

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

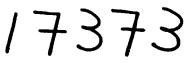
TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY


Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at <u>www.unido.org</u>

RESTRICTED

DP/ID/SER.A/1157 16 February 1939 ORIGINAL: ENGLISH

PHILIPPINES PHARMACEUTICAL INDUSTRY DEVELOPMENT STUDY

DP/PHI/87/019

PHILIPPINES

Technical report: Semi-synthesis of antibiotics*

Prepared for the Government of the Philippines by the United Nations Industrial Development Organization, acting as executing agency for the United Nations Development Programme

> Based on the work of Dr. Roberto Sciaky Expert in Semi Synthesis of Antibiotics

Backstopping Officer: Dr. Zoltan Csizer, Chemical Industries Branch

United Nations Industrial Development Organization Vienna

^{*} This document has not been edited.

TABLE OF CONTENTS

Page

•

•

.

.

	SUPPARY AND CONCLUSIONS	6
	INTRODUCTION	13
1	GENERAL CONSIDERATIONS	14
	1.1 Geographic situation	14
	1.2 Human geography	14
	1.3 Population	14
2	HEALTH SITUATION	16
	2.1 Leading causes of morbidity	16
	2.2 Leading causes of mortality	. 17
	2.3 Health organization	19
3	THE PROCUREMENT SYSTEM	20
4	THE PHARMACEUTICAL MARKET FOR ANTIBIOTICS	20
	4.1 Sources of data	20
	4.2 The IMS data	22
	4.3 The Business Statistic Monitor data	32
	4.4 Procurement from the Department of Health data	40
	4.5 Direct Procurement from the region data	41
	4.6 Chemfields production data 4.7 Comparative data on consumption of drugs	41 42
	the semigrative data on consumption of drugs	42
5	CONSIDERATION AND PROJECTIONS ON THE SELECTED PRODUCTS	44
	5.1 Considerations on single products	44
	5.2 Projected requirements for the years 1993, 1994, 1995	49
6	RECOMMENDATIONS	51
	6.1 General criteria	51
	6.2 The proposed options	51

7	THE BETA-LACTAM ANTIBIOTICS PROPOSED PLANT	52
	7.1 Ampicillin trihydrate	54
	7.2 Amoxycillin trihydrate	57
	7.3 Dane salt for Amoxycillin production	61
	7.4 Cloxacillin sodium monohydrate	64
	7.5 Cephalexin monohydrate	67
	7.6 Utilization of the plant	72
	7.7 Waste treatment	72
	7.8 Location of the plant	73
	7.9 Description of the plant	73
	7.10 Equipment List	80
	7.11 Locally available equipment	81
	7.12 Type of utilities	81
	7.13 Buildings	81
	7.14 Quality control, engineering services, warehouse, administration	82
	7.15 Manpower, type and qualification	82
	7.16 Investments	84
	7.17 Production costs	85
	7.18 Economic considerations	86
8	THE 6-AMINOPENICILLANIC ACID (6-APA) PRODUCTION PLANT	90
	8.1 6-Aminopenicillanic acid (6 APA)	90
	8.2 Waste treatment	94
	8.3 Location of the plant	94
	8.4 Description of the plant	94
	8.5 Equipment List	96
	8.6 Equipment locally available	96
	8.7 Type of utilities	96
	8.8 Buildings	95
	8.9 Quality control, engineering services, warehouses administration	96
	8.10 Manpower, type and qualification	97
	8.11 Investments	97
	8.12 Production cost	98
	8.13 Economic considerations	99

ī.

.

.

- 2 -

9	THE I	ERYTHROMYCIN DERIVATIVES AND RIFAMPICIN PRODUCTION PLANT	99
	9.1	Output of the production plant	100
	9.2	Erythromycin derivatives quantities	100
	9.3	Brythromycin stearate	100
	9.4	Erythromycin ethylsuccinate	103
		Erythromycin thiocyanate	106
		Rifampicin	109
		Utilization of the plant	112
		Waste treatment	112
	9.9	Location of the plant	112
	9.10	Description of the plant	115
		Equipment list	115
	9.12	Equipment locally available	116
	9.13	Type of utilities	116
		Buildings	116
	9.15	Quality control, engineering services, warehouses, adminis- tration	116
	9.16	Manpower, type and qualification	117
		Investments	117
		Production costs	118
	9.19	Economic considerations	119
10	THE 1	TETRACYCLINE HYDROCHLORIDES PRODUCTION PLANT	123
	10.1	Tetracycline hydrochloride	123
		Oxytetracycline hydrochloride	126
	10.3	Utilization of the plant	129
		Waste treatment	129
		Location of the plant	129
	10.6	Description of the plant	129
	10.7	Equipment list	131
		Equipment locally available	131
		Type of utilities	131
		Buildings	131
		Quality control, engineering services, warehouse, adminis-	131
		tration	132
	10.12	Manpower, type and qualification	132
		Investments	132
		Froduction costs	132
		Economic considerations	133
			134

- 3 -

11	ADDITIONAL MANPOWER NEEDS	134
12	AVAILABILITY OF LOCALLY PRODUCED RAW MATERIALS	135
13	EVALUATION OF THE LOCAL AVAILABILITY OF SKILLED MANPOWER	136

<u>Annexes</u>

One:	Economics	of	the	semi-synthetic Penicillins plant	13 5
Two:	Economics	of	the	Erythromycins and Rifampicin plant	154

•

٠

,

•

.

ACKNOWLEDGEMENTE

The writer would like to express his deepest appreciation for the assistance and information received from many persons and Organization inter alia the National Steering Committee of the Philippine Pharmaceutical Industry Development Study and Specially from Health Undersecretary fire minute camboa.

Special mention should be made for the help received from several persons, among them Frof. Claro Llaguno and Frof. N.T. Chua.

Special thanks are due to the Secretary of Health Mr. Alfredo Bengzon for his strong support of the project.

The writer wish to give recognition to Dr. Kamen Ivanov, Chief Technical Adviser of this project, for his support and assistance in the preparation of the present report and to Dr. Zoltan Osizer. Backstopping Officer for his useful advise and suggestions.

SUMMARY AND CONCLUSIONS

General considerations

The Philippines are an archipelago of some 7100 islands of the southeastern coast of the Asian mainland consisting of three major island groups namely: Luzon, Visayas and Mindanao.

According to the 1980 census, the population was 48 million and in 1985 was estimated to be 54.7 million people.

Projections to 1995 according to different assumptions give figures from 66.4 to 69.4 million people.

In 1985, crude birth rate was 26.3% and mortality 6.1%.

The first four causes of morbidity are bronchitis, diarrhea/gastroenteritis, influenza and upper respiratory tract infections.

The three leading causes of mortality are pneumonias, diseases of the heart and tuberculosis.

The health organization is partially public and partially private; about one third of the hospitals are governmental.

The pharmaceutical market

Drugs are purchased in different ways:

- purchase from abroad by Filipino and multinational Companies.
- purchase from the Department of Health through lenders.
- direct purchase from the Regions.
- smuggled goods, which escape any control.
- fake drugs imported or locally produced.
- donations from Charitable Institutions and International Organisations.

A market research has been done to pick out the antibiotics produced by direct fermentation or by semi-synthesis, a market large enough to deserve attention and to be taken into consideration for local production. ٠

...

The following sources of information were checked:

- the Institute for Medical Statistics (IMS) data both for sales through drugstores and hospitals; we noticed through a cross check, that these figures are on the low side and for some products too low.
- the Business Statistics Monitor data which include weekly descriptive of ival applits by aid on by sea.
- the procurement from the Department of Health for 1987 and the procurement program for 1988 for Rural Health Units.
- direct procurement by the Regions.
- meetings with marketing managers of the main Filipino and multinational Companies. Data concerning the local production of Ampicillin, Amoxycillin and Cloxacillin were supplied to us by Chemfields.

From all the data gathered, we could pick out some antibiotics with a sufficiently high consumption granting an investigation of the possibility of a local production (the veterinary and intechnical consumption have been taken into account).

The antibiotics selected are: Penicillins G and V and their derivatives, Ampicillin, Amoxycillin, Cloxacillin, to which Cephalexin was added, since its market is growing and could be produced in the same plant without additional investments.

Other antibiotics selected are the Erythromycins (stearate, ethylsuccinate and thiogyanate) and Rifampicin.

To these products were added the 6-APA since it is prepared starting from Penicillins and it is of strategical importance for the production of semi-synthetic Penicillins and the hydrochlorides of Tetracycline and Oxytetracycline, starting from the free bases. Their production by direct fermentation is one of the options considered by the Expert in fermentation.

By a careful consideration of the different factors which could in some way influence the market size and growth of each antibiotic (population increase, the Gross National Product, the rational use of drugs, possible improvement of the health and sanitary conditions of the country, a possible shift to different drugs etc.), the following projections of the market size to 1995 were done:

Ampicillin	85 tons
Amoxycillin	75 tons
Cloxacillin	8 tons
Cephalexin	6 tons
Erythromycins	25 tons
Rifampicin	20 tons
Tetracycline hydrochloride	20 tons
Oxytetracycline hydrochloride	15 tons

For the production of the abovementioned quantities of semisynthetic Penicillins, 110 tons of 6-APA would be required.

We stress the fact that these consumptions do not represent the total need of the country, but only the quantities that the market could absorb and the Department of Health could afford to supply to the Rural Health Units.

The proposed options

(1)

Based on this figures, the following options are proposed:

- 1. a multipurpose plant for the production of Erythromycin derivatives (25 tons) and Rifampicin (20 tons)
- 2.) a plant for the production of beta-lactam antibiotics (Ampicillin, Amoxycillin, Cloxacillin and Cephalexin)
- 3.) a plant fc the production of 6-aminopenicillanic acid (6-APA) (110 tons)
- 4.) a plant for the production of the hydrochlorides of Tetracycline and Oxytetracycline (35 tons)

The plant under 2.) will have a capacity of 74 tons, since the already existing Chemfields facilities have a capacity of 100 tons. As to the priorities, 1.) and 2.) are short term projects, 1.) having top priority whereas 3.) and 4.) are strictly related to the implementation of a project for the local production of Penicillin and Tetracycline.

To stimulate investments, we would suggest that some incentives should be granted for a certain period of time, to improve the economics of the different projects among which:

(1) related to the fact that the Expert in fermentation, will advance the options of two fermentation plants: one for Penicillin and a second, a multipurpose one, for the Tetracyclines, Erythromycin and Rifamycin B

- exemption of import duties on machinery, equipment and raw materials.
- 2. tariff protection
- 3. income tax exemption

Our economic evaluation are made taking into account these assumptions especially 1 and 2 which have influence on the production cost and sales.

The production units

All the four options have been carefully examined and for each product the following data were reported: description of the product, principles and description of the method, batch dimensions, raw materials (quantity for one batch and factor for one kg taking into account the recovery of solvents), flow chart of the process, utilities, manpower, location and description of the plant, main equipment list, buildings, additional manpower needs for the auxillary services (quality control, engineering services, warehouse and administration) and manpower type and qualification.

The production costs, the estimated investments, as well as some economics are also included. The figures reported have been calculated to give a rough idea of the cost and an order of magnitude of the investment.

The semi-synthetic Penicillins plant

The plant will be located in the Chemfields factory, where room for expansion is available, expecially because of the existing facilities and the presence of technicians having the required technical skill.

The production unit will be located in a 300 sq.mt building having two floors. In the ground floor together with some equipment are also located the powder area, the in-process control laboratory, lockers room etc.

Another air conditioned building will be also available as wearehouse.

At full capacity the plant will operate for 284 days a year on a two shifts basis to produce 74 tons of semisynthetic Penicillins; by working on a three shifts basis the capacity of the plant is higher than 100 tons. Also 28 tons of the Dane salt for Amoxycillin will be contemporaneously produced.

The plant consists of eight reactors ranging from one to five cu.mt. capacity, filters, tanks for solvents, centrifuges, driers and some minor equipment. The present capacity for utilities of Chemfields will be incremented to cope with the new needs.

The investment, calculated to give a rough idea of the order of magnitude rather than exact figures, results to be 5,900,000 \$. At full capacity, the manpower will consist of 31 people plus 14 people for the auxiliary services.

The projected production costs which include raw materials, (10% freight, insurance etc. included), utilities, manpower, general expenses and depreciation, assuming that the plant is run at full capacity, are as follows (**\$** per kg):

Ampicillin(6-APA at 65 \$ 10% freight etc.incl.)79Amoxycillin(6-APA at 65,\$ 10% freight,etc.incl.)84Cloxacillin(6-APA at 64 \$ 10% freight,etc.incl.)78Cephalexin157

As to the selling prices, we present four assumptions:

- products are sold at the international prices plus custom duties and other expenses evaluated globally at about 20%
- 2. products are sold 10% higher than the international prices. assuming a 10% advantage is granted to the local producers.
- 3. products are sold 20% higher than the international prices, assuming a 20% advantage is granted to the local producers.
- 4. products are sold at the current Chemfields prices. (50% of Amoxycillin sold to the Government).

With the above-mentioned assumption the following economics could be calculated

Gross Pr	ofit on Sales	Pay-back Period
1.	15.2%	5.1 years
2.	21.7%	3.3 years
з.	27.3%	2.4 years
4.	27.7%	2.4 years

The Erythromycin derivatives and Rifampicin plant

Also this plant will be located in the Chemfieds factory because of the existence of the required facilities, organisation and staff which needs only to be slightly increased; furthermore, should the plant be placed in a new factory, the investment would increase from 1.5 to 2 times so the economics becoming less favourable. The production unit will be located in a 200 sq.mt. Duilding, the ground floor housing the powder area, the in-process control laboratory, locker room etc; in the first floor having a surface of 50 sq.mt. the main reactors are located. A 300 sq.mt. air conditioned building used as warehouse will be also provided.

At full capacity the plant will operate for 263 days a year working at one or two shifts; additional capacity can be reached by operating on three shifts.

The plant will consists of two stainless steel reactors, the larger having a capacity of 4,000lt,one filter,tanks for solvents, one centrifuge, one drier and some minor equipment.

The investment, calculated to give a rough idea of the order of magnitude rather than exact figures, results to be 1,530,000 \$. At full capacity manpower will consist of 17 people plus 11 people for the auxiliary services.

The projected production costs, which include raw materials, utilities, manpower, general expenses and depreciation, assuming that the plant is run at full capacity, are as follows (\$ per kg):

Erythromycin		(Erythromycic	at 105	4	`	78
Erythromycin	ethylsuccinate	(Erythromycin	at 105	\$)	144
Erythromycin	thiocyanate	(Erythromycin	at 105	\$)	114
Rifampicin	(with importe	ed 8-formyl-rif	famycin	GV.)	199

As to the selling prices, we have made the three following assumptions:

- products are sold at the international prices plus custom duties and other expenses evaluated globally at about 20%.
- 2. products are sold 10% higher than the international prices, assuming a 10% advantage is granted to the local producers.
- 3. products are sold 20% higher than the international prices assuming a 20% advantage is granted to the local producers.

With the abovementioned assumptions, the following economics could be calculated:

Gross	Profit on Sale	Pay-back Period
1.	8.3%	1.9 years
2.	17.2%	1.1 years
3.	23.1%	0.7 years

6-Aminopenicillanic acid plant

The plant will be located in the same building where recovery of Penicillin takes place so avoiding transportation of Penicillin to other plants; this option also semplifies recovery of the phenyl or phenoxyacetic acid formed during the splitting of the side chain and the recovery of the solvent which is the same used in the Penicillin extraction.

The production of the required 110 tons will be effected in 260 days.

The plant consists of two stainless steel reactors and two crystallizers having a capacity of 8,000 lt, one filter, tanks for solvents, one centrifuge, one drier and some minor equipment. The investment, calculated to give a rough idea of the order of magnitude rather than exact figures, results to be 1,530,000 \$. At full capacity manpower will consist of 16 people plus 5 people for the auxiliary services.

The projected production cost, which includes raw materials (10% freight, insurance etc. included), utilities, manpower, general expenses and depreciation, results to be 58 \$ / Kg.

As the production 6-aminopenicillanic acid constitutes only a minor part of the global Penicillins fermentation project, its economics will be included in the report of the Expert in fermentation.

The Tetracycline hydrochlorides plant

The plant will be located in the same building where recovery of Tetracycline takes place so limiting the investment and avoiding transportation of Tetracycline to other plants.

The production of the required 35 tons will be effected in $260\,$ days.

The plant consists of two reactors (one glass lined) tanks for the solvents, one filter, one centrifuge, one drier and some minor equipment.

The investment, calculated to give a rough idea of the order of magnitude rather than exact figures, results to be 1,180,000 \$. At full capacity manpower will consist of 16 people plus 5 people for the auxiliary services.

The projected production costs which include raw materials (10 % freight, insurance, etc. included), utilities, manpower, generate expenses and depreciation, assuming that the plant is run at full capacity result to be 31\$ for Tetracycline hydrochloride and 27 \$ for Oxytetracycline hydrochloride.

As the production of the hydrochlorides of Tetracycline and Uxytetracycline constitutes only a minor part of the global Tetracycline fermentation project, its economics will be included in the report of the Expert in fermentation.

INTRODUCTION

As a general rule, antibiotics are products which are obtained by submerged fermentation with selected strains of microrganisms.

With a few exceptions also their industrial production occurs by fermentation.

With the aim of obtaining new molecules having new and better farmacological properties the molecules of the various antibiotics have been chemically modified.

Many of the new antibiotics so obtained had interesting properties and have been introduced in the clinical practice.

These new antibiotics which molecule is first otained by fermentation and successively modified by chemical means are named semi-synthetic antibiotics.

This report deals with the production by chemical synthesis of antibir/icc starting from molecules first obtained by fermentation.

1.0 - GENERAL CONSIDERATIONS(1)

1.1 Geographic Situation

The Philippines is an archipelago consisting of some 1,700 islands and islets situated off the southeastern coast of the Asian mainland. It stretches 1,850 kilometers from north to south and 1,120 kilometers from west to east. It has an approximate land area of 300,000 square kilometers and a cost line stretching about 17,000 Kilometers. The climate is generally warm and humid most of the year. There are three seasons: the hot dry season from March to the end of May, the rainy season from June to the end of October and the cooler dry season from November to the end of February. Typhoons are common in the Philippines during the rainy season.

1.2 Human Geography

In the Philippines there are eighty-seven dialects spoken in the different parts of the country, most of which are interrelated. The most widely spoken are Pilipino (Tagalog), Cebuano, Ilongo, Ilocano, Bicol, Pampango and Pangalatok. English is widely spoken throughout the country and serves as common medium of communication. Pilipino and English are the official languages. The population is predominantly Roman Catholic (74%); there is an active Protestant minority (7%) and of Muslims (7%) concentrated mainly in the southernmost island of the Philippines.

1.3 Population

In 1980 the population of the Philippines was 48,098,000. With reference to the previous census (42,071,000 in 1975) a change of 14,3% is to be noticed. In 1985 the population was estimated to be 54,668,330; of this number, 40.7% is composed of young people from 0 to 14 years of age. Crude birth rate is estimated to be 26.3%, with a decrease of 8.7% over the 1975 figures. For 1985 the total live births were 1.437.154, giving a fertility rate of 4.4 in consideration of the female population between the ages of 15-44 years of 12.913.036. The mortality in 1985 was 334.663 with a rate of 6.1%.

(1) Part 1.1-1.4 have been worked out together with the Expert in fermentation

Different death rates were noticed in the different regions, the highest being in region 1 with 7.8%, followed by the National Capital Region with 7.0%; all other regions had lower death rates, the lowest being 3.1 in region 12. The overall annual growth rate of the Filipino population is 2.4 percent. Life expectancy at birth increased from 61.0 years in 1975 to 63.3 in 1985. According to the 1980 census, the urban population was 17,943,897 and the rural one of 30.156,563 out of 48,098,490; the corresponding percentages are 37.3% and 62.7%.

In the last years urbanization has continued due to the difficulties encountered by the rural population, a fact that is pushing them to migrate to the large towns in the hope of earning a better salary and improve the quality of their lives.

Projections for the population of the Philippines to the year 2000 has been worked out and published by the "National Economic and Development Authority" with three different assumptions:

Low assumption:	rapid fertility decline and moderate mortality decline
Medium assumption:	moderate fertility decline and moderate mortality decline
High assumption:	slow fertility decline and moderate mortality decline.

The figures corresponding to the above mentioned assumptions are:

1985	1990	1995	2000
			and the second s

Low assumption54,488,01660,670,67766,415,63871,319,761Medium assumption54,668,33261,480,18068,424,07775,223,853High assumption54,761,95061,894,36169,447,23377,209,296

One of the main objectives of the study is to examine the present market situation for pharmaceuticals and to assess whether there are possibilities for domestic production of active ingredients, in this case antibiotics, with particular emphasis to locally available raw materials. Since the consumption of drugs is influenced by the size of the population and by the health situation of the country, the above reported figures are of the utmost interest to assess the size of a potential production. In consideration of the fact that the implementation of a fine chemicals production factory project requires a minimum of 3-5 years, we feel it would be realistic to take as basis of our calculations the projections of 1995.

2.0 - HEALTH SITUATION

2.1 Leading Causes of Morbidity

The health situation in the Philippines is better than in many other developing countries; nevertheless there are still some major problems especially due to communicable diseases, representing in 1986 the first six causes of morbidity.

The ten leading causes of morbidity for 1986 are reported hereunder together (rate per 100,000 population.) (1)

1)	Bronchitis	1112.4
2)	Diarrhea/gastroenteritis	1087.5
3)	Influenza	965.1
4)	Upper respiratory tract infections	939.9
5)	Pneumonias	351.3
6)	Pulmonary tuberculosis	293.1
7)	Malaria	243.4
8)	Accidents	209.4
9)	Diseases of the heart	170.4
10)	Parasitism	96.3

These figures are probably too low due to some facts such as:

- some cases are not properly diagnosed

 some cases, especially in the rural centers, escape diagnosis due to the difficulties of bringing people to undergo medical examination (especially valid for pulmonary tuberculosis).

In case of less serious diseases physicians are not contacted, the cases escaping detection and classification. Probably, for some diseases the above mentioned figures have to be substantially increased.

(1) Based on Regional Health Office Reports

We will discuss this point in the paragraphs devoted to the definition of potential production. Some data are different from the 1985 classified causes probably due to some changes in the criteria of classification.

2.2 Leading causes of mortality

According to official statistics the ten leading causes of death account for 60.0 percent of total deaths. (1986) I: the following table are reported the causes of death (rate per 100,000 population) and the percent of total deaths.(1)

	CAUSE	Rate		Percent of Total Deaths
1.	Fneumonias	95.5		19.2
?	Disable, of the Heart	14.7		9.0
5.	Tuberculosis, (all forms)	42.7		8.6
1.	Cardiovascular Diseases	35.5		7.2
5.	Malignant Neoplasms			4.7
5.	Accidents	22.4		4.5
7.	Diarrhoeas	15.6		3.1
; .	Diseases of the Circulatory			
	Sy≡tem	7.3		1.5
1.	Senility	6.9		1.4
۰.	Avitaminoses and other			
	Nutritional Deficiencies	4.0		0.8
			Total	60.0

(1) Based on Regional Health Office Reports

• - 17 -

As to the infant mortality, according to official statistics, the ten leading causes are reported in the following table together with the rate per 1,000 live births and percent of infant deaths (1983).(1)

			Percent of Tota
	CAUSE	RATE	Deaths
1.	Pneumonias	10.2	23.9
2.	Respiratory conditions of foetus and newbern	6.2	14.6
З.	Diarrhoeas	4.0	9.4
4.	Congenilal Anomalies	1.9	4.6
5.	Avitaminoses and other Nutritional Deficiencies	1.7	4.0
6.	Measles	1.5	3.5
7.	Birth injury and difficult labor	1.1	2.6
8.	Acute Bronchitis and Bronchiolitis	0.7	1.5
9.	Septicemia	0.6	i.4
10.	Meningitis	0.6	1.3

In 1983, deaths under one year were 64,267, from one to four years 44.316 and from five to nine years 10,660; globally deaths from zero to nine years were 119,243, out of 327,260 representing 36.4 percent of total deaths. From these figures it emerges that the most critical period of life is from zero to nine years.

(1) Philippines Statistical Yearbook 1987

- 18 -

2.3 Health Organization

From the point of view of health, the Philippines population is divided into twelve health regions plus the National Capital Region (NCR). The health organization is partially governmental and partially private. In the following table some data concerning the hospitals are reported (1986).(1)

Number	<u>of</u> <u>Hospital</u>	<u>e</u>	<u>Bed</u> <u>Ca</u>	pacity	per	<u>Capacity</u> 10,000 pulation
Total	Government	Frivate	Total	Gov't	Private	
1,946	617	1229	89,171	48,906	40,265	15.9

The hospital beds to population ratio results to be 1:629, not far from the standard ratio of one hospital bed per 500 persons. The ratio of Rural Health Units (RHUs) to the population in 1985 was 1:27,458 totalling then around 2000. The proportion of Barangay Health Stations (BHSs) to population in 1985 reached 1: 6,841, marking a significant progress with reference to the previous years.

(1) Philippine Statistical Yearbook 1987

3.0 - THE PROCUREMENT SYSTEM

In order to determine the market for antibiotics and to estimate the volume of the different antibiotics for which a potential local production could be taken into consideration, we have investigated the different ways in which drugs are purchased and introduced into the Philippines, either in bulk or in packaged form. We could identify the following main channels:

- Imports from Filipino and Multinational Companies with main suppliers in Europe, Japan, the United States and China.
- Purchases from the Department of Health through tenders; these purchases are especially devoted to the supply of essential drugs for the Rural Health Units.
- Direct purchases from the Regions.
- Smuggled goods which escape control and with quantities difficult to evaluate.
- F drugs imported and locally manufactured ; the annumble seem to be relatively small.
- Donations from Charitable Institutions and International Organizations mainly from the United States and Western European countries; the quantity of drugs introduced into the Philippines by this way is rather small and irregular and consists essentially in analgesics and some antibiotics.

The largest part of drugs in bulk form are imported by the private sector, the Government being the second most important purchaser.

4.0 - THE PHARMACEUTICAL MARKET FOR ANTIBIOTICS

4.1 Sources of data

In order to reach a reasonable estimate of the consumption of antibiotics, a number of sources have been examined and the gathered data have been checked in order to reach more realistic figures.

The following documents were examined:

- The IMS (Institute for Medical Statistics) audit concerning sales through pharmacies (PDI); the data represent figures for all the pharmaceutical specialties and all pharmaceutical forms; the data are collected through a sample analysis of sales of 260 selected retail drugstores out of 6563 and figures are extended to cover the entire country measuring approximately 78% of the drug bur measuring approximately 78
- The IMS audit concerning sales through the hospitals (PHPA); containing figures for all the pharmaceutical specialties and a 1 I pharmaceutical forms with data collected through a sample analysis of sales of 100 selected hospitals (67 private and 33 government). Approximately 14 % of the total business pass through hospitals. Also in this case, figures are considered to be on the low side.
 - Business Statistics Monitor (BSM) (edited by a private Company). This publication includes weekly descriptive arrival reports and is issued in two different series, one for the arrivals by air and one by sea. The set for pharmaceuticals includes for each product of specialty the following data: the quantity, the name or the description of the product, the name of the consignee, the name of the shipper (when available), the name of the ship, or air carrier the port of origin. the FOB price in US Dollars and the landed price in Pesos. Sometimes the description needs interpretation, but in any case it is an interesting publication by means of which it could be possible to check the imports of the private pharmaceutical sector. We examined both the data for 1987 and for the period January-May 1988. Also figures for antibiotics for veterinary and animal feed use are included in the monitor.

(1) The audit is not extended to the Mercury retail chain of 201 main outlets.

- 21 -

- Procurement from the Department of Health for 1987 and the Annual Procurement Program for RHU medicines for 1988. These figures give an indication of the efforts of the Department of Health to cope with the needs for drugs in the RHU.
- Direct procurement by the Regions for 1987.
- Other information have been collected through meetings and discussions with managers of some domestic and foreign Companies, especially those involved with manufacture of drugs we might take into consideration for local production.
- As for the local manufacture of Ampicillin, Amoxycillin and Cloxacillin, the data were collected during visits to the producing plant of Chemfields and from discussions with the managers of the company.

4.2 The IMS Data

In the following tables, which are listed in alphabetical order, all the antibiotics that are sold in the Philippines as specialties through drugstores and hospitals pharmacies, are indicated. Antineoplastic antibiotics are not included because of their very specific activity, their patent position. their relatively sophisticated technology and the very limited volume. The quantities and the market value (at exfactory sales prices) are indicated. The reported quantities are to be considered as minimum quantities; in selected cases some more realistic figures, together with a rationale will be given. We shall now examine each family of antibiotics with the objective of identifying some products that could be taken into consideration for local production. Both fermentation and semi-synthetic products will be considered. Each family will be discussed in detail with special attention to the most interesting products, especially from the point of view of the market size and of the interest of the country's health situation and aconcmy.

Tabie 4.01

.

FAMILY : AMINORLYCOSIDE ANTIBIOTICS

ACTIVE Ingredients		VOLUE		-	1		;	WILLE	• • • •	VELINE	1 1 1 1 1 1		
ANIRACIN		22		lûser	•	А	;	9471	i	43	;	19560	
GENTAMYCIN	;	19	;	45761	;	10	;	10343	;	29	;	56104	
NEGRYCIN	;	56	;	36046	;	7	;	1673	;	63	;	37683	
PARENDMICIN	:	105	;	6766	;	4	;	245	:	10.	;	7017	
STREPTONICIN	;	3925	;	80478	;	202	;	2331	!	4127	;	82907	-
TOBRANYCIN	;	4	;	4070	;	7	;	6855	!	II	;	10925	
DIBERACIN	;	I	;	<i>T</i> ?ő	;	Q.2	;	214	;	1.2	;	990	
NETILMICIN	;	2	;	4978	;	10	;	9746	;	12	;	14724	-
KANNYCIN	;	6	;	306	;	3	;	132	;	9	;	4 6	•••

Table 4.02

FAMILY : ERYTHROMYCINS and other INCROLIDE ANTIBIOTICS

ACTIVE INGREDIENTS		DRLIGSTORE VOLUNE (Kgs)	;	VALUE	;	VIEUE	;	HOSPITAL VALUE (Pesosx1000)		VILIPE		TOTAL VALLE (Fesosx1000)	
ERVITERMICIN BASE	;	1075	;	20493	;	د5	•	1673	;	1140	 - •	21566	
STEARATE	;	ZZ 97	;	32267	;	82	;	1603	;	2379	;	33870	
STHYLSUCCINATE	;	3167	;	49067	;	68	;	1220	;	3235	;	50287	
ESTOLATE	;	673	;	19017	;	27	;	676	;	700	;	19713	1
LACTOBIONATE	;		;		;	95	;	179	;	95	;	179	
SPIRANYCIN	;	310	;	4448	;	6	;	90	;	400	;	4538	

- Figures refer to 1987

- Prices are ex-factory prices

FAMILY : PENICILLINE

ACTIVE INGREDIENTS		DRUGSTORE Volume (Kgs)	I	VALLE	;	HOSPITAL Volume (Kgs)	•	VALLE		VOLUME	•	
PENICILLIN 6 (Sod. or Pot. salt)	:	2578	;	50433	;	15	;	27	:	259 3	;	53026 ;
PENICILLIN V (Acid or Pot. salt)	:	12358	1	57567	;	2177	;	2598	;	14535	;	60165
PENICILLIN 6 BENZATHINE	;	. 95	;	3762	;	13	;	586	:	108	;	%12 :
PENICILLIN PROCAINE	;	500	:	8741	;	38	;	1322	;	538	:	10063 !

-

٠

.

Table 4.04

FAMILY : POLIPEPTIDE ANTIBIOTICS

ACTIVE INGREDIENTS	:	VOLUE	:	WALLE	;	VOLUME	;	HDSPITAL VALUE (Fesos×1000)	1	VOLUME	;		
GRAMICIDIN	;	1.7	;	1146	;	0.1	:	475	;	1.8	;	11915	:
POLYNIXIN B	:	34	;	47099	;	2	!	1356	;	36	2	48965	ļ

Table 4.05

FAMILY : POLYDE ANTIBIOTICS

active Ingredients	:	VOLUME	1	WALLE	1	VOLUME	•		;	VILIPE	1	TOTAL VALUE (Pesosx1000)	;
APPHOTERICIN B	:	22	;	4546	:	0.1	;	4	;	33.1	;	4850	:
POLYMIKIN B	 ;	0.8	;	164	;		;		;	0.8	;	164	;

- Figures refer to 1987

- Prices are ex-factory prices

_

.

.

FAMILY : REFAMICENS

ACTIVE INGREDIENTS		VOLUME	!	VALLE	1	VOLUME	;	HOSPITAL VALUE (Pesosx1000)	÷	VOLUME	;	VALLE	•
PIFORETTN	<u>,</u>	ц÷	:	30.001-	•	725		<u>1175</u>		1720	•	200007	!

Table 4.07

FAMILY : SEMISYNTHETIC DEPHALOSPORING DERIVED FROM 7-ACA

ACTIVE INGREDIENTS		DRUGSTORE VOLUME (Kgs)	;	DRUGSTORE VALUE (Pesos:1000)	;	HOSPITAL Volume (Kgs)	;	HOSPITAL WALLE (Pesosx1000)	* * *	TOTAL Volume (kgs)	1 7 9 7 5	TOTAL VALUE (Pesosx1000)
CEPHALOTIN	;	40	;	3699	!	65	;	6067	:	105	;	9766
CEFURGXINE	:	19	: :	4363	!	24	;	6570	;	43	:	10933
CEFOTIAN	;	2	;	647	;	8	;	2070	;	11	;	2717
CEFSIA ODIN	:	1	;	230	?	0,4	,	116	:	1.4	;	34ć
CEFTAZIDINE	;	16	;	5350	+ !	38	;	12947	!	54	;	18297
CEFTRIAXONE		19	;	9341	!	2	;	854	;	21	!	10195
CEFAMAROL	!	8	ļ	810	!	21	;	2838	!	29	;	3648
CEFADROXIL	;	209	;	9512	;	34	!	486	;	243	1	9998
Cefazūlin	;	14	;	2183	;	0.4	;	67	;	14.4	;	2250
CEFUROXINE	;	3	;	571	;	3	;	632	T T	6	;	1203
CEFOPERAZONE	;	5	;	1614	;	24	;	16450	;	29	;	18064
CEFOTAXINE	;	15	;	4303	;	17	;	4762	;	32	;	9065
CEFACLOR	¦	202	;	10261	ţ	37	;	1745	;	239	;	12006
CEFCXITIN	 		;			4	:	808	;	4	;	806

- Figures refer to 1987

- Prices are ex-factory prices

- 25 -

	1	VOLUME	ł	VALUE	;	VOLUME	ł	VALUE	1	VOLUPE	:	TOTAL VALIE (Pesosx1000)	;
CEPHNLEXIN	;	2055	!	62918	1	438	;	17321	;	2493	;	80239	:
CEPHRADIN	:	214	;	11850	;	67	;	2668	!	281	;	14519	;

FAMILY : SEMISYNTHETIC CEPHALOSPORING DERIVED FROM 7-ADCA

-Figures refer to 1987

-

-Prices are ex-factory prices

.

.

•

٠

-

FAMILY : SEMISYNTHETIC PENICILLINS

ACTIVE INGREDIENTS	:	VOLUME	;	DRUGSTURE VALUE (PESUSX1000,	;	HOSPITAL VOLUME (Nj5)	;	HOSPITAL WALUE (FESOSXIJAA)	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	VOLUPE		
APICILLIN	;	19725	:	352700	;	2123	1	5662	:	22101	;	358362
ANDIVCILLIN	:	988 0	:	196946	;	665	;	20359		10545	;	217304
CLOXACILLIN	;	2505	:	67255	;	406	;	10477	;	2911	;	77752
CARDENICILLIN	;	i	!	47	;	1	:	56	;	2	;	103
EPICILLIN	;	563	;	9526	;	96	;	1987	:	661	;	11413
BECAMPICILLIN	;	זייגן.	:	36446	7	177	;	5116	;	2150	!	41562
MECTLLING	;	7	:	273	;	0.1	;	122	;	7.1	;	395
METAMPICILLIN	;	78	;	1183	;	79	!	2002	;	157	•	3185
NFCILLIN SEC			•	15970	ì	56	;	2539	;	786	;	176/7
PIVANPICILLIN	•	170	;	7265	;	15	r t	808	;	185	;	8073
PIVNECILLINAN	;	70	;	4 941	:	12	:	783	:	82	;	5724
CHACILLIN	•	6 !:		1921)	;	25	:	2742	•	Jie	•	22752
CICLACILLIN	;	232	:	3819	;	7	;	117	;	239	;	3936
MEZLOCILLIN	;	11	;	1667	;	13	;	1894	;	24	;	3557
PIPERACILLIN	;	9	;	963	;	43	;	4465	;	52	;	5428
SUBONICIULIN	;	41	;	3159	;	36	;	2513	;	Π	;	5672
SULBACTAN	;	9	;	3292	;	10	;	1128	;	19	:	4420
TICARCILLIN	;	34	;	2067	;	9	;	1076	;	43	;	3140

- Figures refer to 1987

- Prices are ex-factory prices

FAMILY : TETRACYCLINES

ACTIVE INGREDIENTS		VOLUME	;	BRUESTOPE WLLE (Pesosx1000)	;	VOLUE	1	HOSPITAL VALUE (Pesnisk1000)	:	VOLUTE		
TETRICYCLINE	;	4980	;	40659	:	185	:	1027	;	5165	:	41683
OILORTETRACYCLINE	;	374	;	5475	:	0.06	:	8	:	5475	;	5463
ORYTETRACYCLERE	;	2269	;	59009	:	18	;	706	:	2267	:	59715
BORVEYELINE		1187	;	17108	*	16	•	1441	;	1203	;	18547
HIDROCYCLIDIE	;	79	;	5378	;	2	:	112	:	81	;	5491

_

.

Table 4.11

FAMILY : OTHER ANTIBIOTICS

active Inffedients		DRUGSTORE VOLUME (Xgs)	;	WHEE	;	VOLUE	;	HOSPITAL VALUE (Pesosx1000)	:	TOTAL Volume (Kgs)	WILLE	
BACITRACIN	;	7	;	4293	;	0.2	;	147	;	7.2;	4442	
DILOWFIENCOL	;	23370	;	113109	:	974	;	18793	;	24344 ;	131902	
CLINDAMYCIN	:	364	;	17089	;	28	;	4013	;	392 ;	21102	;
FRANYCETIN	:	12	;	7782	;	1.5	;	379	;	13.5;	8161	
GRISEOFULVIN	:	750	;	12256	:	15	;	234	;	765 ;	12490	
LINCONVCIN	;	570	;	8857	;	47	;	729	;	617 ;	958 6	-

I.

- Figures refer to 1987 - Prices are ex-factory prices.

Aminoglicoside antibiotics

In this class are two antibiotics prepared by partial synthesis: Amikacin and Dibekacin. The quantities involved are limited and the products are of no interest for local production. The most interesting in terms of market strength is Streptomycin. According to the IMS figures local consumption amount to about 4 tons per annum. Another more realistic figure, according to the data of the Philippine imports of antibiotic provided by the National Statistics Office mentioning 16.3 tons for 1987 and 11.3 tons for 1986. Streptomycin is an old antibiotic which is used as an antituberculosis agent. In more developed countries, it is considered to be obsolete and only a few remaining companies are still producing it. With the advent of Rifampicin and the new anti-TB treatment schemes on one side, as well as some undesirable side effects, on the other, the use of the product is declining all over the world and we do not recommend its production.(1) The market size of the product is limited, to be taken into consideration for Manufacturing purposes. In any case, a production plant is not feasible, due to the recovery section, which is specific for this product and cannot be utilized for other purposes.

Erythromycins

The volume of local consumption of these products implies its importance. The figures given by IMS are too low. Erythromycin will be discussed in detail, later.

<u>Penicillins</u>

The strategic importance of Penicillins is based upon the interest in the product itself (Penicillins G and V, injectable forms and benzatine and procaine salt depot) and as a starting material for the preparation of 6-APA (6-aminopenicillanic acid), which is the starting point in the preparation of semi-synthetic Penicillins and of 7-ADCA (7-aminodesacetoxycephalosporanic acid), which is the basic material for two important derivatives, Cephalexin and Cephradin.

Its inclusion on the 1988 Investment Priority Plan could be reconsidered

Policeptide antibiotics

This class of antibiotics do not seem to be of any interest, considering the limited quantities used in the country.

Polyene antibiotics

Also for this class, the considerations for polypeptide antibiotics are valid.

<u>Rifamycins</u>

This class which includes only Rifampicin is a very important class, especially in view of its therapeutic value in the TB treatment. its mechanism of action and the lack of cross-resistance with other antibiotics. The IMS figures are on the low side and do not take into account all the purchases from the Department of Health.

This product, which is prepared by partial synthesis from Rifamycin B, will be discussed in detail in the next pages.

Semi-synthetic Cephalosporins derived from 7-ADCA

(7-Aminodesacetoxycephalosporanic acid)

This class includes Cephalexin (1) an important antibiotic, for which an increase of the market is foreseen; notwithstanding the present rather limited quantity used, we will discuss this product in the following pages.

Semi-synthetic Cephalosporins derived from 7-ACA

(7-aminocephalosporanic acid)

This class includes some recent and valuable antibiotics some of them with specific activity spectrum. Because of the limited quantities used in the country these products will not be taken into consideration for local production.

-

(1) Not included in the WHO essential drug list

Semi-synthetic Penicillins

In this class are included some of the most widely used antibiotics e.g. Ampicillin and Amoxycillin. These two products together with Cloxacillin will be discussed in detail in the following pages due to their high volume of sales. The other antibiotics are of minor interest, either because they are therapeutically not much different from amoxycillin or they are still under patent protection, or they are present in the market with only one or two brands.

<u>Tetracyclines</u>

This class of antibiotics includes three products obtained by fermentation and two by semi-synthesis (Doxicycline and Minocycline). The quantities of tetracycline, chlotetracycline and oxytetracycline reported in IMS are lower than those obtained from other sources. Furthermore, Chlotetracycline is largely used as an animal feed supplement, the quantities involved being rather high. We will discuss in greater detail the products which are obtained by fermentation. As to the products obtained by semi-synthesis, the quantities involved are rather low and would seem not to be of any interest for local production.

Other antibiotics

This class encompasses all the antibiotics not included in other classes. Except for Clindamycins and Chloramphenicol, all the products are obtained by direct fermentation. The volume of their consumption and their rather specific spectrum of activity advise against a local production. It would seem also appropriate not to dissipate efforts and to concentrate on more widely used drugs. Chlorampenicol is largely used in the country, the quantity sold in 1987 being about 25 tons. In developed countries the use of this antibuotic is limited to specific cases and its consumption has gradually decreased, also due to some side-effects. Because of these reasons, in the United States Chloramphenicol and its esters have been delisted by FDA. These side effects could

contribute to the decrease of its prescription in the Philippines in the near future despite its being included in the essential drug list.(1) Furthermore, the technology for chloramphenicol production is controlled by a small number of companies and is not easily available and the quantities involved are insufficent from the point of view of production feasibility.

4.3 The Business Statistics Monitor Data

In the following tables are listed the quantities of the main antibiotics introduced officially in the country. They include products imported into the Philippines either by air or by sea.

The antibiotics are divided into different families and the range of F.O.B prices in us dollars at the origin is also reported.

The large price variations observed in some cases should be attributed mainly to the fact that the same product is imported both in the oral as well as in the injectable and more expensive form.

Landed prices are 20-25 percent higher due to transport costs as well as to import duties and taxes. Since the figures reported are based on the effective quantities introduced into the country, our opinion is that the BSM data seem more reliable than other sources of information.

The tables include two sets of figures: the ones related to the 1987 and the ones related to the period January - May 1988.

As the data for 1987 are related to one whole year we consider that these figures are more representative than the later of January-May 1988, with which they have been compared.

We will now examine in detail the various groups of antibiotics in order to identify those which could be appropriate for local production.

⁽¹⁾ Due to the FDA measures taken on the USA, there are talks to delist this product in the Philippines, despite its high therapheutic value in the treatment of thyphoid fever.

ARRIVAL BY SHIP OR FLANE IN 1987

FAMILY : CEPHA: PORINS

ACTIVE INGREDIENTS	8 9 8 8 8	QUANTITY (Kgs)	8 7 8	PRICE * RANGE (\$ Per Kg.)
CEPHALEXIN	;	2700	:	170-250
CEFADROXYL	;	600	:	600-670
CEFACHLOR	;	310	:	700-800
CEFADRINE	:	300	:	750-770
CEFAPERAZONE	;	30	:	N.A.
CEFAZOL IN	:	10	:	2300

Table 4.13

ARRIVAL BY SHIP OR FLANE IN 1987

FAMILY : ERYTHROMYCINS

ACTIVE INGREDIENT	; (QUANTITY (Kgs)	;	PRICE RANGE * (\$ Per Kg.)
ERYTHROMYCIN BASE	;	1800	;	100-200
ERYTHROMYCIN STEARATE	;	4000	;	100-150
ERYTHROMYCIN ETHYLSUCCINATE	;	2700	:	140~210
ERYTHROMYCIN THIOCIANATE	:	2500	;	90-123
ERYTHROMYCIN ESTOLATE	:	1300	;	75-110

* FOB PRICES

ARRIVAL BY SHIP OR PLANE IN 1987

FAMILY : PENICILLINS

ACTIVE INGREDIENT	:		•	PRICE RANGE * (\$ Per BU)
PENTCILLIN G POTASSIUM	:	13040	:	27-30
PENICILLIN G SODIUM	;	4770	;	50-65
PENICILLIN G BENZATHINE	:	250	:	70-80
PENICILLIN G PROCAINE (STERILE)	;	2500	:	45-65
PENICILLIN G PROCAINE (FEEDGRADE):	7700	;	28-31
PENICILLIN V POTASSIUM	:	41400	:	30-60
PENICILLIN V ACID	:	1600	;	27- 30

Table 4.15

ARRIVAL BY SHIP OR PLANE IN 1987

FAMILY : RIFAMYCINS

ACTIVE INGREDIENTS		QUANTITY (Kgs)	:	PRICE * RANGE (\$ Per Kg.)
RIFAMFICIN	:	6600	:	200-500

Table 4.16

ARRIVAL BY SHIP OR PLANE IN 1987

FAMILY : STREPTOMYCINS

ACTIVE INGREDIENTS		QUANTITY (Kgs)		PRICE * RANGE (\$ Per Kg.)
STREPTOMYCIN	:	11374	;	30-70

•

* FOB PRICES

Table 4.17

ARRIVAL BY SHIP OR PLANE IN 1987

FAMILY : SEMISYNTHETIC PENICILLINS

ACTIVE INGREDIENT	;	QUANTITY (Kgs)	:	PRICE RANGE * (\$ Per Kg.)
AMPICILLIN TRIHYDRATE	;	1600	:	60-85
AMOXYCILLIN TRIHYDRATE	;	1800	:	100-115
CLOXACILLIN SODIUM	:	4900	:	160-250
AMPICILLIN SODIUM STERILE		27 0	:	500~750
EPICILLINE		760	:	300-320
NAFCILLINE	;	1500	:	300-400

Table 4.18

ARRIVAL BY SHIP OR PLANE IN 1987

_____ ACTIVE : QUANTITY : PRICE RANGE * : INGREDIENT : (Kgs) : (* Per Kg.) : ____ _ _ _ _ _ _ _ ---------TETRACYCLINE HYDROCHLORIDE : 16000 : 30-70 ------; 500 ; 25-30 TETRACYCLINE BASE ;OXYTETRACYCLINE HYDROCHLORIDE ; 11500 ; 24-30 OXYTETRACYCLINE FEEDGRADE ; 1 4500

CHLORTETRACYCLINE FEEDGRADE ; 30500 ; 18-70

:

FAMILY : TETRACYCLINES

FOB PRICES

Table 4.19

ARRIVAL BY SHIP OR PLANE IN JANUARY-MAY 1988

FAMILY : CEPHALOSPORINS

ACTIVE INGREDIENTS		QUANTITY (Kgs)	;	PRICE * RANGE (\$ Per Kg.)
CEPHALEXIN	;	239	;	250-390
CEFADROXYL	:	90	:	607-1600
CEFACHLOR	;	200	;	810
CEFADRINE	;	140	;	757
CEFAFERAZONE	;	4.6	;	3780

Table 4.20

ARRIVAL BY SHIP OR PLANE IN JANUARY-MAY 1988

FAMILY : ERYTHROMYCINS

ACTIVE INGREDIENT	:		:	PRICE RANGE * (\$ Per Kg.)
ERYTHROMYCIN BASE	;	100	;	135
ERYTHROMYCIN BASE STERILE	:	635	;	225
ERYTHROMYCIN ETHYLSUCCINATE	:	1767	:	139-218
ERYTHROMYCIN STEARATE	:	2063	:	235-240
ERYTHROMYCIN THIOCIANATE	;	9 90		88-97
ERYTHROMYCIN ESTOLATE	:	329	:	114-350

* FOB PRICES

Table 4.21

ARRIVAL BY SHIF OR PLANE IN JANUARY-MAY 1988

FAMILY : PENICILLINS

ACTIVE INGREDIENT		QUANTITY (BU	:	PRICE RANGE * (\$ Per BU) ;
PENICILLIN G POTASSIUM	:	3844	:	19.6-30.6
FENICILLIN G SODIUM	;	1450	:	17.5
PENICILLIN G PROCAINE		2732	:	27.5-33 (STERILE)
PENICILLIN V POTASSIUM		15400	;	27-38.5

Table 4.22

ARRIVAL BY SHIP OF PLANE IN JANUARY-MAY 1988

FAMILY : RIFAMYCINS

ACTIVE INGREDIENTS		QUANTITY (Kgs)		PRICE * RANGE (\$ Per Kg.)
RIFAMPICIN	:	2727	;	195-520

Table 4.23

ARRIVAL BY SHIP OR PLANE IN JANUARY-MAY 1988

FAMILY : STREPTOMYCINS

¦	~			
ACTIVE	;	QUANTITY	;	PRICE *
INGREDIENTS		(Kgs)		RANGE
	;		E E	(\$ Per Kg.)
STREPTOMYCIN	;	297 0	;	29-72
DIHYDROSTREPTOMYCIN	;	200	;	65

* FOB PRICES

lable 4.24

ARRIVAL BY SHIP OR PLANE IN JANUARY-MAY 1988

FAMILY : SEMISYNTHETIC PENICILLINS

ACTIVE INGREDIENT			;	PRICE RANGE * (\$ Per Kg.)
AMPICILLIN SODIUM	:	10.5	;	1076 (STERILE)
AMOXYCILLIN TRIHYDRATE	:	2000	:	60-87
CLOXACILLIN SODIUM	:	200	;	155
BECAMPICILLIN	:	120	;	275
EPICILLINE	;	450	;	195

Table 4.25

ARRIVAL BY SHIP OR PLANE IN JANUARY-MAY 1988

FAMILY : TETRACYCLINES

ACTIVE INGREDIENT	;	QUANTITY (Kgs)	 	PRICE RANGE # (\$ Per Kg.)
TETRACYCLINE HYDROCHLORIDE	;	3950	;	27-70
TETRACYCLINE BASE	;	215	:	30.5
OXYTETRACYCLINE HYDROCHLORIDE		533	:	26-106
DOXYCYCLINE	;	30	:	1840
MINOCYCLINE	;	45	;	1585

* FOB PRICES

<u>Cephalosporins</u>

In this group of antibiotics, only Cephalexin which is a derivative of 7-ADCA seems of interest in view of the market volume.

In consideration of the fact that a growth of the market is anticipated, we will discuss this antibiotic in the following pages.

<u>Erythromycins</u>

In its globality this family of important therapeutic agents reaches a level of consumption of more than twelve tons per year. This fact includes Erythromycins among the antibiotics which should be seriously considered for local production.

<u>Penicillins</u>

Taking into account the large quantities of this strategic antibiotic used as such in the country and the quantities used for the production of 6-APA and hence of Ampicillin and Amoxycillin, we are of the opinion that Penicillins are to be taken into consideration for local production, a point to be further developped.

<u>Rifamycins</u>

Rifampicin is an important antitubercular drug and a strategic product in the antituberculosis program supported by the DOH. Because of its importance and of the quantities involved, we will examine this antibiotic in more details.

<u>Streptomycins</u>

Although streptomycin is used in the country as one of the drugs against tuberculosis, for the reasons discussed in the IMS data section, (see paragraph 4.2) we do not consider the product interesting for local production.

Semi-synthecic Penicillins

The imported quantities in the preceding tables are on the low side. This apparent anomaly is explained by the fact that there is a local production of Ampicillin, Amoxycillin and lately some Cloxacillin, which meet to some extent the present consumption of the country.(1) In view of the importance of these products, they will be examined thoroughly in the following pages.

<u>Tetracyclines</u>

A large import of these antibiotics, both for human and for animal use, result from BSM figures. The quantity of more than 60 tons imported in 1987 is large enough to stimulate a deeper insight in order to determnine whether there is space for local production.(2)

4.4 Procurement for the Department of Health Data

A large quantity of drugs are directly purchased by the Department of Health to supply Rural Health Units. The figures supplied by the DOH for 1987 procurement for antibiotics are the following:

Erythromycins (Stearate Rifampicin Amoxycillin Trihydrate	e or Ethylsuccinate)	Kg 1,100 13,350 11,500
The annual procurement included the following	program for RHU medicines for figures:	1988

Erytromycins (Stearate or Ethylsuccinate)	Kg	3,900
Rifampicin		10,800
Amoxycillin Trihydrate		23,370

- (1) Apparently, Chemfields does not seem to supply Ampicillin and Amoxycillin to the government suppliers of finished medicines.
- (2) The figure of 109,692 tons reported by the National Census and Statistics Office seems to be on the high side. We think that this figure could be explained by the fact that some batches of feed-grade Chlortetrocycline and Oxytetracycline having a 8 - 10 % content of the active principle, were considered 100% pure substance.

The projected quantities of Rifampicin correspond to the quantities required in 1988 for the antileprosy program (annual treatment of 40,000 people) and for the antituberculosis program (annual treatment of 140,000 cases).(1)

4.5 Direct Procurement from the Regions Data

The direct procurement from the regions, in accordance, refer to ten regions out of twelve. The volume of the products calculated from the amount of specialties purchased appear to be (1987):

Penicillin	G		400	Kg
Penicillin	V	1	,300	Kġ
Ampicillin			3.6	tons
Amoxycillin			1.6	tons
Tetracycline			830	٢.g
Oxytetracycl:	ine	2	150	Kg
Erythromycins	5		280	Кg
Rifampicin			35	Kg

4.6 Chemfields Data

The annual manufa summarized as follo	actured volume bws:	of Chemfields	could be
<u>Manufacture</u>	<u>1985</u>	<u>1986</u>	<u>1987</u>
Ampicillin trihydrate	39.90T (70%)	30.75T (64%)	51.6T (68%)
Amexycillin	16.30T (28%)	15.25T (32%)	22.5T (30%)
Cloxacıllin	-	0.50T (1%)	-
Anhydrous Ampicillin	<u>1.15T (2%)</u>	<u>1.56T (3%)</u>	<u>1.351 (2%)</u>
Total	<u>57.35</u> <u>T</u>	<u>48.06</u> <u>T</u>	<u>75.44 T</u>

(1) see (1) page #49

<u>4.7 Comparative data on consumption of drugs in different</u> <u>countries</u>

It is known that the present Philippino pharmaceutical market represents only the quantity of drugs the population can afford and not its real needs. In order to roughly estimate the gap between the consumption and needs we have collected some data concerning pharmaceutical consumptions. We report in the following table the figures for 1987

concerning some European contries, USA and Japan.

Country	Populati n (millions)	Pharmaceutical sales# (million \$)	Average price of drugs to the public (in \$)**	Expense per person per year (in \$)
Italy	56.6	5962	6.29	168.59
France	54.3	6754	4.72	212.01
W.Germany	59.8	7606	13.45	263.46
U.K.	54.1	2496	8.91	98. 28
Spain	37.6	2053	3.84	90.78
European)				
Econ.Com.)		27,305	7.03	
USA	226.5	28,965	21.38	258.96
Japan	111.9	22,698	49.48	285.02
Philippines	54.7(1985)	500		5

***** Ex-factory prices

****** Public prices

The difference of the pharmaceutical sales in the various countries partly reflects the existing health system; e.g. in the United Kingdom where the health system is state controlled, the average price of drugss and the expense per person are lower than in other countries because of the existing limitations and restrictions. According to some evaluations, in the Philippines in 1984 wealth was so distributed:

Very rich + rich	3	%
Middle class	20	7.
Foor	51	%
Very poor	26	%
	100	%

The core of the pharmaceutical market is constituted by 23% of the population which covers about 80% of the private sector sales. About 75% of the population receive only a very limited amount of drugs, expecially through the RHUs although the morbidity is higher than in other developed countries due inter alia to the poor hygienic conditions. Taking into account tha fact that the philippino pharmaceutical market is a free market from the above figures and considerations we estimate that the need of drugs by quantity is four to five times the present consumption to reach a reasonable level of population health and up to eight to ten times to reach the consumption of full developed countries.

5. GENERAL CONSIDERATIONS AND PROJECTIONS OF THE SELECTED PRODUCTS

5.1 Considerations on Single Products

Further to our previous comments concerning the status of available data in the majority of the developing countries, and as a result of our discussions with the private sector and among the Experts, as well as after the examination of various sources of information, we are of the opinion that the following estimates, without having necessarily a scientific base, represent reasonably acceptable levels. In this chapter will be discussed in detail the antibiotics produced by semisynthesis, which in the preceeding pages appeared to be of interest for a potential local production.

In order to establish a relatively correct dimension of the productive capacity, projections up to 1995 have been made. A period of seven years has been selected, since the completion of a chemical plant and the startup of operations requires a minimum of four to five years from the approval of the project; a seven years projection permits the establishment of a more flexible plant.

Except for specific reasons indicated under each antibiotic, the basic considerations taken into account when estimating the market sizes of the products, could be summarized as follows:

- The annual population growth of the Philippines reaching 68 millions in 1995
- The GNP growth projections and the distribution of wealth
- The family expenditures devoted to health care and purchase of medicines
- The prescription and automedication habits (a more rational use of drugs and a better knowledge of the medica profession of the specificity of each antibiotic); the usage of generics
- The DOH budget devoted to the drug procurement
- The health programmes for tuberculosis and leprosy. as well as other programmes and measures, resulting in a possible improvement of the general health situation and the sanitary conditions of the population
- The increase of potential prescribers by about 6000 # in 1995(1)

(1) 781 passed the board examinations in 1988

The estimate do not represent the total needs of the country, but reflect only the market absorption capacity by the year 1995, including the private and public sectors.

Finally, the volume of smuggled goods, which will probably continue to exist in the future, has not been taken into consideration.

AMPICILLIN

According to the figures reported(1), the present production of Chemfields was of 51.6 tons in 1987; the official imports were of 2 tons, most of which was Ampicillin Sodium (the injectable salt imported in sterile vials).

As per the information received from various sources, there are smuggled goods which amount is difficult to determine but can be roughly estimated at 20 percent of the official production that is 10 tons per annum. The price of smuggled Ampicillin is lower than the locally produced one and ranges between 1850 and 2000 Pesos (obviously duties are not payed), against P 2200 of the Chemfields product. An additional factor to be taken into consideration in order to make projections is the possible shift of the market from Ampicillin(2) to Amoxycillin could take place, thus limiting its growth potential.

Taking into consideration all the pregoing elements, a reasonable increase of the market in volume would be of +6% per year, the total quantity reaching 8% tons in 1995.

AMOXYCILLIN

This fast growing antibiotic is presently produced in the country by Chemfields with an output of 22.5 tons in 1987. The import was about 2 tons mainly of injectable sodium salt which is mainly imported in sterile vials.

In the same year, the Department of Health purchased 11.5 tons for the Rural Health Units. There is also a direct purchase by the Regions of limited quantities(2 tons).

(1) 60 to 70 percent from 60 to 80 tons (12.8.1988)

⁽²⁾ Presently its price is about 20 to 30 percent lower than that of Amoxycillin, which is not included in the WHO essential drug list.

Smuggled goods are also available in quantities, representing, according to some opinions, 20 percent of the official figures, thus reaching 5-8 tons annually.

In the procurement program of the Department of Health the volume for the RHUs in 1988 is 23.5 tons; Chemfields is also planning to increase its production.

In order to make a reasonable forecast, the following fact is to be taken into consideration, in addition to the general factors taken into account:

- a shift from Ampicillin to Amoxycillin could be taking place; hence is to be anticipated that its marked will show a larger increase than the one of Ampicillin (see also 5.2).

Taking into consideration all the factors, the following projections could be done:

The private sector market growth could be evaluated at 15% up to 1990 and at 8% up to 1995, giving a figure of 45 tons in that year. We understand the efforts undertaken by the Department of Health in doubling the procurement program for 1988 from 11.5 tons to 23.5 tons, but we think that in the future a more limited increase in the purchase of antibiotics could be expected.

Thus, for the period of 1987 to 1995, our projection will be 4 percent annually, reaching a volume of about 30 tons in 1995.

Our total projection for 1995 is of 75 tons.

CLOXACILLIN.

This antibiotic has a limited use in the Philippines with figures for 1987 reaching imports of 6 tons. Its market is rather steady and our projections are for a 4% annual growth rate and a market of 8 tons in 1995. This semi-synthetic penicillin could also be produced at the same plant used for Ampicillin and Amoxycillin production without additional investments.

<u>CEPHALEX IN</u>

The 1987 imports were about three tons and three brands were present on the market. Cephalexin is a rather expensive antibiotic derived from 7-ADCA and thence from Penicillin G or V.

This antibiotic(1) has a large growing market in the United States, in Japan and in Western Europe. We anticipate a 10 percent increase per year giving a total volume of 6 tons in 1995.

Cephalexin has been considered also, since its production could be undertaken in the same plant used for Ampicillin and Amoxycillin, so that spare capacity could be utilized without additional investments.

ERYTHROMYCINS.

The local projected production includes the preparation of the stearate and ethylsuccinate from Erythromycin base, which could be produced in the proposed multipurpose fermentation plant.

Erythromycin is an important broad spectrum antibiotic widely used all over the world. In 1987 the imports stood at about 12 tons, whereas the DOH procurement for RHU was of 1.1 tons. For 1988, the procurement program indicates about 4 tons in the form of stearate and ethylsuccinate.

In the projection for 1995, we have considered the following facts in addition to the general factors taken into account:

- as a broad spectrum antibiotic Erythromycin ranks among the most used products all over the world
- it has no competitors as in the case of Amoxycillin/Ampicillin.

For all these reasons, our projections are for a 6% growth of the private sector market up to 1991 and for a 4% up to 1995, thus reaching 17 tons in that year. With a 6% increase in the DOH procurement giving a quantity of 6 tons in 1995, the total consumption could reach 23 tons. Also in this case the quantities do not correspond to the total needs of the country but reflect only the market size and the volume the DOH could probably afford.

(1) Not included in the WHO list of cospectal Drugs

RIFAMPICIN

This antibiotic plays an important part in the antituberculosis and antileprosy programmes. Imports for 1987 were of about 7 tons and the DOH procurement reached more than 13 tons.

The procurement programme of the DOH for 1988 is 11 tons in finished form, quantity corresponding to the forecast for treatment of 40,000 cases of leprosy and 140,000 cases of tuberculosis. The number of cases might be much higher considering the new cases, the recurrence and the fact that many of them are escaping diagnosis. The 140,000 represent most probably the number of persons which could be trated in 1988, connected to the availability of funds devoted to that programme.(1) For the coming years, the projections of DOH are (in kilograms of Rifampicin):

For Leprosy	<u>1988</u>	1989	<u>1990</u>	<u>1991</u>	<u>1992</u>
Paucibacillary	111	21	18	18	19
Multibacillary	416	405	92	92	88

Tuberculosis

Short course chemotherapy	10,395	9565	8370	7790	7500
					•
Total	10,922	9986	8480	7900	7607

Our projections are for a consumption of 9 tons in the private sector and of 11 tons in the procurement programs of the DOH up to 1995(2) the total volume projected being at 20 tons annually.

TETRACYCLINE HYDROCHLORIDE

This salt is to be taken into consideration when transforming the Tetracycline base obtained in the proposed multipurpose fermentation plant by the Expert on fermentation.

(1) Direct smear positive cases is 6.6 per 1,000 population, or 387,560 for a population of 58,721.307 in 1987

(2) The probability for a substantial increase in the DOH budget for this programme seem rather remote. Imports of Tetracycline Hydrochleride reached 16 tons(1) for 1987. This product is a wide spectrum antibiotic having a relatively low price. For the projections up to 1995, the following additional considerations were kept in mind:

- -Tetracycline is an old product with relatively limited market growth potential and with an annual increase which could be directly related to the population growth.
- -The Department of Health does not supply this antibiotic to the RHUs.
- -There is a certain overlapping of indications between the Tetracyclines and the semi-synthetic Penicillins
- -Like with the Chloramphenicols, the shift of usage could also depend from price flactuations

The increase in consumption is mainly due to the growth of the private sector market. For all these reasons a 3% annual growth of the market is anticipated, the 1995 consumption reaching about 20 tons.

OXYTETRACYCLINE HYDROCHLORIDE

Also this salt has been taken into account for the same reasons as for the Tetracycline hydrochleride, except that a very limited quantity is programmed by the DOH for the RHUs in the form of ophtalmic continents (less than 1 Kg). The 1987 import of this derivative was 11.5 t.Following considerations similar to those made for Tetracycline and assuming the same growth rate, a market size of about 15 tons is anticipated by 1995.

5.2 Projected requirements for the Years 1993, 1994, 1995.

Further to the projections made in the preceeding chapter, some, calculations have been made to determine the requirements for the years 1993, 1994, 1995. Based on the assumption that from the approval and financing of the project to the start-up of the industrial operation a minimum of three to four years are necessary and, assuming that the present project could be approved by mid 1989, a reasonable start of the production could be expected in 1993.

⁽¹⁾ The total volume of Tetracyclines imported in 1987 was 109,692 Kg. With an average FOB price of US \$ 19.64 /Kg (veterinary use included);see under Tetracycline point 4.0

The calculated figures for the projected requirements and/or production are (in metric tons):

			<u>1993</u>		<u>1994</u>		1995
Ampicillin Amoxycillin P P	rivate Sector ublic Sector	38.3 28.6	73.7	41.4 29.7		44.7 30 .9	8 3.0
Total Am	oxycillin		<u>66.9</u>		<u>71.1</u>		75.6
Cloxacillin Cephalexin		7.6 4.8		7.9 5.3		8.2 5.9	-
Total Se Penicil	mi-synthetic lins	:	<u>153.0</u>	:	<u>162.9</u>	1	172.7
Erytromycins	Private Sector Public Sector	15.5 5.3		16.0 5.7		16.6 6.0	
Total Er	ytromycins		<u>20.8</u>		21.7		<u>22.7</u>
Rifampycin	Private Sector Public Sector	9.0 11.0		9.0 11.0		9.0 11.0	
Total Ri	fampicin		<u>20.0</u>		<u>20.0</u>		<u>20.0</u>
•	Hydrochloride ne Hydrochloride		19.1 13.7		19.7 14,2		20.3 14.6

The rounded up figures for which the plants should be designed could be summarized as follows:(1)

Ampicillin	85	tons
Amoxycillin (2)	75	tons
Cloxacillin	8	tons
Cephalexin	6	tons
Erythromycin	25	tons
Rifampicin	20	tons
Tetracycline Hydrochloride	20	tons
Oxytetracycline Hydrochloride	15	tons

(1) Figures have been rounded up to a higher value to take into account the quantities directly purchased by the regions.

(2) In case the Amoxycillin purchases by the DOH do not follow the present growth trend and are shifted to Ampicillin having a similar therapeutic value at a lower cost, the production pattern could follow and instead of Amoxycillin, Ampicillin could be produced

We point out that the figures here reported represent the market projections up to 1995 for these antibiotics which are interesting for the country needs and consumption, and from an industrial point of view have a sufficient dimension to deserve a more detailed study.

Technical and economical considerations will be discussed in the following pages under the single headings.

6. RECCOMENDATIONS

<u>6.1 General Criteria</u>

The general criteria that have been followed in the selection of the antibiotics which could constitute the output of those industrial plants, whose implementation is recommended in the present report are listed here below:

- Consumption volume (or market size)
- Prevailing diseases and morbidity
- Government health programmes
- Strategic importance (such as Penicillin, which could serve as starting point for the manufacture of several other antibiotics)
- Patent position
- Availability of technologies
- World Market trends
- Availability of domestic raw materials (in particular agricultural products)
- Existence of down-stream facilities (ε.g. Chemfields Inc. products are all obtained starting from 6-APA and Penicillin)
- Presence of adequate and qualified human resources.

6.2 The Proposed Options

Taking into consideration the proposed fermentation plant and the products which could be manufacured locally, the projected quantities for the local consumption in 1995, as well as the present and potential production of the Chemfields factory, we propose the following options which will be examined in detail in the following pages.

- 1. A plant for the production of semi-synthetic betalactam antibiotics.
- 2. A plant for the production of 6-APA

- 3. A multi-purpose plant for the production of Erthromycin derivatives and Rifampicin.
- 4. A plant for the production of Tetracycline Hydrochloride and Dxytetracycline Hydrochloride from the corresponding bases.

We point out that options 2 and 4 have to be considered only if Penicillin and Tetracycline producing plants are installed in the country.

In this case, the two options are essential and should be considered as an integral part of the two projects.

The options to be implemented short-term are the Erythromycin derivatives and Rifampicin as well as semi-synthetic Penicillins projects whereas the 6-APA and Tetracycline Hydrochloride options are strictly connected with the implementation of corresponding fermentation projects and should be considered long-term proposals.

We will now discuss in some detail the options proposed in order to establish the viability of each.

7. THE BETA-LACTAM ANTIBIOTICS PROPOSED PLANT

The plant proposed in this section has the aim of producing beta-lactam antibiotics, to crease the present local production capacity (Chemfields) in order to satisfy the projected country consumption in 1995, estimated as follows.

Ampicillin	85	tons
Amoxycillin	75	tone
Cloxacillin	8	tons
Cephalexin	6	tons
	174	tons

Satisfactory technologies for Ampicillin, Amoxycillin and Cloxacillin are already available at Chemfields. Only the technology for Cephalexin should be obtained from external sources. Available technologies are updated and we do not have information of the existence of new ones; we are of the opinion that Chemfields technologies will remain competitive in the future. Taking into account the present production capacity of Chemfields estimated to be about 100 tons/year (1) the proposed plant should have an additional capacity of 74 tons/year. Additional equipment is needed for the production of an intermediate (Dane Salt) in th Amoxycillin synthesis.

The Yearly Output of the plant will be:

Ampicillin	35	tons
Amoxycillin	30	tons
Cloxacillin	3	tons
Cephalexin	6	tons
Dane salt for		
Amoxycillin	28	tons

The proposal includes two different options; the first to produce the antibiotics by external supply of 6-APA; the second to use the 6-APA locally produced from Penicillin in a multi-purpose fermentation plant according to one option. Equipment, utilities ,manpower qualification and economics will be examined in detail at the end of the chapter.

- ----
- In the existing set-up it would be almost impossible to reach a production of 13 batches per week on a three shift basis, with a batch size of 300 Kg. as claimed sometimes.

7.1 Ampicillin Trihydrate

Ampicillin, the first important semisynthetic Penicillin to be introduced into the market has a side chain derived from phenylglycine which has the following formula

•

.

.

* C6H5 - CH - COOH ! NH 2

Since it has an asymmetric carbon atom, the molecule is optically active; in the Ampicillin molecule it has the D(-) optical form. Ampicillin has the following formula:

C6H5 - CH - CO --- NH - 6 - APA residue NH 2 C H N O S . 3H O 16 19 3 4 2 m.w. 403.50 trihydrate m.w. 349.42 anhydrous form

Determination of the Number of Batches

For the projected plant the batch dimension will be 300 Kg. For the production of 35 tons 117 batches are required.

Principle of the Method

The proposed method consists in the condensation of the acid chloride derived from D(-) phenylglycine with 6-AFA in which the carboxylic group is protected by sylilation. The synthesis is composed of the following steps:

1. Protection of the carboxylic group by sylilation

- 2. Condensation with phenylglycine chloride
- hydrochloride

3. Removal by hydrolisis of the protective group. Description of the Method

The 6-APA is dissolved in anhydrous methylene

chloride and diethylamine and trimethylchlorosylane are added. After the reaction, dimethylaniline is added and, after cooling to -20 C, solid D(-)phenylglycine chloride hydrochloride is added portionwise. After the reaction has taken place, water is added to hydrolyze the sylilester. The dichloromethane phase is separated and the aqueous solution, after treatment with active carbon, is basified with triethylamine; the precipitated Ampicillin is centrifuged, washed and dried.

<u>Vields</u>

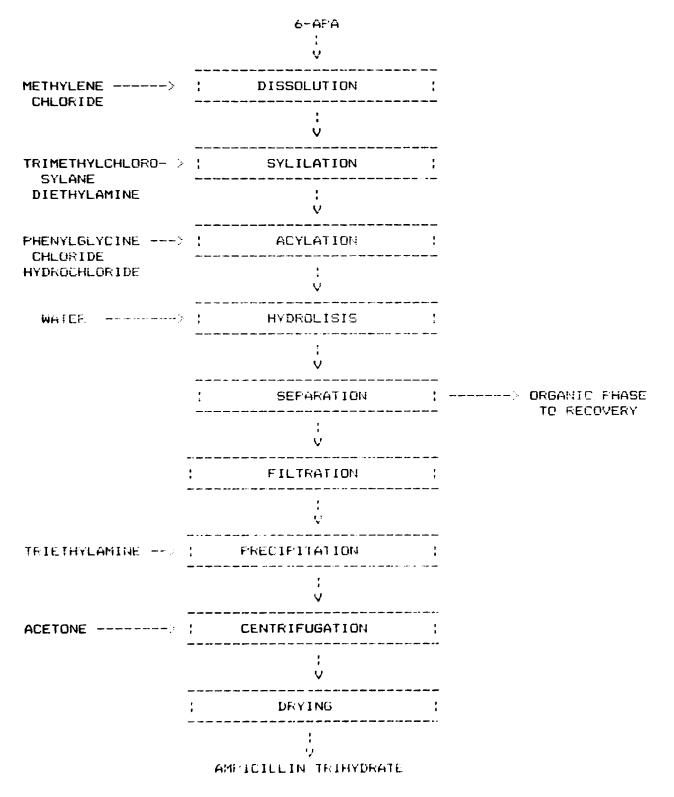
Theoretical yield	83	%
Weight yield	155	7.

Haw Materials

Hereunder are the list of the main raw materials needed for one batch of 300 Kg and the corresponding quantities for one Kg. of Ampicillin trihydrate. The amount of solvents in brackets are the quantities used, while the the other figures pertains to the consumption considering a 70% recovery for dichloromethane and acetone

6-APA		194	Ka		0.647	k a
Phenylplycine chlor	ide				0.04/	r.y
hydrochloride		185	Ka		0.62	£
frimethylchlorosyla			-			· ·
	ore	94	rg		0.31	k.c
Dimethylaniline		180	Ko		0.61	κā.
Dichloromethane	(3800 Kg)	1140	~	(17) (14		-
	(according)		~	(12.6 Kg	3) e	ig
Triethylamine		105	Ka		0.35	1 C
Acetone	(200 Kg)	60	-	10 66 6-		-
Tise + + is a second	(4) 2 (4)		-	(0.66 kg	j)0•∠	i.⊆
Diethylamine		105	kg		0.35	Łа

Main Utilities for a 300 Kg Batch.


Electric Power	24 0 <u>0</u>	KWH
Steam	2400 2 .1 0	kcal
Liquid Nitrogen	5000	Kg

Froduction Flant and Equipment list

See 7.9 and 7.10

Manpower

See 7.15

7.2 Amoxycillin Trihydrate

This important semi-synthetic Fenicillin has a side chain derived from p. hydroxyphenylglycine which has the following formula

> #0 - C6H4 - CH - COOH : NH 2

Since it has an asimmetric carbon atom this molecule is optically active; in the Amoxycillin molecule it has the D (-) optical form. It has the following formula:

Determination of the Number of Batches

For the projected plant the batch dimension will be 300 kg. The production of 30 tons requires 100 batches.

Reaction Scheme

.

 6 - APA
 +
 DANE SAL1
 ---->
 AMOXYCILLIN TRINYDRATE

 C H NO S
 C H NO K
 C H NO S . 3H G

 8 12 2 3
 14 16 4
 16 19 3 5
 2

 m.w. 216.28
 m.w. 301.38
 m.w. 419.50 trihydrate

Principle of the method

The proposed method consists in the condensation of the mixed anhydride derived from the Dane Salt (ethyl potassium) and ethylchlorocarbonate with salified 6-APA. The synthesis is composed by two steps:

m.w. 365.38 anhydrous form

1.) Freparation of the mixed anhydride

2.) Condensation with 6-APA

Description of the Method

- Preparation of the mixed anhydride: The Dane salt (ethyl potassium) is introduced into the reactor containing anhydrous acetone followed by ethylchlorocarbonate and an organic base (amine). The mixed anhydride so prepared is very much moisture sensitive; it should be kept at 15-18 C and used as soon as possible.
- Preparation of Amoxycillin : 6-APA is suspended in acetone water in a stainless steel reactor and dissolved by salification with triethylamine at -10 to -25 C . The solution of the mixed anhydride in acetone is then added Leeping the temperature under O.C. After the reaction has taken place, the resulting salt is hydrolysed by addition of hydrochloric acid. The solution is then extracted with dichloromethane - methylisobutylketone which extracts organic solvents and other products. After filtration, the Amoxycillin 19 precipitated from the aqueous phase b∠ alkalinization, isolated by centrifugation, washed and dried. Amoxycillin tribydrate is obtained.

<u>Yields</u>

Theoretical yield	81%
Weight yield	155%

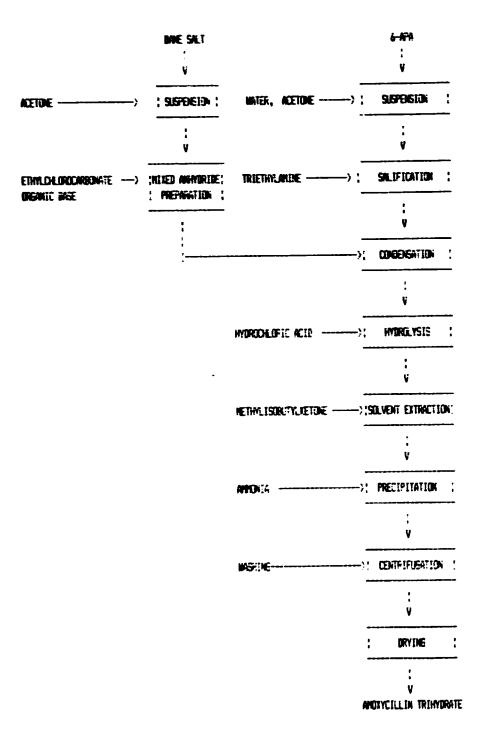
Kaw materials

The main raw materials needed for one batch of 300 Kg and the corresponding quantities for one Kg are here reported. The following percentage of recovery are considered:

	Dichlorometane Methylisobutyl Acetone		ε	70% 35% 30%	
6-APA Dane salt,ethyl Ethylchlorocarb Acetone Dichloromethane Methylisobutylk Triethylamine	onate (1050 Kg) (960 Kg)	193.5 282 108 210 290 115 99	Kg kg Kg Kg Kg ka	(3.5 Kg) (3.2 Kg) (2.6 Fg)	0.645 kg 0.94 kg 0.36 kg 0.70 kg 0.96 kg 0.38 kg 0.33 kg
Concentrated Hy	drochloric aci	d ;	Ammonu	a 28 Bé.	

<u>Main Utilities Used for a 300</u>	<u>ko. Batch</u>
Electric Power Brine	4,200 Kwh
Liquid nitrogen	5,000 Kg
Steam	5 22.10 Kcal

Production plant and Equipment list


see 7.10 and 7.11

1 1

Manpower

-

see 7.15

7.3 Dane Salt for Amoxycillin Production

•

Since the introduction of the side chain for the preparation of Amoxycillin requires the use of a reagent denominated Dane Salt, we suggest the local production of this intermediate in order to save money and foreign exchange. The required Dane salt has the following structure:

***** р.НО - С6Н4 - СН - С О О К : N 1; С Н3 - С - С Н2-С О О С2 Н5

Formula: C H NO K 14 16 4 5.9 001.38

It is a summatric carbon star the solution is optically active; the optical form is the D(-).

Determination of the quantity annually needed

Since for the provision i one Kg of Amoxycillin, 0.94 Kg of Dane Salt are required, the total annual necessity will be 28.2 tons.

Determination of the number of batches

In the projected plant the dimension of each batch will be 500 Kg.For the production of 28 tons 56 batches are required.

Reaction scheme

H 0 ~ C6H4 - CH(NH2) C 0 0 H + CH3COCH2COOC2H5 ----->

р. НО-С6H4-СН-СООК ; N 1; СН-С-СН-СООС Н 3 2 2 5

Principle of the method

Condensation of D(-)p.Hydroxyphenylglycine with ethylacetoacetate and precipitation of the Dane salt with alkali.

Description of the method

D(-)p.hydroxyphenylglycine is dissolved in anhydrous ethanol and ethylacetate is added keeping the temperature low. By addition of alkalı, the potassium Dane Salt precipitates, is filtered, washed with ethanol and dried. An additional quantity is obtained by vacuum concentration of the mother liquors. It is filtered, washed and dried.

<u>Yields</u>

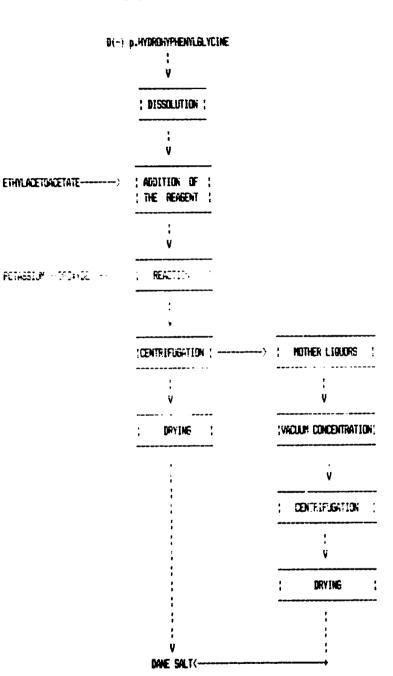
Theoretical Yield	91 %
Weight Yield	164 %

Raw Materials

Listed hereunder are the main raw materials needed for one batch of 500 Kg and the corresponding quantities for one Kg. of Dane salt. A 80% recovery yield for ethanol is considered.

D(-)p.hydroxyphenylgly	eine	305 Kg	0.61	Eg
Ethylaceloacetate		260 Kg	0.52	Ľс
Potassium Hydroxyde		102 Kg	0.204	ŀ.g
Absolute Ethanol	(2400 kg)	480 Kg	(4.8 Kg.)⊙.96	۴g

Main utilities used for a 500 Kg batch


Electric Power	500 Kwh
Brine	5
Steam	0.5 x 10 Kcal

Production plant and equipment list

see 7.10 and 7.11

Manpower

See 7.15

DAVE SALT FLOW CHART

7.4 CLOXACILLIN SODIUM MONOHYDRATE

Cloxacillin, a semi-synthetic Penicillin having a specific activity against gram positive germs, has a side chain derived from 3 (2-chlorophenyl) -5-methyl-isoxazolyl-4-carboxylic acid, with the following structure:

0.C1 C6H4 -- C -- C -- COOH 11 11 N C -- CH3 \ /

This group is attached to the amino group of 6-AFA through an amide linkage as in the other semisynthetic Penicillins. Cloxacillin has the following formula:

o.Cl C6H4 -- C -- C - CO --- 6 APA residue :: :' N C -- CH3 X / 0

C19H13H30501S

m.u. 435.89

Sodium Closacillin monohydrate

C H N O CISNa . H O 19 17 3 5 C m.w. 475.87

Having one carboxylic group in the molecule Cloxacillin gives a sodium salt which has one molecule of water of crystallisation.

Determination of the number of batches

•

For the projected plant, the batch dimension will be 150 Kg.For the production of the requested 3 tons, 20 batches are needed.

Frinciple of the method

The proposed method consists in the acylation of the amino-group of 6-AFA with \mathbb{Z} (2-chlorophenyl) -

5-methyl-isoxazolyl-4-carboxylic acid chloride. The sodium salt is precipitated from the solution by addition of sodium ethylhexancate.

Description of the method

The 6-APA is acylated in aqueous acetone with the acid chloride in the presence of alkali. After evtraction of acetone with dichloromethan Cloxacillin is extracted with methylisobutylketone and the solution dried. By addition of sodius ethylhexanoate solution the sodium sait precipitates. The suspension is centrifuged and the product dried. Sodium Cloxacillin monohydrate is obtained.

<u>Yield=</u>

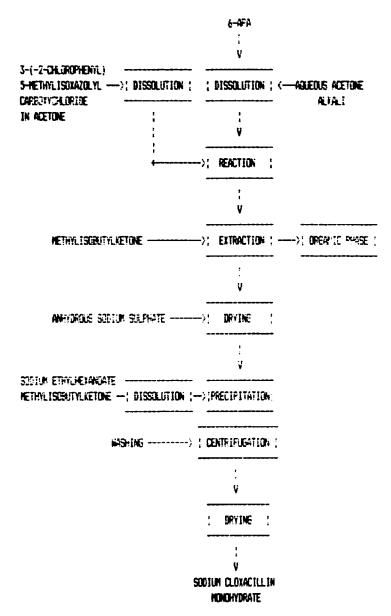
Theoretical yield	80%
Weight yield	175%

haw mainizis

Monounder and Misted the bin raw tatewide needed for one batch of 150 kg and the corresponding quantities for one kg. A 70% recovery yield for bot solvents is considered.

6-APA	85.5	kg		0.57 kg	
Methylisobuthylketone	(1830	kg)	400 kg	(12.2 kg)	2.7 kg
Acetone			200 kg	(6.5 kg)	-
Sodium 2-ethviberanoate	72	ka	-	0.48 ka	
3 (2-cniorophenyi)-5-met	hyl	÷			
isoxazolyl-carboxychlori	de 108	kg		0.72 kg	
Sodium hydroxide	17	ka		0.11 kg	

<u>Main Utilities for a 150 kg batch</u>


Electric Power 2,400₅kwh Steam 10.10 Kcal Brine

Production plant and equipment list

See 7.9 and 7.10

Manpower

See 7.15

SOUTH CLOACTLLIN NONOHYDRATE FLON CHART.

7.5 Cephalexin Monohydrate

Cephalexin is the most important member of the class of 3-desacetoxycephalosporins which are semi-synthetic antibiotics derived from 7-amino-desacetoxycephalosporanic acid. Since 7-ADCA can be conveniently prepared from penicillin 6 or V, later, if the proposed fermentation facilities for the production of Penicillins will 1, implemented, also 7-ADCA could be produced in the Philippines.

Its side chain, like Ampicillin, derives from phenylglycin which has the following formula:

Since it has asymmetric carbon atom its molecule is well in the structure of the S halo of π_1 (e, the structure of the D (+) optical form. Cephalexin has the following formula:

* CAUGAUHAUSAU - CH -CO --NH ---7-ADCA residue | | | NHAU2AU

> C H N O S 16 17 3 4

m.w. 347.39

Determination of the number of batches

For the projected plant, the batch dimension will be 150 kg. For the production of the requested 6 tons, 40 batches are required.

Principle of the method

The proposed method consists in the condensation of the acid chloride derived from D (-) phenylglycine with 7-ADCA in which the cartoxylic group is protected by sylilation.

Description of the method

The 7-ADCA is suspended in methylene chloride and acetone; diethylamine and trimethylchlorosylane are added and the sylilation carried out at 40 C. After cooling to 0-5 C D(-)phenylglycine chloride hydrochloride and dimethylaniline are added portionwise keeping the temperature low. Water is then added, the organic phase discarted and the acqueous, phase after active carbon treatment followed by filtration, is treated with triethylamine; the precipitated crude Cephalexin is centrifuged and washed.

The purification is performed by suspension in water and successive treatment with acetone. After centrifugation, washing and drying under vacuum, pure Cephalexin monohydrate is obtained.

<u>Yields</u>

Theoretical yield	75%
Weight yield	135%

Raw Materials

The main raw materials needed for one batch of 150 kg of Cephalexin Monohydrate and the corresponding quantitites for one kg are listed hereunder. A 70% recovery yield for dichloromethane and acetone is considered.

7-ADCA		111	kg	0.74 kg
Phenylglycine chlor.	ide			
hydrochioride		95	kg	0.63 kg
Diethylamine		39	kg	0.26 kg
Trimethylchlorosyla	ne	52	kg	0.345 kg
Dimethylaniline		102	kg	0.68 kg
Triethylamine		61	kg	0.41 kg
Methylene chloride	(1,800 Kg)	540	kg	1.08 kg (3.6 kg)
Acetone	(1,000 kg)	300	kg.	0.60 kg (2.0 kg)

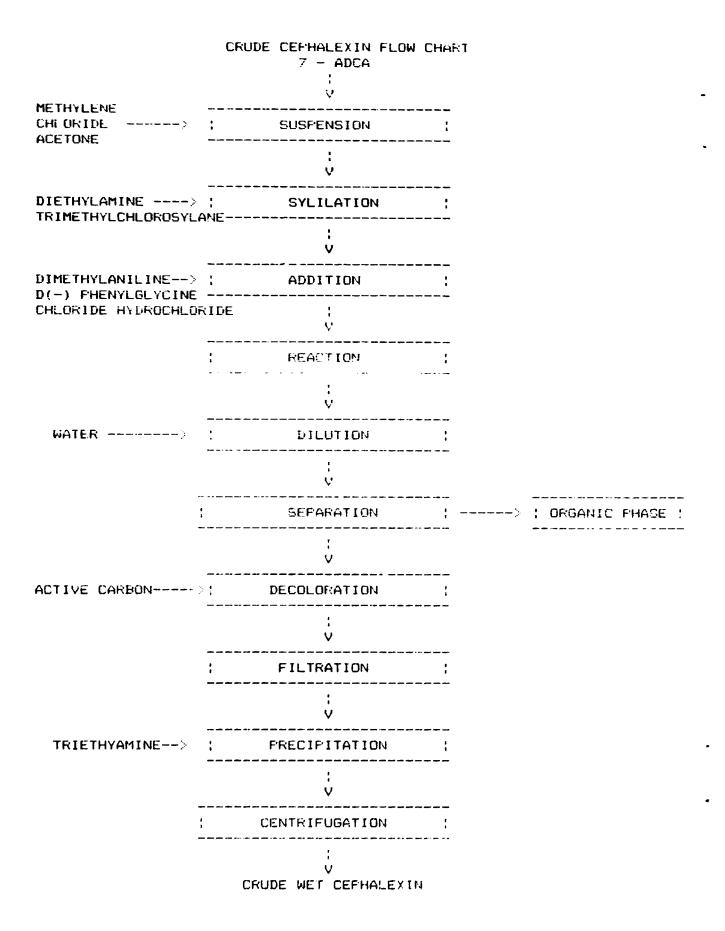
<u>Main utilities for a 150 kg batch</u>

Electric power	1,200 Kwh
	5
Steam	10 Kcal
Liquid nitrogen Brine	2,300 kg

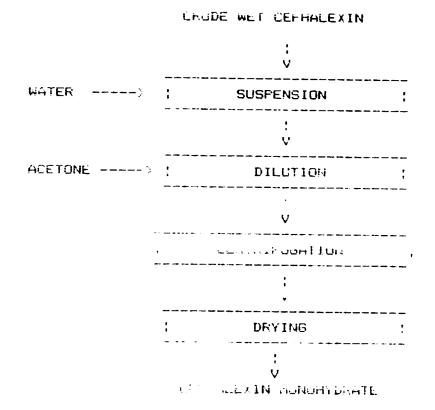
Production plant and equipment list

See 7.9 and 7.10

Manpower


•

.


٠

.

See 7.15

CEPHALEXIN MONOHYDRATE FLOW CHART

٠

- 71 -

7.6 Utilization of the Plant

The data concerning the duration of the operations for the production of the projected products, the number of batches required and the total time of utilization of the plant are as follows.

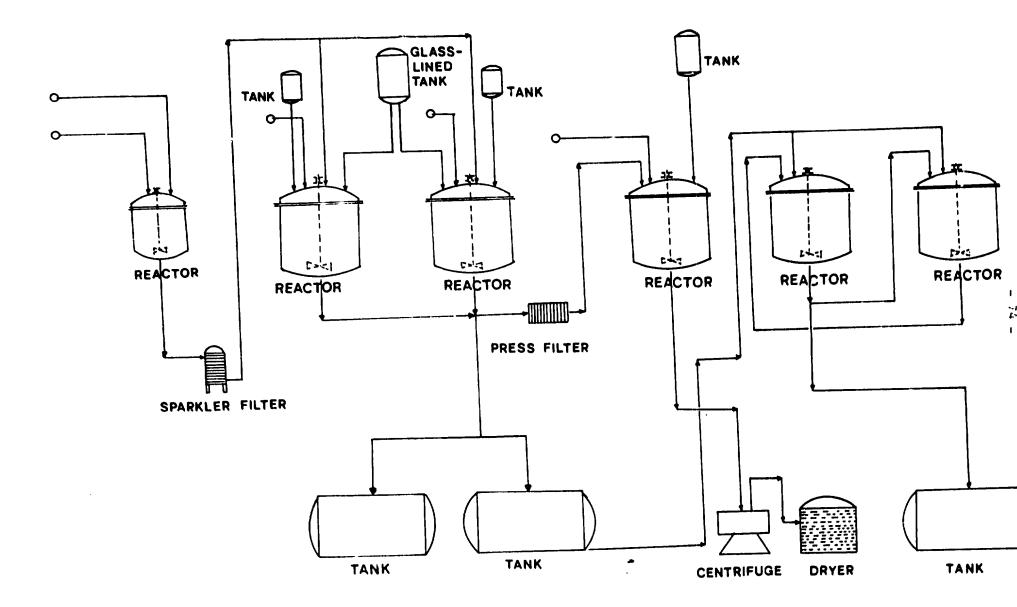
Product	Output per batch	Duration of each batch	Number of batches w	Total Working days
Ampicillin trihydrate	300 Kg	36 hours	117	117
Amoxycillin trihydrate	300 Kg	36 hours	100	100
Cloxacillin sodium monohydrate	150 Kg	36 hours	20	20
Cephalexin monohydrate	150 Kg	36 haurs	40	40
Dane salt for Amoxycilli	.n 500 kg	36 hours	56	56

For all these productions the duration of the chemical step is about 15 hours the bottleneck being the drying which last 35 hours. With two driers it is possible to obtain one batch/day. When the plant will reach the full production capacity it will be occupied for the whole year, additional capacity being obtained with an increase of the number of batches by working on three shifts. Working days are globally 284 since the Dane salt is prepared at the same time of other productions using additional equipment.

7.7 Waste Treatment

The processes carried out in this plant produce both solid and liquid wastes. The solid wastes are mainly composed from active carbon containing small quantities of impurities and salts. We suggest that they will be taken away, or burned. The liquid wastes should be neutralized in the plant; they consist mainly of inorganic salts, residues of decomposed antibiotics and some excess of the reagents. By treatment with sodium hydroxide, the beta-lactam nucleus breaks giving rise to inactive products. After neutralization, they are treated with activated sludges in the existing plant of the Chemfields factory. In case its capacity is insufficient, it should be enlarged to cope with the new requirements.

7.8 Location of the Plant


Semisynthetic Penicillins are sophisticated products and beta-lactam antibiotics. For this reason, in order to avoid cross-contamination with other products, they must be produced in a plant devoted only to their production to comply with the " Good Manufacturing Practice " rules. Furthermore high technical skills are essential for their production. Since a production of beta-lactam antibiotics is already running in the Chemfields factory and as the technicians employed there are already well acquainted with the technology of semi-synthetic Penicillins, we suggest that the plant should be located in the Chemfields factory. where 5 hectares are available for expansion. Furthermore, all the technical services (guality control, maintenance, warehouse, administration) and some spare capacity for utilities being already. available in the factory, a limited increase of equipment and of people would be necessary to cope with the new needs, meaning a more limited investment. providuate contactor from the weath often Should the expension be placed in a new factory, the investment would be not incher and incughive include ind 1.0-2 lines the proposed over so the economics becoming unfavourable.

1.9 Description of the Flant

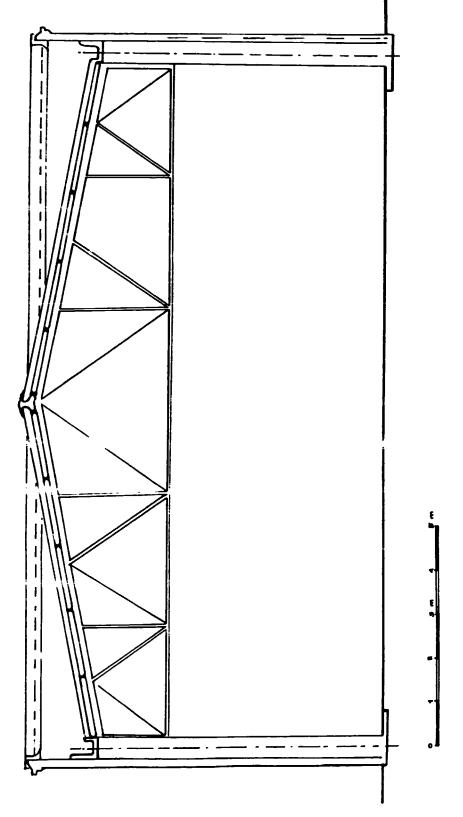
The plant proposed for the preparation of semi-synthetic Fencillins is composed from eight stainless steel reactors ranging from one to five cu.m. capacity, one press and one plate filter, some tanks for mother inquors, two stainless steel centrifuges and two driers. Minor equipment (centrifugal pumps, grinder, sieve etc.,) are also provided. Solvents come from external tanks through metering pumps. The following units for utilities will be required:

- Une distillation unit to increase the present capacity of Chemfields taking into account also the recovery needs for the Erythromycin and Rifampicin production plant, which we suggested to be located in the same compound.
- Dne refrigeration unit for production of brine at
 30 C, 40 tons capacity
- One unit for demineralized water production
- One boiler for steam production
- One cooling tower for cooling water.

With this plant, working on a three shift basis it is possible to reach a production of more than 100 tons/year.

BETA-LACTAM ANTIBIOTIC PLANT

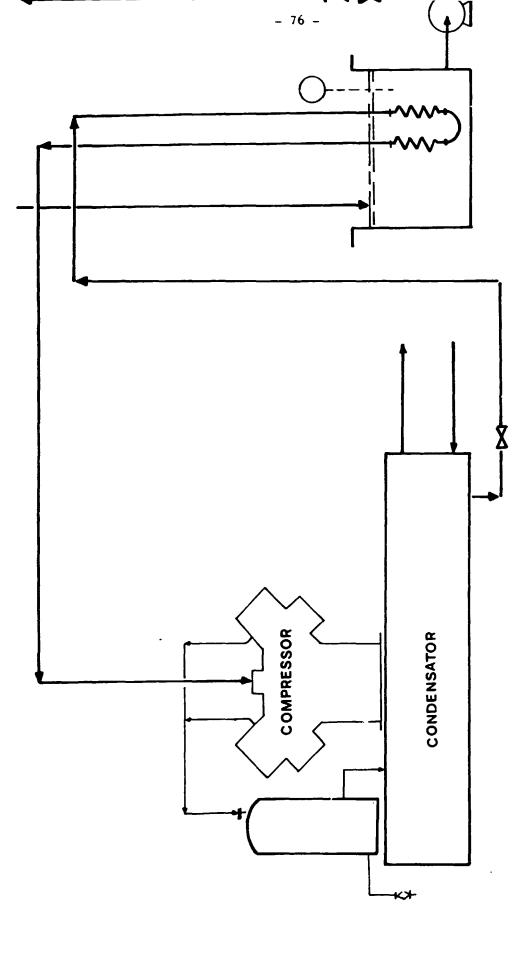
.

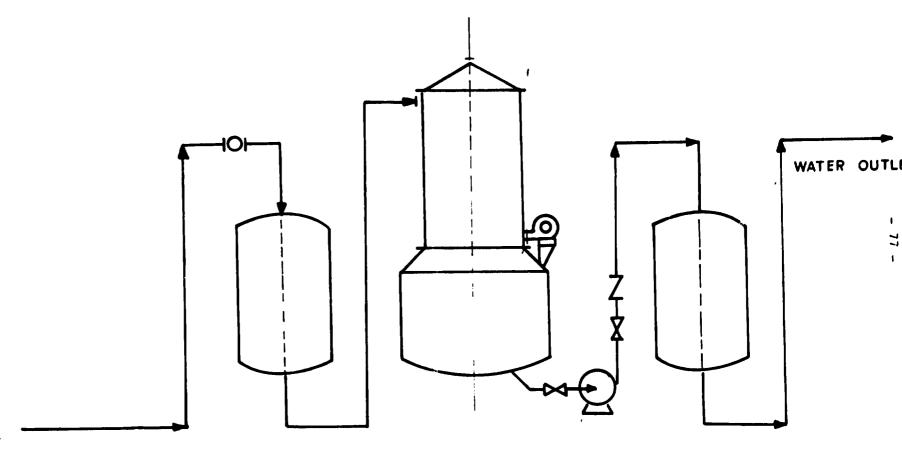

.

MANILA - AUGUST, 1988

•

.

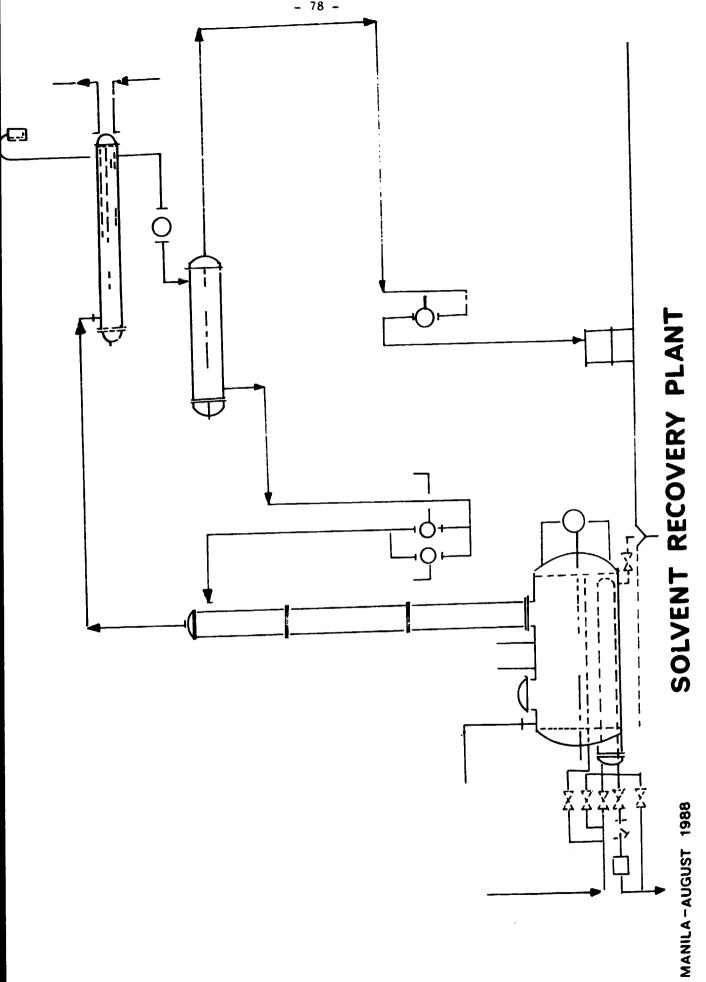

BETA-LACTAM PRODUCTION UNIT



ŧ,

MANILA – AUGUST, 1988

BRINE PRODUCTION UNIT


.

•

WATER INLET

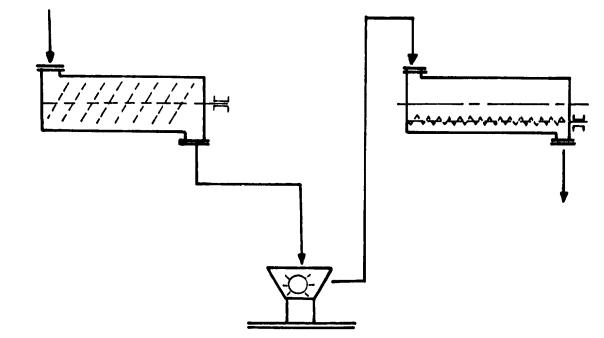
DEMINERALIZED WATER PRODUCTION UNIT

MANILA-AUGUST, 1988

•

٠

POWDER DRYING SECTION


DRYING

GRINDING

BLENDING

•

.

7.10 Equipment List

The main equipment needed for the production of semisynthetic Penicillins and Cephalosporins is as follows. •

•

•

•

Equipment	Number	Capacity	Material	Stirrer	Jacket
Reactor Reactor	1 3	2,000 lt 5,000 lt	stainless steel s.s.	scraper turbine	nitrogen cooling yes
Reactor	2	4,000 lt	5.5.	one anchor one turbine	yes Yes
Reactor	i	1,000 It	5.5.	impeller	yes
eartor	í	1,000 - 1	gisas line	d	
Tan!.	2	14,000 lt			
Tank	1	200 lt	5,5.		
Plate filter	1	7 sq.mt.			
Fress filter	1	4 sq.mt.			
Centrifuge	2	🖋 1500 mm	5.5.		
Fluid bed drier	2	3.5 cu.mt.	5.5.		
Distillation colomn	2		5.5.		
Demineralize	- 1				
Refrigeration	n unit				
Boiler	1				
Cooling towe	- 1				

Minor equipment is not listed, but it will be considered for the investment. The vacuum insulated evaporator for storage of liquid nitrogen, could be locally rented. (Consolidated Industrial Gases Inc.)

7.11 Locally Available Equipment

In the Philippines, there are some producers in a position to supply stainless steel reactors and tanks. The production of the reactors requires several connections and welding of the stainless steel whereau the production of tanks is less sophisticated. The long term resistance of the local reactors as yet has not been fully proved.

For this reason, we think that tanks could be produced locally, whereas for the reactors it would be more advisable to be imported.

Pipes are locally produced but only in carbon steel and not in stainless steel, as required for the plant. With some exceptions control equipment should be imported. Good engineering companies, locally evailable, are in a position to prepare the project and to make the detailed engineering. They can also supervise of the local engineering. They can also supervise of the local engineering and the piping. We suggest that local engineering companies be consulted in case of implementation of the prepart

7.12 Type of Utilities

For the production of the projected semi-synthetic Penicillins and Cephelosporins the following utilities at the average label.

Steam	at 5 Kg/cm2
Reine	at — 30 C
Deionized water	
Electric power	at 380 V
Liquid nitrogen	

7.13 Buildings

For the production an area of 300 sq.m. for the building is required; the building would consist of two floors; in the upper one are placed, the reactors whereas the lower one houses the centrifuges. The surface of the upper floor should be about 70 sq. mt. The total surface includes the powder area where drying. grinding and sleving is performed, a laboratory for inprocess controls, lockers room, W.C. etc. As to the wareform, a covered asreconditioned building of 300 sq.mt. is required; this building is to be divided into two parts, one for raw materials and one for the finished products. We suggest that civil works should be locally plenned and realized, since good local construction capabilities have been identified. The civil works will have a concrete structure with repriforced concrete columns. It is essential to take into consideration the possibility of earthquakes. The walls will be in bricks and covered in light concrete prefabricated elements or equivalent.

7.14 Quality Control, Engineering Services, Warehouse, Administration.

The new expansion of the plant should take into consideration the new needs for the services from both points on view of equipment and personnel. In this section we will consider the increment of equipment for both plants of semi-synthetic Penicillins and Environmycin derivatives, (sec 7,16) whereas the personnel increment: will be considered separately. The additional personnel required could be summarized as follows:

7.14.1 Technical Services

- o.1 senior laboratory technician
- n.1 inspector for quality control
- n.2 laboratory technicians.

7.14.2 Engineering Services

- n.1 utilities operator
- n.2 mechanics/electrician

7.14.3 Warehouse

n.1 supervisor n.1 stock clerk n.3 warehouse aides.

7.14.4 Administration

n.2 clerks

For manpower qualification see 7.15

7.15 Manpower Type and Qualification

The plant will be run on a three shifts basis.

We suggest that the following manpower should be available:

n.1 plant manager

- n.4 supervisors
- n.8 senior production technicians
- n.12 production technicians
- n.6 production aides.

As to the qualification of manpower our suggestions are:

- The plant manager should have a master degree in chemistry, experience in running a plant and management capabilities. If not locally available we suggest that for a cartain period of time (minione year) he should be flanked by one expatriate to gain experience in managing a chemical plant.
- The supervisor should have a masters degree in chemistry and technical experience in running a chemical plant. This experience could be gained by working in the Chemfields plant for instance. If an experienced one is not available, a master degree should be trained by working for a period of a months to one year in a fine chemicals plant abroad.
- The senior production technicians should have a serie depict in chemistry and chould nave product some practical experience in a fine chemical oduction. It rise even and use contained for a period (sit months) or at Chemfields plant or better abroad in a fine chemicals producing plant.
- The production technicians should have a bachelor degree in chemistry; for them a more limited experience is required since they will work together with the senior production technicians and could gain experience locally.
- For the production aides no previous emperience is required.
 The additional man power for the technical service department (see 7.14) should possess the following qualifications:
- The senior laboratory technicians should have a master degree in chemistry and a specialization in analytical chemistry with experience in the use of modern techniques such as gas chromatography. U.V. spectroscopy, HPLC. If the experience required is not available they should be trained for three-four months in the analytical department of a reputed Pharmaceutical Company.
- The Quality Control Inspector should have a master degree in chemistry and be familiar with the quality control procedures. If an experienced one is not available he should be trained for a six months period in the quality control department of a reputed Pharmaceutical Company.

 The laboratory technicians should have a bachelor degree in chemistry and some experience in chemical syntheses. If not available the, might be trained in the Chemfields laboratory for synthesis.

The additional manpower for the engineering department (see 7.14) should possess the following qualification:

The utilities operator should have some knowledge of the use and regulation of the various utilities; he could be trained locally. The mechanic/electrician are qualified workers who might be locally available. The additional manpower for the warehouse and the administration is locally available and could be hired without difficulty.

7.16 Investments

The invostments reported, hereunder have been calculated to give only an idea of the order of magnitude of the investment. The reported righters do not include the land cost. The investment for the utilities (refrigeration unit, cooling tower, boiler, demineralizer, distillation columns) take into account also the utilities needed for the the Erythromycin and Rifampicin plant which will be located in the same factory. Some spare capacity being already available in the Chemfields plant for some utilities, the capacity to be unstalled will be lower than the total capacity required.

The procestment is estimated at:(in US \$)

Plant

Flant Souiseet (toopposide tion is aludud)	2,350,000
Equipment (transportation included) Erection (piping, mounting, electrical par	ts,
instrumentation, insulation,	
paintings etc.)	2,350,000
Engineering 7%	330,000
Assistance to the erection 7%	330,000
Cost of technology	165,000
Training of personnel	100,000
Laboratory equipment (additional)	120,000
Buildings	

Main building	70,000
Warehouse (air conditioned)	85,000
fotal	5,900,000

Since a satisfactory technology for Ampicillin. Amoxycillin and Cloxacillin is already available in the country, the cost of technology includes only Cephalemin. We assume that the import of machinery and equipment for the new plant will be exempt of import duties and taxes.

7.17 Production Cost

For the evaluation of the cost of production, two different options are taken into consideration for Ampicillin, Amoxycillin, and Cloxacillin (antibiotics derived from 6-APA).

 the use imported 6-APA (at 65 \$, 10% freight, insurance, etc. included)
 the use of 6-APA produced locally.

For the calculation of the production costs we assume that the plant will be operating at full capacity to be probably reached tonee years after the start-up.

The raw materials cost includes freight ins appeared other expenses evaluated at about 10% of the cost.

The production cost# include raw metorials, utilities. We0power and general expenses (in US \$)

Ampicillin (with imported 6-APA)	 t
With 6-AFA produced locally	62
Amoxycillin (with imported 6-APA)	76
With 6-AFA produced locally	<u>, , , , , , , , , , , , , , , , , , , </u>
Dane Sait	22
Cloxacillin (with imported 6-APA)	70
With 6- AFA produced locally	62
uephalexin (1997)	149

For the calculation of the manpower, we have used a simplified criterion: the total amount of manpower cost for one year considering 1) a 13 month salary and 2) that cost to the company is the double of the salary received by the employee) was divided by the total output of the plant at full capacity to obtain the manpower incidence per Kg. of antibiotic produced. In this calculation, the Dane Salt was not considered; its production being simple and the batch quantity being large, we have assumed a manpower incidence of 0.5 /Kg ; (hus value take into consideration some elements which could have not been considered in the calculation of the total cost of manpower, General Expenses are globally estimated at UC \$ 188,000, a rather conservative evaluation which includes the incremental auxilliary services such as quality control, engineering services, warehouse, administration etc.

For the raw materials we have assumed that they are imported exempt of customs duties and taxes.

7.18 Economic Considerations

In the Philippines like in the other developing countries, in order to stimulate new investment in this field, it is advisable that incentives should be granted to improve the economics of the different projects.

Among the various incentives which could be granted, three are especially connected with the manufacturing cost and the selling prices of the locally manufactured product:

- Exemption of import duties on machinery, equipment and raw materials
- 2. Tariff protection
- 3. Income tax exemptions

We suggest that these incentives should be granted to the new potential bulk pharmaceutical provide on, also because it is of strategical importance for the health situation of the country.

In the following economical considerations we make the following assumptions:

a tarify protection will be granted
 a tax exemption will be granted
 income tax exemption will be granted

As to the depreciation, we assumed it as a straight line one for a 10 years period, for both equipment and buildings(1).

As a first approximation we have calculated the depreciation per kilogram by dividing the annual depreciation by the quantity produced at full capacity, that is 74 tons. For the semi-synthetic Penicillin plant the incidence per Kg results to be 8 US \$ / Kg.

The production cost, including depreciation will be: (\$ per Kg.)

Ampicillin	(with	imported 6-AFA)	79
	(with	local 6-APA)	70
Amoxycillin	(with	imported 6-APA)	84
,	(with	local 6-APA)	74
Cloxacillin	(with	imported 6-AFA)	78
	(with	local 6-APA)	70
Cephalexin			157

(1) Although buildings could be depreciated for 20 years, due to the relatively small value, we have left all at 10 years.

(2) The present international market prices are (in US =):

Ampicillin	· · · · · · · · · · · · · · · · · · ·
Amexveillin	85-90
Cloxecillin	SG-95
Cephalexin	180-190

The present selling prices of Chemfields are (per kg.): (3) in Pesos in US \$ Ampicillin 2200 104 Amoxycillin (to the Government) 2250 107 (to private Companies)2750 131 Cloxacillin 3000 143

The economic calculation which follows take into account the quantities representing the production at full capacity:

Ampicallin	35	tons
3+>≥ycillin	30	tons
Closec:llin	3	tons
Cephalexin	6	tons
	-	
lotal	74	tons

- (2) 1958 Prices
- (3) Exchange rate at 1 US \pm = 21 P

In the following table we report some figures concerning the production cost, the sales which with different hypotheses and the corresponding profits.

We have considered the following sales prices for comparative purposes:

- The products are sold at the international prices plus 20 % which includes freight, insurance, custom duties and the value added taxes.
- 2. The products are sold 10 % higher than the international prices, assuming that a 10% advantage would to applied.
- 3. The products are sold 20 % higher than the international prices, assuming that a 20% advantage would be applied.
- The products are sold at the present Chemicaldo selling prices.

- - the price applied to the private sector.

The total yearly gross prifits are also reported.

DOST, SHEES	ANG:	6R055	PROFIT	WITH	INPORTED	6-APA	AND:	7-ADCA

	Ampicillia		Amc=ycillin	Cloxacillin	Cephalexin	TUTAL
Total Production						
cost (\$ x 000)	2,765		2,520	234	942	6,461
1)Sales	2,940		3,060	324	1,2%	7,620
(\$ x 000)	(70\$+201)		(254+203)	905-201	(1904+207)	
Profit	175		540	90	354	1,159
2)Sales (+10 % pr						
international prices!	3,185		3,315	351	1,404	8,255
(\$ * <u>000</u> ;	(70\$+302)		(855+30%)	(90\$+30%)	(1854+302)	
Profit	420		202	117	462	1,794
3)Sales (+20 % on						
International prices	7,470		2.570	378	1,512	8,8%
(5 x 000)	(705+402)		(855+4)7)	(90\$+40%)	(180\$+407.)	·
Prefit	605		1,050	144	570	2,429
4)Sales at Cnewfields	3,640	A)	3,210	429	1,250 \$	A) 8,575
Selling price	(104\$)		(107\$)	(1435)	(180\$+207.)	
		5)	3,930			8) 9,295
		-,	(131\$)			-, -,
Profit	875	A)	690	195	354	A) 2,114
******	0,0	B)	1,410	* 1 V	VV T	B) 2,834

International Prices

From these figures the estimated profit on sales could be as follows:

Hypothesis 1 15.27 Hypothesis 2 21,77 Hypothesis 3 27.37 Hypothesis 4 27.77 (50 % of the production sold to the Government)

.

.

Hyphotesis 1 5.1 years Hypothesis 2 0.3 years Hypothesis 3 2.4 years Hyphotesis 4 2.4 years

The above calculatiosn have been elaborated to give a rough indication of the economics of the project. A more in-depth analysis should be initiated.

We strees again the fact that the preliminary calculations are based on the following assumptions:

- the machinery and equipment are imported, except of taxes and tariff duties
- The naw materials are imported exempt of takes and takes until
- the plant operatos at full capacity
- The imported Ampirillin, Amorgaillin, Clo Alter and Lephalezin are subject to customs duties and income takes

we suggest that the bovernment should take a commitment to buy a part of the production for all the corresponding antibiotics purchased for the RHUs.

 In hypothesis 2 and 3 a 10 or 20% advantage on selling prices is given to the local production.

Calculations based on the assumption of local production of 6-APA will be dealt with in the report of the Expert in fermentation and will be based on the above reported figures for productions costs, investments and market prices.

In annex one some more economics on the semi-synthetic Fenicillins are reported.

This plant, included in the list of the proposed options, should be implemented only in case the option concerning the Penicillin fermentation plant is carried on.

The main use of Penicillin 6 or V according to this project, is to produce 6-APA to provide enough starting material for the local production of semi-synthetic Penicillins with significant economies. The projected output of the plant at full capacity will be 110 tons per year of 6-APA. The technology should be supplied together with the ones concerning Penicillin fermentation and recovery.

8.1 6-Aminopenicillanic acid (6-APA)

6-AFA is the starting material for the production of scenesyst! We Fenicalling and in $p \geq 1$ and according to one of the proposed options, of Ampicilia, Amorycillin and Cloxacillan.

It is any hoteric having in the molecule a carboxylic and an amino group. Its formula is:

CH NOS 81223

m.w. 216.28

6-AFA is prepared by chemical or enzymatical splitting of the amide group of Penicillin G or V with removal of the side chain.

H20 CHCHCO-NHCHNOS -----> CHCHCUOH + CHNOS 652 8113 652 81223 PENICILLING PHENYLACETIC 6-APA ACID

The proposed method is the enzymatic one which is the more economical.

Determination of the daily output

For the production of 110 tons in 260 working days. a 425 kg daily output is needed. This output will be obtained in three batches per day, each batch being of 142 kg.

Principle of Method

Splitting of the side chain of Penicillin G with supported enzymes.

Description of the Method

Penicillin G is suspended in detorized water, brought into solution by addition of alkali and the solution transferred into a reactor containing the supported enzyme; under stirring the reaction is carried on with continuous addition of alkali to control the Fh value. When the reaction is over the enzyme is filtered, methylisobutylketone is added, the Ph modified by addition of acids and the precipitated 6-AFA filtered, washed with acetone and dried. From the mother liquore phenylacetic acid is recovered.

<u>Yields</u>

Theoretical yield	93%
Weight yield	54%

Raw Materials

Hereunder are the list of the main raw materials for one batch of 142 kg and the corresponding quantities for one kg of 6-APA.

A 80% recovery yield for butylacetate and 70% for acetone is considered.

Potassium Penicell			263	kg			1.85	ka
Supported enzymetic	;		203	kg			1.85	ka
Acetone	(120	kg)	37	kg	(0.84	ka)		
Butylacetate	(210	kg)	43	ka	(1.48			
Hikalı		-		-				
Acids 💊								

(1) The supported enzyme loses some activity during each batch. The total quantity of the supported enzyme consumption is three to four Kg. per ton of 6-AFA produced.

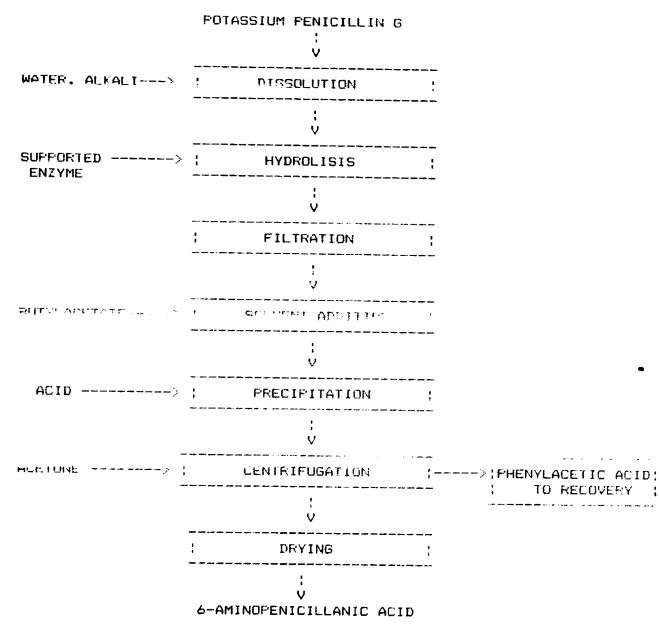
Utilities for one batch of 142 kg

Electric	power	900 kwh
Steam		10 Kcai

Production plant and equipment list

See 8.4 and 8.5

Manpower


See 8.10

•

•

.

.

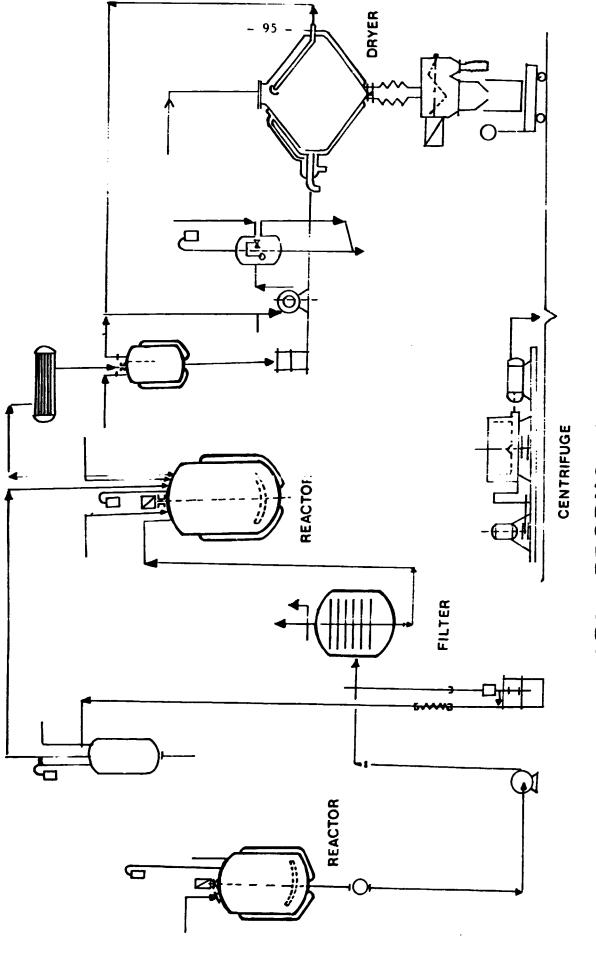
6-AMINOPENICILLANIC ACID FLOW CHART

- 93 -

8.2 Waste Treatment

Wastes from the plant are essentially liquid wastes. They will be trated together with the main liquid effluents from the Penicillin production plant.

8.3 LOCATION OF THE PLANT


The plant for 6-APA production should be located near the fermentation plant for the production of Penicillins.

The main reasons are:

- being a beta-lactam product it must be isolated from other chemical productions for cross-contamination reasons to fit the "Good Manufacturing Practice" rules.
- 2) The starting material for its preparation being Penicillin 6 or V, the location of the 6-APA plant in the same place where Penicillins are produced avoid transportation to other plants and simplify the burgcratic procedures.
- 3) The butylacetate extract contains phyenylacetic acid (from Penicillin 6) or phenoxyacetic acid (from Penicillin V). These valuable intermediates could be directly recovered whithout previous isolation.
- 4) The solvent for extraction is the one used for Ferricillin extraction; it can be added for recovery to butylacetate from the Ferricillin recovery and the same tanks could be used, avoiding the need for different ones.

8.4 Description of the Plant

The proposed plant consists essentially of one reactor for the dissolution of Penicillin, one reactor for the enzymatic hydrolysis and two crystallizers. The isolation of 6-AFA is carried out by centrifugation. Some tanks for acid and alkali addition, as well as a drier and a grinder are needed together with some minor equipment. Solvent come from external tanks through metering pumps. The utilities, would be those used in the fermentation plant.

6-APA PRODUCING PLANT

MANILA - AUGUST, 1988

8.5 Equipment List

The main equipment needed for the production of 6-APA is as follows:

Equipment	Number	Capacity	Material	Stirrer	Jacket
Reactor	1	2,000 lt	stainless steel	impeller	
Reactor	1	3,000 lt	5.5.	scraper	yes
Reactor	2	8,000 lt	5.5.	scraper	·
Tank	2	15,000 lt	5.5.		
Filter	1		5.5.		
Contrifuge	1	1200 mm	5.5.		
Fluid bed dri	e: 1	500 it c	apacity		

8.6 Locally Available Equipment

see 7.11

8.7 Type of Utilities

For the production of 6-APA the following utilities are requested:

Demineralized water

Brine at -30 C

Steam at 5 Fg/cm2

Electric power at 380 V

8.8 Buildings

The production unit will be located in the same building where the recovery of Penicillin takes place. (See the fermentation Expert's report)

8.9 Quality Control, Engineering Services, Warehouse, Administration

The 6-APA production requires the following increase of the personnel already available in the Penicillin production plant.

T.

8.9.1 Technical Services:

n. i analyst
n. 1 laboratory technician

8.9.2 Warehouse :

n. 2 warehouse aides

8.9.3 Administration:

n. i clerk

As to the other services, the already existing manpower could face all the needs.

For the manpower qualification see 7.15

8.10 Manpower, Type and Qualification

The plant will be run on a three shifts basis.

We suggest the following manpower:

- n. 4 supervisors
- n. 4 senior production technicians
- n. 4 production technicians
- n. 4 production aides

For the qualifications of the manpower see 7.15

8.11 Investment

The investments reported hereunder have been calculated to give only an idea of the order of magnitude. The figures do not include buildings, since the plant will be located in the same building where the recovery of Penicillin takes place. We do not consider investments for the utilities, since they constitute only a small part of the ones used for the Penicillin production and as they are included in the investment for Penicillin.

The investments are estimated as follows:

	(in US \$)
Equipment	730,000
Erection (piping, mounting, electrical parts instrumentation, insulation, painting, etc.)	5, 730,000
Engineering 7%	35,000
Assistance to the erection 7%	35,000
	1 570 000

Total 1,530,000

In the investment we have not taken into account, the cost of technolog and the training of personnel which would be included in the investment for the Penicillin plant. We assume that the import of machinery and equipment for the new plant is exempt of customs duties and taxes.

8.12 Production Cost

The local production of 6-APA from Penicillin could be interesting only if a Penicillin production is started in the Philippines. For this reason the evaluation is made using the production cost of Penicillin which could be reached in case of local production. The production cost results to be 56 US \$/Kg including raw materials, utilities, manpower, and general expenses. The present market price for 6-APA is around 60 % / Kg.

The raw materials costs include freight, insurance and other expenses evaluated at about 10% of the cost.

For the calculation of the manpower incidence, we have used the criterion indicated at point 7.17. General expenses are globally estimated at 110,000 US\$, contributing to the total amount of general expenses of the Penicillin production plant. We evaluate this figure conservative to include the incremental auxillary services such as quality control, engineering services, warehouse, administration etc. devoted to 6-AFA production. As to the raw materials we assume that they are imported, exempt of custom duties and taxes.

8.13 Economic Considerations

Calculations based on the assumption of local production of 6-APA will be dealt with in the report of the Expert in fermentation and will be based on the above reported figures for production costs, investments and market prices. As to the depreciation, assuming it has a straight line for a ten years pariod, by dividing the ardepreciation by the annual production at full capacity, it results to be 1.5 \$ / Kg.; the 6-APA cost including depreciation results to be about 58 \$.

9. THE ERYTHROMYCIN DERIVATIVES AND RIFAMPICIN PRODUCTION PLANT

The purpose of the proposed plant is to transform Erythromycin base which could be produced according to one option in a multipurpose fermentation plant, into the derivatives stearate and ethylsuccinate, which are the most common derivatives used in the medical practice together with the free base.

We do not take into consideration the estolate because only one multinational company is salling this product as specialty but will consider the thiocyanate which is used only in the veterinary field with a not very high consumption but still of some interest.

Another option could be the production of Erythromycin derivatives starting from imported Erythromycin base in case the project for its local production is not implemented or before the start-up of the fermentation plant. In this case the margin will be lower but it bes the advantage to train people in this new technology.

The other antibiotic which will be produced in the plant is Rifampicin using as a starting material B-formylrifamycinSV; should Rifamycin B be produced in the multipurpose fermentation plant, the chemical production of B-formylrifamycin SV from Rifamycin B should be examined in detail.

At the beginning, in the period in which locally made Rifampicin is not yet available, we propose its production from an advanced intermediate, 8-formyl-rifamycin SV, available in some countries like China etc., in order to be acquainted with the production and gain some experience with the chemistry of this expensive antibiotic.

The different antibiotics will be produced in successive cycles e.g. three months Erythromycin stearate, two months ethysuccinate etc. The production program will be prepared according to the market requirements.

All these technologies are not presently available in the Philippines and should be obtained from external sources.

9.1 Output of the Production Plant

The proposed plant consists essentially of two reactors, the larger having a capacity of 4,000 and the other one of 15000 liters. With such reactors the output of each batch will be :

Erythromycin stearate:125 Kg.Erythromycin ethylsuccinate:165 kg.Erythromycin thiocyanate165 Kg.Rifampicin330 kg.

9.2 Erythromycin Derivatives

The projected quantities of Erythromycin derivatives are 25 tons per year. We propose the following subdivision into the three derivatives:

Erythromycin	stearate	11	tons
Erythromycin	ethylsuccinate	11	tons
Erythromycin	thiocyanate	Z	tone

In case of need it is possible to shift from one product to another, the total yearly production not being affected.

<u>9.3 Erythromycin Stearate</u>

Erythromycin stearate is a derivative of Erythromycin, used in the pharmaceutical solid forms (tablets). The structure of Erythromycin consists of a large ring (erytronolide) to which one sugar (cladinose) and one aminosugar (desosamine) are attached: it belongs to the family of macrolides (large ring) antibiotics; the stearic moiety salifies the amino group the structure being:

> C H NO . CH (CH) COOH 37 67 13 3 2 16 m.w. 1018.39

Determination of the Number of Batches

For the projected plant, the batch dimension will be 125 Kg. The producion of 11 tons requires 88 batches.

Salification of Erythromycin with stearic acid.

Description of the Method

Erythromycin base is dissolved in acetone and stearic acid is added. After treatment with activated carbon, the Eryhtromycin stearate is precipitated with water, isolated b, centrifugation, washed and dried.

<u>Yields</u>

Theoretical yield	92.6 %
Maria Maria	/2.0 /.
Weight yield	126.0 %

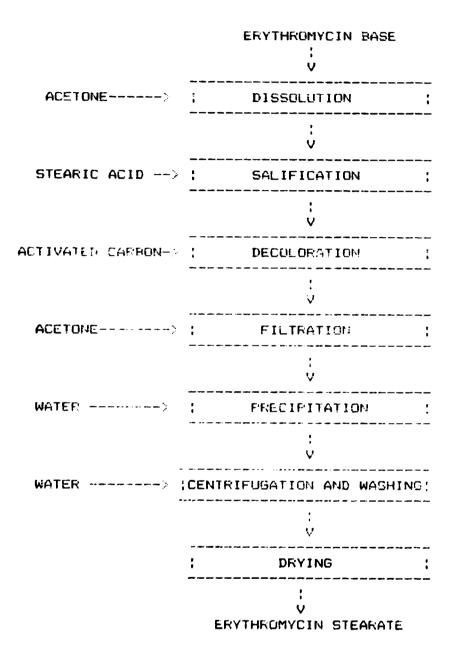
Raw Materials

Hereunder are listed the main raw materials needed for one batch of 125 Kg. and the corresponding quantities for one Kg. A 60% recovery yield for acetone is considered.

Erythromycin base	2	9 9	Ka		0.79	¥ 0
Acetone	(320 Kg.)	125	Ka	(2.56 Kg)		r⊼g Ka
Stearic Acid			Kg	(2005 Ng)	0.35	
Activated carbon		2	Kg.		0.016	· · · 7

Main Utilities for a 125 Fo Batch

Electric	power	275	L
Steam	1.3		Kcal


Production Flant and Equipment List

See 9.10 and 9.11

Manpower

see 9.16

ERYTHROMYCIN STEARATE FLOW CHART

9.4 Erythromycin Ethylsuccinate

Erythromycin ethylsuccinate is an ester derived from Erythromycin, its main use being in the pharmaceutical liquid forms (suspensions). The structure of Erythromycin consists of a large ring (erytronolide) to which one sugar (cladinose) and one aminesugar (desosamine) are attached; it belongs to the family of macrolide (large ring) antibiotics. The ethysuccinoy! moiety esterfying one hydroxy group, its structure being:

> C37H66N012 --O CO -(CH2) - COOC2H5 2 m.w. 862.06

Determination of the Number of Batches

For the projected plant the batch dimension will be 165 Kg. The production of 11 tons requires 67 batches.

Principle of the Method

Esterification of Erithromycin with Ethylsuccinoyl chloride

Description of the Method

The Erythromycin base is dissolved in acctance and treated with ethylsuccinoyl chloride in the presence of alkali. After filtration of salts formed in the reaction, the Erythromycin ethylsuccinate is precipitated with water and isolated by centrifugation. The purification is effected by suspension in aqueous acctone, followed by isolation of the product by centrifugation, washing and drying.

<u>Yields</u>

Theoretical yield	72	7.
Weight yield	85	7

Raw Materials

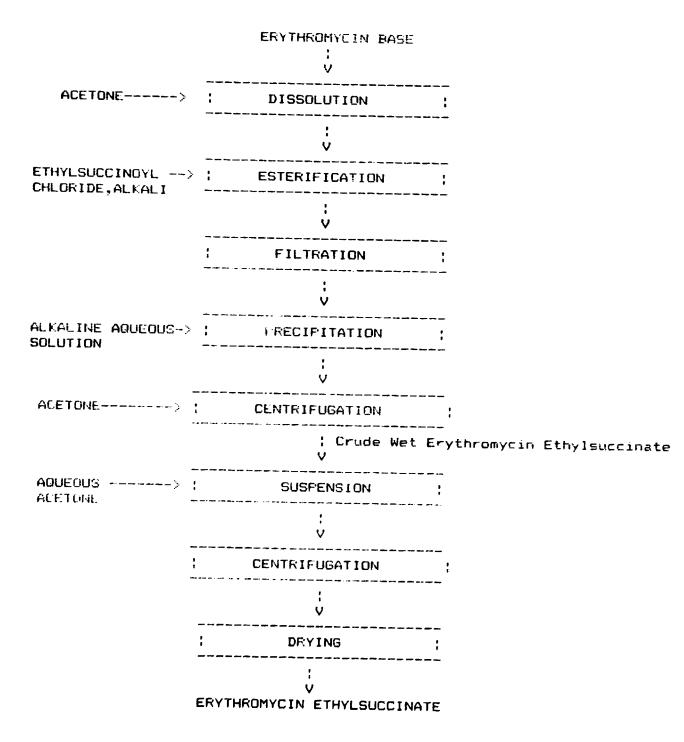
.

ά.

Hereunder are listed the main raw materials needed for one batch of 165 Kg. and the corresponding quantities for one Kg. A 60 % recovery yield for acetone is considered.

Erythromycin base		194	К	1.18 Eg
Ethylsuccinoyl chloride		53	Kg	0.32 Kg
Acetone (750	Kg)	300	Kġ	1.80 Kg
Alkali		112	Kg	0.68 Kg

Main Utilities for a 165 Kg. Batch


Electric	power		150	Kwh
Steam		1.6 ×		

Production Plant and Equipment List

see 9.10 and 9.11

Manpower

see 9.16

ERYTHROMYCIN ETHYLSUCCINATE FLOW CHART

9.5 Erythromycin Thiocyanate

Erythromycin thiocyanate is a derivative of Erythromycin which is mainly used in the veterinary field. In this derivative the aminogroup of desosamine is salified with thiocyanic acid, its structure being:

> C H NO . HSCN 37 67 13 m.w. 793.04

In some recovery processes, Erhytromycin is isolated as the thiocyanate thus this salt being the less expensive derivative available. The recovery process proposed by the Expert in fermentation is different since the base is the first product to be isolated.

Determination of the Number of Batches

For the projected plant, the batch dimension will be 165 Kg. The production of 3 tons requires 18 batches.

Principle of the Method

Salification of Erythromycin with potassium thiocyanate.

Description of the Method

The Erythromycin base is dissolved in an aqueous solvent and the salt is precipitated by addition of an aqueous solution of potassium thiocyanate. Water is added and Erythromycin thiocyanate is isolated by centrifugation, washed and dried.

Yields

Theoretical yield	95 %
Weight yield	100 %

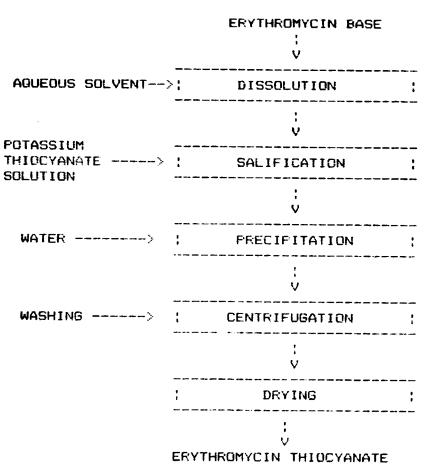
Raw Materials

Hereunder are the list of the main raw materials needed for the production of 165 Kg. and the corresponding quantities for one Kg. A 60 % recovery yield for the solvent is considered.

Erytromycin base Potassium thiocyanate Solvent (600		Kg Kg Kg	(3.6 Kg	i)	$1.0 \\ 0.145 \\ 1.5$	
---	--	----------------	---------	-----	-----------------------	--

<u>Main Utilities for a 165 Kg Batch</u>

Electric power	329 Kwh
Steam	10 ⁶ Kcal

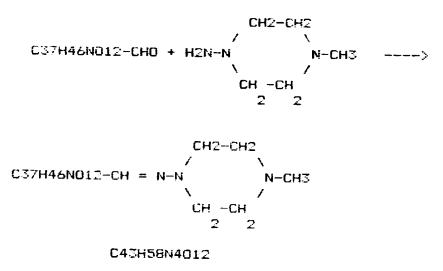

Production Plant and Equipment List

see 9.10 and 9.11

Manpower

.

see 9.16



ERYTHROMYCIN THIOCYANATE FLOW CHART

<u>9.6 Rifampicin</u>

Rifampicin is a semi-synthetic antibiotic derived from Rifamicin B through Rifamicin SV and the corresponding 8-formyl derivative. Its synthesis from Rifamicin E includes seven difficult steps the last one being the formation of the Schiff base between 8-formyl-rifamycin SV and 1-methyl-4-aminopiperazine.

The partial formulas for this step are the following evidentiating only the functional groups involved:

m.w. 822.96

According to one option, Rifamycin B could be produced in a multipurpose fermentation plant.Since Rifamycin B option is a long term one, we suggest that at least a partial synthesis of Rifampicin should be taken into consideration in the short term.

The advatages of such an option are:

- 1. to start being acquainted with the chemistry of the product
- 2. to achieve some economies
- 3. to save on foreign exchange

In this section the production of Rifampicin from 8-formyl-rifamycin SV is described.

Determination of the Number of Batches

For the protect of st. the batch domension will

be 330 kg. The production of 20 tons requires 61 batches.

Frinciple of the Method

Condensation of 8-formyl-rifamycin SV with 1-methyl-4-aminopiperatine.

Description of the Method

8-formyl-rifamycin SV is dissolved in acetoneethylacetate and 1-methyl-4-aminopiperazine is added. After the reaction has taken place, the resulting solution is slowly introduced into a mixture of acetone-ethylacetate and the resulting suspension is slowly cooled to complete the precipitation of Rifampicin, which is isolated by centrifugation, washed and dried.

<u>Yields</u>

Theoretical yield	93 %
Weight yield	103 %

Raw Materials

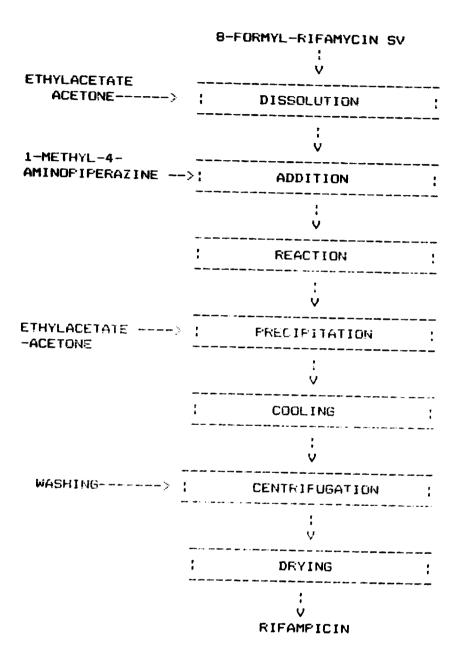
Hereunder are the list of the main raw materials needed for the production of 330 Kg and the corresponding quantities for one Kg.

8-formyl-rifamycin SV		320	Кg		0.97	ka
1-methyl-4-aminopiperazi	ine	54	Ko		0.167	Fg
Acetone-ethylacetate	(2000 kg) 600	Kġ	(6.1 Kg)	1.9	Kĝ

A 70% recovery yield for the solvents is considered. The mixture of acetone-ethylacetate is recovered by distillation restoring the requested composition by addition of the lacking component.

<u>Utilities for a 330 Kg. Batch</u>

Electric	power	220	Kwh
Brine at		-30	С


Production Plant and Equipment List

See 9.10 and 9.11

Manpower

See 9.16

RIFAMPICIN FLOW CHART

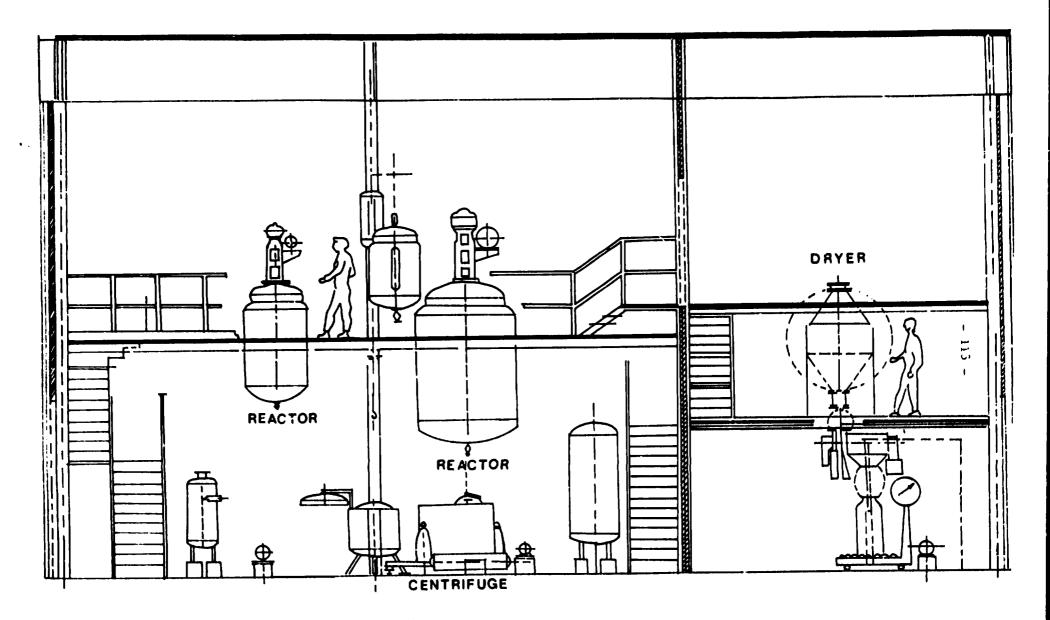
9.7 Utilization of the Plant

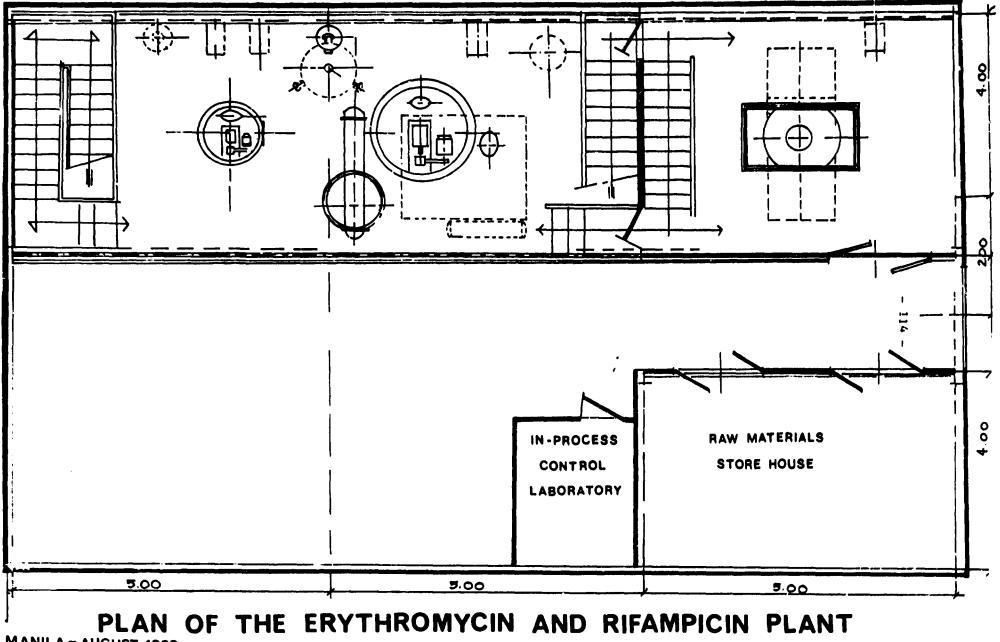
We have listed in the following table some data concerning the duration of the operations for the production of the projected products, the number of the batches required and the total time of utilization of the plant.

Product	Output per batch	Duration of each batch	Number of batches	Total Working days
Erythromycin stearate	125 Kg	1 day	88	88
Erythromycin ethylsuc	c. 165 Kg	1 day	67	67
Erythromycin thiocyan	. 165 Kg	1 day	18	18
Rifampicin	330 Kg	36 hours	61	90
Total				263

263 days correspond more or less to the number of working days per year in the Philippines. That means that when the plant will be fully operational it will be working busy the whole year. Additional capacity can be reached by working with two or three shifts per day depending from the product.

9.8 Waste Treatment


The quantities of solid waste are rather limited and are mainly composed from activated carbon. We suggest that they be burned or taken away. The liquid waste after neutralization, should be treated with activated sludges in the existing plant in the Chemfields factory.


9.9 Location of the Flant⁽¹⁾

The production for Erythromycin derivatives and Rifampicin has limited dimensions. For economic reasons consideration, we don't think it is advisable to erect a new complex.Should the Erythromycin plant be placed in a new factory, the investment would be much higher, roughly evaluated 1.5-2 times the proposed one, so the economics becoming unfavourable. We suggest that the plant be placed in the Chemfields factory in a new building, which should be separated from the one for

(1) the potential to generate or provide capital for this expansion should also be taken into account.

SECTION OF THE ERYTHROMYCIN AND RIFAMPICIN PLANT

MANILA - AUGUST 1988

beta-lactam (semisynthetic penicillins) production to avoid cross-contamination. The Chemfields plant has all the required facilities, an existing organization and a staff which has to be slightly increased to cope with the new needs. Some of the existing utilities have spare capacity, thus it will be possible to limit the investment.

9.10 Description of the Plant

The plant proposed for the production of Erythromycin derivatives and Rifampicin consisits essentially of two stainless steel jacketed reactors with stirring, one press filter (or in alternative a Sparkler type filter) one centrifuge and tanks for mother liquors. One drier (or in alternative a fluid bed drier) and equipment for orinding and sieving the product are also provided. Solvents come from external tanks through metering pumps. Deionized water is produced in a separate unit. For circulation centrifugal pumps are installed. As to the utilities see 7.9

9.11 Equipment List

The main equipment needed for the production of Er, omycin derivatives and Rifampicin is as follows.

Equipment	Number	Capacity	Material	Stirrer	Jacket
Reactor	1	4,000 lt	Stainless steel	Anchor	Ves
Reactor	1	1,500 lt	Stainless steel	Anchor	y⋸≘
Tank	1	2,000 It	Stainless steel		
Tank	1	1,000 lt	Stainless steel		· - ·
Tank	2	1,500 lt	Stainless steel		
Centrifuga] pump	2		Stainless steel		
Press Filter	i Fra	ame 500 x 500 mm	Stainless steel		
Centrifuge	1 Ø	1,200 mm	Stainless steel		
Drier	1		Stainless steel		
Scale	1	capacity			
Grinder	1				
Distillation column	٢				

9.12 Locally Available Equipment

see 7.11

9.13 Type of Utilities

For the production of the projected products, the following utilities should be available:

	2
Steam	at 5 Kg/cm
Brine Deionized water	at -30 C
Electric power	at 380 V

9.14 BUILDINGS

For the production unit a 200 sq. m. surface is needed, one part of the building having two levels to arrange the reactors (50 sq.mt). The surface includes the powder area where drying, grinding and sieving are performed, a small laboratory, looker rooms, W.C. etc. A 300 sq. mt., air conditioned warehouse divided into two parts for raw materials and finished products should also be provided.

building could be locally projected considering the good local capabilities available. The civil works will have a concrete structure with reinforced concrete columns. Walls will be in bricks and covering in light concrete pre-fabricated elements or equivalent.

<u>9.15 Quality Control. Engineering Services, Warehouse.</u> Administration

The new Erythromycin plant should take into consideration additional needs for services from both points of view of equipment and personnel. The additional equipment (in particular laboratory equipment) is considered in semi-synthetic Penicillins plant, but a certain portion of the investment is allocated here (see 9.17). The additional staff required for the Erythromycin plant is as follows:

9.15.1 Technical Services:

- n. 1 senior laboratory technician
- n. 1 quality control inspector
- n. 2 laboratory technicians

9.15.2 Warehouse :

- n. 3 warehouse aides
- n. 1 supervisor
- n. 1 clerk

9.15.3 Administration:

n. 1 clerk

For the manpower qualification see 7.15

9.16 Manpower Type and Qualification

In some cases, the plant will be running on three shifts a day basis.

We suggest the following manpower:

n.i plant manager

- n.4 supervisors
- n.4 senior production technicians
- n.4 production technicians
- n.4 production aides

For the manpower qualification see 7.15

9.17 Investment

The investment level has been calculated to give an idea of the order of magnitude rather than to provide a precise figure. In the reported figures the land cost is not included. The investments for the equipment concerning some utilities such as a brine plant, steam plant, a new solvent recovery plant etc., will be considered in the part concerning semi-synthetic Penicillins which we suggest volume be placed in the Chemfields factory.

An investment has been considered for the laboratory equipment (see 9.15).	additional
The investment figures are:	
Plant	In US \$
Equipment (transportation Included) Erection (Piping, mounting, electrical parts,	400,000
instrumentation, insulation, painting etc.)	400,000
Engineering 7%	60,000
Assistance to the erection 7%	60,000
Cost of Technology	300,000
Buildings	
Plant	50,000
Warehouse (air conditioned)	85,000
Laboratory equipment (additional)	105,000
Sub-total	1,460,000
Training of Personnel	70,000
Grand Total	1,530,000

9.18 Production Cost

For the evaluation of the production costs, two different options are taken into consideration:

- i. The use of imported starting material; (erythromycin base at 105\$,10% freight, insurance etc. included) (8-formyl-rifamycin SV at 190\$, 10% freight, insurance etc. included)
- 2. The use of starting material produced locally.

For the calculation of the production cost, we have assumed that the plant is operating at full capacity (the full potential capacity will be probably reached three years after the start-up of the plant).

The raw materials costs include freight, insurance and other expenses evaluated at about 10 % of the cost. The production costs include raw materials, utilities, manpower and general expenses(\$ / Kg) Erythromycin stearate(erythromycin at 65\$)62Erythromycin at 105 \$ (10% freight,etc.included)94Erythromycin ethylsuccinate (erythromycin at 65\$)95Erythromycin at 105 \$ (10% freight,etc.included)140Erythromycin thiocyanate(erythromycin at 65\$)Frythromycin at 105 \$ (10% freight,etc.included)10Erythromycin at 105 \$ (10% freight,etc.included)110Rifampicin110

Due to lack of reliable information, we assume that a reasonable figure for cost of locally produced 8-formyl-rifamycin SV is 130 \$/Kg. 8-formyl-rifamycin SV at 130 \$ 141 8-formyl-rifamycin SV at 190 \$ 195

For the calculations of the manpower incidence we have used the criterion indicated at point 7.17. General Expenses are globally estimated at 90,000 \$. We think that this figure is large enough to include the incremental auxillary services such as quality control, engineering services, warehouse, administration etc. devoted to the Enythromycin and Rifampicin production. For the raw materials we assume that they are imported, exempt of customs duties and taxes.

9.19 Economic Considerations

As already mentioned, in order to stimulate new investment in the pharmaceutical field it is advisable that incentives be granted to improve the economics of the different projects. Among the various incentives which could be granted, three are especially connected with the manufacturing cost and the selling price of the locally manufactured products which are:

- exemption of import duties on machinery, equipment and raw materials
- 2) tariff protection and
- income tax exemption.

We suggest that these incentives should be granted to the new potential bulk pharmaceutical production, also because of its strategic importance for the health situation of the country. In the economic considerations we make the assumption that all the three incentives will be granted. As to the depreciation, we assume it has a straight line one for a 10 year period for both equipment and buildings (1). As the first approximation we have calculated the depreciation per kilogram by dividing the annual depreciation by the quantity produced at full capacity, that is 45 tons. For the Erythromycin derivatives and Fifampicin plant the incidence per kg, results to be about 4 \$/kg.

----(1) Although buildings could be depreciated for 20 years, due to the relatively small value, we have left all at 10 year

The production cost including depreciation will then be (\$ per Kg.) Erythromycin stearate **7**8 (with imported erythromycin) 66 (with local erythromycin) Erythromycin ethylsuccinate 144 (with imported erythromycin) 99 (with local erythromycin) Erythromycin thiocyanate (with imported erythromycin) 114 74 (with local erythromycin) 199 Rifampicin (with imported 8-formyl-Rifamycin SV) 145 (with local 8-formyl-rifamycin SV) (1)The present international market prices are (in US \$): 95-100 Erythromycin 80-85 Eryhtromycin stearate 130 - 135Erythromycin ethylsuccinate 85-90 Erythromycin thiocyanate

> In the following table, we report some figures concerning the production cost, the sales value with different hypotheses and the corresponding profits. We have considered the following sales prices for comparative purposes:

190- 220

- the products are sold at the international prices plus 20% which includes, freight, insurance, custom duties and the value added tax
- the products are sold 10 % higher than the international prices, assuming that a 10% advantage would be applied
- 3.) the products are sold 20 % higher than the international prices, assuming that a 20% advantage would be applied

Total yearly gross profits are also reported

(1) 1988 Prices

Rifampicin

	Erythrosycin stearate	Erythronycin ethylsuccinate	Erythronycin thiocyanate	Rifampicin	TOTAL
Total Production			****		
cost (\$ x 000)	1,078	1,584	342	3,980	6,859
1)Sales	1,122	1,782	324	4,560	 7,758
(\$ x 000)	(85\$+207)	(135\$+202)	(90\$+207)	(190\$+202)	•
Profit	44	198	-18	580	864
2)Sales (+10 % on					
international prices)	1,215	1,930	351	4,940	8,436
(\$ x 000)	(85\$+307)	(135\$+30%)	(90\$+307)	(1905+307)	•
Profit	137	346	9	950	1,452
3)Sales (+20 % on					
international prices)	1,309	2,079	378	5,320	9,098
(\$ x 000)	(85\$+407)	(135\$+43%)	(905+40%)	(190\$+40%)	
Frofit	231	495	36	1,340	2,102

COSTS, SALES AND GROSS PROFITS WITH IMPORTED ERYTHROMYCIN AND 8-FORMYL-RIFAMYCIN SV

.

.

٠

From these figures the estimated profit on sales could be as follows:

Hypothesis 1 8.3% Hypothesis 2 17.2% Hypothesis 3 23.1% The corresponding pay-back periods are: Hypothesis 1 1.9 years Hypothesis 2 1.1 years

Hypothesis 3 0.7 years

From the above figures it emerges that the profit on sales is not high but still acceptable and the pay-back period is relatively short because the investment is rather limited.

The above calculations have been elaborated to give a rough indication of the economics of the projects. A more in-depth analysis should be initiated.

We stress again the fact that these preliminary calculations are based on the following assumptions:

- the machinery and equipment are imported, exempt of taxes and tariff duties
- the plant operates at full capacity
- the imported Erythromycin derivatives and Rifampicin are subject to custom duties and income taxes.
- in the hypothesis 2 and 3 a 10 or 20 % advantage on salling prices is given to the local production.

We suggest that the government should take a commitment to buy a part of the production for all the corresponding antibiotics purchased for the RHUs. Calculations based on the assumption of local production of Erythromycin and Rifamycins B will be dealt with in the report of the Expert in fermentation and will be based on the above reported figures for the production costs, investments and market prices.

In annex two some more economics on the Erythromycins and Rifampicin plant are reported.

10. THE TETRACYCLINE HYDROCHLORIDES PRODUCTION PLANT

The plant for production of the hydrochlorides of Tetracycline and Oxytetracycline is proposed in order to transform the free bases which should be obtained in the proposed multipurpose fermentation plant, into the hydrochlorides which are the commercial salts.

Since the free bases have only a very limited use, this plant is essential in case the option of producing the Tetracyclines by submerged fermentation is taken.

The projected quantities of the two salts are the following:

Tetracycline hydrochloride	20	tons
Oxytetracycline hydrochloride	15	tons

The corresponding technologies should be obtained together with the ones concerning. Tetracvoline and Oxytetracycline fermentation and recovery.

10.1 Tetracycline Hydrochloride

Tetracycline hydrochloride is the most used derivative of the wide spectrum antibiotic Tetracycline. This name is due to the fact that its molecule contains four (tetra in Greek) cycles. In the hydrochloride. hydrochloric acid salifies the dimethylamino group of ring A.

Its formula is:

C H N O . HC1 22 24 2 8 n.w. 480.89

Determination of the number of batches

For the projected plant the batch dimension will be 270 kg. The production of 20 tons requires 74 batches.

Principle of the Method

Salification of Tetracycline with hydrochloric acid.

Description of the Method

The solution of letracycline in butandle ethylcellosolve is treated with concentrated aqueous hydrochloric acid and filtered; by heating crystallisation of the hydrochloride takes place; the product is centrifuged, washed and dried.

<u>Yield:</u>

Theoretical yield	92%
Weight yield	100%

Raw Materials

Hereunder are listed the main raw materials needed for one batch of 270 kg and the corresponding quantities for one kg. A 80% recovery yield for the mixture of solvents and 70% for acetone is considered. The mixture of butanol-ethylcellosolve is recovered from the mother liquors by distillation. Water is first removed and then the mixture is distilled and

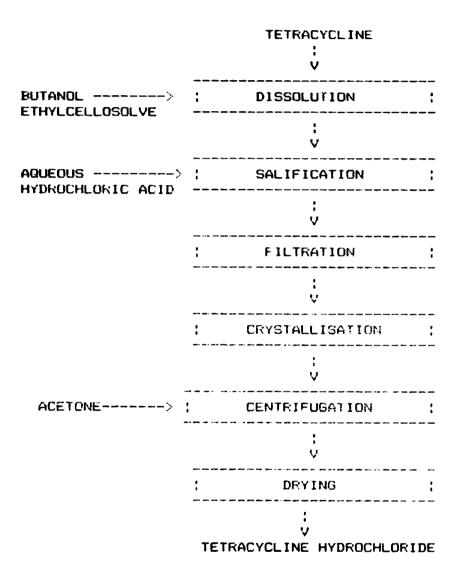
the ratio between the two components is rearranged.

Tetracycline				270	kġ		1.0	ŧ.g
Butanol	(1	1150	kg)	230	kg		0.85	kg
Ethylcellosolve	í	120	ko)	24	kg	(0.44 Fg)	0.07	kg
Concentrated hydrochloric								
acid				25	kġ		0.07	kg
Acetone	(525	kg)	150	kg	(1 . 94 kg)	0.55	kg

.

Utilities for one 270 kg batch

Electric power	600 Kwh
Brine	
	5
Steam	10 Kcal


Production plant and equipment list

See 10.6 and 10.7

Manpower

See 10.12

TETRACYCLINE HYDROCHLORIDE FLOW CHART

10.2 Oxytetracycline Hydrochloride

Oxytetracycline hydrochloride is the most used derivative of the wide spectrum antibiotic Oxytetracycline. In the hydrochloride, hydrochloric acid salifies the dimethylamino group in ring 4.

Its formula is:

C22H24N209 . HC1

m.w. 496.90

Determination of the number of batches

For the projected plant the batch dimension will be 270 kg. For the production of 15 tons 56 batches are required.

Frinciple of the method

Salification of Oxytetracycline with hydrochloric acid.

Description of the method

Exytetracycline is dissolved in a butanol-ethylcellosolve mixture and hydrochloric acid is added. After crystallization, the hydrochloride is separated by centrifugation, washed and dried.

Yielde

Theoretical yield	89%
Weight yield	97%

Raw Materials

Hereunder are listed the main raw materials needed for one batch of 270 kg and the corresponding quantities for one kg. A 80% recovery yield for the mixture of solvents and 70% for acetone is considered. The mixture of butanol-ethylcellosolve is recovered from the mother liquors by distillation. Water if first removed and then the mixture is distilled and the ratio of the two components is rearranged.

Oxytetracycline bas	e 278	3 kg	1.03 kg
Butanol-ethylcellos	clve		
mixture	(1,200 kg) 240) kg (4.44	kg) 0.89 kg
Concentrated hydroc	hloric		
acid	24	1 kg	0.09 kg
Acetone	(525 kg) 150)kg (1.94	kg) 0.55 kg

<u>Utilities for a 270 kg batch</u>

Electric power	600 Kwt
Brine	
	5
Steam	10 Kcal

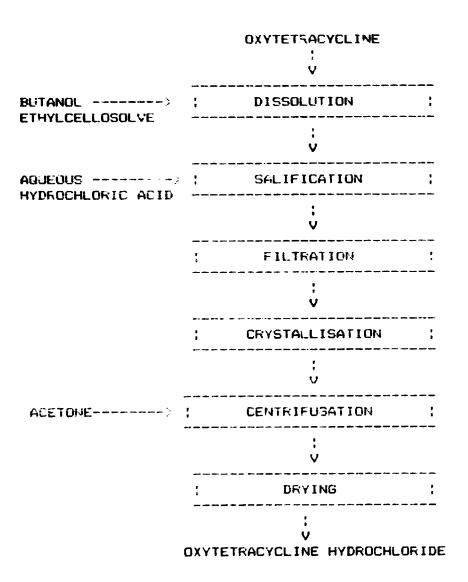
Froduction plant and equipment list

See 10.6 and 10.7

Manpower

.

•


-

.

See 10.12

I.

OXYTEYTRACYCLINE HYDROCHLOFIDE FLOW CHART

Т

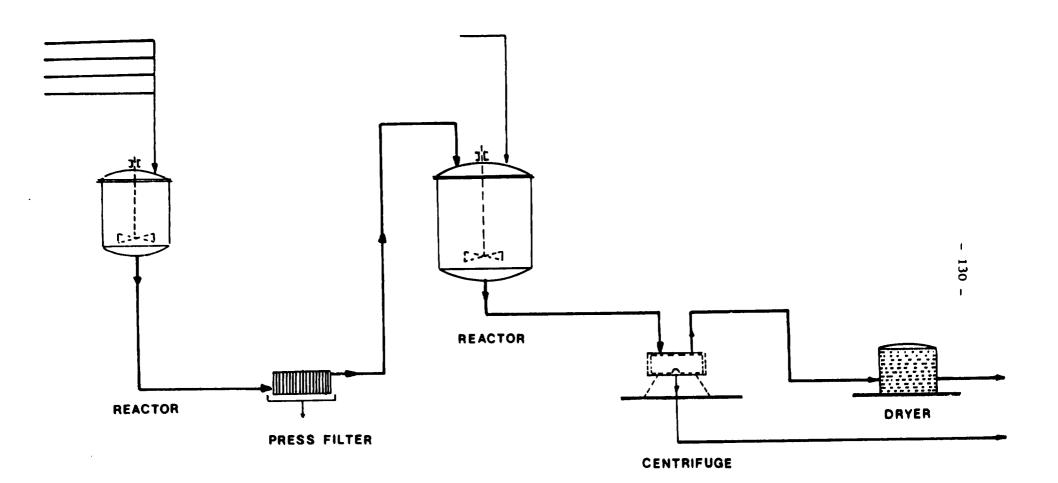
10.3 Utilization of the Plant

The data concerning the duration of the operations, the number of batches required and the total time of utilization of the plant are as follows:

Product	Output per Batch	Duration of each batch	Number of batches	Total working days
Tetracycline hydrochloride	270 Kg	42 hours	74	148
Oxytetracycline hydrochloride	270 Kg	42 hours	56	112
			260	
				260

260 days correspond more or less to the number of working days per year in the Philippines. It means that when the plant will be fully operational, it will be working the whole year. Additional capacity could be reached by adding more facilities for drying.

10.4 WASTE TREATMENT


The waste from the plant are essentially liquid wastes. They will be treated together with the main liquid effluents from the Tetracyclines production plant.

10.5 Location of the Plant

Tetracycline and Oxytetracycline free bases have a very limited market, the main commercial products being the hydrochlorides. For this reason we suggest to locate the plant for the hydrochlorides production in the same building where the recovery of the Tetracyclines take place. So it is possible to avoid transportation of the free bases and duplication of the technical services and utilities required in a production plant.

10.6 Description of the Plant

The proposed plant consists essentially of one reactor where the reaction is carried out supplied with a tank for the addition of hydrochloric acid, a second one for the filtered solution, a centrifuge for the isolation of the products as well as one drier. Some minor equipment are also required. The solvents comes from external tanks through metering pumps.

TETRACYCLINES HYDROCHLORIDES PLANT

.

10.7 Equipment List

The main equipment needed for the production of Tetracycline and Oxytetral Tline hydrochlorides is here listed.

Equipment	Number	Capacity	Material	Stirrer	Jacket
Reactor	2	2,000 It	glass lined	yes	yes
Tank	1	100 It	fiberglass		
Centr ifuge	101	1500 mm sta	inless steel		
Drier	1		5.5.		
Filter press	1		5.5.		

As to the utilities the ones produced for the fermentation and recovery of Tetracycline and Oxytetracycline are utilized.

10.8 Locally Available Equipment

see 7.11

10.9 Type of Utilities

For the preparation of the Hydrochlorides of Tetracycline and Oxytetracycline the following utilities are needed:

Brine	at	-30	С	
Electric power	at	280	V	
				-
Steam	at	5 Kg	/	Cm

10.10 Buildings

The production unit will be located in the same building were the recovery of Tetracycline takes place. See the report of the Expert in fermentation.

<u>10.11 Quality Control, Engineering Services, Warehouse,</u> Administration

The production of Tetracycline hydrochlorides requires an increase of the personal already available for the Tetracycline fermentation production plant. The technical services department will be incremented by :

10.11.1 Engineering Department

- n.1 analyst
- n.1 laboratory technician

10.11.2 Warehouse

n.2 warehouse aides

10.11.3 Administration

n.i clerk

For other services the already existing manpower can face all the needs

10.12 Manpower type and Qualification

The plant will be run on a three shift basis.We suggest the following manpower should be available:

- n.4 supervisors
- n.4 senior production technicians
- n.4 production technicians
- n.4 production aides

As for the qualification of the manpower see 7.15

10.13 Investment

The level of investments reported hereunder have been calculated to give an idea of the order of magnitude of the investment. The figures do not include buildings, since the plant will be located in the same building where the recovery of Tetracyclines takes place. We do not consider investments for the utilities as they constitute only a very small part of the ones used for Tetracycline production and they are included in the investment for Tetracycline. The investments could be summarized as follows:

	(in US ≇)
Equipment Erection (Piping, mounting, electrical	550,000
parts, instrumentation, insulation,	
painting etc.)	550,000
Engineering 7%	40,000
Assistance to the erection 7%	40,000
Grand total	1,190,000
	222622222

In these investments we have not considered the cost of technology and the training of the personel, which should be included in the investment for the Tetracycline plant. We assume that the import of machinery and equipment for the new plant would be exempt of custom duties and taxes.

10.14 Production cost

The local production of the hydrochlorides of Tetracyclines and Oxytetracycline is interesting only if a Tetracycline producing plant is started in the Philippines. For this reason the evaluation is made using the eventual local production costs of Tetracycline and Oxytetracycline .

The naw materials costs include freight, insurance, and other expenses evaluated at 10 % of the cost.

The production costs include raw materials, utilities, manpower and general expenses (in US \$).

Terracycline hydrochloride	28
Oxytetracycline hydrochloride	24

The present (1988) market prices are:

Tetracycline hydrochloride	34
Oxytetracycline hydrochloride	30

For the calculation of the manpower costs, we have used the criterion indicated at point 7.17.

General expenses were globally estimated 35,000 US \$. We evaluate this figure to be large enough to include the incremental auxillary services such as quality control, engineering services, warchouse, administration, etc. devoted to the Tetracyclines hydrochlorides production. For the raw material we assume that they are imported exempt of customs duty and taxes.

10.15 Economic Considerations

Calculation based on the assumption of a local productions of Tetracyclines hydrochlorides will be dealt with in the report of the Expert in fermentation and will be based on the above reported figures for the production costs, investments and market prices. As to the depreciation, assuming it has a straight line one for a ten year period, dividing the annual depreciation by the quantity annually produced at full capacity that is 35 tons, it results to be $3.5 \$ Mg. Total costs including depreciation result to be about 27\$ for Oxytetracycline hydrochloride and $31 \$ for Tetracycline hydrochloride.

11. ADDITIONAL MANPOWER NEEDS

The establishment of new production units in the Philippines generates new working places and new opportunities for employment. The new proposed plants will need both technicians and workers. When the plants will operate at full capacity, the following manpower will be utilized.

	Beta-Lactam antibiotics	Erythromycin and Rifampicin	6-afa	Tetracyclines Hydrochlorides
Flant manager	1	1	_	
Supervisors	4	4	4	с,
Senior Production Technicians	8	4	4	4
Productions Technic	ians 12	4	4	4
Production Aides	6	4	4	а,
Total	31	17	16	16

The incremental manpower for the services to the production will be more limited due to the fact that technical people secalready available in the factories.

	Beta-Lactam antibiotics	, _ ,	6-afa	Tetracyclines hydrochlorides
Senior Laboratory Technician (analyst	1	1	1	1
Laboratory Technici	an 2	2	1	1
Quality Control Inspector	1	1		
Utilities Operator	1			
Neuranies/Electrics	ā); <u>2</u>			
Supervisor (warehou	se) i	1		
Stock Clerk	1	<u>1</u>		
Warehouse aides	3	3	2	2
Clerk (administrati	on) 2	2	<u>1</u>	1
Total	14	1.1	U.	<u>5</u>

The following are the list of incremental manpower needs for the four plants:

Globally, if the four projets are implemented, 80 new working places will be available for the production and 05 for the auxiliary services.

12. AVAILABILITY OF LOCALLY PRODUCED RAW MATERIALS

In order to check the local availability of us works and other chemicals, cnemicals producing companies have been contacted. No local production of intermediates and solvents used in the semi-synthesis of antibiotics was evidentiated. Only 95% ethanol is produced locally. For the production of the Dane salt for Amoxycillin absolute ethanol is required. Frobably its production could be examined; one of the methods is the azeotropic distillation of a ternary mixture with the addition of benzene. As to the other chemicals, sulphuric acid and sodium hydroxyde are locally available, but their consumption for the seek synthetic antibiotics is very limited. Liquid nitrogen used as a cooling agent in the production of semi-synthetic Penicillins is locally produced and is available in large quantities.

13. EVALUATION OF THE LOCAL AVAILABILITY OF SKILLED MANPOWER

In order to identify the local skilled manpower, who could be hired for the proposed plants, Nanagers of some pharmaceutical industries as well as Professors of some Universities have been contacted. •

Investigations were done in the Departments of Chemistry of the following Universities:

- University of the Philippines
- De La Salle University
- Ateneo University

We could dather also informationon on one Cebu University which was visited by one of our collegues.

The Department of Chemistry of the University of the Philippines (prof. Claro Llaguno) seems to be rather well organized and to have satisfactory teaching programs.

In its laboratories we noticed that some modern equipment such as J.H.. U.V., G.C., Mass Spectrum, Electon Microscope etc. is available. The equipment, mainly of japanese origin, seems to be really utilized for teaching.

It is the only Institute in which studies on organic syntheses are carried out, the main focus being on plant products as in other Universities.

Ten to 15 FS and 5 to 8 MS graduate each year; recently in cooperation with the Ateneo University a common program was launched with the aim of graduating six PhD every two years; for them it is requested one academic year of training in a University abroad.

In the De La Salle University Professors of Chemistry, Chemical Engineering and Biology were contacted.

Teaching programs seems to satisfactory according to European and U.S. standards modern textbooks being used.

Also in this University during a visit to the laboratories we noticed the usual equipment (I.R., U.V., G.C. etc.) which seems to be used for teaching.

We have been expecially impressed by the Department of Chemical Engineering which seemed to us very well organized; notwithstanding the limitation of the financial means the Department do its best to supply th students with equipment to learn the basic principles of chemical engineering such as chemistry, mechanics, electronics etc. Ten to 15 siudents graduate in chemistry each year.

In the Department of Chemistry work five PhDs which were trained abroad (West Germany and USA) for one year.

The main focus of the researches is on natural products (fergenes.brancled chain char charter has here a segment of the second s

In the Ateneo University we have visited the Ehilippine Institute for Pure and Applied Chemistry(P)PAEtprof.M.Chua). In this University 10 to 15 BS and 3 to 5 MS graduate each year. As mentioned before, the Department of Chemistry plans to graduate six PhDs two pack year in cooperation with the University of the Philippines.

The equipment available at PIPAC is new and of good duality and mountly devoted to the chemistry but we noticed also one fermenter; most of the equipment is of Japanese origin.

Unfortunately, because of limited financial means, the personnel working in the Institute is rather limited and the equipment is not much used.

PIPAC works mainly for external Organizations and Industries expecially in the analytical field.

The main problem it that technical people,because of the low selaries, often get a job abroad depriving the country of skilled technicians.

Summarizing the information collected and checking our findings with industrial managers. It is our opinion that in the Philippine Universities we have visited, considered among the best in the country, the educational level is good, but the practical experience of the students is rather limited, because of lack of economic means to perform a sufficient number of experiments and studies in chemistry.

As suggested at point 7.15, the technicians should be trained abroad for different periods according to experience required before being utilized in a chemical plant. In any case, they could be recruited in the Philippines.

MEI DE

•

•

-

•

- 138 -

-

BATE : 07/29/88 THE : 11:56

Project : SCINO Title : PENCULLINES Currency: 1400 U.S. HELLANS

VENIS : 10

DISCRIME MATE: 10

FUR SECTION YEAR AT 100 I OF CAPACITY YEAR = 1996

TOIAL Quiffin WILLZ	= 7620
TOTAL COST	= 6802
FITED PROJUCTION EXPENDITURE	= 1118
FINNCIAL CHARGES	= 466
REPRECIATION	= 464
WLIE OF PAL ACCOUNT DREAK EVEN POIDIT FOR	
SECIDIO VEAR AT 1002 CAPACITY	= 982

WLIE OF INTERNEL PATE OF RETURN = 17.80174 I

FEIGURALITY HUREL DATE: 01/27/1988 THE: 11:56

Centre for the Bevelopment of Industry

.

.

APPENDIX I - IMESTICIAT COST FEMALCING THELE 1. CAPITAL REINBOGINTS AND THE SCIENCE EF EIFBOITUFE

.

	UTAL PITAL BIDAED)+(2)	1	2		PCY	: 10)0 IJ.(5. 89.	1105		
UND .	•	•	•	•	•	•	•	٠	•	•	0
DENSTRUCTURE	•	•	•	•	•	0	•	•	•	•	•
FACTORY BUILDINGS	132	190	22	0	•	•	•	•	•	0	0
OFFICE AVELDINGS	•	•	•	0	•	0	0	•	•	0	0
STAFF HOUSES	0	•	•	0	•	•	0	•	0	•	0
WENDERY (C.I.F.)	2350	1000	1350	0	•	0	0	•	•	0	0
FREIGHT AND DISTALLATION COSTS	2350	400	1950	0	0	0	0	0	0	0	0
TOOLS, SHULL ERVIPHENTS	0	0	0	0	0	0	0	•	0	0	0
FACTORY AND OFFICE EBUIPHENT	0	0	0	0	0	0	0	0	0	0	0
VEHICLES	•	0	0	0	0	0	G	0	0	0	0
FUNCTIONE AND ERLEMENT STAFF HOUSES	•	0	0	0	0	0	0	0	•	0	0
TOTAL FIXED ASSETS BEFORE CONTIGENCIES	4635	1500	<i>1111</i>	0	0	0	0	0	0	0	0
CDITIGENCY	242	75	167	0	0	0	0	•	0	0	0
TUTAL FIRED ASSETS	5077	1575	3502	0	•	0	0	0	0	0	0
NORKING CAPITAL (NET)	•	0	0	1852	3014	3789	3210	3810	3810	3810	3810
PRELIN. EXPEN. & COSTS OF ESTABL.	1045	500	545	0	0	0	0	0	0	0	0
TUTAL FUNDS REPUTRED	6122	2075	4047	1852	3014	3787	3010	3810	3810	3210	3810

FINED ASSETS REFURE CONTINUEDRY NO PRELIM. EXPERIM. IN:

ICRESTIC CLARENCY	1272	475	617	1852	3016	3789	3810	3810	3810	3810	3810
FOREIGN CURRENCY	4830	1400	3230	0	0	0	0	0	0	0	0

FENSIBILITY NONEL			DATE: 0?/29/1988 TINE: 11:							
Centre for the Bevelopsent of Laber	try									
APPENDIX II - DIVESTIENT COST FORMEDIG		TA	LE 1	. 190			e si	es fi	FEDE	T
PERCELINES						: H	100 H.	s. N		;
YENS	1991	1992	1993	1794	1975	1996	1997	1798	1999	2000
USE OF CAPACITY (QUINTITY)	• I									
MONUCTION WILLE AT FACTURY SALES PRICE										
ITEN 1	0	0	1470	2352	2940	2940	2940	2940	2940	2940
ITEN 2	0	0	1530	2448	3060	3060	3060	3060	3060	3060
ITEN 3	0	0	162	259	324	324	324	324	324	324
ITEN 4	0	0	648	1037	1296	1296	12%	1296	12%	1296
ITEN 5	Ģ	0	Ģ	0	G	Ģ	Ģ	ð	0	Ũ
iten 6	Ģ	0	Ģ	Q	Ŷ	0	0	9	G	0
ITER 7	0	Û	¢	Û	ŷ	Ũ	0	Ũ	Ģ	G
ITEN 8	0	Q	ĝ	0	Ũ	Ģ	ŷ	0	Ģ	0
ITEN 9	Ģ	0	Ű	0	Ģ	Ũ	Ģ	0	0	Q
ITEN 10	0	¢	0	Û	Ð	Ç	G	Ģ	Ģ	Ģ
PROD. WALLE AT FACT. SALES PRICES	0	0 3	810	6096	7620	7620	7620	7620	7620	 7620
INCREASE/DECKEASE STOC'S FINISHED PROJUC	0	0	635	381	254	•		0	¢	0
total net sales	0		175 :	5715 7	7366	7620 (7620	7620 7	1620 1	

٠

-

•

•

Centre for the Gevelopment of Industry

.

APPENDIT II - FINANCIAL DATA TABLE 2. OPENATING EXPENSITURE

PERICILLINES

OFFEICT : 1000 U.S. IOLLARS

1065	1991	1992	1993	1774	1995	1995	1957	1998	1999	200
WRIABLE EXPORTINES Sim Instelials	G		i	, ₍	v	6	é	ý	ī	
DITERNEBIATE NATERIALS	Û	Ŷ	0) G	Q	Ģ	Ũ	9	0	. 1
ore referes	ů	Ŷ	Q	0	Ģ	ŷ	ģ	Ģ	0	
SPARE PARTS	Ŷ	Q	ŷ	ð	Ģ	ÿ	ŕ	6	ŷ	
NATER	Ģ	Ŷ	Û	• 0	6	Ģ	0	0	Ŷ	
FUEL OIL	ŷ	G	Û	Ű	6	Ģ	ų	Ģ	Ģ	
REFEIN	Û	ý	Ų	ú	Ú	ŷ	÷	Ú	ú	I
PACKAGING	Ģ	ê	Û	Q	Ŷ	ŷ	ţ	ð	Ū	
FREIGHT AND DISTRIBUTION	Q	0	Ū	0	0	Ũ	Ģ	0	Ũ	(
LASOLE	ů	0	ů	0	ij	Ģ	ý	Ŷ	Ġ	
OTHER	0	ð	2942	4547	5684	5664	5664	5664	5684	565
TOT. WARLAGLE OPERATING EXPENS.	0	ŋ	2642	4547	5684	5654	5664	5684	5684	568
FILED ELFENGITUFES MAINTENNICE	o	Ģ	Q	0	6	0	(:	ÿ	0	(
INSUPANCE	¢	0	0	Û	ú	C	÷	ė	G	ŧ
Tat	Û	0	0	0	¢	ð	6	0	0	(
OFFICE AND ADMIN. EXPENDITURES	Û	0	G	0	0	¢	Q	C	0	(
PERSONNEL	0	0	Ũ	0	0	0	G	0	0	(
ient on office and factory buildings	0	Ģ	0	0	0	0	G	0	0	C
THER	0	0	196	188	188	198	198	196	188	182
igt, flied openating expensi	Ŭ	Ú	186	186	1 8 8	196	186	136	168	186
IOTAL OPERATING EXPENDICUESS		C :	3030	4725 :	877 '	5872 9	 877 '		977 9	

FEASIBILITY HODEL ME: 07/29/1988 THE: 11:56 Centre for the Development of Industry APPENDIT II - FENENCIAL BATA TABLE 3. REPAYMENT OF LOWS AND FINNICIAL DIFFEES PENICILLINES CURPLEY : 1000 U.S. BOLLARS TFASS 1991 1992 1993 1994 1995 1995 1997 1998 1999 2000 REPAYMENT OF PRINCIPAL G G G 400 400 406 400 406 406 406 406 PAYNEMIS OF INTEREST 190 464 464 464 426 3BB 350 312 274 236 light at year ere 2000 4883 4883 4483 4083 3681 3283 2883 2483 2083 FUREISH BONK-2 LOWN AT BEGINNING YEAR Ð û () 6 6 6 6 6 Û REPAYRENT OF PRINCIPAL û û Û û Ģ ¢ 0 0 Ŭ 0 PAYNENTS OF INTEREST 0 9 0 Û Q ŵ 6 0 0 G LOW AT YEAR DID 6 Ū. 0 0 0 0 0 0 0 0 FOREIGN BONG-3 LOOK AT BEGINNENG YEAR 6 0 0 6 6 6 6 6 a REPAYNENT OF PRINCIPAL 0 C 0 C C G O G 0 0 PAYNENTS OF INTEREST 6 Û 0 Û. Ģ ú Û Û 6 ů LOON AT YEAR END Û ð Ģ 0 0 e G G Û ô LOCAL BANK-I LOAK AT BEGINNING YEAR ē. 0 Ĝ 0 0 6 6 0 0 0 REPAYNENT OF PRINCIPAL 6 0 0 6 9 Û 6 Û Ũ - 6 PAYNENTS OF INTEREST G ¢ 0 0 0 ê 0 ú 0 6 LOAN AT YEAR ENG. 0 0 0 G 0 ð Û 0 0 6 LOCAL BANK-2 LOAN AT BEEINNING YEAR 0 0 ¢ 0 0 0 0 0 0 Û REPAYNENT OF PRINCIPAL 0 A 0 0 0 0 0 0 0 6 PAYMENTS OF INTEREST 0 0 0 0 Ű G Û 0 0 Û LOAN AT YEAR END 0 0 0 0 Û 0 Q Û û Ø LOCAL BANK-3 LOAN AT BEGINKING YEAR 0 0 0 0 Û 0 0 0 0 0 REPAYNENT OF PRINCIPAL 6 0 0 6 Ð Ô 6 ٥ 0 0 PAYNENTS OF INTEREST 0 0 0 0 0 Û e 0 0 0 LOAN AT YEAR END 0 0 0 ú 0 0 0 0 0 Ó TOTAL LOANS AT BEGINNING YEAR 2000 4883 4883 4883 4483 4083 3683 3283 2853 2463 TOTAL REPAYNENT OF PRINCIPAL 0 0 0 400 400 400 400 400 400 400 400 TUTAL PAYMENTS OF INTEREST 190 464 464 464 426 388 350 312 274 236 TOTAL LOANS AT YEAP END 2000 4883 4983 4483 4083 3683 3283 2883 2483 2083

.....

.......

FEASI	FILITY	NGG.				DAT	E: 09	/29/19	89	TINE: 11
Centre for the Development of Inc	kistry									
AFPENDIT II - FINANCIAL DATA		Ţ	ARLE (I. DEF	recij	TION	ang '	tar D	i prce	115
PONICIPALITES				0.F	KO EY	: 10	W 6.	.s. 00	LLARS	•
YEARS	199	1 1977	2 1993					1798		
tal depreciation and <u>allownees</u>							·			
INFRASTRUCTURE	0) 0	0	Û	0	4	ú	6	á	6
FACTORY BUILDINGS	ú	. 4	4	4	4	4		4	i	ž
OFFICE RIFEINS	0	0	ŷ	0	ñ	ę	0	Û	0	ć
STAFF HOUSES	Ũ	. a	A .	•	•				-	
Plant and inicitinery includ. Freight etc Venicies	. 0	345	346	346	346	34é	Me	346	346	346
	•}	9	Ç	€	0	ċ	ú	û	ú	6
other equipment	0	Ũ	0	Ģ	0	Ø	Û	G	ð	ů Ú
PRELIMINARY EXPENDITURES		114								
IOTAL DEPRECIATION	G	454	464	464	451	454	350		35)	
axable profit/(loss)	-190	-926	-765	52	566	616 1	1048	1085 1	124 1	1162
CCURLATED PROFITS/(LOSSES)	-190	-1118-1	1901-1	847-1	283 -	455	83 I	669 2	793 3	955
41	0	r.	0	0	 0	0	0	543 (<u>,</u>	581

I.

ł

.

•

Centre for the Development of Industry

APPENDIX II - FINNNCIAL DATA TABLE 5. NORKING CAPITAL REQUIREMENTS

PENICILL	CURRENCY : 1000 U.S. DOLLARS										
YEARS	HONTHS	1991	1992	1993	1994	1995	1996	1997	1995	1999	2000
CURRENT ASSETS									 .		
CASH	i	Ģ	0	Q	. 0	0	0	Q	0	Ģ	(
RAW MATERIAL	3	0	0	0	0	0	Q	Ģ	Q	Q	(
INTERMEDIATE NATERIAL	3	9	0	Ģ	0	Û	0	0	0	Û	G
other naterials/spare parts	3	Q	0	0	Û	C	ð	C	0	0	0
NURK IN PROGRESS	3	Û	Q	952	1524	1905	1905	19 05	1905	1965	1905
RE	3	0	Q	Ģ	Q	0	Q	0	Û	0	0
PACKAGING ETC.	3	Û	G	0	Û	Û	0	Ģ	Û	0	0
FINISHED PRODUCTS	2	0	0	635	1016	1270	1270	1270	1270	1270	1270
RECE IVARLES	1	0	0	265	476	614	635	635	635	o35	635
TOTAL CLIPPENT ASSENTS		0	0	1852	3016	37 8 9	38 10	3610	3810	3810	3810
<u>ninus : current liabilities</u>		****									
ow Naterial	1	0	0	0	6	0	0	0	0	0	0
INTERNEDIATE NATERIAL	i	0	0	0	Q	0	0	<i>(</i> ;	0	Ģ	-
uther naterials/spare parts Wel	1	0	-	0	0	Û	0	0	0	Û	0
VACKAGING	1	0	0	0	0	0	0	0	G	0	0
	i	0	0	0	Û	0	0	0	0	Û	0
NRRENT LIABILITIES		0	0	0	0	0	0	0	0	0	0
ORKING CAPITAL REQUIREMENTS		0	0 1	852	3016	5789 3	810 3	19 10 3	810 3	810 3	810
ORKING CAPITAL INCREASE/(DECRE	ASEL P.A.			852				0	0		

FEASIBILITY NODEL DATE: 09/29/1988 TIME: 11:56 Centre for the Development of Industry APPENDIX II - FINANCIAL DATA TABLE 6. PROFIT AND LOSS ACCOUNT FUREDAST PENICILLINES CURRENCY : 1000 U.S. DOLLARS YEARS 1641 1645 1643 1644 1662 1664 1663 1666 1665 2000 TOTAL NET SALES 0 0 3175 5715 7366 7620 7620 7620 7620 7620 OPERATING EXPENDITURES 0 0 3030 4735 5872 5872 5872 5872 5872 5872 5872 DEPRECIATION AND ANORTISATION 0 454 464 464 464 454 350 350 350 350 TOTAL COST OF PRODUCTION 0 464 3494 5199 6336 6336 6222 6222 6222 6222 LOH INTEREST 190 464 464 464 426 386 350 312 274 236 overgraft interest 0 0 0 0 38 76 0 0 0 ____ TOTAL FINANCIAL CHARGES 190 464 464 464 464 466 350 312 274 23e ----TOTAL COSTE 190 - 928 3958 5003 08/2 0802 0572 6534 6496 0458 NET PROFIT/(LOSS) BEFORE TAX -190 -928 -783 52 566 618 1048 1096 1124 1162 -----0 0 0 1 11 15 21 11 11 12 RETURN GA EQUITY Z APPROPRIATION OF PROFITS dividends - Andunt 0 0 0 0 0 0 0 0 0 0 RETAINED EARNINGS FOR THE YEAR -190 -190 -783 52 566 818 1048 543 562 581 CUMULATIVE RETAINED EARNING -190 -1118-1901-1849-1283 -465 587 1124 1499 2349 DIVIDENDS - I ON EQUITY 0 0 0 0 0 0 0 0 0 0

- 140 -

۰.

FEASIBILITY MORE

Centre for the Development of Industry

APPENDIX II - FINANCIAL DATA		TA	LE 8.	. BALI	WCE S	HEET	PROJ	6113	ŝ.	
PENICILLINES		CURRENCY : 1000 U.S. POLLARS								
VEARS	1991	1992	1993	1774	1995	1996	1997	1996	1999	2000
ASSET 5									_	
CASH	G	-	-	-	-			0		
STOCKS	0	-						3175		
RECEIVARES	Ģ							622		
RESERVE	0	Ç	0	0	0	0		Ú	0	0
tutal current assets	0	Ģ	1852	3016	5789	3910	3810	3810	3810	3910
FITED ASSETS GROSS	2075	6122	6122	6122	6122	6122	6122	6122	6122	ó122
EPRECIATION AND ANDERTICATION	Ģ	454	928	1392	185÷	2329	2670	¥20		720
NET FIXED ASSETS	2075							3102		2402
total current liabilities	2075	5658	7046	7746	805 5	7612	7262	6712	6562	6212
LIAPILITIES										
TAX PAYABLE	0	0	Ç	0	0	Ç	Q	543	562	581
dividends payable	-	0	-	-	-					
current accounts (minus = surplus)										
CURPENT LIABILITIES	°	0	0	0	0 	0	0	0	0 	0
TOTAL CURRENT LIABILITIES	-735	-3057	-685	162	305	-556	-1554	-2047	-2559	-3090
LONG TERM DERT	2000	488 3	486 3	¥	4083	3683	3283	2383	2483	2083
EQUITY (1)	1000	5000	5000	5000	5009	966	509	5000	5000	5090
RESERVES	-190	-1118	-1901	-1849	-1283	-465	583	1126	1688	2269
TOTAL SHARFHOLDERS EDUTTY	810	3882	3099	3151	7717	4535	5583	6126	6688	7269
TOTAL LIABILITIES	2075	5658	7046	7746	8055	7612	7262	6912	6562	6212
DEBT: EQUITY RATIO (2)	2.5	1.3	1.6	1.4	1.1	0.8	0.6	0.5	0.4	0.3
SEDURITY OLVERAGE RATIO	1.0									1.2
					1.4					

(1) Amount on Equity plus eventual future Increase

(2) Long Term Debt: Total Shareholders Equity
(3) Net Fixed Posets: Long Term Debt

.

٠

(4) Total Current Assets: Total Current Liabilities

APPENDIX II - FINANCIAL DATA TABLE 7. SENSITIVITY ANALYSIS FOR 2ND YEAR AT 1003

PENICILLINES

CURRENCY : 1000 U.S. DOLLARS

RESULTS : NET PROFIT/(LOSS) REFORE TAX

Ø

of

3

SELLING PRICES OF FINISHED PRODUCTS -307 -207 -107 CONSTANT +107 +2-7 +307 -3230 -2459 1706 -944 -182 500 1342 TOTAL OPER. EXPEND. +307 TOTAL OPER, EXPEND, +20X -2642 -1880 -1118 -336 406 1168 1930 TOTAL OPER. EXPEND. +10% -2055 -1293 -531 231 993 1755 2517 -----TOTAL OPER, EXPEND, CONSTANT -1463 -706 56 818 1580 2342 3104 TOTAL OPER, FXPEND, -10% -681 -119 643 1405 2167 2929 3691 ----total oper, expensi, -20% -294 468 1230 1992 2754 3516 4278 TUTAL OPER, EXPEND. -30%, 294 1056 1818 2580 3342 4104 4866 ____

-	149	-
-	147	-

FEASIBIL	iti ng	E.			1	DATE:	09/2	7/1998	E TIP	E: 11:56
Centre for the Development of Ind	ustry									
appendix II - Financial Data		TA	RLE 1	1. NE	t pre		Value Ash		DISCO	unted
PONICILLINES				QR	RENCY	: 10	00 U.	s. D a	LLARS	
YEARS	1991	1992	1993	1994	1995	1996	1997	1996	1999	2000
NET PRESENT VALUE P.A. (NET SALES MINUS EXPENDITURE MINUS INVESTMENT FIXED ASSETS, DISCOUNTED AT 10 & P.A.)	-1500	-3032	126	736	1020	1085	987	897	815	741
Sur of net present welles (Year 1 to 10)										1869
DISCOUNTED CASH FLON RATE (INTERNAL RATE OF RETURN = DISCOUNTED RATE AT WHICH CASH FLON YEARS 1 TO 10 EQUALS ZERO) (Z)									17	 7.80

.

•

•

P

- 150 -

ſ	FEASIBI	LITY H	GDEL			Ð	ATE: O	9/29/19	7 3 8 TU	E: 11:
Centre for the Developmen	t of In	dustry								
appendix II - Financial Data				TABLE	2. FI	scal e	FFECTS			
PENICILLI	NES				ປ	REICY	: 100	0 ü.S.	DOLLAR	5
NEARS	1991	1992	1993	1994	1995	1 9 76	1997	1998	1999	2000
POSITIVE DIRECT EFFECTS						<u></u>				
tax on land etc .	0	0	0	Q	Q	Ç	0	0	Q	Q
Butty on imported equipment	0	0	ŷ	0	G	G	Q	Û	Û	Û
excise and consumption taxes	Q	Q	Û	Û	0	¢	Ģ	Q	Û	0
corporate tax (on profits)	0	Ģ	0	0	Û	Ģ	Q	543	562	581
Personal income tax	Û	Ĉ	0	Û	0	ę	Q	6	Ģ	Ŷ
TAXES ON DIVIDENDS	Ģ	G	6	0	Û	Û	0	6	0	0
tates on interest	Û	ŷ	0	0	Û	Q	Û	Q	0	0
total tax payments	0	-	G	0	-	-	-	543	562	581
<u>Negative Direct Effects</u> LOSS of Inp. Duty on Local Prod. Godos	¢		361	609	762	-	762		762	762
	v	ij	-581	-ษภ	-702	-105	-762	-219	-3N	-131
cumulated tax income									-3695	

,

•

-

.

·

	FEISIBILITY HOBEL	BATE: 47/27/1988	TDE: 11:56
Centre for the Developme	at of indus try		
APPEIDIX II - FINNCIAL BATA		TABLE 3. CONTREBUTION TO INSTEAM. 200 YEAR FULL PADD.	HEDE
POICILL	DES	CLANENCY : 1000 U.S. BOLL	IIIS
TEARS	19%		
rufichases	36 72		
BEPRECIATION	464		
TUTAL	6336		
FACTOR COSTS (NET VALLE ADDED	1		
SALARIES AND WAGES	0		
INTEREST	466		
REAT ON OFFICE & FACTORY BUIL	dines o		
NET PROFIT/(LOSS) BEFORE TAX	818		
TOTAL NET VALUE ADDED	1284		
grad tutal	7620		

•

-

-

17

Centre for the Development of Industry

APPENDIX II - FINANCIAL NATA	II - FINANCIAL DATA
------------------------------	---------------------

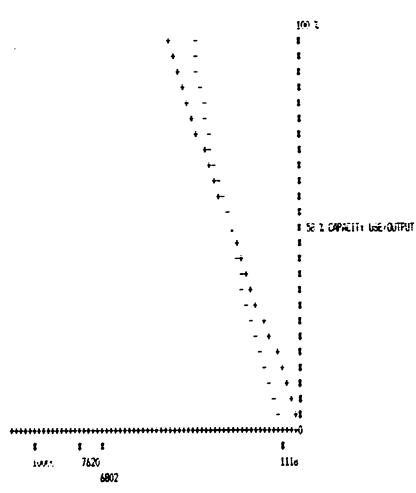
.

.

TABLE 10. CALOLATION OF INFAN-EVEN FOUR 200 YEAR FULL PROS.

PENICILL DES

CURRENCY : 1000 U.S. BOLLARS


FOR SECOND VEHR AT 100 Z OF CAPACITY YEAR = 1996

TOTAL OUTPUT SALVE	= 7620
total Cost Fixed Production Expediciture	= 6802 = 1118
FINANCIAL DAARSES	= 466
DEPRECIATION	= 464

WILLIE OF PILL ACCOUNT BREAK EVEN POINT FOR

SEEDID YEAR AT 100% CAPACITY	= 587.
WILLE OF INTERNIL RATE OF RETURN	= 17.80174 2

COST OF PRODUCTION/VALUE OF OUTPUT

•

•

-

٠

GATE : 09/29/1996 TIPE : 11:15

Project	:	NER	ANNEL THE
Title	:	Erythranycans	
Gerrency	:	1000 U.S. Doilars	
VEARS	:	10	
DISCOUNT RATE	:	10	

FOR SECOND YEAR AT 1002 OF CAPACITY

TGTAL QUTPUT WELLE	z	7765
TUTAL COST	=	6657
FILED PROJUCTION EXPENDITURE	=	331
FINNETIC DURGES	=	73
DEPRECIATION	=	155
WELE OF PEL NEEDENT BEEN EVEN FOINT	FOR	
SECOND YEAR AT 1907, CAPACITY	=	267.
ville of internal rate of return	Ξ	34.73413

FERSION AND

DATE :09/29/1958 TIME : 11:15

Center for the Development of Industry

APPENDIA I - INVESTMENT COST FINANCIAG Exytheorycia

TARLE 1. CAPITAL REQUIREDONS AND THE SCHEDULE OF EXPORTAGE CLARENCY : 1000 U.S. Bollars

									-		
	TOTAL Defitial Neguired (1)+(2)	1	2								
Liki	ŵ	Ģ	¢	0	ŷ	ę	0	ĉ	0	¢	ą
DEPOSTRUCTURE	0	Ç	Ó	0	ò	Û	5	ç	Q	¢	ų
FACTURY BUILEINGS	175	175	Ó	Ĵ	ŷ	ŷ	ŷ	ġ	ą	0	ą
OFFICE BUILDINGS	÷	9	Ģ	Ģ	ŷ	ý	0	Q	Ģ	Ņ	Û
STAFF HOUSES	ę	ė	Ģ	Ģ	ģ	¢	Ģ	÷	Ģ	ę	Ş
INCHINERT (CIF)	725	350	575	ŷ	ð	ð	ũ	ġ	ŷ	ŷ	ŷ
FREISH: NO INSTALLATION COSTS	6 2)	159	25)	0	Ģ	Q	Ç	Ŷ	9	6	Q
TEOLS, SHELL EDITFICITS	Ð	Û	0	0	6	Ģ	Ģ	ē	ŷ	ŧ	ą
Factory and office equipment	6	ŷ	Ģ	Ŷ	0	Ŷ	G	ð	C	ŷ	6
Venices	Ģ	9	0	0	¢	ŕ	Ģ	ŵ	Ŷ	Ŷ	¢
furniture and equipment, staff houses	O	Ģ	Ģ	ė	Ģ	1	?	¢	é	3	
TOTAL FINED ASSETS BEFORE CONTIGENCIES	1460	675	825	ą	9	0	3	0	Ģ	0	Û
Cantingeney	77	52	4 <u>i</u>	6	9	Q	ý	0	ÿ	0	
TOTAL FILED ASSETS	1555	667	86÷	0	ņ	0	0	ŷ	ŷ	9	0
NOKRING CAPITAL (NET)	0	0	0	1392	3082	3872	3894	3894	3874	3894	387
PRELIM. ENPERING OSIS OF ESTABL.	70	0	70	0	0	0	0	ů	0	0	c
TOTAL FURDS REQUIRED	1670	667	936	1892	3062	3972	3874	3294	3894	3894	3894

FIXED ASSETS BEFORE CONTINGENCY AND PRELIN. EXPEND. IN:

۰.

DONESTIC CURRENCY	678	317	361	1892	3082	3872	3894	3294	3874	3894	3894
FOREIGN NURSEDICY	6 ~ 4	(S)	6 7E	.5	0	ŷ	•	-	•	Ç	:
						• • • • • • •					

Centre for the Development of Industry										
appendit II - Fighcial Data							TABLE	1. PRESU	ction an	o sales for
EETTHONCING							CUFKEN	îr:	1000	U.S. 50LH
16#5	1991	1992	1993	1994	1995	1796	1997	1996	1999	2000
use of concenty (obsattity)	6 I	Ģ ī	50 X	60) Z	iŵ X	160 Z	100 Z	100 Z	160 Z	100 I
PREDUCTION VALUE AT FACTURY SALES PRICES										
lie 1	Ŷ	ę	3294	6230	7786	7783	7762	7788	77788	7755
ITEN 2	ŷ	é	ŷ	Ģ	9	0	Ģ	Ŷ	ş	Ģ
ITEN 3	Ģ	Ŷ	Ŷ	ý	¢	Ų	Ŷ	ģ	Ŷ	Ģ
ITEN +	÷	ė	Ģ	Ģ	÷	Ģ	Q	Ģ	Ģ	9
ITEK 5	ũ	é	ŷ	¢	ŷ.	ŷ	Û	ú	Ŷ	Ģ
IIBI 6	ŷ	Ģ	ŷ	G	¢	G	0	Ũ	ð	0
ITEN 7	Ũ	ē	ŷ	ý	ý	Ú	ŷ	Ũ	Q	Ū
ite 9	ŷ	Û	¢	ð	¢	G	0	ę	ð	0
lītēji g	0	0	Û	Ģ	Ũ	Ũ	Ŷ	Ģ	ý	Ģ
ITEN 10	÷	0	Ģ	0	Ŷ	Û	0	0	0	¢
PROS. WALVE AT FACT. SALES PRICES	ij					7798	<i>178</i> 8		7 79 5	
INCREASE/TECREASE STOCKS FINISHED PRODUC	0	G	647	387		0		0		
TOTAL NET SILES						7789		7738	7788	7788

I

.

•

••

FEASIBILITY MODEL Center for the Development of Industry					Daii	E:04	9/29/198	6	TIM	: 11:15
APPENCIX II - FINGNCIAL DATA					TAB	le 2. O PI	ERATING	EXPENDIT	RE	
ERYTHRONTLINS					CJ	RPENCY :	1000 U	.s. dolla	NRS	
YEARS	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
WRIARLE EXPERIENCES										
RNN MATERIALS	Q	0	Ģ	0	Ģ	0	0	Ó	Ç	Ç
INTERNEDIATE NATERIALS	0	0	0	Û	0	0	Q	Ç	Û	C
other naterials	Ģ	0	Ç	Ģ	0	0	Q	Q	Q	0
SPARE PARTS	0	9	0	0	9	Q	9	0	Ģ	0
MATER	Ģ	G	Û	0	Û	0	0	0	0	0
FLEL OIL	Ģ	0	0	0	0	Û	0	Û	0	ŷ
ELECTRICITY	Ō	Û	G	0	0	0	0	Ą	0	ŀ
PACKAGING	6	0	0	Û	Ũ	Û	ŷ	0	0	Q
FREIGHT DISTRIBUTION	0	0	0	Û	0	0	Q	0	0	0
LAPUE	0	Ņ	0	0	0	Ô	Ņ	ò	Û	Ģ
OTHER	0	0	3264	5222	6 52 8	6528	6528	6528	6528	6528
TOT. VARIABLE OPERATING EXPEND.	0	0	3264	5222	6528	6528	6528	6528	6528	6528
FIXED EXPENDITURES										
NAINTENANCE	0	0	0	0	0	Û	0	Ŷ	0	Q
INSURANCE	ð	0	0	Û	0	0	0	Q	0	0
TAX	ņ	0	٨	ĥ	0	Ó	Q	ń	٥	Ç
OFFICE AND ADMIN. EXPENDITURES	0	0	0	Ũ	0	0	0	0	0	C
PERSONEL	O	Û	0	0	0	0	Û	0	0	0
RENT ON OFFICE & FACTORY BUILDING	0	0	0	0	0	0	0	0	0	0
OTHER	0	0	90	9 0	90	90	90	9 0	9 0	90
TOT. FIXED OPERATING EXPEND.	0	0	9 0	90	90	90	90	90	9 0	90
TOTAL. OPERATING EXPENDITURES	0	0	3354	5321	6618	6618	6613	6619	6618	6618
							*			

•

-

Center for the Development of Industry

APPENDIX II - FINANCIAL DATA

PAYNENTS OF INTEREST

PAYMENTS OF INTEREST

PAYMENTS OF INTEREST

PAYMENTS OF INTEREST

PAYNENTS OF INTEREST

REPAYNENT OF PRINCIPAL

TOTAL LOANS AT BEGINNING YEAR

TOTAL REPAYMENT OF PRINCIPAL

TOTAL PAYMENTS OF INTEREST

TOTAL LOAN AT YEAR END

PAYNENTS OF INTEREST

LOAN AT YEAR END

LOCAL BANK 3-LOAN AT BEGINNING YEAR

LOAN AT YEAR END

LOAN AT YEAR END

LOAN AT YEAR BID

LOW AT YEAR END

LOAN AT YEAR END

YEARS

ERYTHROMYCINS

TABLE 3. REPAYMENT OF LOANS AND FEMALCIAL CHARGES

.

CLIRFNELY : 1000 U.S. DOLLARS 1991 1992 FOREIGN BANK 1-LOAN AT BEGINNING YEAR Ô REPAYMENT OF PRINCIPAL Û Ô O Û FUREIGN BANK 2-LOAN AT BEGINNING YEAR Û Û REPAYNENT OF PRINCIPAL Ô Û Û Ø G Ô Ô Ô Ô O Û FOREIGN BANK 3-LOAN AT BEGINNING YEAR Q Q REPAYNENT OF PRINCIPAL Ô ð A Û Q LOCAL BANK 1-LOAN AT BEGINNING YEAR Û Q REPAYSENT OF PRINCIPAL O Ô Ø Û LOCAL BANK 2-LOAN AT BEGINNING YEAR Ô e REPAY. ENT OF PRINCIPAL Ũ Û

?25

Ô

Ô

Û

Q

Û

Û

Q

FEASIBILITY NODEL					DATI	E :0	7/29/198	8	TIM	: 11:15
Center for the Development of Industry										
APPENDIX II - FINANCIAL DATA					TAB	LE 4. 09	PRECIATI	dn and ti	ax on Pri	FITS
ERYTHROMYCINS					CUR	RNECY :	1000 U.S	. DOLLAR	S	
YEARS	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
TAX DEPRECIATION AND ALLONGNICES										
INFRASTRUCTURE	0	0	0	0	0	0	0	0	0	0
FACTORY BUILDINGS	0	0	14	14	14	14	14	14	14	14
OFFICE BUILDINGS	0	0	0	0	0	0	0	0	0	0
staff houses	0	0	0	0	0	0	0	0	0	0
PLANT HO WICHINERY INCLUD. FREIGHT ETC.	0	87	139	139	139	139	139	139	139	139
VENICLES	0	0	0	0	0	0	0	0	0	0
other equipment	0	0	0	0	0	0	0	0	0	0
PRELIMENWRY EXPENDITURES	0	0	15	15	15	15	15	0	0	0
TOTAL DEPRECIATIONS	0	87	168	168	168	168	168	153	153	153
TAXABLE PROFIT/(LOSS)	(88)	(229)	(441)	273	671	929	967	999	1017	1017
ACCUMULATED (MOFILIJ/(LUSS)	(88)	(317)	(<i>is</i> 8)	(485)	186	1115	2082	3081	4098	5115
TAX	0	0	0	0	0	0	0	500	509	509

.

-

.

-

FEASIBILITY HODEL

•

-

٠

Center for the Development of Industry

APPEIDIT II - FINANCIAL BATA

TABLE 5. NORKING CAPITAL REDUTREMENTS

ENTRONCOS	5					CUR	RHECY :	1000 U.S	. DOLLAR	S	
YEARS	NONTHS	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
CURRENT ASSETS											
CASH	1	0	0	0	0	0	0	0	0	0	0
INN NATERIALS	3	0	0	0	0	0	0	0	0	0	0
INTERPEDIATE NATERIALS	2	0	0	0	0	0	0	0	0	0	0
other materials/spare parts	3	0	0	0	0	0	0	0	0	0	0
NORK IN PROGRESS	2	0	0	973	1557	1947	1947	1947	1947	1947	1947
RE.	3	0	0	0	0	0	0	0	0	0	0
PACKAGING ETC.	3	0	0	0	0	0	0	0	0	0	0
Finished products	2	0	0	649	1038	1298	1298	1298	1298	1298	1298
RECIEWALES	1	0	0	270	487	627	649	649	649	649	649
total current assets		0	0	1892	3082	3872	3894	3894	3894	3894	3894
NINUS: CURRENT LIABILITIES											
RAM MATERIAL	1	0	0	0	0	0	0	0	0	0	0
INTERVEDIATE NATERIAL	1	0	Ō	0	Ŏ	0	Ŏ	Ó	Ō	Ō	Ó
THER MATERIAL C/CRADE PARTS	1	۵	٨	٨	۸	٨	۸	٥	•	٨	۵

THIGARD THIS THICKTHE	*	v	v	v	v	v	v	v	v	v	v
other naterials/spare parts	1	0	0	0	0	0	0	0	0	0	0
RIEL.	1	0	0	0	0	0	0	0	0	6	0
PACKAGING	1	0	0	0	0	0	0	0	0	0	0
CURRENT LIABILITIES		0	0	0	0	0	0	0	0	0	0
NORKING CAPITAL REQUIREMENTS		0	0	1872	3082	3872	3894	3894	3894	3894	3894
NORKING CAPITAL INCREASE/											
(DEDREASE) P.A.		0	0	1992	1190	790	22	0	0	0	0

FEASIBILITY HODEL

~

Center for the Development of Industry

APPENDIX II - FINANCIAL DATA

TABLE 6. PROFIT AND LOSS ACCOUNT FORECAST		TABLE	6.	PROFIT	AID	LOSS	ACCOUNT	FORECAST	
---	--	-------	----	--------	-----	------	---------	----------	--

ERYTHREMYCINS					QR	RNECY :	1900 U.S	. DOLLAR	S	
YEARS	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
total net sales	0	0	3254	5841	7528	7788	7798	7798	7798	7798
OPERATING EXPEDIITURES DEPRECIATION AND ANORTISATION	0	0 87	3354 168	5312 168	6618 168	6618 168	6618 168	6618 153	6618 153	6618 153
				100	100	.00	100		130	
TOTAL COST OF PRODUCTION	0	87	3522	5480	6786	6796	6786	6771	6771	6771
LOAN INTEREST OVERDRAFT INTEREST	 98 0	88 54	98 76	 98 0	70 1	53 20	35 0	18 0	0	0
	••••••••••••••••••••••••••••••••••••••			• 	•	20	•			
TUTAL FINACIAL CHARGES	86	142	164	86	71	73	32	18	0	0
TOTAL COSTS	86	229	3686	5568	6857	6859	6821	6789	6771	6771
NET PROFIT/(LOSS) BEFORE TAX	-68	-229	-449	273	671	929	967	999	1017	1017
TAX	0	0	0	0	0	0	0	500	509	509
PROFIT/(LOSS) AFTER TAX	-66	-229	-441	273	671	929	967	499	508	508
Return on equity X	Û	0	0	7	17	73	24	12	13	13
APPROPRIATION OF PROFITS	•••••						• • •			
DIVIDENOS - ANOLINT	0	0	0	0	0	0	0	0	0	0
dividends – % on equity Retained earnings for the year	0 -88	0 -229	0 -441	0 273	0 671	0 929	0 967	0 499	0 508	0 508
CUMULATIVE RETAINED EARNINGS	-66	-317	-758	-485	186	1115	2082	2581	3089	3597

BATE : 09/29/1988 TIME : 11:15

FEASIBILITY NODEL					DAT	E :0	9/29/198	6	TIM	E : 11
Center for the Development of Industry										
appendix II - Financial Data					TAB	le 7. ca	sh flow			
ERYTHEOMYCINS					Cur	RNECY :	1000 U.S	. ROLLAR	5	
YEARS	1991	1992	1993	1994	1995	1996	1997	1998	1995	2006
Sources of Cash										
ESUITY	160	1000	2900	G	Q	Ģ	0	0	0	Ŷ
LOANS	0	0	925	0	Q	0	0	0	0	Q
NET PROFIT/(LOSS) BEFORE TAX	-68	-229	-441	273	671	929	967	999		1017
DEPRECIATION AND AMORTISATION	0	87 	168	168	165	169	169	153	153	153
Cash Income	12	858	3552	441	839	1097	1135	1152	1170	1170
WORKING CAPITAL			 0	0	0	Û	0		0	0
sale of fixed asset	Û	0	0	Q	0	0	Ģ	0	Ģ	Ģ
total Cash available	12	958	3552	441	B37	1097	1135	1152	1170	1170
Cash reduirements										
CAPITAL INVESTMENT/REPLACEMENT ASSETS	667	936	ú	0	Ű	Û	0	6	¢	0
Dividends payments	0	Û	Û	Û	0	G	0	0	0	Û
TAX PAYMENTS	Ç	Ĵ	0	Û	0	0	0	0	500	509
NORKING CAPITAL INCREASE	0	0	1892	1190	790	22	Û	0	0	0
PAYMENT OF PRINCIPAL	C	0	0	185	185	185	185	185	0	0
total cash requirements	667	936	1892	1375	975	207	185	185	500	509
Cash situation at year end	-665	-78	1660	-934	-136	890	950	 467	670	661

¥

-

FEASISILITY MODEL Center for the Development of Industry

APPENDIX II - FINANCIAL DATA

÷ 4 - 4

...

.

appendix II - Financial Data					TAR.	E 8. ML	ance she	et proje	MOIT3	
ERYTHROMYCINS					CURR	NECY : 1	000 U.S.	DOLLARS		
YEARS	1991	1992	1993	1954	1995	1 9 %	1997	1998	1999	2000
ASSETS										
Cash	0	Ç	0	Q	0	Q	0	Û	0	Ģ
STOCKS	0	0	1622	2529	3245	3245	3245	3245	3245	57245
RECEIVABLES	0	ú	270	467	327	649	647	649	647	647
RESERVE	G	Û	Û	0	0	Û	0	0	Ģ	0
total current assets	0	Û	1872	3082	3672	3894	3894	3894	3894	3894
FISED ASSETS OPOSS	657	1603	1603	1507	1607	1600	1607	1693	1603	1600
DEPRECIATION AND AMORTISATION	¢	87	255	423	591	759	92 ?	1080	1233	1386
net fixed assets	687	1516	•131	1190	1017	64:	476	527	570	<u></u>
TOTAL ASSETS	657	1516	3240	4262	4884	4732	4570	4417	4264	4111
TAX PAYABLE	Û	Ģ	0	0	Ũ	0	Û	500	509	5(4
DIVIDENTS PAYABLE	0	0	Û	Û	Ģ	Û	0	Û	Q	Ģ
DIPPENT ACCOUNT (MINIS-SIEFLUS)	78°.	541	ذرّد-	7	147	-747	-1697	-2664	-3334	
CURRENT LIABILITIES	Ú	C	0	C	0	0	0	0	0	Ċ
ioise Girbent Flarkfilled	:55	, **	-نئ-	7	143	יאר.	-!!!!?	-7154	- <u></u>	-12
LONG TERM DEBT	925	925	925	740	555	370	195	0	9	0
EQUITY (1)	100	1100	4000	4005	4000	4000	4000	4000	4000	4000
RESERVES	-88-	-317	-758	-485	196	1115	2062	2581	3089	3597
Total Shareholders Equity	12	783	3242	3515	4186	5115	6062	6581	7(189	7597
THE LIABLE TAKES	667	1316	3240	4262	4384	4738	4570	4417	4264	4111
DEBT: EDUITY RATIO (2)	77.1	1.2	0.3	6.2	0.1	6. 1	6.0	0.0	0.0	0.0
SECURITY COVERAGE RATIO (3)	0.7	1.6	1.5	1.6	1.8	2.3	3.7	0.0	0.0	0.0

(i) Anount us equity plus eventual luture incluses

÷,

(2) Long Tere Debt : Total Shareholders Equity

اللغة فالمار والمار والمارية المارية والمارية المارية المارية المارية المارية المارية المارية المارية المارية

(4) Total Current Assets : Total Current Liabilities

FEASIBILITY NODEL

•

•

APPENDIT II - FININCIAL BATA

ERYTHROMYCINE

RESULTS :NET PROFIT/(LOSS) BEFORE TAK

SELING	prices of f	INISHED I					
	-302	-202		CONSTANT		+202	+302
TOTAL OPER. EXPERO. +302	-3393	-2614	-1835	-1056	-278	501	1286
TOTAL OPER. EXPERIE. +203.	-2731		-				
TOTAL OPER. EXPENS. +102	-2067		-512				
TUTAL OFER. EXPENS. CONSTANT		-629	150	929	1708	2487	3265
TOTAL OPER. EXPEND107	-						• · -
TOTAL OPER. EXPENS207.	-84	695	1474	2253			
TOTAL OPER, EXPENS, -307		1357		2914		4472	5251

TABLE 9. SENSITIVITY ANALYSIS FOR 200 YEAR AT 1001

-

۲

~

۰.

-

CURRNELY : 1000 U.S. FOLLARS

FEASIBILITY HODEL					DATE	: 01	7/29/198	3	TIM	E : 11:15
Center for the Development of Industry										
APPENDIX II - FINNCIAL DATA					TABL	E 11. HE	t prese	rt value	and dis	counted cash fi
ERYTHROMYCINS	CLARGEETY : 1000 U.S. DOLLARS									
YEARS	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
NET PRESENT VALUE P.A. (NET SALES NIMUS EXPENDITURE, NIMUS INVESTMENT FIXED ASSETS, DISCOUNTED AT 107 P.A.)	-635	-750	-90	397	672	726	660	600	546	496
sun of net present values (year 1 to 10)										2572
DISCOUNTED CASH FLON RATE (INTERNAL RATE OF RETURN = DISCOUNTED RATE AT WHICH CASH FLON YEARS 1 TO 10 ERUALS ZERO)(X)										34.23

1

1

5

.

-

FEASIBILITY MODEL Center for the Development of Industry					Dat	E :0	9/29/198	8	TIN	E : 11:1
APPENGIX II - DEVELOPMENT CONTRIBUTION		TABLE 1. FOREIGN ETOWARE ENENINGS								
ERVENMENTCENS	CURRENT : 1000 U.S. DOLLAPS									
VEAFS	1991	1992	1973	1954	1995	199 ₀	I±±1	1998	1997	2000
INFL(S)										
EDUITY AND LOWIS	925	G	0	Û	Q	0	Û	Û	6	O
INPORT SUBSTITUTION	C	Q	350)	560 0	7000	7000	706k	7000	7000	7000
THORT EXPNINES	0	Q	G	Q	Ŷ	0	G	Ģ	Ģ	0
1014	925	0	3500	5600	7006	7000	7009	7995	7000	7000
			 -							
INTEREST (NET)	88	86	86	86	76	IJ	35	15	Û	0
PRINCIPAL	O	0	0	18 5	185	185	185	185	C	Ũ
DIVIDENES (NET)	Ũ	0	Q	Û	Q	G	0	ŷ	ŷ	G
CAPITAL BOODS (NET OF DUTY TAXES)	385	575	0	G	0	G	9	9	Ŭ	0
INPURT OF MATERIALS (NET)	0	0	Û	C	0	0	Ģ	ŷ	0	0
TRANSFER PAYNENTS	0	0	O	0	0	0	C	0	0	0
TOTAL		663	88		255	238	220	203	0	0
SURPLUS/(DEFICIT) P.A.	427	-663	3412	5327	6745	6762	6780	6797	7000	7000
CUMULATED SURPLUS/(DEFICIT)	487	-176	3236	8563	15308	22070	2885 0	35647	42647	49647

-

•

. •

L

FEASIBILITY NOTEL					DAT	E :0	97297199	6	TIN	E : ii:			
Center for the Development of Industry													
APPENDIE II - DEVELOPTENE CONTRIBUTION TARLE								E 2. FISCAL EFFECTS					
ERYTHROMICTIS CURREEY : 1000 U.S. BOLLARS													
VEARS	1991	1992	1993	1994	1995	1996	1997	1998	1997	2000			
POSITIVE DIRECT EFFECTS													
tal on land etc.	Û	Û	Ģ	0	ŕ	Q	G	G	Ģ	0			
duty on deposited equipment	Ů	0	ú	0	Û	0	G	0	Û	0			
ercise and consumption takes	Ģ	0	G	Ŷ	Ģ	0	Û	Ģ	Q	ø			
CORPORATE TAL (ON PROFITS)	0	0	0	Ø	Ģ	Û	Q	500	50 9	509			
PERSONAL INCOME TAX	0	Ũ	ú	G	Ŷ	Û	Û	Û	0	ũ			
TAL ON DIVIDENCE	O	0	ê	Ģ	ŷ	0	0	0	Ð	0			
TAXES ON INTERES!	0	Q	0	\$	Ç	0	Q	0	0	0			
total tax payments	0	G	Ũ	Ũ	Û	Û	Ų	560	509	509			
NEGATIVE DIRECT EFFECTS													
LOSS OF THP. DUTY ON LOCAL FROD. 6000S	0	0	405	64 0	806	8 00	6 60	800	8 00	800			
NET TAT INCOME F.A.	Ú	0	-400	-ó4u	-800	-800	-800	-300	-291	-291			
CUMULATED TAX INCOME	0	0	-400	-1040	-1840	-2640	-3440	-3740	-4031	-4322			

2

2

.

٠.

1996 6616 166		5. CONTRIBUT INCOME 2 IV : 1060 U.	digi yeng	full pr	- Couction
1996 6618		DEDE 2	digi yeng	full pr	
6618	CFRE	7 : 1060 U.	S. DOLLA	RS	
6618					
168					
678ć					
0					
な					
0					
929					
1002	-				
7798	_				
	0 73 0 925 1002	678ć 0 73 0 929 1002	678ć 0 73 0 925 1002	166 678ć 0 73 0 725 1002	168 678ć 0 73 0 725 1002

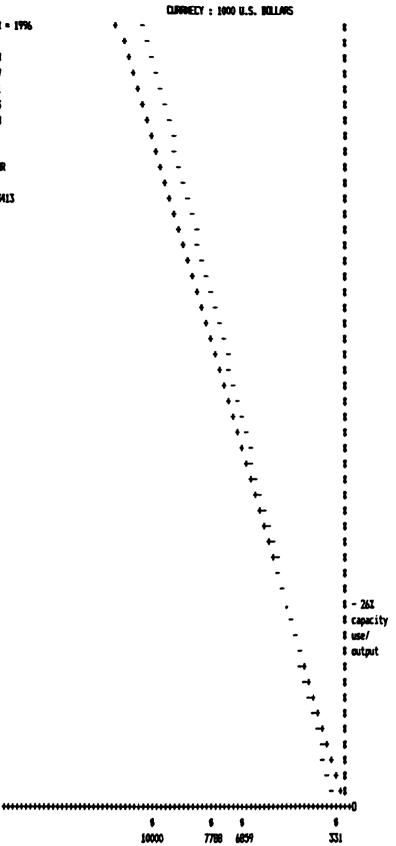
Т

٢

,

-

••


ERYTHROMICIUS FOR SECON VER AT 1002 OF COPICITY VER = 1996

TOTAL GUIPUT WILLE	2	7788
TUTAL COST		659
FIRED PRODUCTION EXPEDITURE		771
FINNESAL CHARGES	Ŧ	73
REPRECIATION		148

Ł

R

WILLIE OF PAL ACCOUNT DREAK EVEN POINT FOR SECOND VENR AT 1002 CAPACITY = 262 WILLE OF INTERNAL MATE OF RETURN = 34,23413

