the small computer

industry. It is by now the most widely available language* on

small personal computers.

The "simplicity of use" of BASIC* is not achieved without a

high price. The BASIC* language* c-0es not support the concepts

of types and procedural and data* abstractions very well. It thus

is difficult to write large and cooplex programs in BASIC*.

Since the concepts of the first programming language* do have

a decisive influence on the thinking pattern of a person, it is

difficult to retrain a programmer who has only worked in BASIC*

to take advantage of ~odern program~ing concepts.

BASIC* as a first language* is thus dangerous. However, considering

the fact that most small computer r.'.~nufacturers support BASIC*, it

will be difficult to ignore BASIC* on the market place.

PASCAL*

The programming language* PASCAL* h~s been developed

for teaching computer science. It is a small language* with a

clean conceptual structure and a straiqhtforward syntz-.x.

PASCAL* provides extensive support for data* typing, which is

a fundame~tal concept in co~puter science. Having been designed

for the educational market, it is missi~g so~e fe~ture~)lhich

are important in the commercial market, e.g. the need for

separate compilation and exception handling.

PASCAL* is also very successful in the Personal Computer

Market. The gene~al acceptance of P;;SCAL* as a teaching language

is the motive for many computer manufacturers to support this

language* in their product line. In the last few years, some

dialects of PASCAL* which provide some additional functionality

- 3~ -

have been developed. However it is wise, to stay with the

standard PASCAL* language* in order to stay compatible with the

extensive PASCAL* software* market.

FORTRAN*

FORTRAN* is the •oldest• of the high level programming languages.

Some twentyfive years ago it was designed for engineering and

scientific problem solving. Since the language* can be implemented

efficiently, it has gained significant support from the engineering

community with the result, that a vast amount of scientific software*

has been written in FORTRAN* and is available on the worldwide

software* market. rn order to elirainate some of the awkward

features of the original FORTRAN* language, it has been modified

and standardized. Even nowadays, the bulk of the engineering and

scientific software* is still written in FORTRAN* (the dominant

version is now the standardized FORTRAN* 77) and practically

all major computer manufacturers support this language. In the

world of engineering problem solving, FORTRAN* is the most important

language* and it is speculated here that the dominance of FORTRAN*

is this application area will prevail into the forseeable future.

COBOL*

COBOL* is also a language* of the first generation. It pioneered

the development of data* description facilities and has become

the most important language* in the commercial data* processing

market. In contrast to FOR.TRAN*, which is concentrating on the

formula manipulation, the expressive power of COBOL* is in the

area of data* handling, file* manipulation and input output.

COBOL* programs are to a certain extent self documenting,

- 22 -

since the language* contains many ~eaningf ul (and long) keywords.

COBOL* has been standardized as early as 1960 •

COBOL* does hold the same position in the commercial data*

~rocessing market as FORTRAN* in the engineering market.

ADA++*

In the last fifteen years the field of ~~bedded computer

applications has grown considerably, but there has not been

a single programming language* which has dominated this application

area. As a result many different programming languages and dialects

have been used for real time computer applications and process

control. In large organisations, like the US Department of

Defense, the use of many different language* resulted in a

treme11dous software* maintenance problem. In order to reduce

this maintenance effort a decision has been made to develop

a new programming language* for embedded computer applications

which somehow combines the good features of the available

languages. The development effort for this new language* started

ar.ound the middle of the seventies. About three years ago

the language* definition has been completed and the first

compilers are appearing on the market now. Since there is

a definite need f~r a language* for real time programming and

there is a very powerful sponsor-the US Department of Defense

the success of this language* is p~obable. However, it will

st:.11 take a number of years, until this language* is generally

av ail able.

C*

In the past, most operating systems, i.e the software* which

controls the operation of the computer hardware, have been

written in low level assembler languages. None of the

mentioned programming languages provides the expressive

power and efficiency, which is required in this application

area. In conj unction with the development of UNIX+, an operatinq

system which has been designed and implemented by Bell Labs,

a new systems programming language, C* has been defined and

used to implement the system software* of UNIX+. With the

increasing popularity of mnx+ in the personal computer

market, C* is gaining considerable support as a systems

programming language.

Conclusion on the topic Programming Languages

Considering the present state of programraing language* developraent,

it is recommended to promott the following standardi7ed langu~qes:

For the educational and training market: PASCAL*

Por the commercial market: BASIC*, COBOL*

For the scientific market: FORTRAN*

For system programming, particularly on mnx+: C*

There should be no restriction for the use of other languages,

e.g. LISP*, PROLOG* etc. in th~ research environment.

- 3~ -

The further development of the progra:nming language* ADA++* should

be carefully observed. As soon as there is a definite acceptance

of ADA++* in the higher developed countries, ADA++* should also be

introduced as a recommended programn1ing language.

Operating Systems

The term "operating system" refers to the software* which

controls the execution of programs. It provides services such

as resource allocation, scr.eduling, protection, error management,

input output control and data* manage.~ent. Although operating

systems are predominantly software*, it is possible tc implement

parts or all of an operating syste~ in the hardware.

At the time of the large central machine, the operating systems

wer.e supplied by the hardware* rnanufacturE:rs and delivered with

the hardware. One of the best known operating systems of that

time is the IB!-1 Operating system OS 360. It is a large mcinoli thic

operating system providing all of the services mentioned above.

Similar Operating Systems have been provided by all major computer

manufacturers. However the interfaces between these operating systems

and the application software* are specific to a given manufacturer.

This difference is a source of incom~tibility as soon as services

of the operating syscem are required, e.g. for input output, data

management etc ••

- 35 -

With the advent of the Personal computer the era of the commodity

operating system started. Nearly all successful Operating systems

for the Personal computer market have been developed by companies,

which are independent from the hardware* manufacturers. The sane

operating systems runs on a number of different machines, thus

providing the base for a degree of compatibility of the application

software* which has not been achieved before. With minimal modification

a given piece of application software* can run on a number of different

machines from different manufactures, provided they all use the

same operating system.

Since it is recommended in this report to concentrate on the small

computer market, some standards for operating systems have to be

es ta bl ished.

In the small computer market we can distinguish between two classes

of operating systems, the single task operating system and the

multi task operating system. A computer, which is equipped with

a single task operating system can only perform one function at a+

time. On the other side, the multitasking operating systems provides

the environment for the parallel execution of a number of programs.

Given, that a system supports multitasking, there is only a small

step to the multiuser support. Although quite a few single tasking

and multitasking operating system have been developed by different

manufacturers. only three of these operating systems have been

evidently successful on the 111drket place.

CP/M

This is a disc operating system for microcooputers produced l:7j

- - -~ --------- - --- ..

- 36 -

a company named Digital Research. CP/l1 stands for •control

Program Monitor". Versions of this operating system are available

from a number of dif~erent sources for a variety of microca~puters.

Nowadays, more than hundred different co~puter manufacturers off er

CP/M with their equipment.

CP/M is a single user single tasking operating system,i.e. it supports

only one user at a time doing a single program* execution. It provides

the following services:

- file* management

- Input/Output support

- run time support for application programs

- error management

A variety of language* processors have been developed for CP/M, among

l")thers

- BASIC*

- PASCAL*

- COBOL*

The a'tlc..unt of application software* which runs under CP/M is very

large, ranging from simple textprocessing software* to all kinds

commercial and scientific packages.

CP/M has only one rival in the single user single task market of

comparable popularity-- the MS/DOS Operating syst~m from Microsoft.

The functionality of f.15/DOS is in line with that of CP/M.

UHIX+

UNIX+ is a multitasking, multiuser operating system, which has been

developed by Bell Labs some ten years ago. With the introduction

of powerful persoral compJters and workstations this operating system

- 37 -

is becoming a standard for the multitaking-multiuser market.

In addition to the standard features of an operating system UNIX+

supports a hierarchical file* system. Significant amounts of applicatio~

software* have been developed under UNIX+, particularly in the area

of textprocessing, software* development tools, languages etc ••

The UNIX+ operating system is described in some detail in the

appendix.

Conclusion on operating systems

It is recoornended here ~~at the following standards for operating

systems are considered

CP/M or MS-DOS as a single user, single tasking operating system

UtTIX + as an opera ting system for the rnul ti tasking,. multi user market.

Computer Hardware

Although this report is mainly cc-;1cerned with guidel:.nes for the

software*, it is also n~~es~jry in this context to comment on hard

ware standards and developments. The explosive growth of the small

computer market has -- \'•ithin a period of five years -- already 1::::

to the development of two generations of machines with widely

differing capabilities. The first generation of microcomputers was

designed on the basis of the 8 bit microprocessor, i.e. information

is processed in chunks of 8 bits. The new generation of machines

processes information in 16 and 32 bit units. Since this makes the

machines much more powerful it is recommended here to standardize

on machines of the latter kind.

- 33 -

Communication

Although the field of communication is also outside the scope of this

report, it is important to assess the future developments in the

communication market and its relationship with the computer and

software* industry. It is to be expected that the markets for

computer and communications equipment are going to merge in the

near futur~. It is therefore wise to closely cooperate with the

plar.ning authorities for the communication policy and to consider

the formation of a joint committee for the establishment of

standards which relate to both fields.

- 39 -

3. ORGANIZING A SOFTWARE PROJECT

The successful development of a sof twarek product requires

a sound management approach and technical expertise. This

chapter is concerned with the management aspects of

a software* project. The following chapter contains technical

advise.

The usual nanagement methods are planning, organisation and

control. One reason for the frequent failures of software*

management is the difficulty of adapting these techniques

to software* projects. In the following section we will therefore

characteris~ some of the difficulties which are typical

for software* management.

If a comparison is made between the production of software*

and a more conventional product, then the first great

difference is the visibility of the result. The software* end

product consists solely.or a set of carefully documented

instructions for the computer -- there is no tangible software*

product. The supervision effort required in determining

development progress can be comparable with the development

effort. A subjective estimate thus has to be made on the

advice of the software* developer. The following figure shows

a typical e~ample, which may be of ten observed in pr~ctice,

of how such an estimate corresponds to the actual situation.

- 40 -

So/~ ReliabWiy

/Kopetz, 79/ p.98

The development of conventional products is constrained by the

laws of nature between relatively narrow limits (for example,

the properties of materials), whereas th~ limits for software*""

are set by complexity and the ability of the human intellect

to cope with it. The con~trafnts dtie:·to comp~exit}!.::-are ,ver.y

difficult to explain and qu~ntify for people, who ~re not

experienced in the field of software* development. It is therefo~e

necessary that each computer specialist be highly self-critical

and be aware of hi!:::. own limitations in any situation. The

lack of physical constraints is also responsible for the often

incorrect view, that software* is easy to change, does not require

a long development time and can easily be made to fulfill new

conditions.

- 41 -

The rapid advances in both hardware* and software* make the

software* planning task particularly difficult. By the time that

an extensive software* project has been successfully concluded,

economic grounds alone preclude a similar project on the

same software* and hardware* basis. The result is t.~at experience

gained on an early project can only be adapted to a new project

with difficulty.

The development of a software* system is a unique process as

opposed to routine mass production. As with the construction of

every unique product, it is difficult to establish the usual

norms for progress and productivity. This may also be the

reason for the of ten extrewely poor documentation and

maintainability of software*, since it is easy to underestimate

the effort required for documentation by adopting the attitude

that it is only for a single instance anyway.

The success or failure of a project depends to a large extent

on the personnel involved, due to the unusual difficulties

of planning and control already described. The variation of

ability betw~~n individuals is, however, ?articularly

pronounced in the software* field, variations of 1:10 and

more not being unusual. Software development requires

creative personner wi•o can work W'ith accuracy. However,

creativity is often connected with personality traits which

can led to problems in personal relationships. Any formal

EDP training must be supported by project work that is at least

as intensive in order to gain full benefits. Due to the

rapid expansion in the field, however, it of ten happens that

the successful project worker is assigned to manag~~ent tasks

and directly after gainin~ the relevant experience is lost to

software* development. This danger is particularly acute in

less developed countries.

- 4-2 -

This chapter is to give some advice on the organisat.ion of

software* projects. In the following chapter we will present

a model for the subdivision of a software* project into a

number of distinct phases. In the following section we will

present some methods for effort estiraation and the assignement

of the overall effort to the phases introduced before.

The Team Organization will be the topic of t..~e next SE. ~tion

before putting everything together i~ an integrated planning

system for project control.

- 43 -

3.1 Project Phases

In this chapter we introduce the basic phases of a software*

project and discuss the scope of the activities in each phase.

The moJel, which will be presented, is called the "Waterfall Hodel

of Software Development•. It partitions the Soft· . ..-are De~:elorr.,e:_ t

Process into a number of distinct phases. Each phase

is terminated by a verification and validation (VV) activity.

Verification refers to the consistency between consecutive

phases. Validation refers to the consistency between the

phase and the real world problem statement.

This verif icatiou and validation activity is required in order

to reduce the probability of an error being introduced

during the work on the given phase. Experience has shown, that

the cost for the elimination of a software* error increases

substantially with the number of the past phases involved.

-1000

ISOO

200

~-
100

• • 50 i;:

s
:
8
.J

20

-a
10 c

I

2

/Boehm, 1981, p.40/

....,.._Ol'Oi_
·! aaa.-.m

al GTE

IDS i IWM (TRW suvrtl
20S - SAFEGUARD

0

-. - ~. -:. ,

0

Small« softwat• projec:ft

0- (Boehm, 19801

Ina Jase in cosl-lo-fix ot chang., !.Oltwan. th;.;>Ughoul r.le-<..ycle

- 44 -

The Waterfall l-todel, as discussed by /Boehm 1981/ distinguishes

between the following eight phases in the life cycle of

a software* product:

{ 1) Feasibility

Determine the overall goal of the software* product and

evaluate the potential product in relation to other

alternatives, e.g. solutions without the use of a computer.

This phase has to include an economic evaluation of

ttle planned software* project, a rough

cost estimation and a benefit analysis.

(2) Requirements

In this phase the requirements for the planned software*

product are established. This includes functional requirements,

interface requirements and performance requirements.

It is of utmost importance, thdt the end-user pa.rticipa~es

in the establishment and validation of the requirements_

(3) Functional Spec~fi~~tion

In this phase, the functional design* of the system architecture

is undertaken. Considering the requirements, wh5~h have

been established in the previous phase, the system function5

are specified and a set of components (subsystems) and the

interfaces between the components are defined. Care must be

taken, that the proposed hardware* software* architecture will

meet the performance requirements specified above. At this time

a draft of the user manual has to be written.

- 45 -

(4) Component Design

In this phase, each component is decomposed into a set

of programs, i.e. a sequence of about 100 executable

statements in the given progra~ming language. Care must

be taken that the interfaces between the prograras are

defined and verified against each other and against the

product design. The algorithm*s and data* structure for

each program* has co specified during this phase.

(5) Coding

In this phase the actual coding of the programs, which

have been specified in the previous phase, is performed.

Each coded program* must be tested against the specification

which have been developed in the previous phase.

(6) Integration

In this phase the tested programs are integrated in order

to generate the components specified in phase number 2.

The components are then integrated in order the generate

the complete software* system.

{7) Implementation

The software~ SY-stem, :whic;!'l has ~been--integrated. and -tested

in the pr~vious phase must now _be implemented_ in_ the user -

~nvironment. The data* conversion, installation and

training of the user personr~l is part of this phase.

(8) Maintenance

Every successful software* system will have to be modified

as the real world requirements change. During the life time

of a software* product, these modifications will probably

require more resources than the original software* development

pro ct:::;~.

- 46 -

A graphical representation of the Waterfall Hodel is given below

/Boehtn 19 81/, P· 35

- 47 -

The disciplined software* development approach, as outlined by the

Waterfall model, requires a good a priori understanding of the

problem to be solved. Otherwise, a considerable amount of ~efort,

which is spent during the early phases, car. be lost if, at a later

phase (e.g. the integration phase} the design* cannot be implemented

as planned.

If there is no good a priori understanding of the problem,

an incremental development strategy is the preferred alternative.

In this strategy only the essential subfunctions of the system

are developed in the first version of the system. After the

viabil.ity of this reduced system has been established, the

additional functions are adced step by step. The development

proce~s for the essential subf unctions can also proceed according

to the Waterfall model.

3.2 Software Effort Estimation

Au estimate of the effort for a given task is a prerequif'ite

for any planninq activity. It will _be,-clear by n_~w, that software.*

effort estimation is an extremely difficult ma~ter. However, it

is necessary if a realistic project plan for a software* project

is to be made. In many ways, effort estimation and control is

the heart of software* management.

In our effort estimation we will measu:e the effort in the time

needed (man-month) in order to get a project done. The cost

estimation is a straightforward extension of this method, just

- 43 -

multiplying the time by the current rate for a man-month ana

adding the additional expenses, e.g. computer time needed,

clerical assistance, travel cost etc ••

The big difficulty in software* effort estimation is the

specification* of the size and complexity of a task in a metric

.which is generally accepted and usable for further analysis.

Up to now, this metric is still the source code instruction,

a line of codP. in the programming language* chosen. Although

this metric is up to a lot of criticism, no better alternative

for measuring the size of a software* t~sk has been generally

accepted. Software effort estimation can thus be broken down

into the following activities:

(1) to derive the size and difficulty of a software*

task from the functional specification

(2) to calculate the time required to perform the

given task with the human and technical resources

which are available

(3) to distribute the calculated time effort over the

de~elopment phases·outlined in the· pre~ioas-chapt~r

(4) to generate detailed plans in oraer to initiate,

monitor and control the progress of the project.

Size Estimation

Estimating the size of a software* product relies heavily on

the judgement of experienced performers. The software* analyst,

or estimator, normally breaks the total job into elements

that ar.e estimated separately and then summarized into an

estimate for the total job. The estimating analysis and

synthesis may appear a~ a mental process or may involve an

explicit algorithm*. ln ~ither case, an empirical database

should be used as an obj~ctive reference. It is up to the

estimator to use his judgement to account for the differences.

In general, we can distinguish between the following estimation

methods:

(1) Top Down Estimating

The estimator relies on the total size or the size of

large portions of previous projects that have been completed

to estimate the size or of all or large portions of the

project to be estimated. Historical data* coupled with

experience and intuition is used to account for the differences

between the projects. Among its many pitfalls is the substantial

risk of overlooking special or difficult problems that may be

buried in the internals of the project tasks.

(2) Bottom Up Estimating

The tOtal job -;s~~roken-dowri 1nto.._relativelv~smaii work units,

until it is reasonably clear-how and with what kind of

effort these units can be implemented. Each task is then

estimated and the sizes are pyramided to get the total project

size. An advantage of this technique is that the job of

estimating can be distributed to the people who can do

the work. A difficulty in this estimation method is the

missing total view of the project. Parts, which are common

to different units tend to get overlookci.

-)0 -

(3) Standards Estimating

The estimator relies on stancards of size, which have been

syst~matically developed. These standards then become

~table reference points, from which new tasks can be

calibrated. This method is accurate only, when similar

work has been performed repeatedly and good records are

available. The pitfall is that software* development

is normally not performed repeatedly.

It is good practice to apply more than one estimation technique

in order to cross check the estimate. The result of the

estimation procedure* should be a table, which contains the

main units of the software* system, their estimated sizes in

source language* instructions and the difficulty in some form

of complexity rating as discussed below.

Complexity Rating

The following software* categories for conplexity rating have

been selected based on exl?erience /Wolverton 1972/. These software*

categories refer to functionaily different kinds of software*

entities with different effort chaLac~eristics.

(A) Algorithmic units, which perform strictly algorithmic*

(logical, numerical etc.) calculations without any

ccnsideration for execution time, input output or large

data* management

{C) Control routines, which control the flow of execution and

are non time critical.

- 51 -

(D) Data management routines, which manage datd * transfer

within a computer and its peripheral devices

(I) Input Output routines, which transfer data* between a

computer and its environment.

(P) Pre or Post Algorithmic Processing, which prepares and

manipulates the data* for or after algorithmic* processing.

(T) Time critical proc~ssing, which is highly optimized

machine dependent code.

In each one of these six categories we can distinguish between

the following difficulties:

Easy Medium Hard

The following table can serve as a rough reference for the relative

effort required for each one of these categories. This table

has to be modified as experience accumulat~~.

De_gree of_

Difficulty

Easy

Medium

Hard

A

1.0

1.3

1.5

Software Cateqory

C* D I

1.4

1.8

2.0

1.6

2.1

2.3

1.2

1.6

1.8

p

1.3

1.5

1.7

T

5.0

s.o
s.o

If we multiply the estimated size of each software* unit with

the corresponding degree of difficulty, we get the normali~ed

size of the units.

- 52 -

Environmental Factors

The effort, which is required to produce a given piece of sof tw3.te.•

depends on the product per se (normalized size) and on environmental

factors of the software* producing organization. Some examples

of environmental factors, ~hich do have an influence on the

time required to complete a given task are:

- Qualification of the development Personnel

- Experience of the development Personnel

- Development System at hand

- Concurrent aardware/Sof tware Development

Al~hough all of these factors are important, the qualification

and experience of the programmers seem to have the most significant

influence. The following table gives some indications of the

differences which have been observed a number of times

Experience of

of Dev.Pers.

little experience

average-

very experienced

Qualification of Development Personnel

below average

.s

.1

1.0

average

. ...,
1.0

2.0

above average

1.0

2.0

3.0

If a powerful software* development system is available the

productivity of a programmer can be increased by up to sa %.

The concurrent development of software* and hardware* is normally

a si~nificant handicap, which can cut the productivity of

software* development to half.

If we multiply the normalized program* size with the environmental

factors discussed above, we get the Work Size of the Software

- 53 -

Job. In order to arrive at the time needed to implement this

Job, we have to divide the Work size by the applicable

productivity rate.

Productivity rate

A lot of experimental data* has been collected on software*

productivity. However, considering the many factors involved

it is very difficult to compare the productivity data* which

has been accumulated on different projects with different

people in different development environments.

Before establishing a local productivity data* base, which

takes all the local factors under consideration, the

following estimate of programmer productivity can serve

as a rough first guideline:

Considering the Work size as the base, it can be expected

that about 300 - 400 lf.!'les of source code

per month can be produced by an average programmer. This

time includes all activities in the following phases:

- Requirements

- Product Design

- Components Design

- Coding

- Implementation

The final documentation of the software* product is also

included in this prod~ctivity number.

- 54 -

Phase Distribution

This section deals with the assignement of the development

time to the different project phases introduced in the

previous chapter.

Boehm /Boehm,1981/ gives following phase distribution for

average software* projects:

Ef(ort Distribution

Phase small

(2KDSI)

requirements 6 %

product design 16 t

c~rnpon.ent de~iign 26 ' Coding 42 %

Integration 16 \

Product Size

medium

(32KDSI)

6 \

16 \

24 ' 38 ...
~

22 '

large

(12 BKDSI)

6 %

16 ' 23 ' 36 '
25 ' --

100 % 100 \ 100 %

1 KDSI 1000 delivered source code instructions,

i.e all instructions which are written by the

programmer, excluding comments.

- 55 -

The schedule will normally d1tfer f~om the effort distribution.

In the beginning of a software* project, during the requirements

analysis and system design* phase, only a small number of highly

experienced software* s;:e~i.3.lists wil:i ~er:~J~::: 2.::.::. ':::-:e ~~-c~k. -=-:-:~

component design* and coding can be distributed to a large number

of professionals. Thus the first phases of a software* project

will take longer than the corresponding ratio of the

effort estimation.

The total schedule of a large software* project can be calculated

according to the following formula:

Total schedule (in months) = 2 * SQRT(Work size (in thousand SI))

For small and medium projects (those less than 100 manmonths),

this formula is not applicable.

The work distribution during the project duration will differ

considerably according to the project phases. During the

&ystem design* a small group of experts should be. in control

of the complete design* task. Later onr during component

implementation, the work can be distributed on a number of

people.

3.3 Team Organisation

It has been shown in the previous chapter that the productivity

ranges of the individual programmers are very significant

factors in the effort estimation procedure. Personnel

attributes and human relations activities thus provide by

far the largest source of opportunity for improving

software* productivity.

- 56 -

Normally, the project team is the preferred organisational

structure for software* development. All the talents, which

are necessary for the development of a sof tw~re* system,

should be prP.sent in this team. For the time of the project,

the member~ of the ?roject team report to the project

manager and are freed fron all other duties. The project

team should consist of members of the software* development

department and the user organisation.

Boehm /Boehm 1981/ introduces five basic principles for

software* team staffing:

- The Principle of Top Talent

- The Principle of Job Matching

- The Principle of Career Progression

- The Principle of Team Balance

- The Principle of Phaseout

The Principle of Top Talent

The bulk of the productivity on a software* project comes

from a relatively small number of highly qualified participants.

If there is an alternative, it is superior to use fewer,

but highly qualified people in order to get a software*

project done. A number of studies have shown that the

well known 20~/SOi rule applies to software* development:

20% of the highly qualified people provide 50 % of the

~~rk.

- 57 -

The Principle of Job Matching

Although software* work is not repetitive, there is considerable

opportunity to transfer the experiences gained on one project

to another project of similar characteristics. This can

improve the programmers productivity considerably. It

is therefore important to carefully match the programmers

profile* to the job profile.

The Principle of Career Progression

Since the software* field is growing rapidly, it is common

practice to advance the good programmer into management.

This can be a big mistake, since it is not definite, that

a good programmer will be a good manager. On the other

l-:2.r.d, some technical expertise, which has been available

to the organisation is lost. It is important to provide

career paths for technical experts so that they can achieve

a high social standing without turning into management.

A :;uccessful software* organisation reli.es more on teclinical

experts than many other engineering organisations.

The principle of Team Balance

Software work ls team work. System people and people from

the user organisation must cooperate harmoniously in order

to get the work done. It is a management duty to assign

the personnel in such a way to the project teams that

a balanced set of talents is a,1ailable and no extreme

personality traits dominate the team.

- 5d -

The Principle of Phaseout

If some ext~eme per~onalities dominate the team in an

unproductive manner, it is important to phase these

persons out of the team as soon as possible. Otherwise

a considerable ar.iount of the pl'vductive capacity of

the team will be used in order to resolve these

internal conflicts.

- 51 -

3.4 Project Control

A prerequisite for the effective control of a software* project

is the availability of detailed project plans. It is assumed

that the project manager is responsible for planning from the

beginning of the project (requirement* analysis) until the

delivery of the end produc~.

In the previous sections we have already discussed some of the

techniques for structuring a software* project, for software

effort estimation and workload distribution. We will now

put these things together in order to generate a comprehensive

project plan.

t·le distinguish t..~e following sections in a project plan:

(1) P!oject overview

This section gives an overview of the project. It describes

in short words ~~e main objectives of the project, the user

and development organisation and explains the structure of

the plan.

(2) Phase Plan

The Waterfall model introduced in the beginning of this
1chapter can form the core of the phase plan. In addition

to the project structure the phase plan must contain the

effort, both man and machine, which is needed for the

completion of each phase and the definition of some

tangible products, which are produced at the end of each

phase. Since these tangible products will normally

- 60 -

consist of project documents, the phase plan and the

documentation plan will be closely related.

(3) Documentation plan

The Documentation plan defines and is used for the

control of the Project Documentation. It is one of

the most important plans of a software* project.

The minimal set of documents, which have to be produced

during a software* project are the following:

- Feasibility Study: The documentation of the

economic analysis of the proposed coraputer application

including a cost benefit calculation

- Requirements Analysis: The documentation of the

requirements of the new system

- Functional Specification: The documentation of all

system functions, including input and output procedures,

logical data* base design, and the definition of the

acceptance test

- User Manual: This documentation includes all the

information which is necessary for the operation of

the system. A fir::;t version should be prepar:ea·

together with the Functional Specification.

- Program Documentation: It includes the information

which is necessary for the modification of the

the delivered software*.

- 61 ·-

(4) Test plan. This plan contains all testing activities,

such as module tests, integrati~n t~sts and acceptance

tests.

(5) Organisation plan: This plan defines the specific

responsibilities of each person participating in the

project. It includes the estimated work effort and

the start and completion date for each project task.

The milestones in the organisation plan must be

coordinated with the documentation plan and

test plan, such that tangible results can be monitored.

(6) Installation plan

This plan includes all activities which are concerned

with the installation of the proposed software* product.

The important topic of training of the users personal

can be either included in the installation plan or

can be dealt with in a separcte training p:an.

The installation plan must also contain all dates

concerning the physical system installation.

(7) Reporting plan

This plan describes the reporting structure about

the project, i.e. the reports to the project manager

and the project steering committee. It is good

practice to introduce two types of project reports,

periodic reports and phase completion reports.

The periodic reports contain all the activities

which have been completed in the last reporting period

as well as an outlook on the next reporting period.

The question about potential problems affecting the

progress of the project should be part of every

project report. A good frequency for the periodic

- 62 -

report is about once a week. The phase ~eports are

produced at the end of each pcoject phase. They

contain a comparison of the planned versus actual

effort required for the phase in question.

These detailed project plans form the backbone of the project

control. During the project, the project manager must monitor

the progress of the project in relation to these ~lans. If

a significant deviation between the planned and the actual

progress of t.~e project is observed, it is good practice

to question all project plans and to iterate through

the planning phase once again.

- 63 -

3.5 A case study for organising a software* project

In this section we want to give a practical example for

the application of the effort estiffiation and project control

b:chniques.

Let us assume, that a company wants to develop a new

software* package for order processing. A feasibility analysis

has shown that such a package could result in savings of about

20.000 US $ per year.

The package has to support the following functions

- order entry on an online terminal

order processing

- data communication (transmission of the order data to the

accounting department).

- report preparation

Based on the experience with systems of similar functionality

and complexity, the following estimates for the program

size are made:

(1) Order Entry

This subsystem must support ten different CRT formats and

.about 40 different input records. Some plausibility

checks on the input have to programmed, as well as a number

of accesses to the order product file, order file* and

customer file:

' -- -

Size estimation:

unit

CRT output

input proc.

file ac~ess

size

50

20

10

- 6-1. -

complexity number

IM 10

PM 40

DM 10

total

500

800

100

norm

800

1200

210

The abbreviations in the colums complexity are taken from

chapter 3.1 • TJtal stands for the total esti~ated size

and norm refers to the normalized size, i.e. the estimated

size multiplied by the difficulty factor from chapter 3.1.

(2) order processing

In this subsystem the order has to be analysed and checked

for validity. The required papers for the warehouse have

to be printed and an order confirmation has to be sent to

the custormer.

Size estimation

unit size

order anal. 200

warehouse pap. 400

order conf. 250

(3) Data communication

complexity number

AM 1

I,P M l

I,P H l

total

100

400

250

norm

260

610

390

In this subsystem the data communication protocol* between

the order entry machine and the accounting machine has

to be developed.

unit size

protocol setup 200

comm.error man. 300

complexity number

I, T M 1

I.T M 1

total

200

300

norm

660

990

- 65 -

(4) Report preparation

In this subsystem about 15 different management reports

have to be prepared.

unit

report prep.

file access

report output

size

40

10

so

complexity number

AE 15

DM 10

IM 1

total

600.

100

50

norm

600

160

80

If we compare the estimated sizes and normalised sizes of

the four subsystems, we get the following results

subsysten estirn. size norm. size

(1) Order Entry 1400 2210

(2) Order Processing 750 1260

(3) Data Communication 500 lGSO

(4) Reporting 750 840

Total 3400 5960

1·1e now assume, that we have two programmers available. one

beginner of average qualification and one experienced programmer

with average qualifications.

programmer

experience

beginner

norm size

3960

2000

beman factor

2

.7

work size

1980

2857

Let us assume that the productivity rate is about 350 lines of

- 66 -

code per month. This gives a total effort for this project

of about 18 Manmonth.

If we now look at the effort distribution, we get

product design 16 % 3 MM

component design 22 % ' MM

Coding 40 % 7 MH

Integration 22 % 4 :·lM

Total 100 % 18 MM

We now can fix some of the milestone dates of this project:

Only the experienced programmer will work during the product design,

such that af t~r 3 month the product design* (function~l specification)

will be complete. This will be the first milestone.

The rest of the work will be done by the two programmers in

parallel, such that the whole project will be completed after

about 10 to 11 months.

Phase plan

This is a rather small software* project. We will therefore

distinguish between the following phases

Feasibility to be done by the user organization

Requirements to be done by the user organization in cooperation

with tl:1e software* development organization. Accor:ding

to chapter 3 .2 the requirements phase will take about

6 % of the project work, i.e. about 1 Manmonth in this

case. This effort is not included in the effort

estimation procedure.

- 67 -

Product Design to be done by the software* development organisation

According to our estimate 3 Manmonths

Functional specification* 4 man month effort, to be completed withjn

two month by the software* development organisation

Coding 7 Manmonth effort, to be completed within 3.5 months

by the software* development organisation

Integration and Implementation 4 Manmonths, to be completed

within 2 month3 by the software* development organisation

Docu~entation plan

The Requirements Analysis Document must be completed after

1 month at the end of the Requirerne!1t 9hase.

The functional specification* document and a preliminary

version ~£ the user ~~nual must be c~mpleted after the

Product design* phase, i.e. 4 month after project start.

A preliminary version of the program* documentation has to

be completed at the end of the coding phase, i.e 9.5 months

after project start.

Test plan

Thr det~iled procedures for the acceptance test will be

specified in the document "Functional Specif ica tio•1".

The component tests will be per~ormed during and at the

end of the coding phase.

The ~.cceptance test will be performed at the end of the

integration phase.

- 68 -

Organisation plan

The organisation plan states that one specific programmer

will be assigned to this project for the first four months,

and after that date the selected second programmer

will join. The first programmer will act as a project

ma~ager. The key dates and milestones of t~e project

are those of the phase plan.

Installation plan

After the functional specification* {four months after project

start), the training of the user personnel Thill commence.

(t!ote, that the preliminary version of the user manual is

completed by that time). The implementation phase of this

project will start ten rnontm after project start with

active participation of the user. In case new equipment

has to be installed at the users site, this installation

must be completed nine month after project start.

Reporting plan

Reports about the progress of the project have to be prepared

every other week. At the end of each phase, a summary

report, giving a management overview over this phase,

will be provided.

- 6j -

The following time table gives an overview of the project

Time (in weeks

after start)

Requirements

Functional Sp.

component design

Coding

Integration

0 1 2 3 4

1234567 8901234567 8901234567 8901234567 890123456

rrrr

ff ff f ff ff fff

dddddddd

dddddddd

cccccccccc

cccccccccc

iiiiiiii

iiiiiiii

- 70 -

4. The Software Development Process

The final chapter of these guidelines is concerned with the

technical aspects of software* development. It is to be

understood, that this chapter can only give an overview

of the important technical topics. It is recommended

that the reader refers to the abundant software* literature,

part of which is referenced in the bibliography,

for further stucy.

The main emphasis of this chapter is on the Quality Control

aspects of software*. We will therefore develop some checklists

for each phase in order to help the software* engineer in

auditing his work.

4.1 Requirements Analysis

As already mentioned before, the first activity in a software*

proj~ct is a feasibility analysis. Since such a feasibility

analysis is not typical for software* -- it must be performed

for any kind of investment -- it will not be discussed further

in this report.

The result of the feasibility analysis is a cost benefit

analysis of the proposed project and a coarse description

of the objectives of the new project.

- 71 -

The requirements analysis takes this specification* of the

project objectives as the starting point. The requirements

analysis phase can be structured into the following segments

(1) review of the project objectives

(2) review Of existing methods and procedures

(3) Preliminary specification* of the system requirements

(4) Analysis of the preliminary !'equirernents

(5) Final specification* of the requirements

The result of the Requirements Analysis is the report on the

System Requirements. The following checklist is provided in

order to make certain that this report is complete:

- Objectives of the computerized system

- Analysis of existing methods, including a description of

the environment, in which the system will ultimately

operate. Includes rules and regulations, policies

cri~ical aspects of this application.

- Scope and penetration of the system as defined by organizational

boundaries, plans for organizational changes, concurrent

projects which might have an effect on this work.

- Description of lhe typical system user, its background

experience, expectations and training requirements.

- A general information flow chart of the application, showing

key inputs, outputs, volume estimates (average, peak, growth)

and time constraints which are critical. Areas or origination

and use of inputs and outputs is shown. The inf ormati.on

flowchart displays major decision points in the application.

- Interfacing requizements. A detaiied description of all

system interfaces which are given by the environment of the

new system. Possible changes in these interfaces mu- t be

investigated.

- 72 -

- Security and Safety requirements: Privacy and restricted

access to sensitive data, reliability of the system

and the data

- Go-nogo criteria. Critical design* constraints which must

be met in order to install the system. This does not include

_ per.f ormance parameters only, but also cost and development time.

Statement of assumptions. Analysis in respect to the

criticality of these assumptions.

Once the systems requirements have been established, these

requirements must be validated. There are four criteria for

evaluating the requirements:

(1) consistency: is there a conflict between some of the

requirements ?

(2) completeness: Are there any functions which have not

been considered? Are there any constraints which may

have been overlooked?

(3} validity: Are the requirements needed to fulfill the

objectives of the •wider" system?

(4) realism: Are the requirements realistic considering the

given environment?

There have been a number of tools and techniques develop~d

for the support of this phase. One of the best known methodologies

for the requirements analysis phase and design* phases

is SADTt --Structured Anal;{sis and Design Technique.

This technique will be described in some detail in the

appendix.

An excellent overview concerning the different Methodologies

for Requirements A .• "'lysis and Design can be found in /Wassermann et

al, 19 83/.

- 73 -

4.2 Functional Specification

The Functional Specification is concerned with t.~e process of

going from the statement of the requirements to a description

of the functions to be perf orrned by the system. Since the

functional specification* involves the external design* of the

software, it is sometimes referred to as •product designn.

The following checklist should help the designer in preparing

a complete and consistent functional specification. A functional

specification* must contain:

- Identification of the objects which are visible at the

interface to the environment, including the attributes

and relationships of these objects.

- Identification of the functions which will operate on

these objects, including their do:nain.

- Detailed specification of the inputs and outputs of these

functio~s including the formats and dialogue. The inputs

and output~ must be r~f erenced in the information flow

chart of the requirements analysis.

- Detailed specification of the information which will be

stored in the system. The inputs used to create, update

or change this internal information must be identified

together with the data* elements they contain.

Detailed specification of the processing steps.

Decision tables, algorithrn*ic formula or some kind of

Program Design language* can be used to represent

these algorithm*ic st~ps.

- 7J. -

- Starting from the volume and ti~ing information of the

requirements analysis, this section is concerned with

the performance characteristics of the planned software.

- Specification of the procedures for system start up,

restart and error handling. Data base recovery

procedures after a system failure (e.g. by power faiiure)

- A data* dictionary defining all data elements, their

meaning and representation at the external interface

of the system. The plausibility checks for these data

elements should also be included.

- The detailed procedure* for the acceptance test of the

software. The user may be called upon to provide ~~e

test data* before a specified date.

- .~ chapter on the conversion of the "old" system to the

"new" system.

- A project plan, as outlined in chapter 3 of these guidelines.

A revision of the cost benefit analysis, based on this

project plan must also be included.

- 75 -

4.3 System Design

In this phase the internal structure of the software is devised

to provide the functions specified in the previous stage. The

most important activities during the system design* are tbe

partitioning of the system into subsystems and the design

of the data* structures of the system.

Design is a creative activity. It is the link between analysis,

programming and operations. On the one side, it must fulfill

the functional specifications, whereas on the other hand it has

to meet the given technical requirements. According to /Collins

et.al 1982/ design* consists of the following steps:

(1) Understand the requirements

(2) Break the system into its basic components of data

and processes

(3) Design the logical structure of the system

(4) Adapt this structu=e to the physical implementation

constraints

(5) Specify the subsystems

In a data* oriented design, the first step afte·r the analysis

of the requirements concerns the definition of the logical

data* structures. Starting froill the inputs, outputs and

internal data* elenents of a system the relationship between

these data* elements are established on the basis of the

conceptual model of the application environment. This work

is the basis for the design* of the logical data* structure.

The operations on the logical data* stru~ture are the starting

point for the process decomposition. Processes are identified

by following the flow of data* through the system. Additional

- 76 -

requirements, eg. auditing requirements, will be implemented

through additional processes.

The final result of the system design* is the system design

report. It has to contain the following items:

- A general overview of the entire system

- Subsystem description: a short description of each subsystem

including the input and output data* of each subsystem, the

internal data* of each subsystem, the processing functions of

each subsystem,

- A system structure diagram showing all subsystems and their

interconnections.

- The description of all system data* elements and a cross

reference of data-processes.

- The description of all processes and their i~puts/outputs

timing and volume analysis

Methods for implementing the data* security *and privacy

requirements

-A program* portfolio -- for each program* in the system, the System

Design Report must contain all the information needed by the

progr.aQmer, in~luding

* program* overview: a brief description how the program* fits

into the overall system

* A specification of the program* logic (algorithms*)

and the external datastructures, the semantics of the

internal states of the program

* Layout of the physical format of all input output, including

form design* and record definitions

* Error handling information, including error detection

requirements, error reporting strategy and restart

information

- 77 -

* Testing strategy, both for the program* test and the

integration test

System design* is an iterative process. Therefore it is

necessary to evaluate a design* before it is frozen. This can

be done by formal inspections or less formal design* reviews.

Any design* should be evaluated in relation to the following

criteria

(1) consistency and completeness in relation to the

functional specification

(2) complexity of the the components and interfaces

and component size

(3) stability of the interfaces in relation to possible

change requirements

(4) observability and testability of the design

(5) performance characteristics in relation to the

available hardware* environment

- 73 -

4.4 Prograraming

The programming effort staL:"ts with the analysis of the

Systera Design Report and the Prograra Portfolio by the

programmer. It normally consists of the following act.i vi ties:

- Logical Analysis

- Design of the Control Structure and Internal Data Structure

of the Progran

- Desk Checking and Logic Review of the Program Design

- Coding and Docunentation of ~~e Coce

- Conpilation and Debuggi~g of the Code

- Preparation of Test Data and Module Testing

- Updating of the User and Operator Instructions

next to a well-conceived design, the prograraning style has a decided

effect on the conprehensibE.ity of a softuar-e system. There are,

of course, man:'..;' uays in which a progran nay be written so that the

required data transfor~ations a~e perfor~ed. It is the individual

progranming style ~,at finally decides which alternatives are

chosen and whether a· prograr;i looks claar or confused. Programming

style determines the readability and thereby also the complexity.

Complexity is the main cause for software errors and the

unreliability of the end product. ?he raost important rule of

programming style requires that a prografil be simple, clear and

manageable. The clarity of the progra.""'.l· can be improved, i£

some of the following rules are obeyed:

-Physical Layout: The visual organisation of the program text

using separating lines and indentation has a very positive

effect of program readability.

-Uaming: The choice of variable names is very important

for readability. Hhile variable names should be chosen from

a mnemonic and sy.3tematic point of view, they should also make

- 79 -

reference to the meaning of the variable. Starting from a problem

oriented baie, the naming effort should be strictly controlled

by the project manager.

- Processing: In the processing section of a program one should

make use of tried and proven program segments, as far as possible.

The control ele~ents in a program should be taken from the

limited set of constructs defined in the nstructured program~ing

rulesn, i.e:. sequence, if then else and do while • In many

cases complicated branching can be a~roided by the use of'

simple logical operations on logical variables.

- Input Output: nany program errors can be traced bacl~ to badly laid

out input/output interfaces or a poor check of th2 input data~

Input formats should be uniform and as free as possible. Sirailarly,

results should be presented with a meaningful text. The range

of inp~t values should be kept as small as possible and reasonable

and should be che~·kec in the program.

Testing: Every program should be designed in such a way that it

can be tested independently of the rest of the system. It is

therefore L~portant to provide provisions for the observability

and control of the inputs, outputs and internal state ,~ariables

of a program.

- Error handling: Every program should contain an error detection

and an error handling section. Errors, which cannot be handled

in the program should be reported to the calling program. The

internal state of the program should he set in a consistent

state.

- Commenting: It is not easy to comment a program meaningfully.

A program 'Oil'f not only have too few comlilents, it nay al.so have

too many. Each program should start with a block of comments

which should contain the following information:

* program indentif ication, version and author

* date of production and last modification

.

- 3o -

* function of the program

* accuracy stateme11t (especially in real arithmetic)

* input output description by example

* example of calling sequence and parameter description

* ~rror handling

* assumptions regarding environment and module limitations

Furthermore, branch points within a prograra should be described

with reference to the algorithmic solutio::-t. A.riy prog.r:arn. section

that probably will have to b~ changed as a result of program

modification should be hi;hlighted.

- ·31. -

4.5 Testi~g and integration

At the beginning of every software development some concepts of

what the system should do are formulated. The validation

of the software package constitutes confirmation that these concepts

are in fact fulfilled. The validation is a continuing process through

each stage of the software life cycle.

Even with simple programs only a vanishing small part of all

theoreti~~lly possible input cases can be exercised during the test

phase. This is why software testing can only show the presence

of errors, never their absence.

In order to make the test phase effective, it is important

to carefully select the test cases. Three approaches for test

case selection may be taken: to check the specified functions

of the prograrn, to select the test cases on the basis of the

input distribution of the expected application, or to determine

the test ~ases on the basis of the internal structure of the actual

program. In the following sections these three test methods, the

f unctivnal te.st, the acceptance test and the slructur3l t~st, will be

treated.

During functional testing the specified functions should be tested

individually and in combination. Th~ software system is treated as ~

'black box' by means of which ~xpected results are calculated for

given input values. The selection of relevant test cases on the

basis of functional testing represents the most effective 1 t hod

of testing a program.

Th<! acceptance test is based on the point of view of the actual

employment of the system by the user. The choice o[test cases

- 32 -

is made by the division of the input space into application

related input regions. Important factors in choosing the test

cases are the problem specific input cases in the various regions

of the input space.. The chief advantage of the acceptance test

lies in the.complete coverage c€ the development chain through

a close cooperation with the user.

In the Structural test, the test cases are selected on the basis

of the internal structure of the prJgram. This selection can

be made according to the following criteria

- Every instr~ction in the program* must be executed at least once

- Every branch :point should be tested in each direction, at least

once

- All control paths have to be tested.

Even the test of all control paths is not sufficient for the

complete coverage of the program.

Since none of the test methods is perfect -- as a matter of

fact, there is no perfect test method known -- it is recommended

to use a combinatic.n of m~thods for the test case selectior..

The testing activities should be formulated in a test plan.

The components of a good test plan are:

-A listing of all functions that are to bP tested

-a description of the test strategy that will be used

-test criteria that must be fulfilled, such as percentage of

branches, range of variables etc ••

-error rate that must be achieved before the system car be

classified as deliverable

-performance requirements expected for the complete system and

its components, such as response time ~tc ••

- 33 -

-a list of errors that the system must be able to tolerate

-guidelines for the documentation of the test results

-the expected results of the test cases

-procedures for sy :tem integration

-schedule for the test phase

Whereas with testing an attempt is made· to establish confidence in

reliability of a program* by means of a point-by point check of the

input, another verification technique, the analytical prog=am

proving, concerns itself with program* per se as opposed to just

the computational results using the program. The aim is to show by

f orrnal means that the program* in itself is correct The current

situation with analytical software verification appears to indicate,

that in the near future it will not represent a viable alternative

to program* testing.

- a4 -

4.6 Maintenance

The analysis of the life-cycle of successful software systems

has shown that the cost of keeping the software operational

significantly exceeds the cost of the initial software development.

The software effort which is needed to maintain an operational system

is commonly referred to as the "software ~~intenance effort•. The

maintenance phase thus starts with the corapletion of the

acceptance test and continues until ~~e system is discarded.

Software maintenance is significantly different from hardware

maintenance. In hardware* maintenailce a hardware* unit which

has changed its physical perfor~ance due to ageing or environment

stresses has to be replaced by a new unit of the same type, i.e. the

same initial performance, whereas software r..aintenance always

implies the partial redesign* of an existing software product.

This redesign* becomes necessary for the following reasons:

(1) repair of residual design* errors. Since it is not

practically possible to exhaustively test or analytically verify

all properties of a program, there is always a certain probability

that residual design* errors be detected long after the system

has become operational. Howeve1, it is to be hoped that an improved

programming methodology will reduce this nunber of residual design

errors.

(2) Adaptations and functional enhancements. Everv successful

system becomes part of the environment it is destined to serve.

Since the real-world environment is continually changing, the

requirements of the system are also forced to change. "In real

life there is not a single, static well-defined problem but a

constantly changing problem whose definition is being altered by

in:ormation that actors recover from memory and by other information

from the environment's response to actions taken". /Simon 1971/.

In order to keep a system operational, it must be changed so

that it corresponds with these modified requirements. Examples

of such changes in the requirements are:

-Hodif ication of the real world function which is modelled within

a system {e.g. implementation of a new income tax regulation in a

payroll package).

-Availability of new hardware* (e.g. modification in the database

software to use a new disk drive with improved cost performance).

-Performance enhancements (eg. improvements in the response time

of a new on-line system}.

Most of these changes are outside the control of the system

implementor. There is no hope that an improved software develop;nent

methodology can significantly reduce these change requirements.

On the contrary, the increasing integration of computer systems

within organisations will lead to a need for an increased

respnnsiveness to change r.equirements. In the fut·.ire, some

organisations might only be capable of surviving =.f their

computer systems can be modified quickly in respo'.1se to a

changing market place.

- 36 -

Appendix 1: The UNIX+ Systera

UNIX+ is a general purpose interactive operating system that

has been developed by Bell Labs. The first Edition of UNIX+

was-documented in a manual authored by Thomson and Ritchie

f~om Bell Labs in November 1971. It was implemented on a

Digi ::al Equipment PDP 11/20 computer. Since that time UiHX+

h6s been implemented on a number of different computers

ranging f rorn micros to big mainframes. It is now regarded

a standard operating systems for the more powerful mcra

cornputers.

In the very short history of the nass produced personal computer

experience has shown that only a small number of standard

operating system penetrate the market. Since, at the moment,

there are no real alternatives to UUIX+ as a standard operating

system for powerful personal computers, it must be expected that

UNIX+ will become much more popular with the introduction of

more powerful mass produced personal co~puters. Already nowadays,

UNIX+ is supported by many different suppliers.

As far as possible, UNIX+ tries to hide the characte~istics

of a specific machine. This results in a high compatibility

of the software written for UNIX+.

The main features of UNIX+ are:

- A hierarchical file* system which is independent of the

parameters of the physical storage device.

- Compatibility between the input/output and the file* system

- 37 -

- The ability to create asynchronoGs processes

- A flexible command language* which can be tailored to

the requirements of a given application environment

- A large amount of software from independent software

suppliers, including all major programming languages,

relational data* base systems, text processing software

and a variety of application packages.

-Communication support to connect UNIX+ systems together

In the following we will discuss the two most important

features of UNIX+, the file* system (which includes the

input output systen) and the command language.

The urnx+ file* systera

A file* system provides a facility to store information by name.

UNIX+ distinguishes between three kinds of files

Ordinary files

The ordinary file* is the standard for the storage of information

from a user program. No particu·ar structure of the information

is expected or supported in ordinary files. An ordinary file

consists simply of a sequence of characters, with lines demarc~ted

by the newline character. Binary program* files are sequences

of worcs as they will appear in the core memory of the computer.

If an application program* expects any structure of the file, it

is in the responsibility of the application program* to generate

this structure and interpret this structure. From the point of

the U?HY.+ file* system, files do not contain any structure •. Even

the structure imposed by the physical storage medium is hidden

from the user.

- 83 -

Directories

A directory is a file* that holds the names of other files

(or other directories). It thus provides the required mapping

between a filename and the file* itself. Each user has a directory

of his own files. He may also create subdirectories to contain

groups of files which are related to each other. A directory

. behaves exactly like an ordinary file, except that the operating

system controls the write access to this file. Provided the

user is privileged to do so, he can read a directory file

but may not modify it.

The starting point of the file* system is the root directory.

All files in the system can be found by tracing a path from

the root directory to the next level of directories and so

on until the required file* has been located. The file system

of UNIX+ supports thus a hierarchical structure of files.

Files are named by sequences of 14 or fewer characters. When

the name of a file* is specified to the system, it may be

in the form of a path name, i.e. a sequence of directory names.

A file* in UNIX+ does not exist in a particular directory.

The directory entry of a file* consists merely of its name,

its ~ttributes, and ~ pointer to tte info:.mation of the f-ile.

Thus it is possible to link the same file* to different. directories.

The operating system maintains several directories for its

own use. Some of these directories contain the programs which

are for general use. The execution of these programs can

be invoked by specifying the file* name of the appropriate

program* file. These file* names correspond to the system

commands. By writing new programs and linking them to

the appropriate directories, a user can develop his own

command ldnguage* tailored to his particular application

en vi romnent.

- 39 -

Special files

Special files correspond to input output devices. These files

can be accessed in the same basic way as ordinary files, though

with some restrictions e.g. it is impossible to write to

an input device. An access of a special files causes the activation

of the corresponding device. Each disk drive, each terminal or

communications line can be accessed through its special file.

The access ~o special files can be protected, just as the access

to ordinary files. The advantage of treating I/O devices and

f ii es the same way lies in the compatibility between I/O and

file* access. No special programming is needed to redirect I/O

to a file. The system calls to do I/O are designed to eliminate

the differences between the various I/O devices and styles of access.

There is no logical record size imposed on a file.

UNIX+ does not provide for any file* locking.

The U?JIX+ command language

UtlIX+ provides a cor.m:and l:ine interpreter, which is called the

"shell". It reads lines typed by the user and inlerprets t.hem

as requests to execute other programs. The simplest form of

a command consists of the command-name followed by its

parameters:

command-name parl par2 par3

The shell separates the command name and the parameters into

two strings. The first string is the filename of the program

which is to be executed. This program* file* i~ sought, brought

into main memory and started for execution. The arguments which

have been collected by the shell are made available to the

program. When the program* is finished, the shell continues its

own execution and informs the user with a prompt character.

If a file* with the name of the command cannot be found, then

the shell reports an error to the user.

- 90 -

When a user starts working on his terminal, the shell declares

the user terminal as the standard input output device. However,

the shell can dynamically change this assignment on the users

request. If one of the arguments of a command is prefixed by ">"

the shell will change the standard assignment of the output file

to _the file* named after ">". Thus

> f ilex

means "place output on filex" instead of "on the standard output

device (i.e. the terminal)". The symbol"<" has the corresponding

meaning for the standard input.

If a command is followed by an "&" the shell will not wait for

this co~mand to terminate but will start a parallel task for

the execution of this command. In order to identify this new

task, the shell will return with a task identification

number. It is thus possible to start background processing.

The scheduling algorithm* in UNIX+ is designed to give good

response to the interactive foreground process in case the

background process ~s very processing intensive.UNIX+ also

provides special facilities for the conmunication between

parallel tasks.

A more detailed description of UNIX+ can be found in the

UNIX+ books /Bourne, S.R./, /Banahan et al/ in the bibliography.

- 11 -

Appendix 2

SADT: -- Structured Analysis and Design Technique /Ross 1977/

SADT: is a comprehensive methodology for systems analysis and

functional desiqn.

It has been developed by the company SO FTECH in Waltham,

l·lass. USA in the seventies. The principle author is D. Ross.

SADT# provides techniques and methods for:

- thinking in a structured way about large problems

- representing the results of the analysis and design* phase

- communicating the results in a clear notation

- team work in the analysis and design* phase

- managing the analysis and design* phase

SADT# is based on seven Fundamental Concepts

(1) Understanding of Systems via Model Building

The in-depth understanding of a system is achieved by building

"models" of system from well def in~a viewpoints. Such a model

is an abstract representation of the systera, elirnina ting all

details which are unimportant for this specific viewpoint.

Different Aspect o~ the system will be represented by different

raodels, e.g. a Model may d~scribe the Functional Characteristic::.

of a System, another model iltay be concerned with the Hainte,nance

Characteristics.

-· 92 -

(2) Top Down Decomposition

Any SADT~ l'1udel is developed from outside in. The Top level is

concerned with a complete, but very general description of the

system. At each level down, the concepts of the previous level

are refined and more details are brought in. SADT~ limits the

amount of additional information that may be brought in at any

one level.

(3) Functional Modeling versus Implementation Modeling

The starting point is always a Functional Model of the problem:

"What is it?" as opposed to "How is it implemented?" • The

development of a clear and precise functional specification

before implementation is of critical importance to successful

system production. SADT: provides a notation distinguish between

a function and a mechanism used to ir.tplement this function. Sometimes

a mechanism may be so complex that it in itself warrants to

development of its own model.

(4) Dual Aspects of Systems

System may be described in many different ways. SADTt distinguishes

between two methods of looking at a systera -- its entities (data)

or its activitie~ (?recesses). The corresponding models are called

a data* decomposition and an activity decomposition. The data

decomposition details the "things" of the system, while the

activity decomposition details the •processes~.

In the final phase of modeling a -:orrespondence verification of

these two decompositions has to be performed.

1.0 . :'8 25

l. illl: 2 2
.. : I

11

11111.1 . lllli3~,
11111

18
-:

111111.
2~ 111111.

4 ~ 111111.
6

r: i r : i' i r ' Ii . l '~ f '1 i I 1 i, i r ; 1 I • r f I/, ; i r

. ' . .

- 93 -

(5) Graphic Format for l·todel Representation

SADTi provides a graphical language* to represent the analysis and

design. The main elements of this graphic language* are boxes

and lines to connect the boxes. The number of elements on a diagram

is strictly controlled in order to prevent overloaded diagrams.

The interpretation of the boxes and lines between the boxes

is different for the •aatagram", Le the data* oriented design* and

the "actigram", i.e the activity oriented design. In datagrams,

the boxes refer to data* el~ments and the lines to the activities

producing a~d consuming these data* elements. In actigrams,

the boxes ref er to activities and the lines to the input and

output data* of these activities

(6) Support of Disciplined Team Work

The Analysis of Complex systems requires the cooperation of

many people. SADT# provides a set of rules for su~h a

team work. Each member of a team has to c~nform wit1

the role assigned to him. Among the different roles in

the teamwork we distinguish between

- the author who actually writes the SADTt diagrams

- the reader who has to read and interpret the SADT~ diagram

- the expert who has to provide the inf orrnation about the system

- the secretary who has to record and file* all information

- the monitor who has ~o monitor the progress of the SAOT# project

and look after the conformance with the SADT# rules.

- 94 -

(7) All Decision and Comments in Written Form

In SADT: all decisions and alternate approaches have to be

recorded in written form. Authors have to write the SADT~

diagrams and experts have to comment on these diagrams in

written form. The diagracs have to be fil~d with the secretary.

This complete documentation of a project helps to clarify

misunderstandings and reduces the number of iterations.

There are some software package~ available which provide

computer assistance for the SADT~ ~ser.

I
- 95 -

Appendix 3

Glossary of some software terms

Host of the fellowing definitions of software terms are taken from

IEEE St. 729-1983 "IEEE Standard Glossary of Software Engineering

Termino~ ogy", published by the Irtsti tute of Electrical and Electronic-~

Engineers, Inc., 345 East 4 7th Street, Nevi York, NY 10017, USA

~xplanatory remarks are added.

ADP..++: A new programming language for real time applications

see ~lso chapt. 2.3

algm.:ithm: A finite set of well-defined rules for the solution

of a probl~m in a finite number of steps; for example, the

set of rules which have to be followed in the solutf on of

a mathematical equation.

application software: Software specifically produced for the user

of a computer system; for example, a payroll program or

a program for the control of a specific machine. Contrast

with system software.

assf."mbly language: A machine specific language whose instructions

usually in one-to-one correspondence with the hardware instructions

of the computP.r.

BASIC: A programming language which is simple to use, see

also cha pt. 2. 3

C A programming language for systems prog=amming, mainly in

UNIX+, see also chapt. 2.3

COBOL: A programming language used for conunercial programming,

see also chapt. 2.3

change control: The process by which a change to the software is

proposed, evaluated, approved or rejected, scheduled, and

tracked.

conmand language: A set of procedural operators with a related

syntax, used to indicate the functions to be performed by

an operating system. Synonymous with control language.

comment: Information embedded within a cor.:puter program c..ommand

language or a set of data that is intended to provide

clarifications to human readers and that does not effect

machine interpretations.

conpile: To translate a higher order ~~nguage program into a for~

which czm be executed by the ;r.achine. The corresponding

translation program is called a compiler. Contrast with

assembler, interpreter.

computer: A functional programmable unit that consists of one

or more associated processing units and peripheral equipment,.

that is controlled by internally stored programs, and that

can p(;;:fc,rm substantial computations, including nume.cous

arithmetic operations or logic operations without huma1

intervention.

- :11 -

concurrent processes: Processes that may execute in parallel on multiple

processors or asynchronously on a single processor. Concurrent

processes may interact with each other, and one process may

suspend execution pending receipt of infor~ation from another

process or the occurrence of an external event.

data: a representation of fact~, concepts or instructions in a

formalized manner suitable for communication, inte~pretation

or processing by human o~ automatic means.

data communication pro~ocol: A set of rules defininq the data

structures and the duration between events for the comnmnication

between computers

design: The process of defining the software architecture, components,

modules, interfaces, test approach, and data for ~ software

system to satisfy specified requirements. Also: the results

of the design process.

efficiency: The extent to which software performs its intended

functions with a minimum consumption of coraputing resources.

embedded computer system: A computer system that is integral to a

larger system whose primary purpose is not computational;

for example, a computer system in an aircraft control

system.

ex~cution: the process of car~ying oat an instruction of a

computer program by a cor.iputer.

failure: the termination of the ability of a functiondl unit

to pe~f orm its required function.

I
- }3 -

fault: An accidental condition that causes a functional unit

to fail to perform its requi~ed function.

file: a set of related records treated as a unit.

FORTRAN: A programming language for scientific applications

see also chapt. 2.3

functional deco~position: A method of designing a system by breaking

it down into its components in such a way that the components

correspond directly to system functions and subfunctions.

functional specification: A specification that defines the functions

that a system or system comi:-'Onent must perform.

hardware: Physical equipment used in data processing as opposed

to computer programs, procedures, rules and associated

documentation. Contrast with software.

interface: a shared boundary between two or more subsystems or

a system and its environment. A specification that sets forth the

interface requirera~nts is called an interface specification.

language processor: A computer program that performs such functions

as translating, interpreting, and other tasks required for

processing a srecif ied programming language; for exa~ple a

FORTRAN processor, a COBOL processor etc. r

LISP: A prograri111\ing language for Artificial Intelligence

applications, see also chapt. 2.3

machine language: a representation of instructions and data th~t is

directly executable by a computer.

- 19 -

PASCAL: A programming language for teaching programming

see also chapter 2.3

procedure: a portion of a computer program which is naltied and which

performs a specific task

project plan: A management document describing the approach that

will be taken for a project. The plan typically describes the

work to be done, the resourc~s required, the raeth~ds to be used,

the schedules to be met and the procedures to be followed.

Program: The instructions which tell the computer what has to be

done.

Prograraming language: An artificial language which can be usad

to express the instructions to a cora~uter

PROLOG: A programming languagt :or artificial intelL.·~ence

applications, see also chapter 2.3

Protocol: see •c3ta coramunication Pro~oc~l"

requirement: A condition or capability that must be met or possesse<i

by a system or systera component to satisfy a contract, standard,

specification or other formally imposed document. The set of

all requirements f roras the basis for subsequent development

of the system or system component.

specification: A consise statement of a set of requirements to be

satisfied by a product, a material or process indicating,

whenever appropriate, the procedure by means of which it may

be determined whether the requirements given are satisfied.

I
- 100 -

security: The protection o~ computer hardware and software from

accidental or malicious access, use, rnodif ication, destruction,

or disclosure. Security also pertains to to personnel, data

communications, and the physical protection of computer

installations.

software: Computer programs, procedures, rules and associated

_ documentation and data pertaining to the operation of a computer

system. Contrast with hardware.

software documentation: Technical data or information, including

computer listings and printouts, in human-readable form,

that describe or specify the design or details, explain the

capabilities, or provide operating instructions for using the

software to obtain the desir~J results from a software

system.

software life cycle: The period of time that starts when .a software

product is conceived and ends when the product is no longer

available for user.

source program: A computer program that must be compiled, assembled,

or interpreted before being executed by a co~puter.

system software: Software designed for a specific computer system

or family of computer systems to facilitate the operation

and maintenance or the computer system and associated progr~~s;

for example, operating system, compilers, utilities. Contrast

with application software.

testing: The process of exercising or evaluating a system or system

component by manual or automated means to verify that it satisfie:

specified Lequirements or to identify differences between

expected and actual results.

- 101 -

Bibliography

/Banahan 1982/ Banahan, M. F •• Rutter, A., UNIX+ - the Book

Sigma Technical Press, Wilmslow, U.K., 1982

/Boehm 1981/ Boehm, B.W., Software Engineering Economics

Prentice Hall, Inc., Englewood Cliffs, N.J., 1981

/Bourne 19 82/ Bourne, s. R., The UNIX+ System, Addison Wesley

Publishing Company, London, 1982

/Buckle 19 82/ Buckle, J. K., Sot tware Configuration Hanagement

Macr-tillan, London, 19 82

/Collins 1982/ Collins, G., Blay, G., Structured Systems

Development Techniques, Pitman, London, 1982

/Dunn 1982/ Dunn, R., Ullman, R., Quality Assurance for

Computeor Software, nae Graw Hill, New York, 19 82

/Kc.ip~tz 197 9/ Kopetz, H, Software Reliability, MacMillan,

London, 197 9

/Musa 1983/ Musa, J.D., editor, Stimulating Software Egnineering

Progress, A Report of the Software Engineering Planning

Group, in Special ·1ssue of software Engineering Technical

Committee Newsletter, Vol.7, No. 4 p. 1-26, May 1983

/Myers 1979/ Myers, G.J., The art of software testing

Wil~y Interscience, New York, 1379

- 102 -

/Ross 1977/ Structured Analysis: A Language for Communic~ting

Ideas, IEEE Transactions on Software Engineering,

Vol. SE 3, No. 1, Jan. 1977, p.16-34

/Shooman 1983/ Shooman, M.L., Software Engineering,

McGraw Hill Book Company, New York 1983

/Simon 1971/ Simon, H.A., The theory of problem solving,

Proceeding of the IFIP Congress Ljubljana, 1971, p. I. 24 9 -266

/So:.;erville 1982/ Sommerville, I., Software Engineering,

Addison Wesley, Reading Mass, 1982

/Wassermann 83/ Wassermann, A, Porcella, r-1., Freeman, p., "ADA++

Methodology Questionnaire Summary", Software- Engineering

Notes, Vol 8, No. 1, Jan. 1983, p.51 - 99

/tfolverton 1972/ Wolverton, R.W., The cost of Developing Large

Scale Software, IEEE Trans. on Computers, June l.974, pp.615

- 636.

	Binder15.pdf
	0005A01
	0005A02
	0005A03
	0005A04
	0005A05
	0005A06
	0005A07
	0005A08
	0005A09
	0005A10
	0005A11
	0005A12
	0005A13
	0005A14
	0005B01
	0005B02
	0005B03
	0005B04
	0005B05
	0005B06
	0005B07
	0005B08
	0005B09
	0005B10
	0005B11
	0005B12
	0005B13
	0005B14
	0005C01
	0005C02
	0005C03
	0005C04
	0005C05
	0005C06
	0005C07
	0005C08
	0005C09
	0005C10
	0005C11
	0005C12
	0005C13
	0005C14
	0005D01
	0005D02
	0005D03
	0005D04
	0005D05
	0005D06
	0005D07
	0005D08
	0005D09
	0005D10
	0005D11
	0005D12
	0005D13
	0005D14
	0005E01
	0005E02
	0005E03
	0005E04
	0005E05
	0005E06
	0005E07
	0005E08
	0005E09
	0005E10
	0005E11
	0005E12
	0005E13
	0005E14
	0005F01
	0005F02
	0005F03
	0005F04
	0005F05
	0005F06
	0005F07
	0005F08
	0005F09
	0005F10
	0005F11
	0005F12
	0005F13
	0005F14
	0005G01
	0005G02
	0005G03
	0005G04
	0005G05
	0005G06
	0005G07
	0005G08
	0005G09
	0005G10
	0005G11
	0005G12
	0005G13
	0005G14

	0006A01
	0006A02
	0006A03
	0006A04
	0006A05
	0006A06
	0006A07
	0006A08
	0006A09
	0006A10
	0006A11
	0006A12
	0006A13

