
                                                                                     

 
 
 

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION  
Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria 

Tel: (+43-1) 26026-0 · www.unido.org · unido@unido.org 

 

 

 

 

OCCASION 

 

This publication has been made available to the public on the occasion of the 50
th

 anniversary of the 

United Nations Industrial Development Organisation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCLAIMER 

 

This document has been produced without formal United Nations editing. The designations 

employed and the presentation of the material in this document do not imply the expression of any 

opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development 

Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its 

authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or 

degree of development. Designations such as  “developed”, “industrialized” and “developing” are 

intended for statistical convenience and do not necessarily express a judgment about the stage 

reached by a particular country or area in the development process. Mention of firm names or 

commercial products does not constitute an endorsement by UNIDO. 

 

 

 

FAIR USE POLICY 

 

Any part of this publication may be quoted and referenced for educational and research purposes 

without additional permission from UNIDO. However, those who make use of quoting and 

referencing this publication are requested to follow the Fair Use Policy of giving due credit to 

UNIDO. 

 

 

CONTACT 

 

Please contact publications@unido.org for further information concerning UNIDO publications. 

 

For more information about UNIDO, please visit us at www.unido.org  

mailto:publications@unido.org
http://www.unido.org/


UNITED NATIONS 
INDUS'IRIAL DEVELOPMENT ORGANIZATION 

Distr. 
LDnTED 

IPCT .144 (SPEX::.) 
13 Nouanber' 1991 

OOIGINAL: F:'.r.r..ISH 

CHANCES AND ISSUES IN SOFTWARE PRODUCTION IN 
DEVELOPING COUNTRIES* 

Prepared by 

Hermann Kopetz** 
UNIDO Consultant 

* The views expressed in this document are those of the author and do 
not necessarily reflect the views of the Secretariat of UNIDO. This 
document has not been edited. 

** Technical University of Vienna 

V.91-30739 

~I f 



----- -- --~ ------------------------------------

- i -

TABLE OF CONTENTS 

Executive Swmaary 

1. Introduction 

2. The World of Software 

2.1 The operational enviroru1ent 
2.2 Software Markets 
2.3 Software Distribution 
2.4 Risk Factors 
2.5 Comparative Evaluation 

3. Software Manageaent Issues 

3.1 Quality Kanageaent 
3.2 Risk Management 
3.3 Productivity Management 

4. The Design of Real-Time SystellS 

4.1 Real-time Syste• Design Methodologies 
4.2 Real-time Transactions 
4.3 Architecture Design 
4.lt Scheduling 
4.5 Fault-Tolerance 
4.6 Testing 
4.7 Conclusion 

5. Sumaary and Conclusions 

6. Concrete Measures 

6.1 Establish a Central Software Technology Clearinghouse 
6.2 Establish a Local Software Technology Nucleus 
6.3 Establish a Reliable E-mail Service 
6.4 Monitor Software Quality and Productivity 

7. References 

ii 

1 

1 

2 
3 
8 

10 
10 

12 

12 
15 
16 

17 

18 
19 
19 
20 
22 
22 
23 

23 

25 

25 
26 
26 
27 

28 



11111111111111111 11 11111111 

-ii-

The ongoing technological advances in the field of electronics will 
open new opportunities and expansive markets for software products in the 
nineties. The impact of the software industry on the econoay of all 
developing and developed countries will increase significantly. 

Highly qualified, well trained and fully motivated personnel fora the 
basis of any software industry. Investment into first rate educational 
facilities by the govern11ent is the aost iaportant political action that 
has to be taken in order to establish the foundation of a software 
industry. 

The two key urkets for software which should be selected are 
intelligent product software and contract programming. Intelligent products 
offer the addition. 1 advantage that more employment opportunities are 
generated in the developing countries. 

Contract progr ... ing requires reliable access to international 
coaputer networks. This access has to be provided by the authorities in the 
developing countries. 

Any software development requires a sound management structure. There 
is an opportunity of cooperation between developing and develope<! countries 
in the accreditation of software quality management progra11S. Risk 
management and productivity management should be addressed specifically. 

The market for real-time software is growing rapidly. The 
development methodolo5y for real-time software is not well established. 
This offers a challenge and a chance. In this report a rigorous development 
methodology for real-time software is presented. 

111 11111111 111111 111111111111111111111111 11111111111 111111111111111111111111 
1111111111111111 1111111111111 11111111 1111 1111 111111 II 111111111111111111111111111 111111 1111111111111111111 

11111111111111111111111111111111111 11111 1111111 I 11111111 1111111 1111111111111111111 111 



- 1 -

1. nmtODUCTIOlf 

In the last years, software production has emerged as a major 
industry of substantial econoaic signifi.~ance. It is £stimated that over 
half of the worldwide information processing market in the order of more 
than 500 billion US $ is, in one way or another, related to software 
production. This market is still growing by a rate of about 10% per year. 
Pillions of software professionals, systea analysts, programaers, managers, 
etc. are engaged in software production worldwide. It is our opi~ion that 
every industrialized or developing country in the world has to face the 
iap:lct of the software industry_ Software ~an be seen as an industrial 
product which ie imported to s~rve the local needs or which is locally 
produced and exported to the world market. In a maturing economy, which is 
integrated into the econoaic systems of the world, software should be seen 
as both: an import and an export product. 

Most of the software produced does not appear on the open market in 
the fora of prepackaged software. A formidable amount of software is 
produced by the computer coapanies and sold together with their hardware as 
a computer systems product. A lot of software is integrated in other 
tangible products to increase their functionality and value. Many of the 
latest consumer products and industrial products contain ir.~egrated 
aicroprocessors or computer systeas with significant aaounts of application 
software hidden beh~nd a user-friendly man machine interface. Software is 
also needed for the computer integrated a.'.lnufacturing (CIM) systems. 
Computer-based production planning and crntrol systems are installed in 
aost aanufacturing plants. It follows that a state of the art software 
capability is not only needed for the production of software per se, but 
also in the production of any kind of industrial product. 

Software is a know how intensive industry. Highly qualified, well 
trained and fully aotivated perso1U1el fora the basis of any software 
industry. Because productivity ranges are much higher than salary ranges, 
it wise to attract the best people to software production by offering 
extraordinary working eonditi~ns. 

This report survey~ ch.,nces and issues in software production. In the 
first section the •world of software• is analyzed to find market 
opportunities for newcomers from developing countries. Any software 
production requires the establishment of an appropriatP. project management 
structure. In Chapter 3 some topics in software management which have grown 
in importance over the recent yea1 s, i.e. , quality management, risk 
management and productivitf management, are discussed in some detail. 
Chapter 4 deals with the systematic design of real-time software, a 
discipline which is of great industrial relevance but of comparable recent 
origin. In the final chapter the sUJ11111ary and concrete reco1m1endations are 
presented. 

2 . 11IE VOllLD OF SOP'l'VAU 

In this section we will analyze the •world of software• to look for 
market opportunities, particularly for newcomers from deve:loping countries. 
After a short discussion of the ope:ation~l environment f~r computer 
software, which is to be expected in the next few years, ~e will focus on 
the emerging software markets. In th~ final ~hapter we trx to shortlist a 

1111111111111111111111111 1111111 11111111111111111I11111111111111111111 1111111111111111111 111111111 11111111111111111111111111 I lllllilllllllllllllll 1111 1111111111 11111111 11111111111 11111111111111111111111111 I 11111111111111111111 11111 111111111 111111111111111111 1111 1111 



- 2 -

nuaber of risks in software production. 

2.1 Tbe operatio04l environaent 

An enduser is interested in the delivery of some specified 
computational service of an integrated computer system. Only the proper 
combination of computer software and hardware can provide such a service. 
From this point of view, software in itself is not a complete product--it 
requires an operational hardware environment to produce the intended 
effect. In this section we review the expected trends in the field of 
computer hardware and operating systems to sketch the operational hardware 
environment for the future software. 

2.1.1 Hardware trends 

In the next ten years the technological advances in the field of 
computer hardware will continue to produce more powerful microelectronic 
chips at the same rate as we have seen this in the recent past. These 
advances will effect both the functional capabilit:r and the performance of 
the computer hardware. 

By now it is fairly clear that the next generation of memory chips, 
the 64 Kbyte chip, will be introduced on the market around 1995. Before the 
end this decade the following generation, the 256 Kbyte chip, should be 
available. Similar advances can be expected in the capabilities of the 
Central Processing Units (CPU) and storage media. The interconnection of 
the computers will be realized by high speed networks in the gigabit range. 

A short glimpse backwards should help us to put these extraordinary 
developments in the proper perspective. Vhen the first personal computers 
were marketed at the beginning of the eighties, a memory size of 64 kbyte 
was colllllOn. Five years later the typical memory h.Rs increased to about 512 
kbyte~. while today, another five years later, another ten-fold increase to 
5 Kbyte can be observed. If this trend continues--and there are convincing 
indications it will--, a typical personal computer will have a memory of 
more than 100 Kbytes before the end of this decade. 

More importantly, the expected advances in the field of VLSI 
integration will allow to integrate more than 10 million circuit elements 
on a single chip before the end of this decade. This level of integration 
makes it possible to manufacture complex information process:ng systems on 
a single chip. Powerful single chip 11icrocontrollers with ot•.board RAM, ROM 
and process I/O will be available for all kind of integrated control 
functions. 

Since the design of highly integrated VLSI chips is extremely costly 
and the marginal manufacturing costs are relatively low, only a few 
"families" of general purpose processors will dominate the worldwide 
computer market. This has important implications for the software industry. 
Only a small number of standardized operating systems will be available. 

Over the next decade, the cost to produce computer hardware of a 
given tunctionality will decline at a similar speed as in the past decade. 
An equivalent reduction of the software costs cannot be expected. 
Therefore, on a system basis the strategic importance of soft~ara will 
increase,' i.e. the major fraction of the value of an integrated computer 

II I I I 



- 3 -

system will be in its software. 

2.1.2 Operating systems 

The standardization of the operating systems is well under way. 
Proprietary operating systems from the major computer companies give way to 
standardized operating systems, such as UNIX and KSJDOS. According to a 
recent US-statistic concerning the Personal Computer Market, the following 
operating systems were dominant by the end of 1990: 

KS DOS 
KS Windows 
Apple Macintosh 
UNIX 
OS/2 

60760 
8860 
5051 
1500 

700 

Major PC Operating Systems shipped through year-end 1990 in thousands of 
units /Bul91/. 

From these numbers it is evident that at the moment the KS/DOS market 
is the most interesting market for producers of commercial software 
packages. An established operating system base of more than 50 million 
installations offers tremendous opportuniti~s for a novel software package 
of mass appeal. 

In the field of real-time software and microcontroller software, no 
standardization tendencies which are similar to the PC market are 
observable at the moment. Although the US Department of Defense launched a 
standard programaing language and environment, ADA, for embedded computer 
application some years ago, this language has not found widespread 
acceptance outside the military comaunity yet. Many embedded computer 
applications are based on small proprietary real-time operating systems of 
focused functionality. 

The future trends in the operating system field will be determined by 
a number of factors. The expected hardware environment, as described above, 
will open completely new markets, such as multimedia applications 
integrating text, sound and video. It is not su1e whether the present 
market leader in operating systems, KS/DOS can evolve to handle these new 
applications in an optimal way. 

On the other side, new strategic alliances are formed ~n the computer 
and electronics industry worldwide. The collaboration between IBM and Apple 
computers can have a considerable effect on the future of the MACINTOSH 
operating system. The agreement between Digital Equipment Corporation and 
Philips can have an impact on the multimedia market, which is also at the 
focus of th. major Japanese electronics companies. 

2.2 Softyare markets 

For the purpose of our analysis of the economic opportunities of 
developing countries in the software wo~ld. we will partition the software 
activities into the following five se~nts: 

(1) Prepackaged software 
(2) Key element software 

11111111 11111 111111111111111 111111 11111111111111111 11111111111111111111111111111111111111111111111 11 111 1111 11111 1111111111111111111111111111 11111111 11 
II I 1111111111111111 111111 111111111 11 II II 11111111 111 11111 II 111 1111111IIllllHlllllll111 111111111111 1111 1111111 11111 111 111 I 1111111 11111 11 I I 111 11 I 11 11 11 1111 111111111 11111 II II II 



- 4 -

(3) Intelligent software 
(4) Contract ~rogra1111ting 
(5) Software maintenance 

Although these segments are partially overlapping, they each have a clear 
identity, as will be seen in the following discussion. 

2.2.l Prepackaged software 

Prepackaged sofnrare is defined as that segment of the software 
industry, which is dedicated to the production, marketing and aaintenance 
of software packages, such as a word processing program. 

Although there are many thousands of small software companies trying 
to esta~lish themselves in this very competitive market, only few companies 
succeed. The best selling application packages are all based on the MS/DJS 
operating system. According to a US statistics jBul91/, the following 
packages make the list of the top 10 prepackaged software products by the 
end of 1990: 

Rank Name Company Units sold 

1 Windows Micro,soft 8.860.000 
2 Lotus 1-2-3 Lotus Develp. 8.000.000 
3 WordPerfect WordPerfect 5.500.000 
4 WordStar WordStar Int. 4.200.000 
5 dBase Aston Tate 3.315.000 
6 PCPaintbrush ZSoft 2.050.000 
7 Multi plan Microsoft 1.800.000 
8 SuperCalc Computer Ass.Int. 1.700.000 
9 Norton Utilities Symantec 1.500.000 
10 Deskmate Tandy 1.5CO.OOO 

Note that none of the packages based on the seccnd most succLssful 
operating system, the MACINTOSH, made it to a place in the top 10 best 
sellers. 

These numbers, impressive as they are, should not lead to the false 
conclusion that pre~ckaged software is the only major market for th~ 
output of the software industry. Although it is the most visible market, it 
accounts for less than 10 per cent of the total output of the software 
industry. The world's leading software company, MICROSOFT which produced 
the leading PC operating system MSJDOS and has two products in the 10 
best-sellers list above, recorded sales of about 1200 million US $ last 
year, less than 2% of the sales volu.me of the leading integrated computer 
company, IBM /BUS91/. 

Successful products in the "prep3ckaged sof~ware~ market address the 
following issues with great car.e: 

(1) Genuine user need: 

A lasting success of any product depends on the relevance and quality 
of service it ~an provide to its users. The focus on th'e true needs 
of the pro,spec~ive users is thus the fore111ost: requirement of a 
software produ,~t. 



- s -

(1) Ease of use: 

A product. which is aimed at a mass market. should be usable by an 
average user without extensive training. •Ease-of-use• is a complex 
software characteristic which does not only depend on the product per 
se but also on the background and experience of the prospective use. 
Many new software companies fail because they underestimate the 
effort required to make o program easy-to-use. 

(2) Documentation: 

A mass software product has to be accompanied by a flawless 
documentation which is organized such that answers to all conceivable 
questions of its users can be found quick!y. Prep~ring such a 
documentation is a major effort which is often ;.onderestimated. 

(3) Quality: 

A serious error in a mass software product can nullify an expensive 
marketing campaign and cause excessive support costs. 

(4) Support: 

Vendors of successful software packages provide extensive after sales 
support to their customers. It is co11111<>n that the average customer 
will require more than once a telephone based assistance directly 
from the supplier, since many distributors are not in the position to 
answer in-depth questions from the customers. 

There are many instances of successful software products in small 
specialized markets. These products are based on comprehensive application 
know how in a specific area and provide an excellent service for a select 
customer base. These products are not necessarily linked with all the key 
attributes of •mass market• software, e.g. a delighted customer might we 
willing to trade some •ease-of-use• for a profound assistance in his key 
business needs. 

2.2.2 Key element software 

Key element software is defined as chat segment of the software 
industry where the software contributes the key element to a complex 
industrial product. e.g .• the software for a telephone switching system or 
an operating system for a new computer. It is characteristic for this 
market that an existing industrial organization with an established home 
market tries to improve or enhance its existing product by new 
functionality based on software. 

The key element software market is dominated by major industrial 
companies }>(\th inside and outside the computer field. The major computer 
companies have to develop or adapt the system··software and 
networking-software to their hardware architecture, resulting in an immense 
software effort. 

Our attention will focus on companies outside the established 
computer field. Many of these industrial <iompanies replace the:i r 
conventional control systems by software ~ased subsystems and ,add improved 

111 1111111111111111111111111111111111111 11111111111111111111111111 11111111111111111111111111111111111111111111 11111111 1111111 1111111111111111111 111111111111111111111 1111111 111111111111111111111111 11111111llll111111111111111111111111111111111111111 lllllllljllllllllllll 11111 llllllllllllll lllllllllllll llllllill 1111111111 Ill 



- 6 -

functionality to increase the competitiveness of their products in their 
respective markets. The cost of the software subsystem can range from a 
small proportion (a few percent) to a svbstantial part of the final 
product price. Characteristic for the key element software is the rapidly 
rising share of the software subsystem. Let us consider the automobile. A 
few years ago there was hardly any software based subsystem in an 
automobile_ According to industry estimates, by the end of this decade 10 
to 15 % of the cost of an automobile will be in the electronics subsystem, 
a considerably part thereof in the softw3re_ A similar trend can be 
observed in avionics control systems, telephone switching systems, etc. 

The following attributes characterize the key element software: 

(1) Dependability: 

Since many of the targeted applications, e.g .• an avionics system, 
can potentially fail in catastrophic failure modes, the software must 
be highly dependable and s~pport fault-tolerant operation. Other 
applications, e.g., telephone switching, require extreme levels of 
availability (e.g. less than 2 hours of outage in 20 years of 
operation). 

(2) Real-time response: 

Host of the software in this market segment is concerned with 
real-time applications. i.e., it must ht:: guaranteed that a result 
will be produced by the computer within the specified time interval. 

(3) Complexity: 

Many of the applications in this r.Jarket segment are inherently large 
and complex. It therefore requires a substantial investment in a 
sizable software development organization and qual:ty assurance 
program to meet the demanding requirements of the applications. 

2.2.3 Intelligent product software 

ftI11telligent productsft are products which integrate a mechanical 
subsystem with a computer controlled subsystem intc a compact functional 
unit fulfilling a specific user need, e.g. an automatic scale with an 
integrated microcomputer to perform the calibration, the weighing and the 
recording fun· tion. A substantial portion of the cost in the intelligent 
product is in the application software development. The application 
so(tware forms an integral part of the intelligent product and is normally 
stored in a Read Only Memory, i.e., it is integrated in the hardware and 
cannot be changed easily. 

In a recent contribution to the UNIDO Microelectronics Monitor, 
January 1990,jKop90/, the characteristics and the design challenges in the 
production of intelligent products in developing countries have been 
analyzed. 

Although intelligent product software is related to the key element 
software, there are substantial differences which justify its separate 
classification. The following attributes characterize the int~iligent 
prqduct software: ' ' ' 

11111111111111111111111 111111111111 11111111111111111111111111111111111 1111111 11111111111111111111111111 111 11111111 I 1111111111111 111111 1111111111111111111 
11 1111111111111111111111111111 111111111 111111111111111111 I 11111111llllllllllllllllllll1111111111111111111111111111111 I 11111111111111111111111111 II 11111111 Ill I 111111111111111111 llll Ill 111111 



- 7 -

(1) Dependability: 

The reliability of an •intelligent product• may not be compromised by 
errors in the software. Since the software is integrated in the 
intelligent product it is not possible to correct software errors in 
the field, i.e., in case of a software error the whole product may 
have to ~e discarded. 

(2) Real-time response: 

The software in most intelligent products must respond in real-time. 

(3) Complexity: 

The inherent software complexity of intelligent product software is 
nonaally much lower than the complexity of key element software. 

(4) Optimal resource utilization: 

Intelligent products are sold in a mass market in high quantities. 
Therefore is necessary to be aware of the resource requirements of 
the software. 

Because of the lower complexity and stand-alone utility, intelligent 
products are well suited for the development by innovative small companies. 

2.2.4 Contract programming 

Contract prograDBDing is concerned with the design and implementation 
of software relative to given functional specifications. Jn a typical 
scenario a client, i.e. a industrial company, specifies a software package 
and formulates a set of acceptance tests. A software service organization, 
e.g., a small software house, implements this software package and delivers 
it to the client. Normally the software house will also offer a maintenance 
contract for the delivered software. 

Contract programming can be an interesting activity for developing 
countries. It requires little capital investment, other than excellent 
training f?cilities and access to an international electronic network, t.~­

Internet. There is a significant potential for cooperation between 
industrialized and developing countrits in the field of contract 
progr~mming. A major industrial company can start with small contract 
programming projects and can gradually build up a partnership with an 
organization in a developing country. There are some developing countries, 
notably India, who are active in the field of contract programming. 

A small software house in a developing country, connected to one of 
the major international computer networks, e.g., Internet, can receive the 
specification and deliver products electronically. Also the interactions 
between the client and the software house can be executed via e-mail such 
that an interactive dialogue is possible. 

2.2.5 Sof~ware maintenance 

Software maintenance encompass'es the elimination of software errors. 
the adaption of existing software t'o' a new hardware platform, and the 

1111111 111111111 11111111 11111111111111111111111111111111lllllllll1111111111111111111111111111111111111111111111111111111 11111111111111111 1111111 111 111111111111111 11 111111111111 11 1111111111111111 111111111111 1111 11111111 1111 11111111 11111111111111 111111 I 



- 8 -

enhancement of existing software. It is pecformed either by EDP departments 
within organizati,.:.s or by independent software houses closely linked to an 
organization . Software maintenance is the largest software activity. Its 
size is related to the general level of industrialization and automation 
within a country. Although its volume is still increasing in absolute 
terms, it is decreasing in relative siz~. Many proprietary software 
solution~ within companies are replaced by prepackaged softwares. As a 
consequence, the need for software maintenance is reduced. Software 
maintenance requires a good understanding of and a smooth cooperation 
between the organization utilizing the software and the organization 
providing the service. The maintenance activity is normally not open for 
outside competition. 

2.3 Software distribution 

After a new software product has been developed successfully it has 
to be distributed to an interested clientele. We will distinguish between 
three different styles of ~oftware distribution: commercial software, 
integrated software and free software. 

Since software is an intellectual product and can be copied easily. 
the intellectual property laws have been expanded to cover software and 
thus protect the software developer. Still, a sizable fraction of 
prepackaged software is copied illegally. The present situation concerning 
the intellectual property rights of the software owner is still a subject 
of heated debate. On the one side it is felt that the protection of the 
software rights, e.g., of the •1ook and feel• of a man machine interface, 
is not sufficient to protect the ideas of the original inventor. On the 
other side it is argued that too often copyrights and patents are granted 
to programs that are obvious. As a consequence programmers must spend more 
and more of their time on fiuding ways around existing patents. It is 
feared that in the future it will be difficult to write useful software 
because most basic ideas are protected and every new program is likely to 
infringe patents. 

There is some logic in the radical idea, expressed by a minority 
group, to reduce the scope of the software protection; software companies 
should make their money by servicing the software products they create. 
Such a measure would -~duce the inc~easing number of costly litigations and 
eliminate the legal carriers on creativity in the software field. 

2.3.l Commercial software 

The standard way to market prepackaged softt~are is via wholesale and 
retail distributors, such as a computer shop or a mail-orrler company 
selling via a software catalogue. Since there is only a limited amount of 
shelfspace available in a computer shop, it can be very difficult to 
convince a computer shop owner to display a new software product if at has 
not been widely advertised. Expensive marketing campaigns are necessary to 
bring the new product to the attention of prospective buyers. In many 
cases, the cost of distribution is significantly higher than the cost of 
software development. Th~re are only few small software companies who can 
afford the prohibitive cost of an effective product introduction. 

Once a new software f ·oduct i~ established in th~ market it is 
enhanced and improved, based on the r,~sponse of ~he customer£. A new 

11111111111 11111111 I 11111 Ill Ill 1111111111 11111111111111111111111111111111 Ill 11111111 11111111111 11111111111111111 111111111111111111111111111111111111111111111111111111111111111111 11111111111111111111111111111111 Ill 111 II II 
111111111111 II 111111 1111111111111111 



9 . 

version is released about every year and the established customer base can 
upgrade to the new version for a small fee. As the product gets older it 
becomes more difficult to make changes. It is tr~ed not to upsPt old 
customers by changing operating procedures the users are accustomed to. On 
the other side, new technology (e.g., the availability of graphical user 
interfaces) offers improved opportunities which are difficult to reconcile 
with the traditional product architecture. At this critical phase a 
competing product which does not have to cope with the past, can take full 
advantage of the new technology and can triumph. In many cases. the old 
product runs out and disappears. 

Leading software packages are marketed worldwide at comparable 
prices. For example, we can order a software package directly from an US 
wholesale ci~tributor at US wholesale prices from Vienna via FAX and get 
next day delivery via a Courier Service, affecting the payment with a 
credit card. Such distribution mechanisms force local software companies to 
sell similar products at matching prices. If a local software company has 
only a relatively small customer base, it can be difficult to recover the 
developmer-t costs if the product price is determined by •world-market• 
competitors. 

The situation is significantly different if a know how intensive 
software package is aimed at a specialized market. In such a situation the 
mar~eting activities can be more focussed (and low-cost) and the 
competition is less severe. 

2.3.2 Integrated software 

"Key-element• software and •intelligent product• software is 
completely integrated within the product and distributed along the 
established product marketing channels. This form of software distribution 
avoids many of the pitfalls of commercial softwa~e distribution, such as 
the problem of illegal duplication, documentation, support, etc.jKop91/. 
Since the price of the computer hardware drops further and further, the 
strategic importance of the software in an intelligent product increases. 
Another advantage of integrated software is the generation of additional 
revenue by the sale of the associated product hardware. 

2.3.3 Free software 

In order to avoid the capital expenditures for marketing, advertising 
and commercial distribution, some authors of software packages decide to 
distribut~ their software freely via bulletin boards in computer networks. 
If a user is satisfied with a program, he is asked to register with the 
author (or his organization) and pay a small fee for extended 
documentation, support and future updates. Software which is distributed in 
this form is sometimes called shareware. The author of the shareware 
recovers his costs by the fees paid by satisfied users. He retains the 
copyright and in some cases restricts the use of the shareware, e.g., it 
may not be repackaged and sold commercially. 

Another form of, free software is public do111ain software, which is 
dHached of any copyr,ight restrictions. Public domain software origi~ates 
often at universities, and other rE-search organizations and ~s freely , 
distributed to the collUlllJnity. The quality and maintenan~e of public d~main 
software can be a pro,bl em. 

I 11111111111111 1111111111 lllllllllllllllllllllll lllllllll 111111111111111111111111111111111111111111111111111111111111 1111 II 111111111 1111 II 11111 11111111111111111111 111111111111 1111111111111111111111111 111111111111 11111111111111 11111 1111111111111111111111111111111 11111111111111111111111 llllllllll llllllllll lllll 



- 10 -

A thorough report covering many issues relating to free software has 
been published by UNIDO recently /Bot91/. 

2.4 Risk factors 

There are a number of risks associated with the production of 
software and the forming of a software industry. In this section we 
present a short list of some typical hazards encountered in the software 
field such that they can be avoided. 

2.4.l Inadequate personnel 

There is a worldwide shortage in highly quali~ied software 
personnel--this is, at the same time, a chance and risk for developing 
countries. Starting a major software project with unexperienced and 
inadequately trained personnel is a sure route to disaster. Technical and 
management expertise are necessary to direct a successful software project. 

2.4.2 Mistaken user needs 

Many software projects have failed because the real user needs have 
not been captured adequately. Establishing a stable and sufficient set of 
requirements for a software system is extremely difficult, but of paramount 
importance. Constantly changing requirements can jeopardize any software 
project. In the field of contract programming the requirements are 
delivered by the clients, such that this risk factor is avoided. 

2.4.3 Unmastered complexity 

Software systems are complicated because of the inherent complexity 
of the problem domain and because of the extrinsic, needless complexity of 
the software design. This extrinsic complexity must be eliminated through 
the use of proper design methods (refer to the following chapter on the 
design of real-time software). Complicated software is expensive to build, 
difficult to verify and unreliable in its operation. 

2.4.4 Poor quality software 

A software product should only be released after it has been 
thoroughly verified. Both, the normal functions and the exception handling 
sections have to be tested painstakingly. The premature release of a new 
software version has destroyed well-known software companies. 

2.4.5 Inadequate software marketing 

The expertlse and capital required to market a technically excellent 
software product is often underestimated. This topic has been discussed at 
length in the previous section. This risk is avoided in contract 
programming and, to a certain extent, in intelligent product software, 
since in this field the marketing is performed via established marketing 
channels. 

2.5 Comparative eyaluation 

In this section we plan to arialyze the different software segments to 
locate those segmen~s which pre~ent good opportunities for software 

1111111111111 11111 11111111111111111111111111111111 1111111111111111111111111111111111111111111111111 
111111111111111111111111 111111111111 11111111111 111111111111111111111111111 111 11111111111111111111111111 11111111111111111111 II 

11111111111 111111 11111111111111 111111111 1111 111 11111111111111 111111111111111 11111111111•11111 



- 11 -

production in developing countries while minimi~ing the risks involved. 

In the previous sections we have identified five important software 
segments: 

(1) Prepackaged software 
(2) Key element software 
(3) lntelli&ent product software 
(4) Contract Programming 
(5) Software Maintenance 

The fifth segment, software maintenance, is not open for competition and 
will not be considered any further in this analysis. 

We have also recognized five important risk factors in software 
production: 

(1) Inadequate personnel 
(2) Mistaken user needs 
(3) Unmastered complexity 
(4) Premature release of the software 
(5) Inadequate software marketing 

Out of these five factors, two--inadequate personnel and premature release 
of the software--ar~ critical for all types of software projects. 

We will therefore compare the ser~itivity of the software segments in 
relation to the three remaining risk f~ctors, mistaken user needs, 
unmastered complexity and inadequate software marketing. The following 
matrix displays the level of risk according to our assessment: 

t.er Com- Harke-
needs plexity ting 

Prepackaged software c c c 
Key element software M c M 
Intelligent products M H H 

Contract programming u c H 

(C: Critical, M: Medium, U: Uncritical) 

According to this comparison, contract programming and intelligent products 
software are the software production alternative with the lowest risk. It 
is followed by key-element software. According to this comparison, the 
prepackaged software market is most risky. 

Contract programming is definitely an interesting software production 
alternative for developing countries. It requires a well educated software 
workforce, access to state of the art software development workstations and 
access to an international computer network. Since the prices of 
workstations have dropped drastically over the last five years, the Cdpital 
investment for contract programming is relatively small. The major 
investment is in the educational field. 

There is, however, a major disadvantages in contract programming. Thr 
well educated software workforce, which is the most precious resource, will 



- 12 -

not generate any secondary business activity. This is different in 
intelligent product software production, where in addition to the software 
a tangible product has to be manufactured, generating work for a less 
qualified workforce. The payoff of the investment in the educational field 
in relation to the a~ount of employment generated is thus substantially 
higher. 

Intelligent product software is real-time software. Key element 
software is real-time software. It is likely that the software which has to 
be produced in contract programming is also real-time, since this is the 
growing software category in the nineties. In the third part of this report 
we will therefore investigate the present state of the art in the design of 
real-time software. 

The most important government actions which have to be taken in order 
to establish the foundation of a software industry are investment in 
first-rate educational institutions and the provision of reliable access to 
international computer networks. 

Building first-rate educational establishments in the fields of 
computer science can be a cooperative effort between developed and 
developing countries. Technical exchange programs in both directions can 
bring the required know how base into the developing cotntries. If such 
programs are supported by focussed financial incentives and investment 
funds then the basis for s:nall software companies can be formed. 

3 . SOF'l'llARE MARA~'"!MENT ISSUES 

In the last few years the techniques for managing software have been 
further refined. Professional sof~ware management is now established in 
most software companies and qua:ity books about software management are 
available, such as the practical book by DeHarco wcontrolling software 
projer.tsw jDeM82/. In this section we focus on three software management 
issues which require special management attention and are sometimes 
overlooked when setting up a new software production organisation: quality 
management, risk management and productivity management. 

3.1 Quality mana&ement 

Since many purchasers of software are very concerned about the 
software quality, they start to require that a accredited quality 
management system is used in the development of the software they are 
buying. 

The International Standard Organization has standardized such a 
quality management system whi~h is applied to software and other service 
industries. In its ISO standard 8402 ~~ality is defined as the "Totality of 
features and characteristics of a product, process or service that bear on 
its ability to satisfy stated or implied ~eeds". 

Quality attributes 

We call those characteristics of the software which are relevant for 
the software quality attributes. 

We distinguish between ftmctional and nonfunctional quality 

1111111111111111 II 1111111111111 11111 1111 11111111111111111 1111111111 111111111111111111111 11111 111111 1111111 111111111111 11111 11111111111111111111111111111111 1111111111111 111111111 II 1111111111111111111111111111111111111111111 
11111111111 111111 111111111111111 II 1111111111 111111 111111111 11111 11111111111 



- 13 -

attributes. Functional attributes are concerned with the mapping from the 
input domain to the output domain of a software system. i.e .• the 
description of the system functions. Nonfunctional attributes refer to all 
other requirements not directly related to the systems functions. such as 
reliability, performance, adherence to development standards, development 
cost. etc .. In practice. the complete set of requirements is normally in 
partial conflict. For example, faced with a tradeoff between cost and 
reliability, the designer is forced to make a decision affecting quality 
attributes. 

Quality can only be managed if the quality attributes are specified 
precisely in such a form that they can be measured and tested. General 
quality attributes, such as •the software system must be well-structured•. 
are meaningless. Quality control refers to the operational techniques and 
activities to ascertain that the stated quality attributes are 
accomplished. 

It has been recognized that quality has to be built in at the point 
of production and not after the production process at the point of 
inspection. Therefore modern software development processes integrate 
quality management with the software production process. In the development 
of safety critical software, the quality control agencies require the 
certification of the software production process as well as the 
certification of the software product. 

Quality management system 

Quality management starts with the introduction of a quality 
management system as part of the software production process. The quality 
management system provides the framework for a coordinated quality policy 
in an organization. It specifies the strategy and tactics which have to be 
followed to achieve the intended level of software quality. 

In the following section we pr.esent an overview of the ISO 
standardized quality management system (ISO 9001) which is applied to 
software and other service industries: 

(1) Management responsibility: 

The organization must 'define and document management policy and 
objectives for and commitment to quality'. In particular. the 
responsibilities of all staff who perform and verify work affecting 
quality have to be defined. The documentation of all quality related 
activities has to be recorded in a corporate quality control manual. 

(2) Contract review: 

Any contract to produce software has to be reviewed from the point of 
view of quality management. In particular, the quantified quality 
attributes must be agreed between purchaser and supplier and must be 
documented in the contract. Tests how to measure the level of quality 
required must be contained in all contracts. The same applie~ to 
softwar~ acquired for the project. 

' 
(3) Design ~ontrol: 

' 
1111111111 Ill Ill I 1111111111111111111 II II II 1111 II lllllllllllllllllllllllllllllllllllllllllljlllllllllllllllllllll 11111111111111 11111111 11111111111111111111111111111 II 111111111111 Ill 1111 111111111111 1111111111111111 1111111111111111111 1111111111111111111111111111111111111 11111 11111 I 11111 1111111111111111111111111 



- 14 -

The developer has to establish procedures in order to demonstrate the 
quality of the design at each design step. 

(4) Inspection and testing: 

Inspection and testing must take place during the development and the 
product status 11USt be recorded at all time~. Where appropriate, 
statistical techniques required for verifying the acceptability of 
product characteristics have to be established. 

(5) Quality records: 

The developer llUSt ensure that sufficient records are maintained to 
demonstrate that the required quality has been achieved. The quality 
record keeping must make sure that no unrecorded quality actions took 
place. Change control llUSt be an integrated activity of the quality 
manasement system. 

(6) Internal quality audits: 

The quality control system itself must be subject to periodic reviews 
to maintain its effectiver.ess. 

(7) Training: 

Training needs and training levels for all staff involved in the 
software production process must be specified and recorded. 

In some co•.mtries, there are organizations to accredit quality 
control systems. For example, such an organization grants its stamp of 
approval that the objectives of the ISO 9001 standard is met by a 
particular quality management system installed in a given organization. In 
this area of quality management system approval a cooperation between 
industrialized countries and developing countries could be of benefit to 
both partners. 

Quality control 

Whereas the quality management system is concerned with setting up 
the framework for quality management, quality control is concerned with the 
operational techniques and activities executed in order to achieve the 
intended level of quality. i.e., that the quantified quality attributes of 
the software are met. Quality control is carried out on intermediate and 
final software products with the intent to uncover weakness in the 
preceding development process. Quality control can be decomposed in five 
activities /OUL91/: 

(1) Define the software quality attribute and its measure. 
(2) Define the attribute check procedure. 
(3) Carry out the check procedure. 
(4) Record the result 
(5) Take and record any corrective action taken. 

It is important that step 1 and 2 are carried out before the product is 
ready, i.e., in the requirements analysis phase or in the contract 
specifica,tion phase in contract programing. 

II 11111111111111111111111111111111111111111111111 Ill 1111111111 1111111111111 1111 111111 1111111 1111111111111111111111111111111111 1111111111111111111111111111111111111111 11111111111111111111111111111111111111111111 II 11111 11111111 111111 
111111111111 11111 11111111111111111111111111111.lllllllllllll I 111 11111111111111111 I 



- 15 -

If the specification of an inte:o:aediate software product is available 
in a formal notation with formally defined semantics. some properties of 
the product can be 'becked mechanically. However. if the intermediate 
product is not amenable to such automated checks. one has to rely or. less 
formal checking techniques. such as checklists designed to help check for 
coapleteness. Birrel and Ould /Bir88/ contain extensive check lists for 
aost of the major itellS produced during software development. 

3.2 Risk waoa&ement 

There are many risks involved in software development which can 
manifest themselves as technical failures (impaired functionality. poor 
reliability) and management failures (schedule and cost overruns). Risk 
aanageaent is concerned with the identification, analysis and elimination 
of these risks before they effect the software project. Risk management 
involves two steps: risk assessment and risk control fBoe89/. 

Risk assessment 

Risk assessment is concerned with the identification and the analysis 
of the risks which are associated with a software project. We distinguish 
between generic risks, i.e., those which are co .. on to all software 
development projects and specific risks which are those that apply only to 
a particular project. 

Risk identification 

Risk identification can start with the examination of general 
checklists for the most co .. on generic and project specific risks. In 
section 2.4 we already have identified some of the most important generic 
risks such as 

(1) Inadequate personnel 
(2) Imprecise requirements 
(3) Unmastered complexity 
(4) Poor quality 

In addition we have to consider project specific risks as for example: 

(1) Imprecise description of the expected work 
(2) Unrealistic project schedules and budgets 
(3) Inappropriate staffing with lacking know how base 
(4) Deficient communication among project members 
(5) Poor project control 
(6) Application of unproven technologies 
(7) Insufficient hardware resources 
(8) Ill-suited system software 
(9) Unrealistic performance requirements 
(10) Unstated or illusory assumptions 

These checklists can only serve as a first starting point for risk 
identification. They have to be complemented by checklist based on local 
experience. 

' Ill 1111111 II Ill 111111111111111111111111 111111 111111111111111 II 1111111111111111 111 11111 11111111111111111111111111 111 1111111 111111111111 1111111111 11111111111 111111 111111111 11111111111 111111111 1111 111111111111111111111111111 111111111111111111 1111111111111 1111 11111111111111111111 



- 16 -

Risk analysis 

Risk analysis starts with the rating of the identified risks in 
relation to the particular project. These rating has to reckon the 
criticality of the identified risk and guess the probability of its 
manifestation. In some situations it will be necessary to develop an 
analytical dependability model of the given system in order to assess the 
significance of a given risk factor. The result of the risk analysis is a 
weighted list of risk factors relevant for the particular project. 

Risk control 

Risk control is concerned with the determination of management 
actions to eliminate, or at least reduce, the identified risks. One first 
action will be the improve11ent of the management visibility of those 
aspects of the project which are pr~ne to the risk. This can be done by 
requiring up to da' documentation of the achieved progress and by the 
installation of project 11&nagement baselines. 

If a particular failure mode of a computer system is recognized as 
very critical, the risk reduction strategy can consist of increasing the 
resources for verification or the provision of software fault tolerance for 
a particular function. Furthermore, operational loss limiting techniqu~s 
may be installed. 

If a high probability of a scl·edule overrun is suspected, 
.anegotiations with the client are soug~t in order to modify the completion 
date or to reduce the functionality which has to be delivered on time. 

3.3 Prociuctiyity mana&emeµt 

In a competitive environment those organizations will thrive which 
can deliver a given software product of high quality at the lowest cost. 
Software productivity, defined as the relation of software output to the 
cost of producing this software, is an important parameter of an 
organization and has to be managed explicitly. 

Software productivity can be increased by either reducing the amount 
of work required to produce a given product or by increasing the 
effectiveness of the development staff. The analysis of software cost 
models gives valuable insights into the key factors determining software 
productivity. Boehm jBoe87/ has identified a number of such key factors: 

(1) Staff effectiveness: 

All cost models indicate that the selection, motivation and 
management of the people involved in a software project is a key 
productivity factor. Employing the best people is a good strategy, 
because the productivity ranges of people is normally much wider than 
their salary ranges. Continuous training of the personal in 
technical and managerial matters has a high productivity payoff. 

(2) Simple products: 

During the architecture design phase,, every effort has to be made to 
decompose the system into components which can be designed, 

I 1111111111 111111 111111111 111111111111111111111111111111111 11111111111 111111111111111111111111111111111111111111 
llll lllll 111111111111111111111111111111111111 Ill 11111111111 1111111111 11111111111 I 111111 111111111111 1111 1111111111 11111111111111111111 11111111111111111111111111111 1111111111111111 Ill 



- 17 -

implemented and tested independently. The interfaces between 
components have to be clearly specified and should be free of side 
effects. If a nuaber of design alternatives to implement a given 
requirement are available, understandability should be a prime 
selection criterion. If there are open questions about the 
implementation of a key software component, rapid prototyping should 
be considered to learn about the difficulties of the solution. 

(3) Modern development techniques: 

The application of modern software development techniques, such as 
object oriented design techniques combined with an integrated tool 
support which covers technical as well as managerial aspects in an 
integrated fashion can increase the software productivity and avoid 
unnecessary clerical rework to accommod. te software changes. 
Automated support tools, such the provi~ion of an integrated 
documentation system, can eliminate costly development steps. A good 
description of the present state of the art in aodern development 
techniques and tool support is contained in /Ald91/, where more than 
ten support environments are discussed. The selection of the most 
appropriate support environment for a particular organization depends 
on the type of software produced and the programming 
methodology/languages chosen. It is a difficult task which requires 
careful analysis. 

(4) Reuse components: 

The Lines of Code (LOC) which are produced is still considered a 
reasonable metric for software size. If this size can be reduced by 
the reuse of software components or the employment of application 
generators the software productivity is increased. Some software 
organization monitor regularly the software reuse factor, i.e., the 
LOC which have been taken from software libraries and reused related 
to the total LOC delivered. Software reuse requires careful 
management planning. In a •building up• phase standards for software 
reuse are established and reusable software components are identified 
and classified in a reuse database. In the •design• phase software is 
selected from this reuse database on the basis of the given 
requirements pro~ile. There are a number of support systems for 
software reuse available, which are described in some detail 
in/ffal91/. Soft~are reuse can be organized on a wider scale than just 
within a company. If a number of organizations--national or 
international--agree on a standard reuse database, they can all 
benefit from such a joint effort. 

The level of achieved software productivity is an important measur~ of 
success of any commercial software organization. Productivity and quality 
issues have to be key items on the priority list of top management. 

4. THE D!SICR OF UAL-Tiii! SYSTPJIS 

A real-time system has to meet the deadlines dictated by its 
environment. If a real-time system misses a deadline, it has failed. 
Designing real-time systems is challenging: the functional specifications 
must be met within the specified time constraints. 



- 18 -

Temporal properties are system properties. They depend on the entire 
system architecture, i.e., the structure of the application software, the 
scheduling decisions within the operating system, the delays of the 
communication protocols, and most important, on the performan~e 
characteristics of the underlying hardware. 

In the following section Ye discuss th~ two contrary design 
11ethodologies, best effort design and guaranteed timeliness design. 
Subsequently we give an overview of a rigorous methodology for the design 
of real-tiae systems and introduce the RT-transaction as the unifying 
concept between specification and implementation. After a short discussion 
of the architecture design the issue of scheduling is treated in some 
detail. Finally, the topic of testing is examined. 

4.1 Real-time system desi&n 11ethocio101ies 

There are two approaches to the design of real-time systems, the best 
effort approach and the guaranteed timeliness approach. 

The best effort approach assumes that a definitive specification of 
the load- and fault-hypotheses is not available and the analysis of all 
worst case situatione is not workable. It therefore endorses a flexible 
architecture adaptive to the evolving execution situations. The design 
process is guided by heuristic rules taking into account the average 
execution times and input rates. Not before the final integration phase it 
can be established by testing whether the required temporal properties are 
satisfied. The verification of the temporal properties can only be 
performed probabilistically. 

Many of the known methodologies for the design of real-time systems 
are based along the best-effort paradigm. Some approaches have tried to 
enrich existing conventional methodologies with mechanisms for the 
specification of time-related properties, e.g., SDRTS (Structured Design of 
Real-Time Systems) /WAR86/, and DARTS (Design Approach for Real-Time 
Systems) /GOM86/. Other real-time system design methodologies have been 
built from scratch, such as SDL (Specification and Description Language) 
for teleco11111Unication systems /BEL89/, MASCOT (Modular Approach to Software 
Construction, Operation and Test) /SIM86/ ar.d SREM (Software Requirements 
Engineering Methodology) /ALF85/. 

In comparison, the methodology for the guaranteed timeliness design 
is of later origin and not covered as well in the literature as the best 
effort methodology. The guaranteed timeliness methndology is more 
systematic and rigorous than the best effort methodology. Given the same 
requirements specification, it will lead to a more intelligible design 
which is easier to verify. 

The guaranteed timeliness approach /Kop9lb/ is based on the 
assumption that the peak load scenario (the load hypothesis) and the worst 
case fault scenario (the fault hypothesis) are contained in the 
requirements specification. It advocates a static architecture which must 
be capable to handle all conceivable input cases within the specified 
time-constraints, provided the specified load and the fault-hypothesis are 
not violated. ~ring the design the worst case situations concerning 
program executiop times and,task activation rates must be analyzed 
exhaustive~y. 

II llllllllllllllll Ill 11111111111111111111111111111111111 111111111111111 11111111 111111111111 111111 11111 1111111 111111 I 111111 1111111111 
ljlllllll 11111111111111111111 I II Ill 111111 11111111111111111111 I 1111111111111111111111111111111 lllllllllllllll llllllllllllllllllllllllllllllllllllllllllll Ill 



- 19 -

ln pLactical app!ications there is a need for both design approaches. 
Thcce ~re co~nlex high level requirements--often ill specified--where the 
average perionaance is important and an occasional failure to meet a 
deadline can be tolerated. In such an application a best effort design is 
viable. However, for other requirements where a failure is expensive to fix 
or can have catastrophic consequences, the guaranteed timeliness approach 
is better suited. 

4.2 Real-time transactio~ 

Let us now intro<\uce the concept of a real-time transaction. A 
RT-transaction refers to the execution of a sequence of processing and 
co11DUI1ication actions between a stimulus from the environment and the 
corresponding time-constrained response(s) to the environment_ The stimulus 
of a RT-transaction is the activation of a distinguished state or 
state-change of specified state variables. The following are examples for 
simp~e RT transactions: •Jf the temperature and the pressure in a vessel 
are above a designated limit for more than 50 milliseconds, a control valve 
has to be opened within a 200 millisecond perioj• or •rf motor 1 is running 
and push-button A is pressed for th~ee seconds than start up motor 2 within 
1 second. 

A RT-transaction expresses all concerns about functionality and 
timeliness of a sequence of computational and communication steps in a 
single concept. The simplest RT-transaction consists of two communication 
steps and one computational step: In the first communication step a sensor 
value is accessed, then, in the computational step a new setpoint is 
calculated, and in the final communication step an output value is 
delivered to a transducer. Complex RT-transactions can have mane 
interleaved communication and computational steps. 

At the requirements level, two time parameters are associated with 
every RT-transaction. The maximum response time, MART, denotes the maximum 
real-time which may elapse between the stimulus and the corresponding 
response. The m1n1mum interval time, MINT, indicates the minimum time 
which may pass between two RT-transactions instances of the same type. 

RT-transactions are not only utilized at the requirements level. The 
are also used during the architecture design to decompose the requirements 
and at the runtime to describe the operational behavior of the RT-system. 
Thus the RT-transaction is a unifying concept covering all design phases. 

4.3 Architecture desi&n 

During the architecture design the RT-transactions specified at the 
requirements level have to be decomposed into subtransactions for the 
computational steps and messages for the communication steps until finally 
every RT-transaction is reduced to a sequence of task executions and 
message exchanges. The tasks have to be allocated to processors and the 
messages have to be allocated to communication channels. 

In order to imp~ove the regularity and predictability of ~hP 
RT-system it is advan~ageous to introduce a synchronized time grid of 
appropriate granulari~y system-wide. The granularity of the time grid has 
to be chosen such that it is in agreement with the maxilDWD response times 
and minimum interv~l times of all RT-'transactions and the performance 

I I I I 

II 111111111 11111111111 11111 11111lllll111111111111111111111111111111111111111111111 11111111111111111111111 1111 111 11111111111111 111 11111111111111 I II 11111111111111 11111111111111111111111111111 11111111 111111 1111111 111111111111 1111111111111 



- 20 -

parameters (e.g. delay characteristics) of the co11111Unication protocols. 
Significant system actions, such as scheduling a task or sending a message 
are only started at the grid points of the time grid. External state 
changes, which can initiate a new RT-transaction, are also recognized at 
these grid points by polling the external state variables. This mechanism 
of polling implements an implicit flow control schema such that the 
RT-system cannot be flooded with external requests. It is up to the 
instrumentation to guarantee that significant state changes are stored 
until the nP.xt polling cycle. 

The decomposition of RT-transactions into tasks and messages has to 
proceed until all synchronization requirements can be resolved at the 
message level. There are no remaining synchronization points within a task. 
i.e., whenever a task is started it can terminate without waiting for 
synchronization conditions dependent on the execution of other tasks. The 
computational model for a task is thus straightforward. Every tasks needs a 
defined set of input messages and produces a defined set of output messages 
after a real-time interval, called tiae task execution time. This task 
execution time depends only on the task code and the capability of the 
hardware. In the design phase the worst case task execution times have to 
be estimated. During the implementation and testing phase they have to be 
calculated analytically and measured experimentally. 

4. 4. Schedulin& 

Given a set of RT-transactions and set of hardware resources it must 
be decided by the scheduling subsystem which RT-transactions or parts 
thereof--the tasks and messages--should be executed on a particular 
procesc;or or coamn.mication channel at any given point in time. The proper 
design of the scheduling subsystem is therefore of critical importance for 
the timeliness of the real-time syste~. 

There are basically two different approaches to the solution of the 
scheduling problem: the dynamic approach allied with the best effort design 
methodology and the static approach allied with the guaranteed timeliness 
design methodology. 

Dynamic ~cheduling 

In th~ rlyn~m;r ~pproach the scheduling decisions are made at run 
on the basis of the momentary system load and given system parameters. 
is up to the run-time scheduler, which has to operate under real-time 
constraints, to produce schedules which on the one side will meet all 
synchronization and mutual exclusion requirements of the transactions 
on the other side will meet the given deadlines. 

time 
It 

an-1 

Most practical real-time systems rely on a simple priority controlled 
dynamic scheduler for CPU allocation. Communication channel access is 
controlled dynamically either by polling, a token protocol or by a carrier 
sense multiple access (CSMA) protocol. ~n many cases the task priorities 
are static, i.e., they are determined at compile time. Whenever a set of 
tasks is ready at run time, the run-time scheduler selects the task with 
the highest static priority. Mutual exclusion and task synchronization are 
achieved by explicit synchronization between the tasks, e.g., by the use of 
semaphores 'or signals. For such a system it is very difficult to guarantee 
that all hard deadlines will be met, since undesirable phenome:ia. such a,s 

111111 1111111 1111111 1111111111 11111 1111111111111111111 11111111111 II 111111111111111111 1111 Ill 111111111111 111111111111 1111 I I 11 111111111111111111111111 11111111111 11111111111111111 111111 
II 111111111111111 11111111111 11 11111111111111111111111lllllllllllllllllllllllllllllll1111111111111111111111111111111 



- 21 -

priority inversion, can occur. It is even difficult to guarantee the 
deadline for the highest priority task if task preemption is constrained 
due to mutual exclusion requirements. 

Liu and Layland /Liu73/ have shown that static priority dynamic 
scheduling is optimal if the following assumptions are satisfied: 

(1) All tasks are independent 
(2) All tasks are periodic and the deadline equals the period. 
(3) The sum of all CPU utilizations is less than ln 2. 

Since the independence assumption (1) is unrealistic for practical 
systems--tasks have to cooperate to achieve a comaon objective--recent 
research has focused on scenarios where task executions are constrained by 
mutual exclusion requirements. It has been shown /Hok83/ that in the 
general case it is impossible for a dynamic scheduler to find optimal 
schedules. Restricted solutions have been reported by /Sha90/. It can be 
difficult to enforce all the required restrictions at run time. 

Static scheduling 

In the static approach all scheduling decisions are made at compile 
time and handed over to the run-time dispatcher in the form of a scheduler 
database, parameterized with the global grid points of time. To keep the 
size of this scheduler database manageable, it is wise to introduce some 
basic system cycle, after which the schedule is repeated. This requires 
that a period is assigned to every RT-transaction such that the peak load 
(minimum MINT) can be serviced without violating the MART requirement. At 
any given grid point in time the run-time dispatcher has to look up the 
scheduler database to find out which RT-transaction or task has to be 
selected for service next. If a transaction, planned for a given point in 
time, does not require any service, then the reserved time slot on the 
processor or communication mediua: will be allocated to a ready background 
task. Since all requirements concerning task synchronization and mutual 
exclusion are already considered implicitly in the scheduler database we 
call this form of task synchronization implicit synchronization. Phenomena 
li~e priority inversion are avoided. 

The scheduler database which has to be interrogated at run time, has 
to be generated at compile time by an off line scheduling algorithm. This 
algorithm has to find a feasible schedule for allocating the CPUs and the 
communication medium for the specified set of RT-transactions. For this 
purpose, the scheduling problem is represented as a guided search through a 
search tree. Heuristic search strategies with well studied properties can 
be used to direct the search by omitting useless subtrees of the search 
tree or by retracting the search at 'promising nodes'. For a detailed 
description of such an off-line scheduler see jFoh90/. 

Schedule switch 

The problem of giving fast service to aperlodic ~merg~ncy 
transactions whenever they occur while still maint.'lining a re'lsonable 
resource utilization in normal situation1· has led to the concept of a 
schedule switch. 

Let us assume 'there exists a set P of '>perational phases of a system 

111111111111111111111 lill 11111111111111111111111 11111111111111111111 II 1111111 11 1111111111111 1111111111111111 111111111111111 111111111111111111 111111111111111111111111 111111111 11111111111111111111111111111 1111 111 1111111111111111 1111111111111111111111111.111 11111111 1111 111111111111111 111111111111111111111111111111 llll 



- 22 -

and that at ~ny time the system can only be in any one of these phases, 
e.g .. the startup phase, the normal processing phase, the termination 
phase, an emergency phase, etc .. For every phase Pi a corresponding 
schedule Si is developed. All these schedules are developed off-line and 
will guarantee that all tasks meet their deadlines. Whenever an aperiodic 
event occurs which requires immediate response, ie. the transition to 
another phase or an emergency service request, the scheduler will switch to 
the new schedule which has been designed for this new scenario. 

4.5 fault-tolerance 

In real-time applicatior~ the correct results must be delivered in 
time, even after a fault has occurred. This can be realized by the 
implementation of active redundancy, i.e. two fail-silent computers operate 
in state synchronism in parallel and produce the same results. If soft~are 
faults have to be tolerated, the parallel execution of diverse software 
versions with acceptance tests can be implemented. 

Active redundancy requires replica determinism, i.e., all decision in 
the two node have to be identical. Replica determinism can be destroyed by 
uncoordinated access to the local time base, by dynamic scheduling 
decisions and by algorithms based on random number generators, such as 
ETHERNET. Guaranteed t5.meliness architectures, which are driven by a 
synchronized global time, are better suited for the implementation of 
active redundancy than be3t effort architectures which cannot maintain 
replica determinism without application specific overhead code. 

4. 6 Ie:-.tin& 

More than 50% of the resources required for the development of a 
real-time system is spent on testing. Testability is thus an important 
criterion for the selection of an architecture. 

The confidence in the timeliness of a RT-system based on dynamic 
scheduling can only be established by extensive system tests on simulated 
loads. Testing on real loads is not sufficient, because rare events, which 
the system has to handle (e.g., th~ occurrence of a serious fault in the 
controlled object), will not occur frequently enough in an operational 
environment to gain confidence in the peak load performance of the system. 
The predictable behavior of the system in rare-event situations is of 
paramount utility in many real-time applications. 

Since no detailed plans for the intended temporal behavior of the 
ta~ks of a dynamic system exist, it is not possible to perform 
"constructive" performance testing at the task level. In a system where all 
scheduling decisions concerning the task execution and the access to the 
communication system are dynamic, no temporal firewalls exist, i.e., a 
variation in the timing of any task can have consequences on the timing of 
many other tasks in different nodes. The critical issue during the 
evaluation of a dynamic system is thus reduced to the question, whether the 
simulated load patterns used in the system test are representative of the 
load patterns that will develop in the real application context. This 
question is very difficult to answer with confidence. Field maintenance 
data indicate that some application scenarios cannot be adequately 
reproduced in the simulated syste~ test [Geb88]. 

11111111111IIIll11111111111111111111111111111111111 111111 I 1111111111 1111111111 111111111111111111111111111111111111111111111 1111111111111111111111111111111111111111 1111 
1111111111111111111111111 1111111111 111111 11111111111111111111 111111111111111111111111 



- n -

In a system based on static scheduling. the results of the 
performance test of every system task can be compared with the established 
detailed plans. Since ~he time-base is discrete and determined bv the 
granularity of the time grid. every input case can be observed and 
reproduced in the domains of time and value. Therefore testing of static 
systems is more systematic and constructive. To achieve the £ame test 
coverage, the effort to test a dynamic system is much greater than that 
required for the testing of the corresponding static system. The difference 
is also caused by th0 smaller number of possible execution scenarios that 
have to be considered in a static system, since in such a system the order 
of state changes within a granule of the observation grid is not relevant 
[Sc90a]. 

4.7 Conclusion 

RT-systems of medium complexity--most intelligent product software 
falls into this category--should be designed according to the guaranteed 
timeliness methodology. This methodology, based on static mechanisms. 
produces simpler structures than the best effort methodology based on 
dynamic mechanisms. Static systems are easier to understand and test and 
therefore will support a higher level of dependability. 

S. SUIUIAR.Y AND CORCIJJSlONS 

(1) Already today, software production is a major industry worldwide. Its 
impact on the economy of all developing and developed countrie5 will 
increase significantly over the next ~en years. 

(2) The likely technological advances in the field of computer hardware 
will open new opportunities and expansive i"Jarkets for software products in 
new fields like multimedia system. intelligent products and others. 

(3) Highly qualified, well trained and fully motivated personnel form the 
basis of any software industry. Because productivity ranges are much 
higher than salary ranges, it wise to attract the best people by offering 
extraordinary working conditio~s. 

(4) The market of prepacked software, which accounts for less than 10% of 
the software activities, is very competitive and risky. 

(5) Intelligent products which integrate mechanical subsystems and 
software controlled subsystems into a compact functional unit, offer an 
interesting new mechanism for the distribution of "integrated" application 
software. 

(6) The well educated software w"rkforce which develops the integrated 
products software generates additional employment opportunities for the 
less educated workforce producing the intelligent product hardware. 

(7) Contract programming can be an interesting software activity in 
developing countries. It requires access to an international computer 
network and a good software development infrastructure. 

( 8) Software maintenance, which forms the major se3f11ent <>f all software 
activities, is not open for outside competition. 

1111111111111111 111111111111111111111111111111 1111111111111111111111111111 1111111 II 111111111llllllllll11111111111111111111111111111111 111111 1111111111111111111111111111111 111111111111111111111111111111111111 1111 1111 111111111111 1111111111111111111111111111111111 111111111111111111111111111 111111111111111111111111 lllllllllllllllllllllllllllllll lllllllll llllllllll II 



- 24 -

(9) Software distribution into the open market is capital intensive and 
difficult. Special markets which rely on a solid know-how base of the 
supplier are easier to tackle. 

(10) Developing countries should consider and take advantage of the free 
software market. 

(11) The key risk factors in the production of software are inadequate 
personnel, mistaken user needs, unmastered complexity, poor software 
quality and inadequate marketing. 

(12) Software project planning and control is a mature discipline which 
has been established in most software production organizations. 

(13) ~xplicit quality management is becoming an important asset of a 
software production organization. Many purchasers of software require and 
accredited quality management system at the site of the software developer. 

(14) Software quality management system accrediting can be a topic of 
cooperative effort from developing and developed countries. 

(15) Formal risk management should be established in order to reduce the 
organizational risks in software development. 

(~6) An systemized procedure for software reuse can increase the software 
productivity of an organization significantly. Software reuse can be a 
topic of cooperation among a set of related software suppliers. 

(17) Although real-time software is a key software market of the future, 
the scftware development methodology and the software tools for real time 
software are not as well developed as those for commercial software. This 
is a challenge and opportunity at the same time. 

(18) There are two competing design methodologies for the design of 
real-time software, best effort design and guaranteed timeliness design. 

(19) Best effort design is more flexible but cann~t guarantee timeliness 
properties under peak load. 

(20) Guaranteed timeliness design is more rigorous and systematic and 
supports testr.bility ~n a superior way. 

(21) The implementation of active redundancy in order to provide 
fault-tolerant operation is straightforward in systems based on guaranteed 
timeliness design. It is very difficult in best effort systems. 

(22) In applications of medium complexity, such as intelligent product 
software, static time-triggered softw~re architectures are optimal from the 
point of view of understandability, testability and dependability. 

(23) The most important political actions that have to be taken in 
developing countries in order to establish the foundation of a software 
industry are investment in first rate educational establishments and the 
provision of reliable access to internacional computer networks, such as 
Internet. 

111111111111111111111111111 111111111111111111111111 1111111 1111 1111111III11111111111I111111111111111111111111111111 11111111 11111111111111111111111111111111111 1111111 111111111 
' 11111 111111111 1111111111 11111111 1111111111 1111111111111111111111111111111111111 111111 

11111111111111111111111111 1111111111 1111111111 



- 25 -

(24) The market for contract programming can be developed by proposing 
cooperati•'e agreements for contract programming with companies from 
developed countries whenever they invest in developing countries. 

6 . CORatETE llEASlilES 

In this section some concrete measures to promote the creation of a 
software industry in developing countries will be presented. The focus 
will be on contract programming and intelligent product software. 

The idea behind this blueprint is the creation of a central 
technology group which will assist the developing countries in the buildup 
of the infrastructure and know-how of a local software industry. similar to 
the International Center for Microelectronic Applications and software 
proposed by /Schware/. This central technology group. we call it a central 
technology clearinghouse. will enter into appropriate agreements with a 
local technology nucleus, situated in a cooperating developing country. 
After a successful buildup phase. the local technology nucleus should be 
in position to handle its own affairs, but still maintain a link to this 
clearinghouse for technology updates and quality control. The clearinghouse 
can then redirect its resources to assist another country in the 
development of its software industry. 

In order to accomplish this goal, the following concrete steps a~e 
necessary: 

6.1 Establish a central software tecbnolo&y clearin&house 

This central software technology clearinghouse could be situated at 
the UNIDO in Vienna. It should be a small group of unbureacratic 
professionals who act as coordinators and take advantage of external 
experts and services whenever needed. This software technology 
clearinghouse should perform tlae following major functions: 

(1) AdvisP. the participating country in the setup of a technology 
nucleus. 

(2) Provide technical and contractual assistance in hardware and software 
acquisition, particularly to small and medium sized enterprises. 

(3) Organize the local software training and arrange qualified 
instructors who will conduct the training at the local site. 

(4) Act as a central ~learinghouse in respect to public domain software, 
standards, new products etc. Arrange access to appropriate data-banks 
which can be queried by electronic mail from the developing 
countries. 

(5) Establish contacts with computer companies and other clients 
interested in cooperating with the developing countries. Investigate 
opportunities for contract programming. 

6) Assist the local technology nucleus in the selection of appropriate 
pilot projects. 

( 7) Assist the local technology nucleus, in the setup of a software 

11111111111111111111111111111111111111 11111111 1111111 11111 111111111111111111111 111111 1111111 1111111111111111111111111111111 11111111111 111111 11111 1111111111111111111111 I 11111111111111111 111 11111111111111111111111 1111111 11111111111 111111111111111111111111111111 111111111111111111 11111 II 1111111111 lllllllll llllllllll II 



- 26 -

quality management program and act as a software quality 
accreditation body. 

(8) Monitor the software productivity of the local software development 
organization. 

(9) Assist the local software organisation in the international product 
marketing. 

(10) Act as a •service hotline• to resolve upcoming problems and 
disseminate relevant technology and marketing information. 

6.2 Estab1ish a local software tecbnolo&Y nucleus 

A cooperating developing country llUSt organize a local technology 
nucleus whi~n will be the partner of the central technology clearinghouse. 
After a successful buildup phase. financed by public funds, this technology 
nucleus should form the core of a new software company which will operate 
under its own profit/loss responsibility. 

Immediately after the decision to proceed with the startup of a 
software industry has been made, two highly qualified local people should 
be selected as future mission leaders. They have to be sent to the software 
technology clearinghouse for a training period of at least one year. After 
returning to their home country, they have to perform the following tasks: 

(1) Draft a detailed business plan with many milestones and quantified 
goals. Monitor the achievements in relation to the business plan. 

(2) Select and recruit the proper highly qualified staff. This should be 
done in cooperation with the leading educational institutions. 

(3) Select and purchase the hardware/software platform in close 
cooperation with the software technology clearinghouse. 

(4) Organize the theoretical and practical training in cooperation with 
the software technology clearinghouse. 

(5) Select the first pilot application in close cooperation with a local 
client, possibly some public institution. Utmost care must be taken 
when selecting the first pilot application. This pilot application 
should address a genuine user need. It should be developed under the 
guidance of the technology clearinghouse to guarantee highest 
quality and ease of use. 

(6) Invest significant effort in marketing activities and prepare to 
operate autonomously in the local and international market. 

6.3 Establish a reliable electronic-mail service 

This whole schema will only work, if a reliable electronic mail 
service can be established between the central technology clearinghouse and 
the local nucleus. This task must me performed by the PTT in the de~eloping 
country. This e-mail link is used to transfer specifications and p~ograms, 
to provide immediate assistance in case of questions, to support ac~ess to 
the international data bases, and to disseminate relevant informatiqn to 

II Ill 11111111111111111111111111111 I 1111111111111111111 111 111111111 111 
1111111 1111111 11 11 11111111 11111111111111111111111111111111111111111111 1111 I 11111111111 Ill 111111 1111111 111111 Ill 111111111111111111111111 

11111111111111111111111111111 11111111111111111111111111 11111 



- 27 -

the local organisations. 

Given the present work patterns in the international software 
co11111Unity, such an e-mail service is absolutely essential. In case this 
service cannot be provided, it is better not to start the whole effort! 

6.4 Monitor soft:yare gµality an<i prociuctivity 

It has been stated repeatedly that only highest quality computer 
products will succeed in the competit\ve world 11arket. It is therefore 
essential thac a state-of-the art quality control program, which is 
monitored by external experts, is put into place from the very beginning. 
This requires a close cooperation between the central technology 
clearinghouse and the local software organization. 



- 28 -

7. R.EF!RfllCES 

[Alf85] 
Alford, K., SREK at the age of eight, IEEE Computer, Vol 18, Nr. 4, 1985, 
pp. 36-46 

(Ald91] 
Alderson, A., Configuration Management, in: Software Engineering Reference 
Handbook, ed. by J.A.KcDeraid, London 1991, pp.34.1-34.17 

[Bel89] 
Belina F., Hogrefe, D., The CCITT-specification and description language 
SDL, in Computer Networks and ISDN systems 16, Elsevier Science Publishers, 
1988/89, pp.311-341 

[Bir88] 
Birrel, N .D., Ould, M.A., A Practical Handbook for Software Development, 
Cambridge University Press, 1988 

[Boe87] 
Boehm, B.W., Improving Software Productivity, IEEE Computer,Sept. 1987, 
pp.43-57 

[Boe89) 
Software Risk Management, IEEE Tutorial, IEEE Press, 1989 

(Bot91) 
Bothelho, A.J.J., Emerging issues in the selection and distribution of 
public domain software for developing countries, Report prepared for UNIDO, 
Vienna, Austria, April 30, 1991 

[Bul91] 
Bulekley, W.M., Technology, economics and ego conspire to make software 
difficult to use, The Wall Street Journal, Technology section on software, 
R8, Kay 20, 1991 

[Bus91) 
Business Week, The World most valuable companies, July 15, 1991, pp. 43-80 

[DeM82) 
DeKarco, T., Controlling Soft1-"are Projects, Yourdon Press, N.Y, 1982 

[Foh90) 
Fohler. G., Koza, C., Heuristic scheduling for distributed real-time 
systems, Research Report 6/89, Institut fur Technische Inform&tik, TU Wien, 
Austria 

[Geb88) 
Gebman, J., Mciver, D., Shulman, H., Maintenance data on the fire control 
radar, Proceedings of the 8th AIAA Avionics Conference, San Jose, Cal. 
Oct. 1988 

[Gom86) 
' Gomaa, H., Sof~ware d~velopment ,of real-time systems, Coma. ACM, 1986, Vol. 

' 
111111111 Ill 111111111111 11111 1111 1111111111111111111111 1111 11111111111 1111111111111111111 



- 29 -

29. Nr. 7 .• pp. 657-668 

(Hal91] 
Hall. P .• Boldyreff, C., Software reuse, in: Software Engineering Reference 
Handbook. ed. by J.A.McDe:raid. London 1991. pp.41.1-41.12 

[Kop87] 
Kopetz. H .• Ochsenreiter, W .• Clock Synchronization in Distributed Realtime 
Systeas. IEEE Transactions on Computers, August 1987. pp.933-940 

[Kop89] 
Kopetz, H .• Dama, A .• Koza. C .• Mulazzani. M .• Schwabl. Y., Senft. C., 
Zainlinger, R., Distributed Fault-Tolerant Realtime Systems: The MARS 
Approach, IEEE Micro. Vol. 9, Nr. 1, pp., 25-40, Fehr. 1989 

[Kop90] 
Kopetz. H., The production of intelligent products in developing countries, 
Microelectronics Monitor, UNIDO Vienna, Issue Nr. 29. January 1990. pp.63 
- 71 

[Kop91] 
Kopetz. H., Zainlinger, R., Fohler, G .• Kantz, H., Puschner P .• Schutz, W .• 
The design of real-time systems: from specificationto implementation and 
verification, Software Engineering Journal, May 1971, pp. 72 - 82 

[Liu73] 
Liu, C.L .• Layland, J.W., Scheduling Algorithms for Multiprogramming in a 
Hard Realtime Environment. Journal of the ACM. Februay 1973, pp.46-61 

[Ou191] 
0-tld, M.A., Quality Control and Assurance, in: Software Engineering 
Reference Handbook, ed. by J.A.McDermid. London 1991, pp.29.1-29.12 

[Roo91] 
Rook, P., Project Planning and Control, in: Software Engineering Reference 
Handbook, ed. by J.A.McDermid. London 1991, pp. 27.1-27.36 

[Schware] 
Proposal for an international center for microelectronic applications and 
software (KAS),UNIDO-Report,Vienna 

(Sha90] 
Sha, L., Rajkumar, R., Lehoczky, J.P., Priority Inheritence Protocols: An 
Approach to Real-Timt= Synchronization, IEEE Transactions on Computers, Vol. 
39, No. 9, Sept. 1990, pp. 1175-1185 

(War86) 
The transformation schema: An extension of the data flow diagram to 
represent control and timing, IEEE Trans. on Software Engineering, Vol 12, 
Nr. 2, 1986, pp.198-210 




