

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at <u>www.unido.org</u>

WS Atkins Management Consultants

Your ref Our ref F0045/PAW/JC

Date 15th December 1988

Woodcate Grove Ashley Road Epsom Surrey KT18 5BW

Telephone (037 27) 26140 Telex 266701 (Atkins G) Fax (037 27) 40055

Ext no 2441

S Morosov Esq Chief Contracts Section General Services Division Dept of Administration UNIDO Box 300 A-1400 Vienna Austria

Dear Sir

Project Title: Assistance in Establishment of Copper Fabrication Plant in Zambia Project No: S1/ZAM/88/801 Contract No: 88/38

I have pleasure in submitting our Final Report on the feasibility of manufacturing copper semis in Zambia.

.

The objectives of the study were to:

- * evaluate the opportunities for manufacturing copper semis in Zambia
- * carry out a technical, financial and economic evaluation of the proposed joint venture with Romania, and possible alternatives.

The market research led to the conclusion that the best opportunities for Zambia lie in the manufacture of copper sheet and strip. It will be noted, therefore, that the technical, financial and economic evaluation focuses on **rolled products**. This is consistant with the conclusions of the study carried out by the Cooperation Centre of Tilburg and Eindhoven Universities, and with the Romanian joint venture proposal.

It should also be recognised that the financial evaluation of the Romanian proposal is based on information and assumptions drawn from our meetings with the Romanian delegation in Lusaka in June 1988, rather than a formal document. The Romanians were unable to prepare a full and final commercial offer, as agreed, by the deadline specified. The assumptions used in the financial evaluation, therefore, may be subject to revision. However, as agreed with UNIDO (telex from Behrens 2/8/88) and INDECG (telex from Yamba 8/8/88), we have completed the evaluation on this basis.

Directory RD James OS Butcher RAF Calines RK Carrie MR Fry J Fyle Associate Directory JE Moore: AC Senden

Reparent Office 12A Upper Bartaley Street Landon W1H 7PE

In preparing the Final Report we have taken into consideration the comments and suggestions set out in your letter of 9th November 1988. We have addressed the key comments on the market and financial aspects of the project in the manner described in our telex (23/11/88), to which you agreed (your telex 5/12/88).

We have responded to each comment made in your letter as follows:

Technical Comments

- 1(1): discussed further on p.94.
- 1(2): discussed further on pp. 96-97.
- 2(1): discussed on pp. 105-106.
- 2(2): this is a very useful suggestion, which we have addressed on p. 106. The cost implications of this technology are dealt with on p. 109, and this is carried forward to the sensitivity analysis on p. 190 (and summarised on p.28).

Market/Finance Comments:

- 2(a) the multiplier of 2.0 was derived from the market research results, and is explained in full on p. 53. A note has also been added to the summary on p.4.
- 2(b) further discussed on p. 57, and added to sensitivity analysis on pp. 187-189 (also p. 28).
- 2(c) competition from Radiator & Tinning is discussed further on p. 54, and this has been added to the sensitivity analysis on p. 189 (also p. 28). The rate of growth in demand within the PTA market is discussed further on p. 62, and considered in the sensitivity analysis on p. 189 (also p. 28).
- 2(d) the spurious figures in Table 3.8 were drawn from the Central Statistical Office in Lusaka, which was unable to check their accuracy. The estimated demand for plate, sheet and strip in Zambia shown in Table 3.9 is therefore built largely from market research results.
- 2(e) to achieve full capacity production, the Romanian buyback would have to be 97% of capacity in Year 1, declining to 85% in Year 15. It was not considered realistic to assume a variable buyback ratio with a view to achieving full capacity production after the start-up period. Rather we have assumed that the buyback will be a constant 80% of full capacity. This makes easier the analysis of the effects of raising or lowering the buyback volume.

2(f) deleted as requested.

1

,

2(g) most of the financial tables in the draft report show only to Year 2003 for convenience, although analyses were carried out over the full project period. These tables have not been altered as agreed in your telex.

We trust that these amendments are satisfactory, and we look forward to your confirmation that the Final Report satisfies the terms of our contract in full.

Yours faithfully for and on behalf of WS ATKINS MANAGEMENT CONSULTANTS

R A F Collins Director

17238

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANISATION

ASSISTANCE IN ESTABLISHMENT OF COPPER FABRICATION PLANT IN ZAMBIA

Project No: S1/ZAM/88/801

Final Report

WS ATKINS INTERNATIONAL Woodcote Grove - Ashley Road Epsom - Surrey Kill 58W England

DECEMBER 1988

ŀ

F0045.001 10/51:88

CONTENTS

T

			Page
1.	EXECUTIV	e summary	I
	1.1	Project Background	1
	1.2	Market and Plant Capacity	2
	1.3	Materials and Inputs	7
	1.4	Location and Site	9
	1.5	Project Engineering	9
	1.6	Plant Organisation and Overhead Costs	13
	1.7	Manpower	13
	1.8	Implementation	14
	1.9	Financial and Economic Evaluation	18
	1.10	Conclusions and Recommendations	30
2.	PROJECT	BACKGROUND	32
3.	MARKET A	HD PLANT CAPACITY	36
	3.1	Demand and Market Study	36
	3.2	Sales Forecasts	62
	3.3	Plant Capacity and Production Programme	63
	3.4	Sales Revenues	65
	3.5	Marketing	65
4.	MATERIAL	S AND INPUTS	69
	4.1	Raw Materials	69
	4.2	Auxiliary Materials	72
	4.3	Spares and Maintenance	74
	4.4	Utilities	75

•

5. LOCATIO	N AND SITE	
5.1	Location	
5.2	Site	
5.3	Costs	
5.4	Environmental Impact	
6. PROJECT	ENGINEERING	
6.1	Project Layouts	
6.2	Technology	
6.3	Equipment	
6.4	Civil Engineering Works	
6.5	Summary of Costs	
7. PLANT O	RGANISATION AND OVERHEAD COSTS	
8. MANPOWE	R	
	R Romanian Mill	
	Romanian Mill	
8.1 8.2	Romanian Mill	
8.1 8.2	Romanian Mill Small Mill	
8.1 8.2 9. IMPLEME 9.1	Romanian Mill Small Mill NTATION SCHEDULING	
8.1 8.2 9. IMPLEME 9.1 9.2	Romanian Mill Small Mill NTATION SCHEDULING Romanian Mill	
8.1 8.2 9. IMPLEME 9.1 9.2 0. FINANCI/	Romanian Mill Small Mill NTATION SCHEDULING Romanian Mill Small Mill	
8.1 8.2 9. IMPLEME 9.1 9.2 0. FINANCI/ 10.1	Romanian Mill Small Mill NTATION SCHEDULING Romanian Mill Small Mill	
8.1 8.2 9. IMPLEME 9.1 9.2 0. FINANCI/ 10.1 10.2	Romanian Mill Small Mill NTATION SCHEDULING Romanian Mill Small Mill AL EVALUATION Pre-Production Costs	
8.1 8.2 9. IMPLEME 9.1 9.2 0. FINANCI/ 10.1 10.2 10.3	Romanian Mill Small Mill NTATION SCHEDULING Romanian Mill Small Mill AL EVALUATION Pre-Production Costs Expenditure on Fixed Assets	
8.1 8.2 9. IMPLEMEN 9.1 9.2 0. FINANCI/ 10.1 10.2 10.3 10.4	Romanian Mill Small Mill NTATION SCHEDULING Romanian Mill Small Mill AL EVALUATION Pre-Production Costs Expenditure on Fixed Assets Operating Costs	
8.1 8.2 9. IMPLEME 9.1 9.2 0. FINANCI 10.1 10.2 10.3 10.4 10.5	Romanian Mill Small Mill NTATION SCHEDULING Romanian Mill Small Mill AL EVALUATION Pre-Production Costs Expenditure on Fixed Assets Operating Costs Working Capital	

Í

1

Page

10.8	Financial Statements	166
10.9	Payback Period, Simple Rate of Return and IRR	
	(with Financing)	182
10.10	Break Even Analysis	182
10.11	Sensitivity Analysis	187
11. ECONOMIC	EVALUATION	192
11.1	Approach to the Economic Analysis	192
11.2	Conversion Factors and Economic Costs	193
11.3	Valuation of Cash Flows	194
11.4	Results of the Economic Evaluation	196
11.5	Foreign Exchange Effects of the Project	200
11.6	Employment Effects of the Project	201
12. CONCLUSI	ONS AND RECOMMENDATIONS	205
APPENDIX I	LIST OF EQUIPMENT FOR ROMANIAN MILL	

1

1

1. EXECUTIVE SUMMARY

1.1 Project Background

Although Zambia is a major producer of copper cathodes, it imports most of its requirements for copper semis. These imports constitute a serious drain on Zambia's scarce forex reserves. Since copper, the main component of production costs, is available locally, import substitution would seem a logical development.

The viability of manufacturing copper semis in Zambia is by no means certain, however. Despite the advantageous positioning close to the raw material, operating costs in Zambia are likely to be higher than competitive installations in the West, principally because of relative scales of production, the scarcity of scrap as a feed material, and the need to import expensive spares.

A previous study, carried out by the Cooperation Centre of Tilburg and Eindhoven Universities between 1985 and 1987, concluded that a Zambian manufacturer would be primarily dependent on the PTA regional market, and that the most promising opportunities lay in the manufacture of copper sheet and strip. However, a financial and economic evaluation of a small scale rolling mill with a capacity of 1,000 t/pa indicated that the project would not be feasible.

More recently, the Romanian organisation Uzinexportimport has presented a proposal concerning the establishment of a rolling mill in Zambia with a capacity of 10,000 t/pa. Romanian credits will be available to finance the purchase of Romanian plant and equipment, and repayment of the loan could be made in copper products. This proposal is the main subject of the feasibility study presented in the present report. It is important to note, however, that the Romanians have failed to provide, as promised, full details of their commercial offer by the deadline agreed. For this reason, we have proceeded on the basis of assumptions drawn from our discussions with the Romanian delegation in Lusaka in June 1988. Inevitably. several important aspects remain unclear. The most important is the proportion of the plant's output which can be sold to Romania. We have assumed that the Romanians will accept a fixed percentage of production, rather than the volume necessary to pay back the ioan for plant and equipment, and continue to do so after the loan has been paid off.

compares the Romanian project with possible The report also alternatives. This involved а re-examination of market opportunities in sectors other than sheet and strip, and an evaluation of a different type of plant. The plant selected for this exercise was a rolling mill of 2,250 t/pa maximum capacity, oriented to the PTA regional market.

1.2 Market and Plant Capacity

1.2.1 PTA region

Estimates of demand within the PTA region (Table 3.10) indicate some significant developments since the Dutch consultants' study, largely due to expansion among the region's major manufacturers.

For the product sectors specified in the TOR, the key conclusions may be summarised as follows:

* <u>tubes</u>: Almin (Zimbabwe) has entered successfully this market, and could supply a large percentage of demand within the PTA. Since Zamefa (Zambia) and Booth Manufacturers (Kenya) also have the capacity to produce tubes, investment in another plant in Zambia cannot be recommended

2

- * <u>copper and brass bars</u>, <u>shapes and sections</u>: this is a promising market, but there are three producers in both Zambia and Zimbabwe, and one in Kenya. Further investment does not appear to be justified, although there is scope to develop secondary manufacturing industries using copper and brass feed
- * copper and brass sheet, strip and foil: there is still no major manufacturer of these products in the PTA region surrounding Zambia. Limited local competition is provided by Radiator & Tinning (Zimbabwe) and GECA mines (Zaire).

The market research demonstrates that the only significant "gap" within the immediate PTA market for a Zambian manufacturer lies in the sheet, strip and foil sector. This is consistent with the conclusion reached in the Dutch consultants' report, and with the Romanian joint venture proposal (Section 3.1.1).

1.2.2 Sales outside the PTA

Although there has been considerable rationalisation of production in the major world markets, there is still ample capacity for rolled products, and declining markets have led to significant improvements in efficiency among the surviving producers.

A Zambian manufacturer is at a competitive disadvantage in these markets, primarily because market requirements are so varied and different to the PTA, because customers demand just-in-time delivery, and because foreign producers, using scrap, have lower raw material costs.

Zambia is unlikely to achieve any significant sales in Europe or other hard currency markets. This is consistent with the conclusions of the market research carried out by the Dutch team. The most sensible approach is to assume that a Zambian manufacturer will concentrate on the PTA market, where high tariff barriers provide effective protection against European imports. Sales to Romania as part of the joint venture proposal are treated as a separate and unique item (Section 3.1.2).

1.2.3 Demand

The current consumption of copper sheet, strip and foil in the PTA market is estimated at 835 t/pa.

A multiplier of 2.0 can be applied where copper products can be purchased in local currencies. This is based on end-users' estimates of the effect of forex restrictions on local demand. On the basis of discussions with the PTA, an assumption that 20% of export sales throughout the PTA will be paid in local currencies has been derived.

Applying the multiplier, and allowing for competition from Radiator & Tinning and GECA mines, the current market available to a Zambian manufacturer of rolled products has been estimated at 1,080 t/pa (Table 3.12).

In the case of the Romanian mill, the off-take for the Romanian market has been set at 80% of maximum capacity, which is 8,000 t/pa (Section 3.1.3).

1.2.4 Prices

.

Ex-works prices are used in the calculation of revenues.

Zambian sales prices are set at a 5% discount with respect to the landed price of European imports in the various PTA markets. Ex-works prices are calculated by subtracting the relevant duties, tariffs and transport costs (Table 3.13 and Section 3.1.4).

Ex-works prices of products sold to Romania are derived by subtracting transport costs from indicative international prices.

1.2.5 Product mix

I

f

For the purposes of building a revenue stream for a rolling mill supplying the PTA market (the small mill option), the following product mix has been assumed: sheet (65%), strip (15%), and foil (20%).

For the Romanian mill, the mix is composed of 80% sheet and 20% strip (for the PTA market), and 50% sheet and strip (for the Romanian market). Foil, for radiator applications, is not produced (Section 3.1.5).

1.2.6 Plant capacity and production programme

Sales forecasts in the PTA region have been built by inflating the potential demand (Table 3.12) by 3% pa.

This suggests that the PTA market for rolled product will be about 1,600 t/pa after 15 years. For this reason, the small mill option has been designed with a capacity of 750 t/pa with one shift working and 1,500 t/pa with two shift working. The mill moves to two shifts in Year 4 (1995). Capacity utilisation increases steadily over the project life, reaching 100% in Years 14 and 15. Sales as a percentage of demand reaches a peak of 85%.

The Romanian mill has been designed to operate with three shifts, and a full capacity of 10,000 t/pa. In Year 3, sales to the Romanian market are stabilised at 8,000 t/pa. Sales to the PTA market rise to 1,500 t/pa in Year 15, comparable to the small mill.

Demand, sales/production, capacity and revenue figures are summarised in Table 1.1.

It needs to be recognised that both mills are small by Western European standards. The capacities chosen have been dictated, in the case of the Romanian mill, by the terms of the Romanian

	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
Potential demand	1081	1113	1147	1181	1217	1253	1291	1330	1369	1410	1453	1496	1541	1587	1635	1684	1735	1787	1840	1896
Small mill																		••••••••••••••••••••••••••••••••••••••		
Capacity Production/Sales Capacity utilisation (%) Sales as % of demand Revenue (\$'000s) (Constant mid 1988 prices)	• -	-	- - -	- - -	750 225 30 18 1064	750 525 70 42 2482	750 675 90 52 3191	1500 1125 75 85 5318	1500 1159 77 85 5478	1500 1194 80 85 5642	1500 1229 82 85 5811	1500 1266 84 85 5986	1500 1304 87 65 6165	1500 1343 90 85 6350	1500 1384 92 85 6541	1500 1425 95 85 6737	1500 1468 98 85 6393	1500 1500 100 84 7091	1500 1500 100 82 7091	
Romanian mill																				
Capacity	-	-	-	-	-	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
Production/Sales: - Romanian market - PTA market	-	•	-	•	•	2700 300	5000 500	8000 800	8000 900	8000 1000	8000 1050	8000 1100	8000 1150	8000 1200	8000 1250	8000 1300	8000 1350	8000 1400	8000 1450	6000 1500
Capacity utilisation (%)						30	55	88	89	90	90.	5 91	91.9	5 92	92.	5 93	93.	5 94	94.	5 95
Sales as X of demand (PTA) market) Revenue (\$'000s) (Constant mid 1988 prices)	-	-	-	•	-	24 11936	39 21848	60 34956	66 35417	71 35877	72 36107	74 36338	75 36568	76 36790	76 37028	77 37259	78 37489	70 37719	79 37949	79 38180

•

TABLE 1.1 - SUMMARY OF DEMAND, PRODUCTION/SALES, CAPACITY AND REVENUE FIGURES

• • •

Source: WS Atkins

5

.

.

.

technical proposal, and, in the case of the small mill, by the size of the regional market and the need to operate at an efficient production level relative to capacity (Sections 3.2 to 3.4).

1.3 <u>Materials and Inputs</u>

ŗ

The main raw material is copper cathode, which will be provided by ZCCM on equivalent terms to those enjoyed by Zamefa; i.e incorporating a rebate on the LME price related to transport costs (\$ 104/tonne), and a quality related discount (\$ 30/tonne) to compensate the user for having to use Grade A cathode.

Zinc will also be provided by ZCCM at a discount of \$50/tonne over the LME price. This is used only by the small mill for the production of brass foil, which is 10% of output.

Phosphor copper, which is required for deoxidisation purposes, will be imported.

The main auxiliary materials are industrial gases. A nitrogen/hydrogen mixture is required for annealing, and can be supplied by Zamox in Ndola. Methane is also specified in the case of the Romanian mill for preheating in advance of hot rolling. Since methane is not available locally in Zambia, this is replaced by LPG.

The other major c dis are related to spares and maintenance. Spares for plant and equipment are estimated at 3% of initial capital costs, after two years. Spares for the buildings and works area are estimated at 1.5% of initial capital costs.

The main inputs are listed in Table 1.2, together with summarised information on consumption and costs (Section 4).

TABLE 1.2 - MATERIALS AND INPUTS

Item	Consumption/tonne of output	Costs (\$/tonne) mid-1988 prices
Copper Cathode	1.05 tonne	2,012
Phosphor Copper	Romanian mill: 2.2 kg Small mill : 2.4 kg	3,994 4,345
Zinc	Small mill : 0.033 tonne	1,179
Nitrogen/hydrogen LPG	100 Nm ³ 40 Nm ³	261 120
Industrial materials	-	35
 Spares & Maintenance * plant & equipment * buildings		3% capital costs after 2 years 1.5% capital costs
Electricity	Romanian mill:2,500-3,000kwh Small mill: 2,500kwh	(Fixed charge \$118,600)/variable charge 13.5 (Fixed charge \$41,700)/variable charge 18.64
Water	Romanian mill: 15,000 litres Small mill: 7,000 litres	2.19 0.89

0

1.4 Location and Site

Kitwe has been selected as the location for the mill. Kitwe is located close to the copper refineries, and is also well placed with respect to the domestic market. It is served by the railway line, and there is a good supply of industrial land, labour and industrial services. Indeco has accepted Kitwe as a suitable location (Section 5.1).

For the Romanian mill, a greenfield site has been selected in an area set aside for industrial development in north-west Kitwe. Following discussions with Indeco, an existing Indeco industrial site was selected for the small mill option, although the development of a greenfield site would not involve significantly greater costs (Section 5.2).

1.5 Project Engineering

1.5.1 <u>Layout</u>

The Romanian technical proposal did not contain information on project layout. The layout of the factory, shown in Figure 6.1, is based on Atkins' interpretation of the information relating to technology and machinery set out in the proposal. The suggested design of the works area (Figure 6.2) has been prepared by Arup (Zambia). The more compact layout for the small mill is shown in Figure 6.3 (Section 6.1).

1.5.2 Technology

The Romanian mill is designed as a single product plant, producing 1,000 mm copper strip with a thickness range 0.5 to 3.0 mm, which can be marketed either as 1,000 mm x 2,000 mm sheet or in coil slit to the width required by the customer. The capacity is 10,000 t/pa.

The mill follows conventional practice for the manufacture of copper sheet and strip, involving both hot and cold rolling (see Figure 6.4 for the process flow diagram). The novel feature of the proposal is that a single mill will be used for both hot and cold rolling. in order to minimise the cost of equipment. In principle, there is no reason why this procedure cannot be used. but there are The first is the wasted production time in making disadvantages. the roll change (estimated, and probably underestimated, as 1 shift The second is the difficulty of cleaning properly the per month). mill and its ancillary runout tables, to prevent oxide particles being rolled into the strip. The third disadvantage is the delay imposed on the production process. Stock is tied up for about 12 days before cold rolling can begin. For this reason. work in progress has been set at a relatively high 3 weeks. A further problem is that the mill is not designed to produce strip thin enough for radiator applications, for which there is considerable demand within the PTA market (Section 6.2.1).

The small mill is conceived as a flexible unit capable of producing both sheet and strip in copper, and strip in brass. It would have a capacity of 2,250 t/pa, depending on the mix of sheet and strip, with three shift working, 5 days per week. However, the melting and casting unit is designed for intermittent operation, and it is recommended that a start be made with single shift working (capacity 750 t/pa). The process specified involves static casting of slabs, and processing by cold rolling only (see Figure 6.5 for the process flow diagram).

The suggested technology follows practices which are now largely outdated. It is proposed only as a possible means for satisfying the regional market, with minimal capital investment. The most serious problem is that low volume producers of copper alloy strip have adopted increasingly continuous strip casting since this avoids much laborious rolling of thick sectioned castings. Unfortunately, this is not a practical proposition for phosphorus deoxidised copper, which is necessary if strip is to be brazed. For this reason, it is proposed that rolling slabs should be produced by static casting, and then processed entirely by cold rolling. This is an unconventional method for manufacturing copper sheet and strip, which is normally hot rolled from somewhat larger slabs, as in the Romanian mill. However, the capital cost of hot rolling mills and the associated preheating furnace is too high for this process to be considered for small volume production.

A further problem with the small mill is that sheet up to 1 metre wide is most efficiently produced with a wide rolling mill. However, since the cost of rolling mills tends to increase exponentially with width, cross rolling is recommended, which is relatively inefficient. With the same aim of minimising the capital cost of equipment, it is proposed to carry out reduction only with a 2-high mill. Although it is possible to roll down to guages below 0.1 mm in this way, several passes are necessary, which is also inefficient.

It is possible to reduce capital costs by using a single mill for both rough rolling and finishing, although this process would lower productivity (Section 6.2.2).

1.5.3 Equipment

The main items of equipment for the Romanian mill are listed in Uzinexportimport's technical proposal, and reproduced in Appendix 1. The capital cost is based on a verbal estimate provided by the Romanian delegation (Section 6.3.1). Plant and equipment is priced at \$ 20 million, and installation and commissioning at \$ 10 million, excluding contingencies.

The list of equipment required for the small mill option is set out in Table 6.1. The main items are the mill, melting furnace and annealing furnace. Prices are based on quotations provided by UK suppliers. Capital costs are reduced by about 25% if second hand plant and equipment is used. Since such plant is in good supply, the small mill option has been evaluated both on the basis of using new and second hand equipment (Section 6.3.2). Plant and equipment is expected to cost \$ 6.38 million (or \$ 4.68 million if second hand), with installation and commissioning priced at \$1.7 million. Costs could be reduced to \$5.38 million if the single mill concept is used (\$3.93 million if second hand), with installation and commissioning priced at \$1.5 million. All equipment will be imported.

1.5.4 Civil engineering works

The Romanian mill requires a main factory of $8,350 \text{ m}^2$, plus a number of ancillary buildings, including offices, changing room, kitchen, workshops, fuel storage and guard house. The civil and external works includes site levelling, connection to main services, and the construction of two boreholes. Costs are estimated in Table 6.2, and total \$ 11.69 million.

It is also necessary to construct a housing complex for managment, technicians and some skilled labour to compensate for the shortage of good housing in Kitwe. The number of units required is estimated to be 89, and costed at \$ 1.18 million (Table 6.3).

The small mill requires a factory of 900 m^2 , plus a changing room, canteen, workshop and fuel storage. Civil and external works include site levelling, connection to main services, and the contruction of one borehole. Costs are estimated in Table 6.4, and total \$ 1.96 million.

The housing complex associated with the factory includes 49 units, at an estimated cost of \$ 0.65 million.

Capital costs for all three projects are summarised in Table 6.6. The import content for civil engineering is estimated at 55%, while that for housing is estimated at 25%. Contingencies are 10% for buildings and works, and 15% for plant and equipment.

1.6 Plant Organisation and Overhead Costs

Overhead costs for both the Romanian and small mill options are estimated in Table 7.1.

Distribution costs include only the costs of packaging. Freight charges are treated as external to the project, since revenues are calculated with reference to ex-works prices.

The depreciation schedule is based on information provided by Indeco. Charges are calculated on a declining balance, rather than a straight line basis.

1.7 Manpower

The manpower requirements for the Romanian mill are set out in The table shows the breakdown between Zambians and Table 1.3. categories, and between direct expatriates, between skill These figures are (production) and indirect (overhead) labour. based on an appraisal of the Romanian's technical proposal, but the Zambian manpower requirement, which is calculated to be 200, is identical to the verbal estimate provided by the Romanian The number of expatriates is projected to decline delegation. throughout the life of the project from 14 in Year 1, to 12 in Year and 3 in Year 10 onwards. A high expatriate presence is 3. considered necessary, although the duplication of tasks with Zambian counterparts introduces a degree of inefficiency. Manpower costs Remuneration rates for are estimated in Table 8.4 (Section 8.1). Zambian labour are based on figure provided by Indeco.

The manpower requirements for the small mill (both options) are set out in Table 1.4. A complication is introduced by the transition from one shift working to two shift working in the 4th year of production. The number of expatriates is projected to decline over the life of the project, from 8 in Year 1, to 7 in Year 3, 3 in Year 5, and 1 in Year 10 onwards. Manpower costs are estimated in Table 8.8 (Section 8.2).

	Zam	bians	Expatriates at project outset				
	Direct	Indirect	Direct	Indirect			
Upper management	-	5	•	4			
Lower management	- 1	5	-	3			
Technicians/foremen	29	1	7	-			
Skilled labour	41	35	-	-			
Unskilled labour	84	-	-	-			
Totals	154	46	7	7			

TABLE 1.3 - MANPONER REQUIREMENTS (Romanian Mill)

Source: WS Atkins

1.8 Implementation

The main features associated with the implementation of the Romanian mill are set out in Table 1.5. The decision to proceed is made in 1989. The plant and equipment takes 24 months to manufacture and a further 12 months to deliver, erect and instal. Commissioning, estimated to take between 6 and 9 months, therefore takes place in 1993 (Year 5). Construction of the factory and housing colony commences in 1990, and reaches completion after 30 months in 1992. Production begins in 1993, and builds up from 20% of full capacity production in that year, to 55% in 1994, and to 88% in 1995 (Section 9.1).

The implementation schedule of the small mill is summarised in Table 1.5. The decision to proceed is made in 1989. The plant and equipment is ordered in end 1989/beginning of 1990. It takes 12 to 18 months to manufacture and procure, and a further 6 months to deliver, erect and instal. Commissioning, estimated to take between and 9 months, therefore takes place in 1992 (Year 4). 6 Construction of the factory and housing complex commences in 1990, and reaches completion after 12 months in 1991. Production begins in 1992, and builds up from 30% of full capacity production with one shift working in 1992, to 70% in 1993, and to 90% in 1994. The factory moves to two shift working in 1995 (Section 9.2).

TABLE 1.4 - MANPOWER REQUIREMENTS (Small Mill)

		One shi	ft working			Two shift working								
	Za	ambians	Expat proje	riates at ect outset	Zamt	oians	Expatriates at project outset							
	Direct	Indirect	Direct	Indirect	Direct	Indirect	Direct	Indirect						
Upper management	-	4	-	3	-	5	-	3						
Lower management	-	1	-	-	-	1	-	-						
Technicians/foremen	9	-	5	-	18	-	5	-						
Skilled labour	7	14	-	-	14	19	-	-						
Unskilled labour	26	-	-	-	52	-	-	-						
Totals	42	19	5	3	84	25	5	3						

Source: WS Atkins

TABLE 1.5 - IMPLEMENTATION SUMMARY (Romanian Nill)

Year	Year No.	Events
1989	1	Decision to proceed Order plant and equipment
1990	2	<pre>(completion in 24 months) Commence construction (completion in 30 months)</pre>
1991	3	
1992 	4	Construction complete Delivery of plant and equipment (30 months from order) Erection and installation of plant and equipment (36 months from order)
1993	5	Commissioning (6 to 9 months) 20% of full capacity production
1994	6	50-60% of full capacity production
1995	7	88% of full capacity production

Source: WS Atkins

TABLE 1.6 - IMPLEMENTATION SUMMARY (Small Mill)

Year	Year No.	Events
1989	1	Decision to proceed
1990	2	Commence construction (completion in 12 months) Order plant and equipment (completion in 12 to 18 months)
1991	3	Construction complete Pelivery of plant and equipment (15 to 21 months from order) Erection and installation of plant and equipment (18 to 24 months from order)
1992	4	Commissioning (6 to 9 months) 30% to full capacity production (one shift)
1993	5	70% of full caracity production (one shift)
1994	6	90% of full capacity production (one shift)
1995	7	2-shift production 100% capacity shift one 50% capacity shift two

Source: WS Atkins

1.9 Financial and Economic Evaluation

1.9.1 Investment costs

Investment costs for the three projects are summarised in Tables 1.7 to 1.9. The costs are expressed in US Dollars in both foreign and local currency, and in constant mid 1988 prices. Investment is broken down between pre-production expenses, civil works and structures, plant and equipment, and working capital, and include The expected phasing of contingencies. expenditure on pre-production costs and fixed assets is also shown in the tables. The figures are drawn from Tables 10.1 to 10.6, and Tables 10.10 to 10.12 (Sections 10.1, 10.2 and 10.4).

1.9.2 Production costs

Production costs for the three projects are outlined in Tables 1.10 to 1.12. These costs are expressed in US Dollars, and in current prices. The costs are broken down between direct costs, administrative overheads, financial costs and depreciation. It will be noted that the small mill with second hand plant and equipment has significantly lower financial costs. These figures are drawn from Tables 10.16 to 10.18, and 10.34/to 10.36 (Sections 10.3, 10.6 and 10.10).

TABLE 1.7 - TOTAL INVESTMENT COSTS (Romanian Mill)

.

All Values in \$'000s (Constant Prices)

lten	Total	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Pre-Production Costs • foreign currency • local currency	720 - -	42 119	56 100	- 28 86	164 125	-		- - -		-		-	-		-	:
Civil Works & Structures * foreign currency * local currency	13086 - -	- 649 531	3766 3152	- 1600 1627	454 653	340 314	-	-	-	• • •	-	-	-	• •	-	- - -
Plant & Equipment * foreign currency * local currency	34500	2300	9200	- 9200 -	6325	6900 -	575	-	-	-	-		-	-	-	-
Working Capital * foreign currency * local currency	- - -	- - -	-	- -		55 1 1030	424 760	- 847 1118	19 31	19 31	10 15	10 15	- 10 15	10 15	10 15	- 9 0
Total * foreign currency * local currency		364 1 299 1 650	16274 13022 3252	12541 10828 1713	7721 6943 778	9135 7791 1344	1759 999 760	1965 847 1110	50 19 31	50 19 31	25 10 15	25 10 15	25 10 15	25 10 15	25 10 15	9 9 0

Source: WS Atkins

.

à

TABLE 1.8 - TOTAL INVESTMENT COSTS (Small Mill with New Plant & Equipment)

.

.

.

All Values in \$'000s (Constant Prices)

lten	Total	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Pre-Production Costs * foreign currency * local currency	505	- 30 80	45 100	130 108	- 5 8	-	-	-	-	-	-	•	-	• • •	-	-
Civil Works & Structures	2698 - -	127 143	512 654	- 576 589	- 55 45	-	-	-	-	-	-	-	- - -	- - -	• •	-
Plant & Equipment • foreign currency • local currency	9292 - -	734	4402	3765	293	98	-	-	-	- - -	- - -	-	- - -	- - -	- - -	-
Norking Capital * foreign currency * local currency	-	-	-		- 38 92	- 34 83	94 60	52 130	- 3 4	4	4	4	4 11	- 4 B	- 5 11	5 12
Total • foreign currency • local currency	-)114 891 223	5713 4959 754	5168 4471 697	536 391 145	215 132 83)54 94 60	182 52 130	7 3 4	14 4 10	14 4 10	14 4 10	15 4 11	12 4 8	16 5 11	17 5 12

.

Source: WS Atkins

TABLE 1.9 - TOTAL INVESTMENT COSTS (Small Mill with Second Hand Plant & Equipment)

•

All Values in \$'000s (Constant Prices)

ltem	Total	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Pre-Production Costs * foreign currency * local currency	505 -	- 30 80	45 100	- 130 108	- 5 8	-		-	-		- -		-		:	•
Civil Works & Structures ^a foreign currency ^a local currency	2698	127 143	512 654	576 589	- 55 45	-	-	-	-	-	-	:	-	- - -	:	-
Plant & Equipment * fureign currency * local currency	7337	538	3229	3179	293	98	-	-	-	-	-	-	•		•	•
Working Capital * foreign currency * local currency	- - -	-	-		37 92	34 84	- 78 56	51 131	- 3 3	- 4 10	- 4 10	- 4 11	- 4 8	- 4 11	5 12	5 12
Total * foreign currency * local currency		918 695 223	4540 3786 754	4582 3885 697	535 390 145	216 132 84	134 78 56	182 51 131	6 3 3	14 4 10	14 4 10	15 4 11	12 4 8	15 4 11	17 5 12	17 5 12

Source: WS Atkins

.

.

TABLE 1.10 - PRODUCTION COSTS (Romanian Hill)

•

.

All Values in \$'000s (Current Prices)

ltem	1992	1993	1994	1995	1996	1997	1998	1999	2000	200 1	2002	2003	2004	2005	2006	2007
Factory Costs Administrative Overheads	-	11408 1608	20960 1676	35985 1591	38180 1671	40505 1754	42749 1841	45115 1934	47612 2030	50245 2132	53023 2238	55571 2200	58642 2319	61881 2435	65298 2556	68901 2685
Operating Costs	-	13016	22636	37576	3985 1	42259	44590	47049	49642	52377	55261	57779	60961	64316	67054	7 1586
Financial Costs Depreciation	-	6227 6859	7362 2670	6662 2468	6564 2352	6063 2243	5401 1974	4566 1076	4650 1782	3974 1693	3148 1608	2441 1528	1086 1451	-359 1379	- 1726 1310	- 3246 1244
Total Production Costs (less tax)	•	26152	32668	46706	48767	50565	51965	53491	56074	50044	60017	61748	63498	65336	67438	69504

Source: WS Atkins

TABLE 1.11 - PRONICTION COSTS (Small Hill with New Plant & Equipment)

. .

All Values in \$'000s (Current Prices)

ltem	1992	1993	1994	1995	1996	1997	1990	1999	2000	2001	2002	2003	2004	2005	2006
Factory Costs Administrative Cverheads	1172 506	2199 613	3209 541	5126 604	5323 540	5725 567	6159 595	6626 625	7130 657	7515 609	0092 724	8715 760	9306 799	10G42 838	10544 800
Operating Costs	1750	2812	3750	5729	5863	6292	6754	7251	7787	0204	8816	9475	10185	10880	11424
Financial Costs Depreciation	2717 1816	2717 715	3021 673	2003 645	2905 610	2938 400	2949 456	2933 433	3420 411	3467 391	3455 371	3401 353	3300 335	3175 310	300 1 302
Total Production Costs (less tax)	6291	6244	7444	9177	9386	9710	10159	10617	11626	12062	12642	13229	13028	14373	14727

Source: WS Atkins

•

TABLE 1.12 - PRONNECTION COSTS (Small Mill with Second Hand Plant & Equipment)

•

•

All Values in \$'000s (Current Prices)

lten	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Factory Costs Administrative Overheads	1172 551	2199 577	3127 506	5040 567	5230 504	5629 528	6058 554	6521 581	7019 611	7398 641	7970 673	85 1 7 706	9252 742	9901 779	10396 618
Operating Costs	1723	2775	3633	5607	5734	6157	6612	7102	7630	8039	8643	9293	9994	10680	11214
Financial Costs Depreciation	2188 1489	2180 623	2327 585	2231 561	2265 539	2221 404	2147 384	2034 365	2328 347	2252 329	2112 313	1937 297	1719 283	1449 260	1126 255
Total Production Costs (less tax)	5400	5586	6645	8399	8538	8782	9143	9501	10305	10620	11068	11527	11996	12397	12596

Source: WS Atkins

1.9.3 Internal rate of return and net present value

The cash flows before financing, presented in Tables 10.13 to 10.15, give the following results:

	Internal Rate of Return (%)	NPV at 12% (Millions \$)
Romanian Mill	10.61	-3.65
Small Mill with		
New Plant &		
Equipment	6.27	-3.99
Small Mill with		
Second Hand Plant		
& Equipment	8.59	-2.13

All of the projects generate IRR's lower than 12%, which is the cut-off point specified by Indeco (Section 10.5). The Romanian mill does generate significant forex earnings, however. These revenues total \$ 471.5 million (in real terms) over the project life, but they depend on the assumption that 80% of the mill's capacity is sold to Romania, and that payments are made in hard currency.

1.9.4 Firancing

The Romanian mill is to be partly financed by a credit from Uzinexportimport, covering the purchase of plant and equipment. The Romanians are not proposing to contribute equity.

Under guidance from Indeco, local equity has been set with a ceiling of 33.3% of investment costs in local currency. Since local currency costs are around 10 to 15% of total investment costs, equity covers all local costs. This leads to very high debt:equity ratios. The balance of costs is financed by long terms loans from the Development Bank of Zambia at relatively high rates of interest. It is unrealistic to build in any soft term financing for the projects, since Zambia's credit rating is, unfortunately, so low. It is equally unrealistic to assume foreign equity participation in the case of the small mill options (Section 10.7).

1.9.5 Financial statements

All projects show high debt: equity ratios and very poor current and liquidity ratios. The Romanian mill, however, does generate higher profit margins and returns on capital employed. Profit after tax and retained earnings also become positive much earlier in the project. The financial statements show clearly, therefore, that, of the three projects, the Romanian mill is the preferred option, although its viability must be considered marginal. The small mills are obviously not acceptable to investors (Section 10.8).

1.9.6 Payback, simple rate of return, IRR (with financing) and break even analysis

The calculations regarding payback period, simple rate of return, break even, and IRR with financing are presented in Tables 10.31 to 10.36. The relevant figures are reproduced in Table 1.13.

The figures are consistent with the IRR and NPV figures above. They also show clearly that the Romanian mill is the most attractive option (with the commercial terms assumed), and that the small mills are not viable (Sections 10.9 and 10.10).

1.9.7 Sensitivity

The sensitivity of the projects to changes in prices, operating costs, the price of copper, expenditure on fixed assets, and sales has been examined. The results are presented in Table 10.37. The impact of sales increases has not been examined, since each mill is operating very close to capacity in most years.

TABLE 1.13 - PAYBACK PERIOD, SIMPLE RATE OF RETURN, BREAK EVEN ANALYSIS, AND IRR (WITH FINANCING)

	Payback period (years from 1989)	Simple rate of return on total investment costs (%)	Simple rate of return on equity capital (%)	Production year in which project breaks even (years from 1989)	IRR with financing (%)	IRR with financing in real terms (%)
Romanian Mill	11	16.3	34.5	7	12.9	7.5
Small Mill with New Plant and Equipment	13	7.9	-58.5	14	-16.8	-20.8
Small Mill with Second Hand Plant and Equipment	12	11.1	-32.0	10	-1.5	-6.2

Source: WS Atkins

In general, the projects are more sensitive to changes in prices and operating costs, than expenditure on fixed assets. The small mill options produce an IRR in excess of 12% in only one case. A few cases produce IRR's over 12% in the case of the Romanian mill, but the validity of these scenarios is questionable, since the price of copper sheet and copper cathode are not independent, but move in sympathy. A rise or fall in one will be preceded or followed by a rise or fall in the other.

Although acceptable rates of return for the small mill are generated by setting PTA prices at a premium of 5 to 15% relative to European imports, such gains would be partly offset by increased import penetration. It is considered more realistic to proceed on the basis of prices set lower with respect to imports.

An IRR of 11.9%, with a decrease of expenditure on fixed assets, is encouraging for the Romanian project, but the price for the equipment used in the base case may turn out to be an underestimate. Even with a change in design of the small mill (to incorporate only one rolling mill), reducing costs by 15%, the second hand mill still does not generate an acceptable rate of return.

All options are very sensitive to variations in sales. This is a particularly important observation with respect to the Romanian mill, where sales well in excess of that needed to pay off the Romanian credit have been assumed. The small mill project also appears to be very vulnerable to a reduction in sales, either through increased competition from Radiator and Tinning, or a lower rate of growth in demand throughout the PTA (Section 10.11).

1.9.8 Economic evaluation

I

.

6

The forecast cash flows in economic prices for the three projects are set out in Tables 11.2 to 11.4. The results of the DCF analyses are summarised in Table 11.5.

Gross value added by the Romanian project increases from \$ 2.8 million (in constant prices) in 1993, the first year of operation. to \$ 10.5 million by the end of the project period (Section 11.4).

The internal rate of return for each of the options is below the minimum Indeco economic opportunity cost of capital requirement of 12%. The rates of return for the smaller mill options, at 4.8% for the new mill, and 7.0% for the mill with second hand plant and equipment, are such that these canno. be considered to be viable projects in economic terms. On the other hand, the rate of return on the Romanian mill of 11.1% is sufficiently close to the cut-off rate to warrant further consideration (Section 11.4).

The preferred option, the Romanian mill, would have two important benefits for the Zambian economy:

- * direct net foreign exchange earnings amounting to some \$ 30
 million pa at mid 1988 prices in 1995
- * an annual import substitution of copper sheet and strip totalling approximately \$ 1.5 million at mid 1988 prices by 1995.

The foreign exchange cash flow for the Romanian mill (excluding the forex benefits of import substitution) produces an IRR of 38%. It is therefore clear that the project would generate substantial net foreign exchange benefits for the Zambian economy (Section 11.5). From the point of view of the copper refineries, of course, the project results in foreign exchange losses of about \$ 18 million pa (in 1988 prices).

While the impact of the project on employment outside the works is difficult to quantify, it is nevertheless potentially very significant. Employment opportunities likely to arise within linked industries and induced elsewhere in the economy are estimated at 875, compared to a total of 214 jobs within the mill (Section 11.6).

1.10 Conclusions and Recommendations

The market research demonstrates that the feasibility of in Zambia merits manufacturing rolled products further consideration.

A Zambian manufacturer of rolled products will be heavily dependent on the PTA market, were high tariff barriers provide protection against third country imports. In major world markets, it will be at a competitive disadvantage.

The small mill options produce poor internal rates of return. Other measures of commercial profitability are also very poor. The projects are clearly not acceptable financially, and can be rejected. The break even analysis demonstrates that, while the mills are not uneconomically small from a production point of view, they are too small for the proposed financing scenario.

The Romanian mill produces better figures, particularly from an economic point of view, but will still look vulnerable to investors The main problem is that all indications of and creditors. sales profitability are very sensitive to sales. If are significantly less than those assumed, the project will be The project also suffers from a financing scenario unprofitable. which assumes no foreign equity participation, and no soft term loans except for the Romanian credit for plant and equipment.

The Romanian mill does not meet the financial and economic criteria set by Indeco, but is worthy of further investigation. However, a final decision cannot be made until the full details of the Romanians' commercial offer are known. The key is the volume of sales which the Romanians will accept (either as direct imports to Romania, or re-exports). Anything significantly lower than 80% of the plant's output will render the project unprofitable. It will also be important to clarify the terms of the Romanian credit, and obtain a firm quotation for the plant and equipment. Indeco should seek matching equity participation from the Romanians. This would improve significantly the project's acceptability from a financial point of view, and its attractiveness to creditors.

Further attention should be directed towards secondary industries. A good example is the manufacture of copper and brass components (plumbing fittings, electrical contacts, nuts and bolts). Unlike manufacture. semis this type of industry requires copper comparatively little capital investment. With the recent expansion at Zamefa, the main raw material, copper and brass bars, can be sourced locally. Industries established in Kenya or Zimbabwe would have similar advantages, however, so a Zambian manufacturer could face significant competition within the PTA market. Nonetheless, feasibility of such a project the is well worth testing (Section 12).

2. PROJECT BACKGROUND

Although Zambia is a major producer of copper cathodes, it imports most of its requirements for copper semis, principally from Europe. Zamefa is the only domestic manufacturer of copper semis, producing cable and wire rod and expanding into shapes and sections. There is at present no local manufacturer of tubes or sheet and strip.

These imports constitute a serious drain on Zambia's forex reserves. Import substitution would seem a logical development since copper, the main cost component, is available locally. A further attraction is the likely multiplier effect of local manufacture on downstream industries. End-users of cropper semis report that production is seriously constrained by the scarcity of foreign exchange and erratic supply. The local availability of key raw materials would have a significant effect on capacity utilisation, and the development of new industries.

The viability of manufacturing copper semis in Zambia is by no means ce^{tain} , however. The potential market needs careful examination, for example. Operating costs are likely to be higher than competitive installations in Europe, principally because of relative scales of production, the unavailability of local scrap as a feed material and the need to import expensive spares. Technology is also a key aspect of the problem since this can have a major effect on capital and operating costs.

A previous study on the feasibility of manufacturing copper semis in Zambia was carried out by the Cooperation Centre of Tilburg and Eindhoven Universities in the Netherlands. The study commenced in 1985 and reported in 1987. A thorough market survey was carried out, focusing on the Preferential Trade Area (PTA), Europe and other Middle East and Asian markets. Taking into account transport costs and the impact of customs tariffs and sales tax, the study concluded that a Zambian manufacturer would be competitive within the PTA, only marginally competitive in Middle East and Asian markets (particularly for high-valued added products like strip), and not competitive at all in European markets.

The results indicated that a Zambian manufacturer would be primarily dependent on the PTA market, where preferential tariffs and sales tax rates provide effective protection against European imports. Within this market, it was concluded that the most promising opportunities lay in the manufacture of copper sheet, strip and foil, mainly because in this sector there is very little competition within the PTA. Accordingly, the project team carried out a financial and economic evaluation of a small scale rolling mill, with a capacity of 1,000 t/pa.

The financial analysis generated a negative npv at 12%, which is the cut-off rate specified by Indeco, the Zambian industrial development parastatal. Three variations to the base case (reduction of capital costs by 30%, increase of sales price by 20%, and a production increase of 50%) failed to provide a satisfactory IRR. The most promising was the reduction in capital costs which produced an IRR of 5.3%, corresponding to the use of second hand plant and equipment. The economic analysis also generated a negative npv on the base case, discounted at 12%. The IRR approached 10% only when capital costs were reduced by 30%.

A variation on the base case, assuming both reduced capital costs and a 20% improvement in sales price produced a positive npv at 12%. However, the central conclusion of the study was that a small scale rolling mill, serving the PTA market, would not be profitable, either on a financial or economic basis. Subsequent to the Dutch study, the Governments of Zambia and Romania signed a protocol to conduct negotiations on the establishment of a copper fabrication plant in Zambia. The Romanian organisation Uzinexportimport and Indeco agreed a set or principles covering the negotiations. These were that:

- Romanian credits could be available to finance the purchase of Romanian plant and equipment
- * repayment of the loan could be made in copper products, transfer prices being based on international prices
- * Uzinexportimport could undertake marketing both regionally and internationally in return for a commission
- * the joint venture would be subject to an independent feasibility study.

WS Atkins was commissioned by Indeco and UNIDO to carry out the feasibility study. Discussions were held with Romanian representatives in Lusaka in June 1988. At these meetings, Romanian technical proposal was presented and evaluated by Atkins' copper This was based on a fairly conventional rolling mill technologist. of 10,000 t/pa capacity producing sheet and strip. However. the commercial offer was discussed only in broad terms. It was agreed that a full commercial offer would be prepared by early August, but the Romanians subsequently requested a delay of several months. In order to comply with the timescale for completion specified in UNIDO's contract with Atkins, it has been agreed to prepare the analysis on the basis of provisional figures and terms provided by the Romanians, which can be revised when the full commercial offer is presented.

It is essential to note that several important aspects of the Romanian proposal are still unclear. The first is the proportion of the plant's output which can be sold to the Romanians. It is possible that the Romanians will only agree to accept the tonnage of

copper products needed to pay off the loan for plant and equipment, which would be conventional for a buy-back agreement. On the other hand, they could agree to absorb a fixed proportion of production. The Romanian position is that the terms are negotiable, but the latter procedure appeared to be favoured. Atkins has therefore assumed the fixed percentage option in the financial and economic analyses that follow. The second question is whether the Romanians will continue to buy products once the loan is paid off. The Romanians appear to be flexible on this issue. Atkins has assumed that the Romanians will absorb a fixed percentage of output throughout the 15 years of production.

The terms of reference for the feasibility study call for a comparison of the Romanian proposal with possible alternatives. This required an examination of market opportunities in sectors other than sheet and strip, specifically tubes and pipes and copper alloy products (shapes and sections). For this reason, the market data presented in the Dutch consultants' report was reassessed. It also required evaluation of an alternative type of plant to the Romanian offer. Accordingly, a much smaller rolling mill, oriented to the PTA market only, was costed and evaluated.

3. MARKET AND PLANT CAPACITY

3.1 Demand and Market Study

3.1.1 Market situation (PTA Region)

In reviewing the market data presented in the Dutch consultants' study, Atkins has focused attention on Kenya, Zimbabwe and Zambia. These countries together account for over 80% of the PTA market for copper semis, and over 80% of production. The research was carried out by means of field visits and telephone calls to both manufacturers and end users, and analysis of the latest import/ export data. Comparison was also made with the results of a (1986) survey of copper and aluminium fabricating facilities in the PTA region carried out by the United Nations Economic Commission for Africa.

Kenya

A comparison of production and consumption figures for selected manufacturers and end-users in Kenya is presented in Table 3.1. These show a reasonable fit with the figures reported by the Dutch consultants, allowing for annual variations. Import data are updated in Table 3.2 (there are virtually no exports, other than re-exports). These data lead to the market size estimates presented in Table 3.3.

TABLE 3.1 - MARKET SITUATION (KENYA)

Company	Products	Raw	Consu	mption (1	t/pa)
		material	Atkins (1988)	Dutch (1986)	UN (1986)
East African Cables	Power cables & conductors	wire-rod	400	400	900(1)
Ken West Fab	Power cables	wire-rod	240-300	200	
Coast Cables	Winding wire	wire	ഖ	50	-
Burns & Blane	Radiators	strip, foil	90	90	-
City Radiators	Radiators	 strip, foil	75	50	-
Booth Manufacturers 	Copper & brass extrusions	 billets 	40-60	5	1000(2)
APV-Hall	Stockists	tubes	5	5	-
Ram Co	 Stockists 	 tubes 	10-15	10	 -

Sources: WS Atkins

F Meijer & B van Manen, Export Oriented Production of Copper Semi-Products in Zambia: An Economic Analysis, pp 76-78 United Nations Economic Commission for Africa, Regional Survey of Copper and Aluminium Fabricating Facilities and Marketing Prospects for Copper and Aluminium Based Products in Africa, Kampala, June 1988, pp 5-8

(1) This figure probably refers to the weight of the product, not the weight of the copper

(2) This figure is clearly spurious

Product group	Imports	(t/pa)
	1985	1986
Bars, rods, wire-rod	719	957
Wire	80	88
Tubes, pipes	33	85
Plate, sheet, strip, foil	204	113*
Stranded wire	47	6
Insulated cable	860	760
Winding wire	40	40

TABLE	3.2	-	IMPORT	DATA	(KENYA)
					fame and

Source: Kenya Annual Trade Report, 1986-1987

* this figure is contradicted by import data supplied by manufacturers

Product group	Atkins estimate (t/pa)	Dutch estimate (t/pa)
Bars, sections, shapes	100	50
Wire, wire rod	875	750
Tubes, pipes	85	40
Plate, sheet, strip, foil	225	200
Insulated cables	į 1,500 į	1,150
Winding wire	20	20

TABLE 3.3 - MARKET PROFILE (KENYA) (Domestic consumption)

Sources: WS Atkins

Meijer & van Manen, op cit, pp 142-146

The figures suggest a significant increase in demand between 1986 and 1988. perhaps exceeding 10% pa. This is consistent with improved performance in metal and engineering sectors, which have grown at an average 7% pa since 1983. It is also important to note that Booth Manufacturers (Thika) has, since 1986, moved into the manufacture of copper and brass shapes and sections, mostly for electrical applications at present. There is considerable demand for machined brass components (e.g. nuts and bolts), which Booth This development limits seriously the Kenyan intends to supply. market for Zambian manufacturers of these products. Booth also has the capability of producing copper tubes and pipes, and plans to move into this line soon. At present, there is no local manufacturer.

Zimbabwe

A comparison of production and consumption figures for selected manufacturers, stockists and end users in Zimbabwe is presented in Table 3.4. Import/export data are updated in Table 3.5. Market size estimates are compiled in Table 3.6.

The results show some very significant developments since the Dutch consultants' study in 1986. The first of these is <u>increasing self</u> <u>sufficiency</u>. Imports as a percentage of domestic consumption is now about 10% (bars, sections, shapes), 0.3% (wire and wire-rod), 5% (tubes and pipes), 20% (cable) and 2% (stranded wire). Significant improvements have been made in all areas, except plate, sheet, strip and foil where imports account for about 95% of domestic consumption.

The second important development is <u>increased production of tubes</u> and pipes. Almin (Harare) started manufacturing copper tubes in 1987, and is now producing 600 t/pa entirely for the domestic market. Expansion into the export market is planned. A target of 200 t/pa exports has been set to provide the means for financing the recent purchase of equipment in hard currencies. The press has a capacity of 3,400 t/pa. End users report that quality is excellent,

TABLE 3.4 - MARKET SITUATION (ZIMBABNE)

			l Product	ion/consumptio	n (t/pa)
Company I	Products	Raw material 	Atkins (1968)	i 1 Dutch 1 (1986) 1	ut (1986)
Radiator & Tinning •	Bars, sections Tubes Strip Foil	billets, wire 	500 180 10-15 0.5 (prod) 55-60 (imp)	500 100 25 0 (prod) 120 (irsp)	370 (exp) 36 (exp)
Aluminium Incustries (Almin)	Tubes Bars, sections	billets	600 5	500 (1) 500	1 1 1
Central African Cables (Cafca)	Cable Vire rod	billets	2,670 1,000	5,100 (2) 500) 2,360)
McKestnie .	Stockists of: Rod, ber Sheet	•	Closed down	40 122	-
Son-Ferrous Metal Manufacturers	Stockists of: Tubes Sheet	-	0 60	 20 60	 - -
Eafield Cebles	Stockists of: Tubes Sheet	 	l l l 0 l 10	3 14	 -
Air Cool	Air conditioning units	Tubes	10-20	6	 -
Caol Air	Air conditioning units	Tubes	10	5	-
Royal Refrigeration	Refrigeration units	Tubes	ග	}	
Isperial Refrigeration	Refrigeration units	Tubes	40) 50 }	-
Printosh	Geysers	Sheet, strip	36-40	30	-
Treger Incustries	Geysers	Sheet, strip	80	28.5	-
Coppeniares	Copperwares	 Sheet, strip	8	-	
Kariba Copper Products	Copperwares	 Sheet, strip	-	-	12
Industry total (copperwares)	l Copperwaries	 Sheet, strip 	-	20	-

•

Sources: WS Atkins Meijer & van Manen, op cit, pp 90-35 United Nations Economic Commission for Africa, op cit, pp 30-37

Notes:

planned production
 this figure must refer to the weight of the final product, not the weight of the copper

Product group	Imports (t/pa)			Exports (t/pa)			
• •	1984	1986	1987	1984	1986	1987	
Bars, rods Tubes, pipes Plate, sheet, strip, foil Stranded wire Cable	97 78 178 339 1,767	87 62 175 8 1,383	47 46 232 3 607	212 3 0 1 707	0 0.1 1.2 2.6 946	110 2.5 3 12.3 1,750	

TABLE 3.5 - IMPORT/EXPORT DATA (ZIMBABWE)

Source: Central Statistical Office, <u>Import/Export Statistics</u>, Zimbabwe

Note: Figures for 1987 have been estimated on the basis of data up to November 1987.

so that the products are suitable for both plumbing and refrigeration applications. Radiator & Tinning (Bulawayo) has also increased production of copper and brass tubes to 180 t/pa, although the products are said to be suitable only for plumbing applications. A small export market (of 4 t/pa) has been developed. Capacity is reported to be between 1,000 and 2,000 t/pa, and a steady expansion programme is planned. As a result of these developments, import licences are no longer being issued for tubes now being manufactured in Zimbabwe.

Product group	Atkins estimate (t/pa)	 Dutch estimate (t/pa) 		
Bars, sections, shapes	450	400		
Wire, wire-rod	3,450	3,000		
Tubes, pipes	i 780 i	190		
Plate, sheet, strip, foil	į 230 į	350		
Insulated cables	3,000	2,800		

TABLE 3.6 - MARKET PROFILE (ZIMBABWE) (Domestic consumption)

Sources: WS Atkins

Meijer & van Manen, op cit, pp 142-146

A third development is the installation of further capacity for copper and brass bars, shapes and sections. Radiator & Tinning, which produces about 500 t/pa of machining brass, borehole liners and earthing strip, is the largest manufacturer at present. It has capacity for 5,000 to 10,000 t/pa. Almin. however. has the capability of doubling Zimbabwean production of these products within a few years. It is concentrating, for the present, on the manufacture of tubes since domestic demand has risen so rapidly, but it intends to increase production of shapes mainly for bus bars, the local market for which is estimated at 320 t/pa. Cafca (Harare) is also capable of producing copper and brass bars and sections. At present, Cafca is producing cable, wire and rod at near full capacity (3,600 t/pa against 4,000 t/pa capacity), but it intends expanding capacity to nearer 6,000 t/pa. This will allow it to diversify into 11 kV cable (800 t/pa planned) and expand telephone cable production (from 100 t/pa to around 500 or 600 t/pa). This will leave a capacity of around 1,000 t/pa for the manufacture of shapes and sections.

Local consumption of copper sheet and strip appears to have been over-estimated in the Dutch report, possibly through double-counting direct and indirect imports. We estimate consumption at 230 t/pa against a reported 350 t/pa. Radiator & Tinning, for example, is manufacturing only 10 to 15 t/pa of sheet and strip (against a reported 25 t/pa), and importing only 55 t/pa of radiator foil (against a reported 100 t/pa). The company's sheet, being only 200mm maximum width, is unsuitable for geyser manufacture (a market of about 120 t/pa), and the quality of its other products is considered poor by end-users. Radiator & Tinning claims to have recently produced a small quantity (0.5 tonnes) of satisfactory foil (rolled down to 0.13mm), and expects to satisfy its own requirements within a couple of years.

The prospects for a Zambian manufacturer in the Zimbabwean market appear poor in every major product group, with the exception of sheet, strip and foil. Cables, wire and tubes are dominated by Cafca and Almin respectively, while current opportunities in copper and brass shapes and sections will disappear with expansion at Almin and Cafca. In sheet, strip and foil, however, Radiator & Tinning is considered unlikely to make a significant impression on the market since the quality and specifications of its equipment limit the appeal of its products.

Zambia

A comparison of production and consumption statistics for selected manufacturers and end-users in Zambia is presented in Table 3.7. Import data are updated in Table 3.8. Estimates of the size of the Zambian market are set out in Table 3.9.

			Production/consumption (t/pa)				
Company	Products	Raw material	Atkins (1988)	Dutch (1986)	UN (1986)		
Zamefa	Wire-rod Power cables Tel cables Copper & brass billets, shapes	Cathodes	7,224 1,884 847 1,609	6,800 600 200 100))),500		
Non-Ferrous Metal Works	Copperwares Brass & bronze rods	 Sheet, foil Scrap	8 10	9.5 10	-		
Monarch	Geysers	Sheet, strip	150	60	-		
Automotive Radiators	Radiators	Strip, foil	16-20				
Kitwe Radiators	Radiators	Strip, foil	3-5		-		
Delta Engineering	Switchgear Busbars	Strip Wire	1 0.5		- -		
NEI	Electrical goods	Strip Bar	0.5	-			

TABLE 3.7 - MARKET SITUATION (ZAMBIA)

Sources: WS Atkins Meijer & van Manen, op cit, pp 114-116 United Nations Economic Commission for Africa, op cit, pp 18-23

ا Product ، م بو	Imports (t/pa)					
	1984	1985	1986			
Bars, rods, sections Wire Tubes, pipes Plate, sheet, strip, foil	- 3 10 39	50 22.5 9 3,243(1)	1 45.6 52 6,903(1)			

Source: Central Statistical Office, Import/Export Statistics, Zambia

(1) these figures are clearly spurious. They may be 32t and 69t respectively, or even 3.2t and 6.9t.

Note: the only export is of about 7,000 t/pa of wire rod by Zamefa

Product group	Atkins estimate (t/pa)	Dutch estimate (t/pa)
Bars, sections, shapes Wire, wire-rod Tubes, pipes Plate, sheet, strip, foil	1,650 1,400 50 230	150 1,200 30 150
Insulated cables	2,750	1,000

TABLE 3.9 - MARKET PROFILE (ZAMBIA)

(Domestic consumption)

Sources: WS Atkins Meijer & van Manen, op cit, pp 142-146 Zamefa

The figures reveal some important developments since the Dutch consultants' study. These are mainly the product of recent expansion at Zamefa, which has increased the capacity of its Outokumpu continuous caster (by increasing the thickness of wire-rod drawn by the machine) from 9,000 t/pa to 12,000 t/pa. This will enable Zamefa to triple production of telephone cable (to 850 t/pa), and diversify into the manufacture of llkV cable (like Cafca in Zimbabwe In addition, the company's Schloeman press is to be exploited acces fully to produce a range of copper and brass shapes

and hollow bars (bus bars, for example). Production is budgeted at 1,600 tonnes for 1988/89, compared to 100 t/pa at the time of the Dutch consultants' visit. This market is also being supplied by Non-Ferrous Metal Works (Kitwe) and Zambia Aluminium (Lusaka).

Zamefa has also considered manufacturing tubes, primarily for the refrigeration and air conditioning markets. This is well within the capabilities of the existing plant, and is a logical diversification of activities.

The Zambian market for sheet and strip, estimated at 150 t/pa in the Dutch consultants' report, needs to be revised upwards. ... figure nearer 230 t/pa may be more accurate. Demand in this sector, particularly for geyser and radiator applications, appears to be buoyant. Zamefa has in fact considered diversification ... nto rolling strip, but decided that the project was not feasible, although this conclusion appears to have been based on an underestimate of market size.

Wher Countries

The other countries within the immediate PTA region (Tanzania, Angola, Mozambique, Malawi and BLS) have not been researched first hand. International trade statistics have been used where possible. Elsewhere the consumption of copper semis has been estimated by comparing levels of manufacturing activity (this being used as a proxy). Published country reports, trade journals and regional journals have been used to check for production figures. From this it would appear that the Dutch consultants' estimates are not unreasonable. Table 3.10 sets out our estimates of the regional market by product group.

It is clear that the regional market has altered significantly in all product areas, with the exception of plate, sheet, strip and foil. This is largely due to developments taking place among the region's major manufacturers: Zamefa, Cafca, Almin, and Radiator & Tinning.

TABLE 3.10 - PROFILE OF THE REGIONAL MARKET

	 Ker	ya	Zimt	babwe	Zan	nbia	 Oth	ers	 To1	tal
Product group	Atkins	Dutch	Atkins	Dutch	Atkins	Dutch	Atkins	Dutch	Atkins	Dutch
	(est)	(est)	(est)	(est)	(est)	(est)	(est)	(est)	(est)	(est)
Bars, sections, shapes	100	50	450	400	1,650	150	100	105	2,300	705
Wire, wire-rod	875	750	3,450	3,000	1,400	1,200	1,200	1,105	6,925	6,055
Tubes, pipes	85	40	780	190	50	30	100	85	1,015	345
Plate, sheet, strip, foil	225	200	230	350	230	150	150	135	835	835
Insulated cables	1,500	1,150	3,000	2,800	2,750	1,000	2,000	1,870	9,250	6,820

(Domestic consumption t/pa)

Sources: WS Atkins

Meijer & van Manen, op cit, pp 142-146

Discussion

The market research leads to the following conclusions regarding the regional market for the product sectors Atkins was commissioned to study:

- * <u>tubes</u>: Almin (Zimbabwe) has entered successfully this market, and could clearly supply a large percentage of demand within the PTA. Since Zamefa (Zambia) and Booth Manufacturers (Kenya) also have the capacity to produce tubes, investment in another plant in Zambia would not appear to be a sensible option
- * <u>copper and brass bars</u>, <u>shapes and sections</u>: this is a promising market given the diversity of shapes that can be produced, and range of products that can be machined from these materials. There are, however, three producers in both Zambia and Zimbabwe, and one in Kenya. Further investment does not appear to be justified, although there must be scope to develop secondary manufacturing industries using copper and brass feed (e.g. brass nuts and bolts)
- copper and brass sheet, strip and foil: there is still no major manufacturer of these products within the PTA region surrounding Zambia. Padiator & Tinning (Zimbabwe), the only producer, has a rolling mill with a reported capacity of 3,500 t/pa (well in excess of present consumption within the region), but its claims regarding future production levels are considered far fetched. The company has a long history of poor quality and unreliability. Nevertheless, it is probable that Radiator & Tinning will supply around 20% of the Zimbabwean market, and around 15% of PTA markets in respect of which Zimbabwe has locational advantages over Zambia (notably Local competition is also provided by BLS and Mozambigue). the Zairean manufacturer. GECA mines, which is already supplying Monarch (Zambia) with sheet for geysers. It

supplants European imports because of lower transport costs and lower prices related to poorer quality. The surface finish of the sheet is poor, and unsuitable for applications other than geysers. GECA is not believed capable of producing satisfactory radiator foil.

The market research demonstrates that <u>the only significant "gap"</u> within the immediate PTA market for a Zambian manufacturer lies in the sheet, strip and foil sector. This is consistent with the conclusion reached in the Dutch consultants' report, and with the Romanian joint venture proposal.

It was logical, therefore, to limit the investigation at this juncture to sheet, strip and foil.

3.1.2 Sales outside the PTA

Prospects for exporting sheet and strip outside the PTA region appear poor. Although there has been considerable rationalisation of production both in Western Europe and in the USA, there is still ample capacity for rolled products, and declining markets have led to significant improvements in efficiency among the surviving producers.

The Western European market would be particularly difficult to penetrate. It is dominated by West Germany (which accounts for 118,000 t/pa out of an EEC total production of 287,000 t/pa), which possesses very modern mills. The US market, valued at about 143,000 t/pa (1987), has a relatively high level of import penetration (25%), but European manufacturers are well established in this area. Markets in the Far East are dominated by Japan, which has by far the highest level of production in the world (182,000 t/pa), and perhaps the most efficient mills. There may be markets in Eastern Europe, but these countries are outside the hard currency areas, and little is known about consumption and import patterns.

It is sometimes assumed that a Zambian manufacturer of copper semis will achieve lower production costs/tonne by virtue of the discount it will receive on the LME price of copper cathodes related to transport costs to Europe. This amounts to about \$ 100/tonne in the case of Zamefa. However, European manufacturers are producing copper strip primarily from fairly low grade scrap, which is itself some \$ 150/tonne cheaper than the LME price for Grade A cathode. The unavailability of scrap in Zambia cancels effectively any advantage that a Zambian manufacturer might obtain on raw material A Zambian manufacturer will also be at a disadvantage with costs. respect to the costs of spares and moterials, which will be imported, both from the point of view of prices (because of freight costs and customs tariffs) and stock levels (because of erratic transhipment times and approvals for forex). Potential advantages over European manufacturers with respect to labour costs will set balanced by higher manning levels, higher training costs, pocrer productivity, and the cost of technical support from expatriate management.

Another problem is that that the market for copper strip in advanced industrial economies is quite different to that of the PTA. European requirements are mainly for thin strip for electrical applications, while the PTA market is presently dominated by sheet (for geysers), and to a lesser extent foil (for radiator applications). A manufacturer selling to both the PTA and Europe would therefore need to develop a quite complex and diversified production programme, which may be comparably inefficient.

The marketing of Zambian products to Europe would also be exceedingly difficult. There are a few large users of sheet such as manufacturers of copper hot water cylinders, but generally the market is divided between numerous engineering firms using sheet or strip for drawing or pressing components forming part of a finished These concerns deal mainly directly with the mills. They product. require prompt (often daily) and reliable delivery in order to minimise stocks and financing charges. Some have special requirements in terms of hardness and grain size range. Uniform,

high quality is demanded, since highly automated machinery will only operate efficiently with a standardised feed. Servicing this kind of market is obviously very different from the supply of cathode in bulk to a few large users. It would be necessary to stockpile products in European depots. This would entail relatively minor warehousing and handling charges in the range 10 to \$15/tonne, but significant financing charges given a delay of perhaps 3 months between ex-works shipment and receipt of payment, and the need to hold substantial stocks. It would also be necessary to protect against losses arising from a fall in the LME price of copper between paying for cathodes from the refinery and receiving payment for finished products several months later (the prices of rolled products rise and fall in sympathy with the LME price of copper).

It is possible that arrangements could be made with smaller re-rollers in European markets to take strip at an intermediate stage of production, and finish it to the requirements of final customers. Further research could be undertaken to establish the size of this market, but it is a less attractive proposition because the value-added of partly rolled strip would be significantly less than that of finished products.

For these reasons, we have proceeded on the assumption that a Zambian manufacturer will not achieve any sales to Europe, or other hard currency markets. This is consistent with the conclusions of the market research carried out by the Dutch consultants. The most sensible approach is to assume that a Zambian manufacturer will concentrate on the PTA market, where high tariff barriers provide effective protection against European imports. Sales to Romania as part of the joint venture proposal must be treated as a separate and unique item.

3.1.3 Calculation of demand

PTA region

The calculation of demand assumes that sales from a Zambian manufacturer displace European imports. Prices are adjusted to effect this displacement, taking into account differentials in transport costs, customs tariffs, and sales tax rates (see Section 3.1.4).

The calculation also takes into account the impact on demand of The market research has demonstrated that local manufacture. consumption by end-users is seriously constrained both by restrictions on forex for imports, erratic supply due to transhipment inefficiency, and the high price of imports because of tariffs. Low capacity utilisation (figures average between 40% and 50% within the region according to Table 3.11) is blamed largely on the problems of securing forex.

End-user	Capacity utilisation (%) (1988)
East African Cables (Kenya)	50-60
Kenwest Fab (Kenya)	50
Kenby Cables (Kenya)	75
Booth Manufacturers (Kenya)	70
Burns and Blane (Kenya)	30
City Radiators (Kenya)	40
Radiator and Tinning (Zimbabwe)	10-20
Almin (Zimbabwe)	50
Cafca (Zimbabwe)	90
Treger (Zimbabwe)	80
Non-Ferrous Metal Manufacturers (Zimbabwe)	50
Copperwares (Zimbabwe)	40
McIntosh (Zimbabwe)	30
Enfield Cables (Zimbabwe)	30
Zamefa (Zambia)	80-90
Monarch (Zambia)	50
Automotive Radiators (Zambia)	50-70
Kitwe Radiators (Zambia)	50
Non-Ferrous Metal Works (Zambia)	! 40

TABLE 3.11 - CAPACITY UTILISATION AMONG SELECTED USERS OF COPPER SEMIS

Source: WS Atkins

According to most respondents, consumption of copper semis would probably double if materials could be purchased locally, or at least with local currency. Almin, for example, estimated the Zimbabwean market for copper tubes at 300 t/pa, but now finds that 600 t/pa is insufficient to satisfy demand. Similarly, Monarch (Zambia) which purchases copper sheet in hard currency from Zaire and Europe, estimates its own demand at 300 t/pa, against the 150 t/pa it Manufacturers also report that the consumes at present. irregularity of forex allocations and thus import licences forces them to maintain uneconomic stock levels, placing further downward Burns and Blane (Kenya), for example, pressure on production. reports that with import licences taking 6 months to be granted on average, deliveries (from Europe) are spread at least 9 months apart. For this reason, the company maintains 12 months stock.

It seems reasonable to assume, therefore, that a multiplier of 2.0 can be applied where copper products can be purchased in soft currencies.

This does not mean that our estimate of 835 t/pa (see Table 3.10) for the regional market for sheet and strip can be revised to nearer 1,700 t/pa. The multiplier can be applied to domestic sales, but it is unlikely that the PTA clearing system will develop sufficiently in the near future to allow PTA members outside Zambia to purchase copper semis entirely in soft currencies. Trade between PTA members is presently weak and often unbalanced. On the basis of our discussions with the PTA, an assumption that 20% of export sales to PTA markets will be paid in soft currencies has been derived. In any event, a Zambian manufacturer will need hard currency to finance capital costs and imports of spares.

It is also important to allow for competition from Radiator & Tinning, and also GECA mines. It has been assumed that Radiator & Tinning will supply 20% of the Zimbabwean market (see Section 3.1.1), and perhaps 15% of the more adjacent markets in the PTA (notably BLS, Mozambigue), while GECA mines will capture 5% of markets outside Zambia, which will be protected from competition by import licence practices. A further assumption is that PTA members, particularly Zimbabwe, Mozambique and BLS will not displace European with South African imports.

The assumption regarding competition from Radiator & Tinning may be invalidated by improvements in quality and productivity at its plant. For this reason, we have included in the sensitivity analysis (Section 10.11), an analysis of the effects of greater competition from this source under two scenarios.

These calculations are presented in Table 3.12. They show that a Zambian manufacturer of sheet and strip has a realisable market of about 1,080 t/pa initially. One will note that this figure depends on total dominance of the Zambian market, and high import penetration of the surrounding PTA countries.

Romania

Sales to Romania depend on the precise terms of the agreement reached with UZINEXPORTIMPORT. It is as yet uncertain whether the volume of annual sales will be fixed against repayments of the loan for plant and equipment, as is customary in buy-back arrangements, or whether the off-take will be a fixed percentage of output.

It has been assumed for the purposes of establishing a base case that the latter will be implemented. In the initial analysis, the off-take has been set at 80% of maximum capacity (i.e 8,000 t/pa). This allows the spare capacity to be used for serving the regional market (see Section 3.5.2).

3.1.4 Derivation of prices

In order to satisfy the assumption that a Zambian manufacturer will displace European imports from the PTA markets under review, it is necessary to set sales prices with reference to the landed prices of European sheet and strip. Landed prices are derived by adding

TABLE 3.12 - CALCULATION OF DEMAND FOR COPPER SHEET, STRIP AND FOIL IN THE PTA REGIONAL MARKET (Figures in t/pa)

Country	Potentia] market (1) 	Adjust for multiplier for payments in local currency (2)	Competition from Radiator & Tinning (3)	Competition from GECA Mines (4)	Total demand (2)-(3)-(4)	Assumed penetration of market (%)	Share of total demand (%)
Kenya Zimbabwe Zambia Tanzania Others	225 230 230 60 90	270 276 460 72 108	55 - 16	11 12 - 7 4	259 209 460 65 88	96 76 100 90 81	24 19 43 6 8
Totals	835	1,186	71	34	1,081		

Source: WS Atkins

-

- Notes: (1) From Table 3.10. Breakdown between Tanzania and 'Others' is based on Meijer & Van Manen, op cit, p. 145
 - (2) Multiplier is 2.0 in the case of Zambia, and 1.2 elsewhere, since only 20% of sales in these markets will be payable in local currencies
 - (3) Based on 20% of Zimbabwean market and 15% of 'Others'
 - (4) Based on 4% of markets with the exception of Zambia (0%), which will be free of imports, and Tanzania (10%), where transport advantages may allow a higher import penetration

TABLE 3.13 - DERIVATION OF EX-WORKS PRICES FOR A ZAMBIAN MANUFACTURER OF SHEET, STRIP AND FOIL

	Transport costs from Europe	Tariff rates against third	Sales tax rates	Effective rates against third	Landed prices (\$/tonne)					
1	Europe (\$/tonne)	countries (%)	country imports (%) 	country imports (%)	Sheet	Strip	Foil			
Europe Zambia Kenya Zimbabwe Tanzania Others	0 120 70 120 70 100	0 15 30 0 25 20	0 15 17 20 25 20	0 33.25 52.10 20.00 56.25 44.00	3,937 5,365(b) 6,095 4,868 6,261 5,813	4,121 5,609 6,375 5,089 6,548 6,078	4,520 6,136 6,981 5,568 7,172 6,653			

	Transport costs from	Tariff rates against PTA	Sales tax rates for PTA	Effective rates against PTA	Ex-works prices Zambia (\$/tonne)					
1	Zambia (\$/tonne)	members (%)	country imports (%)	country imports (%)	Sheet	Strip	Foil			
Zambia Kenya Zimbabwe Tanzania Others	0 (d) 80 40 50 50	0 10 0 8.75 10	15 5 7 8.75 10	15.00(c) 15.50 7.00 18.27 21.00	4,432(a) 4,933 4,282 4,979 4,514	4,633 5,163 4,478 5,210 4,722	5,069 5,662 4,903 5,711 5,173			

Source: WS Atkins

Notes: (1)

- (2)
- European prices from <u>Metal Bulletin,</u> July 1988 Tariffs and Sales tax rates from Meijer & van Manen, op cit, pp 63-66 (confirmed by PTA) Example of calculation: sheet price ex-works Zambia = (a) = (b 5%) + c) d; (5,365 5%) + 1.15) O (3)

56

transport charges (freight, handling, wharfage, and insurance) to European prices, and then multiplying through by the relevant customs tariffs and sales tax rates (see Table 3.13). Indicative European prices for sheet, strip and foil for mid-1988 have been drawn from <u>Metal Bulletin</u>. Note that the prices for the three types of rolled product are significantly different, corresponding to different levels of value-added. The landed prices derived in this way are consistent with quoted prices among selected end-users in Kenya, Zimbabwe and Zambia.

The sales prices for each product group in each PTA market are set 5% lower than the European landed prices to give a competitive edge.

It can be argued of course that a Zambian producer could set prices at a <u>premium</u> with respect to European imports, since this would be offset by the ease of selling products in local currency. However, it would be unacceptable in our view to proceed on such an assumption since:

- * users of copper semis in the region appear to be price sensitive. Several consumers of copper rod, for example, indicated that they have continued to import supplies when the local supplier has been uncompetitive on price, despite the difficulties of obtaining forex
- * most purchases of sheet and strip by PTA consumers outside Zambia will continue to be made in hard currency for the foreseeable future (80% in our model)
- * there are likely to be quality differences between locally produced and imported products.

In our view, a 5% price advantage will be sufficient to compensate for quality deficiencies, transport inefficiencies, overcome established distribution networks for European products, and to displace imports, given the added advantage that some payments may be made with local currencies. However, this is only an estimate. The sensitivity of the project to variations in this discount rate is therefore assessed in Section 10.11.

From these sales prices, cif prices are derived by deducting tariff and sales tax charges. Ex-works prices are then calculated by deducting transport costs (see Table 3.13). These ex-works prices are used in the financial and economic evaluations set out in Sections 10 and 11. This means that distribution costs, other than packaging, are included in neither the revenues nor the operating <u>costs</u>. Transport costs associated with selling the products are treated as external to the project.

The prices of products sold to Romania are made comparable to international prices, as defined by <u>Metal Bulletin</u>. Ex-works prices in Zambia are derived by subtracting transport costs at \$ 100/tonne.

The ex-works prices derived in this way are specific to particular markets, because of variations in customs tariffs and sales tax rates for PTA and third country imports. The tariff structure within the PTA gives a manufacturer located in the region an advantage which varies between 10% and 20% over third countries. Sales tax differentials provide an advantage varying between 0% and 15%. These differentials provide a significant degree of protection.

however, that the advantages accorded a Zambian It would appear, differentials have manufacturer through transport been over-estimated in the Dutch consultants' report. According to data provided by Zamcargo, a Zambian manufacturer has, for example, only a \$ 20/tonne transport advantage over a European competitor to Dar-es-Salaam, compared to the \$102/tonne claimed. It is not immediately clear why transport cost differentials for plate, sheet and strip should be significantly higher than for products like wire-rod, as reported in the Dutch study (Meijer & van Manen, op Sheet and strip has a near identical volume/weight cit. p.46). ratio when freighted as other copper semis, and the higher value of these products is reflected only in higher insurance costs. The transport cost differentials calculated for wire-rod, which vary from around \$40/tonne (Dar-es-Salaam/Beira) to \$90/tonne (Harare/Bulawayo), appear to be more realistic.

It is also noteworthy that several Kenyan end-users continue to import wire-rod and billets from Europe, although these products are available from Zambia. This is partly due to the problems experienced by Kenyan manufacturers in importing from Zambia. Truck haulage is impractical and uneconomic since contractors cannot find return loads of 20 to 25 tonnes from Kenya to Zambia. Air transport costs work out at over \$1,300/tonne. Haulage via rail and Dar-es-Salaam port is slow and unrealiable. According to figures provided by Zamcargo, travel times from the Zambian Copperbelt to Nairobi will be a minimim of 35 days, and probably much longer. European deliveries are said to take about half the time.

In our view, a Zambian manufacturer is only likely to obtain a significant transport cost advantage over European producers in the landlocked markets, notably Zimbabwe, Zambia and Malawi. The main advantage lies in tariff barriers against third countries.

3.1.5 Product specifications

ľ

ľ

Ì

The regional market for copper and brass sheet, strip and foil may be segmented by end-user within the PTA region as follows:

- * geyser manufacture (sheet): 60-70%
- * radiator manufacture (foil): 20%
- * copperwares (some sheet, strip): 10%
- * electrical and other uses (strip): 2-3%

Most of the demand is for copper sheet up to 1 metre wide and in thicknesses up to 1.6mm. This would be provided in coils, or cut to specified lengths. Brass accounts for only 10% of the total market (about 50% of the radiator sub-sector). This is in sharp contrast to the situation in European and North American markets where brass strip predominates, primarily because of its use in the electrical industry. Possibly, brass consumption in the PTA will increase with the growth of consumer industries. There could also be a demand for bronze strip which has superior spring properties for contacts etc.

On the basis of information supplied by end-users, a Zambian rolling mill, supplying the regional market, would need to manufacture in accordance with the product specifications and production profile set out in Table 3.14.

Product	% of	Specifications										
	Production (est.)	End-user	Guages (mm)	Widths (mm)								
Sheet	60-70	Treger (Zimbabwe) Monarch (Zambia)	0.46-1.6 0.71-1.6	500-900 600-920								
Strip	10-15	Non-Ferrou: Metal Works (Zambia)	0.46	150								
Foil	20			1								
* copper		Burns and Blane (Kenya) Kitwe Radiators (Zambia) Automotive Radiators (Zambia)	0.08 0.08 0.08	32-73 26-109 35-85								
* brass		Burns and Blane (Kenya) Kitwe Radiators (Zambia) Automotive Radiators (Zambia)	0.14 0.14 0.14	32-73 32.5 35								

TABLE 3.14 - PROJUCTION PROFILE AND PRODUCT SPECIFICATIONS

Source: WS Atkins

Ì

60

To supply fully the PTA market, a manufacturer would therefore need to:

- * roll copper thinner than 0.1mm
- * supply sheets in widths up to 1 metre.

For the purposes of building a revenue stream for a rolling mill supplying the PTA market (the small mill option), we have assumed the following product mix:

- * sheet: 65%
- * strip: 15%
- * ⁻oil: 20%

The product mix must be revised for the Romanian mill since this mill is not designed to produce rad ator foil, nor are we clear on requirements for the Romanian market. The following product breakdown has been assumed:

		PTA Market	Romanian Market
*	sheet	80%	50%
*	strip	20%	50%
*	foil	0%	0%

A higher percentage of strip has been assumed for the Romanian market, since demand in electrical industries will be stronger.

3.2 Sales Forecasts

Market trends are notoriously difficult to assess. Growth rates in manufacturing and industrial activity, which are usually valid indicators of demand for metal fabrications, are variable across countries and unpredictable. Manufacturing output in Kenya rose 7% between 1987 and 1988, while the consumption of copper semis increased sympathetically by around 9 to 10%. In contrast, manufacturing in Zimbabwe recorded a modest 1% growth in 1987/88, following a 2.2% decline in 1985/86. Manufacturing output in Tanzania has declined in recent years up to 2% pa.

The performance of end-users and manufacturers of copper semis in the region provides some indication of likely sales trends. The data suggest that a growth rate in demand between 2 to 5% pa is not unreasonable. The balance of opinion among manufacturers is that an average growth in demand of around 3% pa in the PTA would be a valid assumption.

Taking all the data together, it would seem reasonable to build sales forecasts by inflating the potential demand (Table 3.12) by <u>3% pa</u>. It must be assumed that European imports are reduced to zero, and that no further manufacturing facilities are established in the region.

The 3% pa rate of growth is of course only a "best estimate", based on published sources and market research results which are sometimes contradictory. For this reason, it is prudent to test the sensitivity of the project to variations in demand forecasts (Section 10.11). Two scenarios - 1% pa and 5% pa growth - have been used.

Sales to Romania are assumed to be a fixed percentage of project output throughout the life of the project.

3.3 Plant Capacity and Production Programme

3.3.1 Small mill

The small mill option, which has been designed as a possible alternative to the Romanian proposal, is oriented to the PTA market. This market is likely to be around 1,600 t/pa after 15 years. For this reason, the plant has been designed with a capacity of 750 t/pa with one shift, and 1,500 t/pa with two shifts.

Table 3.15 shows that production begins in 1992 (see Section 9 on implementation), with one shift at 30% capacity. This builds up in Year 2 (1993) and Year 3 (1994) to 70% and 90% respectively of one shift. The mill moves onto two shifts in Year 4 (1995), with 100% production on shift one, and 50% production on shift two (an average capacity utilisation of 75%). Thereafter, capacity utilisation has been designed to increase in sympathy with the growth in demand, eventually reaching full capacity in Years 14 (2005) and 15 (2006). Assuming that all production is converted to sales (which is reasonable since rolled copper products are normally manufactured to order), sales as a percentage of demand reaches a peak of around 85%.

3.3.2 Romanian mill

l

The Romanian mill has been designed to operate with three shifts and a full capacity of 10,000 t/pa. Table 3.15 shows that production begins in 1993 (Year i), at 30% capacity utilisation. Production builds up to 55% of capacity in Year 2 (1994) and to 88% in Year 3 (1995). In Year 3, sales to the Romanian market are stabilised at 3,000 t/pa. This corresponds with our assumption that 80% of output will be absorbed by Romania. Sales to the PTA market are then inflated by annual increments to generate a total of 1,500 t/pa in Year 15 (comparable to the small mill). It should be noted that the Romanian mill will not the producing foil, so the potential demand

	1988	1989	1996	1991	1992	1993	1994	1995	1996	1997	1998	1999	20()0	2001	2002	2003	2004	2005	2006	2007
Potential demand	1081	1113	1147	1161	1217	1253	1291	1330	1369	1410	1453	1496	1541	1587	1635	1684	1735	1787	1840	1896
Small mill																				
Capacity Production/Sales Capacity utilisation {%} Sales as % of demand	-	-	-	- - -	750 225 30 18	750 525 70 42	750 675 90 52	1500 1125 75 85	1500 1159 77 85	1500 1194 80 85	1500 1229 82 05	1500 1266 84 85	1500 1304 87 85	1500 1343 90 85	1500 1384 92 85	1500 1425 95 85	1500 1468 98 85	1500 1500 100 14	1500 1500 100 82	
Romanian mill																				
Capacity	-	-	-	•	-	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
Production/Sales: - Romanian market - PIA market	-	:	:	:	•	2700 300	5000 500	8000 800	8000 900	8000 1000	8000 1050	8000 1100	8000 1150	8000 1200	8000 1250	R000 1300	8000 1350	8000 1400	8000 1450	8000 1500
Capacity utilisation (%)						30	55	88	89	90	9 0.	5 91	91.	5 92	92.	5 93	93.!	i 94	94.	5 95
Sales as % of demand (PTA market)						24	39	60	66	71	72	74	75	76	76	77	78	78	79	79

TABLE 3.15 - PLANT CAPACITY AND PRODUCTION PROGRAMME

.

.

Source: WS Atkins

5

figures (in Table 3.12) have to be reduced by 20%. This means that sales to the PTA market as a percentage of demand in the case of the Romanian mill is close to 100% in the latter years of the project.

It needs to be recognised that both mills are small by Western European standards. The capacities chosen have been dictated, in the case of the Romanian mill, by the terms of the Romanian technical proposal, and, in the case of the small mill, by the size of the regional market and the need to operate at an efficient production level relative to capacity. This is not to say that mills of these capacities are necessarily uneconomic from the point of view of operation (see the break-even analyses in Section 10.10), but their size imposes difficulties in financing capital costs.

3.4 Sales Revenues

Sales revenues are estimated in Tables 3.16 (Romanian mill) and 3.17 (Small mill). These revenues are based on ex-works prices. The calculations make use of:

- * the product segmentation ratios estimated in Section 3.1.5
- * the breakdown betweer markets derived from Table 3.12
- * the sales forecasts estimated in Table 3.15
- * the ex-works prices derived from Table 3.13.

Sales to Zambia, and 20% of sales to other PTA markets, produce revenues in local currency. The balance is priced in US Dollars.

3.5 Marketing

Marketing rolled products in the PTA market will be largely a matter of developing awareness among potential end-users, and ensuring that prices, quality and delivery are competitive with European imports. TAME 3.14 - SALES NEVERNES (Resarian 711)

Ĩ

].

Ì

l

폐 514.4 129.4 113.0 2011.4 346.0 270.0 57.0 205.0 40.0 452.3 **1**2.0 21.0 120.0 72.0 Ĩ 11113.0 21047.5 34954.0 33414.5 32877.4 24107.2 34543.7 34545.4 37026.2 37294.5 37746.7 37719.6 37949.2 36179.5 733.0 1229.7 1947.5 2215.5 2454.4 2582.4 205.4 205.4 2051.1 3014.3 3197.1 3326.2 3445.2 3469.2 1350.4 2500.6 1000.6 1000.6 1000.6 1000.6 1000.8 1000.8 1000.0 1000.8 1000.8 1000.8 1000.8 1000.4 1000.8 1000.8 1350.8 2500.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 275.5 1190.5 121.5 1.91.0 1**11.1** 270.4 **346.0** 29.1 28.1 1).0 1).2 114.0 571.4 192 21.2 4-14 1-12 247.0 1149.4 4.14 1.9 81.0 122.1 ŝ 200.5 602.0 2594.1 2492.3 240.0 67.2 334.**0** 1472.9 112.0 510.2 1400.0 312.0 67.2 14.0 2.1 254.3 81.0 407.0 201 100.0 1000.0 1039.0 1100.0 1159.0 1200.0 1259.0 1300.0 1350.0 79.7 1.1 324.0 202.7 51.1 17.9 17.9 4.4 7.7 359.0 7500.0 49.2 11.8 20.4 21.4 312.0 228.0 237.5 247.0 905.2 (026.3 1067.3 78.0 104.0 ۶. 1.6 47.4 15.4 8.2 20.0 73.4 430.0 107.5 200.0 1 191.7 314.0 317.5 2307.7 2403.0 240.0 40.0 100.0 435.4 200 18.4 19.5 40.0 15.0 3.0 3.0 200.0 72.0 341.0 112.0 103.2 330.4 94.0 437.3 7.5 1.7 Ē 57.4 H.H 491.5 2211.5 20.0 35.2 274.0 11.0 31.7 112.4 218.5 11.2 42.0 11.1 ۶, 1.1 1.1 52.2 13.0 1.4 1.4 74. A 121.5 473.0 2019.2 2115.4 211.2 244.0 209.0 103.1 87.0 31.7 0.0 10.0 117.2 11.4 70.4 17.4 57.**2** E 43.0 316.4 201.6 84.0 382.7 341.2 252.0 1254.7 1.1 199.5 B42.1 47.2 16.8 Ē 20.4 12.4 0.[24] 40.0 301.5 34.0 14.0 172.0 40.0 240.0 1145.0 30.0 190.0 821.0 61.0 11.0 80.0 341.4 **18.**0 12.0 8 72.0 301.4 1736.7 51.0 21.1 309.4 17.0 216.0 1)4.**1** 31.2 171.0 57.4 11.4 Ē 1.2 1.2 735.2 14.1 344.0 1534.4 12.0 800.0 131.4 38.4 40.0 211.2 9.1 31.1 1 121.4 30.4 152.0 51.2 12.6 1.1 40.0 182.2 215.0 8.9 [So.**1** 500.0 12.0 120.0 45.0 10.5 Ĕ 2:0 21.0 21.0 2.0 1.0 E 24.0 [04.5 300.0 3.1 574.0 37.4 11.4 72.0 57.0 24.3 10.5 10.5 1.1 1.1 23 27 4.0 (1/1 cm. e) 201 771 25 4479 5210 (i 1) ÷ FRIES Ail Revewers to 5 'edds (Constant Prices) <u>.</u> **5** 3 3 5 <u>7</u> 8 ĩ I Tetal Sales to PIA (tennes) JULAR PROJECT REVENUE lotal Sales (lennes) ferraue lotal Siles (tonnes) Takal Sules (tonnes) Revenue Tetal Sales (tennes) lutal Sales Hennes lotal Sales (tennes) Assumed Consumption Local Currency **AINAUNA** 21 MAADAK Acres Revenue Revenue **NOTAKI** A alineis shret strup Zandia Aevenue DENYA ter ter strugstrip sheet **strip** Shret

;

66

TANLE 3.17 - SALES REVENUES (Sed)) 1111)

Ì

115.00 115.00 2910.21 2910.21 745.00 265.00 1744.20 1244.20 419.25 94.75 129.00 2.8 2.8 3.5 344.00 1140.71 105.75 42.75 57.09 8 9 9 9 8 2 9 8°8 11'12 8 8 8 2 2 2 18.8 21.2 1.61 225.06 525.06 615.00 1154.05 1154.75 115751 126.551 126.651 1394.16 1315.11 1315.11 1355.15 1305.65 1305.66 041.43 2401.41 2401.40 5316.17 5472.72 5442.05 5411.31 5955.45 4145.27 4356.17 8549.46 4737.01 7009.00 7009.90 AC.MAG AC.MAG AC.SACE NE.146E NE.CANE NO.0012 01.242E 15.491E 51.401E 57.510E N.1545 47.4085 48.4010 N.5.5EE N.5.6E 19.401E 18.402E 57.1155 18.711E 01.00105 51.42015 51.520E 51.4015 51.4015 18.4225 52.525 18.4715 50.501 18.4211 ž 111.25 94.75 129.00 234.**M** 54.**M** 340.06 10.01 120.00 Ski.24 8.2 2.2 8.8 338 38 ¥ : ; *** 200 10.27 11.14 124.24 451,11 221.99 59.95 76.45 152.29 11.20 11.21 55.70 117.43 **319.**22 276.77 278.96 1201.09 1237.12 17.2 17.1 17.1 8.2 11.2 12.41 **10.0** 431.46 ž 30.52 91.72 122.54 612.80 2812.48 227.32 51.30 342.01 1748.09 174.00 35.58 12.03 54, 15 2.5 2.5 2.5 111.01 10,41 17.10 65.51 411.22 2003 364.52 373.45 384.72 84.17 84.64 49.24 112.16 115.52 110.99 332.07 20.82 21.52 21.52 01.02 470.17 7.15 21.15 23.11 110.49 517.49 540.00 577.42 594.45 2373.01 2451.03 2730.34 23.5 5 5 5 5 5 5 51.25 12.45 14.66 233.57 240.54 247.79 255.23 242.49 1036.07 1042.15 1099.17 1137.14 1144.11 2002 10.6 15.84 107.44 502.61 775 775 322.39 1440.50 15.8 20.2 20.2 52.29 12.09 16.12 41.15 21.43 100 113.**6** 1460.48 202.45 46.75 62.46 141.07 17.17 19.54 71.75 403.72 5.15 20.11 101.33 **3**.5 17 17 ŝ 343.59 353.46 79.29 01.47 105.72 160.09 244.25 483.75 444.26 513.21 524.46 544.46 17.51 15.51 16.23 156.30 316.09 101.26 101.05 101.07 48.12 # # :: 2 # # :: 2 20°245 8:5 8:5 8:5 Ē 245.01 1500.41 11.7 11.7 11.2 151.02 15.09 14.21 1.1 1.1 2.2 71.76 380.40 11.15 151.14 43.42 11.72 11.47 H 220.11 224.77 974.40 1005.09 1 24.91 102.61 184.19 42.17 57.29 201-11 111-12 93.686 10.16 31.02 45.35 7 X X 7 2 X 7 2 X 21.41 42.04 11, 12 42. A 111.54 111) X.X 14.45 278.10 1422.01 10.656 100.77 11.72 53.62 113.11 31.02 41.01 6.13 19.43 61.53 334.75 12.21 40.24 E 11.11 10.51 11.11 121.54 279.00 1380.59 23.55 49.58 59.58 311.41 22.55 25.24 138.11 12.04 42.25 211.75 941.15 8 C 8 7 2 2 47.56 36.26 8 8 2 2 10.00 120.11 3.5 5 105.30 24.30 32.40 162.00 25.45 120.25 540.09 24.33 4.00 4.10 11.34 19.24 40.50 200.11 52.54 252.54 33.10 • • • • Ē 14. 2 21. 2 21. 2 2 2 2 2 2 2 2 2 2 121.8 #.75 412.41 725.75 1014.09 42.00 194.43 41.94 11.94 11.15 ₩.° 31.50 191 27.36 4.3 8. A ... 54.00 274.12 14.73 111.01 2.7 7.7 13.75 21.01 5 1 1 1 1 1 62.**11** 11.51 11.15 222 2 • 2 *** 8.E 2.52 ĩ 23**8** ŧ. 223 []/[anne] FILLES All Aeveeues in 9 0005 (Constant Prices) ក្ខផ្ទន្ត 1.328 *328 **3**555 IOLAL PROJECT REVENUE letal Sales Itennesh lotal Sales (lenaes) lotal Sales (tonnes) Total Sales (Lonses) Total Sales (tennes) latal Sales (tonaes) Gereign Currency tocal Currency Tantala Sheet Strip foil And the second s The second secon ferrout Acresse Acresses Review The second **BTHERS** trip toil Ĩ strip Ē Ē

67

.

۰.

An important component of the marketing strategy will be to survey potential end-users during the pre-production stage to evaluate requirements and bring to their attention the manufacturing facility to be developed in Zambia. Since the number of end-users is presently limited, the budget for sales promotion during the pre-production phase has been kept relatively low.

There will be little need for expensive advertising and other promotional campaigns. Sales will depend principally on price, delivery and quality. Assuming that prices are pitched at levels lower than those of landed European imports, the project is only vulnerable with respect to delivery, and then only in markets like Kenya and Mozambique where transport from Zambia can be difficult. It will be important for the project to obtain satisfactory service from a freight haulage contractor. It will also be necessary for marketing personnel to make sales visits to major customers on a periodic basis, and where problems arise.

4. MATERIALS AND INPUTS

4.1 Raw Materials

4.1.1 Copper

J

Í

ļ

Í

l

Ĩ

The principal raw material is copper cathode, which would be supplied by ZCCM.

There are inevitable irrecoverable metal losses during production, and it is estimated that an input of copper cathode equivalent to 105% of the output tonnage would be needed.

In the case of the Romanian mill, a significant volume of scrap will be generated during production, and this will be returned to the metal store to be incorporated in the melt charges. Some will be off-cuts film the castings and hot-rolled strips, some millings, and some cuttings from sheet or strip. Storage bins will have to be provided for each type of scrap.

At full capacity, the Romanian mill would require about 200 tonnes of cathode per week, equivalent to about 10 truck loads of 20 tonnes each. Since the plant is to be located adjacent to a railway line (see Section 5), it would be most economic to tranship the cathode from the refineries by rail, and then by siding directly into the factory. The trucks would be shunted into the metal store and off-loaded by overhead crane.

The small mill would require one 20 tonne delivery per week when operating with one shift, and two deliveries on two shifts. Lorries would be used for this purpose.

Since copper is the principal cost component associated with rolled products, it is important to minimise stocks. Since the plant would be located close to the refineries, it should be possible to reduce stocks to one week. Interior storage facilities for copper cathode have been built in to the design of both mills, and costed accordingly. Surplus can be stored temporarily outside, as is practiced at plants like Zamefa, Cafca and Almin.

It is important to note that it is not in ZCCM's interests to surply cathode to a domestic manufacturer. ZCCM is already struggling to fulfil its commitments to customers, and is having to buy coprer to cover the shortfall. More importantly, local deliveries payable in Kwacha result in a fall in forex earnings which are needed desperately to finance the importation of spares to maintain production levels. In this context, the diversion of even 10,000 t/pa (only 2% of current sales) to the local market will be Since a strip mill can accept low quality copper as raw unpopular. material feed, an alternative would be for ZCCM to supply reject and low grade copper, which would fetch a discount of about \$80/tonne on the LME price for Grade A cathode. However, ZCCM does not appear to have sufficient quantities of this type of copper to provide a satisfactory supply.

ZCCM has confirmed to us, however, that it would comply with government wishes in this regard, and guarantee the rolling mill a secure supply of copper. ZCCM also advised us that the rolling mill would receive the same price terms as Zamefa. This involves a discount of about \$104/tonne on the LME price of Grade A cathode (since the LME price includes transport from producer to Europe), and a quality rebate of about \$ 30/tonne to compensate the rolling mill for having to use Grade A cathode. The LME price has been averaged for mid-1988 at \$2142/tonne. Subtracting the discounts, and adding transport from refinery to mill at \$4/tonne, gives a delivered price of \$2012/tonne.

4.1.2 Phosphor copper

Both mills will also require phosphor copper for deoxidation purposes. This is usually supplied as a copper/15% phosphorus alloy.

With respect to the Romanian mill, it will be necessary to melt 1.8 tonnes to produce 1 tonne of output. With phosphor copper required at a rate of 1.2 kg/tonne of metal cast, it needs to be supplied at a rate of 2.2 kg/tonne of output.

The small mill will have a slightly higher melt to output ratio, and the requirement for phosphor copper is estimated at 2.4 kg/tonne of output.

Phosphor copper will have to be imported. Mid-1988 prices range from \$2,700/tonne to \$2,900/tonne for 10 tonne lots. The Romanian mill will be able to import at these prices, since its annual consumption will be in the order of 21 tonnes. The delivered price to the rolling mill including transport, and an effective rate of duty of 37.5%, is calculated at \$3994/tonne. Stocks of 6 months are recommended, since lower levels would incur penalties on price and the quantity of capital tied up is low.

The small mill, with consumption peaking 3.6 t/pa, will pay a premium over quoted prices. The delivered price mid 1988 is estimated at \$ 4345/tonne. Stock levels will also be 6 months.

4.1.3 <u>Zinc</u>

Zinc is required for the small mill to manufacture brass strip and foil. Only 10% of output will be brass, so the consumption of zinc will be (33% of 10%) 3.3% of output.

Zinc will be supplied by ZCCM at a discount of \$ 50/tonne over the LME price, which averaged \$ 1224/tonne mid 1988. Subtracting the discount and adding transport from Kabwe at \$5/tonne, gives a delivered price of \$ 1179/tonne. Deliveries can be made by truck. Stocks of one month would be sensible.

4.2 Auxiliary Materials

4.2.1 Industrial gases

The specification of the Romanian mill calls for the annealing of coils to be done in bell type furnaces with a protective atmosphere provided by burning methane. The flow rate of the protective gas is estimated at 140 to 150 $Nm^3/tonne$ of output. Methane is not available locally in Zambia, but since the gas obtained by the combustion of methane consists essentially of nitrogen with 1 to 2.5% hydrogen, it could be replaced by a nitrogen/hydrogen mix. Both gases are available from the Zamox plant in Ndola.

All the production has to be annealed once in coil form in the bell furnace. Material cut to sheet is annealed afterwards in a roller hearth furnace. This is supplied with a protective atmosphere from the same gas generator as the bell furnace. No data is provided in the Romanian technical proposal, but it is assumed that the consumption will be similar to bell furnace. With a 50:50 split between sheet and coil, the requirement for protective atmosphere gas will be around 280 to 290 Nm³/tonne of output.

This requirement for nitrogen/hydrogen seems abnormally high, and implies a cost of around \$740/tonne of output (which is about 18 to 19% of European sales prices). We would estimate real requirements at \$100 Nm³/tonne of output, which is consistent with the Dutch consultants' figure and with observed consumption in UK mills.

The small mill also requires a nitrogen/hydrogen supply for annealing. Consumption is estimated at 100 Nm³/tonne of output.

The Romanian mill also specifies methane for the "walking beam" furnace, for hot rolling. Since methane is not available locally in Zambia, LPG could be used as an alternative. Consumption of LPG is estimated at 40Nm³/tonne of output.

Since the small mill option is designed with cold rolling only, there is no requirement for methane or LPG for slab reheating.

LPG, nitrogen and hydrogen can be supplied by Zamox in Ndola in pressurised containers. Prices mid 1988 work out at \$120/tonne of output for LPG (priced at K24.66/Nm³), and \$261/tonne of output for the nitrogen 98%/ hydrogen 2% mix (nitrogen is priced at K21.43/Nm³). Since deliveries are local, stocks can be maintained at one week.

These prices are high by Western standards, so it may be worth investigating whether to use vacuum annealing, which is now fairly common for copper wire and strip. However, since the Romanian technical proposal specifies protective gas atmospheres, we have calculated operating costs on this basis.

4.2.2 Industrial materials

The main factory consumables are as follows:

- * refractories for melting furnaces, which would be imported at a probable cost of \$0.3/tonne of output
- * cutting emulsion for the slab saw and miller, at a consumption rate of 10 litres/tonne of output (Romanian mill), and, for the miller (small mill), at a rate of 4 litres/tonne of output
- * oil for roll bearings and hydraulic drives this is recycled but there are some losses of between 2 to 3 litres/tonne of output

- * emulsion for cold rolling this is also recycled, but there is some loss due to evaporation, and eventually it will need replacing through metal pick-up. A consumption rate of 3 litres/tonne of output is reasonable
- * miscellaneous lubricating oils and greases, at a consumption rate of l litre/tonne of output
- * for brass strip (small mill option), the pickling/cleaning line creates a demand for sulphuric acid. Consumption would be 1 kg acid/tonne brass pickled, or 2 kg/tonne if the pickling is carried out twice
- * cleaning materials for the rolls (mostly paraffin)
- * saw tips
- * tools.

The total cost of these materials is estimated at \$35/tonne, including transport and duties. Since most will have to be imported, it is recommended that stocks of 3 months be maintained.

4.3 Spares and Maintenance

For plant and equipment, two years' spares should be provided as part of the turnkey contract with the supplier. After this period, spares are valued at 3% of initial capital costs per annum. This is based on the experience of factories currently operating in this sector, with which Atkins is familiar.

Plant and equipment spares will be imported, mostly from the original supplier. It is recommended, therefore, that stocks of 3 months are maintained.

Materials and costs associated with the upkeep of the factory buildings and outlying area are estimated at 1.5% pa of initial capital costs. This is also based on observable expenditures at comparable factories.

A large percentage of building materials are available locally. Although several important items will be imported, notably spares for the heavy electrical gear, it is reasonable to assume an average stock level of cine month.

It is assumed that the maintenance of the housing colonies associated with the mills will be financed out of rents. No provision has been made in the estimates of operating costs to cover this item.

4.4 Utilities

4.4.1 Electricity

Only the main items of equipment listed in the Romanian technical proposal have data on power requirements. Even some of these omit important information, for example, the cathode shear, the baler and the slitter. These have been estimated.

The main items of plant have a total power requirement of about 5,350 kW. There are many auxiliary items such as pumps, extraction fans, miscellaneous drives, gantry cranes and lifting gear, and lighting facilities, for which power figures have not been supplied. Our estimate for installed power is 6,500 kW to 7,000 kW. Maximum demand can be estimated at 2/3 of installed power, i.e. 4,350 kW to 4,700 kW.

Electricity consumption is difficult to calculate since it depends on the yield of material shipped as compared with metal melted, and the rolling schedules which are not specified. The largest single requirement is for melting. With a 60% yield, electricity consumption would be 800 kWh/tonne. Our estimates of other operations, making allowances for yield, gives a total of 2,500 to 3,000 kWh/tonne shipped.

The total installed power for the small mill option is estimated at 2,500 kW, allowing 375 kW for miscellaneous items. Maximum demand would be 1,675 kW.

Electricity consumption is estimated at 2,500 kWh/tonne output.

Electricity data and local price information are summarised in Table 4.1.

	Romanian Mill	Small Mill
Installed power (kW)	6,500-7,000	2,500
Maximum demand (kW)	4,350-4,700	1,675
Electricity consumption (kWh/ tonne output)	2,500-3,000	2,500
Fixed monthly charge (Kwacha)	17,225.00	1,722.50
Maximum demand monthly charge (Kwacha/kW)	11.80	13.81
Unit charge (ngee/kWh)	3.51	5.33
Sales tax (%)	15	15

TABLE 4.1 - ELECTRICITY DATA

Sources: WS Atkins Zambia Electricity Supply Corporation Ltd

4.4.2 Water

ſ

The Romanian mill will require some 15m⁴ water/tonne of output, over and above recirculated water (i.e. 15,000 litres/tonne). The small mill, on the other hand, will consume water at an estimated rate of $7m^3$ water/tonne (i.e. 7,000 litres/tonne).

Costs have been based on rates set by Kitwe District Council. The appropriate rate for industrial consumers is K 1.20 per 1,000 litres.

5. LOCATION AND SITE

5.1 Location

Kitwe has been selected as the location for the mill. The reasons for this are various. Kitwe is located close to the copper refineries, and is also well placed with respect to the domestic market, which is concentrated in the Copperbelt.

Kitwe is also served by the railway line which connects the Copperbelt with Dar-es-Salaam, on the one hand, and Lusaka, on the other.

Kitwe also has an abundance of industrial land, and a large pool of labour. The town, by Zambian standards, offers a relatively wide range of industrial and building services, which will be important in maintaining production levels.

INDECO has indicated that it accepts Kitwe as a suitable location.

5.2 Site

For the Romanian mill, a greenfield site has been selected in an area set aside for industrial development in north-west Kitwe. The site is well placed alongside the main road to Ndola and Lusaka and the railway line. A railway siding could be constructed to bring railway trucks directly into the factory, thus minimising break-bulk costs.

The site is not developed, but is close to existing services. The cost of linking the site to main services has been included in the civil works costs prepared by the engineering consultancy, Arup (Zambia).

The site is flat, and well drained. The soil conditions are not perfect, but the water table level is not a problem. Arup (Zambia) has inspected the site, and foresees no problems in developing it for the Romanian mill.

Following discussions with Indeco, an existing Indeco industrial site was selected for the small mill option. This is quite small, but large enough for the mill. It has good road access, and has the advantage that no costs would be incurred in land acquisition.

The existing building is unsuitable, and would have to be demolished. The foundations would also have to be altered, and the services redeveloped.

Arup (Zambia) argues, however, that the cost of redeveloping the site would not be significantly lower than developing a greenfield location.

It should be noted that site requirements are not a major constraint on the project. There is ample land available for industrial development in Kitwe, and most of it is suitable for civil works of the type required for the mills.

The climate is not problematic as far as the project is concerned. The production process does not generate a great dea! of heat, so there would be no need for cooling systems, provided sufficient ventilation is provided. In fact, the favourable climate leads to lower construction and operating costs than would be experienced by a similar mill in Europe, since the buildings do not have to be designed to withstand harsh winters, nor does heating have to be provided for offices and other cold areas.

5.3 Costs

Kitwe District Council was quite unable to provide estimates of the present day costs of connecting the greenfield site to main services. For this reason, these costs have been calculated by Arup (Zambia), and included in our estimates of civil works costs.

Land acquisition costs, set by the Ministry of Lands, are nominal, and can be ignored for the purposes of calculating investment outlays.

Kitwe District Council was also vague on the question of rates. We have therefore extrapolated estimates of rates from known rates teing paid by similar factories in the area. Our estimates are \$5,000 pa for the Romanian mill and \$1,000 pa for the small mill.

5.4 Environmental Impact

5.4.1 Emissions, noise and waste

There will be no noxious emissions from the Romanian mill. Melting copper produces no fume, since the furnaces are electrically heated. The combustion of fuel for preheating will result in a small emission of combustion products, mainly carbon dioxide, but there will be no sulphur dioxide.

Rolling produces a small amount of oil fume, which is to be exhausted via a stack after passing through a filter to remove oil mist.

Periodically, the rolling oil emulsion may need renewal due to pick-up of copper. In a highly industrialised area, the emulsion would probably be broken down by alkali treatment, and the oil skimmed off before passing the liquid to a settling bed before discharge. However, since space is not a problem on the site selected for the project, the waste could simply be lagooned where the oil would separate as water drains into the subsoil. Noise from the plant would not be problematic. The mill is small by western standards, and the chosen site is far from housing.

Similarly, the small rolling mill will have very little impact as regards emissions, waste and noise. Melting copper will cause no fume, and since all furnaces will be electrically heated there will be no combustion products.

The rolling mills will be low speed, and will not give rise to significant oil fume. Because of the small volume production disposal of waste oils will not cause problems. If necessary, the small amounts involved could simply be incinerated.

Production of brass would introduce minor emissions of zinc oxide fume during melting. These are white in colour and harmless. A fan in the melting area is all that is required to remove them.

It would be necessary to pickle the brass in dilute sulphuric acid, and it would be advisable to include a simple treatment plant to neutralise the rinse water and waste acid, allowing the metal salts to settle before discharge. The volume of effluent is unlikely to exceed 5m³/hour. This could be treated continuously or collected and treated with lime once a day. After the metal hydroxides have settled, the water is safe to discharge into any convenient drainage The sludge of metal hydroxides would be best lagooned to system. but it is of no commercial value. dry out, Construction of an effluent treatment plant with pH control would not cost more than \$10,000.

The noise associated with the plant will be relatively minor, and acceptable for the industrial site suggested for the project.

5.4.2 Infrastructure and population

The two plants will place significant pressure on the local housing stock in "itwe suitable for managerial and technical staff, and skilled workers. It is concluded that the construction of a housing

81

<u>colony would be necessary</u> to cover the shortfall in existing housing and attract employees from elsewhere in the country. The costs associated with housing are estimated in Section 6.4.

The demands placed upon utilities in Kitwe will not be problematic, nor will there by any serious disruption of the traffic network. The Romanian mill would create a significant volume of traffic if lorries were used both for the importation of raw materials and the distribution of finished products, but very little if the railway line is used for these purposes, as recommended.

6. PROJECT ENGINEERING

6.1 Project Layouts

6.1.1 Romanian mill

The Romanian technical proposal did not contain information on project layout. Figure 6.1, which shows the layout of the factory, is based on Atkins' interpretation of the information relating to technology and machinery set out in the proposal.

The layout is relatively simple, with the factory partitioned into six areas:

- * offices
- * raw material delivery, storage and charge make-up
- * melting furnaces, holding furnace and casting machine
- * preheating furnace, hot/cold rolling mills, and milling machine
- * annealing bells and roller hearth furnace
- * test and inspection, packaging and despatch.

The factory covers 8,350 m².

Figure 6.2 shows a suggested design for the works area. It has been

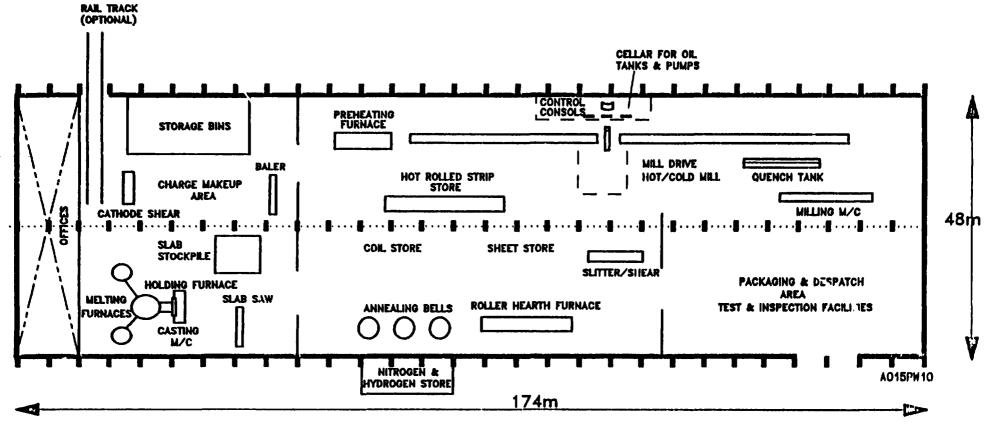


FIGURE 6.1 PLANT LAYOUT (ROMANIAN MILL)

84

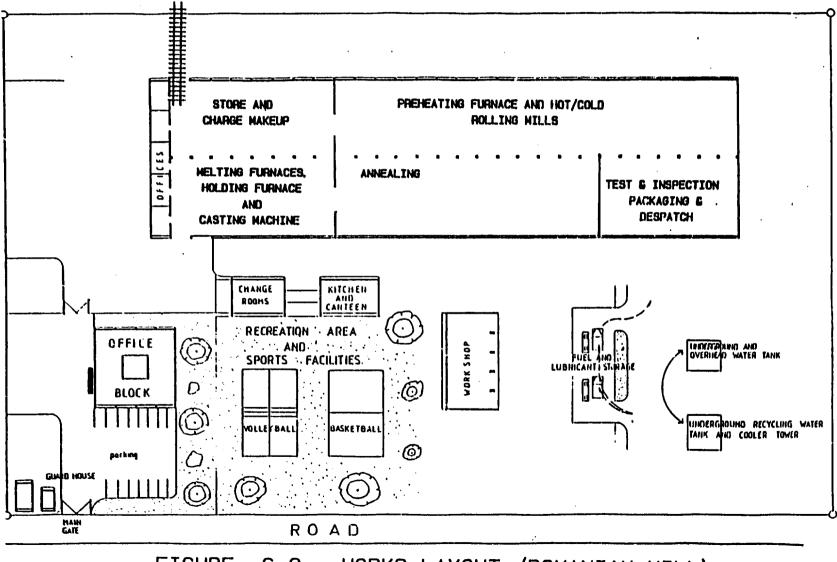


FIGURE 6.2 - WORKS LAYOUT (ROMANIAN MILL)

decided to locate outside the plant:

- * management offices and car park
- * electricity substation
- * changing rooms, kitchen and canteen for the workers
- * recreational facilities
- * workshop
- * fuel and lubricant store
- * underground and overhead water tank, underground recycling water tank and cooler tower.

6.1.2 Small mill

Figure 6.3 shows a suggested plant layout for the small mill. The factory is divided into five main areas:

- * offices, containing workshop
- * store, cathode shear and baler
- * furnace
- * process area, containing rolling mills, miller, bell furnace, annealing furnace and pickling/cleaning line
- * test and inspection, packaging and despatch.

Given the nature of the site chosen for this mill, it will be necessary to have a relatively compact works area. Effluent treatment and the water tank are located alongside the factory.

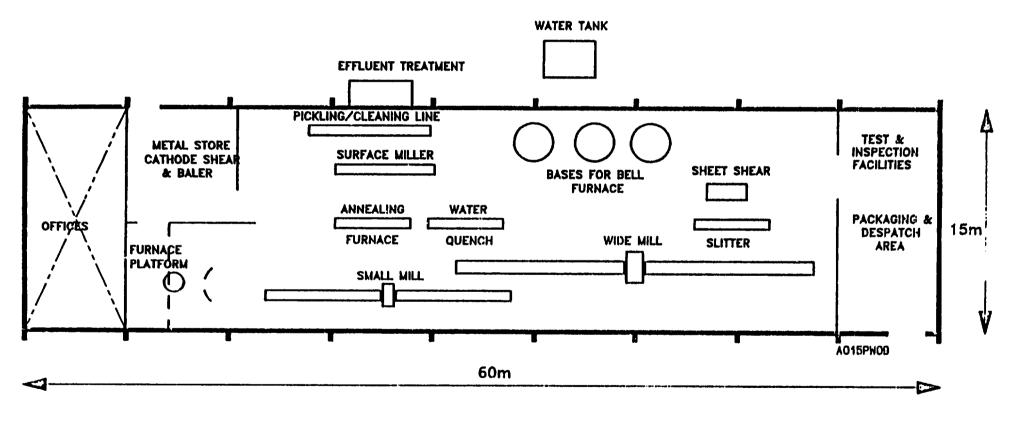


FIGURE 6.3 PLANT LAYOUT (SMALL MILL)

87

There will be no discreet office area separate from the factory, and no recreational facilities. For this reason, a separate diagram of the works area has not been provided.

6.2 Technology

j

6.2.1 Romanian mill

The Romanian technical proposal provides a comprehensive description of the plant to be supplied and the associated technology, but no details of the cost of equipment, the manning levels, or operating costs. These have been estimated, or calculated from first principles, where necessary.

The Romanian mill is designed as a single product plant, producing 1,000 mm copper strip with a thickness range 0.5 to 3.0 mm, which can be marketed either as 1,000 mm x 2,000 mm sheet or in coil slit to the width required by the customer. The products would comply with DIN 1792 or BS 2870 Cl06, phosphorus deoxidised copper. The production process may be summarised as follows:

Charge Makeup

Assuming a 5 day week of 15 shifts, it is necessary to melt 75 tonnes/day. This is made up partly of cathode and partly of process scrap. Imported cathodes are cut in a guillotine shear into small pieces. Strip and sheet scrap is compressed in a baling machine. The chopped cathodes plus scrap is loaded into buckets (capacity 400 kg), and lifted by crane onto the furnace platform of the adjacent melting/casting shop.

Phosphorus is added at the melting stage. This acts as a deoxidant downstream when the strip is brazed or welded (as in the manufacture of geysers), otherwise hydrogen and oxygen in the copper combine to produce steam, rendering it brittle. Oxygen free copper, such as is used by Zamefa for wire-rod, would be unsuitable. Phosphorus is not added to Zamefa's feed, since it reduces the conductivity of the copper.

Melting and Casting

Melting is carried out in two channel type low frequency induction furnaces, each with a capacity of 1.5 tonnes/hour. These are used to replenish a similar type of furnace of 5 tonnes capacity which acts as a reservoir of molten metal to feed the casting machine.

The casting machine is a vertical semi-continuous machine in which the molten metal is poured into a short water cooled copper mould in which solidification takes place. The casting is withdrawn downwards on a hydraulic ram at a maximum speed of 135 mm/minute with direct water cooling of the slab. The slab size is 120 mm x 1,050 mm x 3,200 mm, which provides two rolling slabs. The yield of The metal cast to rolling slab is 93.75%. process is semi-continuous in the sense that the caster produces slabs (of 3.2 The mould has to be filled again before metres length) discreetly. another slab can be produced.

The casting machine and its hy raulic ram require the sinking and lining of a pit 8 metres deep. This has been costed in the civil engineering estimates. A water flow rate of 120 m³/hour maximum is required, 50% of which is closed circuit. For safety reasons, it is recommended that this should be supplied via a water tower to provide a gravity feed in case of pump failure.

As the rate of casting is less than 1 drop/hour, melting and casting will have to operate for 15 shifts per week. The melting furnaces should not be emptied or allowed to freeze, so they will have to run on low power during the weekends.

The melting furnaces will need new refractory linings from time to time.

Sawing Rolling Slabs

The cast slabs are taken to a circular saw where they are stockpiled for sawing into rolling slabs. The ends of the casting have to be rejected, so the sawing produces two rolling slabs 1,500 mm long from each cast. These are stockpiled for rolling.

Rolling

The novel feature of the Romanian proposal is that a single mill will be used both for hot-rolling and cold-rolling. It is intended that it will operate as two-high mill for 10 days of each month, accumulating a stock of hot-rolled strip. The rolls will then be removed and two pairs of rolls will be inserted (i.e a work roll and a backing roll), converting the mill to a 4-high mill for cold rolling the accumulated stock for the rest of the month.

For hot rolling, the slabs are brought to a temperature of 850 to 900°C in a "walking beam" furnace with a throughput of 4 slabs/ hour. To obtain full capacity production, this furnace and the hot mill have to work continuously for 9 or 10 days in each month.

The furnace is 10 metres long, and is fired with methane gas, although this would be best replaced in Zambia with LPG which is available locally. The furnace requires 210,000 kcals/tonne of output, or 1,470,000 kcals/hour of operation.

The hot mill is a reversing mill with conventional powered run-out tables. The output of 4 strips/hour is limited by the output of the preheating furnace. Slabs are discharged from the preheating furrace onto the table of the hot mill. They are rolled from a thickness of 120mm to 14.5mm in 7 passes according to a pre-set schedule. The rolls are cooled with water sprays. At this stage the strips will be about 12.5 metres long. They are quenched in a water tank alongside the run-out table, then removed and stored alongside. Before the strips can be cold rolled, they have to be milled, removing about 0.5 mm from each side. This is carried out on a milling machine which flattens the strips, crops the ends, and then mills them one side at a time (line speed 10 m/minute). The chips are pneumatically collected. The milled strips are stored ready for cold rolling.

The technical proposal suggests that the hot mill can be converted to cold rolling in one shift of 8 hours. This involves withdrawing the rolls and removing the run-out tables, thoroughly cleaning down, and inserting the pairs of rolls for cold rolling and the appropriate run-out tables. The necessary guage control instrumentation would also have to be put in place, and the mill drives coupled.

The strips are cold rolled in a series of passes from a thickness of 13.5mm to 4.5mm, by which time they will be about 38 metres long. At this juncture, a coiler is positioned either side of the mill, and rolling is continued coil to coil for 5 further passes to 3mm thick.

The strip is subsequently bright annealed in coils. The coils are then further cold rolled to a minimum thickness of 0.5mm or to an intermediate thickness depending on the final requirement. They are annealed again, either at the final thickness or within one or two passes of the final thickness depending on the quality required, i.e. soft, half-hard or hard.

Finishing

Î

ļ

The finishing operation in the production of strip is to edge trim, slit to the required widths, and recoil. The trim is automatically chopped up to fall into a scrap bin. For sheet, the strip after edge trimming enters a cutting shear where it is cut to length. The cut sheets are then annealed in packs in a roller hearth bright annealing furnace.

Annealing

P

Annealing of coils is carried out in bell type furnaces with a protective atmosphere provided by burning methane. The annealing furnaces are situated in a separate bay parallel with the rolling bay.

There are three bases for annealing, one loading or unloading, one heating and one cooling. An electrically heated bell and a water cooled cooling bell can be located over any base. The maximum charge weight is 13 tonnes. The heating and soaking time is specified at 9 hours, giving a maximum throughout of 1 tonne/hour.

The methane atmosphere can be replaced by a nitrogen/hydrogen mix containing 1 to 2.5 % hydrogen, since these gases are available locally in Zambia.

All the production has to be annealed once in coil form in the bell and most coil has to be annealed twice in the furnace. furnace. Material cut to sheet is annealed afterwards in a roller hearth and is supplied with a This is electrically heated, furnace. protective atmosphere from the same gas generator as the bell It has two zones: the first is heated and the second, furnace. which has a double wall structure through which cooling water flows, Both zones are supplied with the protective is a cooling zone. but no data on flow rates are provided (but will be atmosphere. similar to the bell furnace). The throughput is 0.5 tonnes/hour.

Packaging and Despatch

The end of the bay used for annealing is intended to house the area for packaging the products and despatching them. Sheets will have to be packed in wooden crates, and interleaved with paper. Material shipped in coil, particularly small coils of narrow strip, would also require protection. Thus it may be necessary to have a carpenter's shop to produce crates and boxes, unless these can be provided by the haulage contractor. No provision has been made in the Romanian proposal for this either as regards equipment or labour, but the equipment is unlikely to cost more than \$25,000.

Inspection and Control

Inspection is made at various stages of processing to ensure that the material is of suitable quality. A final inspection for surface quality and guage can be carried out at the slitting stage or during packing.

Depending on the origin and consistency of the incoming metal it may be possible to avoid analysing the cathodes. The phosphorus content of the melts will have to be controlled, but if the copper is consistent this can be some simply by a conductivity measuring instrument. Otherwise, spectrometric analysis will be needed, and an instrument will have to be provided (about \$150,000).

Hardness measurements will have to be made regularly on the output, and simple metallographic facilities will be needed to enable grain size measurements to be made. It will be necessary to have certificates of tensile properties for some orders, and thus tensile testing equipment will have to be installed. A small laboratory to house the instruments and a lathe and milling machine to prepare test pieces would seem to be essential. To equip such a laboratory would cost in the region of \$100,000.

Works Transport

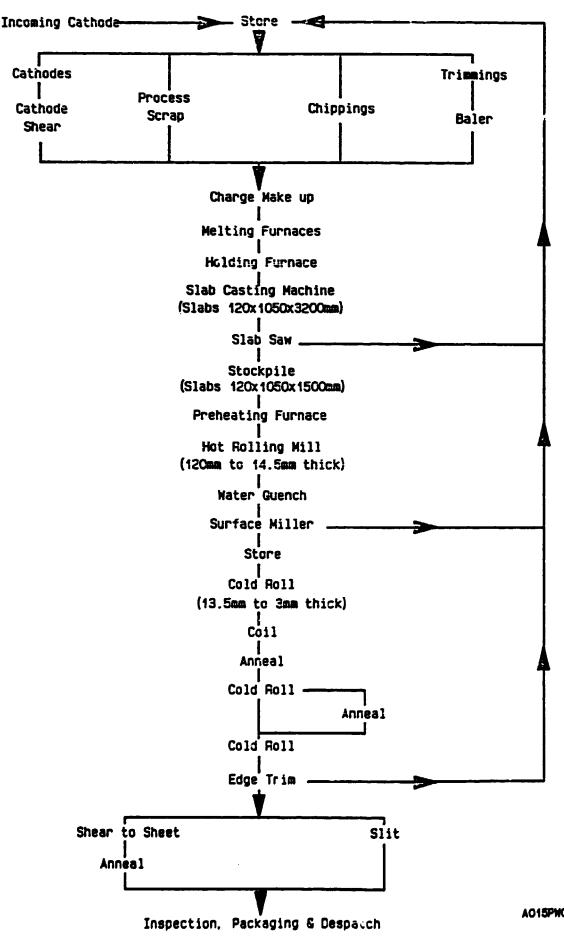
The proposal specifies a gantry crane in each of the four bays of a capacity suitable to the operations in each bay. These are not included among the items to be supplied (but are included in our estimates of building costs). However, it is certain that additional transport and lifting facilities will be needed in a works of this kind, and it is recommended that provision be made for two fork lift trucks.

A process flow chart is provided in Figure 6.4.

Discussion

Î

The mill follows conventional practice for the manufacture of copper sheet and strip. Many plants of this type were built in the 1950's, and many of these continue in operation although most will have been considerably updated in the intervening years.


The novel feature of the proposal is that a single mill will be used both for hot and cold rolling. This approach has been adopted to minimise the cost of rolling mills, which are the most expensive items of equipment.

In principle, there is no reason why this procedure cannot be used, although as far as is known, there are no mills operating in this manner. There are good practical reasons against it, quite apart from the inconvenience and wasted production time lost in making a roll charge. It is not possible to evaluate this loss accurately because we do not have sufficient details of the mill construction. The Romanian proposal gives the impression that such a mill exists only as a design concept, and has not actually been built. However, it does mention special facilities for effecting the roll changes.

The Romanian delegation indicated that the change over could be accomplished during a single shift, and it has been assumed in calculating the manning levels that the change would be made by the normal mill operating crews assisted by the shift electricians and fitters together with a crane operator and possibly a fork-lift truck driver.

Our opinion is that the change would take longer than one shift, and would probably result in the loss of one day's production unless scheduled over the week-end.

FIGURE 6.4 PROCESS FLOW CHART (ROMANIAN MILL)

It has to be agreed that moving heavy gear of this kind could increase the chance of an accident to personnel and also the possibility of damage to equipment. Much would depend on the training of the operatives and on the quality of the supervision.

l

In heating copper to the hot-rolling temperature it becomes covered with an oxide scale, and this continuously reforms while the surface is being extended during rolling. This scale tends to be brittle and to exfoliate, so that the mill and its associated run-out tables accumulate a considerable amount of oxide flakes or particles. Some of these are rolled into the copper which is one of the reasons why it has to be surface milled after hot rolling.

To use the same mill for cold rolling would involve a very thorough cleaning of the whole area to ensure absolute removal of all oxide particles, otherwise there would be a strong possibility of particles being picked up and rolled into the strip.

Cleaning the mill and ancillary equipment to the standard required may not be impossible, but it would be quite difficult and time consuming. In practice, oxide particles may remain on the copper as lubricant residues tend to be good adhesives. One can envisage having to clean down thoroughly using copious amounts of, say, kerosene.

Once oxide particles have been rolled into the surface of the copper they would be difficult to remove, and if removed would leave a Abrasive cleaning would be risky as the abrasive pitted surface. itself could become embedded in the soft copper. Acid pickling would probably be the best solution, but this would entail a Pickling would best be carried considerable change to the plant. and would involve the out near the end of the rolling schedule, addition of a continuous pickling, washing and drying line. This itself would be costly although there is the possibility of eliminating some of the bright annealing. However, a continuous pickling line would be more expensive than the annealing plant.

Detection of rolled-in oxide would require some method for automatically scanning the strip for inclusions possibly carried out in line with a finishing operation such as edge trimming.

It is not easy to assess the magnitude of the hazard or how much weight should be attached to the possibility of rolling in oxide scale largely because there would seem to be no practical experience of using the same mill for both hot and cold rolling. The problem is recognised to some extent in the Romanian proposal which includes the dismantling of the hot rolling feed tables and replacement by other tables during the change of rolls. It is not possible to predict whether this precaution would be adequate to overcome the risks of picking up oxide particles.

Ì

ļ

Ĵ

The presence of oxide scale inclusions would not be harmful for low grade applications of the copper sheet such as for roofing or damp courses. It would, however, prevent the strip being marketed for applications where visual appearance is important, and where the oxide could be a potential source of pitting corrosion in an application such as hot water cylinders. Inclusions would also be deleter: \Box s if the strip were further reduced to produce radiator fin stock since the inclusions would then become significant in relation to the thickness of the metal.

A further disadvantage with the design is the delay imposed on the production process. Stock would be tied up in hot rolling for 10 days, plus about a further two days for annealing to soften the strip. This means that it will take a minimum of 12 days before cold rolling the product can begin. It is for this reason that work-in-progress has been set at 3 weeks for the Romanian mill. In Europe, this would be regarded as a serious disadvantage.

A further problem is that the mill is not designed to produce strip thin enough for radiator applications (the minimum guage is said to be 0.5 mm). This limits the regional market for the plant. A further rolling mill would have to be installed to roll down to radiator foil guages.

6.2.2 Small mill

This plant is conceived as a flexible unit capable of producing both sheet and strip in copper, and strip in brass. It would have a capacity up to 2,250 t/pa, depending on the mix of sheet and strip, with three shift working, 5 days per week. However, the melting and casting unit is designed for intermittent operation, and it is suggested that a start should be made with single shift working. This would reduce the output to 750 t/pa, but output could be increased to 1,500 t/pa with two shift, as demand warranted and as production efficiency increases.

The method of operation may be summarised as follows:

Metal Preparation

The copper will be received in the form of cathodes, which will require shearing into pieces suitable for loading into the melting furnace. As the yield of finished product to metal melted is unlikely to exceed 60%, there will be process scrap returned from various stages, and some of this will require baling before it can be charged into the furnace.

Charges will be made up in skips holding about 450 kg which will be hoisted onto the raised furnace platform by crane and emptied onto a shute feeding the furnace.

Melting and Casting

A 1 tonne coreless induction furnace will be used for melting, which will tilt for pouring. An addition of phosphor copper would be necessary at this stage.

Moulds will be made from copper plate surrounded by a water jacket. Three moulds are suggested, $400 \text{ mm} \times 50 \text{ mm} \times 1.5 \text{ mm}$ each. These would be located on a carousel, to bring each in turn to the furnace. The moulds open to enable the casting to be lowered onto a trolley for transport to the rolling mill.

The maximum output of the furnace would be 0.8 tonnes/hour, equivalent to 3 slabs.

First Rolling

Initial rolling will be on a narrow 2-high mill with large diameter rolls to accept whick slabs. The slabs are reduced in thickness from 50 mm to 25 mm in four passes, during which they are cycled round the mill on a trolley. Starting at 1.5 metres long, the slabs finish 3 metres long. Capacity is about 24 slabs/shift.

Slab Anneal

The rolled slabs are loaded in batches into a simple annealing furnace which does not require a protective atmosphere. After annealing they are removed into a water quench where most of the scale will flake off.

Surface Milling

The slabs are surface milled, both sides simultaneously, removing 0.5 mm/side. The miller specified in the equipment list leaves a slightly ridged surface, but the markings are obliterated during rolling.

Second Rolling

Rolling continues on the same mill, reducing the thickness from 24 mm to 10 mm in about 5 passes. The strips finish 7.5 metres long. Capacity is 24 strips/shift. The treatment thereafter depends on the end product.

Sheet

For sheet, the strip ends are trimmed and then cut to 1 metre lengths with a circular saw. The lengths are stacked with ceramic spacers in a bell furnace and annealed with a hydrogen/nitrogen protective atmosphere, up to 140 pieces/shift.

The lengths are then cross rolled on the wide mill from 10 mm to 3 mm thick in a sequence of passes, to give sheets 1,000 mm wide and 1,330 mm long. These are reannealed in the bell furnace, and rolled to finished guage to customer requirements. This produces half hard sheet. The sheets are then sheared to customer specifications.

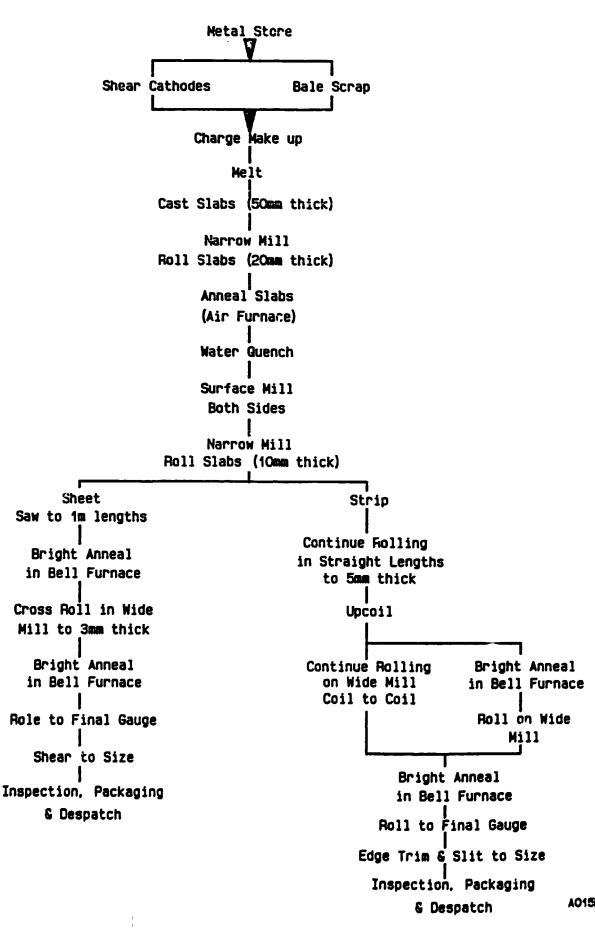
Strip

Rolling can be continued on the same mill or on the wide mill in straight passes to 5 mm thick, when it can be up-coiled.

According to the final product required rolling may be continued, coiling after each pass, or the strip may be annealed in the bell furnace in coil before final rolling (up to a maximum of 24 coils/shift). To avoid directional properties in the final strip, the rolling reduction immediately before the final anneal should not exceed 50%, and the rolling/annealing schedule has to be chosen accordingly. Brass strip could be produced with the addition of a simple, inexpensive pickling/cleaning unit.

The strip is finally edge trimmed, and slit to customer requirements.

A process flow chart is set out in Figure 6.5.


Discussion

The suggested design for the small volume plant follows practices which are now largely outdated, and the production route would not be competitive with conventional plants. It is proposed only as a possible means for satisfying the regional market, with minimal capital investment.

The most serious problem is that low volume producers of copper alloy strip have adopted increasingly continuous strip casting since this avoids much laborious rolling of thick sectioned castings. Strip casting is carried out using graphite dies or moulds, one end of the die being permanently immersed in the molten metal. strip casting with submerged graphite dies, Unfortunately, suggested in the Dutch consultants' report, is not a practical proposition for phosphorus deoxidised copper, which is necessary if strip is to be brazed (as, for example, in the manufacture of copper This is because phosphate slag particles, which water cylinders). form when phosphorus is added to molten copper, accumulate in the entry to the die. A consequence is that the surface quality of the Furthermore, it is unlikely that a die life of strip deteriorates. more than 10 hours casting could be obtained. This is equivalent to which would be quite a die cost of about \$85/tonne cast, There would also be considerable interruption to unacceptable. production.

Although this problem has been overcome in casting round billets by the submerged die technique, the solution would not be applicable to thin strip dies. So far as is known, no-one is casting successfully deoxidised copper strip by this method. In theory, it should be possible to avoid the formation of slag by melting in a two compartment furnace, but this would be an experimental plant and too risky to recommend. For this reason, it is proposed that rolling

FIGURE 6.5 PROCESS FLOW CHART (SMALL MILL)

102

slabs should be produced by static casting, as practiced by Zamefa (i.e where slabs are cast individually in stationary moulds). The cast slabs would then be processed entirely by cold rolling. This is an unconventional method for manufacturing copper sheet and strip, which is normally initially hot rolled from somewhat larger slabs, as in the Romanian proposal. However, the capital cost of hot rolling mills, and the associated preheating furnace is too high for the method to be considered for small volume production.

Í

ł

J

The problem could be overcome if geyser manufacturers in the region could be persuaded to accept a copper/zinc alloy instead of phosphorus deoxidised copper, since the former are readily cast by the submerged die process. There are two possible alloys: cap copper to BS 2870 CZ 125 which is copper/5% zinc; and gilding metal to BS 2870 CZ 101 which has 10% zinc. The alloys have a golden colour, and are used for architectural work and jewellery. Both alloys are easily brazed, and both have corrosion resistance comparable to that of copper. Using one or other of these alloys it would be possible to cast strip continuously, say 16 mm thick, and up to 1,000 mm wide.

The output of well designed casting machines is about 3 kg/mm width of strip/hour. With 1,000 mm wide strip the output would be approaching that of the Romanian plant, and there would be obvious problems in marketing the products within the PTA region. However, a plant casting 500 mm wide strip, having a potential output of 3,000 t/pa, might not be unreasonable. It would be possible to widen the strip by cross rolling.

Using this technique the preliminary stages of rolling are avoided. As cast the strip would be 16 mm thick, and it would then be surface milled to 15 mm thick before cold rolling. At this stage it approximates to the hot rolled and milled strip of the Romanian proposal, the hot rolling stage having been bypassed. Cold rolling would be either as strip 500 mm wide eventually coiled, or the milled strip could be cut into approximately 1 metre lengths and cross rolled; i.e. rolled in the short direction increasing the 500 mm to 2 metres or more to produce sheet as in the later stages of the small mill option described above. Intermediate annealing and a final anneal would be required, and this would be carried out without a protective atmosphere. After annealing it would be necessary to pickle in dilute sulphuric acid, rinse in hot water and lightly brush to give a clean bright surface.

The potential output of the plant exceeds significantly the present and forecast demand for sheet in the region, but the alloys would be satisfactory substitutes for copper as radiator fin stock. The thermal conductivity is about 67% of that of deoxidised copper, and it could be rolled to foil. The golden colour might not be so acceptable for spun wares, but the plant could be used to produce limited quantities of oxygen free or low oxygen copper strip for this trade. The same equipment could also be used to make brass strip 70/30 or 64/36 without modification.

However, it is unknown whether the products of this plant could gain acceptance from end-users in the region, and it is likely that the plant would never operate above 50% capacity. For these reasons, we have proceeded to examine the feasibility of the small mill option, using static casting and phosphorus deoxidised copper.

A further problem with the small mill is that the chief domestic demand currently is for sheet for the manufacture of geysers. For this the sheet has to be 1 metre wide. This is most efficiently produced with a wide rolling mill. However, the cost of rolling mills tends to increase exponentially with width; i.e. doubling the width, quadruples the cost. Thus, a very expensive mill would be required, even though the demand is only a few hundred tonnes per annum. For this reason, cross rolling has been recommended, but this is relatively inefficient. With the same aim of minimising the capital cost of equipment, it has been proposed to carry out reduction with cold rolling only and with a 2-high mill. Although it is possible to roll down to guages of 0.08mm with this system, and thus satisfy the demand for radiator foil, several passes through the rolls are necessary. This is also relatively inefficient, although less so where labour is cheap.

UNIDO Technical Staff have made two comments on the small mill design:

- * since the width of the first mill is only 400mm, the aspect ratio of material to be cross rolled at the second mill is small, which may introduce difficulties in cross rolling squarely and thus reduce yield. It was suggested that cast slab width be expanded up to about 800mm
- * rather than increase the width of the first colling mill to 800mm, it was suggested that first rolling should be carried out by the second (finishing) mill. This would require the finishing mill to be 4-high, with roughing rolling carried out only with the backup rolls.

The point about the aspect ratio of the material for cross rolling is appreciated, although with proper guides it should be possible to enter the material into the rolls squarely. There are also very important practical problems in producing wider material for the cross rolling stage.

Casting a wider slab was considered, but it was thought that there would be difficulties in increasing the slab width without at the same time increasing slab thickness. It would be unusual to cast a slab 800mm wide and only 50mm thick. There would be problems in obtaining a uniform distribution of molten metal along a narrow section of such length. It would be desirable to increase the thickness to 75mm or more in this case so that the solidification time in the mould was sufficient for the metal to become evenly distributed. However, increasing the slab thickness would necessitate more cold rolling and would probably add another anneal to the schedule and it was ruled out for these reasons. It is just possible that a wide thin slab could be produced by semi-continuous casting by extending the mould into a graphite "hot top", but this again would add to plant costs. It also is the case that wide mills are not common in the copper industry.

The idea of using the backing rolls of the finishing mill for the rough rolling is fessible, but not so desirable from the point of view of productivity. Time would be lost in removing the work rolls, and production would have to be scheduled to allow for a campaign of breaking down rolling followed by one of finishing. Manning levels would remain about the same. There is a possibility for eliminating a foreman and 4 operatives associated with the breaking down mill, but extra work would have to be done on the finishing mill which would involve another shift.

Incidentally, the difference in plant capital costs between casting statically a slab 800mm wide and one 400mm wide would be minimal if a single rolling mill were to be employed for both roughing and finishing. However, if a separate rough rolling mill is decided upon the greater slab width would increase considerably the cost of the roughing mill with adverse effects on the economics of the project.

The single rolling mill idea would have an impact on capital costs for the project, and this has been carried forward to Sections 6.3.2 and 10.11.

6.3 Equipment

6.3.1 Romanian mill

The main items of equipment are specified in the Romanian technical proposal. A copy of the list of equipment is included in Appendix 1.

There appear to be no inaccuracies or inconsistencies in the specifications, but the list is not comprehensive and the quality of the machinery and finished product cannot be checked without first-hand investigation.

The probable capital cost of the plant and equipment is set out below. This is based on a verbal estimate given by the Romanian delegation:

- * plant and equipment: \$20 million
- * transport, installation and commissioning: \$10 million

The estimate for the plant and equipment seems low. A figure nearer \$25 million would be more realistic if the equipment were procured from Western Europe.

The cost of cranes and power supply have been included in the civil engineering costs.

The commissioning cost includes the costs of trial runs and materials, ancillary equipment, and expatriate supervision.

It is assumed that the plant and equipment will be provided with a two year supply of spares, or access to spares free of charge.

It is also assumed that imports of plant and equipment for the project will be free of customs and sales tax under Article 21 of the Industrial Development Act.

6.3.2 Small mill

ļ

The main items of equipment for the small mill option and budget prices are set out in Table 6.1. The prices have been quoted by UK manufacturers and merchants.

TABLE 6.1 - MAJOR ITEMS OF PLANT AND EQUIPMENT FOR THE SMALL MILL

Processing stage	Equipment	Estimated cost (\$'000s)
Metal preparation	Cathode shear Baler for process scrap	170 (1) 50
Melting & casting	l tonne mains frequency furnace with water circuit and transformer 3 moulds	645 (2) 35
First rolling	2 high 450 x 650mm rolls non reversing with electrics	935
Surface milling	Surface miller	210 (3)
Second rolling	 2 high 300-400mm rolls x l.2 metre wide non reversing	2,550
Annealing	 Bell annealing furnace 3 bases (nitrogen/hydrogen atmosphere)	510
Finishing	Slitter for coil and shear for sheet	425
	Roll grinder, circular saws, run out tables and misc. minor equipment 	850
		6,380 (4)

Source: WS Atkins

Notes: (1) This is expensive for a machine cutting a relatively small number of cathodes, and a less costly solution might be researched

- (2) This seems expensive, but is based on an existing installation, and includes erection and commissioning
- (3) This is an inexpensive miller but considered suitable if milling is done at an early stage. Better ones cost around \$680,000
- (4) The cost of setting up a plant using the submerged die process and manufacturing copper/zinc alloys (as described in Section 6.2.2) is estimated as follows:

	\$'000s
Cathode shear and baler	
1.5 tonne channel type induction furnace	128
500mm wide strip casting machine	595
Surface miller	680
1.2m wide rolling mill	2,550
Annealing, pickling and cleaning unit	170
Edge trimming and slitting	340
Ancillaries	850
Total	5,533

It should be possible to reduce the capital cost by about \$1.7 million if suitable <u>reconditioned</u> mills can be found. Cheaper unreconditioned equipment can be found, but it is essential to recognise that refurbishment costs for second hand plant can be expensive and unpredictable. Often the electrics will have disappeared, and the drives and bearings damaged.

Enquiries have revealed that there is a good supply of second hand equipment on the market, with agents specialising in its procurement. Since this reduces the cost of equipment by over 25%, it has been decided to investigate the feasibility of the small mill option both on the basis of using new and second hand equipment.

:: 'he single rolling mill is used, costs can be reduced by about \$ 11ion for new equipment and \$0.75 million for second hand equipment.

Installation and commissioning would cost in the region of \$1.7 million, this including trials, trial materials, ancillary equipment, and expatriate supervision.

Costs may be reduced to an estimated \$1.5 million if the single rolling mill concept is used.

Design, installation and commissioning would be best carried out as a turn-key contract by an engineering concern in this field. The contractor would undertake procurement, and be responsible for refurbishment if necessary.

It is assumed that the contractor will supply spares for two years free of charge.

6.4 <u>Civil Engineering Works</u>

6.4.1 Romanian mill

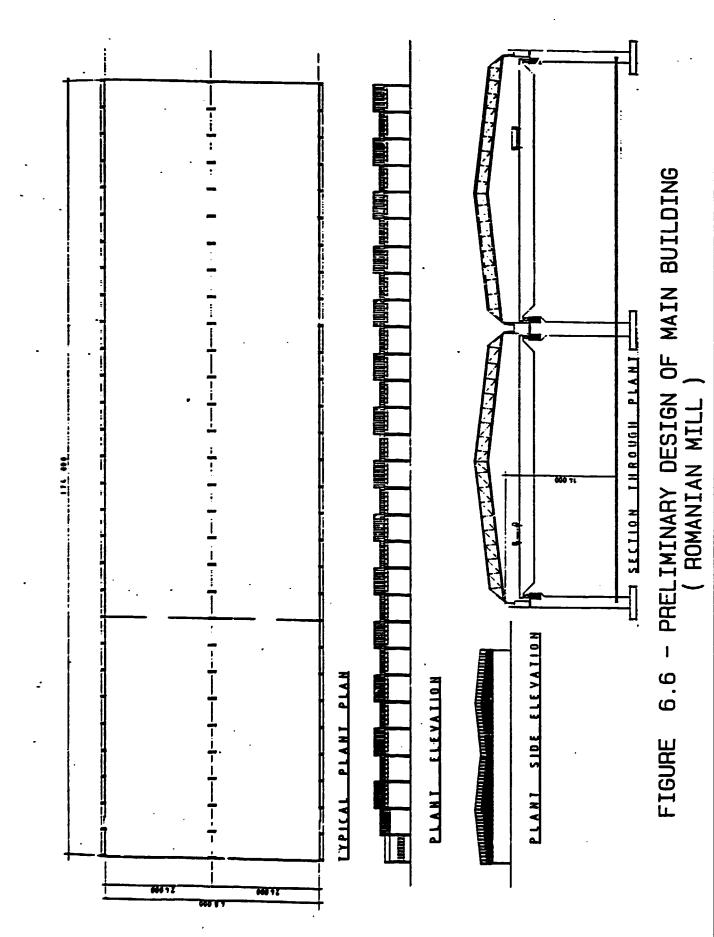
J

Civil engineering costs for the factory buildings and works are estimated in Table 6.2. A preliminary design of the main building is set out in Figure 6.6.

Import requirements for the project are estimated as follows:

- * available locally: sand, cement, stone, bricks, asbestos, roof cheets, design, project management, contracting, and other professional services, labour, land procurement, conveyance fees, council scrutiny fees (approx 45 to 50% of costs)
- * available locally, but in short supply, and imported indirectly: window frames, door frames, glazing, floor tiles, reinforcement steel, paint, electrical transformers (approx 25% of costs)
- * materials to be imported directly: structural steel, gantry cranes, electrical components, mechanical fixtures (approx 25 to 30% of costs).

Import content is estimated at 55%. Imports of materials and manufactures for civil engineering works have been costed inclusive of transport costs and customs and sales tax duties at an effective rate of 37.5%.


It will also be necessary to provide a housing colony. Table 6.3 provides an estimate of the cost. This is based on the assumption that expatriates and all Zambian management will be provided with high cost housing, technicians with medium cost housing, and overhead skilled labour with low cost housing (see Section 8 for manning levels).

The import content for housing is estimated at 25%.

TABLE 6.2 - CIVIL ENGINEERING COSTS - (Romanian Mill)

Item	Estimated cost (K'000s)						
Buildings Main factory: Building fabric Ground floor slab and machine bases Gantry cranes Mechanical services Electrical services Electrical services Change room, kitchen Workshops (including building services) Fuel storage Guard house Sub-total	<pre>8,350m² @ K 3,500/m⁴ 8,350m² @ K 1,500/m⁴ 4 x K 2,500,000 2 No. 2 x 1000 kVA 11/0.4 kV substation including switchgears 2 No. 1 x 1000 kVa 11/0.4 kV substation including switchgears 1 No. 33/11 kV substation including switchgears Lights, power outlets and general electrical works 600m⁴ @ K 5,500/m⁴ 500m⁴ @ K 5,000/m⁴ 50m⁴ @ K 3,500/m⁴</pre>	29,225 12,525 10,000 4,000 2,000 1,400 8,000 600 3,300 2,500 2,700 1,000 175 77,425					
Civil and external works Concrete roadways/hardstanding/office parking Site levelling/landscaping/stormwater drains Fencing Borehole x 2 Sub-total Total cost Contingencies (10%) Preliminary and general (10%)	4,000m ⁴ @ K 250/m ⁴ 4,000m ⁴ @ K 120/m ⁴ 750m ⁴ @ K 500/m ⁴ 2 x K 75,000	1,000 480 375 150 2,005 79,430 7,943 8,737					
Total Ludget estimate		96,110					

Source: Arup (Zambia)

Type of housing	No.	Estimated size (m²)	Estimated cost per m²(K)	Total cost (K'000s)
High cost housing Medium cost housing Low cost housing	24 30 35	80 70 45	2,000 1,800 1,300	3,840 3,780 2,048
Totals	89			9,668

TABLE 6.3 - HOUSING COSTS (Romanian Mill)

Sources: WS Atkins

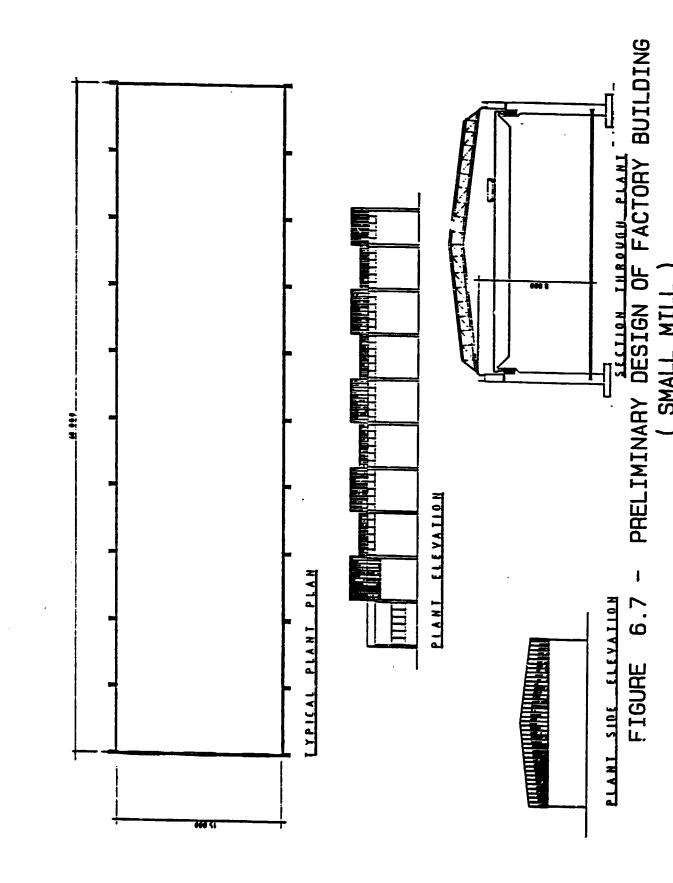
Indeco (for sizes of housing and costs/m²)

6.4.2 Small mill

Civil engineering costs for the factory building and works are estimated in Table 6.4. A preliminary design of the factory is set out in Figure 6.7. The assumptions regarding import content and the customs and sales tax duties are the same as those for the Romanian mill.

Housing costs are set out in Table 6.5. The assumptions regarding which staff are to be assigned housing is the same as that used for the Romanian mill.

TABLE 6.5 - HOUSING COSTS (Small Mill)


Type of housing	No.	Estimated size (m²)	Estimated cost per m ² (K)	Total cost (K'000s)
High cost housing Medium cost housing Low cost housing	14 16 19	80 70 45	2,000 1,800 1,300	2,240 2,016 1,112
Totals	49			5,368

Sources: WS Atkins

Indeco (for sizes of housing and $costs/m^2$)

TABLE 6.4 - CIVIL ENGINEERING COSTS - (Small Mill)

Item	Estimated cost (K'000r)		
Buildings Main factory: Building fabric Ground floor slab and machine bases Gantry cranes Mechanical services Electrical services Electrical services Change room, kitchen Canteen (including building services) Workshop (including building services) Fuel storage	900m ² @ K 3,000/m ² 900m ² @ K 1,000/m ² 1 No. 2 x 1000 kVA 11/0.4 kV substation including switchgears 1 No. 1 x 1000 kVA 11/0.4 kV substation including switchgears Switching station Possible need for upgrading ZESCO's 11 kV line (1 km) Lights, power outlets and general electrical work included in factory 150m ² @ K 5,000/m ²	2,700 900 1,500 1,500 1,500 1,000 1,500 1,000 200 750 750 250	
Sub-total Civil and external works		12,750	
Concrete roadways/hardstanding Site levelling/landscaping Fencing Borehole	1,000m" @ K 250/m" 1,000m" @ K 120/m"	250 120 100 75	
Sub-total		545	
Total cost Contingencies (10%) Preliminary and general (10%)		13,295 1,330 <u>1,462</u>	114
Total budget estimate		16,087	

6.5 Summary of Costs

The investment costs of plant and equipment and civil engineering are summarised in Table 6.6 for the three options under review: the Romanian mill, the small mill with new plant and equipment, and the small will with second hand plant and equipment.

TABLE 6.6 - ESTIMATED COSTS OF PLANT AND EQUIPMENT AND CIVIL ENGINEERING (all costs in \$'000s)

Item	RC	Romanian mil}			mill (new p nd equipment)		Small mill (second hand plant and equipment)			
	Foreign currency	Local currency	Total	Foreign currency	Local currency	Total	Foreign currency	Local currency	Total	
Plant and equipment	20,000	-	20,000	6,380	-	6,380	4,680	-	4,680	
Installation and commissioning	10,000	-	10,000	1,700	-	1,700	1,700	-	1,700	
Factory buildings	5,181	4,239	9,420	852	698	1,550	852	698	1,550	
Works, preliminary and general	715	585	1,300	137	113	250	137	113	250	
Housing	294	882	1,176	163	490	653	163	490	653	
Contingencies	5,119	571	5,690	1,327	130	1,457	1,072	130	1,202	
Total	41,309	6,277	47,586	10,559	1,431	11,990	8,604	1,431	10,035	

Source: WS Atkins

Notes:

7. PLANT ORGANISATION AND OVERHEAD COSTS

Overhead costs are estimated in Table 7.1.

Cost items	Romanian mill	Small mill
Consumables	100,000	20,000
Communications	10,000	5,000
Travel	10,000	5,000
Rates	5,000	1,000
Insurance	1.4% value of plant & equipment & buildings	1.4% value of plant & equipment & buildings
Distribution	10,000	2,000
Depreciation: * Plant & machinery * Buildings	50% year 1 30% thereafter on written down value 15% year 1 5% thereafter on written down value	50% year 1 30% thereafter on written down value 15% year 1 5% thereafter on written down value

TABLE 7.1 - OVERHEAD COSTS (\$/pa)

Sources: WS Atkins

Indeco (for insurance rates and depreciation schedules)

The item for consumables includes materials for maintenance as well as office supplies.

There is no provision for utilities. It is assumed that these costs are allocated fully to the factory. The proportion consumed by offices will be negligible.

Distribution includes only the cost of packaging materials. Since we are working in ex-works prices, the cost of freight is treated as external to the project.

The depreciation schedule is based on information provided by Indeco. Depreciation charges are calculated on a declining balance, rather than a straight line basis.

8. MANPONER

8.1 Romanian Mill

8.1.1 Management

The managerial resources for the Romanian project are specified in Table 8.1, including initial expatriate requirements.

	Zambians (including counterparts)	Expatriates at project outset
Upper management		†
Managing director	x	x
Works manager	x	x
Production manager	x	l x
Accountant/company secretary	x	
Sales/marketing manager	x	X X
Lower management		ł
Stock control/purchasing manager	X	İ x
Transport manager	x	x
Personnel manager	x	Ì
Quality control manager	x	l x
Maintenance manager	x	

TABLE 8.1 - MANAGERIAL RESOURCES (Romanian Mill)

Sources: WS Atkins

Uzinexportimport Technical Proposal

It has been proposed that 30 expatriate Romanians (including technicians) will work on the project during erection and commissioning, with 12 to 15 remaining for initial running and training purposes.

Expatriate labour required during erection and commissioning is treated as part of the commissioning cost. Expatriate labour required during operation is treated as part of the operating costs. The Romanians have also offered to provide training in Romania for Zambians while the plant and equipment is being manufactured. The purpose of this is to have trained Zambians ready to work as counterparts to expatriate managerial staff and as technicians when the plant begins production. The costs associated with training have not been provided by the Romanians, but have been estimated and included in the pre-production costs (see Section 10).

The experience of Zamefa demonstrates that expatriate management will be a feature for many years in a project of this nature. Zamefa still operates with 8 Phelps-Dodge employees in senior management after 17 years of production, and used 48 expatriates during the setting up phase. Several of these expatriates are shadowed by Zambian counterparts, being trained to take their places. This in part reflects the fact that Phelps-Dodge has a stake in the project, but we would expect to follow this practice in the case of both mill options. This results in considerable duplication of duties during the early years of operation, but the gains in efficiency will justify the costs. There will be gradual run-down in the use of expatriates over the lifetime of the project.

8.1.2 Labour

The production manpower requirements for the project (excluding expatriates) are estimated in Table 8.2. These figures are based on an appraisal of the Romanians' technical proposal, which did not contain information on manning levels. The figures are built up by breaking down the production process into activities, and calculating for each activity the necessary shifts and labour requirements per shift.

Activity	No. of shifts	Foremen/ technicians per shift	Total	Operators por shift	Total	Crane drivers por shift	Total	Forklift drivers	Total
hetal preparation and charge make-up: - incoming metal - shearing cathodes - baling returned scrap - charge make-up	3 1 3 2 3	1	3	2 3 2 2	2 9 4 6		1	0.5 0.5	1.5
2 Helting and casting	3	1	3	2 (furnace) 2 (casting)	4	1	3		
3 Sawing rolling slabs	1			3	3	0.5	0.5		
4 First 10 days of month - preheating furnace - hot rolling - milling	3		3	2 6 2	6 18 s 2	 1 hare with furn 0.5	3 aco 0.5		
5 Second 20 days of month: - strip rolling - annealing coils - annealing sheet	3	same crow as for the same crow	3	1	3	r	3		
6 Finishing: - slitting - sheet shearing - packaging and inspection	3 1 1	 foreman shared 	 3 311t' 1	 4 10	12 2 10			0.5	1.5
7 Testing and inspection:	1	 	 1 0r)						
 surface inspection & hardness measurement analysis mechanical testing machining test pieces 				6	6			0.25	0.25
Sub-total			22		92		14		
8 Maintenance: - electrician - fitter - storekeeper - workshop foreman - roll grinding, saw sharpening, repairs	3 3 1 1		3	 6	3 3 1				
Totals			29		105		14	 	6

TABLE 8.2 - PRODUCTION MANPOWER BREAKDOWN (Romanian Mill)

•

.

Sources US Athles

.

.

Combination of Tables 8.1 and 8.2, and the addition of estimates on indirect and expatriate labour requirements, gives Table 8.3. This sets out in full the project manpower requirements, divided by skill levels, origin, and categorised as "direct" (i.e. production labour) or "indirect" (i.e. overhead labour).

	Zambians	Expatriates at project outset	Direct labour	Indirect labour
Upper management	5	4	•	9
Lower management	5	3	-	8
Technicians/foremen: - security officer - foremen - technicians	1 20 9	- 5 2	- 25 11	1 - -
Skilled labour: - crane drivers - secretaries - clerks/typists - operators - forklift drivers Unskilled labour	14 10 25 21 6 84		14 - - 21 6 84	- 10 25 - -
Totals	200	14	161	53

TABLE 8.3 - TOTAL MANPOWER REQUIREMENTS (Romanian Mill)

Source: WS Atkins

It is assumed that Romanian personnel will be needed for each activity for which a foreman is necessary (i.e. 5).

The Zambian manpower requirement of 200 is identical to the Romanian's verbal estimate.

8.1.3 <u>Costs</u>

An estimate of labour costs for the Romanian mill is set out in Table 8.4. The costs are broken down into "direct" and "indirect", and into local and foreign currency.

The costs of Zambian labour are based on figures provided by Indeco. They include allowances, estimated at 50% of basic salary. The unit cost of expatriate salaries has been estimated on the basis of salary levels known to prevail in Eastern Europe, and include allowances for posting in Zambia. The Romanian technical proposal contained no information on the costs of expatriate workers. Under direction from Indeco, it has been assumed that 33% of expatriate salaries are paid in foreign currency.

8.2 Small Mill

8.2.1 Management

The managerial resources for the small mill project are specified in Table 8.5, including initial expatriate requirements. A complication is introduced by the planned move from one shift to two in Year 4.

There is scheduled to be a high degree of expatriate involvement in the early years of the project, with Zambian managers acting initially as counterparts. The duplication of tasks will lower labour productivity during the initial years of the project, but this is considered necessary for the development of competitive levels of efficiency.

Expatriates will have to be recruited on short-term contracts, probably from a European manufacturer rather than the supplier of the plant and equipment, which may come from many sources.

A provision for training has been included in the pre-production expenses (see Section 10).

	Unit Zambi cost Zambi Zambian I labour I							Expati	riates			
Skill category			Zambians Unit expat		 Year:	s 1-2	Year	s 3-4	Years	s 5-9	Year	5 10+
	i (k/pa)	D	I	(\$/pa)	 D	I	D	I I	D	Ι	D	I
Upper management Lower management Technicians/foremen Skilled labour Unskilled labour	100,000 65,000 42,000 18-21,000 12-15,000	- - 29 41 84	5 5 1 35 -	35,000 30,000 25,000 - -	- - 7 - -	4 3 - -	- - 7 -	3 2 - -	- - 7 -	3 2 - -	-	2 1 - -
Total cost local currency (\$'000s)	 -	383.4	188.5	-	117.2	154.1	117.2	110.5	117.2	110.5	-	67.0
Total cost foreign currency (\$'000s)	-	-	-	-	57.8	75.9	57.8	54.5	57.8	54.5	-	33.0

TABLE 8.4 - TOTAL MANPOWER COSTS (Romanian Mill)

Sources: WS Atkins Indeco

Note: D = Direct, I = Indirect

125

	Zambians (inc. counterparts)	Expatriates at project outset
Upper management General manager	×	¥
Works manager	x	x
Accountant Purchasing & sales manager		x
 Lower management Personnel manager	x	

TABLE 8.5 - MANAGERIAL RESOURCES (Small Mill)

Source: WS Atkins

8.2.2 Labour

The production manpower requirements (excluding expatriates) of the project are set out in Table 8.6 for one shift working.

Combination of Tables 8.5 and 8.6, with the addition of estimates of indirect and expatriate labour requirements, gives Table 8.7. This sets out in full the project manpower requirements, divided by skill level and categorised as direct or indirect. It has been assumed that there will be a need for an expatriate for each activity where a foreman is necessary (i.e. 5).

The table also shows requirements for two shift working. There is no change in expatriate manning at two shifts, but there is an addition of one Zambian shift manager, a doubling of direct labour requirements, and an adjustment upwards of about 25% of indirect labour.

8.2.3 Costs

An estimate of labour costs for the small mill option is provided in Table 8.8, broken down into "direct" and "indirect", and into foreign and local currency.

	Activity	No. of shifts	Foremen/ technicians per shift	Total	Operators per shift	Total	Forklift drivers per shift	Total	
11	Metal preparation and charge make-up	1) 1	1	2	2	0.25	0.25	
2	Nelting and casting	1			3	3			
3	Breaking down mill	1	2 1	1	4	4			
4	Surface milling, strip sawing and rough annealing	1			2	2			
5	Annealing	1	0.5	0.5	2	2	0.5	0.5	
6	Finishing mill	2	1	2	4	8			
7	Finishing sheet and strip	1	0.5	0.5	4	4			
8	Packaging and inspection	1	1	1	4	4	0.25	0.25	
9	Services	1	3	3	3	 3 			
 To	tals	-	-	9	-	32	-	1	

TABLE 8.6 - PRODUCTION MANPOWER BREAKDOWN : ONE SHIFT WORKING (Small Mill)

Source: WS Atkins

Note: The finishing mill would normally have one shift, but needs two if a large percentage of sheet is made

127

		One shift w	working		Two shift working						
	Zambians	Expatriates at project outset	Direct labour	Indirect labour	Zambians	Expatriates at project outset	Direct labour	Indirect labour			
Upper management	4	3	-	7	5	3	-	8			
Lower management	1	-	-	1	1	-	-	1			
Technicians/foremen: - foremen - technicians	6	5	11 3	- -	12 6	5	17 6	-			
Skilled labour: - forklift drivers - operators - secretaries - clerks/typists	1 6 4 10) 6 - -	- - 4 10	2 12 5 14		2 12 - -	- - 5 14			
Unskilled labour	26	i -	26	-	52	-	52	-			
Totals	61	8	47	22	109	8	89	28			

TABLE 8.7 - TOTAL MANPOWER REQUIREMENTS (Small Mill)

Source: WS Atkins

Skill category] 	One sulft		Two shifts		Unit cost expatriates (\$/pa)	Expatriates							
	Unit cost category Zambian labour (k/pa)						Years 1-2		Years 3-4		Years 5-9		Years 10+	
		D	1	D	1		D	I	D	T	D	I	D	1
l Upper management Lower management Technicians/foremen Skilled labour Unskilled labour	100,000 65,000 42,000 18-21,000 12-15,000	- 9 7 26	4 1 14 -	- - 18 14 52	5 1 - 19 -	60,000 50,000 40,000 -	- - 5 -	3 - - - -	- - 5 -	2 - - -		1 - - -		1 - - -
Total cost local currency (\$*000s)	-	105.3	89.8	210.6	113.8	-	134.0	120.6	134.0	80.4	53.6	40.2		40.2
 Total cost foreign currency (\$'000s)	-	-	-	-	-	-	66.0	59.4	66.0	39.6	26.4	19.8	-	19.8

TABLE 8.8 - TOTAL MANPOMER COSTS (Small Mill)

......

λ

Sources: WS Atkins Indeco

D = Direct, I = Indirect Note:

The table includes a calculation of labour costs with two shift working, which is scheduled to begin in Year 4 of operation.

The cost of expatriate workers is set higher than in Table 8.4 to reflect the higher salaries in Western Europe and the difficulty of attracting staff from these countries to work in Zambia. Inducement allowances, gratuities and travel perks will have to be added to basic salaries. It has been assumed that 33% of expatriate salaries are payable in foreign currency.

9. IMPLEMENTATION SCHEDULING

9.1 Romanian Mill

The suggested implementation scheduling for the Romanian mill is set out in Figure 9.1. This assumes that a decision to proceed is made on 1st January 1989.

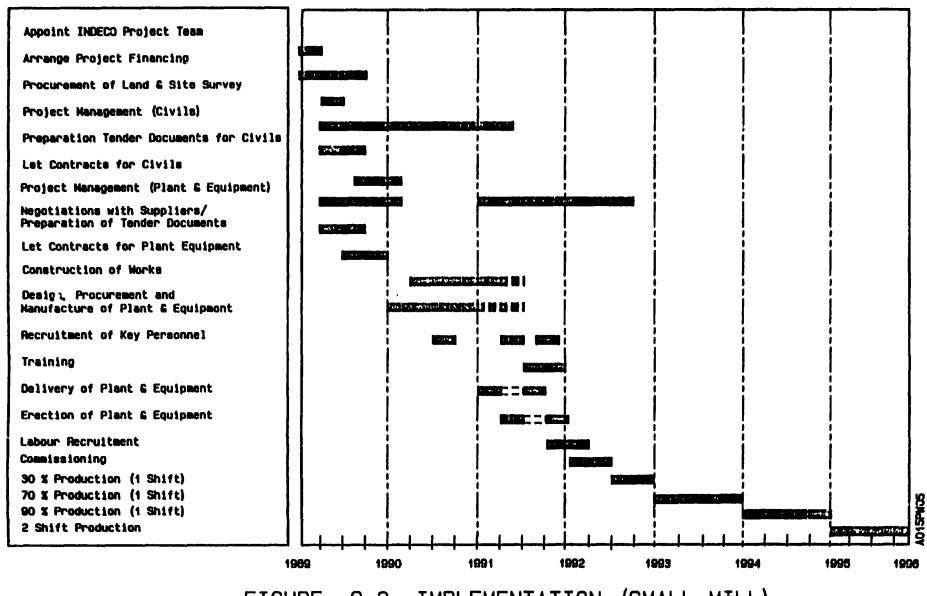
The first year is taken up in establishing an Indeco project team, company formation, arrangement of finance, the appointment of project management consultants for both civils and plant and equipment, procurement of land and site survey, the preparation of tender documents and the allocation of contracts for the civil engineering works and housing colony.

The plant and equipment is ordered on December 31st 1989/1st January 1990, with completion expected after 24 months. This is based on a verbal estimate provided by the Romanian delegation. Construction of the works and housing colony also begins early in 1990, and is, according to Arup (Zambia), expected to take 30 months. It is scheduled to be ready in time for the delivery of plant and equipment, which will take place around June 1992. Erection and installation of plant and equipment is expected to take about 6 months, and commissioning 9 months. Production can begin in the later months of 1993, when an output of 20% is estimated. Production builds up to 50 to 60% in 1994.

Key personnel for the project (5 upper management) are recruited early in 1991 to join the Indeco project team. Further staff are recruited around April 1992, starting with the foremen and lower management who, together with some upper management, attend a 6 months training course in Romania in the second half of 1992. They

Appoint INDECO Project Team Arrange Project Financing 1.1.4.4. Procurement of Land & Site Survey 41.4 Project Wanagement (Civila) Preparation Tender Documents for Civils Let Contracts for Civils And States and Free and Construction of Works 1.1.4 Order of Plant & Equipmont Project Management (Plant & Equipment) Sector Sector Nanufacture of Plant & Equipment The set of the charge state of the care of the set of the set Recruitment of Key Personnel 121 RAGN Training in Romania et i at Delivery of Plant & Equipment Erection of Plant & Equipment Labour Aecruitment States and states in the second Commissioning A & LABOR BOARD 20 % Production AOISPICS Sec. 1. 19 11 1 50-60 \$ Production 1989 1990 1991 1002 1993 1994 1995

FIGURE 9.1 IMPLEMENTATION (ROMANIAN MILL)


return in time for commissioning at the beginning of 1993. Meanwhile, recruitment of other manpower resources continues, ready to achieve a full complement early in 1993.

9.2 Small Mill

The suggested implementation scheduling for the small mill project is set out in Figure 9.2. This also assumes that a decision to proceed is made on 1st January 1989.

The first year activities include the appointment of an Indeco project team, company formation, the arrangement of project finance, and the procurement of land and site survey. Project Management Consultants will also be appointed for civils and for the plant and Tender documents for the civil engineering and housing equipment. project will be drawn up in the first year, and the contracts let up Negotiations with plant and equipment to about February 1990. suppliers will also begin in 1989, leading to the preparation of tender documents and the signing of contracts by the end of 1989. It is expected that the contract would be placed as a turnkey operation with an engineering concern able to offer design, procurement, and manufacturing services, as well as installation and commissioning.

procurement and manufacturing of the plant and equipment Design, Completion is expected after 12 package will begin in early 1990. Construction of the works and housing colony will to 18 months. also begin in early 1990, with completion after 12 to 15 months. Delivery of the plant and equipment will take 3 months, and a further 3 months for erection and installation. Commissioning is anticipated to take 6 to 9 months, and should take place at the latest by 1st January 1992. About 30% of full production from one shift will be achieved in Year 1 (1992), building up to 70% and 90% in Years 2 and 3 (1993 and 1994 respectively). In Year 4 (1995), the plant moves to two shift production.

FIGURE

9.2 IMPLEMENTATION (SMALL MILL)

μ

Key personnel (4 upper management) will be recruited in mid 1990, to join the Indeco project team. The foremen will be recruited in 1991, and, together with the Works Manager, will commence 6 months training overseas. They will return to Zambia is time to participate in the commissioning process. Recruitment of expatriates will take place in the second half of 1991, for arrival in Zambia in time for commissioning the plant and equipment. Recruitment of labour is also scheduled for late 1991 and early 1992.

ĺ

Ì

ī.

10. FINANCIAL EVALUATION

All values shown in the tables following are expressed in US \$.

10.1 Pre-Production Costs

10.1.1 Romanian mill

Pre-production costs for the Romanian mill are estimated in Table 10.1, and total \$ 720,000.

The major item is consultancy fees for project management, site survey, building design, and further economic studies, including a survey of potential customers. There is also a provision for legal expenses.

The item for salaries for key personnel is based on five management level Zambians for two years.

Training costs are based on 22 Zambians (foremen, Works Manager and Production Manager) spending 6 months in Romania. The estimate includes travel and subsistence for the Zambian team at \$ 88,000, and a training fee of \$62,000 based on the salaries of three Romanians plus a 100 % fee.

The cost of preparatory installations has been included in the civil engineering costs. Trials and commissioning costs are included in the commissioning costs quoted by the suppliers, and are found in Table 6.6. Table 10.1 also shows the expected phasing of the pre-production expenses in constant mid 1988 prices, and breaks down the costs into foreign and local currency, using assumptions on the import content for each item.

10.1.2 Small mill

Pre-production expenses are estimated in Table 10.2 for the mill using new plant and equipment, and in Table 10.3 for the mill using second hand plant and equipment. The figures are identical, and total \$505,000.

The salaries of key personnel are based on 4 Zambian managers working for 18 months.

The training costs are based on 7 Zambians (foremen and the Works Manager) spending 6 months at a European rolling mill. The cost includes travel and subsistence for the Zambian team at \$49,000, and training at \$61,000 based on two men's salaries plus a 100 % fee.

Tables 10.2 and 10.3 also show the expected phasing of the pre-production expenses in constant mid 1988 prices, and the breakdown between foreign and local currency.

10.2 Expenditure on Fixed Assets

10.2.1 Romanian mill

The phasing of expenditure on fixed assets for the Romanian mill is set out in Table 10.4, in constant mid 1988 prices. Expenditure is broken down by year, and separated into foreign and local currency. Expenditures total \$47.6 million, including contingencies (10% for buildings and works, and 15% for plant and equipment).

Investment costs are derived from Table 6.6. Import content figures are estimated in Section 6.4.

TABLE 10.1 - PNASING OF PRE-PRODUCTION COSIS (Reearlan Nill)

.

.

.

All Values is 9000 (Constant Prices)

all Values is 7 7005 IConstant Prices	Prices)								
1168	AIOI	Fareign Lacal Conjunci Conjanant	Lecal Coopenent	14	£	i.	143	[66]	i
Clonism Linker fils • Percentage • Ferenge engementlere • Lecal expenditure	59.951 9	÷.	9.40	30.48 42.46 63.70	2 3 3 2 3 3 3 3	29.60 28.60 12.60	19.0 0 14.00 21.00		
LEGAL ENFLAGES • Percentage • Farange aspenditure • Lacal expenditure	2	2	8 -	8.9 8 9 8	26.08 4.08				
SALARTES AF BEY STAFF • Percentage • Farenge repeatiture • Lacal - respenditure	3.2	3	8 .			36, 8 6 9, 86 34, 96	78.00 0.00 84.00		
liailelia • Precedage • Fareign supeediture • Lacci - expenditure	8.6	8	D. CO				100.00 0.00		
Pitoutoi (eu 1 Par Ceal.age 1 Far ceal.age 2 Eac.al a speed (sar e	8 7:	e. e	8 -				80.00 80.00 80.00		
1014, 10124, 114101146 1014, 10124, 114101146				42.00	54.06 106.06	8.8 1.8	141.00	6.90 6.90	0,00 0,00

· 2

.

TABLE 10.2 - PHASING OF PAE-PRONUCIION COSIS (Saal) Hill with New Plant & Euipeentl

ا

•

h

4.

.

:

all Values in 5 '900' (Constant Prices)

•

IICA	101 M	Fureign Lucal	Lee I		£	161	2641	5661	i.
		Conjenent Conjanent	: 						
Constant latter FEES • Proceeduale • Farengan expanditure • Lacal — aspenditure	29.4	•	3	4.4. 5.8.8 8.8	43. 8 43. 8	29. 88 29. 88 19.60	3.00 5.00 5.20		
LEGN EUKINES 1 Parconiage 1 Earaign suppoditure 1 Lacai - suppoditure	3 3	.	<u>.</u>	79.95 15.35	70.00 0.00 0.00	6 6 6 8 8 8			
SALMICS OF DET SIMF I Percentage I Except reportition I Local reportition	73.46	9. 0 .	2		30.06 0.06 27.50	70.00 0.06 52.50			
MAININS 1 Percentage 1 faranga tapandature 2 tarat sapandature	110.00	8 .1	8.0			100.00 110.00			
Potendi l M • Por contage • For capa oppositure • Local capaciture	9.8 8	.	3.			199.00 9.00 29.06			
Talik, function ElycualTunc Talik, Lock, ElfenalTunc				39.00 10.00	45. 80 100, 00	138.00	5.00 7.50	0.00 0.00	e.00

.

•

TAME 10.3 - PHASING OF PAGE-PRODUCTION COSIS (Sault) Will with Second Numd Plant & Eulpennil

. •••

•

•

All Values in \$ "0005 (Constant Prices)

All Values in \$ "000s (Constant Prices)	MICH51		-				Ĩ	1991	1001
ltfa	A IO	Foreign Lucal Component Cumponent	tucal Cuapanant	5	9441	Ē	Ē	Ē	
CONSULTANCY FEES • Parcealage • Faranga suppositione • Local suppositione	29°8	•	3.5	8.8. 8.8 8.8	15.06 15.08	29.88 29.88 29.88	2.8 2.8		
LEGAL EUTENSES • Parcantage • Farenga supenditure • Lacal supenditure	3.3	8	8	8.8 8.8 8.8	× • •				
SALANIS (F)ET SIAF • Porcouloge • Farenga aspeaditure • tacal espenditure	75.00	3.	8.1		30. 8 0.08 23.36	70.00 0.00 52.50			
Imilius • Percentago • Farengo expenditare • Lecal expenditare	110.8		9. 0			100.00 110.00 0.00			
Presediter • Percentage • Fercing espenditure • Lecal espenditure	2 2	e •	8			100.00 9.00 20.00			
total fonction estemotitade total tocal estemotitade				8 .9 9.9 9.0	45. 00 100. 00	136. 80 107.50	5.00	9.9 9.9	9.09 9.00

TALE 10.4 - PURSING OF EXPENDITURE ON FILED ASSESTS (Auduation Relia

.

All Values in 1 Jours (Constant Prices)	it Prices								
8311	1014	Fureign Lacal Conjournet Conjunent	l ec al Cospuerat	Ē	9461	181	2441	141	•••
CIVIL MAR: • Parcealage • Europa espenditure • Lucal expenditure	1300.00	e. 2	÷.	8°.5	40.00 204.00 234.00	40.00 284.00 234.00	5.00 35.75 27.25	8.2 2.2	
MANSINS • Precentage • Faranga aspenditure • tucal aspenditure	11.11	•.75	£.•	338	10.00 29.40 80.21	15.00 132.31 394.94	40.00 117.41 352.84	5.00 14.70 44.10	
Silmaciumas 1 Percentage 1 Larage apprediture 1 Larah apprediture	4. % .IO	9 .35	0. U	10.00 510.11 423.70	46.06 3100.61 2313.13	20.00 10.42 11.11	5.00 259.05 211.95	5.00 259.05 211.95	
M ANI & CONTRACION - Percontaga - Farenga espenditure - Lacal - espenditure	2457.B	3.	8.	19.06 7009.00 9.00	40.00 0000.00 0.00	49.00 9.0	10.00 2000.00 0.00		
lisia.lailan a Cannissianing 19000.00 • Percentage • Ferriga expenditure • Lacui expenditure	1444.6	1.00	8.			8 8 8 8 8 8	33.00 3500.00 0.00	6.00 0.00 0.00	5.00 500.00 0.00
Sub letal Foreign Expenditure Sub leval Local Expenditure				2300.41 482.40	11424.04	1454.53 1478.75	5912.42 594.04	4309,50 285.31	500.00 0.00
Ferriga Caal. (Auril's & Mis) Lecal Caal. (Auril's & Mis)				20.14 40.24	312.46 201.51	143.45 147. 80	41.24 59.48	30, 95 20, 53	e.e 9.8
Fereign Cont. 1Plant & Equip) Local Cont. 1Plant & Equip)				38.8 9.8	1200.00 0.00	1200.00 ù.00	823.00 0.00	909.90 6.90	73. 06 0. 00
total fonction carcuolitane total local carcuolitane				7949.57 536.64	1244.44	18799.94 1826.43	67714 653.45	7240.45 313. D 4	575.04 0.0
Cantingencies (Build's 1 Mrs) Cantingencies (Plan. 4 Equip)	• • •								

.

•

The phasing of expenditure on plant and equipment and installation and commissioning is based on our discussions with the Romanian delegation. Some 10% of the cost of plant and equipment is payable on order in 1989, and 10% on delivery in 1992. The balance is divided equally between 1990 and 1991.

Installation and commissioning charges are incurred in 1992, when the plant and equipment is delivered and erected, and in 1993 when commissioning takes place. A 5% retention is payable in 1994.

The civil works commences in 1990, preceded by a 10% advance in 1989. Payments follow the usual S shaped curve for civil contracts, with the bulk payable in 1990 and 1991, and only 5% due in 1992 on completion. A 5% retention is payable in 1993. Work on the housing complex begins in 1991, preceded by a 10% advance. The project is completed in 1992, by which time 95% will be paid. A 5% retention is due in 1993. These payment schedules are based on figures prepared by Arup (Zambia), which has considerable experience of such projects in Zambia.

10.2.2 Small mill

The phasing of expenditure on fixed assets is set out in Table 10.5 for the small mill with new plant and equipment and Table 10.6 for the small mill with second hand plant and equipment. Table 10.6 shows a lower figure for expenditure on plant and equipment, but all other figures are identical to Table 10.5. Values are expressed in constant mid 1988 prices. Expenditures total \$12.0 million for the mill with new plant and equipment, and \$10.0 million for the mill with second hand plant and equipment.

Investment costs are derived from Table 6.6. Import content figures are estimated in Section 6.4.

The payment schedules for plant and equipment and installation and commissioning are based on information provided by plant suppliers. The order for plant and equipment is placed in 1989, and a 10%

	1					6. 60 6. 00 6. 00	e.e 0.0	0°.00	0.00 0.00		
	141	• • • • • •		9.9 9.0 9.0		5 5 5 8 8 9 8 8	8 5.00 0.00	0.0 0.8	12.75 0.00	97.75 8.00	
	2441	5. 9 5. 4 5. 5		5.00 12.45 31.88		13.00 235.00 0.00	304.50 40.50	1.1 2.5	38.25 0.00	07.70E	
	141	35.00 46.13 39.36	8.5 2 2 2 2	50.00 121.25 381.75	30.00 0.1914.00 0.00	E0. 00 1340. 00 0. 06	315.05	52. JA 53. 51	41.14 0.00	4340.74 SBN.54	
	66	822	40.00 77.95 293.85	35.05 291.30 244.13	40.00 3828.00 0.00		4271.0 6 594.23	4.51 51.12	574.20 0.00	67.E149 63.E24	
	1041	16.00 11.75 11.25	10.00 16.33 48.78	10.00 05.25 49.75	10.00 438.00 0.00		751.33 121. 10	11.53 13.66	95. 20 0. 00	040.34 142.97	
	Local coponent	• 13	e . 75	9.45	8	3					
	Fareign Lacal Component Component	8.4	• 3	0.55	3 .	8.1					
t Prices)	TOIM	29°8	1 51. 1	1550.00	4384.00	1744. BU			_		33
All Values in 9 '900' for started	ITEN	CIVIL WOMES • Percentape • Fercing especialure • Lecal especialure	MBNSING • Purcentage • Farenga expenditure • Lacal expenditure	Stantiunes • Paccalape • Faccing aspeaditure • Lec.d • aspeaditure	Prant C EdulmEnt • Preceduade • Faretage expenditore • Lacet expeditore	Insit' Allán & Counissionius • Percentage • Except especifier • • Excel especifier •	Sua latal Farenga Espenditure Sua latal Lucal - Espenditure	Foreign Cunt. (Build's & Mis) Local Cunt. (Build's & Mis)	Fareign Cool. (Plant & Equip) Local Cool. (Plant & Equip)	101% FONEIGN EXPENDITURE 1014, LOCAL EXPENDITURE	Contingencies (Build's & Wis) Contingencies (Plant & Equip)

:

TAME 10.5 - PMS126 OF EXPENDITURE ON FIZED ASSESTS (Saal) Mill with now Plant & Equipoont)

.

.

.

TABLE 10.6 - PHASING OF EXPENDITURE ON FILED ASSESTS ISHALL MILL WITH Second Hand Plant & Equipment)

.

All Values in 8 '000s (Constant Prices)

ITEN	1014	Foreiga Cooponent	Local Cooponent	1987	1990	1991	1992	1973	1994
CIVIL UNIOS	250.00	0.55	0.45						
• Furcentage				18.00	50.00	35,00	5.00	0.00	
• Foreign expenditure				13.75	48,75	40.13	6.80	0,00	
+ Local expenditure				11.25	54.25	39, 38	5.43	0.00	
NDVS I NG	453.00	4.25	6.75						
+ Percentage				18.60	40.00	30.00			
+ Foreign expenditure		•		16.33	17,15	48, 78			
e Lucal expenditure				10.90	293,85	146.93			
S FIRME TWIE S	1550.00	0.55	0.45						
• Percentage				10.00	35.00	30,00	5.00	0,00	
4 Eureign aspenditure				85.25	248.38	426.25	42.43	6.60	
• Lacal uspenditure				69.75	244, 13	348.75	34.88	0.00	
FLANT & COULTMENT	4480.00	1.00	0.00						
4 Percentage				10.00	60.00	30.00			
+ Fureign aspenditura				448.00	2808.00	1404.00			
• Lucal rependiture				0.00	0,60	¢,00			
ENSTALLATION & CONVISSIONING	1700.00	1.00	0.00						
4 turcentage						80.80	15.00	5.00	0.00
* Foreign expenditure						1340.00	255,00	85,00	0,00
• Local exponditure						0.00	0.00	0.60	0.00
Sub Total Foreign Expenditure				503,33	3273.00	3287.35	304,50	85,60	0.00
Sub Intal Local Expenditure				129.98	594.23	535.05	40,50	0,00	0.00
Foreign Cont. (Build's & Wis)				11.53	46.51	52.34	4.95	0.00	0.00
tacal Cost, (Build's & Mis)				13,00	59.42	53.51	4.05	8,00	0.00
Foreign Cont. (Plant & Equip)				76,20	421.20	414.60	38.25	12.75	0.00
Local Cost. (Plant & Equip)				0,00	0,00	0.00	0,00	0,00	0,00
101AL FOREIGN EXPENDITURE				645.06	3740, 78	3754.29	347,70	97,75	0.00
IOTAL LOCAL EXPENDITURE				142.97	453.45	588,54	44.55	8,00	0,00
Controppeness (Build's & USS)	0.10								

Contragencies (Bortd's & USS) 0.10

Contingencius (Plant & Equip) 0.15

.

• .

.

downpayment is required. The plant is delivered in 1991. It is estimated that 60% will be payable in 1990 and 30% in 1991. Installation and commissioning takes place in 1991 and 1992, the bulk of the payments falling due in 1991. A 5% retention has been scheduled for 1993, one year after commissioning.

Civil works and construction of the housing complex commences early in 1990. Advance payments of 16% fall due in 1989. Work finishes in late 1991 in the case of structures and works, and mid 1991 in the case of housing. Retentions of 5% fall due in 1992 in the case of structures and civil works. The schedule of payments shows that 60% is paid by 1990 in the case of works and 45% in the case of structures. This reflects the phasing of construction work on the factory site. These repayment schedules are based on information provided by Arup (Zambia).

10.3 Operating Costs

Tables 10.7, 10.8 and 10.9 show the estimated operating costs for the Romanian mill and the two small mill options.

As with the sales revenues (Tables 3.16 and 3.17), the operating costs are calculated for a project life of 15 years. The Romanian mill has an operating life from 1993 to 2007, while the small mill is scheduled to operate from 1992 to 2006.

The tables bring together the information on the costs of raw materials, auxiliary materials, spares and maintenance and utilities (Section 4), overheads (Table 7.1), and manpower (Tables 8.4 and 8.8).

The figures are expressed in constant mid 1988 prices, and broken down into foreign and local currency. A contingency of 5% is added to total operating costs. TAN & 10.7 - OPENATING ENSIS Cheeselse Mill)

All Values in 1 "000 (Caustant Prices)

(ich Aile 1.22	fuery Carpend	Ē	H	5441	141	111	841	4643	ž	Ē	3003	Ĩ	3	Sec.	Ĩ)
Preduction Itemasi	23		5500.0	.0000	8104.4	1040.0	9.0201	0'0016	1154.4	1200.0	9239.0	1340.0	1354.0	110.0	0.021	1541.0
hailtileis ann juruis Caper Jus Just	• • • <u>•</u>	6.4 9.6	11619.3 0.0	1.090.7 0.0 77.3		1.05 0.0 0.0	5.0 2.1	11224.7 0.0 0.0	11334.3 4.4 10.4		1.1881 6.6 1.3	19447.2 0.0 01.7	19752.8 6.6 02.2	4.5 4.6 4.6	1.1941.1 8.6 81.6	70041.7 4.4 01.5
t Muthum ar Lffs 1 ML:MC Muterills	• • • • • •	240.0 201.0 105.0	440.0 1135.5 1125.5	1024.0 2794.0 300.0	1040.4 2327.9 311.5	1984.0 2319.0 315.0	1044.0 2347.1 316.0	1012.0 7335.1 218.5	1011.0 2306.2 376.3	1104.0 2401.2 372.0	2111.0	1116.0 2071.3 2731.5	1122.0 2400.4 327.3	1178.0 2151.4 277.0	714.4 214.5	1140.0 2079.5 2027.5
i fireficiety i fireficiety • per lame Muter	• • • • • •	4.9 4.5 4.5	7.1	1.6.	11.5 11.5 11.5	191.5 191.5	110.4	127.9	10.4	10.4	10.4 24.9	1.6.1	10.1 24.5 8.5	22.4	10.4	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Zab Iola,			1114.5	22505.7	22041.0	23094.3	1.12262	1)151.4	23479.3	23444.9	1.1646	23642.2	23969.9	24117.5	21245.2	24572.0
BILEEL Nuuronea Las al Espatriate	6.9 13.1	381.4	M1.4 115.0	303.4 175.0	303.4 1/3.0	383.4	383.4	303.4	303.4	305.4	125.4	M1.4 0.0	1.181.4	385.4	361. A 9. B	301.4 9.9
MIGI OF		2	2.6.4	531.1	5.05	530.4	521.1	354.4	530.4	556.4	538.4	383,4	11.14	385.4	101.4	341.4
MINICHMEC & SPARES Flant & Equiponal Duildiage	199. 0 15. 0	•••	0.0	176.9	1015.0	1015.0 176.9	126.0	1035.0 124.9	1035.0 174.9	176.9	176.9	1035.0	174.9	1015.0	(015.0 176.9	174.6
Sub Total		1.1	174.9	1311.9	1211.9	1311.9	111.4	111.1	1211.9	1211.9	1211.9	1211.9	1211.9	1211.9	1211.9	1211.5
Aminisinalive Ontonean Casis Rispone • Local	• · · · · · · · · · · · · · · · · · · ·	10.5	1 0 5	T. S	1M.5	14.5	11.5	IM.5	106.5			E.	N.S.	in.s	S.	M.S
• Lapatriaia Aatos	•••	9.9. 2.9		5.0	192.0 2.0	145.0	145.0 5.0	5.0 5.0	165.6 5.0	165.0	151.0 5.0	Ē.	5.0 	• • 9 -		
Consumables Insurance at 1.42	• • •	10.0 11.5	100.0 110.0	100.0 1414.3	100.0	10.0	100.0	1.41	100.0	10.01						10.6
Coronancelians, Iravel	•••	2	2	ż	34.0	2.	20.0	2	2	70.0	3.6	z	2.	2	2	2
sub Iola.		11.0	111.0	112.0	1125.0	112.0	112.0	112.0	1125.0	1171.0	1175.0	1040.0		1046.4		i
SALES & DISIRIDUITON COSTS	••	10.0	10.4	10,0	10.0	10.0	9.9	10.0	19.0	10.0	9.9	9.9	. .	10.0	9.9	19.0
coministication St al sub lotated		183.7	115.4	1213.5	1226.2	1239.0	1245.4	131.7	1254.1	1244.5	1270.9	1265.3	121.7	1274.4	1241.4	1296.0
total teranting casts Fortupe Currancy Local Turrancy		CM.0 443.4 5735.4	1997.5 240.4 250.4	26741.4 1744.3 29930.1	4.1622.5 1.70.4	27246.4 1774.8 25445.8	2:374.4 1716.4 2:597.7	27340.4 1.291.1 25729.4	27642.7 1781.3 25861.5	7/7/6.7 1705.3 25993.4	0.01915. 1.205.4 24125.3	1791.5 1704.2 24000.4	27924.0 1764.1 26220.5	70044.9 1701.1 24353.5	20191.9 1710.5 24404.4	20120.9 1717.7 26414.5

146

۰.

TABLE 10.0 - DPERATING COSIS (Sault Will with New Plant & Equipsent?

••

the rest of the reast formation for the second

Production (tennes) Asticitus and Induis Conner		ĩ	[66]													2004
ALIGIAS AND INTUIS Conner	8	273.0	375.0	475.4	1173.4	1.154.1	1191.5	[.75]	1264.2	1304.2	1101.3	1303.4	1123.1	1467.7	19M. 0	196.0
						• • • •		1 11%	4 TUTA	1 1776		7 7686	1 11#		1 1702	1 1141
line.			2.5	24.1		1.25	1.1			- · · · ·	52.3		22.4	57.1		2
Presider Capter	100.0	2.3	*	•		13.1	12.4	12.0	13.2	13.4		E	1	15.3	13.4	15.4
ius.							•					•				
· Melbane ar IM	•	2	•	•	0 .0	•		•		•						•
	•	<u>}</u>		2.92	Ē											
Nucleon 4016 An archeora	- 74	2		6.63		••••				47. 4	A**A		1.11		C'7C	6.76
timesteric) D timesterice		0.11	0.0	41.7	11.7	0.7	11.7	(.11	1.7	11.7	1.1	11.7	11.7	11.7	0.7	0.7
t per Luna		2		12.4	21.0	21.6	27.2	22.4	23.4	24.1	1	25.0	7.4	27.4		21.0
Haler	¢. •		. .5	7	3		1.2		2	2	1.4	-	:	1.5	1.5	:-
20 101k		501.5	1345.9	1447.0	2750.4	2031.9	2915.4	3001.0	3096.4	3182.0	3274.3	1173.5	\$01.2	3574.2	3453.4	3453.4
pisti muranta	0.0	[.20]	105.3	105.3	210.4	210.4	210.4	210.4	210.4	210.4	210.4	210.4	210.4	210.4	210.4	210.4
Espatriate	11.1	706.0	2M.4	200.0	200.0	8	80.0	69.0	80.0	80.0	-		•	-	•	•
SAD TOTAL		365.3	305.3	305.3	410.4	1.fr	290.4	270.4	240.4	20.4	210.4	210.4	210.4	210.4	210.4	210.4
MATATICAMACE & SPANES																
tlast & Equipment	100.0		•	270.0	271.1	2.11.1	270.0	278.0	274.0	270.0	20.1	278.0	274.1	274.0	271.1	270.0
	A.46															
sun hola		ĩ	ĩ	29.5	ž	5.9	S.I.S.	2.8	5. M	S.S	2.1	N.N.		2.8	Ĩ	I
AMINISTANTINE DVEHMEAN COSIS																
Response		1	2								•					
t (medi b finaltizba																
tates	•	-	-	-	•		- 0	•	-		-	-	-	9.1	-	-
Consumables	4.0	•	20.0		20.0	9.92	20.0	3.6	20.0	20,0	24.0	29.0	20.0	19.0	20.0	20.0
lasurance at 1.42	.	14.2	12.2	154.2	154.2	134.2	154.2	154.2	134.2	154.2	124.2	154.2	154.2	115.2	121.2	154.2
Cummunistiens, Iravel	•••	•.•	9.9	9.0	•.•	• •	10.0	•••	10.4	16.0		•••	9.9	0.01		•••
Se nik		13.0	13).0		9.15	911 Q	241.0	21.5	241.0	341.0	341.0	31.0	341.0	341.0	341.0	21.0
suce a distribution cosis	•••	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Continuency: 32 of each totals)		H .4	103.4	114.5	1.41	174.2	170.4	182.7	1.71	191.7	192.4	197.2	202.2	207.4	211.3	211.3
total preakting costs		1111	2203.3	274.3	1071.0	1.444	1034.0	1144.5	1239.0	133.0	139.7	4152.4	4357.4	1445.7	1744.9	1714.9
Ferongen Eurrency Lecial Eurrency		1240.5	196.9 2012.4	331.7		1502.1	427.4 3420.4	2.11.2	+ .0.7 1408.4	112.4	141.5 311.5	400.3 4041.4	110.1	12.0	+11.4 1331.5	11.1

.

147

TABLE 10.9 - OPERATING COSTS (Seal) Mill with Second Mand Plant & Equiperal)

•

ļ

Press and Des . All Value

All Values in 1 "00% (Constant Prices)																
Each Rate 0.22	far olgn Cosponent	2441	5441	Ē	5461	Ĩ	1	Ē		2000	1402	2002	2003	2004	SW2	Ŧ.
Production (lonars)	8	225.0	525.0	475.0	1123.0	1154.0	1193.5	1279.3	1244.2	1304.2	1343.3	1383.4	11271	1447.9	13M.A	1506.0
MATERIALS AND LUTUIS		1														
Capper	•		1072.3		2.1422	2347.2	2131.2	11152		2444.3	2141.2	2826.4	2411.5	/ 1 442		
fint. Presider Creat	100.					1.5	2	12.	1.2	1.1	1.16			1.5		
luter .			•													
1 Mulhane at 176	0.0	••	•••	•	•	0.0	0.0	0.0	• •	•	•••	•••	0.0	•••	••	••
211/21	•	<u>,</u>	137.0	174.2	291.4	302.4	211.5	120.4	130.5	36.4	326.4	1.141	1/2.4		31.5	M.5
Raturiais Finetricitu				23.6		40.4		13.0	•••	1.5	•				C*2C	57.5
. trad charge	0.0	11.7	1.1	11.7	41.7	41.7	1.1	1.7	41.7	41.7	41.7	1.7	1.1	4.7	11.7	41.7
· prr (man	•••	7	-	12.4	21.0	21.4	22.2	22.4	23.4	24.3	3.0	25.0	24.4	27.4	2.6	30.0
llater	•.•	0.2	0.5	2	Ξ	::	?	1.3	-	2	•-	-	:-	:		1.5
sta total		343.5	1305.9	142.0	2750.4	201.9	713.4	1001.0	3090.4	3182.6	5274.3	1.1.1	3473.2	3574.2	3453.4	3455.4
DIRECT RANKOWER		1														
l acal Espain naite	31.3		200.0 200.0	200.0	200.0	210.4 0.0	210.4 80.0	210.6 10.0	4.0 90.00	210.4 09,0	7.0.7 9.9	4.0 •.0	210.4			
		105.1	1.65.1	105. 3	410.4	290.4	290.4	246.4	290.4	296.4	210.4	210.4	210.4	210.4	210.4	216.4
NALUTENNICE & SPARES Plant & Component	100.0	0.0	•	220.1	220.1	220.1	220.1	220.1	220.1	220.1	220.1	220.1	220.1	220.1	220.1	220.1
Bulcions	53.0	24.7	24.7	2	2.5	29.7	24.7	24.7	1.1	24.7	2.5	24.7	29.7	7.7	2.7	24.7
inter est		Ê	2.1	249.0	249.8	20.0	249.0	211.0	20.1	211.0	211.1	20.1	24.0	31.1	211.1	211.1
AMINISIANTIVE OVEREAD COSTS																
Hempword • Lacal	¢.0	9. U	8.8 8	9.5	113.0	113.1	113.4	113.0	113.0	113.1	113.1	113.0	111.0	113.1	113.0	113.1
a Espatriate	11.1			120.0	2.0	9.9	60.0	6.9 1	9	6 0.0	3	6.0	9	3	1	-
naken Conseeables	. e . e	- 2	- 2	20.0	2	29.9 29.9	2	20.0	9.9 9.9	- <u>2</u>	- 2	- 2	20. e	- 2	- 2	
lasurance at 1.42		1.1.	1.11	120.9	120.9	120.9	124.9	128.1	120.4	120.9	128.9	120.1	120.9	120.9	171.1	120.4
Consentations, travel	0.0	10.0	10.0	10. 0	10. 0	10.0	10.0	10.0	10.0	10.0	10.0	•.e	10.0	9.0	ē.	10.0
SAB TOTA		3	13.1	11.7	38.7	133.1	11.1	1.11	111.7	313.7	111.1	1.11	31.1	1.11	<u>).</u>	Ĩ
swes a bisterbuilten cosis	0.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.6	2.0	2.0	2.0	2.0
Continueructi St at sub tatals		47.5	102.0	117.1	111.1	172.8	177.0	101.3	105.7	196.3	191.0	195.9	200.9	204.6	209.9	249.9
leta, britaline cosis burcipa Gurtancy Lacid Gurzancy		1.11.1	190, 9 190, 9	2710.9 405.7 2345.2	1011.1 124.0	1000.0 365.0 7.15.0	1.446 1.446 1.2046	4059.2 348.2	1152.4	4240.5 371.5 3872.6	1763.4 315.4 216.6	4345.3 347.2 4010.4	4476.2 349.6 4121.2	130.1 130.1	4694.5 352.3	4697.5 151.3

:

148

Tables 10.8 and 10.9 show differences only in the costs of spares and maintenance and insurance (and hence, contingencies). These stem from differences in the value of plant and equipment.

The breakdown between variable and fixed costs is shown in the break-even analysis (Section 10.10).

10.4 Working Capital

Working capital estimates are set out in Tables 10.10, 10.11 and 10.12 for the three options. The figures are presented in constant mid 1988 prices.

Net working capital is defined as accounts receivable plus prepayments, inventory and cash in hand, less accounts payable.

The assumptions regarding stocks are set out in Section 4. Work in progress for the Romanian mill is set at a relatively high 3 weeks because of the interrupted production process which necessitates an accumulation of stocks for the first 10 days of every month (see Section 6.2.1). Work in progress for the small mill is estimated at 1 week. Stocks of finished products are set at 2 weeks for both the small and Romanian mill.

The assumptions used for accounts receivable, prepayments, cash in hand and accounts payable are shown on the tables. These are consistent between the various options.

Net working capital and changes in working capital are broken down between local and foreign currency. These figures are created by multiplying the various working capital items by their respective "average foreign component". These components are calculated from Tables 10.7 to 10.9 (operating costs) and Tables 3.16 and 3.17 (sales revenues). TARLE 10.10 - MORTING CAPITAL Thosanton Mills

• .

.

Summart land, of Newtones and Officialing Cosis

	freige Fuerge Cespecal	Ĩ	i.	Ē	1	1441	Ē	5441	344	1002	Ĩ	Ĩ	2041	2002	301	1992
MADMETIAN EASIS BINGET EASIS Sales	339	10191.0 1930.0	1.01421	26791.4	24972.5	27249.4 24109.9	27574.4		27642.7	27774.7 24646.1	27914.0 1.0012 2.00012	20192.4	1.1411	20040.9 24946.5	20191.9	7374.9
FOREIGN MIERERS	38:		1 1 2	199				2.2		22.4	23. 23.	24.5		141.0		1405.0
		1.4.1	1200.4	0.92765	11.7	24464.0	711.7 24415.2		111.4	911.9 25000.9	711.1 25140.2	1.11	671.9 23390.7	171.1 25521.1	1 15952	25701.4
unarias capita.																
ACCOUNTS MEETVAME (Sales + 2 monta)	6.12	139.1	846.3	1344.5	1342.2	1379.9	1300.7	4.7961	1104.5	1415.3	1424.2	1433.0	141.7	1456.7	1459.4	140.4
MCPATHENIS (Foreign Natorials 1 unoi)		5.9	1.1	19.1	30.4	10.5	34.5	30.6	30.6	36.4	34.7	34.7	30.7	M.N	30.8	19. 1
HAVE KI GRY																
Capper (1 work) Just	33	121.4	223.4	157.5	341.4	345.4	1.14	1.01	1.11	171.0	375.0	117.0	1.11	301.9	11.0	287.0
Photober Copper 14 contas)	1.00	11.2	24.2	N .)	39.1	39.5	39.8		1 9.2	40.4	46.4	40°	1.1	11.3	11.5	1.1
e deltare er (M. 11 mee))	0. U	4.4		1.W	20.5	20.0	20.4	21.4	1.12	2772	21.3	21.5	11.4	1.10	21.0	
• 12/12 (§ use))	9.0	15.1		4.2	ŧ.,	\$2.2	45.4	45.7	9.4	2.3	-	4.7	-	0.7		1.1
Raterials (] senths!	94.9	24.3		17.0	1.1	X8.8	79.2	4.6	1.05	80.5	Ro. 4	94	0.10	02.3	02.7	1.20
Plant & Equipment Spires!) works!	8:	•			291.8	24.0		28.0	20.1	230.0	21.9	2 .	230.9	24.0	24.1	2
Consectings apprending control Consectings () control		2			25.0				25.6				22°		Êx	= x
		:13.7		103.4	1490.9	1504.3	1514.1	1521.0	1529.5	1537.1	1545.0	1342.1	1549.4	1557.4	1545.1	1.1.1
Finished Preducts (? works of pred costs) Sub folia: (larentury)		111.0	1427.0	1.0201 1.0LEE	1037.4	1047.7 3402.4	1652.9 3+18.4	1650.0	1043.2	1040.3 344.2	1073.5 3482.1	1049.0	1074. I 3491. 7	1079.3	1001.4	1991.1 1541.1
East In must 12% of prod costs)	9.0	241.6	111.0	1.42	5.912	544.0	5.02	536.2	\$32.9	533.5	530.2	335.9	\$30.5	\$61.7	545.9	544.4
ACCOUNTS PAYARA E Electrucity à Maler (1 annih) Labour Evels (2 m nis)	8.°	13.1	1.11	21.4	71.5	71.7	21.7	21.1	21.8	21.4	23.0	23.0	23.1	2.2 2.2	77.7	2.2
Wher Linsts (1 meet)	3	Ĩ	ж.,	3	43. 0	- . •	11.1	1/3.9	11.1	•	te).5	497.0		19.1	61.5	¥7.

150

565.4 1954.0 3107.5

5013.4 5034.5 1936.0 1946.4 3076.0 3092.1

4480.7 1477.1 2641.5

4963.7 1917.9 2046.2

1001.0 1170.7 1151.7 1001.2 1070.9 1903.5 2015.6 2020.7 2044.2

4655.0 1076.0 7465.0

1830.0 1840.4 7949.7

1386.2 1841.1 2939.0

1796.1 1121.9 7986.4

1.00.4 2741.9 550.7 774.8 1079.7 1799.0 2.4

11

7.4 5.5

;;;

:: :: :

.....

7.4 1.4 15.3

• • • • • • • •

1500.4 1101.5 1745.4 550.7 424.2 047.1 1029.7 740.4 1110.4

Concist in which is Curlin. • Income currency • Incal currency

MET MONING CAPITAL + fureign currency + lecal currency TARE 30.11 - WORKING CAPITAL ISaai) Mill with New Plant & Equipsent)

_.

-

.

•

Summar late of Revenues and Orthalling COSIS All Values in P. 1900s (Constant Prices)

		2 41	141	i.	SWI	1	111	1	Ē	308	Ŧ	SM2	Ĩ	2001	Ę	Ţ.
Freevel I fan COSIS		1114.4	2201.3	2.14.3	4071.8	3940.1	4024.0	4144.5	4739.0	133.0	134.7	1132.4	1557.4	145.7	1746.9	4744.
BIALCI COSIS GALEE	2.3	1.14	1722.1	2394.1	2.036	3602.5	1.012	1/80.4	30%1.2	3970.2	1.1142	400). 4	4192.0	0309.0		Į
ants Emélica mátéra e																
GIECTRICITY & WIER	8.0			1		5. N	1					-	-	19.4	71.2	
LANDAR COSIS	0.12	3/3.1	573.4	515.1	111.1	1.11	1.14	1111	1.11	1.11	30.1	24.1	104.4	1.100	1.11	Ā
build 110 COSISion olec, anter , habour)	•	1.10	1519.0	1997.3	3001.3	3077.5	1(1).3	1.1626	3342.5	3434.2	3370.0	3428.2	3736.5	3434.0	3915.3	3915.
uto ing carila.											*			*		
ACCOMIS RECEIVALE (Sales + 2 mets)	0.47	# . #	13.3	122.7	201.5	210.7	217.0	223.5	230.2	237.1	201.2	231.4	1.12	344.4	112.1	272.7
MEPANKUIS iferenge Aulerials I week)	8.1	0.0		4.4	•.4	7.0	. .	2.0	. .	1.1	1.1	1.1	1.1	1.2	1.1	7.3
taví a i bir r																
Capper (1 acol)	0.0	•	3.6	24.5	4.2	15.5	11.9	10 .3	40.7	51.2	52.1	51.1	54.0	57.7		Ż
line (Launis)	8:	3:	23	~ ;	-	•	-	-	3	<u>;</u>	3	-	3	3:	3	3
Photopher Copper 16 conths! Excer	8	~	2.7			•	4.2	j	4.4	•	•					2
· Multime or LMS	9. e	•.•	•••	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	•.•	0.0	0. 0	0.0	ē
4 R2/R2 (1 weet)	9.6	Ξ	2.6	1.1	5.4	5.0	4.0	4.2	• ••	6.5	1.1	13	7.7	1.1	7.5	2
Ruterials (] emilial	8.0	2	4.4		-	1.0	10.4	10.0		=:	1.1	13.1	12.5	12.0	13.1	i
Plant & Equipoont Sparrs (1 ounths)	3.	•	-	H .7	1 1.7	¥.,	£.7	1.7	1 .7	19.7	6.7	1.7	5.5	£.7	1.1	5
buildings Sparts (3 aunths)	3					~	23		2	2		::		-	2	-
terrester ti sector but to frances () and al drad) factor					• -											
Finished Products 12 weeks of prod costs!			3	1.01	1.1	12.4	154.0	139.5	1.11		1.5.1	12.13				3
Sub 101M. (Inventury)		10.4	142.4	1.11	378.4	375.3	302.5	500.9	317.4	405.5	101 .7	117.1	173.7	434.4	H1.2	Ŧ
(stal in kits ()) of prad control	. .10	24.9	1.1	54.0	91.4	71.4		82.9	04.1	N.7	87.0		91.2	43.5	94.9	1.1
ACCOMIS PATAKE																
Electricity & Nator (1 contb) 1 Amer Carte (3 model)	8 :		;;	-		* •	- • •	v .	•		~ •			* •		*
Ditar Costs (work)	1.0	3	2.2	1.1	5.1	2.12	3	42.5	1.H	1.1			1.1	12	2	2
RE MORTING CAPITAL		, s	2.55	• • •	1.18	5.92	\$01.5	5.01	11.1	1.11	131.0	14.5	l.et	201.5	720.1	726.
t lereign caupanent		7.4			4.112	220.9	221.9	23.	112	237.5	1.15	24.2		222	152	2
· 1×11 (advant				1.62			24.6			107.4			4.84		Ì	ŝ
COMMERS IN SOME ING CAPITOL		136.1	117.4	134.4		::	13.4		Ë	3	3	13.1	1.1	[1,]	12.4	-
				2. X			3	3		3			3			3

151

.

·.

TARE 10.12 - WMXING CAPITAL (Saul) Will with Becand Mund Flant & Equipment)

·

.

SummAN TAME OF REVENUES AND OPERATING COSTS All Values in F . Gods (Constant Prices)

Medicing (161) (161	Anu ago Far o gan Gargourant	141 941	8861 866 1	2000	1902	2002	2003	2004	E	386
CERS Contract Number Numb	1 2174.6 2710.9 3984.4	_	_	_	4263.4	1345.3	1170.2	4578.3	1159.5	4159.5
Interfact Lot Cold	1122.9 2433.3 561.5	_	-	_	1121.5	1022.1	1.2.2	(230.4	4364.4	111.4
Item Number	2481.6 3190.9 3310.2 3				120.2	1240.7	1.979	611A.0	7940.4	1.0M0
CERTS Constrained Constrained <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1.1.1</td><td>10.4</td><td></td><td></td></th<>							1.1.1	10.4		
IC CR15 for elec, with $(120, 120, 120, 120, 120, 120, 120, 120, $	575.1 515.1 644.4			ij	Ĩ		M	1.10	H.	X
6 Carlin. 5 Car	141.1 100.1 244.4	_	-	-	1300.1	3399.5	5701.9	3107.3	3106.6	3446.4
IS MCCINMME (failer + 2 mode) 0.0 0.1										
Rills freespen fallewidts + 1 mol 1 1.0 0.1 1.1 5.1 5.0 5.1 <th5.1< th=""> <</th5.1<>	15.5 122.7 201.5		•	2 237.1	211.2	1.18	759.1	244.9	112.7	272.7
Mit Name		-	•	• 5.1	•		4.4			F .1
1 uneil 1 uneil 0.00 0.0										
I emetric Limit Line	24.5	_	_	7 51.2	52.8	54.4	с. Т	\$7.7		ä
Compose Is multicity Low 12 7.2 3.3 3.4 6.0 <th6.0< th=""> 6.0 6.0</th6.0<>	~ ~	_	•	_	3		3	3:	3	3:
and of US bit of the set	C'F	_		_		1.1				
Anthali Los Li Z.4 J.4 J.4 <thj.4< th=""> <thj.4< t<="" td=""><td>0.0 0.0</td><td>_</td><td>-</td><td></td><td>0.0</td><td>•••</td><td>0.0</td><td>•••</td><td>•••</td><td>-</td></thj.4<></thj.4<>	0.0 0.0	_	-		0.0	•••	0.0	•••	•••	-
Mile 2.0 4.4 5.7 7.4 10.1 10.4 10.	2.4 3.4	_	~		1.4	•	2.2		7.5	7:5
methol 1.00 0.0 55.0 <t< td=""><td>4.4 5.7</td><td></td><td>_</td><td></td><td></td><td>12.1</td><td>12.5</td><td>12.8</td><td>13.1</td><td>13.1</td></t<>	4.4 5.7		_			12.1	12.5	12.8	13.1	13.1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 <td>0.0 55.0</td> <td>_</td> <td>_</td> <td>_</td> <td>55.0</td> <td>55.0</td> <td>53.0</td> <td>53.0</td> <td>35.6</td> <td>27</td>	0.0 55.0	_	_	_	55.0	55.0	53.0	53.0	3 5.6	27
Interf cost10 0.00 0.01	7.4 7.4		_ 4		***		-			
Mark Control Mark Contro Mark Contro <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		_		_						
41 0.09 20.1 10.5 20.1 30.2 70.1 70.4 30.1 100.1 3 41 0.09 20.4 0.15 20.1 91.2 91.2 91.1 10.1 3 0.09 20.4 0.13 4.15 20.1 10.4 5.3 5.4 5.5 10.1 10.1 0.09 2.1 1.1 2.1 1.1 1.1 2.1 10.2 10.1 10.1 0.11 2.11 2.1 1.1 2.1 1.1 2.1 2.1 10.1 10.1 10.1 0.11 2.11 2.1 2.1 1.1 2.1 2.1 2.1 2.1 0.12 2.1 2.1 2.1 2.1 2.1 2.1 2.1 0.11 2.1 2.1 2.1 2.1 2.1 2.1 2.1 0.12 2.1 2.1 21.2 21.2 21.2 21.2 21.2 21.2 12.4 13.4 13.4 21.1 10.1 3.1 21.1 21.1 12.4 13.4 13.4 21.2 21.1 10.5 3.4 1.1 4.0 12.4 13.4 24.1 <td>D3.4 104.3 1</td> <td></td> <td></td> <td></td> <td></td> <td>147.9</td> <td>171.9</td> <td>174.1</td> <td>179.2</td> <td></td>	D3.4 104.3 1					147.9	171.9	174.1	179.2	
1) 0.09 20.4 43.5 31.2 71.3 77.4 71.4 11.2 0.00 3.4 4.5 4.5 4.5 5.1 71.4 5.4 5.5 0.12 23.1 23.1 11.6 3.4 5.1 3.4 5.4 5.5 0.00 1.13 23.1 11.7 11.6 3.4 3.4 5.1 5.2 0.01 1.2 36.1 36.1 36.1 36.1 36.1 5.1 5.2 0.01 1.2 36.1 36.1 36.1 36.1 36.1 50.1 2.0 127.0 112.4 106.1 36.1 36.1 36.1 36.1 36.1 2.0 127.0 112.4 106.1 106.1 106.1 2.0 107.1 106.1 2.0 127.0 112.4 112.4 112.4 112.4 112.4 110.5 3.4 1.1 127.0 112.4 112.5 20.7 101.1 1.0 1.1 1.0 127.4 112.4 112.5 20.7 111.4 110.5 3.4 1.1 1.0	1.15 250.1		-	1 306.2	3M.5	10.4	104.5	115.1	12.0	122.0
0.00 3.0 4.3 4.4 5.3 5.4 5.4 5.5 0.12 23.1 23.1 19.0 74.0 17.9 17.9 17.9 0.12 23.1 23.1 19.0 74.0 17.9 17.9 17.9 0.12 23.1 23.1 19.0 34.2 57.2 54.0 40.3 42.0 0.19 11.4 24.4 36.3 54.1 36.1 47.0 17.9 127.6 24.4 36.2 190.1 18.1 261.1 261.2 261.2 34.4 26.2 190.1 190.4 561.2 261.1 201.2 27.1 37.4 134.2 134.4 104.1 34.1 34.1 34.1 34.1 34.1 127.6 117.4 134.6 101.1 50.1 14.1 14.0 14.0 127.4 34.4 34.4 130.5 3.4 17.4 10.0	43.5 51.2	-		0 85.0	65.3	07.3	N.1	4.19	13.2	11.2
0.00 3.0 4.3 4.4 5.1 5.4 5.4 5.5 0.12 23.1 22.1 17.0 17.4 17.4 17.4 17.4 0.11 23.1 23.1 15.7 35.2 34.4 5.0 5.0 0.14 24.4 36.4 35.7 35.7 34.3 54.0 5.0 127.6 74.4 36.4 36.4 36.4 51.7 54.1 54.0 50.7 127.6 136.2 277.7 101.1 14.4 201.0 26.2 201.7 21 127.6 136.2 277.7 101.1 34.4 201.0 26.7 201.7 21 127.6 112.4 136.2 277.7 101.1 34.4 201.7 24.1 24.3 127.6 112.4 136.0 101.1 34.4 37.4 34.4 34.4 127.4 134.6 11.1 50.7 34.4 34.9 4.0 127.4 134.6 34.4 130.5 34.4 10.0										
0.12 22.1 22.1 19.0 24.4 10.1 12.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17	4.5 4.6	_			2.2	5.7		••• ••	•••	
127.6 24.4 300.4 541.5 541.1 301.9 395.0 5 34.6 24.4 300.4 541.5 541.3 291.9 295.1 34.6 24.2 147.1 147.4 201.1 241.3 201.7 2 92.4 13.4 134.9 101.1 14.4 134.4 14.0 14.0 127.4 13.4 134.9 101.1 1.4 13.4 14.0 127.4 13.4 134.5 50.7 1.4 1.9 4.0 127.4 13.4 134.5 50.7 1.4 1.9 4.0	22.1 17.1 28.7 15.7			1.1 2.54 7	1.1		7.2		2	
Na. Na.2 147.1 148.4 201.8 205.7 201.7 2 72.4 134.2 212.7 141.1 144.4 201.8 205.7 201.7 2	A AAV A AAC									
92.4 124.2 222.7 141.1 244.4 274.1 144.5 7 127.0 117.4 134.0 161.1 6.8 13.4 14.0 24.6 33.4 71.5 56.7 1.4 3.9 4.0 72.4 03.8 34.4 136.5 3.4 9.7 10.0	70.2 107.7			20.1	222.2	224.7	2.11.4	234.2	239.4	
127.0 117.4 134.9 181.1 6.8 13.4 14.0 34.6 33.4 77.5 26.7 3.4 3.9 4.0 72.4 83.8 34.4 136.5 3.4 9.7 16.0	174.2 232.7				415.0	424.3	437.9	117.0	120.0	150.0
34.4 33.4 72.5 50.7 3.4 3.9 4.0 72.4 83.8 34.4 130.5 3.4 9.7 10.0	117.4 134.6				•	13.0	14.3	14.7	12.4	•
72.4 83.8 34.4 130.5 3.4 7.7 10.6	31.4 71.5	_		7	4.2	1.5	4	1.1		-
	83.8 54.4			1	-	<u>-</u>	3	9. <u>2</u>	:	3

·. 152

10.5 Cash Flows before Financing

Cash flows before financing in constant mid 1988 prices are presented in Tables 10.13 to 10.15 for the three options. For the sake of convenience, the tables show figures from 1988 (commencement of payments), through 1992 (commencement of production for the small mill) and 1993 (commencement of production for the Romanian mill) to 2003. This represents 11 years of production in the case of the Romanian mill, and 12 years in the case of the small mill.

The cash flows bring together the information on:

- * the phasing of expenditure on pre-production costs
 (Tables 10.1 to 10.3)
- * the phasing of expenditure on fixed assets (Tables 10.4 to 10.6)
- * operating costs (Tables 10.7 to 10.9)
- * increases in working capital (from Tables 10.10 to 10.12).

Prices are assumed to be mid year.

The residual value of fixed assets is set at 10% of the original expenditure, and appears in Year 16.

The realisation of cumulative working capital is also allocated to Year 16.

The expenditures have been divided into foreign and local currency, but the cash flows are expressed in US Dollars.

TABLE 10.13 - CASH FLOWS DEFORE FINANCING (Romanian Hill)

Exchange Rate (K/6) 0.22

All Values in 8 '000s (Constant Prices)

		· · · · · · · · · · · · · · · · · · ·			•••••			********	*******	*********	********	*******	*******	•••••	********	******
1 MEM	1		CASH FLOWS	IN CONSTAN	T H10 1900	PRICES	(8 '800)									
apenditure in Foreign Currency (8)	1	1989	1996	1991	1992	1993	1994	1995	1996	1997			2000	2001	2002	200
	1	••••				••••	••••			••••	• ••••	••••	••••			
und Assets	1	2948.57	12966.44	10799.90	6778.66	7240.45	575.00)								
e-production & Special Expenses	1	42.00	54.00	28,00												
crease in Herking Capital	1				0,00	559,64										
erating Costs	4				0.00	463, 39				1774.01			1701.10	1783,31		
ital Cash B ul	1	2199.57	13022.44	10827.78	4742.44		1567.78	2413.39	1787.80							
kal Lask wit Name te Foretan Currency		2110.31	[]0227.44	19867.78	0,00											
interes in seconda cartanch																
et Foreign Cash Flow	1	-2990.57	-1302?.44	-10027.90	-6942.86	2943.44	19049.99	30375.04	31413.20	31423.51	31730.20	31843.43	31948.59	32053.74	32158.90	32348.0
			CASH FLOWS	IN CONSTAN	T N10 1900	PRICES	(1 '000)		••••			····	*******	*******	*******	•
						•••••		*******	*******	*******			********	••••	•••••	•••••
ipenditure in Local Currency (1)	L.	1989	1990	1991	1992	1443	1994	1995	1996	1997	1 1998	1999	2000	2001	2002	2 200
	1	****						••••		****	• • • • •	••••	• • • •		• ••••	• •••
and Assets	1	530,64														
e-production & Special Expenses	1	119.00	100.00	61.00	175,00	0,00 1029.47		1118.37	30.42	30.42	15.31	15.31	15.31	(5.3)	15.31	. 0.6
krease in Ourbing Capital Herating Costs	1				0.00	\$735.34										
	4	•••••••	1969							95.464 94				94448 33		74088.6
ital Cash Bol	1	649.64	3252.20	1712.63	778.45	11078.89 737.83										
numum im Local Curroncy						/3/,43	1229.72		• • • • • • • • • • • •	£197,11					71,9,29 	
rt Local Cash Flow	1	-449.64	-3252.70	-1712.43	-778.45	-10341.04	-15853.27	-24088.93	-23019.07	-23036.95	-23030.54	-21039.52	-23048.46	-23057,40	-73064.35	-22891.3
			********	********	********	********				*******	*******	********	********	*******	********	
ATAN MET PASM SI DM (A)	1	- 1448. 71	-14774.44	-12548.41	-7721.14	-7397.41	A196.73	4784.12	A194.13	8584.54	8767.76	8803.91	8900.13	B196.3 4	1 9692.55	5 9456.44

101aL MET CASH FLOW (8) 1 -3440.21 -14274.44 -12540.41 -7721.10 -7397.61 3196.73 6206.12 0394.13 0586.56 0707.70 0803.91 0900.13 0996.34 9092.55 9155.44

internal Aate of Return o	n latat Not Cash Flaw	٠		18.612 1
Not Present Value &	81			9458.75
	********			******
HLL Present Value &	10 2		•	1880.18
Nel Present Value 8	12 2			-3653,26

••

.

.

•

· '

TABLE 19.14 - CASH FLOWS BEFORE FLANNCING (Soull Mill with oom Plant & Equipaent)

_..

• :

Eschange Bate (K/1) 1.22

All Yalues in 8 '000s (Curstant Prices)

créantare la fareign Larrence (f)	406 1	9661	Ē	24	Ŧ	Ĩ	5461	Ē	141	E	E	N.	1902	3. M	194 T
First Assets Pre-production & Special Expenses Inscrease to Mariling Equital Operation Easis	940.54 30.00	Ē	130.00	347,76 5,06 37,74 177,85	9.75 9.96 11.09	0.00 44.25	1.37 1.57	1.1	1.14		1 7 7 8 9 1 7 8 9 1 8 9	 4.32 122.57		+.56 (0.27	
latat Cash But Revolue ta Faretipa Currency :	110.51	4758.70	4170.79	548. 24 145.41	322.75	540.82 1407.03	534.59 2478.30	474. M	(11.56 2629.51	431.36 2768.19	115.07	454.49	110.12	412.05 3046.10	111.35 111.45
Net foreign Eash flow t	7	N. 1841-	-4470.79	-72.41	01.01	724.21	11.11	2123.35	2197.73	2274.96	2354.57	314.73	350.49	7415.25	11.14.11
ITEM 1 CASE ITE CASE		CASH FI DUS 1	IN CONSTANT NID 1988 PRIECS	14 B061 G14		1000. 1	*	5 0 1 7 5 5 5 5					•		:
	644	:	i i i	Ĩ		ž	5461	141		Ē	E	, se	30	2002	2003
Fired Assets Pre-production & Special Expenses Increase in Muching Cupital Operating Euclis	(4.:4) 0(.:0	451.45 100.00	500.54 107.50	4.55 2.56 72.37	0.00 0.00 0.129 0.12,29	10,17 11,13	87.451 87.451	3.53 3.42.04	9.44 3428.39	24.9 24.7 21.111	10.25 10.21	10.55	1.1 1.1	11.20	11.55 11.55
Tetal Cash Bet Renneme in L xal Currency :	222.47	231.45	474.04	1412.47 547.96	2095.44 1125.22	2391.90	2011.15	3545.59	3630.05	3727.27 3103.12	3019.16	01.292	1922. M	05.294	(159.00 1597.14
Het Local Cath Flow	-222.47	-731.45	-494.04	-845.01	-170.42	-101.02	-174.54	-120.41	-425.32	-424.15	-422.15	-421.72	-541.21	-542.99	-541.44

4.247 1 Internal Rate of Return on Jotal Net Cash Flew

.

878224	-1475.30		3065.2 3	9811989		8273220
가 않는 것은 아무 정말 같은 것 같은	10		101		12 2	
- + 4 4 4 4 4 4 5 5 5 5 5 5 5 4 4 4 4 4 4	Het Present Value O	**************************************	Hul Present Yalue B	此日以来的现在分词中的日本的中的时候。 	Het Present Yalue E	ᆧ肖수는 사람은 무수는 말씀을 해외로 바람을 다 나가 바다. 그 바람을 다 바가 다 다 가 다.

.

•

•

TABLE 10.13 - CASH FLOWS DEFORE FINANCING (Saall Rift with Becond Nand Flant & Equipment)

-

8.22 Eschange Aste All Values in Je (Constant Prices)

	-	H FLOWS	IN CONSIMULARD 1440 PALCES	AID 1744 FA		1000 1 1									
Espenditure in Fareign Currency (3) : [919	406 1	941	141	÷.		ŧ	5461	**	1	£	i.	2000 2	2001	2002	2003
fired Assets Pr-production & Special Liponses Increase in Nacting Capital Operating Casis	465.94 36.00	E.	3754.29	347.76 5.06 34.46 24.45	97.79 9.00 33.57	0.00 77.54	50. 67 126. 00	1.40 345.02	14.5	4.01 348.16	4.13	4.25	4, 16 345, 37	4.51 347.16	4,45 349,00
latal Cash Dui Revene in Foreign Currency i	145.04	3785.78	3004.29	547.14 113.10	322.22	483.27 1487.03	474.46 2170.30	364.	370.44 2629.31	372.17 2708.19	275.72	375.74 2873.12	149.51 249.12	351.47 3640.10	355.44
t Net Foreign Cash Flow 1	10.241	-3765.78	-3001.29	-11.40	834.35	003.74	2001.72	2101.31	2256.44	2134.03	2415.51	2497.59	2409.70	2696.45	2785.90
11.14 1 1 005				A DECT OF	ł	(000, 1)									
Espediture in Local Euroexy (3) I	4461		1661		EMI	141	5441	761	861 (161	161	461	2000	2001		2005
Fired Assets Pre-production & Special Expenses Increase in Nucling Capital Aperating Cusis	12.97 10.00	451.45 1(0.00	580.54 107.56	7.56 7.56 7.59 1239.86	0.00 0.00 83.81 1483.70	34.44 2305.21	130.47	1.44	4.72 3602.09	10.01 10.01	10.31 3782.43	10.42 3074.90	7.78 3918.02	11.27 4018.12	11.66
latai Eash But Bereeve in Local Eurrency I	18.55	731.45	191.01	1314.31	2047.52	2361.45	3480.91	3519.10	3411.01	3701.04	3792.94	3272.10	3755.00 5375.00	1029.54 3472.54	4132.05
thei texal tash flow	16.122	-751.45	-111.04	-111.35	-742,20	-451.70	-814,12	-514.20	10'46-	-59.192	-596.73	-545.50	-531.91	-534.00	-515.44
1014. MEI CASH REDME (1) 1	- 918.03	-4539.43	-4586,34		******** *	345.98	1152.40	11.0621	1659.70	1738.11	1010.79	101.101		2159.43 2250.4	2250.45

12 2 10 2

ALL-VICESCERENEEREEREEREEVEN

Nut Present Value 0 8 X

1 LVC.0

.

internal Anto of Acturn on Tutal Hul Cash Plum assessmentas processessments are started

......

27.25.15-27.2161-

.

The results in real terms of the base case scenarios are as follows:

	Internal Rate of Return (%)	NPV at 12% (millions \$)
Romanian Mill	10.61	-3.65
Small Mill with New Plant & Equipment	6.27	-3.99
Small Mill with Second Hand Plant		
& Equipment	8.59	-2.13

All project options generate IRR's lower than 12%, the cut off point specified by Indeco.

However, it should be noted that the Romanian mill does generate significant foreign exchange earnings, which, in itself, makes the project quite attractive. These revenues total \$471.5 million (in real terms) over the project life, but they depend on the assumption that 80% of the mill's capacity will be sold to Romania, and that the surplus (of copper over the volume needed to pay off the loan for plant and equipment) will be purchased in hard currency.

10.6 Inflated Cash Flows and Depreciation

Inflated cash flows before financing are presented in Tables 10.16 to 10.18.

Foreign inflation is assumed to be 5% pa, and Zambian inflation 20% pa. It is further assumed that the exchange rate adjusts continually to compensate for the difference in inflation rates. Thus, since all costs and revenues are expressed in US \$, constant price cash flows can be converted to current price cash flows by inflating costs and revenues by 5% pa.

	í
	ŝ
	1
- 2	2
	1
A	5
=	Í
	1
14	
2	í
-	
5	1
-	ł
2	í
2	ź
ū	
-	-
u	
z	f
z	1
•	
5	1
-	
-	_
1	
2	ł
2	2
1	ć
-	
2	E
ų	ń
4	ş
۰.	,
4	
2	-
	i
2	Ĵ,
ű	
2	5
-	÷
-	
2	1
-	1
4	è
	é
ž	4
ā	

:

	IANE 10	TARKE TO.14 - INCLATED	-	casa fitues befone fitmancing (komanian Nil))	MANCING (Ra	lliN asınsa	=									
	H.	1961	0641		2441		141	5461	7461	(14)	11	ŧ	7000	1002	2042	2003
Ferença naflatna Zobian naflatna		5.02 70.02	z 20.02	5.01 70.01	5.01 70.01	5.01 26.01	5,01 20.01	5.01 20.01	5.01 20.05	5.01 20.01	5.01 20.01	5.01 20.01	5.01 20.01	5.01 20.01	5.01 20.01	5.01 20.61
Erch ange R ate	0.72	2 1.39	10.74	12.27	14.02	14.03	10.32	20.43	23.42	27.34	31.25	35.71	10.01	44,44	53, 36	40.42
Ferenga hailatten facter tecal hailatten facter	89.1 89.1	50°-1	1.10	1.14	1.22	2.12	5 8 7	3 1 1	# 9 	1.55	1.43	1.1	8 G 1 8	1. 1	1.90	2.06 15.41
-	-															
	* * * * * * * * * * * * * * * * * * * *		540 1 - HS	with Inflation	ŝ		(000. 1.)									
				W	24 1	E	Ē		ž		£	Ŧ	a N	1997 2997	2902	ž
tured Assets Pre-production & Special Lupmases Increases in Burking Capital Guerating Costs		1045. 19	11275.50	12502.32 32.41	199.30	7240.R4 6.00 702.80 591.42	7.6.55 0.66 142.01	1257.24 2405.37	154.40	115.15 2731,12	151.17 291.44	148.75 1912.00	178.41	107.74	191.07	207.74 362.84
lutal Cash But Rerener in Foreign Curreny	* ~ ~	3140.09	14:57.24	12534.74	1131.01	10535.00	2134.12	3742.62 44418.04	2777.55	- ne	3054.41 54404.43	1211.35 5/27.33	·	3530.47 4322.44		3756.56 70010.01
Het Foreign Cush Film		- 3140.09	-1140.09 -14157.24	-12514.74	-0130.01	3/56.40	25413.47	12675,44	44203,42	10,22,43	11.121	541:0.70	57714.34	40272.47	62.14914	67969.75
lita	-	3	SIN FLOWS	with Inflation	5		1003. 1									
Espenditure in Local Currency :	66 1	1	9461	E	ĩ	1	Ē	s.	ž	i i i	•	Ē	ŝ	1902 2901	2092	2002
Fired Assets Pre-production & Special Expenses Increase in bunking Capital On: Ling Casts		551.2 175.0	X -	0.101 0.10	74.1 151.4	400.5 0.0 1314.2 12425.1	1001.7	1493.4	248.9	241.4 39105.8	235. J 11495. P	269.3 269.3 41004.3	784.1	299.4	316.1 51724.4	301 301
lutal Cash Out Acremer is Local Currenty	88 ay 48	1.214	3585.4	1 M 2.4	44.2	1.11	1.111	34704.0	37484.6	34770.4 MIS.4	11751.2	4275.4	44727.6	4314.1 \$\$\$5.2	5042.4 5042.4	9-19-14
Ket tocal Cash Flow		-982.1	-3585.4	7'2861-	-14.2	1.09121-	-21310.4	-34015.5	-34214.5	- 15455. •	-1714.7	- 39440.5		-13749.0	5'55451-	1.14844-
10,41 MET (ASM FLOM (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-302.22	1742.79	-14517.32	-9365.05	-1004-	(1163.07	84.45	12049.14	12947.45	13009.70	14442.27	15544.04	14523.52	17577.05	01.45101
	Leen Brandoum Repayeonts Intersis Cash Flou uith Flauncing	5140.09 0.00 0.00 112.11					0.00 0.00 1342,35 -3179.20		90.0 913.27 95.13 96.30 15.45 10.55				0.00 1770.14 17.954 187.91			0.00 0.00 2411.31 1477.87

TANE 10.17 - INFLATED CASH FLING BEFORE FLIMMCING (Saul) Nill with hen Plant & Equipment)

	Well	HI.	1116	1441	2541	[10]	Ē	5441	761	1441	141	H 61	ŧ,	2061	2002	Ĩ
Fareign inflation Zumbium inflation		5.01 26.01	5, 61 20. 61	3.02	20.01 20.01	5.01 70.02	5.01 20.61	5.01 70.01	5.31 20.01	5, 62 20. 61	5.01 20.01	5.01 20.01	5.01 20.01	5.01 20.01	5, et 76, et	2.5 2.5
Eschange Bale	1.2	1.1	14.74	12.27	11.02	14.0]	II.32	20.43	23.42	27.34	31.73	35.71	10.01	14.44	51.30	40.72
Foreign Indiation factor Local Bailiation iactor	8 8:1	52.		1.1	1.22 2.01	1.2 1.2	1.1	1.1	₽.7 - 7	323	59.7 7	237	64.'B		1.98	2. M 15.4
All Values is 4000 Eurrent Prices)	_															
	_		3		5		1998. 1									
Espenditure in furrige Eurimery		2	Ē	E	64 1	E	Ĕ	÷.	Ē	E	Ē	E	ž	ž	Ĩ	ž
Fired Assets Pre-production & Special Exponses lacrease in Burking Capital Operating Casis		11.50 11.50	3	5075.00 150.49	422.45 4.08 45.87 216.10	21.28 0.8 21.15	•.• •.8 136.85	61.67 465.29	81.M	22.45	24. 07 699. 17	21.12 731.14	27.49	3.2	31.05 Bee, 34	34. 18 852. 59
Tolal Eash Bui Recent in Foreign Ewrency			5417.04	5175.49	95°207	10.12	754.13	748.4M	441.70	405.M	71.24	742.74	M.53 5191.23	75.42	840.19 4035.02	104.7N 1524.00
Net Foren,a Cash Flue		-915.09	-5467.04	-5175.09	-10.21	1941.11	1236.63	2710,35	3121.45	1111.01	3600.12	1908.13	1355.19	4784.41	5194.04	5446.10
16	3		SIN FLOWS	-	8		(0)0. 1								•	8 1 9 8 8
Espenditure in Local Corroacy		I	£	Ē	£	E	Ē	£	Ē	44	£	Ē	2	ž	200	Ĩ.
Fired Assets Pre-production & Special Expenses Jacresse in Naching Capital Operating Cesis		1.9. 1.9	~ -	8.109 124.4	54.2 9.1 112.3 1541.9	- <u>r</u>	11.1	148.1 2044.1	10.9 5231.2	(2.2 5420.1	13.4	49.2 4514.5	51.1 7009.7	51.4 7437.5	61.5 0007.4	44.1 B427.1
Total Cash Out Persone in Local Eurrency		234.1	836.9	805.8	1.013	2400.3 1491.4	1216.4 2203.4	5242.3 39 15. 9	52M.2 4321.5	501.1 1.104	4100.7 2031.6	1.11 1.11	7042.7 5912.1	7491.0		0460.7
Net Local Cash Flow		-234.1	-030.4	-005.8	-1027.1	-100.1	-11.2	-1244.4		5.14-	-1014.0	-1697.1	1.811-	-145.0	-1131.0	-1210.0
1010k MC (SSM AUM (1)) 1	12524494944545454342464 } }	-11.9.2		-5%1.2	-1115.37	71.62	301.41	101.14	217.22	2395.74	2412.00	2011.02	5201.57	349.61	-	1131.01
	Lean Prandoun Repayeents Laterest	g • •	5147	5 • •	* •	•• ä	••	24 24 24 24 24 24 24 24 24 24 24 24 24 2	• 2 2 2 •	• 5 7	• 9 E	• <u></u>	•••		•••	••
	Cash Flew with Freencing	-234.12	-830.90	-005.77	-3743.65	-2443.50	-2017.11	-1153,00	-4347.43	-4163.91	54°W46-	-3444,33	-723.67	m.n	565.77	1071.04
	laterasi Rate of Relura on Total Interasi Rate of Setura in Roal	iturn m fat. Plurn in Real		Hot Cash Flow with Financing . Toras	- tusucing	-16.011 -70.77X										

•

Ĩ
Ī
2
-
Ŧ
Ξ
Hand
Ĵ
-
ŧ
Ξ
Ē
I'll []rv[]
Ŧ
Ŧ
B DEFORE FINANCI
¥
MENE
S
Ξ
CAS
INFLATED CASH P
÷
E.
Ξ
IANE 10.10 -

î.

ŀ

	861	1961	Ŧ	1461	2641	[44]	Ĩ	5441	7441	141	Ē	ŧ	Ĩ	3001	2442	ĩ
ferença indiction Tamina indiction		5.02 20.05	5.01 70.01	5.02 70.02	5.01 20.01	5.02 79.01	5.01 20.01	5.01 70.01	3. 01 70.01	5.01 20.52	3.01 20.05	3.0 70.0	5.01 20.01	5.01 20.02	7.4 19.4	5.2 2,5
Eschange Rate	1.22	• 3•	10.74	12.27	11.02	14.03	10.32	24.93	23.42	27.34	31.35	35, 71	H.H	46.44	51.10	11.11
Furença Initation factor Local Initation factor	38	5 Q. 	•••	12.1	1.22	R : 7	1. Ju 2. 99		12		917 17	N.1 1.1	9.1 9.3	1 1 1	1.9	2.8 15.1
All Values in 1 '800' (Current Prices)																
116n i C45N	-			metherial Atta		-	1909. 1									
Espenditure in Farnign Currency 1		¥	£	Ē	2	E	Ē	£	Ē	Ē	£	Ē	ž	ž	— -	2
Fired Assels. Pre-production & Special Expanses Incress is Incrine Capital Descrition Carls.		490.31 31.50	÷ -	(34. 65 159. 65	(37.41 47.49 74.49	24.25 24.65 24.65		01.19 599.42	1.5	2.2 2.3	27.4 1.1	21.14	4.2 4.1	27.43	7.18 17.18	83, 10 735, 54
lotal Cash But Remove in Foreign Curroncy		19.021	4177-02	111.55	101. X 102. X	015.07	452.11	400.41 14.001	554.20 3771.55	50.41 1978	63.U	634.62 4776.09	413.65 5159.72	178.67 1586.73	717.25	757.44
ikut Farenga Cash Flaw		1- 10.151-	- 729.01 -4173.03	-1194.55	1	1042.45	1346.45	2804.72	1213.27	217-4495	1100.19	111.27	114.44	141 - 24	5117. B	5749.24
116 1 200				FLOWS with failulism			1000. 8									
Espenditure in Local Currency 1		H	£	Ē	E	1	ž	£	Ē	Ē	Ē	£	ž		in i	Ĩ
Filed Asets Pro-production 4 Special Expenses Increave to Marting Expital Aperating Costs		1.6.1	~ -	601.3 124.4		0.0 0.12.4	1.1 1.1 1.1 1.1	1.1985	30.4 5194.4	42.7 5500.0	45.5 4012.3		53. 0 6942. 3	51.7 200.0	1.14	64. J
lialal Cash But Bereme in local Eurrency		234.1	1.4.1		1.012.4	244.4	3176.1	574.1 1.191	5775.0	54.36.2 4473.7	4457.8 3454.4	6510.7 5944.6	7015.5 5912.1	7657.2 6391.0	8017.0 4915.1	8451.0 7476.7
Net Local Cash Flow		· 234.1	-936.9	-005.8	-412.3	-951.0	-142.7	-1210.4	-10).5	1.161-	-1001.1	-1652.1	-1105.4	- 1045. 3	-1107.0	-1151.4
101A. XC1 CASA FLOW (1) 1	***********	14.214-	964.72	~	-	~	~		-	713.0	2784.06	362.3	36.31	104.19	4715.00	1 11.15
Lean Dr andenn 730 4170 Reparentis 0 0 Interst	Loun Draudeun Reparpeunts Tatorest	9.00		Ĵ.	a * 8		• • îž		• • • • • •	• 1 1	• E E	• 12		••	••• 312 3	•••
	Cash film with financing	-234.12	-834,94	-003.77	17.0016-	-2078,74	-1979.57	-1551.20	-2073.04	-2444.19	-274.35	-1010.75	1034.00	11.91.00	2104.07	2474.40
	laterad kite ui Actura en Tatul Net Cash Flee uith Flaancing * laterad kite ef Belura in Arul Turas	itura en Tal tura ta Rea	ial Net Cash I Turas	flee with (· Inancing ·	-1.511 -6.201										

. . 160

Depreciation calculations are presented in Taoles 10.19 to 10.21. The depreciation schedule is taken from Table 7.1, with the exception of the pre-production expenses, which have been depreciated over 5 years on a straight line basis. The calculations are based on the phasing of expenditure on pre-production expenses and fixed assets set out in Tables 10.1 to 10.6 (but inflated by 5% pa).

10.7 Financing

The possibility of financing part or all of the project with a soft term loan has been discussed with aid and bank officials in the UK.

Assistance towards the Romanian mill is out of the question. No western donor will be interested in subsidising the purchase of Assistance towards the small mill Romanian plant and equipment. option is more likely, especially if tied to the purchase of the donor's plant and equipment, but Zambia now has a very poor credit rating (in the UK, export credit guarantees are no longer being issued for Zambia), and, for this reason, there seems little liklihood of securing a loan on soft terms. Most UK aid to Zambia, for example, is being disbursed in the form of tied grants, up to a ceiling of about \$3.5 million. Moreover, priority is being accorded rural rather than industrial development. The last loan to Zambia was granted in 1980. For the purposes of this analysis, therefore, soft term loans, or grants, from western sources have not been used in the project financing scenario.

We have assumed, therefore, that finance will be sourced from the Development Bank of Zambia (DBZ) and, in the case of the Romanian mill, Uzinexportimport.

The Uzinexportimport loan is for plant and equipment only. The maximum facility is \$ 20 million. The terms of this loan are negotiable, but on the basis of our discussions with the Romanian delegation, we have assumed the following scenario:

TAME 10.19 - BENECIATION CALCILATIONS (Annanian Will'S

Ì

Î

1

l

l

Prices
ICurrent
ŧ
Values 10
Ē

	•••	1	Ĩ	1442	5441	141	541	9441	1111	•••		¥.	Ĩ	2007	(w)
larerlaart (huild's 4 Hs milated) Inversant (flant 6 Gy milated) Fre-Fraduction 4 Gpccial Esponen 1914, IMESIME	6721 5192 5291		2222 1959 521 521 521 521 521 521 521 521 521 521		5 4° 3	*E*E									
beyreciation for Buildings Beyreciation for Plant and Ruckinnery Beyreciation for Pro-Pred & Spec. Expen.					5 <u>5</u> 3	201 1001	333	1351 1351	402 1476 145	572 1462	05 (11)	34	¥ 62	444 1142	<u> </u>
10134 Sease Clair Da					6589	3470	2440	1337	1122	1174	7/81	1782	1473	8071	2251
								*******				******			
	4861	ŧ	141	2441	1993	1441	5441	761	7461	861	44	102	2001	2002	7005
Develined Scypies - Ferenge (1) Develined Scypies - Local (1) Develined Scypies - 10104 (1)	• • •	• • •	• • •	• • •	11706 1111- 1122	24010 -26274 447		1/1CI	84551 84955-	51714 -57409	54400 - 35379 - 15104	82091 19511-	40460 -13449 17011	1919 - 1919 - 1925	6/541 965/1- 812/7
beyeki alim	•	•		•	599	2478	244	222	22 112	N791	501 501	1702	1411 1112 1113	1111	15101
really allow memory contrant. Increase in Macling Capital			• •	•	1102	3	7421	40)	436	S	2	4 2	1	115	¥

:

TANE 19.20 - DEPECTATION CALCULATIONS (Sealt Mil) with New Plant & Equipoent)

.

1

ŀ

ľ

-

Alt Values in 8 "Joes (Current Prices)

	He i	Ŧ	141	2661	[44]	H	\$441	Ĩ	2441	E	ŧ	H	301	2002	2043
lavesteent (build's k Ms - safisted) lavesteent (Plant k Eg initiated) Pro-Production & Special Expenses 301au lavEstifical		2021 2289 091	1145 512 1145	82 S S S	• <u>8</u> • <u>8</u>										
Beepreciation for Buildings				123	Ŧ	K 1	91	121	111	113	1	Ŧ	74	Ŧ	2
Bepreciation for Plant and Rechinery				1531	2	121	403	141	242	H	111	IE	£	ž	z
bey existion for Pro-Prod & Spen . Capen.				=	Ξ	=	-	81							
seiat Bernécial (On				1101	215	529	517	IJ	ŧ	ş	1£†	ŧ	IN	14	151
														******	*****
נידע כן ווג <u>ל</u>	4441	110	1441	2441	:	1441	5461	1111	2661	84		ŧ	1001	2042	1994/
Beer attan Surplus - for oten (1)	3	٠	•	Ŗ	2821	1347	2002	2112	3416	2115	1034		Ē	(125	7.3
Decision Surplus - Local 11) Decision Surplus - 1014 11)	• >	• •	• •	ş	19- 2:1	žż	N91 -	-112	ŖĮ	- 512				111	129
beyret talt te	•	•	•	111	215	6	54		\$	3	ŧ	ŧ	Ē	R ::	3
Prodit aiter Bepreciation	•	•	•	-2781	-340	Q.	110	1112	Ĩ	3754	1921	1206	6414	2763	V 11
lacreate in Worling Capital	•	•	•	5	ž	121	202	3	59	2	2	=	ā	5	191
			•••••••••			1111111111111									

lable 10.21 - DEPRECIATION CALCULATIONS (Sudit Nit) Second Hund New Plant & Equiperal)

Î

ĵ

ľ

ľ

•

.

Ali Volues in 1 '000's tEurrent Prices)															
	141	ŧ	141	2661	[11]	Ĩ	5461	141	2441	Ē	Ē	10	1001	70m2	3 (6)
Consteast Noild's & Ms Inflated) Javaiuset (Plant & Eqs Inflated) Pro-Preduction & Special Expenses 1013, JanéSinGal	rrei	2021 2021 2021 2021	811 812 212	851 285 281 281 281	• <u>द</u> • <u>द</u>										
Neyrociation for Buildings				132	Ξ	181	2	5	11	112	ž	Ē	2	F	2
Depreciation for Plant and Rochinery				1221	M	515		305	307	111	¥2	34	334	222	112
best contained for Pre-Prod V Spec. Expen.					111	=	9	9							
101M. BEPECIALION				•••	121	SVS	ž	539	50†	Ĩ,	545	111	274	313	142
											******	*****		****	
ST I STAT	M	•••	1441	2641	101	imi	5441	761	141	Æ	£	300	Ī	21-12	1
Bertation Secolar - Foreign (1)	•	•	•	384	1237	••••	7960	1111	1310	3012	13	1111	123	8148	1983
Aperating Surptus - Local (1)	•	•	•	ļ	<u>-</u>	101-	1101-		Ŧ	?j	Ę	89 <u>-</u>	Ŧ	191-	
Aperating Surplus - 10144 (1)	•	•	•		744	2		1007		1007	~~~	7442		È.	
Beprostiation	•	•	•		121	5	195	514	Ş	Ă	345	14	£.	=	Ê
Profit after Beprecialise	•	•	•	ŧ,	Ŗ	3	512	141	Ē	31/9	2776	5401	5015	H	411
lacress is Burling Capital	٠	٠	•	13)	ž	Ē	ž	3	3	3	"	¥	*	:	2

•

164

·.

* interest rate: 7% pa

ļ

Ĵ

- * repayment period: 10 years
- * grace period: 3 years from delivery of plant and equipment (i.e 1992).

A further assumption is that repayments are paid in the year they fall due.

Interest is capitalised up to 1993, in the case of the Romanian mill (the first year of operations), and 1992, in the case of the small mill.

Under guidance from Indeco, the terms of the DBZ loan are assumed to be as follows:

- * interest rate: 15% pa
- * repayment period: 7 years
- * grace period: 3 years.

The assumptions regarding payment of the principal and the capitalisation of interest are the same as those specified for the Romanian mill.

The small mill options source finance from the DBZ on the same terms as those set out above. Interest is also capitalised up to the first year of operation.

Further assumptions, applicable to all options, are as follows:

- * interest rate on cash balance: 9% pa
- * interest rate on short term loans: 11.5% pa

165

- * equity : limited to 33% of investment in local currency
- * dividend policy : 4% of equity (not dependent on profits)
- * corporate tax : 35% with holiday for five years from commencement of production.

The interest rates for the cash balance and the short term loans are based on information provided by Barclays Bank, which has representation in Zambia.

It should be recognised that investment costs in local currency for the three options represent only 13.2%, 11.9% and 14.3% respectively of total investment costs. For this reason, it has been assumed that <u>all</u> investment costs in local currency are covered by equity. This leads inevitably to very high debt/equity ratios, well in excess of conventional figures. The Romanians have not offered to provide equity to the project.

The loan repayment schedules are set out in Tables 10.22 to 10.24.

10.8 <u>Financial</u> Statements

Profit and loss statements for the three options are set out in Tables 10.25 to 10.27. Sources and applications of funds are presented in Tables 10.28 to 10.30. Finally, Tables 10.31 to 10.33 show the project balance sheets.

10.8.1 Romanian mill

The major conclusions arising from the financial statements are as follows:

* short term loans, which are planned to meet cash requirements in any particular year, grow in the early years to cover after tax losses to 1994, and peak in 1999

TAME 10.22 - LOAN REPAYNENT SCHEDULE (Roaanian Mill)

.

•

Ail Values in 9 '000s fCurrent Prices)	3															
Tal/Julebest Bate		1051	9661	141	142	5441	141	544	111	141	111	•••	2000	2001	2002	1992
Carperate fai Rate Interest Rate en Cash Balance Shert Toro Loon Interest Rate		35.61 9.02 11.11	35.01 9.01 11.51	35.02 9.07 11.52	35. et 7. et 11. 51	35.02 9.01 11.51	35.01 9.01 11.51	35.01 9.01 11.51	15.01 9.01 11.51	15.01 9.01 11.51	35.01 9.01 11.31	19.01 9.01 11.51	35.01 9.01 11.51	35.42 9.41 11.52	35.05 9.01 11.51	35.65 9.65 11.51
NONJAN DOLLAR LOGN	Nacions Facility 18)	2000														
laterest Rate		7.02	7.01	7.62	7.61	7.02	7.61	1.01	7.02	1.61	7.61	1,42	1.01	7,42	7.61	7.62
Loon at start of Year Interest Copiralised			9) (6 220	1241	15452	24144	\$1057	24827	24048	22376	19412	8 1491	Se 111	1457	92/L	••
laterest Part Braudoum in Person Repayandi Luam at ond of Year		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 (5(1) 0 (191)	0 2561 0 22951	28194 28194	2000 0 0 21027	2982/ 0 2982/	0 0 10 10 10 10 10 10 10 10 10 10 10 10	• • • • • •	1305 9 3720 1842	1044 0 1726 14115		*E §	• R 45	e 9245 9	••••
laterest bue		R2	9521	1407	1581	2086	2088	1827	1344	1305	1944	SIL SIL	327	192	•	•
DEV. DUR OF JANDIA DOLLAN LOAN																
laterest Aste		15.01	13.01	19.61	13.02	13.02	15.01	19.01	19.01	19.61	19.01	13.01	19.01	15.01	19.01	13.02
Loan at start of Yoar Interest Capitalised		•••	<,	• • •	2001 2021	21401 3222	\$24/2 •	2775 •	22340	\$6141 9	•	505 • •	• • •	• • •	• • •	• • •
transments Person tepsyonal team of end of Your				10032 •	141 2141		•••	223340 223340	• 9855 • 9855	5585 5585 11176	• 555	5965 5965	••••			
laterest bee		-	•	1303	2225	411	4819	1351	2313	1475	ĸ	٠	•	-	•	•
	*********************	1111111111111	******	******								1411111044			******	

167

LARKE 10.23 - LOAN REPAYNERI SCHEDULE (Sault Mill with New Flant & Equipment)

•

All Values is 1 '000' Ifacted Prices!

All Values to 1 '000' ICurrent Prices'																
lai/Juterest mate		-	111	1441	2661	[16]	H	5461	741	101	Ħ		2008	2001	2002	2002
Corporate Tar Aalo Interest Rate on Cash Balance Short Tere Loon Interest Rate		35.02 9.02 11.52	35.01 9.01 11.51	35.01 9.61 11.51	33.01 1.22 11.52	13.01 • • 02 11.52	15.01 9.01 11.51	35.01 9.61 11.51	35.9 1.9	35.02 9.07 11.51	35.01 9.01 11.52	35.41 9.41 11.52	35.0% 9.0% 11.52	35.01 9.01 12.11	15.01 9.61 11.51	35.01 9.01 11.31
NAMARIAN DÜLLAR LOAN	Narione Facility (8)	•														
latorest Asto		1.01	1.61	7.01	10.1	7.02	7.61	7.01	1.01	1.61	7.01	7.61	7.01	1.61	7.61	1.62
Lean al start of Pear Interest Capitalised Interest Parad Beamdom in Perad Decement							• • • • •			••••						• > • • •
Louis at end of Year		•	• •	•	•	•	•	•	•	•	•	•	•	•	•	e.
laterest bee		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
BEV. BANK OF ZAMBIA DOLLAR LOAM																
laterest Asle		19.61	12.02	15.02	15.01	13.02	15.01	19.61	19.61	13.01	13.01	13.01	15.01	13.01	15.0X	15.01
Loum at start of Year Interest Capitalised		• •	57. 91	1002	13843	0110 0	011 0	01 10 0		3. 1	HZL •	9722 9	• •	••	• •	
laterest Paid Bradown in Period		• 55	5447	\$ 13 5 13	2)() 80	2717		7	9 9 9		; • ;	• •				
Repuyeent Lour at end of Your		° 74	•	13043	, 91181	011 0 1	18110		10846		3422		• •	• •	••	
laturest bue		91	1002	2079	1112	2)12	2)12	21/3	1430	1017	513	•	•	٠	•	•
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			******	*******					*******		11111111111			*****		

٠

168

•

TABLE 19.24 - LOAN REPARKENT SCHEDULE (Sault Will with Second Hand Plant & Equipment)

•

Alt Values in \$ "000s (Current Prices)																
tat/inichest rate		W	8	H	2661	141	H	5441	941	1441	141	4461	2000	1002	2002	21103
Corporato Tes Rate Futurent Rate en Cash Balance Start Tara Laua Interest Pate		15.02 19.9 11.51	15.02 9.07 11.51	19.85 10.9 12.11	35.02 9.07 11.52	35.00 9.00 11.32	35.01 1.61 11.51	13.01 9.01 11.51	19.81 10.9 12.11	35.02 9.02 11.51	19.01 7.01 11.51	13.01 9.01 11.51	35.01 9.02 11.51	35.01 9.02 11.52	35.02 9.61 11.52	35.02 4.02 11.51
RDV VELAN BOLLAR LENN	Mariawa Facility (1)	•														
laterest Bale		7.62	7.02	7.62	1.01	7.02	7.01	7.02	1.01	7.01	7.01	1 9. '	7.01	1.01	1.01	1.01
lean at start of Year Interest Capitalised		• • •	• • •		• • •	• • •	~ • •	- • •	• • •				• • •	• • •	• • •	306
laterest Paid Readum in Period Acyajami Laun al end ut Year																
laterat Bur		9	-	•	•	7	•	•	٠	•	•	•	•	•	•	•
BEY, bitte DF ZZRBIA BULLAR LOAN																
interest Auto		15.02	15.01	13.01	13.01	13.42	15.02	19.01	13.02	15.01	12.01	15.01	15.01	19,61	15.61	19.61
Luam at start of Yrur Imterest Capitalised		~ •	912 912	512 240	11156	145 90 Ú	9 9 9	0 94511	0 0	8754 0	91 9 5		• •	~ •	• •	• •
Interest Pard Province in Ferrical		o 6(^	° 11	• • • •	8 17	3. B	2108	121	5111 •	5/ 8 0	; ; •	• •	• •	• •		• •
bryspært Lum at rad of Year		9 9((9 121	•	94511	945+1 9	9451 I 9	2618	9528 9142	2918 5634	2410 2411	9142 9	¢ 0	• •	••	• •
laterest be		601	348	1473	2100	2100	2188	15/1	1113	5/8	138	•	•	•	•	•
***************************************	***************				*******	******										

:

169

- * profit after tax is negative for the first two years of operation, and then becomes positive in 1995
- * the profit margin on sales grows over the project period from 5% in 1995 to 18% by the end of the project period
- return on capital employed also improves, from 5% in 1995 to a peak of 33% in 2004
- * retained earnings become positive in 1995
- * the current ratio (which is an indication of the cover available to creditors and short term lenders) is unsatisfactory (below 1.5:1) until the year 2003. In general, a 2:1 ratio is considered satisfactory, although an acceptable minimum is 1.5:1 for this kind of business
- * the debt: equity ratio is very high, up to 90% and not lower than 80% throughout the nimeties
- * owing to the large amounts of interest to be paid on borrowing (around \$6 million pa between 1983 and 1987), debt service is not adequately covered by profits until 1999
- * the liquidity ratio (current assets less stock/current liabilities) varies from 0.09 in 1993 to 1.07 in 2004. The ratio is well below an acceptable 1.0 throughout most of the project period. This is indicative of a fragile balance sheet.

10.8.2 Small mill with new plant and equipment

The major conclusions arising from the financial statements with respect to the small mill with new plant and equipment may be summarised as follows:

- * short term loans grow in the early years to cover after tax losses up to 2001, and peak in 2002
- * profit after tax is negative for the first 10 years of operation, and then become positive in 2002
- * the profit margin on sales becomes positive in 2002, and grows only to 9% by the end of the project period
- * return on capital employed is also very poor, and recovers to 23% only by the end of the project period
- * retained earnings become positive in 2002
- * the current ratio from 1993, when the short term loans commence, is unsatisfactory throughout the project (i.e. below 1.5:1)
- * the debt: equity ratio is very high, and stays over 80% throughout the project
- because the project is very highly geared, debt service is not adequately covered by profits at any point in the project period
- * the liquidity ratio is very poor throughout the project period, peaking at 0.06 after 1993.

10.8.3 Small mill with second hand plant and equipment

The major findings with regard to this option are as follows:

- * short term loans grow in the early years to cover after tax losses up to 1997, and peak in 2000
- * profit after tax is negative for the first six years of operation, and then becomes positive in 1998

- * the profit margin on sales becomes positive in 1997, and grows to 17% by the end of the project period
- * return on capital employed is also very poor, but reaches 27% by 2003
- * retained earnings become positive in 1998
- * the current ratio from 1993, when the short term loans commence, is unsatisfactory throughout the project (i.e. below 1.5:1)
- * the debt: equity ratio is very high, and stays over 80% until 2003
- * because the project is very highly geared, debt service is not adequately covered by profits until 2004
- * the liquidity ratio is very poor throughout the project period, peaking at 0.11 in the final year.

All the projects generate poor P/L statements and balance sheets but the small mill options are clearly inferior, and cannot be considered viable. Interestingly, an increase in the short term interest rate from 11.5% to 13.5% still gives an IRR (with financing) of 11.79% for the Romanian mill (see Section 10.9). in in order to produce a positive IRR (with financing) in contrast. real terms for the small mill with second hand plant and equipment, the short term interest rate must be reduced to 4%. Even if the short term interest rate is reduced to 0%, the small mill with new plant and equipment does not achieve a positive IRR (with financing) in real terms.

TADLE 10.25 - PROFIT AND LOSS STATENENT (Resarian Mill)

2

.

All Values in 5 '6"4s (Current Prices)

(SUCCESSING AND AND A	4861	944	I.	2441	1413	1441	5441	7663	1661		64	2006	1001	2062	2003
Pressue Operating Certs	• •	••	• •	••	15231	22634	49187 37574	52326 39051	35.57	04/214 51885	42149	45679	49300	1111	1115
Gerating Surplus/Less Javest Direst-ud	• •	••	•	•	2217	•	11611	12476	13398	14225	15100	14020	1/0/1	10452 A	67961
laterst paid byrecistion				• • •	1123	2476	2440	4544 2352	604] 2243	3101	195	456	148	8071	1412
tarable Prulit Tarable Prulit		• •	• •	• •	61 6 01-	-1140	30F	1359	9 2495	2397	9129 7031		1194	13246	15707
frait after las	•	•	•	•	-1601-	-3396	2481	3559	5042	4652	842	4238	171	E140	16211
Lang tura these inderest	•	•	۰	•	4277	4277	5120	4074	2980	1002	202	522	341	•	•
Shert for a low laterest futat laterest	• •	• •	• •	~ •	0	1084	1484	2485	2002 2003	1916	1913 1945	128 1720	114		ĒĪ
Equily draches	in the	19KC	[R61	11	9	•	•	•	•	•	•	•	•	•	•
Cumulative Equity	2 8 7	1251	6256	2194	194	1116	1114	112	1194	7412	2114	1196	1194	2196	111
Bruidend Bae	ſ	•	•	•		۶,	200	200	208	5	Ħ	206		288	Ħ.
felained Euraings	•	4	0	•	-11207	-3678	2173	1125	1804	1111	1155	2450	7684	555	1925

173

۰.

:

TABLE 10.24 - PROFIT AND LOSS STATEMENT (Small Hill with New Plant & Equipment)

All Values an 4 1000s (Current Pricus)

	1787	1770	1991	1992	1442	1994	1442	1996	1997	1998	1997	2008	2001	2012	2003
Revenue	0	0	0	1293	3167	4276	7483	B442	8753	9166	10237	11072	11974	12750	14005
Aperating Custs	0	0	0	1758	2812	3750	5729	5843	6292	6754	7251	7787	8204	8816	9475
Operating Swiptus/Loss	0	0	0	-445	355	524	1754	2230	2460	2712	2986	3285	3770	4134	(53)
Interest Received	Ŷ	0	0	0	0	0	0		•	٠	0	0	0	0	•
Interest paid	0	0	0	2717	2717	3071	2003	2145	2930	2849	2433	3428	3467	3455	1401
Bepreclation	•	•	0	1816	715	673	415	618	480	456	433	411	391	371	323
lacable Profit	0	•	0	-4997	-3074	-3167	-1694	-1293	-957	-691	- 380	-554	-10	308	777
lan tand	٠	٠	0	0	Û	٥	0	8	٠	٥	٠	٠	٠	100	272
Froist after tas	0	•	0	-4997	-3076	-3167	-1694	-1293	-957	-691	- 380	-554	-11	200	505
long Tera Louis Interest	0	٥	0	2717	2717	2717	2173	1630	1087	543	8	•	8	0	٥
Short Term Loan Interest	0	٥	0	0	0	304	630	1275	1851	2406	2933	3428	3467	3455	3401
Tatal Interest	C	0	0	2717	2717	1021	2803	2965	2450	2949	2433	3428	3467	1455	3401
Interest Accessed	•	0	0	٥	0	0	Ú	0	0	٥	•	0	0	0	0
Profit after Interest	0	٥	0	-4997	-3075	-3147	- 1494	-1293	-157	-693	-390	-554	-11	348	177
Tax the	0	٥	0	Þ	Û	0	0	0	0	•	4	•	0	100	2/2
Profit after Tax	0	0	0	-4997	-3075	-3167	-1694	-1293	-957	-693	-300	-554	- 86	200	545
Equily draudium	234	831	804	1027	0	0	0	٥	6	٥	0	0	9	0	0
Cusulative Equity	234	1045	1871	2098	2898	2898	2848	2898	2878	2898	2878	2898	2878	2878	2848
Bavadend Sue	0	0	•	0	114	116	114	116	114	116	114	114	116	114	114
Aetained Earnings	0	٠	0	- 4997	-3192	-3283	-1810	-1409	-1073	-207	-474	-470	-204	84	367

٠.

.

TABLE 10.27 - PROFIT AND LOSS STATENENE (Seall Mill with Succed Mand Plant & Equipment)

۰ ا

All Values in 5 "WWS (Current Prices)

all releas in a wood ther teller.															
	4861	9661	141	1412	1993	1661	5461	7661	2461	864	Ē	2000	2001	2067	2003
Leveure Aber ating Costs	* •	• •	• •	2421 2211	3167	4276 3433	7483	8093 5734	8753 6157	444	10237	11072 7430	11974 8039	12450	1001
there also de plussiess 0	•	۰	•	- 430	305	54	10)	1359	25%	2054	113	3412	3935	:307	013
lalerest Received Lalerest aand		• •	9 0	0 2188	0 51 90	0 2423	0	0 2245	0 2221	2147	0 2015	6 232 0	0 1511	2112	° 41
		• •	• •	1481	123	12	195	885	591	384	365	205	5	11	142
lautele freit	0	•	•	-4108	6112-	-2349	115	11-	-10	123	11	141	1351	1002	101
lar Pard	•	•	3	•	•	•	•	•	•	113	77	248	14	457	467
frolit after taa	•	a	•	9 017	-2119	-2149	-115	¥!-	2	210	4	ŧ	3	1234	0191
tung fore teen laterest	•	•	•	2199	2100	2168	15/1	1313	520	NC V	•	•	•	•	•
Shurt Tera Lawa Talarest	•	•	•	•	9		Ş	122	1161	1709	2035	2320	1512	2112	111
Julai Isturest	•	•	•	2108	2100	2427	1622	2245	2221	2147	2015	2328	2222	2112	121
laterest flectived	•	•	•	•	9	•	•	•	•	4	•	•	•	•	•
Prolit alter laterest	•	•	•	8 17	6112-	-2349	51¢-	ŧ	9. -	225	12	147	1351	1 H H Z	2477
[r h	•	•	•	•	•	•	•	•	•	Ξ	22	260	174	124	617
fredit alter las	•	•	•	-110	-2419	-2349	516-	H-	ş	210		ŧ	2	1221	1410
Equally decombined	234	158	3	8 43	•	•	0	٥	•	٠	•	•	•	•	3
Cuentative Equily	234	1045	1871	2043	2843	2843	2843	2043	2043	2843	204.1	2043	2063	2963	i i i
Dividend Det	•	•	•	•	511	511	51	511	511	115	Ē	==	::2	511	115
Retained Earnings	•	•	•	100	-2514	-2404	0101-	-559	11	£	H	Ň	245	4911	111

T

.

175[.]

TABLE 10.20 - SOUPTES AND APPLICATIONS OF FUNES (Robanian Hill)

.

All Values in 8 '000s (Eurront Prices)	1987	1790	5991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2001
SOUNCES OF FUNDS															
Brawing on Long Tern Leans	3140 682	14357 3586	12535 1963	8439 746	•	•	•	•	•	•	:	:	•	•	•
Equity Subscription Braning on Sturt Torn Loans	887	1366	1763	776	1441	12101	21611	24804	30101	32893	35813	32285	27371	21229	1412
SUG 10TAL	3822	17943	14517	9365	9441	12909	21411	26806	30601	32893	35893	32285	27371	21229	1442
Beproci al son	•	0	•	٠	6859	2670	2468	7352	2243	1974	1874	1782	1493	1498	1528
Interest Beceived	0	•	0		0	•	0	•	•	•	•	•	•	•	•
Profit ofter Sepreciation	0	0	0	0	-4642	3972	9143	10123	11155	17250	13725	14246	15318	15444	19151
lotal Source of Funds	3822	17943	14517	7385	11450	19550	13222	39282	43999	47117	50774	48313	14302	39281	29171
NSES OF FUNDS															
Birect Investment	3623	17771	14385	9034	7651	771	•	0	•		6	٠	٥	٠	•
Pre-fruduction & Special Expenses	169	172	132	351	3	Ű	0	•	0	•	•	•	0	•	•
Long Tura Laun Repayaont	4	0	•	٩	0	0	4313	4313	4313	4212	4313	3728	3720	3778	0
Short Tern Loan Repayment	•	0	0		•	944)	12909	21613	26806	30501	32893	35473	32205	27571	21229
Tau Paid					0	0	ů 6277	•	0	9	2397 1882	3031 783	3359 527	3971 241	4854
LT Loan Interest Paid	0	9			0	6277 1086	1484	5170 2485	4079 3083	2780 3519	3783	4128	3713	3148	2441
SI toan Interest Paid Bruidend Paid	v		v A			208	280	2103	200	288	200	280	200	280	2110
Increase in Norking Capital			Å		2817	1688	2951	106	430	415	(38	462	487	514	544
Surplus Cash before ST loan	ō	i	ò	ò	-9441	-12909	-21611	-26806	-30401	- 37893	-35893	-32285	-27371	-21229	-9442
latal Applications	3822	17943	14517	9385	11458	17550	33555	34545	43999	47117	50774	48313	44382	39281	24121
Euo. Surplus Cash before ST Loan	0	٥	0	0	-1441	-12909	-21611	-26896	- 30601	-32893	-35893	- 37785	-27371	-21229	-9412
Shurt Term Loan	0	0	0	0	9441	12404	21611	24804	30401	32893	35893	32285	27371	21224	9442
Cue. Surplus Cash aiter Sl Ioan	0	0	0	0	0	•	0	0	0	•	0	•	0	0	•

.

..

TANE 10.29 - SAURCES AND AFFLICATIONS OF FUNDS (Swall Mull with New Plant & Equipsonil

٠

.

Ail Values in 6 '000s (Current Prices)															
	4841	110	1661	2441	1993	H	5441	1111	1441	961	H	308	2001	2002	2003
Sumicis of Fumis															
htematic en lang lara launs Genity Sabutripian Kremang en Saart lara ioans Sab Ibiki	526 • • • • • • •	150° 150° 150°	5175 804 5981	88 1027 0 1115	0 2411 2411	50) 50)	68011 0	• • 14096 14096	0 20419 20419	2550) 2550)		• • • • • •	0 20044 30044	• • • •	20749
Meyric relien Talereit Received Froiti after Meyriciation Tokat Suurce of Sunds	• • • •	•••	• • • - = ;;	1814 0 450	715 0 160 2995	473 6 0 147 6 003	615 0 1109 12843	418 6 1612 1612	480 1981 23380	454 0 2754 1219	435 0 12797 19721	411 0 2074 33436	9 9 9 9 10(1	571 6 5745 5708	151 0 1170 11274
saus in funds															
bitect lavesteest	1054	8138	5705	(I)	ŝ	•	9	•	•	Ð	•	•	•	•	J
hre-hradwillien & Special Expenses	=	140	212	2	•	•	0	0	0	•	•	•	•	•	•
leng Tera Loun Repayaent	9	•	•	0	9	•	3422	3422	3422	2773	3422	•	•	•	Ĭ
Short lera tcaa kepayaant	3	•	-	•	•	2644	5117	11089	16041	20919	25507	11062	10150	11007	181
las Faid	9	9	•	•	2	•	3	•	•	•	3	•	•	•	2
il tosa laterest Paid	3	•	•	•	2717	2717	2117	2173	1430	1001	55	•	•	•	Ĭ
ST Loun Interest Paid	•	•	•	•	÷	3	430	1275	1201	24/04	1111	3420	1995	3455	1912
Dividend Pure	•	•	0	•	Ð	911	411	1	911	1	1	11	91	Ξ	11
latrease in Borling Capital	-	•	•	150	85	223	202	5	3	2	R	=	#	:	i i
Surplus Cash before 51 loan	3	•	•	•	1192-	1115-	-11089	-14044	-20119	-23507	11892-	-30150	-30014	11542-	-28769
letal õpplications	111	4248	1865	650	5446	4003	[384]	18326	23380	28219	12747	13434	1965	31700	13249
Cua. Sergius Cash before Si luan	0	•	•	•	-2644	-5477	+110EY	-14094	41402-	-25547	11862-	-30150	-30014	12862-	-2014
Shurt Tera Luam	•	•	•	•	2411	105	11(89	14091	20919	25547	24011	95195	1001	29574	20764
fine furning fish after ST have	•	9	e	•	c	•	Q	Q	•	•	•	9	q		

:

177

·.

TABLE 10.30 - SOUNCES AND APPLICATIONS OF FUNDS (Seal) Hell with Second Hand Plant & Equipment)

Alà Values in 8 1000s (Current Prices)

	1787	1990	1991	1992	1993	1994	1995	1996	1997	1978	1999	2000	2001	2001	2003
SMARCES OF FUNIS															
Brausag un Long Turn Loans	730	4174	4497	67	0	•	0	•	0	0	0	•	0	0	0 6
Equity Subscription	234	831	804	992	0	•	0	0		Q	0 20247	19584	18363	14817	14944
Braning on Short Tern Luans	•	0	•	0	2079	4173	6277	11703	14861 14861	17692 17692	20247	19564	10343	14847	14944
SHE TOTAL	741	5005	5302	1079	2014	4173	4277	11703	14001	1/476	10111	11001	14427		
• • •	۵	0		1487	623	585	561	539	405	384	345	347	329	313	:177
Bepreciation	\$		å	0	0	٥	•	0	•	•	0	•	0	0	¢
Interest Received	Å	Ň		-1919	-231	58	1315	1821	2191	2470	2770	3015	3405	3794	4115
Profit after Bopreciation Tutal Source of Funds	964	5005	5302	649	2471	4814	10134	14062	17457	20544	23383	23027	22278	21155	19557
IDCAL SOURCE OF FUNDS															
LISES OF FUNDS															
Screet Investment	818	4845	5027	477	125	0	0	0	0	0	0	•	0	•	
Pre-Production & Special Expenses	114	166	275	15	Ú	0	0	0	0	0	•		•		
Long Tera Lona Repayaent	Û	0	0	0	0	0	2918	2918	2918	2910	2918	20247	19584	18363	15847
Short Tern Lain Repayment	•	0	0	0	0	2079	4173	8277	11703	14061	17692	20247	240	474	459
Tax Paid	0	0	0	0	0	•	0	0	0		113	238	6	6	۵. ۵
LT Loos Interest Paid	4	¢	0	0	2188	2180	2180	1751	1313	875 1709	2035	2328	2752	2112	1937
ST Loan Interest Paid	0	0	0	0	0	239	480	952	1346 115	115	115	115	115	115	115
Geveldend Paid	0	0	•	•	9	115	115 200	115 50	63	48	11	79	29	91	18
Increase in Ucrking Capital	0	0	•	157	150	195	-8277	-11/03	-14861	-17692	-20247	-19584	-18363	-14847	-14944
Surplus Cash tefore SI love	0	G	0	Q	-2079	-4173	-0477	-11143	-14681	-1/014					••••
Tutal Applications	964	5005	5302	447	2471	4816	10154	14042	17457	28546	23383	23027	22298	21155	19657
Cua. Surplus Cash before SI loan	0	0	0	•	-2079	-4173	-8277	- 1703	-14861	-17492	-20247	- 19584	-18363	-16047	-14744
shurt lera Luan	ů	ò	0	Ó	2079	4173	8277	[1703	14641	17692	20247	19584	18363	14847	14944
Gua, Surplus Cash after SI Ioan	Ŭ	0	0	0	Ŭ	٠	0	0	0	•	٠	•	Û	0	Ű
-															

. .

٠

178

٦,

•

All Valees in 8 '000s (Current Prices)															
	1961	9111	1461	2661	1993	1661	5661	1116	1441	8661		2008	1002	2002	2003
فاعدداه															
Cumistore Cash Surplus	•	•	•	٥	•	•	•	•	•	•	•	•	•	•	•
Riatowe Cash	•	•	•	•	240	5	152	E.	2	268	Ī	Ē	Ī	501	3
letal Cash	•	•	•	•	260	5	2	Ē	3	268	Ī	Ê		50	3
best er s	•	•	•	0	1 15	2011	1934	2057	2100		203		2727		
štuchs	•	•	•	•	Ŧ	2303		986 7	5270	1975	255		121	1	1230
Current Assuls	•	•	•	9	2247	[(]]	1304	101		2110	1257	9119	10110	1:980	
Flaced Assels	3822	1743	11317	5964	1441	Ē	•	•	•	•	•	•	•	5	e
Cuentative Fixed Assets	2286	21/45	20270	45667	55309	54079	56079		54074	51.079	54079	11015	54079	24079	1095
Cumulative Bepreciation	•	•	•	¢	4029	1221	11997	11349	14593	18547	20442	1222	23917		17451
Met Fired Assets		21745	34202	45447	48449	14550	41082	11730	29482	57512	35437	33055	32142	20254	24028
1013. Assets	2280	21745	34282	1995	50747	12/05	51464	11511	84//7	18211	1481	43425	42472	41434	46425
trabilities															
	a	4	9	•	280	11	728	272	1	141	116	141	Ĩ	1670	6011
	• •				-	9	-	-	•	1962	1E VE	1159	3971	1634	5490
lat tur turidised Bus	• •	• •	• •	• •	28	280	280	WZ	ž	2	382	200		200	103
					9441	12949	21411	24804	10401	11041	14451	32205	27371	21229	2194
Source of the Architector	• -	• -3	• •	•	1001	1144	22424	27844	31700	2007	40123	20072	32444	27240	14330
	1140	19401	20012	38421	1121	10.00	2111	23923	11201	191	1117-	-11302	-15791	18261-	10241
	482	426	4254	1146	7194	1146	114	111	2146	1196	2194	196	141	191	7194
	•		=		-11207	-14905	-12492	1011	(11)-	-15	(00)	10637	12925	24278	14201
	(COL	21115	CHEAT	CALL R	1124	1000	1111	44744	49714	44.784	44894	114.25	42472	11114	46455
	37 BC		78786				ļ								
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Flumcing milles															
tl tawas/itl tawastemity)	228	108	210	242	146	342	110	111	154	301	19429	2751	141	1401	1091
Leans/Iteans (Squity)	120	108		Ĩ	1	249	ž.0	200	196	2(0	10	X	119	212	1216
laterest Cover after dep & laterest	10	10	20	70	201-	245	1371	191	2781	127	2001	1905		2221	1111
Current futen	20	10	10	5	231	181	E	711	202	Ē	112	112	Ř	i i	10/
Operating Surplus to Sales	20	10	6	10	121	162	12	ž	Z	R	12	241	Ē	2	2
Sules to Capital Employed	20	10	3	10	196	242	2//6	2001	2611		IC			1/02	1107
Proit aiter Tax to Sales	10	10	3	5	121-	-121	2		5	3			E	<u></u>	ž
Prolit aller has to Capital Explored	70	10	10	5	-271	ŗ.	3	2	11	101	111	19	102	112	
Liquidity Galie					0.09	0.12	0.12	•.10	9. io	•. •	8.9	0. IO	9, 12	0,15	0.76
PARAMER PERIOD															
Gumulative Net Cash Flow (constant teres) New of Paphus	-3440.21 -1 0. 00	- 50'FIMI-	- 32435.44 -1 0.40	- 40174.54 -(- 11374, 17 -	- 44177.44 - 0.00	- 12'1408(-	-29497, 18 0.00	-21110.42	-12402.92 0.00	-3599,00 0.00	5301.12 20 00.00	14.797.44 0.00	25390.02 0.00	32644.44 0.00
Particul Network (News)															

IAM E 10.31 - BALANCE SIEEF (Roosnian Mill)

٠

179

.

и.и И.х

SIMM'E MAEE DE NEIWMM (1995) On Total Lavial, costs On Equity Capital

۰.

Ail Yalues in 5 'OND' (Current Prices)

.

Ĩ

	1941	1110	1441	2661	2461	141	5661	1441	1661	9441	H	2008	1002	2002	2003
Ansel s															
Comulative Cash Surplus	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Rianama Cish	•	•	•	51	3	2	51	111	124	511	S÷I	2	3	171	Ē
[417] [237	•	•	•	5	3	2	Ξ	Ξ	124	81	£	12	E	121	Ē
Brier.	•	•	•	7	121	2	942	22	147	*	1 01	5	14	212	25
Starts	•	•	•	122	25	2/E	215	5	1 17	517	3	2	12	928	£
Current Ansels	•	•	•	2	R	629	ž	1	(10]	Ŧ	1231	1322	4011	131	1670
Fired Assels	6911	W.1	5981	æ	21	•	•	•	-	•	•	•	9	•	•
Cumulative Fixed Assets	6711	CHL	13448	13940	59011	14045	14045	14045	570t I	59011	51011	14945	14045	1445	57011
Considire Depreciation	•	•	•	1014	2531	1204	1 DX	1117	111	2403	77	1247	1430	2010	1342
bet fired Assels	4911	141	13448	2121	11214	10041	10214	1247	8116	41.42	6220		1471	2015	1017
IUINE Arcels	6711	141	13440	12113	12411	1491	07111	16591	20101	1004	9714	0† I 4	4580	●/S0	153
li dilities															
Criticity .	9	0	•	3	17	a	124	122	111	ŝ	951	141	[1]	6/1	192
2	•	•	•	•	•	-	3	•	•	•	•	-	•	3	222
Distingent Due	•	•	•	•	11	111	1	911	11	1	911	1	1	=	1
Short lore loss	3	0	•	•	2644	5477	68011	14076	20919	25507	2011	20150	30011	11545	20769
Current Lidhilities	•	•	3	3	2630	5474	11328	14314	21144	25743	30077	20427	30326	[1362	29319
lang lora laun	516	4102	11374	14,542	14302	14362	11201	6052	1814		1117-	1017-	1117-	-1111	1117-
Tutal Squity	162	1045	10/1	8602	2046	06A.	8482	2098	2098	DAAS	2838	2010	52	1440	2090
Artained Earnings	•	•	3	(14)-	91 1 7-	1011-	19201-	-14692	-15765	- 16574	-17070	1141-	-1745	-17840	1441-
1914 Lishities	1169	192	13446	[[2]]	12611		97111	14501	10185	1908	0716	9116	9234	4570	
	•	•	•	•	0	0	•	•	•	٠	•	•	٠	¢	•
Financial nation															
11 Louss/117 LoussiEquily?	100	_	298	250	121	032	18/	101	145	-3401	1201	1201	101	1201	182
leans/ileassiEquity)	14		148	032	120	118	789	199	140	16	160	14	740	260	3
laterest Euror after Bep & laterest	5	20	20	118-	721-	ş	101	551	1/1	145	128	110	2/6	2601	2
Current Patie	10		7	21	211	*	4	2	\$	¥,	\$	Ŧ,	2	3	-
Operating Surplus to Sales	6		3	7F	Ξ	2	12		30	12 12	241	101	3	22	2
Sales to Capital Exployed	5 :		6	Ξ	1		Ë			Ē	Ē	1621	201	1461	
Front duty in the factor of front of fractioned	3 3	3 4	3 2				10				7 7		;	3 2	• •
trents from the test of the test of the test			5	1.22	0.0h	0.01	0.04	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.03
PARDACK RE2100															
Cumulative Met Cash Flow (constant turns) Year at Payback	-1111.53 0.00	-4823, 94 0.0	-11 79 2, 8 0 0.00	- 12910.42 -	-12847.01 0.00	- 124 00.8 2 0.00	-11543.59 -	-10040.04 0.00	-8448. 43 0.00	-6817.48 0.00	-5084.25 0.00	-3271.75 0.00	-1284.27 0.00	788.60 2002.00	2151.67 0.00
Paybuch Person (Yours) 13															
Class and at active light															

.

.

180

SIMPLE MAIK OF DELUMIN (1995) On lotal invest. costs 7.95 On Equity Capital -30.52

	TABLE 10.33 - BALANCE SWEET (Seal) Mill with Second Hand Plant & Equibant)	SHEET (Saal	I WIT TIN	Second Hand	l Plant & Eq	jui baent)										
All Yalwes in 9 "2005 (Current Prices)																
	5861	0461	1661	2441	1441	•••	5641	1994	2661	8661	4441	2000	2001	2002	7003	
Assels																
Cumiative Cash Surplus	3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Ristown Cish	•	•	9	Ā	3	2	112	113	123	22	ŝ	3	3	Ē	1	
latal Cash	. د	•	•	A (3	21	Ξ.	21	23	21	21	3:	3	21	1	
bediers.	.	•	•	7	21	2:	962	22		5	Į :	2	Ş			
Sterts	3 4		•	2	902 201		5								2 9	
Current Assets					Ę ₹		-	Ĭ	7 CA1		2 •	<u> </u>				
Fixed Assels			2000	74		11818		11884			•					
Lucal altye Flaed Assets		4942				1870		1100		10.1	Ī				1.64	
Ludwidtive Represident Hat Eraad Aarate			16611	11/201	7116	1919	1678			2012	191	1590	1210	195	3	
Blat Assets	1	5949	11271	10480	19101	18/6	2054	1204	01/0		97 10	1075	1427	1110	1232	
tiobilities																
		0	9	\$	2	-	[2]	121	5	651	•	140	3	171	Ē	
lar bar	• •	•	• •	•	3	•	•	•	•	113.	25	240	10	121	14	
Bruidend Bue	0	•	•	•	511	51	511	115	511	115	=	115	115	511	12	
Short Isra Loan	3	•	•	•	2074	1173	8277	11703	14011	249/1	20247	1954	10343	14047	10411	
Current Liabilities	3	•	•	\$	2244	4348	813	8(4))	15105	10050	20748	20127	1111	1774	[11]	
lang let a laan	R2	1064	016	11674	11674	11474	8)20		6071	11-	-2015-	-2102	-5102	-5102	-5102	
latal Equity	Ϋ́,	1045	1/81	2043	2843	2845	2865	2863	2982	2863		2003	2002		2002	
Retained Earaings Tarts to a children		0 a 78 y	•	9014-	2144-	1824	CC101-	15V8	8CB01-		4460I-		1671		224	
						I	i		2							
	•	•	•	•	•	•	•	•	•	•	•	•	•	Ċ	e	
Ll Loans/ILT Loans+Equity)	191	128	832	801	208	108	741	111	R	1/51-	1822	1022	2281	2362	2201	
Laws/Iteassifyi	191	128	110	19 8	71 8	8 51	77		2	2	Ī				Ē	
laterest Cover after Nep & laterest	33	33	8 3	188- 1	ļ	* :	5		Ē	<u> </u>	1961	161	<u>191</u>		2972	
LUTTERI RALIO Descripto Escalut in Salut	5 2	5 2	3 2	ĘĘ	5 8	1 2	i ĝ			- 19	1	1		1	3	
Sales to Cupital Explored	13	: 3	: 3	12	ន្ត	5	802		101		1351	1151	1741	2001	2311	
Profit after Tar to Sales	8	8	70	-3162	292-	152-	121-		10	71	15	5	2	16	111	
Profit after las to Capital Employed	10	10	70	141-	-241	-251	201-		10	Ħ	7	ž	12	241	u	
Liquidity Ratio				1.73	0.08	0.0F	0.03	Ó	0.03	0.03	0.03	0.03	0.03	0.04	0.05	
PATOACE PEATON																181
Cumulative Het Cash Flow (constant teras) Year of Paybact	-918. 03 0.00	-5457.46 0.00	- 10037.80 0.00	- 10925. 63 0.00	- 10833.54 - 0.00	-10487.58 0.00	-\$334. 1 8 0. 00	-7744.87 0.00	-4015, 01 0, 00	-4344.98 0.00	-2528, 20	-626.32 6.00	1448.53 2001,00	3408. 14 0.00	5450.59 0.00	
Paphach Period Neural 12																
Sumrte Mate de Reluxun (1995) Da Total javest, costs 11.12																

TABLE 10.33 - BALANCE SHEET (Saal) Mill with Second Hand Plant & Equibaent)

:

.

-22.02 Um lotal invest. costs Bu Equity Capital

181

•

10.9 Payback Period, Simple Rate of Return and IRR (with financing)

The calculations regarding payback period, simple rate of return, and IRR with financing are presented in Tables 10.16 to 10.18 and 10.31 to 10.33. The relevant figures are reproduced below, in Table 10.34.

The results are consistent with the IRR and NPV figures in Section 10.5. The small mill options are clearly inferior to the Romanian mill (under the commercial terms assumed), and cannot be considered viable. The Romanian option generates an IRR with financing in real terms of 7.5%, but this is very marginal.

10.10 Break Even Analysis

The break even analyses are shown in Tables 10.35 to 10.37. The break even points (in tonnes/pa) are calculated, first, with reference only to operating costs, and second, adding to operating costs depreciation, financing charges, and tax.

The figures show that the Romanian mill breaks even (after depreciation, tax and interest) in the third year of production (when sales exceed the break-even point), the break-even point steadily declining to below 50% of sales by the final year of production.

In contrast, the small mill with new plant and equipment breaks even in 2002, after 11 years of production.

The small mill with second hand plant and equipment breaks even in the 7th year of production.

These figures also indicate that the preferred option is the Romanian mill, and that the small mills are operating at too low a volume of production to be viable.

TABLE 10.34 - PAYBACK, SIMPLE RATE OF RETURN, AND IRR WITH FINANCING

	Payback Period (years from 1989)	Simple Rate of Return on Investment Costs (%) (1995)	Simple Rate of Return on Equity Capital (%)	IRR with Financing (%)	IRR with Financing in Real Terms (%)
Romanian mill	11	16.3	34.5	12.9	7.5
Small Nill with New Plant and Equipment	13	7.9	-58.5	-16.81	-20.77
Small Nill with Second Hand Plant and Equipment	12	11.1	-32.0	-1.51	-6.2

Source: WS Atkins

TARLE 10.35 - DREAK EVEN ANALYSIS (Roaanian Hill)

۰.

۰.

:

•

•

.

All Values in \$1000s (Current Prices)

	54il	M	Ē	141	141	84+1	ŧ	2000	1002	2002	2043	2004	2002	7001	2067
Siles Housel Project Barrow Aneroge Price Gor Lennel Expectity Hennerchal				52]]26 5.88 1000	1000 A 200 1000 br>1000 A 200 1000 1000 A 200 1000 1000 1000 A 200 1000 1000 1000 1000 1000 1000 1000	8544 51885 95.4	5148 5148 1917	9156 15470 7.11 18606	N24 N257 N257	9524 11512 11512	9904 11, 14 12, 14	8115 81.013 81.03	857 8 877	+ 12 - 12 - 14 - 14 - 10 - 14 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	454 1471 1471 1408
Total Aperating Costs Teriable Costs (per tenno) Firod Costs	13016 1.42 2752	22554 21.39 2010	11214 11.14 1444	30051 31.95 4491	42259 4. 15 4724	4596 4.34 5172	47849 4.57 5436	() () (, 10 5702	52377 5.04 5107	12241 12.27 1274	5.54 5.54 101	40%1 5.81 1911	41514 4.13 4200	5104 1979 1986	71584 16.74 7384
break Erem (tamons/pa) 1 as a 2 of sales forecast 1 as a 2 of caparity	1442 55.41 14.62	1448 34.31 14.72	2445 27.02 21.52	2022 71.15 71.15	2419 24.92 24.22	2413 26.73 24.13	2407 24.51 24.11	2401 24.71 24.61	2115 26.01 24.01	2149 25.85 21.72	21.11 21.15 21.15	21.42 21.42	21.M 21.31 21.01	21.79 23.11 21.68	21.15 22.92 21.15
byreciation Firancing Churges La	4589 1129 4	2676 2615 •	23°	2352 4541	9 5109 5122	1974 5401 2393	1074 1344 3451	112 469 3359	1765 1765	101 110 110	<u>e z s</u>	12 2 2	<u>s</u> ąę	<u>s</u> ęs	12H 12H 12H
Keat Even (Emmer/pal allowing Inr deprets, tas à charges e as a 2 ed aaits forecast è as a 2 ed capacity	542 349. 22 75. 71	184 18.21 18.11	742 M.R	2005 11.45 12.67	4.44 72.21 15.01	4975 77.05 10.71	4405 72.41	4521 71.31 45.71	4250 11.11	5065 14.11 17.12	2013 11.13 11.13	5841 54-37 27-64	1724 52.41 11.11	077 11-14 11-14	1355 16.01

۰.

:

HARE 10.34 - DECRE EVEN ANN 1515 (Sault Hill with Now Plant & Equipment)

.

.

.

.

1

• .

•

: .

Ail Values in 2.004 (Current Prices)	1112	in:	H	5661	7661	(11	Ē	Ē	Ŧ	1042	2002	2003	Ĩ	2005	Ŧ
Sales (leanes) Project Annound Anerage Price (per Leane) Capacity (Leanes/pu)	22 22 22 22 22 22 22 22 22 22 22 22 22			211 212 213 213 213 213 213 213 213 213		1111 1213 1213 1200	1229 1114 1200	1244 10237 8.89 1508	1304 11072 8.49 1500	111 111 111 111 111 111	9542 9542 9542		1460 15147 16.22 1580	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	156 1765 1565 1566 1566
letal Operating Conts Variable Costs (per tecne) Fised Costs	1759.00 3.07 1014.42	2012.00 3.22 1119.95	3736.01 3.34 1403.02	5729.44 3.54 1749.45	542.74 3.72 1557.24	4272.22 3.96 1435.13	6754.27 61.1 1016.00	7751.40 4.36 1902.73	7784.55 4.52 1892.86	1.75 1.75 1029.11	0015.72 4.90 1920.57	1171.00 5.23 2014.40	10184.58 5.50 2117.43	1000, 00 5. 77 2723. 30	11424.40 6.66 2334.46
besi Even (tennes/pu) t as a 1 ef suler inreat t as a 1 ef suler inreat	3 M.65 177.41 51.72	340.51 25.91 31.15	111.32 73.02 64.42	541.74 49.92 37.42	174.42 41.12 31.02	016.50 39.92 31.01	176.56 20.01 31.02	014.46 37.45 31.85	176.74 36.61 31.81	438.01 32.77 29.31	434.M 31.72 29.32	10.15 26.01 26.01	19.01 29.15 29.15	439.05 29.11 29.31	434.65 74.15 77.11
byretistim fisaetur Caerps fa	1015.73 2716.22 •	715.41 2716.52 •	12.61 10.574	414.85 2843.41 0	618.26 2945.13 0	479.96 2457.44 9	155.91 29.919.00 0	(31.11 2931.34 •	411.44 3478.24 0	310.00 3467.36 6	371.34 3455.06 100	352.77 3401.03 272	333. (5 3380. 46 462	310.30 25.25 828	342, 44 3441, 18 618
Broat Even (Learney/va) alleming Lee Georgic., las & Canegen e en a ≿ al sal :s terreari • an z ≩ ed capeg 'r	17.115 19.115 11.115	1419.4/ 300.51 216.02	17.11.11 19.115 19.115	1449.09 148.42 111.32	16.1421 31.161 14.101	1672.43 1231.41 98.22	1921.74 113.71 19.01	97.4461 39.761 31.14	10.3.01 110.71 94.31	1364.41 101.42 91.01	12.14 16.75 15.76	1315.21 72.31 87.76	1290.13 87.91 86.01	12:4.05 81.92 61.92	(214.75 01.62 01.62

185

•

:

TANE 14.37 - MEAK EVEN AMALYSIS (Saal) Hill with Socoad Hand Plant & Equipeent)

٠

-

2

(

All Values in 1'8845 (Current Prices)	EN I	[14]	Ň	£	141	1441	Ē	Ŧ	2040	2001	7002	2003	2084	Sec.	2064
Salon (Tenner) Proset Breene Anerage Price (per tenne) Capacity ((enner)pal	8858 8	\$35 \$35 \$5	29 27 28 28 28 28 28	211 212 213 213 214 217 217 217 217 217 217 217 217 217 217	121 120 1200 1200	11 12 12 12 12 12 12 12 12 12 12 12 12 1		124 1251 1560 1560	1301 11072 11072 1509	1911 1974 1911 1918	9542 9542 9542		1460 15147 15.17 1506 1506	1500 16755 16.85 1560	1266 1765 1765 1765 1765
tetal deviting Cents Purtable Cents (pur tennet Fired Cents	1723.24 3.67 1031.70	2775.41 1.22 1001.37	3432.93 3.34 1342.01	5404.51 1.54 1421.79	1,12 1,12 103.65	4154.49 1.91 145.01	411.90 9.19 1349.79	7102.06 4.31 1640.20	7429.43 52.9 1730.70	0039.25 4.75 1450.04	0442.94 4.99 1741.70	(01928) 92.2 92.2	9443.80 5.50 1976.31	104.79.74 5.70 2014.35	11213.73 6. 04 2117.11
bred Even Hemmen/pul • cs d Eve Alexan/pul • cs d Eve Evently	50,400 14,171 31,51	116.47 73.41 51.41	12.003) 19.15 11.16	321.35 44.42 34.02	1.16. 10 33.41 39.11	416.16 26.51 79.11	136.22 35.31 79.11	434.70 34.51 29.11	16.484 18.88 11.95	341.36 17.95 26.61	396.41 26.81 26.61	311.46 29.65 24.61	398.30 27.11 24.41	741.53 74.45 74.45	348.53 24.45 24.45
Derectation Filoacting floorpoor	1401.11 2100.43 0	472.46 2100.45	54.42 91.555 4	561.33 2236.63	530.92 2241.75 0	101.55 221.14 0	366.36 2166.69 113	143.04 243.154 259	346.05 2328.43 248	329.49 2252.20 474	313.02 2111.77 659	297.36 1937.44 867	202.50 1710.59 1165	246.37 1446.71 1349	254.95 1124.42 1544
brak frem (temarupa) allewlee He deproc. and charges a as a 2 al sales forecal t as a 2 of capacity	1741.09 11.18 11.181	1345.82 244.62 184.81	1472.72 218.11 194.31	i419.36 124.31 94.45	1294.00 111.71 04.31	1202.18 160.71 10.11	1136.97 11.67 11.67	11.39.40 30.05 76.05	1178.50 14.61 74.61	1132.07 11.31 15.51	1103.74 79.85 73.62	1674.27 75.45 71.65	1042.70 71.01 89.51	1001.65 67.01 67.01	131.67 63.51 41.51

٠

.

186

•

٠.

10.11 Sensitivity Analysis

The following scenarios have been selected for the sensitivity analysis:

- * variations in the price discount rate for the PTA market (vis a vis European imports)
- * variations in the level of competition from Radiator & Tinning
- * variations in the demand forecast for the PTA market
- * general price increase/decrease of 10%
- * operating costs increase/decrease of 10%
- * copper price increase/decrease of 10%
- * expenditure on fixed assets increase/decrease of 10%
- * general sales decreases of 10% and 20%.

The results of the sensitivity analysis (on IRR without financing) are presented in Table 10.38.

The analysis of variations in the price discount (relative to European imports) for sales to PTA markets shows that:

- * the Romanian mill project is not very sensitive to such changes, since 80% of capacity is sold outside the PTA
- * the three projects achieve an acceptable rate of return only with a price premium over European imports of between 5 and 15%.

TABLE 10.38 - SENSITIVITY ANALYSIS

		Romanian Mill		1 with New Plant Equipment		with Second Hand nd Equipment
	1RR (%)	NPV at 12% (\$'000s)	IRR (%)	NPV at 12% (\$'000s)	1RR (%)	NPV at 12% (\$'000s)
Base Case	10.61	-3,653	6.27	-3,992	8.59	-2,126
Variations in the Price Discount Rate (Base Case = 5% Discount)						
No price discount 55 premium	10.97 11.32	-2,733 -1,812	8.05 9.69	-2.864 -1,737 -610	10.46 12.19 13.81	-998 129
10% premium 15% premium	11.67	-892 28.51	11.21	-610	15.33	1,256 2, 384
10% discount	10.25	-4,574	4.32	~5,119	6.55	-3,253
'5% discount	9.87	-5,494	2.15	-6,246	4.29	-4,380
Variations in Competition from Radiator & Tiuning (Base Case= 20% Zimbabuean market ISS other adjacent PTA markets)						
Scenario 1: 80% Zimbabwe, 50% others Scenario 2: 50% Zimbabwe, 30% others	10.04 10.34	·5,064 -4,333	2.77 4.72	-5,919 -4,901	4.95 6.96	-4,053 -3,035
Variations in Domand Forecast For PTA Narket (Base Case = 3% pa)						
Scenario 1: 1% pa Scenario 2: 5% pa	10.00 11.36	-5,135 -1,729	2.43 8.23	-5,866 -2,697	4.88 10.70	-3,887 -831
Other Variations						
Sales price increase # 10%	15.42	9,905	9.69	-1,734	12.19	129
Sales price decrease # 10%	4.58	-17,200	2.15	-6,246	4.29	-4,380
Operating costs increase 0 10%	5,90	-15,165	2.36	-6,140	4.39	-4,377
Operating costs decrease 0 10%	14.30	6,454	8.30	-2,645	10.72	-815
Copper price increase 0 10%	7.43	-11,299	4.50	-5,025	6.74	-3,159
Copper price decrease 0 10%	13.44	3,992	7.90	-2,958	10,31	-1,092
Expenditure on fixed assets increase 0 10%	9.50	-5,774	5.39	-4,892	7.66	-2,876
Expenditure on fixed assets decrease @ 10%	11.88	-292	7.25	-3,091	9.65	-1,375
Sales decrease 0 10%	5.15	-16,121	-0.93	-7,131	1.26	-5,265
Sales decrease # 203	-2.17	-28,590	-7.49	-9.089	-5.59	-7.223

The impact of this price premium will be offset by a reduction in sales arising from imports. For this reason, we believe it is unrealistic to proceed on the basis of selling products at prices above those of European imports.

The effect of variations in the level of competition from Radiator & Tinning was evaluated under two scenarios:

- * Radiator & Tinning has 80% of the Zimbabwean market, and 50% of adjacent markets
- * Radiator & Tinning has 50% of the Zimbabwean market, and 30% of adjacent markets.

Both scenarios have little impact on the Romanian project, since over 80% of sales are outside the PTA. However, the effect is quite marked for the small mill, which is clearly very sensitive to any fall of sales.

This is also clear from the sensitivity analysis of variations in demand forecasts for the PTA market. Two scenarios were examined in addition to the base case: 1% pa and 5% pa growth. Again, there is little impact on the Romanian project, but the effect is significant for the small mill option. It should be noted, however, that neither of the two small mill projects would produce IRR's in excess of 12% with 5% pa growth in PTA demand. With 5% pa growth in the market, the small mill could add a third shift by Year 9 which would improve the situation. In our view, however, it is unrealistic to assume such a high level of growth for a region currently experiencing severe economic problems.

The other results show that projects are more sensitive to changes in prices and operating costs, than expenditure on fixed assets. This is unfortunate from the point of view of negotiating with suppliers of plant and equipment and with contractors. Both small mill options produce IRRs lower than 12% in all cases, with the exception of a price increase of 10% in the case of the small mill with second hand plant and equipment. This is probably an unrealistic assumption since the price of copper sheet and strip is heavily influenced by the price of copper, and a price movement in one will be followed or preceded by a similar price movement in the other.

A few cases produce IRRs in excess of 12% for the Romanian mill. However, the validity of these scenarios is questionable. A decrease in operating costs or the price of copper should, realistically, be matched with a similar decrease in the price of copper sheet and strip. A decrease in operating costs, other than copper, has very little effect on the viability of the projects.

An IRR of 11.88% with a decrease in expenditure on fixed assets is encouraging, but the quoted price for the Romanian plant and equipment may in fact be an underestimate (see Section 6.3.1). A decrease in expenditure on fixed assets, while improving the figures for the small mill, does not produce a rate of return over 12%.

The effect of changing the design of the small mill production process to include only one rolling mill (as suggested by UNIDO) was also considered. Although this design would lower productivity, it would save about 15% on the cost of plant and equipment, installation and commissioning. The analysis shows, however, that a saving of 39% on these costs would be necessary to produce a rate of return of 12% for the second hand plant. In our view, such savings would not be achievable.

All options are <u>very</u> sensitive to variations in sales. This is particularly important to bear in mind with regard to the Romanian mill, where sales well in excess of that needed to pay off the Romanian credit, have been assumed. Sales of about 7,000 tonnes would be needed between 1995 and 2002 to cover the repayment of the Romanian loan of \$20 million. This is only 10% of the 69,000 tonnes projected sales throughout the period. Note that the impact of sales increases had not been examined. The reason for this is that each mill option is operating very close to capacity in every year after the first 3 or 4. It is unrealistic to postulate a significant sales increase. An increase of only 5% would bring the small mill up to 100% capacity in every year (although there is scope for adding a third shift). This is equally true of the Romanian mill.

11. ECONOMIC EVALUATION

11.1 Approach to the Economic Analysis

The aim of economic analysis in project evaluation is, taken over a large number of projects, to direct the allocation of resources in such a way as to assist in the achievement of national development objectives. Since, from the national standpoint, money values are an imperfect measure of resource costs and prices, it is necessary to have a common unit of account, or numeraire, in terms of which everything is measured. The use of economic cost-benefit analysis arises from the need to express costs and prices in terms of this numeraire by adjusting for distortions in product and factor markets caused by market imperfections and the effects of fiscal measures.

The economic evaluation for this study was carried out within the framework of an approach, (1) which is now the generally accepted World Bank method for the economic evaluation of projects in all sectors. The numeraire in this method is uncommitted government income measured in terms of foreign exchange. This is expressed at border prices by converting into domestic currency at the official exchange rate. The methodology involves the separation of benefits and costs into traded, potentially traded and non-traded goods. Traded goods are valued directly at border prices. Some adjustment may then need to be made to these prices to allow for transportation and handling, depending upon the common point of valuation. Potentially traded goods may be valued directly at border prices or treated as non-traded depending upon how trade policy in the goods

(1) <u>Project Appraisal and Planning for Developing Countries</u>, by IMD Little and JA Mirlees. <u>Economic Analysis of Projects</u>, by Lyn Squire and H van der Tak (World Bank Publications).

192

is expected to change, if at all, over the evaluation period of the project. With respect to non-traded goods, the principle is to break them down into their traded and non-traded elements until only the primary traded and non-traded components are left. In practice, it is usually only necessary to break down each non-traded good once, value the traded elements at border prices and value the non-traded elements in terms of the numeraire by multiplying by the appropriate conversion factor.

Domestic price distortions are adjusted for by netting out the effects of all taxes, duties, subsidies and similar types of transfers within the economy, which represent a financial cost to those paying the tax, but do not reflect the consumption of economic resources.

11.2 Conversion Factors and Economic Costs

Conversion factors are required, in the absence of more detailed information, to change the value of non-traded costs and benefits measured at domestic market prices into their border price values. A value multiplied by a conversion factor retains its domestic currency denomination but this domestic currency now represents the value of the good at border prices or its foreign exchange equivalent value. The standard conversion factor (SCF) is a weighted average for the whole economy and is used to estimate the economic prices of goods which cannot be directly revalued at border prices because of inadequate data. The SCF is equivalent to the inverse of the shadow exchange rate.

There was insufficient information available to be able to estimate a complete range of conversion factors from primary data. However, the Indeco Economic Evaluation Unit has developed conversion factors for the most important items, as follows:

1.00
0.80
0.85
1.00
0.96
0.67
0.50
0.80
1.00
0.95
0.80

These conversion factors were adopted for the purposes of this evaluation. However, the SCF was recalculated using the latest available data. Table 11.1 sets out the base data used. This yielded a five year average SCF of 0.86, which is comparable with values used by the World Bank for countries at similar stages of development in east and southern Africa.

11.3 Valuation of Cash Flows

Starting with the cash flows in constant price terms at market prices, as set out in Section 10, each of the individual elements of the cash flow items were revalued in economic terms in accordance with the foregoing principles. The factory gate was taken as the common point of valuation for all project inputs and output.

The copper cathode raw material inputs represent a potentially tradeable commodity and were therefore valued in terms of their opportunity costs to the Zambian economy. This was based on the LME price iess sea and land freight charges; the Kwacha road freight costs within Zambia being adjusted by means of the conversion factor for transport. For the other inputs, the foreign exchange and local currency elements were separated, the local components being multiplied by the relevant conversion factor

Conversion factor

Item	1982	1983	1984	1985 	1986	Total
Value of exports (fob)	880.2	1204.1	1650.0	2502.5	5366.6	11603.4
Value of imports (cif)	932.0	895.2	1108.0	1793.8	4028.6	8757.6
Taxes on foreign trade:						
Sales tax Customs duties	58.7 42.3	44.5 38.8	64.5 63.2	157.0 138.6	414.6 406.8	739.3 689.7

TABLE 11.1 - DATA USED IN THE ESTIMATION OF THE STANDARD CONVERSION FACTOR Value in the Year (K million)

Source: Bank of Zambia, Annual Report and Statement of Accounts, 1987

or the SCF, as appropriate. For electricity and water, the respective specific conversion factors were used. Manpower costs were broken down into the managerial, skilled, semi-skilled and unskilled elements and the appropriate conversion factors appl:ed.

On the revenue side, domestic sales were valued in terms of foreign exchange on the basis of the cif prices of imported copper sheet and strip, since they represent import substitution. For sales to the PTA countries, the foreign exchange element of revenue was separated out and added to the local currency element adjusted by the SCF. Sales to Romania were based on the LME prices of sheet and strip, adjusted for sea freight charges and appropriately converted land transportation costs.

11.4 Results of the Economic Evaluation

The forecast cash flows in economic prices for the Romanian mill and the two small mill options are set out in Tables 11.2, 11.3 and 11.4 respectively. The results of the DCF analyses for each option are summarised in Table 11.5.

The internal rate of return for each of the options is below the minimum Indeco economic opportunity cost of capital requirement of 12%. The rates of return for the smaller mill options, at 4.8% for the new mill and 7.0% for the reconditioned mill, are such that these cannot be considered to be viable projects in economic terms. On the other hand, the rate of return on the Romanian mill investment of 11.1% is sufficiently close to the cut-off rate to warrant further consideration.

TABLE 11.2 - CASH FLORS DEFORE FINANCING IN ECONOMIC PAICES (Resuminan Mill)

.

•

•

٠

All Values in 9 1000 (Constant Prices)

.

11 CM -		CASH FLONS	-	N 961 61		(000. 1)									
Equivalence in Fareign Carrowy (1) 1 1990	4041	£		64		Ĕ	£	Ē	È.	660) 6601 / A1 9641 5641		1962 5591	R	2003	
Fired Assets :	244.57 42.06	12944.44	1077.11 25.25	35.88 37 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	7240.45 515.07 1/5.15	573.00 415.69 439.02				8,40 1335.70				8.90 (1319.97	44.A
Tatal Cush dut Annone in Fureign Currency I	3.94	2990.57 13422.44 14027.44	-	1975.H 1975.H	_	-			C - A	1342.66		-		1346.07	1247.11 34041.23
and foreign Cash flow	KI- IS'NAK-	-200.57 -15622.46 -16627.90	_	-112.14	3017.15	1110.07	30015.76	31054.11	12.1051	32107.24	32201.05	W'S4825	12.14142	12445.00	32794.12
ITER 1 CONSTRUCTION CONSTRUCTION CONSTRUCTION CONSTRUCTION CONTRACTOR C		CASH FLOWS	IN CONSTANT NID 1998 PRICES	MID 1998	NCC	1000. 9 1	* * * * * * * * *	- 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				- 		- - 	
Especialization focal Currency (1) 1	8			4			£	761	141	Ŧ	ŧ	ž	2001	1441 1411 1444 2000 2001 201 200	2042
tco Anats Pre-presention & Special Expenses Increases an Berling Expirat Aperating Earls	25°141	2521.76 16.00	7.1	522.74 119.22 0.66	251.07 9.0 1025.27	87.64141 197.122	1102.05 24932.93	8.8 211.11	36.94	15.44	15.40 25734.04	15.44	2690	15.44 26191.54	-9-17 28019.57
Total Cash But Bornnes in Lacal E - recy - a	524.14 2	2407.74	130.30	642.02	~ ~	11.07961			25497.49	-	25749.53				26099.28
and Local Cash Flow a	-526, 16 -20	-526.86 -2407.76 -1386.36	-1304,36	-40.02	-10174.02 -15411.51 -24340.24	-15411.51	-24540.24	-2224.27	-23379.56	-21391.51 -23419.25	-23419.23	-23446.05	-23474.43	- 23542. 05	-23345.20
	SI- & 7157-	-15430.78	10.30 -12308.31 -3544.67 -7129.48	-13-142	-717.14	324.51	15.211	N.1123 15.2414	647.78	0790.70	11. 11. 11.	10.11	4024.04	103.01	9440.92

•

۰.

1 100.11

.

iatorad Rato of Return on Told Net Cash Flow

1715.25 1715.34 1716.71

•

 Mul
 Provest
 Value
 0
 1

 0 1

. 197

÷

TANK 11.3 - CASH FLOKS DEFORE FINNKEINS IN ECONOMIC PRICES (Swail Nil) with New Plant & Equipment)

Í.

All Values in 1 '000' (Canstant Prices)

11EN	•	-	A CURSIANT	IN CONSIANT NIS 1460 PRICES											
Especialment in Function Currency (1) : 199	101		•	244I		•	E	1		ŧ	ŧ	ž	1	2002	2002
front Anote Pro-production & Boxial Canada	38	413.78 45.66	17.95 19.60	347.76	2.5										
lacrosse in Uniting Capital : Decaling Casis				35.12 165.43	33.16 175.00	9.15 371.45	19.01 304.10	3.14 23.15	1.01	327.04	4.47 378,76	1.12	4.22 342.67	1.16 201.21	1.1 1.5 1.5 1.5
latal Cash Bet Revenue in Ferrign Currency	19. 19 19. 19		11.11		24.75 15.15	462.54 1007.03	425.94 24 76.91	328.25 2532.71	379.A4 24.79.31	331.00 2700.19	332.27 27 89 .44	21.44 21.12	307.07 2059.12	3048.10 3048.10	51.012 31.94.54
ant foreign Cath flen	12, 1229) - 142, 1419-			-51.52	44.94	1034.17	200.40	2221.40	17.14	2371.20	2457.17	25%.44	2452.22	2739.40	33.42
IIGA a Construction of the Participation of the Par		CASH FLOWE 1	R CONSTANT	FLOWS IN CONSTANT NID 1940 PAICES					-	-	-	-	•	-	
Especialare is Local Currency (1) 1 1999	6061	Ē	Ē	÷.	•	E	EL.	i i i		41 8 41	Ē	ž	100	50	592
firid Anots Prepaudium & Special Espanos Increso in Buting Espital Gurating Eats	8.N	527.92 19.15	470.81	13.4 1.6 1.6 1.6	8 ° ° 8	51.41 22%.74	124.46 3510.01	2.12 344.37	9. 34 1535. 84	9.42 2445.04	9.4 3736.61	19.21 2834.14	7.74	10-01 2977.795	11.15
latal Crah dui Dorane in Local Currency I	10), 10	112.07	573.44	138.24 188.24	2036.56 11(1).M	2330.37	3414.47	301.18 382.56	365. T	3455.40	3741.52 2791.60	21.12	1917 E	3480.62 3014.40	104.76
the Local Cash flow	- 0.10-	112.07	-573.44	-130.64	-14.7		-1103.47	-11.11	-141.04	-117.18	-111.12	-1002.76	10.124-	-11.11	51-004-
1004 MT CSM CM (1) 1 -1023.24 -530.05 -504.23 -MS.44 -54.59 144.76 1237.06 1237.06 1040.01 1427.25 1534.59 1455.16 1045.4		-16/31, 74 -5570, 15	-5611.2]	4. W- 19.244-	8.4	141.70	64.4	1271.00 1334.04	10.90	149.41	527(11)	1534.50 1495.14 1745.19	11.21	1745.19	6.94

:

•

۰.

latorai Aito of Actura on Itlal Met Cash flow

1 41

the Present Value 0

lant 11.4 - CASH FLAKS ACTARE FINANCING IN CONCAIL MICES IScall Mill with Second Aund Plant & Equipeenty

Ì

All Values in 1 "Dess (familiant Prices)

	101	:	Ĩ	1112	-		£	ž	Ĩ.		E	Į	1.	592	Ĩ
							i	•	•	:	•	i	ļ	:	:
respondention & Special Copenes of Increase in Berling Capital of	2.X	42°	139.00	***			40.15	3.67	3.8	1.1	1.02	£.15		\$;	1.51
Aperation Conta				145.01	12.31		N4.445	279.52	24.62	41'IR	781. 44	£.'5		29.92	244, 33
latal Cash But Tarteer ia Ferenge Currency :	113.14	3765.78	301.24	552.06 195.40	361.05	19.19 10.01	24.15 27.14 27.14	217.12 217.13	244.45 24.71		207.04 2701.44	200.44 2023.12		763.45 3640.10	241.16 21.91.51
they foreign Cash Flow a			-3001.29	-57.12	124.75	1955.03	748.25	2241.54	2311.07	2422.44	7502.10	201.14	247.00	2794.44	11. M
116a - 1		CASH FLOUS 1	I FLORE IN CONSTANT NUB 1998 PRICES (1 '600)	NID 1990 PRICE	1068										
Espenditure is tecal Euronery (1) 1 199	44 1	£	Ē	111	Ĩ	Ĩ	E	. TE	461	Ē		ž	Ī	52	Ĩ
		:	;;	;	::	:	:	:	:	!	!	::		:	:
Fired Assets Pra-production & Special Expenses is	11.12 10.00	572.42 M.15	470.04 102.40	15.6 6.13	**										
lacrosse in terting Capital 1 Decaring Certs 2				00.73 1172.34	81.95 1925.94	10'92 7251, 29	(75, 15 3407, 78	21.34HE	91.19 15.1141	9.67 1473.46	11-11LS	21.12 11.12	7.73	-	5.33 5.53
talal Cash Brt Revenue in Lacal Carroncy 2	193.18	412.07	. W.US	1201.10	201.05 1113.05	2305.20	2451.44	221.8 252.8	15(1.00	1635.25 2670.26	7724.319 2754.46	N27.75 2011.46	1977 - 19 19 19 19 19	1946.55 Joi4.46	4.101 1101.4
the Local Cash Flow			412.07 -573.44	-012.70	-643.69	-016.46	-1141.94	11-124-	-112.70	69.561-	-11.79	19.9	6 .161-		-144.35

:

1.10.1 internal Rate of Meturn on Total Met Cash flow

۰.

199

Criterion	Romanian Mill	Small Mill with New Plant & Equipment	Small Mill with Second Hand Plant & Equipment
Internal Rate of Return (IRR)	11.1%	4.8%	7.0%
Net Present Value (NPV)	[]		
e 8.0%	-\$10.96m	-\$2.78m	-\$0.76 m
e 10.0%	-\$ 3.29m	-\$3.90m	-\$2.00m
e 12.0%	-\$ 2.32m	-\$4.68m	-\$2.89m

TABLE 11.5 - RESULTS OF THE ECONOMIC ANALYSES

Source: WS Atkins

Gross value added by the Romanian project increases from \$2.8 million (in constant prices) in 1993 (first year of operation) to \$10.5 million by the end of the project period (Table 11.6).

TABLE 11.6 - ROMANIAN MILL: VALUE ADDED CALCULATION

All values in \$'000s (Constant Prices)

	1993	2007
Sales	11936	38180
Less: Cost of Materials : Cost of Spares etc. : Consumables : Insurance	8167 8167 186 105 679	25591 1272 105 679
Gross Value Added	2799	10533

Source: WS Atkins

11.5 Foreign Exchange Effects of the Project

The preferred option, the Romanian mill, would have two important benefits for the Zambian economy:

- * direct net foreign exchange earnings amounting to some \$30 million per annum at mid 1988 prices in 1995
- * an annual import substitution of copper sheet and strip totalling approximately \$1.5 million at mid 1988 prices by 1995.

Table 10.13 shows the foreign exchange cash flows for the Romanian mill. This cash flow does not include the foreign exchange benefits resulting from the import substitution effect. The cash flow yields an IRR of 38% and an NPV of \$90.1 million at 1988 prices. It is therefore clear that the project would generate substantial net foreign exchange benefits for the Zambian economy.

11.6 Employment Effects of the Project

Over the last decade employment opportunities in Zambia have not expanded to keep pace with the rate of growth of the labour force. In fact aggregate employment in the formal sector declined from a peak of some 381,000 in 1981 to around 361,000 in 1986. This has resulted in an increasing proportion of the economically active population remaining unemployed or grossly under-employed. In addition, because of the slow expansion of the country's industrial base, a large majority of the population continues to derive its income from activities with relatively low productivity. The problem may be characterised as one in which a large number of potential entrants to the modern sector have, of necessity, been absorbed into slow-growing sectors, such as traditional agriculture, artisanal manufacturing and low productivity service activities.

A principal effect of the construction of the Romanian Mill would be the generation of a significant number of new relatively high productivity employment opportunities, initially during the construction of the works and subsequently during its operation. It is estimated that the Romanian Mill option would give rise to some 214 permanent employment opportunities, as indicated in Table 8.3. It is projected that 14 of these posts would be taken by expatriates at the outset due to the shortage of suitably qualified and experienced Zambians. However, the majority of these posts could probably be localised in the medium term.

Whilst the impact of the project on employment outside the works is difficult to quantify, it is nevertheless potentially very significant. Studies in a number of both newly industrialising and developed countries have demonstrated that non-ferrous metals industries show a relatively high degree of interdependence as measured by the number of forward and backward linkages with other industries. The industries serving the works will be stimulated, as will transport and infrastructure facilities. The industries directly serving the works will include the copper refining industry, gas and electricity supply industries. firms supplying components and consumables and professional and other services. The purchases by the mill from other industries in Zambia may be derived from the statement of operating costs for the works (Table 10.7). At full output domestic purchases amount to some \$25.4 million.

Forward linkages generated will include increases in capacity in the downstream industries induced by the reliability of the new source of supply, and its availability in local currency. The existing downstream industries include principally, geyser manufacture, copperwares and radiator assembly, together with some electrical component firms.

The new works and the linked industries will also induce tertiary employment. Induced tertiary activities will include such social and commercial activities as local administration, shops, banking and insurance services, educational, medical, cultural and sporting facilities.

An indication of the secondary and subsequent increases in employment in linked industries is given by the use of the employment multiplier. Employment multipliers may be derived by operating on an extended input-output matrix for the economy. Two types of multiplier are generally derived; Type 1 multipliers, which give the ratio between the direct and indirect employment changes to the initial direct employment change, and Type 2 multipliers which include the expenditure induced employment in the numerator. Such data were not available in Zambia and have been estimated for Kowever, World Bank Staff Working Paper relatively few countries. No. 255 The Employment Impact of Industrial Investment quotes Type 1 and Type 2 multipliers which were developed for South Korea in the To the extent that indutrial linkages in a newly 1970's. industrialising Zambia are expected, over the next two decades, to eventually bear some resemblance to a more industrialised developing economy the comparison is relevant. The relevant multipliers for non-ferrous metals industries were as follows:

Type 1 Multiplier (Direct plus indirect employment)

Type 2 Multiplier 5.09 (Direct plus indirect plus induced employment).

Based on these indicative multipliers, the new permanent employment opportunities generated by the Romanian mill may be summarised as follows:

3.00

	New Employment Opportunities
Within the new Mill	214
Within linked industries	428
Expenditure induced employment	447
Total Employment Generated	1089

It should be emphasised that these figures can only be indicative estimates. It should also be noted that multiplier analysis neglects the possible existence of supply constraints, including skilled labour, foreign exchange and savings, and gives no indication of the timing of the changes involved. Since the employment creation would necessitate some expansion in the capacity of existing downstream industries, and the development of new copper strip and sheet consuming industries, it is considered that the changes involved would not be substantially completed until at least 10 years from the start-up of the mill.

P

2

12. CONCLUSIONS AND RECOMMENDATIONS

The major conclusions of the study may be summarised as follows:

- * investment in capacity to manufacture copper tubes is not recommended. The Zimbabwean company, Almin, has entered successfully this market, and could supply a large percentage of demand within the PTA. Moreover, both Zamefa (Zambia) and Booth Manufacturers (Kenya) have the capacity to produce tubes
- * investment in capacity to manufacture copper and brass bars, shapes and sections is also not recommended. There are three existing producers in both Zambia and Zimbabwe, and one in Kenya, and these have sufficient capacity to cope with demand within their markets for the foreseeable future
- * there is a market opportunity in the manufacture of copper and brass sheet, strip and foil. There are growing markets for rolled products in the region, particularly in radiator and geyser applications. There is also very little local competition. The feasibility of manufacturing rolled products in Zambia merits further investigation
- * a Zambian manufacturer of rolled products will be heavily dependent on the PTA market, where high tariff barriers provide protection against third country imports. In major world markets, it will be at a competitive disadvantage, primarily because market requirements are so varied and different to the PTA, because customers demand just-in-time delivery, and because domestic producers, using scrap, have lower raw material costs

- * the current consumption of copper sheet, strip and foil in the PTA market is estimated at 835 t/pa. Applying a multipler of 2.0 where copper products are purchased in local currencies, and allowing for competition from existing producers in the region, the current market available to a Zambian manufacturer of rolled products is estimated at 1,080 t/pa. This is projected to grow at 3% pa, giving a potential market of about 1,500 t/pa in the year 2000
- * a mill with a capacity of 10,000 t/pa, as proposed by the Romanians, would need to sell outside the PTA the majority of its output. To operate near full capacity, sales of about 8,000 t/pa are needed to Romania, or other third countries
- * a sensible alternative to examine, is a smaller mill oriented to the PTA market. The mill specified is this study has a capacity of 750 t/pa with one shift working, 1,500 t/pa with two, and 2,250 t/pa with three shift working. Both this and the Romanian mill are small by Western standards
- * the technology specified for the Romanian mill is conventional, with the exception of the proposal to use a single mill for both hot and cold rolling. While this measure does reduce the capital cost of the project, it does have certain disadvantages, notably the delay imposed on the flow of product through the plant which results in high working capital costs
- * the suggested technology for the small mill follows practices which are now largely outdated. It is proposed only as a possible means for satisfying the regional market, with minimum capital investment. There are significant inefficiencies associated with the use of cold rolling only in the reduction process, static casting, and cross rolling to produce wide sheet

- * capital costs for the project, including plant and equipment, structures and civil engineering, pre-production expenses and contingencies are estimated as follows:
 - Romanian mill : \$ 48.3 million
 - Small mill with new plant and : \$ 12.5 million equipment
 - Small mill with second hand plant : \$ 10.5 million and equipment
- * the small mill options produce poor internal rates of return, well below the Indeco cut-off point of 12%. Payback, simple rate of return and IRR (with financing) figures are also very poor. The financial statements show high debt:equity ratios and unsatisfactory current and liquidity ratios. The projects are clearly not profitable and can be rejected. The break even analysis demonstrates that, while the mills are not uneconomically small from a production point of view, they are too small for the proposed financing scenario
- * the Romanian mill produces an internal rate of return of 10.6%, which increases to 11.9% if capital costs are reduced by 10%. The financial statements and calculations of payback, break even and IRR (with financing) all show substantial improvements over the small mill options, although the project will still look vulnerable to investors and creditors
- * the main problem with the Romanian mill is that all the indications of commercial profitability are very sensitive to sales. It has been assumed that 80% of the mill's output will be sold to Romania. We have no clear indication whether this would be acceptable, but it is well in excess of the sales needed to cover the Romanian credit. If sales are significantly less than those assumed, the project will be unprofitable

- * all the projects suffer from a financing scenario which assumes no foreign equity participation, and no soft term loans except for the Romanian credit. For example, if the loans required for the Romanian mill over and above the Romanian credit, were supplied at an interest rate of 10% rather than 15%, the IRR in real terms (with financing) would improve from 7.5% to 10.9%. Similarly, if equity is increased from 15% of investment costs to 25%, the IRR in real terms (with financing) improves to 9.4%. Nevertheless, the financing scenarios assumed are, in our opinion, realistic
- * the Romanian mill produces an IRR on the net cash flow in economic prices of 11.1%. <u>This is sufficiently close to the</u> <u>Indeco cut-off point of 12% to justify further consideration</u> <u>of the project</u>. The small mill options produce poor IRR's in economic prices, and can be eliminated
- * the Romanian mill is attractive from the point of view of forex earnings. The forex cash flow (excluding the effects of import substitution) produces an IRR of 38%
- * employment opportunities induced by the Romanian project within linked industries and elsewhere in the economy are likely to be very significant. They are estimated at 875, compared to 214 jobs within the mill.

The major recommendations of the study are as follows:

- * the small mill options are unprofitable, and should be rejected
- * although the Romanian mill does not meet the Indeco requirements for IRR either in economic or market terms, it does merit further investigation, because of the substantial net forex earnings. However, a final decision cannot be made until the full details of the Romanians' commercial offer are known. The key is the volume of sales which the Romanians

will accept (either as direct imports to Romania, or as re-exports). Anything significantly lower than 80% of the plant's output will render the project unprofitable. It will also be important to clarify the terms of the Romanian credit, and obtain a firm quotation for the plant and equipment

- * Indeco should seek matching equity participation from the Romanians. This would improve significantly the project's accellability from a financial point of view, and its attractiveness to creditors
- * further attention should be directed towards secondary A good example is the manufacture of copper and industries. brass components (plumbing fittings, electrical contacts, nuts Unlike copper semis manufacture, this type of and bolts). industry requires comparatively little capital investment. With the recent expansion at Zamefa, the main raw material, copper and brass bars, can be sourced locally. Industries established in Zimbabwe would Kenya or have similar advantages, however, so a Zambian manufacturer could face significant competition within the PTA market. Nonetheless, the feasibility of such a project is well worth testing.

APPENDIX I - LIST OF EQUIPMENT FOR ROMANIAN MILL

, 48 ,

	Unit Cesignation	Pcs.	Keight
3	1	2	3
1. Geti	lotine shear for dethode autting	1	61
2. Con;	cased multing - soziing-casting		
-	-contiauous line		
3.1. Ma	lting furneces 1.5 t/h	2	35
2.2. Sc	sking furness 5 t	1	30
2.3. 20	ai-continuous casting sachias	1	29
1. Circ	what say for copyer slab watting	1	83
4, Sar	blade sbarpening maching	1	1.8
5. Hali	ing beau furness for the heating		
of t	Lie cosposed copper slabe		
.5.1. D	riving mechanism for the furnace		-
b	am, sliding table, slab ungiler,		78
6	opper slab pusher		
5.2. H	liking beam furneos for the besting		
.91	the copper slabs (steel struc-		
E 1	ere)ato, according to 3.1.5.		271
-	-bigh-four-high reversing sill; -cold		
6.1. T	to-high - four-high; rolling stand	3	375
5.2. BI	and driving group	1	180
6.3. S	tand roll stanging sochanism	3	35
6.4. H	olles tables (according to item		
3.	, 1, 6, 4, — 3, 1, 6, 6,)	-	309
6.5. 8	Lat strip kicker	1	53
5.6. E	ist strip cooling tank	1	12
6.7. P	iler and unpiles for flat strips		
£.	socording to item),1.6.9. and		
3	. 1. 6. 10}	-	121

3.3. BULLER'S SUPPLY

2

1

. 47

0 <u> </u>	2	3
6.8. Uncoiler	1	127 .
6.9. Fre-straightening machine	1	20
6.10. Coiler	2	196
6.11. Coil car	3	15
6.12. Foller tables at stand	2	100
6,13, Cover plates	-	112
6.14, Vapour discharge unit at stand		26
6.15. Evolaton cooling unit		24
6.16. Nydraulic units		19
5.17. Labrication whits (impe 3.1.5.20 -		•7
3,1,6,22)	•	20
1,18. Electrical drives		115 -
.19. First outfit rolls \$ 850 - 1269,		•
bequipped	4	72
9 950 - 1200,		
sos-eguipped	4	40
9 450 x 1290,		
equipped	. 6	36
≠ 450 x 1200,		
ace-e-julpped	20	\$ 3
Ø 1020x1205,	-	
equipped	4	100
9 1029×1209, non-equipped	2	2\$
	-	
. Flat strip straightening and milling		
	_	
.1. Starting roller table	. 1	25
.2. Straightening packing	1	70
. 3, Run-in roller table	1	25
.4. Sad cutting sheer	. 1	40
.5. Ren-out roller table from the milling	•	-
Pachine	1	25
1,6, Plate tilter	1	20

•

• / •••

	2	3
7.7. Transfer soller table, parallol	to	
the milling line contorline	1	45
7.8. Sydraulic, lubrication drives	1.	39
7.9. Flate silling machine proper	1	90
6. Sell-type furnace for strip coil	,	
annealing, electrical with protect	tive	
4 ee		
4.1. Refractory brickwork with Fe.O.	l	
below 11		39
8.2. Steel structure	ass'ies 3	69
8.3. Defractory steel muffles and		
supports	3	24
8.4. Vacuum cooling unit and ySotect	ive	
gas vait	3	45
9,5, Fan and recirculation bases	9	19
8.6. Vacuus perps -	3	1
8.7. Electrical resisters	3	1
8.8. Instrumentation	3	2
9. Coll tilter	1	15
0. Electrical continuous furnace wit	h	
roller hearth for Cu plate geneal	ing	
in packs		
0,1. Iva-in conveyor	2	50
0.2. Run-in - run-out roller table	2	40
3.3. Roller drive mechanism in the		
fusace	1	10
0.4. Refractory and heat insulating	brick-	
wosk	458°Y 1	10
3.5. Jurnace steel structure	1	28

. / ...

51 .

-

) <u>i</u> .	5	3
13.6. Cooling, run-in and run-out unit		
for the protective gas	1	8
15.7. Rollers in the furnace	1	7
W.S. Protective gas station 156 a ³ /h	1	15
10.9. Electrical resisters, instrumentation	1 1	2
ll. Combined slitting and cutting-is coil line		
llele Stocking rang	1	2
1.2. Coll car	3	2
ll.J. Uzcoller	1	12
1.4. Slitting shears	1	14
1.5. Side Chopper	1	3
11.5. Scrap run-outcar	1	1
11.7. Looping table and connection		
elements	1 .	4
1.6. Strip brain	1	2
11.9. Coiler	1	18
1.10, Coll car	1	2
1.11. Coil receiving device	1	4
1.12. Straighteeing machine	1	11
1.13. Soller oprve table	1	4
11,14. Cutting shears	1	3
1.15. Stop conveyor	1	3
1.16. Piling device	1	2
1.17. Sydro-paouratic, lubrication,		
electrical units	1	7
1.18. Anaboring, covering parts	1	14
1. Baling press	1	52
13. Joli grinding machine	1	75
4. Cutter sharpening machine	1	1

ž

.

. / ...

- APPENDIX III

4. WITS NOT INCLUSED IN THE OFFER

The following are not included in the Offer:

- lifting and transport means (overhead transs);
- weighing machines, screp buckets;
- ventilation with for furnaces, cellars, electrical rooms;
- equipment for electrical supplies, 11 kV cells, 0.4 kV distribution panel, supply transformers of 11/0.4 kV; accumulator batteries, power factor compensating unit (cos.\$);
- telephony unit;
- electrical cables;
- fire seasing and signalling write
- intercomputication unit;
- industrial television equipment;
- earthing networks;
- steel structures for electrical cable support;
- continuous foundations, cellars;
- supply and networks for water, compressed air, methang gas;
- erection and erection tools.

52 ,