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1. INTRODUCTION:

The purpose of this project is to introduce the
status and trends in gear rating, optimum design and
the computer aided design of gears and gear systems
and to provide assistance in the develop-eni of a
computer aided design system for high speed gears and
gear systems. This will be accomplished by presenting
a series of lectures to engineers and educators in
China, by providing assistance to eagineers developing
a CAD system for gears , and by suggesting advisory
opinions on aspects of research works,gear rating and
optimum design. '

2. LECTURE SERIES:

The lecture series to be given at ZRIME consists
of seven different, but related, topics. The titles of
the lectures are: -

A. Computer Aided Design: Steady State and Kinematic
Simulation | |

B. Predicting the Performance of Dynamic Mechanical
Systems

C. Torsional vibrations

D. An Introduction to the Finite EZleme.t PMethod

E. Metal Failures in Transmissions

F. A Review of AGMA 218.01 , AGMA Standard for Rating

the Pitting Resistance and Bending Strength of
Spur and Helical Involute Gear Teeth
G. Gear CAD




After the lectures are completed, demonstrations and
trainning sessions are provided for three groups of
about 20 persons. These sessions use an IBM-XT 286
computer to provide experience with the fol%owing
software:

A. Gear Design Software by Geartech Software, Inc.:

1. GEARCALC: |
Evaluates maximum capacity gear set with -iqi-un
volume and weight. Allows designer to select.
tooth numbers and addendum modificatiom based on
the application.

2. AGMA 218.01 :

Verifies compressive stress, bending stress, and
gear life for the -design from GEARCALC.

3, SCORING+:.

Verifies the probably of wear and scoring for
the design from GEARCALC by evaluating flash
temperatures, sliding velocities, and elasto-
hydrodynamic f£ilm thickmess.

B. Mini TK solver:

Solves linear and non-linear systems of equatigns.

It is a mathematical "tool box" from Universal

Technical Systems,Inc. |

C. GEARFORC:

Evaluates gear tooth forces and bearing reactiéns

for a shaft supported by two bearings and carrying

any number of ext:rnal gears.
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FOURBAR:

Evaluates the positions and velocities of poinfs on

a fourbar mechanism. Graphical output of the pcsitions
is given to.illustrate setup of graphics,code.
INERTIA:

Evaluates the mass moment of inertia, weight, and
torsional spring rate for a stepped rotor system.
VEHICLE SIMULATION:

Evaluates the displacement versus time of a vehicle
dynamic model with 2 three speed, shiftable trans-
mission.

OPTIINUN:

Optimization method for multivarisble, non-linear,
constrained problem using the complex method.

This program is a modification of Dr.G.H.Michaud's
work to evaluate sensitivity studies and provide
graphical output. It evaluates the variables to

give the maximum or the minimum value of the objective
function and the graphical sensitivity study shows
how the ovtimum value changes with each variable.
FRAME :

Zvaluates tne reactions and deflections of a structure
using the plane frame element. The frame finite
elemenf has three degrees of freedom at each of

its two nodes: X, Y and ©.

One major theme of the first four lectures is to

provide a course in computer aided design rethods

including mocelin: of cynamic syctens.




Bost of the exemples are selected for gear systems

ijn order to show the relevance. The torsional
vibration analysis and finite element analysis are
important CAD methods. An example evaluating the
jnternal tooth dynamics is not explicitly presented,
but the numerical integration method, the process
of creating an equivalent mass-elastic system, and
the FEM for evaluating the varying tooth stiffness
are covered. Hence, the fundamentals for evaluting
internal gear tooth forces are exrlained. -

One mejor theme of the last three lecturzs is to
show the development of the AGIA218.01 standard for
gear design relative to fundame;tals and the experiences
by the American gear Manufacturing Association's
members.

The lectures were attended by 72 engineers from
34 different industries and institutions representing
all areas of the nation. Their names and affiliations
are listed in Appendix A. This list indicates the
broad interest in this preject. The three intercverters
were experts:

Mr. Jie Sun

Senior Engineer of materials, hot Procesging
Department

Zhengzhou Reseatch Institute of hecharical

Ingineering




Mr. Ding-Hong Yan

Vice Director

Gear Research Institute

Hechanical Engineering Department
Shanghai University of Technolégy

Professor Zongying Ou
Dalian Institute of Technology
Départment of Mechanical Engineering

Director of Hechanical Lesign Division

A copy of these lectures is attached to this report

for reference.

3. CORGANIZATION OF ZRIKcz:

The Zhengzhou Research Institute of i.echanical
Zngineering has three research divisions and one
design division:

A. Mechanical Streng'h and Vibrations Livision.
.otructural Analysis
.7atigue and Fracture
.otrain measurement
B. Hot Processing Division.
-Foundry
.Forging
..elding
C. Electrical and lechanical Design Division
.’his zroup designs products for commercial

production
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This division has five departments:

1.Fundamental Technology Lepartment.

.Basic research topics:

gear rating lubrication
life prediction

geaxr CAD

new developments

2.Technical Developments Department.

.The goal is to assist the Government
with the development of new products
per the Five Year Plan, and to develop
needed equipmenf or assist in selgcting
foreign equipment.

3.liaterials and Heat Treating bPepartment.
.Conduct research on domestic materials
including Carburizing, Nitriding and
Induction hardening.

4 _,Gear Manufacturing Research Department.
.Conduct research on gear manufacturing
methods ircluding honing, shaving,
grinding and hobbing.

5.Technical Services vepartment.

.Conducts national symposiums and
seminars, develops the China gear
standards, publishes a bimonthly gear
journal, represents China on the
International Jtancdards Crganizztion
committee TC~-60, reprzsints chinc on

IZTCil. (and will host the Tall I:itCua.




meeting at ZRIME), provides
headquarters for the China tlechanical
Transmission Society which is a branch
of the China iiechanical cngineering

Society.

The National Center for Quality Control of Gears
is also located at ZRIME. This group inspects the
qualty of gears in the factories and reports their
firdings in order to correct any deficiencies and

assure the quality of the Nation's gear products.

ZRIME has approximately 900 .employees and about
45% are engineers. The Gear Division has 155 employees
and 115 are engineers.
Zach division has a Chief Engineer. The divisions
are relatively independent and self supporting.
The divisions coordinate their efforts to provide
mutual support through the Director of the Gear vivision

LT, ..ange.

4, FACILITIEZS FOR GEAR VORK:

In order to indicate the capability of the Gear
Division and the National Center for Quality Control
of Gears, some of the equipment and facilities are
listed below.

This list is not complete.
1. Pfauter hobbing machine

1.25 meters marximum diametoer
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2. China made hobbing machine

1.5 meters maxinum diameter
3. China made hobbing machine

2.0 meters maximum diameter can cut large modules.
4, MAAG Shaper SH75K

700mm max. diameter

320mm max. stroke

Quality: DIN 4, AGMA 12-13

5. Shanghai gear grinder
320mm max. diameter

5 max. module
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6. MAAG Grinder SD62
620 mm max. diameter
15 max module
Quality: DIN &, AGMA 12-13

7. Controls for wear and lubrication test
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8. Klingelnberg Hob Grinder
300 mm mex. diameter

Quality: AAA

9. Klingelnberg Tester
(used with MAAG SD62 Grinder)

1.2 m max, diameter
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10. Klingelnberg machine to check accuracy of hob.

300 mm max. hob diameter

11.Klingelnberg machine SP90O to inspect cylindrical
and spirol bevel gears is on order.
900 mm max. diameter

12. VG450 for checking profile of master gears,
450 mm max. diameter

Quality: AGMA 413 or higher




.3. Concentricity measurement-laser

0.5 arc second accuracy

14, Goulder Mikron machine to check profile of
large turbine gears
10 modul: maximum

1 m minimum diameter
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15. Four Square Test Stand:
250 K¥ max. power
Computer control is on order, Measures noise,
vibration, torque, efficiency, and oil temperature

for a complete assembled gear system.

16. Four Square Test Stands:
Four test stands with 150 mm center distance
and four with 100 mm center distance.
For test of lubrication, scoring and wear.
S8ize of wear particles in oil, vibrationms,

and dynamic loads are rmonitored.




17. Plasma carbonitride heat treating

500 mm max. diameter

18. Gas carburizing heat treatment
1.2 m max. diameter
2.4 m max. width

4 mm case depth is achieved
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19. Plasma Nitride heat treating
Ring gear, 900 mm max. diameter

2.3 m max. width

20. B&K Noise and Vibration instruments for
measurement in field by portable system and
tape recorder. Analysis of data by FFT on

main computer.

21, Computer facilities include an IBM 4381 with
connected terminals, a large design terminal,
and a Calcomp plotter. Seven IBM PC computers
are in the Gear Division.

22, The ADINA finite element code is used.
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5. RESEallCH AND T=CRNICAL SsRVICE:

The gear research and the technical service prcvided
by Rir: are important to the development of the ilztion
as it strirs:s to provide transportation, fodéd and
energy to the citizens. The fundamental research on
gear materials which are manufactured and processed
within the Nation is necessary to establish the life
and reliability of these materials. The life and
reliability of gears depends on the material in addition
to all of the machining and heat processing operations

which are used to mznufacture the gear.

The bas’c research on gear l'ife, heat treating and new
materials will be beneficial to China and to the world.
The research on contact fatigue life is of special,
interest to the members of the ISC-TC60 group.

The need for a national standard for gears does
exist in China. There are several different standards
in use today. The values of these standards provide
good designs, but the values are not all interchangable
between the cifferent stancards. The gears manufacturad
from the new China materials and by new China processes

are 210t all included in these other standards.'

The technical interchange sponsored by s4RIiZ is very
healthy for the gear experts across the Nation as it
multiplies their progress. The international activitizs

of &RIle accomplishes the same result across the world.




6. CONSULTING ACTIVITIZ=S:

Zach lecture contained a perioi for guestions. also,
in %the follcwing days, Ju<stions ccncernins the lecture
and other projects were discussed.

Examples are:
1. The analysis of lateral vibrations per the
API 163 Standard
2. The activity in the U.S.A. on ductile iron gear

research
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7. VISIT TC SICZUAKR GIARSCX FLANT:

The purpc<es of the visit to the plant were to present
lectures ané Lreining an the Computar liced Design of
Gears and on Standards and to gain a firsthend view of
the state of gear manufacturing technology as it 1is
practiced in China today. Due to the limited tine,
only one day of lecturing was presented on tue topcis
of torsional vibrations and the AGMA 218.01 Standard.
However, covies of all seven lectures were provided to

then.

The Sichuan Gearbox Plant is a subsidiary of China
State Shipbuilding Corporation. The products of this
plant include gearboxes, clutches, couplings and dampers.
The plant is located in Jiangjin on the Long River and
has 1200 employees. The plant has eight shops, which
include:

1. Gearbox manufacturing

2. Gearbox assembly testbeds

3, Heat treatment (carburize, induction, nitride)

4, Zress shop

5.7orging and welding

6. riction disk manufacture
The plant started in 1966. In 1978 - 1979 license
agreements with Lomann & Stolterfoht and with Geislinger
wvere made to menufacture marine gears ané zlastic damping
couplings respectively. a tour of the fac ility showed
that it is an axcellent zear plant with the machnines,
testing ecuirment, zuality control and sersornel restuir:za

to ¢o the ;ob correctly.
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8. CCNCLUSICNS:

The organization of 4RINE and the Gear Division is
well plannec to advancs the cevelocment of gears within
the Nation. The nigh technology of sears ané gear systems
is a comtination of art and science. The performance of
a gear system depends on the nature of the perent material,
the machining operations, the heat treating process, the
gear design analysis, the system design, and the operating
conditions. The Gear Division is organized to cogsider
all of these factors. The interactions with incustry,
universities anc other institutions is very bensficial
to a’l.

The facilities at 4RIME are adequate to perform

Computer Aided Design c¢f zears. Sowever, the software

U]

and hardware are repicdly advancing anc clans Zor reguler

'Y

upgrading should exist.

A solics modeling softare package shoulc bz consicderzd.

Improvzcents in *rsastortation znd comzunication
systems within the {fation will aid in cozzercial <ewvsicrments
in China's gear industry.

The ULZDC support for the computerized control of

the carburizing heat trzating process, will be wvery aelpiul.
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The UNISC Gear CAD project has provided a good

exchange of ideas on computer aided design of Zears.
z2ncé an increasec uncdersiarnding of the american Gear
r.anufacturer's Standards for gear design.

The rapid advances in gear technology, computer
aided testing, computer aided manufacturing, and
gear CADin China and in the world present a need for
a long range education and training program.

There is a need for a training facility at SRI:
in orcer to provice effzctive training in modern szar
technoiogy such as hot processing methocs, manufacturing
methods, quality measurements, and computer aiced
design and analysis. The facility should be furnished
with adequate computers and other equipment to allow
the participants to receive personal training.
Ferhaps 10 training stations wculc be approvriate.
( The 386 computers should be considered.)
Audio visual equipment is needed. It is recommended that

these needs be consicered.
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10.
1.
12.
13.
14.

NAME

. Chen Zegao

. Mei Jianping
. Jin Guopin

. Leng Xiangzhu

. Cheng Dahei

Yhang Qiankun
Yao Hongli

Yu'Jiang

. W2ng Jianshe

Shen Qingzhu
Li Debao
Zhao Wei
Li Jingfeng

Ding shichao

APPENDIX

Participants in Lectures on Gear CAD In Zhengzhou, July, 1988

AGE
56
35
42

43

30
24
40
30
24

TECHNICAL TITLE
Senior Engineer
Teacher
Teacher
Teacher
Engineer

Assistgnt Engineer

Graduate
Graduate
Engineer
Graduate
Graduate

Graduate

AFFILIATIONS
Shanghaj Research institute of Hoist
East China Institute of Chemical Engineering
Technologz College, Shanghai University
Xuzhou Gear Plant
Kaifeng Air Separator Factory
Kaifeng Air Separator Factory

Ansan Tractor Research Institute

Ansan Tractor Research Institute

Changchun Research Institute of Optical Machine
Changchun Research Institute of Optical Machine
Palian Research Institute of Hoist

Northeastern Institute of Technology




15.
16.
17.
18.
19.
20.

21.
22.
23.
21,
25.
26.
27.
28.
29.
30.
3.
32.

Shen Tao
wWang yuhua
Tong Rongchu
Ma yuanjing
Liu xitian
Jia Yi

Tang zhengbao
Zhong yifang
Che Hexiang
Yang Kaixiou
Li Haixiang
Fan Qi

Xie Peilin
Zhou Jingyu
Yan shaomu
Li Rei

Cien Lin

Gao Xiangqun

24
28
48
25
46

83
53
53
45
49
26
42
38
23
23

49

Engineer
Engineer
Engineer
Assistant Engineer
Engineer

Teacher

Associate Professor
Associate professor
Associate professor
Teacher

Associate Professor
Assistant

Teacher

Technician
Technician
Assistant Engineer
Assistant Entineer

Senior Engineer

Shenyang Blower Works

Beijing Gear Company
"
Taiyuan Research Institute of Hoist
Gear Research Institute, Tajyuan University
of Industry Technologt

Central China University of Science and Technology

Wuhan Institute of Water Transporation Engineering

Wuhan Institute of Navy Engineer

Hubei Vehicle Elements Factory

Zhuzhou Research Institute No, 608




33.
3.
35.
36.
37.
38.
39.
40.
41.
42,
43.
44.
45.
46.
47.
48.
49.
50.
51.

Wei Gang

Deng Dize

Yang Peilin
Liu Geng

Wang Xiaoguang
Liu Renxian
Wang Yuhang
Liang Botao
zhang Jianzhong
Pei Jingning
Liu Guoping
Zhou Jiliang
Sun Gongwetl

An Lical

Wu Xucheng
Wang Luming
Wang Shiyan
Zhao Kaotian

Yu Reixi

26
49
25
27
K}
50

30
30
54
48

50

54
30
30
45

Graduate

Senior Engineer
Assistant
Assistant
Assistant
Professor
Assistant Englener
Graduate

Assistant Engineer
Engineer

Engineer

Professor

Senior Engineer
Engineer

Engineer

Senior Engineer
Engineer

Engineer

Engineer

Zhuzhou Research Institute No. 608

Changqing Vehicle Office

Xian Jaotong University

Shanxi institute of Mechanical Engineer

Northwestern University of Industry Tech?ology

Xian Institute of Metallurgical Architecture Engineer
Xian Research Institute «f Heavy-duty Machinery

Gear Research Section, Luoyang Institute of Technoloqy

Luoyang Mining Ma:hinery Plant

Luoyang Tractor Research Institute




Li Shuping

. Wang Xiaoling
. Zhou yu
. Zhou Xiaodong

. Ai Chunting

Yan Dinghong

. Hu ziqiang

Ou zonhying

. Chang Keqin

Zhang Tingjian

. Liu Zhilei

. Li Xiouzhen

Zhang Zhiwei

. Xia Yi

Gao xinshu

. Jing Xian

. Zhu shiqing

Xu Jiaoyao
Liuo Shijun

Cai Neng

. Wang Jifeng

25
35

35
25
35

52

Engineer

Engineer

Engineer

Graduate

Teacher

Teacher

Assistant
Professor

Engineer

Engineer

Assistant Engineer
Engineer '
Assistant Engiener
Engineer

Assistant Engineer
Engineer

Assistant Engineer
Engineer

Graduate

Graduate

Graduate

Luoyang Tractor Research Institute

Beijing University of Science and Technology
Wuhan University of Industry Technology
Shanghai University of Industry Technology.

1]
Dalian University of science and Techn:iogy

Zhengzhou Research Institute of Mechanical Engineer
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LECTURE 1

COMPUTER AIDED DESIGN :
Steady State and Kinematic Simultation

PREFACE

Seven lectures on the computer aided design of gears and gear
systems are documented in this manuscript. These lectures were pre-
sented in a national meeting at the Zhengzhou Research Institute of
Mechanical Engineering (ZRIME) in Zhengzhou, China. ZRIME is responsi-
ble for standards, research and development relative to the nation's
gear industry and is part of the State Commission cf Machinery Industry
of the People's Republic of China.

The first three papers deal with the use of computers in the
dynamic simulation of mechanical and gear systems and include torsional
vibration studies. The fourth paper gives an introduction of the
finite element method for computer analysis of stresses and deflections
for non-prismatic shapes like gear teeth. The fifth paper discusses
ébar failures and outlines the Lewis and the Hertz equations for bend- )
ing and compressive stresses in gear teeth. The sixth paper introduces
the AGMA 218 Standard and shows how the Lewis and Hertz equations are
modified for the American Gear Manufacturer's Standard on gear design.
The last lecture 1ntroduges commercial software for computerized gear
design.

The preparation, organization and management of this meeting by
the Gear Division of ZRIME was exceptional. The personal care shown by
each member of the staff is appreciated. The funding of this project
by the United Nations Industrial Development Organization made this
technology exchange possible. The technical competence of interpreters
Jia Sun, Ding-Hong Yan, Zongying Ou and Mr. Mao added greatly to the
presentations. The careful typing of the manuscripts by Mrs. Rook and

Mrs. Yeatman was a significant contribution. Many of the examples and
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research results are based on activities with Marine Gears, Inc. The
efforts of my co-authors and of many graduate students are gratefully
acknowledged. Carol's support made it possible for me to participate

in this project.

E. William Jones
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ABSTRACT:

Modern computers with low cost graphics are changing the scope of
the mechanical designer's responsibilities and the way he performs his
tasks. Some of the implications of Computer Aided Engineering are
presented. The response of the engineer to the CAE enviromment is

demonstrated by software for gear forces and for mechanism design.

1. INTRODUCTION:

The availability of low cost, fast computers with large memory and
good graphics is producing a revolution in design departments. In the
recent past computers were used primarily for engineering calculations
which had extensive complexity or length. The major problems for the
designer included digesting the voluminous output, summarizing the
results briefly, accessibility of the computer, time required per run,
learning to program, training and retraining to use new hardware and
software. The access problem is rapidly disappearing with the changing
price to performance index. The low cost of graphics is providing a
visual solution to the problem of coping with the volumes of printed
output. Modern software with considerations for human factors is much
easier to use. The computer offers the potential to perform calcula-
tions at a fixed quality level by reducing the human variation. The
level of quality control depends on the maturity of the software, and
it {s still vulnerable to human errors in the input data. The use of a
common data base and the fntegration of Computer Aided Design with
Computer Aided Manufacturing are important. The potential of today's

computers to contribute to the design task is makiag significant im-

provements.




Engineering design is an iterative process, which produces a

specification for a product, which will fill a human need. The

quality of the product and the timeliness with which the design task is
completed are significant factors in determining the value of the
product.

Engineering management faces different questions as their task
changes from managing people to managing a sachine room with operators.
The yearly fees for maintenance and software rental are a large part of
the engineering budget. The changing CAE technology makes hardware and
software technically obsolete rapidly, which requires upgrading of
software and hardware and retraining of personnel. The lack of
standardization and interchangability of hardware and software have been
major problems and are beginning to get some attention from the hard-
ware and software suppliers. The Construction Industry Institute's
Design Committee is currently studying the impact, implications and
needs of CAE for the construction industry. Even though CAE is still
in the evolutionary stage the engineering community needs to be in-
volved with CAE so we will grow also.

The training required to practice engineering is changing. T7he
designer with a workstation can perform a larger and more complex task
in a shorter time span. This reduction in time span reduces the con-
scious and subconsious thought time which the designer applies to the
task. This may reduce the designers creative responses during the
design phase. Conversely, the computer may allow the designer to study
more alternatives during the design phase since it can reduce the
repetitive manual labor. The enlarged scope of the task argues that

the designer's training and qualifications must be increased to match
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his responsibilities. While the designer must have some computer
skills, he must also understand the physics of the application, the
constraints on how to design for manufacturability, servicability,
safety and human factors, and he must have the mature judgement neces-
sary to make decisions.

The benefits of CAD/CAE are still being debated. Some suggest
that a benefit is in the reduced number of draftsmen on the task,
however, the savings on the drafting expense is more than offset by the
cost and maintenance of the computer and software. Much of the savings
are outside of the design room. These savings inelude:

1. The reduced cost of rework during manufacturing.

2. The reduced loss due to scrap material.

3. The creation of a common data base for all.

8. Electronic transmission of drawings to remote sites.

5. The reduction in product development time.

A creative approach is required in the evaluation of CAE benefits
because the task [s usually redefined in the CAE enviromment. As an
example, in 1975 Caterpillar Tractor Company evaluated the Finite
Element Method. Some questions were:

1. Can the FEM reduce the time required between the initiation

of design and the relzase for production?

2. What education and skills are required for use of the FEM?
Several engineers with different levels of education and experience
were given different components of a new product, which had been de-

signed by conventional methods. Since these engineers were learning

the FEM, the time required for their solutions was not representative.
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However, if the FEM could predict any major failures of these compo-
nents prior to testing, then the component could be redesigned prior to
the test. A failure of a component., during the test of this high speed
product, would produce failures of other components also. A failure
during the test would produce a delay of several months in the product
release date because:

1. First, the failures must be analyzed to determine the "root -

cause."

2. Then, the component with the "root cause™ must be redesigned.

3. The redesigned component must be manufactured. If the compo-

nent is a forging or casting, the die or mold must be re-
worked.

8. The test must be rebuilt and restarted with zero credit for

fatigue cycle testing.
Hence, the major gains from this CAE application were in the Proving
Grounds Budget.

The results of this study showed a stress in a fillet of a forging
to be above the endurance limit. A one inch fillet r.Jius would have
been satisfactory but the component drawing showed half of an inch. A
review of the original layout showed a one inch radius in this transi-
tion region, but the draftsman’'s circle templet had a maximum hole size
of one inch. Hence, the designer's intuition had been correct, but
without calculations to reinforce this intuition an oversight was made.
The drawing was changed. After this study, Caterpillar created a

group for performing finite element analysis for their product design

groups.
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Some general purpose software packages have been developed and

examples are given, but the list of examples is not intended to be

complete.
1. Computer Aided Design CADAM, AutoCAD
and Drafting.
2. Dynamic Simulation ACSL, CSMP
3. Mathematics, Statistics MATHLIB, MATHCAD, TKSOLVER
5, Word Processing Word Perfect, Microsoft Word
5. Finite Elements ANSYS, MSC-NASTRAN

Special purpose CAD software can be a good engineering aid.
First, there are small, homemade. special purpose CAD packages for
personal taské. Engineers should identify these tasks. Five examples
are given below. The program INERTIA is typical of this class of -
programs. The program GEARFORC is for one area of technology, but it
has a more general group of users since it is designed to evaluate the
bearing reactions for all combinations of helical gears and pinions.
The program FOURBAR is.general for one area of technology and it uses
graphics to help show the output. These three programs can analyze an
existing configuration. The fourth example deals with the use of CAD
in the synthesis (invention) of a configuration. The fifth example
indicates the coupling of Computer Aided Design and Computer Aided
Drafting software. The challenge for the mechanjical designe. is to

identify tasks, which are repeated and require significant human ef-

forts, and to develop software to perform these tasks.




- 32 -

2. EXAMPLE ONE: Inertia and Torsional Stiffness

The calculation of mass moments of inertia and torsional stiff-
nesses of members with circular crcoss-sections is an often repeated
task in evaluating the mass-elastic characteristics of a gear train.
Hence, a program to evaluate and add inertias and spring rates may be
very useful even though it is elementary. Since the majority of errors
in programs occur due to faulty input of the data, the program asust
print all input data on hard copy for future reference and quality
control. The program INERTIA is listed in Appendix A and the output

for the shafting section of Figure 2.1 is given in Table 2.1.

0. Dia. 1412 4 8 7 10
I. Dia. 10 0 0 2 6 6

Length 515 S0 10 15 7.5

Material = Steel
Units on dimensions = inches

Figure 2.1 Shaft Section

3. EXAMPLE TWO: Generalized Bearing Reaction Program

The calculation of the bearing reaction forces on a shaft, which
is supported by two bearings in a helical gear transmission, is a
common task. A program for evaluating the bearing reactions, which
allows for any number of gears on the shaft and for any rnumber of

pinions to be in mesh with each gear, is developed in this example.
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TABLE 2.1 Output from Program: INERTIA

- TORSIONAL STIFFNESS AND INERTIA
PROGRAM: INERTIA

MATERIAL DENSITY = .283 POUNDS/CUBIC INCH
NUMBER OF DISCS = 6

DISC NUMBER = 1

OUTSIDE DIAMETER = 14 INCHES

INSIDE DIAMETER = 10 INCHES

LENGTH OF DISC = S INCHES
DISC NUMBER = 2

OUTSIDE DIAMETER = 12 INCHES

INSIDE DIAMETER = 0 INCHES

LENGTH OF DISC = S INCHES
DISC NUMBER = 3

OUTSIDE DIAMETER = 4 INCHES

INSIDE DIAMETER = 0 INCHES

LENGTH OF DISC = S50 INCHES
DISC NUMBER = 4

OUTSIDE DIAMETER = 8 INCHES

INSIDE DIAMETER = 2 [INCHES

LENGTH OF DISC = 10 INCHES
DISC NUMBER = S

OUTSIDE DIAMETER = 7 INCHES

INSIDE DIAMETER = 6 INCHES

LENGTH OF DISC = 15 INCHES
DISC NUMBER = 6

OUTSIDE DIAMETER = 10 INCHES

INSIDE DIAMETER = 6 INCHES

LENGTH OF DISC = 7.5 INCHES

TORSIONAL STIFFNESS = 5310063 INCH POUNDS/RADIAN
SHAFT INERTIA = 27.43824 IN. LB. SEC. SEC.
TOTAL WEIGHT s 727.9261 POUNDS
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{The word pinion normally refers to the smaller of the two mating gear
elements, but in this example the word 'pinion’ refers to the elements
which are meshing with that element on the shaft whose bearing reac-
tions are to be evaluated.)

A typical gear and shaft arrangement is shown in Figure 3.1.
Bearing number 1 is chosen as the location of the origin of the right
hand coordinate system. The positive z-axis is directed to the right
along the centerline of the shaft. Distances to the left of the origin
have negative values for the z-coordinate. The x-axis is horizontal
and the y-axis is vertical. This figure shows two _cars. Each gear
has one mating 'pinion’'. There is a force Fs in this rigure and the sign
of this force is positive, if the force is directed upward. If Fs is
due to gravity, the numerical magnitude must have a negative sign. The_
angular ;rientation for each pinion is identified by the angle 8, which
is the rotation about the z-axis. This angle is measured from the
positive x-direction with the positive direction defined by the right
hand rule and illustrated in Figure 3.2. The positive direction for
the helix angle is selected as the right hand helix per Figure 3.3.

The tangentf{al component of the tooth load is

Wp = Px 396,000/(2 x » x N x d/2)

where,
P = Input power, horsepower
N = Speed of shaft under study (CCW is positive), RPM
d = Pitch diameter of gear with speed N, inches
d =

Nr/(Py x Cos(9))
NT = Number of teeth

Pd = Normal diametral pitch
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% = Helix angle (right hand helix is positive), degrees

$,= Pressur- Ile in normal plane, degrees.

®
Y

~
>. Pinion 4 APy .

2R

Figure 3.1 Transmission Gear, Shaft and Bearing Arrangement

. Pinion 4 .
- Pinion 1
8, 3\\\\
. - - - Pinish\; P -
- - U - NS S—"
Gear 3 Gear 2 Gear 2
Figure 3.2 Sign Convention for Figure 3.3 S.gn Convention for

Pinfon Location Helix Angle
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The components of the force of the pinion on the gear are

illustrated in Figure ‘.3 and the magnitudes are given in Table 3.1.

The signs of these forces depend on whether the gear is driving or is

being driven. The radial force on the gear is -

WR{N,M) = ABS(WT) x Tane,/Cose

Figure 3.4 Helical Gear Forces

TABLE 3.1 Equations for Components of Forces Acting
on Gear N due to Pinion M

Symbol for When the When the
force component _gear is driven __gear is driving -
WTY(N,M) WT x Coso -WT x Cosé
WTX(N,M) -WT x Siné WT x Sine
WRX(N,M) -WR x Cosé -WR x Cosé
WRY(N,M) -WR x Sine -WR x Siné
WA(N ,M) -WT x Tany WT x Tany
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The sum of the zoments may be used to evaluate the components of
the forces at the bearings. The moment of force F is given by the
mixed triple scalar product (1)' of the three vectors, A, r and F.

M=21¢(rxF)
where,

A = A unit vector parallel to the axis about which the moment is

evaluated.

A = ilx + jly + klz

A A, and Az are the direction cosines of the axis about which

x* 7y
the moment is evaluated.

i, j and k = unit vectors along x, y and z axes respectively.

r = The position vector of the force relative to a point on ~he
axis of r;tation.

r=ix + jy v kz

F = The force vector

]

- iF, + JF, * KF, .

Hence,

Each pinion will produce a moment ¥ due to tooth contact forces on
the gear. If each external force, which is not produced by tooth
contact, is divided into x and y components (Fx and Fy), then each
component will also produce a moment M. For the gear and shaft ar-

rangement of Figure 3.1 the sums of the moments about the x-axis, ZMX,,

and about the y-axis, z"y!' at bearing one are given below and the

"Numbers in parentheses identify references.
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equations for the y-component, Ryz. and the x-component, sz. of the

reactions at bearing number two are derived from these moment equa-
tiens.

1 0 0

My = | -5d5Cose, .5d,Siné, Z, -

(Wpgy *+ Wpoy) (Wppy + Wpoy) Wyp

1 0 0

* .5d3Coseu .Sd3Sineu Z3

(Wp3y * Wp3y) (Wpgy + Wp3y) Wpg

1 0 0 1 0 0]
+ 10 0 25 + 10 0 Zg = 0
Foy Fsy 0 R, Ry R,

Roy = [[-Wypd, 5100, = 2, (Wyoy + Waa )] + [(.5Wy3a5Sine,

- Z3(Wpgy + “a3y)] + [o - zsssy]}/zs

0 1 0

= .5d260391 .56251n81 22

(Wpox * Wroyxy (Wppy * Wpoy) Wpo

0 1 0

* .5d3coseu .5d351n6u 23

(13 * Wasx) (pgy + Wigg)  Wyg
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Ryy = [[(.5Wy5d,C088, ~ Zy(Hpoy + Wps )] + [.5d4H, 5C0s8y
- Z3(lpgy * We3y)] - [ZgFsy - 0]}/zg
The values of R2y and R1y only depend on four entries in the array
for TM ,: MX1(2,2), MX1(2,3), MX1(3,2) and MX1(3,3). The array for

ZHX1 may be represented for any general case by the following equation.

NOG NP 1 0 0
Mt = § 1
N=1 M=l 0 .sd(N)Sin(e(N,M)) Z(N)

0 (WTX(N,M) + WRX(N,M)) WA(N,M)

NFY 1 0 0
)
n=1 0 -..0 FY(N,2) = Mxi(3,(3(NP + NFY)))

0 FY(N,1) 0
where,
NOG = Number of gears in system.
NP = Number of pinions meshing with the Nth gear.
NFY = Number of forces in the y-direction.
FY(N,1) = Magnitude of the Nth force in the y-direction, 1b.
FY(N,2) = Distance along the z-axis from bearing number 1 to the
Nth force in the y-direction, in.
For the general case, data for the evaluation of MX1 may be stored in

an array with 3 rows and 3(NP + NFY) columns. The equation for MX1 may

be rewritten with the noncontributing terms set equal to zero.
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1 0 0 ll 0 0 ll o 0
w =0 iz mie |omies miee | 0 mx1¢2.8) mx1c2,9)

0 m1(3,2) W1(3,3) | 0 m1(3,5) mx1(3,6) | 0 Mx1(3,8) 11(3,9)

Therefore, for one pinion in mesh with one gear:

MX1(3,3) = Wp, .
Each additional pinion in mesh with the gear adds three columns to the
array. Each external force contributes three additional columns to the
array. The values of elements of the array will be defined as follows

for the case above.

Mx1(2,8) =0
MX1(2,9) = g
MX1(3,8) = Fgy
MX1(3,9) = 0

Wwith this definition of the array MXi, the following algorithm will
evaluate the y-component of the bearing reaction at bearing number two,
Rzy:
c Initializ2 bearing reactions
R1Y = O
R2Y = O
c SX = Number of columns in arrays MX!1 and MX2.

SX = 3%(NP + NFY)




- 41 -

For I = 2 to (SX-1) step 3
R2Y = R2Y + [MX1(2,I)*MX1(3,I+1)-MX1(2,I+1)*MX1(3,1)]}/z6
R1Y = R1Y + (MX2(2,I)*MX2(3,I+1)-MX2(2,I+1)*MX2(3,1))/26
Next I
The equation for R1y is also evaluated in this algorithm. The
terms of the equation for R1y are the same as for RZy except the
distances along the z-axis. The array MX2 is defined as follows for

each pinion:

Mx2(2,2) = MX1(2,2)
Mx2(2,3) = MX1(2,3) - 26
Mx2(3,2) = MX1(3,2)
MX2(3,3) = MX1(3,3)

The array MX2 is defined as follows for each force:
Mx2(2,8) = MX1(2,8)

Mx2(2,9) = Mx1(2,9) - 26

MX2(3,2) = MX1(3,8)

MX2(3,3)

MX1(3,9)

The form of the equation for RZx is the same as for Rzy even
though the terms differ. The terms in RZx are from the first and third
columns of the 3X3 arrays instead of from the second and third columns.
Tre above algorithm would produce the value of Roxs ir values of the
terms in the first column are transferred into the second column of

array MY1 as follows:

MY1(2,2) = .5d,Cos8,
MY1(2,3) = Z,

MY1(3,2) = Wpoy * Wpoy
MY1(3,3) = Wy, .




For the fcrces,

MY1(2,8) = 0
MY1(3,8) = Fg,
MY1(3,9) = 0 .

The number of columns in this array, MY1, will be
SY = 3%(NP + NFX)
Hence, the following algorithm will produce the bearing reaction
forces, R1X and R2X, in the x-direction at bearings one and two
respectively.
c Initialize bearing reactions
R1IX = O
R2X = 0 *
Cc SY = Number of columns in arrays MY! and MY2.
SY = 3%(NP + NFX)
For I = 2 to (SY - 1) Step 3
R2X = R2X + [MY1(2,1)*MY1(3,I+1)-MY1(2,1+1)*MY1{3,1)}/26
RIX = RIX + [MY2(2,1)%MY2(3,I+1)*MY2(2,1+1)*M12(3,1)]}/26
Next I
The equation for Ri1X given is the algorithm depends on array MY2

which differs from array MY! by the following definitions.

MY2(2,2) = MY1(2,2)
MY2(2,3) = MY1(2,3) - 26
MY2(3,2) = MY1(3,2)
MY2(3,3) = MY1(3,3)




For each y force, the array MY2 is
MY2(2,8) = MY1(2,8)
MY2(2,9) = MY1(2,9) - 26
MY2(3,8) = MY1(3,8)
MY2(3,9) = MY1(3,9)
A program listing for "GEAFORC”, which uses this algorithm, is in
Appendix B. The data of Table 3.2 represents an example problem. The

program output for this problem is given in Table 3.3.

R, EXAMPLE THREE: Four-Bar Linkage Xinematics

The four-bar linkage is a commonly used mechanisa which has a
highly developed design methodology (2,3,3). The analysis of the
four-bar linkage provides a good example for the application of com-
puter aided design methods. First the logical progression of the
analysis must be developed. After the analysis is complete, computer
graphics may be applied to plot data or to illustrate the motion of the
mechanism.

The analytical procedure for determining the positions, velocities
and accelerations of a four-bar linkage has been often published (5)
and the following equations follow the outline used by Professor Rezek
of Purdue University. For reference, it is repeated in brief form.
For one given position of the input crank, link Rz, the four links may
be assembled in the uncrossed configuration as {llustrated in Figure
4.1 or in the crossed configuration of Figure 4.2. The first step in

the analysis will be to identify the lengths, R,, Ry, RB and Ry, of the



TABLE 3.2 Input Data for "GEAFORC"

SEARING SEACTIGHS iR HRELICAL GEAR TRANSMISSICXNS
PROGEAM: GEXRFORC
THE INZUT BATA

THERE RRE 2 GEARS

THERE ARE A TOTAL CF 2 PINICN(S)

NO GEAR HAS MORE T#AN 1 PINION(S)

THE DISTANCE SETWEEN 3EARINGS :S £8.142 INCHES
THE SHAFY SPEED !S -789.7 RPN

FOR GEAR KUMBER 1
GERR NUMBER 1 HAS 1 PINICN(S)

PRESSUEE ANGLE = 20 SEGREES
HELIX AXGLE -14.3615 DEGRZES
DISTANCE T3GM SKG. t TO GEAR t = 7.065 IRCHES
DISTANCE F20M 28G. < TO GEAR 1 = -51.077 INCHES
PITCH GIRMETER = 25.35941 INCHES
THE NGRMEL DIFMETRAL PITCE = 3.175 TEETH/IN.
NUMBER CF TEZTH ON GERD = 79

FOR PINIiON 1 ON GEAR 1

PINICHN NUMEE2 1 IS 2 D2IVING FINICN
ANGULAR PCSITICH = 99 DEGREES
INPUT FCWER = Z3C0 HORSEPOWER

v GERR NUMBER 2
CTRI WNIM2E3 ) E2S 1 PINION(S)Y

PRESSUSE ENGLE = 20 DEGREES
HELIX ANGLZ s-14.3615 DESREES

DISTANCE 7P0M SRG. ! TO GERR 2 = :9.826 INCHAES
DISTANCE F2CM SRG. 2 7O GERR 2 = -18.246 INCHES

PITCH DIAMETER s 22.1082 INCHES
THE NCRMAL DIAMETRAL PITCH = 3,175 TEETH/'N.
¥UMBER CF TEETH CN GEAR s &8

FOR BINION 1 ON GEAR 2
PINION NUMBER 2 IS5 A DRIVEN PINION

ANGULAR PCSITION = 20 DEGREES
INPUT PCWER = 2060 HORSEPOWER

THE EXTESNAL LOADS :

FX 1 +* O PCUNDS

FX 2 IS 0 INCHES £=0M BRG 1

FX 1 IS -58.142 INCHES FRA0OM 8RG 2
FY 1 s« 0 P0UNDS

FY 1 35S 0 INCEES 720M 3RG 1!

FY 1 IS -52.132 IWCHEZ3S FRCM BRC 2




TABLE 3.3 Output from "GEAFORC" Program

RESULTS
GEAR TOOTH FORCES:

THE TANGSENTIAL TOOTH LORD IS = -12%89 FOUNDS
THE X-COMP. COF THE TANG. TOOTH LCAD 1S = 12588 ZOUND
THE Y-CGMP. OF THE TANG, TOOTH iCRD IS = 0 POUNDS

THS BROIAL TOOTH LCAD IS = 4729 POUNDS
THE X-COMP. OF TEE RADIAL TOCTH LC2D IS = 0 FOUNES
THE Y-CCMP. OF T:E RADIAL TOCTH LOAD !S = -3720 POUNDS

THE AXIAL (Z-COMPONENT) T5CTH LTAD IS = -2222.163 TOUKDS

GZAR NUMBER 2
TINION NUMBER !

THAS TANCEKTIRL TOC
T4HE X-CCMP. GF THE TANG. TCCTH LCAD
THE Y-COMP. CF T#E TANG. 7TCCTH LCAD

THE &ADIRL TOGTH LCRD is
TEE X-CCMP. OF THE RADIEL TCOTH LOAD IS
THE Y-COMP., OF THRE RADIAL TCCTH LOAD IS

THE SKIRL £2-CCMPCNENT) TOQOTH LIAD iS

: LCAD IS -15440 POURSS
-148430 POUNDS

-1 PO0UNDS

5425 2OUNDS

3 PCURDS

-£426 2OUNDS
3€37.157 FOUNDS

e
n

(UNT

HOH RN N M

BEARING RIACTIONS:

FOR ZZARING NUMSER 1:
21 = 7903 POUNDS
RIY = 6790 3FOUNDS
RAX = -4044 ?POUNDS

. TOR EEARING NUMBER 2:
Rz = 6787 POUNDS

R2Y s 3364 POUNDS

R2X = %39S POUNDS

THE TCTAL AXIAL LOAD, WA = 473 POUKDS




four links and to determine the initial position of the input crank
angle, 6,. The second step is to determine if these four links will be
assembled in the crossed or uncrossed configuration.
The geometry of the triangle connecting points D, A and C of
Ffigure 4.3 may be analyzed by the half angle equations. -
S1 = .S(AC + R1 + R2)
a = 2 Tan"'[(s, - AC)(S, - RL)/[5,(S; - R{)1]*D
8 = 2 Tan"'[(s; - AC)(S, - Ry)/[S;(S; - Ry1]*>
The angle 8 may be determined fram Figure 4.3 by evaluating the
distances Ay and A, and applying the tangent function.
A, = R; - R, Cosé,
A, = Ry Sine,

B = Tan™ (A /A))

Figure 4.1 Uncrossed Configuration of Four-Bar Linkage




Figure 4.2 Crossed Configuration of Four-Bar Linkage

Figure 4.3 GCeometry for Four-Bar Analysis

If the ATN function from BASIC is used to evaluate 8, {ts value will
only be correct if A, 2 0. The following logic makes the correction
when Ax < 0.

If A, < Othen g =8 + %



The relatiurship between A, and AC is
AC = A!ICOSB
The half angle equations may be applied to triangle ABC to obtain Y.
S = .5(AC + Ry ¢ Ry)
Y = 2 Tan"'[(S - AC)(S - Rp)/(S(S - Rp)]-D .
¢ = 2 Tan"'{(s - AC)(S - Ry/(S(S - RY)]->
For the uncrossed configuration:
83 =6 -8
oy =w - (8 + 7).
For the crossed configuration:
63 =2%x - (B *+ ¢)
8y =w -8 +Y
In order to plot the linkage in its various positions, the x-y
coordinates of points A, B and P are specified below as a function of
the input crank angle. Point P is a point on the coupler link.
Xp = Ry Cosé,
Y, =Ry Sine,
XP = XA * R3 Cos(63 * 05)
Yp = Y, + Ry Sin(e3 + 8g)
g = Ry Cosdy * R,
Yg = Ry Singy
The positions and velocities for the uncrossed and crossed .

mechanisms in Figure 4.4 are given ir Tabels 4.1 and 4.2. The

accelerations may be easily added using equations from (6).
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TABLE 5.1

FOUR BAR LINKAGE POSITIONS AND VELOCITIES

INKAGE.

L

ee
.-

TEIS IS NOT A CROSSED TY

o ONONn O
AN el oA X of nf

[ V]
- Q)
£ B
5 g8
! amm
Qs =)
8 8¢
o
2fg,
o8 8
N
ool
s o
P Im 0
uo;-l-fvmwﬁm
DCR = {ﬂ
....wl.mmrﬁ
W??? w0
iyttt
O O fd 2%
[N mx
wwww.m »
ﬂsac
GEEEauaE
: vt la) S
m. Jorbwvl
LEEE:. " OO
EESES“NO
O T

W% 54901973701109893234392952843
1& AP CIO VDD I IO T Nt © 02 O I et 8 OV T On
(&) SIPINDISS O RO - INNNTINDN O AN ¢ NN
(1) rdedmdndedod e d el = INFIAIRINCINIOINNINMM M & & 3 8
[=) L I S T I N T A T T S S N S N N S Y S N 'S

WD OGS B NS et - 1= THS FADIN N OVO DD N ES WV eAt \O M N
.?S M =SS INA O O NOUN IS D L =IO AN I A C)
Y7, NP N RN
% NT N IO DO OO D MO IS 100 OO NO T N
.EN lodododomlodolododedori & & & & 8 8 0 4 8 8.0 8 4+ 4 & e
3 ] $ 6 4 4 40 000 LI N

. IO LMD O N INUN P O 1IN DO € 1S et DU (O QU DO
.BS VI NWOWN D AT M O NN OO CAANAM P BN W) A AT
Y, R R O N R I R R R S A A
Yl VN LN OORDINME N NS APAN et O D e dIOUNS N O
.Eﬁ Clidmlodrodrdemt ¢ & & 4 4 4 68 03 6800 0 0 1 1 1 pdedtD
S gyttt N
L3 L]
. 2000 bttt
CIIIOOO00000000000003000003000000TTT
.A 1 O 00O O000O00 ©00O000000C0VVTOOOCOO -4
) STY.EI ............................ sss
L/ZSSSQ99999999999999999?9999999999000
MIFBNOOCO S 4 4 ¢ 3 4 5 4 4 4 424 24 2030084080800 000
BYCIA T W W ¥
11 nnn
wnintn [T
N3t db- NSO O NN CNIATP O N A T OD M S O A M 20T ﬂn
o LRI OUAD i € IO - & CIM 1641 E1 04 R ed AT 00 S DN OV e
.\51TT?01836049534323925314310155447
» = IR IO MO B S A OWDN S AN - et O O e A NNV P D VPN s b e

B [T T I I S A T N A Colol
' TAAAZII10000000030000000000000312
. -A O S R R S S N S O S N T I T T S I R B I B RR R  V[ (9] (Y]
. )t I
] [T} JoJd «anm
. SEHITID U e DA D =D =4 AN O 4 A NAID S O\ ot DS S & N -t O I 50 50
‘" BHJﬁ69435313939337133754409604695555
SCNGIMAINS AN COUWD A AN PO N et S MNP NI i IS T NN
.G/-555505332222222333344444443320153555
.mwswum I R R R R R T T T O O o Criie
. =0 MO 00O0DDOON000OONNONDONOOOO -
Oul »‘;....-..o.oo.o..o.o.o.o.o...T.T.l
. [ Q00
’ MOOO L
.“m.ﬂ.ﬂﬂﬂ 38933029...895452...3855937 IRV 2090
Uy ' . . S A N .
sf o .L06901097423.105935390093.)...6357 windnd
YD Indided ¢ et LA NNOU S IOV N O vl st s d NI I LI CI AT o4 ©O (VIS Babti
ThLleddetpdt=t 3 4 4 o 8 0 4 4 & 4 rlrdetrinteltiviedoletemintieliret § ¢ 22
.~..thnh"h.~.n LA L L AL AL
<3 [NOTN]
.3E 52329373173037815457162700528511GGS
.RkEGGG... . AN RN A el
GMMM795114592470471594337269233G1KKK
VLA e NIRCIAAA T SIDUNMONO NN O RN
.ﬁE -+ 4 PO I N N S N S S S S R Y S N S g tw ey
QL it 1t
» o ded
.Q%L 00303000000000030000000000003
L N N
. L 00000030900000000000000000000000

U 000NV NNDatNARFINOE O N AdAIM PO OO NI TN
WO MM S 4 & 4 b reterlmtedrd il mled SR N CIN N NI A A MO
w...a 44 4 42 4 4040440480000




TABLE 4.2

SOUR 8AR LINKAGE POSITIONS AND VELCCITIES
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R, = 14
R2-9

R, =20
R, =12
R, = 10
9, = 45°

"

ta wn

Uncrossed Crossed

Figure 4.8 Four-Bar Linkages for Example Problem

The x-y ccordinates of points A, B and P may now be plotted using
the elementary graphics commands included in QuickBASIC. The commands
used for this task are

CLS = Clears the screen on the monitor so a new graph may be

started.

SCREEN 2 = Sets the specification to match the display screen with

610 x 200 pixels. Supports CGA, EGA, VGA and MCGA.

VIEW = Defines screen limits for graphical output.

WINDOW = Defines logical dimensions of current viewport.

LINE = Draws a line from one point to another.

CIRCLE = Draws a circle of specified radius around a specific

center.

Befoire applying these commands, the size of the graph required
must be determined. This is determined by performing a bubble sort on

all x-dimensions and y-dimensions to determine the maximum and minimum




values of x and y required by the data for this problem. Since the
data is in dimensioned arrays, this bubble sort is easily performed by
a For-Next loop. After the maximum and minimum values of the x and y
are determined, this information is combined with the information on
Window size to obtain a scaling factor. Then all values of data are
scaled to fit within the window. If screen width to height ratio is
4/3 and the ratio of y-pixels to x-pixels is 350/640, multiply
x-dimensions by (4/3)(350/640) to give true scale on plotter.

The graphical output for the mechanism is given in Figure 4.5.

The computer program listing is given in Appendix C.

Inercssed Crossed

Figure 4.5 Graphical Cutput from FOUR3AR Program

5. EXAMPLE FOUR: Synthesis

Synthesis is the process of "building up" a complex whole f{rom
simple elements. Synthesis is that creative step in the design process
which invents a configuration for the solution to the previously
defined problem. Analysis may be a sizing process, which may occur

after the synthesis of the solution's configuration, to assure proper

reliability and performance. However, analysis may become part of the
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synthesis process. This example uses the design of a mechanism, which
must produce a specific movement, to illustrate the use of synthesis in
computer aided design. The dyad method used in this example is devel-
oped nicely by Sandor and Erdman in Reference 4.

The design problem is to synthesize a mechanism which will move a
gear blank from position 1 to position 2 and then to position 3 for
various manufacturing operations as shown in Figure 5.1. The design

targets for the motion of this part are:

Y.l =0 61 =0
Y, = 4ee 6, = -2x + biy
Yy - 90° §3 = -10x + 8iy .
Y3
|E§l\\\\ YZ
- & 15,
3 - y
)
2
15, ]

— X

Figure 5.1 Gear Transport Problem Definition




If the solution is assumed to be in the form of a four bar mecha-
nism, the lengths and positions for half of the machanism may be syn-
thesized by working with vectors W and Z to produce the desired
displacements, 5, of P while the coupler link containing Z rotates
through the desired angles Y. The vectors W and Z as shown in Figure
5.2 represent the original positions of the input crank, DA, and the
line AP, respectively. The su» of W plus Z forms the vector pair, the
dyad, for the initial position. This dyad is defined by the following
vector equation

_ i3, iY1
A+ 72 =Ve + Ze

Figure 5.2 Dyad for Half of Four-Bar Mechanism

when the dyad moves to position 2, the displacement of P is 32 and
the angle of rotation of the coupler link, which contains Z, is k5.
Where,
B2 = Y2 "

The dyad in position 2 as illustrated in Figure 5.3 is given by

the following vector equation.
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e + Ze = We e + Ze e

Figure 5.3 Dyad Moving from Position 1 to Position 2

The vector loop equation for positions 1 and 2 may be written as

follows:

We + Ze - We - 2Ze = 62
or

_, ¥ -, 162 -

Wle " -1)+Z(e " -1) =73,

For the first and third positions the following equation may be written

for the vector loop.

iy -£
wie 3

-1) v Fe C-1) -5
with,
£3 = Y3 - Y1
These last two vactor equations may be changed into four nonlinear
algebraic equations by using the Euler's relationship from Figure 5.4,

The real or x component of the unit vector r is Re and the imaginary or

y component {s I..




y, I

Figure 5.3 Unit Vector on Complex Plane

The two vector loop equations may be placed in matrix form.

- e2-nl |F i

iy ig
3. (e 3.0

™~

If the complex elements in the square matrix are expanded into real and

imaginary components using Euler's relationship, this matrix equation

becomes
(R, + i5;)  (Ry » 1I5) W [
where,
R] - Cosvz -1 I‘ - Slnvz .
Rz - COSEZ ~- 1 12 - SlnEz
Ry = Cos£3 -1 Iy = 51ng3

But, the other vectors may also be expanded into real and imaginary

components.




x|

- HR > i"I

~N

= Zg + iZy

83 = 8 * 18y

83 = 83 * 1837
Substitution into the matrix of vector equations and separating the
real and imaginary components produces the following matrix of four

algebraic equations.

B I R I, Wg S1r
L Ry I Ra Wt = |41
Ry ~I3 Ry -l Zg 828
I Ry I Ry Z; 851

The above four algebraic equations contain the following unknownxs:
Vo, 03. 52. 63. HR; HI. ZR and ZI' For the stated problem, values of
rotation of the coupler link Z are given:

€, = hO° €3 = 90°

Hence, there are four equations and six unknowns. In order to solve
the equations, two of the remaining six variables must be defined. One
method of solution would be to assume a valve for each of the two
angles, ¥ and 03. This changes the four equations from nc-.-linear to
linear equations and values for LG "I' ZR and ZI may be obtained
directly by Gauss elimination. The negatives of these values may be
plotted from point P to locate the pivot point A and the ground pivot
D.

The locations of all possibl2 ground pivots, D, and their corre-
sponding circle points, A, may be evaluated by performing the above
proceedure in a pair of nested do loops. The outer loop could vary m3

through 360° in increments of perhaps 10° while the inner loop could
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vary ¢, through 350® in similar increments. The two curves traced by

these pairs of pivot point locaticns are Burmeister Curves and they

define all possible design combinations which will perform the stated -
task. In order to manage the wide spread of data, a test of the values

of Wp, Wy, Zg and Z; could be conduc.2d and those values outside of the

feasible region could be discarded prior to plotting the data.

6. EXAMPLE FIVE: Integration of Computer Aided Drafting with Com~
puter Aided Design and Analysis

A program may calculate the sizes of four gears in a gear train
configuration based on bending stress and contact stress. The data
from the program may be transmitted to a Gear Generation Program, GGP.
These two prograns can be linked together by using the BASIC command
CHAIN.

The GGP program formats the values of the dimensions of the gears
so this information can be read by the computer aided drawing system,
AutoCAD. The program generates the positions of the ends of each
straight iine section of the drawing, the positions of each arc section
of the drawing, and the position and content of any text. Figure 6.1
identifies the positions of generic points on this standard drawing.
The output is written to the Drawing Interchange File, otherwise known
as the DXF file. The DXF file contains inforamtion needed by the .

AutoCAD software to create a drawing. (Other CAD systems may use IGES

instead of DXF.)




The DXF file must be written in a specific arrangement, but mcny
sections can de omitted for simplification. 7The file for this example

is considered simple, since it uses only a few sections. The general

file structure has five sections:

(4.1) T ll (‘.2)
"‘Fl__'J ‘
(1,1) l (1,2)(5.5) 1 sism
(s.zi (s.3)(5.6% | %5.7)
(5.1)’,"—-‘"-—.-,--—>f§.‘) D&
anl. 1% 52 :
(2,1) l 1 . J(
(‘." 1 ' "3)
. (3,1 %3,2)
L ez | je3) ks.s) '6.6)
6,1) X—0e »- - - - -
’ (6.4) | p3 - .
(x,.¥,) | 1 n' l | |
» D2 ) :
(3,4) | (3,3)
i(z.:.) !  HR P ' l
pre LD et ' \
i * |
27 :
L}

Figure 6.1 Generic Transmission with Coordinate Definition

A. HEADER section - General information about the drawing is

found here. Each parameter of the HEADER secticn has a variable name
and an associated value. This section may be omitted if no special

settings are needed to compiete the drawing.

B. TABLES section - This section defines named items such as

line types, layers, %ext styles, and views. It may be omitted if not

needed.
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C. BLOCKS section - This section contains the entities for each

block in the drawing. A block is a set of entities, such as lines,
arcs, circles, and text, which when grouped together form a compound
object. For example, a square can be drawn and be defined as a block
called "square.” Each time the block “"square"” is inserted into the
drawing, the square appears. Usuaily blocks are much more complex and
are used to eliminate repetitious drawing of components that are used
frequently. The blocks section may also be omitted if no blocks are
used.

D. ENTITIES section - This section contains the drawing

entities, including any block references. The entity commands are as

follows:
LINE POINT i CIRCLE
ARC SOLID TEXT
INSERT TRACE

This is the main section of the program and in some instances the only
section.

c. END OF FILE -~ This is the last seciton. It is the signal to
AutoCAD that the file is complete. The program must end with this
section.

DXF files are composed of multiple groups, each occupying two
lines in the DXF file. The first line is a group code, which is a
positive integer. The group value is the second line of the group.

This value is in a format specified by the group code. The group codes

are categorized in the following way:




GROUP CODE RANGE FOLLOWING VALUE
0-9 String
10 - 59 Floating Point
00 - 79 Integer

After examining the outline of the DXF file, it is apparent that
it has a definite pattern. After each "SECTION™ is called, there is a
2 group code, which indicates that the name of the section follows.
The Gear Generation Program in Appendix D shows that there is only one
section, ENTITIES, plus the END OF FILE section that closes the
program. On line 1300 a LINE INPUT statement is used to input a file
name for the DXF file being created. In line 1300 the DXF file is
opened and the following program can be written in the file. The
command PéiNT #1 must be used to write each bit of information to the
DXF file.

The DXF file starts with a 0 group code, followed by SECTION.
The section is then named by entering a 2 group code followed by the
ENTITIES section name, so these are the first outputs of GGP. From
line 1850 to line 2500, coordinates are calcualted for the gear train
using data calculated in the Gear Design program.

In lines 2800 through 3900, the outlines of the four gears are
generated. The entity command LINE is used to accomplish this. The
following commands are used in a subroutine to draw one line.

Definitions are to the right of each entry.

0 group code 0 precedes each entity
LINE command to draw a line
8 group code for layer name

0 layer name for line (default)




X1

20

Y1

11

X2

21

Y2
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group code for 1st x=coordinate
ist x-coordinate
group code for 1st y-coordinate
1st y-coordinate
group code for 2nd x-coordinate
2nd x-coordinate
group code for 2nd y-coordinate

2nd y-coordinate

The above group codes are zlways used in this manner. To draw a

line, values would be assigned to X1, Y1, X2, and Y2. To draw a line

connected to this first line, X2 and Y2 can be used as a first set of

coordinates, then assign values to a set of new coordinates X3 and ¥3.

Lines 4000 through 6700 draw the axes of the gear train.

Calculations can be executed anywhere in the GGP program as long

as they do not interfere with the order of commands in the DXF file.

Text is created in the file by using the followWwing command series:

0

TEXT

10

20

4o

group code G precedes entity

command to input text

layer group code

layer name (default)

group code for text start point {x-coord.)
x-coordinate start point

group code for text start point (y-coord.)
y-coordinate start point

group code for text height

text height value
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1 group code for text value

GEARS text value

At the end of the ENTITIES section and before END OF FILE, the DXF
file must be closed. First, the section must be closed by another 0
group code followed by ENDSEC. The file is then closed by another 0
group code foliowed by EOF.

The listing of the DXF created by GGP is in Appendix E.

Figure 6.2 shows the drawing created by AutoCAD using a Gear
Design Program and this Gear Generation Program.

Creating the DXF file by this method is complicated on personal
computers. Larger mainframes have enhanced capability for graphical

design.

GZAR TRAIN
GENERATION

BY ROB SHEPARD

Figure 6.2 Four Gear Transmission Drawing from Automated

Design Process




- 64 -

REFERENCE LIST

Beer, F. P. and Johnson, Jr., E. R., Vector Mechanics for
Engineers: Statics, McGraw-Hill Book Co., 1972.

Hall, Jr., A. S., Kinematics and Linkage Design, BALT Publishers,
West Lafayette, Indiana, 1966.

Paul, Burton, Kinematics and Dynamics of Planar Machinery,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1979.

Sandor, G. N., and Erdman, A. G., Advanced Mechanism Design:
Analysis and Synthesis, Vol. 2, Prentice-Hall, Inc., Engl ewood
Clirfrs, New Jersey, 1984,

Shigley, J. E., and Uicker, Jr., J. J., Theory of Machines and
Mechanisms, McGraw-Hill Book Co., 1980.

Mabie, H. H., Reinholtz, C. F., Mechanisms and Dynamics of
Machinery, John Wiley and Sons, Inc., 1987.




- 65 -

APPENDIX A

PROGRAM : 'INERTIA®

1 LPRINT - TORSIONAL STIFFNESS AND INERTIA"

2 LPRINT - PBOGRAM: INERTIA“

S DIM K(40), I(30)

6 LPRINT

9 LINPUT "TOTAL NUMBER OF DISCS*:; I2

i0OWT =0

11 XX =0

12 INERTIA = 0

14 INPUT "WZIGHT DENSITY OF MATERIAL. LB/IN 3 (ENTER .293 FOR STEEL)= =; 1

16 LPRINT = MATERIAL DENSITY = *; Wi: " POUNDS/CUBIC INCH"
18 LPRINT * NUM3ER OF DiSCS = =; I2
19 L2RINT

23 FCR Il = 1 TO I2

r33 LPRINT " DISC NUMBER = "; i1l
25 PRINT "DISX NUMBZR =~; I1

30 INPUT ~ OUTSIDE DIAMETER, IN =~; D1
35 INPUT = INSIDE DIZMTER , IN =~; D2

40 LPRINT " OUTSIDE D AMETER = ": D1: " INCHES"
50 LPRINT " INSIDE DIAMETER s "; D2; " INCHES"
§3 INPUT = LENGTH OF DISC , IN s~; L

20 LPRINT " LENGTH OF DISC = "; L: * INCHES"
g2 W=3.14159 « (D1 ~ 2 - D2 " 2) - L -Wil/ 4

$0 ICEL) = .S = W1l « L = 3,1415 « ((D1 / 2) 4 - (D27 2) 4) / 3858
100 INERTIX = INERTIA + I(I1) .

192 K(I1) = 1150000 « 3.14159 = (DI ~ 4 - D2 3) / (L =+ 32)

104 Kl = KL - 1 / K(I1)

105 WT = WT - W

106 NEXT Il
107 K2 = 1 / Kl
108 LPRINT - TORSIONAL STIFTNESS = "; K2: = INCH POUNDS/RADIAN"
. 109 L2RINT - SHAFT INERTIA s "; INERTIA; * IN. L3. SEC. SEC.”
110 LPRINT ~ TOTAL WEIGHT s "; WT; " POUNDS"

120 END
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APPENDIX B

PROGRAM : "“GEAFORC"

51 REM GENERALIZED BEARING REACTION PEOGRAM

54 REM PROGRAM: “GEAFORL™

55 REM WRITTEN 3Y 3RENT XNIGHT

56 REM MISSISSIP?I STATE UNIVERSITY -
37 RcM SPRING. 13388

S3 REM

130 CLS

900 PI = 3.1315927>

9i0 PRINT "THIS PROGRAEM CALCULATES THE REACTIONS AT THE TWO BSEARINGS®

920 PRINT " WHICH SUPPORT A °"SHAFT  IN A HELICAL GEA2 TRANSMISSION."

930 PRINT * THE WORD °"GEAR ~ REFFERS TO THE GEAR ELEMENTS ON THIS "SHAFT ™ AND"
940 PRINT = THE WORD °PINION® REFERS TO ThWE ELEMENTS WHICH ARE IN MESH WITH®
950 PRINT " THE GEAR ELEMENTIS ON THIS "SHAFT .-

980 INPUT "SPEED OF °"SHAFT  (CCW IS POSITIVE), RPM =, SS

990 LNPUT "TOTAL NUM3ER OF °PINIONS ° MESHING WITH ALL °"GEARS " ="; NP

995 PRINT "2ERRING 1 IS THE CRIGIN FOR THE RIGHT HAND™

996 PRINT " COCORDINATE SYSTEM. THE DISTANCE FRCM 32ARING™

10660 PRINT " NUMBER 1 TO BEZARING NUMBER 2 [S POSITIVE IF"

1306 PRINT " BEARING 2z IS TO THE RIGHT OF BEARING l.-

1007 IN2UT "DISTANCE £2CM BCARING 1 TC BEARING 2, I ==: D28

1810 IN2UT "TOTAL NUMBER Of "GCZARS ™ CON "SHAFT- = NGOG

1020 INPUT "MAX NO. O "PINIONS ™ MESHING WITH ANY CNE "GEAR™ =", MNP

103C DIM THETA(NCG, MNP). GP(NOG), DG(MNOG, MNP)

2035 CLs
1040 FOR N = |
1050 FO2 N = 1
1050 PRINT "GEAR NUMB3ER=+"; N

1070 INPUT " NUMBER2 CF ~_NIOMS IN MESH WITH THIS GIARs"; S2(MN)

1075 PRINT "--cerermcer mremcec s e e "
1380 FOR & = 1 TO Go(N?

1035 PRINT " PINION 2"; M; "ON GEAP2 &*: M
1627 INPUT " IS THIS A DRIVEN PINION ? 1Y
0"; DG(N, M): PRINT : PRINT

1998 INPUT " ANGULAR POSITION I THE PINIOM"; THETA{N, M): THETA(N, M) = THETA(N
. M) » PI / 180

1100 NEAT M

1210 PRINT : PRINT : PRINT

1220 NEXT N

1130 DIM PA(NCG), HA(NGG), D(UOG, 2, N(NOG), P(NCG, MNP). 2D(NOG;, WIK(NOG, MNP
)., WIV(NOG. MNP), WRX(NCG, MNP), WRYINQG, MNP, WA(NOG, MNP, WI(NOG, MNP), WA(N
OG, MNP), NOTEETH(NOG), CPITTH(NCG)

TS NGG: F228 M = 1 TO MNP: THETA(N. M) = 0: NSXT M: NEXT N

YES, THEN INPUT 1 | IF N2. TEEW [dPUT

1140 CLS
1150 FOR N = 1 TO NOG
1160 PRINT "FfOR GEAR NUMBER": N -

1170 INPUT " PRESSURE ANGLE ="; PA(N)

1175 PR(N) = PAIN) » Pl / 180

1190 INPUT " HELIX ANGLE =" HA(M)

1133 HA(M) = HA(N) = P! / 180 v
1200 INPUT " DISTANCZ fROM BEARING ! TO GEAR CENTZRs"; D(N, 1)
1205 D(N, 2) = D(N, 1) - DBB

1230 INPUT + DIAMETAL PITIH="; DPITCH N

1232 IN?UT * NUMBER OF TZITH="; NOTEZTH(N,

1233 PRINT : PRINT

1235 POIN) = NOTEETH(N) 7 (DPITCHI(N)Y < CISIHA(N))

1240 NZAT N

2900 F28 N + L TO NOG

2930 72 * L TO G2/ N,

2035 PR " OFOR PINION NUMIEET: M; vON GEAR NUMBER": M




2037
23438
2052
2963
2C70
2372
2080
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INPUT * INPUT RORSEPOWER .Hp =-: P(N, M)

WI(N. M) = B(N. M} - 33000 ~« 12 7 {2 » PI « 35 - BD(N) / 2)

WR(N. M) = ABS(WI{N. M)) - TRN(PAR(N)) / CCS{HA(X))

WIX(N, M) = -WIC{N, M) = SIM(THETA(N. M))

WIY(N, M) = WT(N, M) » COS(THETA(N. ™))

If BG(N, M) = 1 THEN WIX(N, M) = -WTX(N, M): WTY(N. M) = -WIY(N, M)
WRK(N, M) = -WR(N. M) ~ COS(THETA(N, 1))

2090 WRY(N. M) = -WR(N, M) = SIN(THETA(N, M))

2110 WA(N, M) = -WT(N. M) * TANC(HA(N))

211S IF DG(HMN, M) = t THEN WA(N, M) = -WA(N, M)

2220 NEXT X

2139 CLS

2140 NEXT XN

3000 INPUT “NUMBER CF ZXTERMAL LOADS IN THE X-DIR.="; NFX

3010 INPUT "NUMBER OF EXTERNAL LOADS IN THE Y-DIR.s"; NFY

3030 DIRM FX(NFX, 3), FY(NFY. 3)

3040 FOR N = 1 TO N£X

3045 PRINT “THE SIGN CONVENTION IS RIGHT HAND RULE WITH Z POSITIVE TO THE RIGHT"
3045 PRINT "AKRD Y POSITIVE UPWARD AND X POSITIVE INWARD. THE ORIGIN IS AT BEARIN

G.1."

3047 PRINT

3050 PRINT "FOR FORCE FX": N !

3050 INPUT * MAGNATUDE OF FCRCE IN X DIRECTION (INWARD IS POSITIVE), LB="; TX(N
D)

3076 IMPUT = DISTANCE £20M BEARING #1 TO FORCE FX (T2 THE RIGKT IS PCS.)., IN=-;
LN, 2)

3073 EX{N, 3) = TX(M4, 2) - DBB

3Gao CLs

3392 NEXT N

3193 CLS

3110 FOR N = 1 TD NFY

125 PRINT "IF A FORCE iS5 ACTING TO THE 2IGHT OF THE SPECIFIZD BEARINC IT IS A P

OSITIVE DISTANCE FROM THE 3EARING.“: PRINT : PRINT : 2RINT

3129 BRINT “TOR FORCE £Y*; N

3130 INPUT " MAGNRTUDE OF FORCZ IN Y DIRECTION (CCWN IS MNEGATIVE), LB8="; FY(N,
1)

3143 INPUT " DISTANCE FIOM BEZARING = [0 FORCE FY (T2 THE PRIGHT IS POS.). IN=":
TU(N, 2)

3145 FY(N, 3) = FY(N, 2) - DBB

3150 CLs

1160 NEXT N

3170 CLS

3730 SX4 = (NP + NEY) « 3: ST = (NP + NFX) = 3

3759 DIM MXI{3, SX)., MYL(3, SY)., MX2{3, SX), MC2{3. SY)

3900 FOR [ = 1 TO 3: FCR Il = 1 TO SX: MX1(I, I[) = O0: NEXT I!: NEXT I

3220 FOR I = 1 TO 3: FOR II = 1 TO SK: MA2(:, II) = O: NEAXT I[i: NEXT I

316406 FOR I = 1 TO 3: FOR [I = L TC SY: mY1(I, II) s O0: NEXT [I: NEXT I

3360 FOR [ = 1 TO 3: TOR II = 1 TO SY: MY2(I, Ii) = O: NEXT I[: NEXT I

4020 I = -2

4030 FOR M = 1 TO NOG

4050 FTOR NN = 1 TO G2(M)

4050 II = 1 - 3

4100 MX1(2, Il » 1) 31 / 2 = 2D(M) = SiN(THETA(M, NN))

4193 MX1¢2, II » 2) = D(M, 1)

4106 MXL1{3, II » 1) = Wif(M, NN) - WRY(M, HN)

4109 MX1(3, [I » 2) = WA({M, NN)

4112 REM

4115 MYi(2, II » L) = L 7/ 2 = PO(M) = COS(THETA{M, NM))

4113 HYL(2, II » 2) = O(M. 1)

4121 MYI(Y, [ » 1) = WTA(M, NM¥) » WR(M, NN)

4124 MYLI(3, [L » 2) = WAIM, NN)

$127 LM

G130 M202. [T +« 1) = L 7/ 2 « PO(M) = SIN(THETA(M, NNY)

§L32 MK2¢2, ID » 2y = DM, 2)

S133 MX2(3, LD » L) = UTY(M, NN) - WRY(M, NI

132 M203, [ - 2) & WAIM, NE)
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3142 IEM

3045 MY2(¢2. It - i) =1 4 2 - PDIM) - COS{THETA(NM, XN}
4149 MY2¢2, II - 23 = DiM. 1)

151 MY2(3. IT - i) = WTX{M. NN) « WEX(H. NN

4154 MY2(3, il - 2) = WA(R, N

3133 RcM

160 MEXT NK

S170 MEXT ™

3172 REM

3175 33 = It

4177 BREM

4178 2EM FORCES FOR SUM OF MOMENTS ABOUT 3RG 1 AND 228G 2 IN THE X-RIR
4181 REM

4185 FOR M = 1 TO NFY

4190 I = II +» 3

4250 MX1(2., II - 2) = EY(M, 2): MX2(2, I1 » 2) = EY{M, 3)
§276 MX1:3. II = 1) = EY(M, 1): MX2(3. II - 1) = E¥Y(M. 1)

3290 NEXT M
4381 IAEM
1332 REM TORCES EOR SUM OF MOMENTS ASOUT BRG 1 AND B8G 2 IN THE Y-DIR
4384 REM

3000 FOR M = 1 TO NFX

5010 35 = J5 ~ 3

5C40 MYL(2. JJ 2) = BX(M, 2): MY2(2, JJ - 2) = FK(M, 3)

59590 MY1(3, 33 1y s FA(M, 1)}: MY2(2, JJ » 1) = FX(M. 1)

5030 NEXT M

$393 REM

5334 =N CALCULATE TUE SEARING REACTIONS BY MAT2IX EXSANSICN

5333 REM

5363 ALK = C: B2X = 9: R2Y = 0: J1Y = O

6700 FOR 1 = 2 TO SX - 1 STE2? 3

§020 B2Y = MX1(Z. [) = MXi(3, I - 1) - MY1(2., I - 1) « MX1(3. @) + R2Y
5325 RiY = MX2¢2., ) - MX2(3, 1 + 1) - MX2(2, [ » 1) « MX2(3., I) = RLY
£927 MEXT I

5029 TOR [ = 2 TO SY - 1 STE? 3

5030 23X = MYL{2., 1) = MYL{3, [ « 1) - Mrri2. e 1) oo MYL(3, I) - R2X
5035 B1X = MY2(2, i) « A¥YA3, I » 1) - M72¢2, I - 1) = MY23, I) -~ RIX

55340 NS¥XT I :
§360 22Y = R2v / O8B: R2X = B2X s DBB: RiY = R1Y / -p33: RLX = 21X , -D088-
070 GOTO 33500

5072 LPRIMT TAB(12): "TOR SEARING NUMBER 1:"

2075 21 = INT(SQRIRLX ~ 2 » BirY = 2)): LPRINT TA3(1S): "R = "; Rl; " POUNDS”
5330 RLY = INT(I27;: LPRINT TAS(17); "RL1Y = "1 ]1Y: = POUNDS"

508S RiX = INT/31X¥): LPRINT TA3(17): "R1X = ™ 1¥: * PCUNDS": L2RINT

5386 LPRINT TA3(12;: "FIR BEARING NUMBER 2:"

5037 82 = INT(SQR(R2X ~ 2 - R2Y ~ 2)): LPRINT Tag(1s); “"R2 s *; RZ; " POUNDS™
5030 R2Y = INT{227): LPSINT TA3(L7); "R2V = " R2v: ~ POUNDS"

6095 R2X = INT(R2X): LPRINT TAB(L7); "R2X = “; R2X: » POUNDS": LPRINT

~00C FOR N = 1 TO NQOG

7020 FOR M = 1 TO MNP

7040 WA = WA - WA(N, M): WA = INT(WA)

7050 NEXT M

7080 NZXT N

7100 LPRINT : LPRINT TAR(12): "THE TOTAL AXIAL LOAD, WA s ": WA: " POUNDS"
7203 END .
7210 LPRINT

9680 LPRINT TAB(10); "3EARING REACTIONS IN HELTZAL GEAR TRANSMISSIONS”

5005 L2RINT

3010 LPRINT TAB(24); ~"PROSRAM: GZARFORC": LPAINT

3015 LPRINT TA3(10): "THE INPUT DATA :"

3013 LPRINT

3029 LPRINT TA3(1L

zy: "THERE RRE"; NOG: "GEAPS
9040 LPRINT TAR(LS): "THERE ARE A TOTAL cr "

. NP, "PINICN(S)"

9960 L22INT T23:15:: "%C GEAR HAS MORE THAN": MN2: COPLMIODN({SH”
903¢ LPRINT Ta3/13): "THE OISTANCE SETWESN B8ZAZINGS [57: D82 "IMCHES”
39023 LBR:NT TAB(13); Al SHAFT SEEED 13 i S5; "aPMY
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3163 L2RINT

3220 FOR ¥ = L TO NOG

9210 LPRINT TAB(L3): “FOR SEAR NUMBER™: N

3215 L29INT TAS({1S:: "GEAR NUMBER™: N: “HAS": GP{N). “PINION(S)~

3260 LPRINT TAB(1S): “PRESSURE ANGLE =*: BA(N) - 180 7 PI: “DE
i GREES"

9280 LPRINT TAB(1S): “HELIX ANGLE =*: HA(N) - 180 / PI; “DE

GREES"

9300 LPRINT TAB(1S): "GISTANCE TROM 28G. 1 TO GEAR": N; "= *; D(N, 1): *INCHES"
- 3310 L2RINT TAB(1S): "DISTANCE FROM BRG. 2 TQ GcAR™: N: "= *: D(N, 2): “INCHES"

$32C LPRINT TAB(1S): =2ITCH DIAMETER = PD(N); "INCHES"

3322 LPRINT TAB(1S): "THE NOEMAL OIAMETRAL PITCH ="; DPITCH(N): "TEETH/IN.

3324 LPRINT TAB(1S): "NUM3ER OF TEETH ON GEAR = "; NOTEZTH(N)

9330 LPRINT
9350 REM NEXT N
9499 LPRINT
9500 REM FOR N=1 TC NOG
3520 ftOR M = 1 TO G2(N)
3540 LPRINT TAS(13); “FOR PINICN-"; M. "ON GEAR": N
9569 LPRINT
3563 [F DG(N, M) = 9 THEMN As = " DRIVING "
9570 If DGk, M) = ¢ THEN As = " DRIVEN -
2575 LoRINT TAS(1S5): "2INION NUMBER~: N:; "IS A~: As: "PINION"
9583 LPRINT TAB(13): "ANGULAR POSITION =+ = THETA(N, M) =~ 180 / ?I;  "DEGAE=S"
3500 LZRINT TAB(15): “INPUT POWER = "7 P(N., M): “HORSEPOWER"
3620 MNEXT M
9640 LPRINT
9589 MNEXT N
96535 IF NFX > O THEN GTTO 2539
9587 IF N£fY = 0 THEN GOTD 3780
958C LPRINT
- 9700 L22INT TA3(13); "THEZ EXTERNAL LJADS

372C LPRINT
3732 FOR M = 1 TO NTX
9742 LPRINT TA3(15): "FX
3750 LPRINT TA3{1S5); "F¥X"
3760 LPRINT TAB(15): ~Fl
9765 LORINT
9770 NEXT ¥
9775 LPRINT
9780 FOR N = ¢ TO NFY
9790 L2RINT TAS(1S); "F:
3800 L2RINT TA8(1S): "%
9310 LPRINT TAB(Ll3): "F
9815 LPRINT
9820 NMETXT N
9325 IF NFY = ¢ THEN GOTO 10006
9850 REM ---c--vr-ecrerrecroocc s st e o mc e cs oo

- 10000 LPRINT CHas(12;
13001 LPRINT : LPRINT : LPRINT
10002 LPRINT TAB(10): "~ RESULTS": LPRINT
1303 LPRINT TAB(10): " GEAR TOOTH FORCES:"

iy 10010 CLPRINT
10020 FO2 N *+ 1 TO NOG
10045 LPRINT TAB(12): "GEAR NUMBER": N
10063 FOR M = 1 TO GP(N)
10055 LPRINT TAB(L2): " PINICH NUMBEZR": M
13970 LRRINT
10079 WTIN, M) = INT(WI(N, M)
$13033 WTH(N, M) = INT(WIXIN, M)
13039 WTYN, M) = INT(WTY(N, M)
10090 WA(MN, M)y = INTIWRIN, M)
10039 WRKIN, M) = INT(WPXIN, M)
19037 WRYI(N, M) = INTIWRY(MN, M))
1000 LPRINT TA3{13,; "THZ TANGENTIAL TISTH LCAD I3 $ "y WITOdN, MO

" PCUNDS”
"INCHESS F80M BRG 1~
"INCHEZS FRCM BRG 2°

= " TN,
S "; FTE(N,
S *; FUN,

.

o
wAEX
PRAPPE
[(TENN
- et
ar wv e

= " EY(N, 1); "POUNDS™
S "; FY(N, 2); "INCHES F30OM BRG 1"
5 " FL(N, 3); "INCHES TROi BRG 2°




* 2CUNDS”

13220 LPOINT TAB(IS): = THE X-COMP. OF THE TANG. T TH LOAD IS = ~: WTA(N. M):
* 3CUYATS"

1214C L2TNT TAB(1S): - THE Y-COoMP. GF THE TANG. TCOTH LOAD IS = - WIYIN, M)
~ POUNUS”

10163 LORINT TAB(1S): -THE RADIAL TOOTH LOAD IS = = WR(N. M)
* POUNDS”

10130 LPRINT TAB(1S): * THE X-CCMP. OF THE RADIAL TQOTH LOAD IS = ~: WRX{N. M):
* POUNDS”

20200 LPRINT TaB(1S): - THE Y-COMP. OF THE RADIAL TOOTH LOAD IS = = WRY(X, )3
- BOUNDS”

16210 LPRINT TAS(1S): "THE AXIAL (Z-COMPONENT) TOOTH LORD IS = 7 WA(N, M3:
~ PZUNDS"

19220 N2XT M

15243 LPRINT

1026C NEXT N

16403 LPRINT

10420 LPRINT TAB(10): = BEARING REACTIONS:"
12443 LPRINT

1045G LPRINT : GOTO 6372

13598 END




%§ IND VILCITIZs-

L JCXES

VEN
0
(]

~ef

Gr_
Tt
a4 IDING INEUT_CEIMX AN
N 33 IND 2§, SEgasI€ =
OCITY CF :N3JT cazMX, =aHsss
SITICK_Tof INPUT CIRRK, oS
- CSZSNT FOR_INPUT CEaMK. ©
3 CF INCEEMENTS CF IN2UT C
Ciedr LINK OSCILLETE 32Lou §

; -
T3
*as
s zA
233
TTT
P
b4
-
129

WILL NOT ASSIMSLZ AT THIS PISITICN.~

1275
*37 73
Sea a2
3 3 (S2 - 24))
HE NS
£23
:23 Will %NOT ASSEMELE AT THIS SCSITION.”
239
713 Al

. 2:5 32
120 ¥ 3. 4 18 THEN 28¢
335 'isTk . 269
333 M F03 UNCE WITH OCTHE2<:80
333 £3 s A3 - A2
132 2§ 1 3.14:55 - A2 - a3

- 3> t i
159 +" "#3p C20SSZD CCNFIGURATICH WITH 0<THE2<180
370 3 .°3.13159 - A2 - A
e 3.18185 - A2 - A3
332 53
i35 ~v- 9 Ss s "yt THEN 120 L
133 uicas CORFIGE2ATI3R WiTH 18GCTHEZC 163
386 ]
21 3153 - A3
333 30S3ZD CONFISUSATICN WITH 1BICTHE2¢38D
33 3.13:59 - 21 - A3
338 13748 -"a3
323 zEm T EIND - 20THATES CF 2, 3, AND 2
357 33 < 22 39
32 33 - 3] )
&3 §i.7,%8 2esiTuzy - THES)
134 YA - SIN(THZY - TEEIS)
T iq - o 6y - 21
353 75 - 3iN 8y .




-2 N
O

2
o
[rd
o
[

. [T
. [ VRN
. W e
s
&.5..“
nia

[N ) s

* [(qn "
AT, i RN

Y TR RTY Y 190 We

"o X 208 I 1

N T ", oy
- -l i

Nfurgres o g, n»
LT TLY :q..

: P> [ L1 7]

[ va3 Lt

o [V U R H

Rt 1% .0 ]

frap s 2on
“OBIEW DN mo

W U ;.-__ :.)—M_..
Majet _‘.wm

L AT A
10 90«00
{3 ]

~
Filaslo) lyn.
LR R ] a._._ .

HEl
I AHH
P o RTIY N A )
g} .
.:&wa£m~ «n

OO INWUR NMTPUIDIDD
W e M (M ED o4 IANE WP AF VNIV IUIA NS
IEIEYEY LY ST TY I IVERY JURT YL JV IV

» .
'
3 L] [ ] .
(7] ‘ e v ™~ . (3]
“._ - ...“ \ .w
H Ve
i Rt il ¥
%] i na I >
(Y] NV I 1o (V]
13 Ofif= o
X1=C -
) il m s
- n, [F IR A K] " A A
" _m. "..uvﬂ.v... .e" 9::.:”.
0 = h . Wit
o, "mo . FY 30N
(Y] . (14 sas nalnd
nw mv.. (¥} [ R TR Y
. L
w 0y 83520 ™
. 9638)
m ﬂ M kU 184 W
9 H ) e < ) Yv....:.:uc
d M iy
Y] . 10} - . v
< ] ' Wl ! WVt e oy) W
[0V > ] [14 ‘) (8 1
[$] » R [ Y T TTY A "
4 [] t A
H op 1] 4 n.»
HH K ' " ([
(W] " W \) ::n..w
h » 2 5 ]
¢ iyim ('Y €\ )
mﬂ ] .xv .REH".;“# to) )
s YUONIANIN "
. ’ x Viede . e
et ¢y ) O -""
) (X I%T - v
* ] .—m-l...
- * Wl i)
.L-A—- LAY N Y T 2T AR gy g, gy Any )r-
. XY IR Soabian b0 Mot 15 11a0be0babbag ")
™ W O [ TR TIN o~ of
s_ P IS I tn, o~ X n
Y Om paid aEledediban "o |- . -
I W 2 o wer L) - w
O et e I LECRU U BN N ] w " -
. nw - -~ ni e A » -y
~ Bk o WIS RN WA R o 1) - Hat ettt
ul wner . Soathe 4o s .m 'xY ....vs.-n-.n!n oune )¢ Wisw MENINRIIIMV ™ol o
HA O LONM ™ 3 HIRA NS NN - Y LIS TUICIT IR TR T
[ T IN P30 DA AR T S ~ eSS un ~ o
(LU TYY S D » o, M e NEDBINIMES Dt
[~]9] D..;.I - ”.». ....“u .\:. AT A R SS .m '
. TN
neam.“?a.r_ O WOO« (TS 7TN
foolafmafut Bl o) NI . QO00VOM. ™
BRI e G, VIRt s ¢ OOODDOR 1+ + et
=] e PR e 0 1P I P e el trlrtetetas ™M,
0 4 b [] " (%] ] Drts .r.-.:”.l— ........-.-.”3.. YT
VNPT R 7o e 12 e e e GRS
N 2 A N R Nl eDe >
7:.:.:.“.32 [ 1) V elariomd ot - '
.h.—uﬁ"mnf._- " - -l.\(.f.\sl.n!(l.()))m.“{(())\:
o] o} =)’ . » “‘ N .. A 4
b0 R T SN TN n-.,m. B e
L B ) [} -..v + L) LR RIS TRNT PN N ]
prmernte " BRI A R T
_u::.__u..m..." - S“. _.....V.._.,...ﬁv.ﬁwﬂa?.v.....rfhv..v:...v.....v.. W e
‘ N I
[ A e NI 1B aE S0y Y R 0

Mg et

SOV RDONMACIONROOODONNDIIOOCID WMV BN OO 4CHAPERDIND O MO
AWIS 1) ot NIA G M) CR DI QI €30 3 ¢ W LA Yo AN IV 0 LD ER LTI ID 3OO0 D 1 NIACATAME I PPV P IO - W w8
VAV N SR AN SR P N R e B IS SIS IS B U ED AL O MO W IR DO I IR A VIR N O D MR A ¢




- 73 -
APPENDIX D

Program : " Gear Gemeratiom Program"

Loniy SEM

1100 REM SEAR TREAIN DRANING GEMESATOR
1230 REM

- 1250 GERM PTIIDD.2D) ,PTVIID 2D
1200 LIMNE INPUT-DRAMING {DIF; FILE MNAME: ~:Af
1350 OPEM ~0=.1.AS+~_DXF"
1SOD PRINT 81,0

- 1500 PRINT #1,~SECTION"
1700 PRINT @1, 2
1900 PRINT #1, ENTITIES™
1S5) Xd=4: V=g

1900 PTX(1l,1)= XQ + IZ - FL/2
1919 PTY{l,li= YO + D1 + DZ/2
1920 PTXi{1,2)= {3 ~ IZ + F1/2
1930 PTY(:,2)= v + G1 + D2/2
1940 PTX{1,3)= X + Z2 + FL/C
1959 PTYil,2)= ¥ + DB2/2

- 1950 PTX(1.4)= X « I - F1/2

1979 PTYil,4)= ¥ + D2/2

1977 PTXtL,S)y= PTX{L, I}

1976 2TY{1,5)= PTY(1,1)

1982 PTX:2.1)= X3 + I2 - F2/2
1990 PTY:i2,1)= ¥ « P2/2

00D PT(2,2)= XD » I + F2/C
2315 FTYI2, 2= ¥O + D2/

2020 PTXIZ,2)= XD + I2 » F2/2
2970 FTYi2,3y= ¥ — D272

234> PTX:2 o= X0 » Z2 - F2/72
2050 PTY(2,4)= ¥YQ - BT/2
20ET PTXC2 . S)= FTXL2, 1)
29%6 FTIY¥i2,5)= PTYi2, 1)

e FTX(T,1k= €3 « 23 - F3/2
207> PTYViZ, )= Yo + DI/2
2030 PTALS,2= K) & Z0 « F3/2
2090 PTYIT,21= YO - D3/2
209 CTLLT,Tk= X)) » 1T ¢ FT72
2119 PTYC,20= ¥ - BT/2
2120 PTX!(3,8)= XD « I3 - F3/2
21TO PTY(Z,3)= Yo - DT/

2ITT BTN, SyEETXLT, 0
2135 PTYIZ,Si=RTYIS, 1)
214 PTX-4,10= X3 + IT - Fa/s2

+

S1%50 PTY(4,1)= Yy « D& + DT/2
2180 FTXI4,.2)s X5 + IT » Fa/2
2170 FTY(8,2:= /) « DI +» DI/2
2150 PTXi(3,2)s L3 » IT + F4/2
2190 FTY(&4,2)= YO » DI/2

. 2200 PTX(3,3)= X » 27 - 7472

2210 FTY(3,4)= Y » DT/2
21T PTX(4,S)=FPTX (3, 1)
2216 PTY(3,5)=FTY(d,1)

- 2220 PTX(S,1)= X
2230 PTY(S,1= YO + (D1 « D) /2
2249 PTCIS, 28 XO & I2 - FL/2
22%5 PTY!S,2)= PTYZ, 1)
225) PTX(S,2)s X « IZ &« FL/2
227 Fiv-S, 2= FTY S, 1)
3280 FTX(S,4r= ¢ & 2 & 22
226 FPT7iS,8:= FTY{(S, 1)
2300 PTG, S)2 ¢ e 1T - I

2TLY PTY %, % s ¢ o+ DT T3 -2

232 PTC-Z,8r8 ¢+ IT = FAT
TT0 PTYIS, e PTYIS, D)
223 PTXIS,T)a A+ 17 ¢ FI/2




2TY:5 . T-® FI¥V-T .S
FTi(E. 3= ¢+ IT

ETyig )= BT S,
ETXia, 1= 2

STY:ig.1i= ¥}

STX:g. 2= & « IT - F702

PTYi&,21= ¥
PTX!3,7= X & ZT + FZ:2
FTY(S.2)= ¥

PYX(&.3)= X0 + IT - S35C
PTY(5,3)= ¢O

STXI5, 5=
PT¥(5,S)= YO
PTXi{a,a)= X » I7
PTYio,6)= Y

KEM

REM

REM

FOR I=} 70 §
FOR J=: TO 4
FPRINT #1,0
PRINT #1,“LINE"
FRINT ®1.2
CRINT #:,"5"
PRINT ®1.19

}

-1}

L2 ¥

-

1))

1

T=00 PRINT #L FPTUL, T
& PRINT #1,27

Ty SRINT #1,FTY (L, 00
TTL OSINT ®i,L,1!

<72 SEINT #:  FPTHIL . J-
T?T5 PRINT w128

733 PRINT #L PTYiI . J-
SS MEXT J

TO00 NEXT I

A FOS J=1 T3 7 STEF 2
AL00 SEIMNT BL .0

200 PRINT #1."LIMNE"
AT FEINT #1,S

330 PEIMT w1, "

3800 PRINT #1,10

4507 FEIMT #1,F7T2{%,J;
370 PRINT #1,20

350 POQIMT WL FT¢ (S, T}
4900 FEINT 8L, 18

€0 FRINT ®! PTXIE, 3
1wy PRINT #1,2!

5205 PRINT #L , FTY!(S,:J
=00 MEXT J

€400 FOR J=1 TO £ STEF
TEO0 PRIMT 8L .9

4500 PRIMT #1,"LINE™
€760 PRINT #1,€

%307 PRINT ®1,"0"

OO0 FRINT 81,10

800 PRINT #: FTX (6,3
6100 FRINT #1,20

6200 FPRINT #1,.FTY(0,J)
BTO0 PRINT WL, 11

8300 PRINT #1 FTX(6,tJ
5%00 PSINT #1,2t

5500 FRINT 8L, FTY (5, (J
3700 MEAT J

52 FEIMT #t o0

83w FRIMT #!,"ENDEES"
7 FEIMT WL,

T PEINT ), "SOF”

7207 CLOBE
700 EMD

This Draws Gears

This Draws Axis for
Gears 1 & 4

This Draws Axis of
Shaft for Gears 2 & 3
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APPENDIX E

File : "Drawing Interchange File"

Q
SECT.ON
ENTITIES

Q
LINE

9
D

10

.3

pacs ]

27.9€872

1§ 3

1S5.33833

2
27.98872

Q0
LINE

8
D)

19

15.23855

pacs)

27.98872

11

£.32233
2t
17.t2a8!L

0
LINMNE

a
0

19

1S.223C°

29

17.12481

11

S.°

21

17.19481

(,I
LINE

8
3}

19

S.%

20

17.19381¢

1!

S.=

2t

27.98372

0
LIMNE

8
)

10

5.5

20
17.19481
11
15.3385S
21

17. 19481
o
LINE

8
0

10
1S5.32383S
20
17.19481

21
-1.19431
o
LINE
-]
Q
19
15.3358%7
29
1.19481
1l
3.3
21

-1.19481

(V)
LIME
-]
0
10
5.5
20
-1.19331
11
s.2
21
17.19431
0
LINE
a
0
10
18.82835°
20
18.39639

| 39
20.99147
21
13.39639
Q
LINE

8
0

10
30.99147
20
14.39639

1.50561
11
18.8285°
=1
1.80351
o

LINE
e

Q
10
18.83832
29
1.60251
11
18.82837C
21
13.3596357
o

LINE
8

4]
10
18.93827
20
24.78373
11
20.99147
=1
-6.78327S
2

LINE



3

19
O.99187
pais ]
55.78273
11
20.99147
2
13, 396359
D}
LINE
3
Q
19
30.99:47
20
14.39639
1t
19.87857C
21
14.325839
D
LINE
8
(5]
| 03]
13.827332
20
13.39537
11
18.32355
2t
75.72
0
LiME

artnd
7S

D)

10
17.5283C
20
23.59007
11
18.97835
21
235.59007
0
LINE
8
0
10
30.991487
s |
235.59097
11
32.29147
=t
2%8.53947
0
LINE
e
0
10

29
g
1!
S.S
21
8
(s}
LIME
8
(3]
10
15.°2827
20
-
18
18.8282°
21
g
0
LINE

a
D]
| L8]
0.29137
o]
S
12
32.29147
pd §
S
D
TEXT
a
(V]
10
23.79147
20
22.59007
40
t.S
1
GEAR TRAIN
D
TEXT
8
(2]
192
Z4.79137
]
20.09007
8D

.S

]

GEMEFATION
0
TEXT
8
(87
19
>4.79147
i ]
13.59967
39

1.2

1

BY ROB SHEPARD
0

ENDSEC

0

EQF
K 4

GENERAT IOM
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LECTURE 2

Predicting the Performance of Dynamic Mechanical Systems
Abstract:

A mathematical model may be used to evaluate the perfortmance of
high speed machines. This model may be used to predict the contribu-
tion of various design variables to the required specifications. This
paper reviess some aspects of dynamic systems: model formulation,
solutions of equations, numerical integration, sensitivity studies, and

- optimization.

1. Introduction

Mathematical models are used to design dynamic systems which must
meet specific performance criteria. Sor example, the performance of a
vehicle with different design parameters may be predicted for a spe-
cific duty cycle. Or the displacement versus time characteristic of a
variable speed mechanism may be evaluated. The model may be used to
optimize the performance of the system and it may be used to quantify
the sei.3itivity of the performance to changes in each design variable.
However, the configuration of the machine is also constrained by con-
siderations of economics, safety, aesthetics, manufacturability and
standards. The accuracy of the model’s predictiors is an important
consideration. The quest for the absolute model may lead the engineer
through infinite difficulties according to Professor B. £. Quinn of
Purdue University.

This paper gives a review of some fundamental concepts which are
used in dynamic modeling of machines. The solution of algebraic and
differential equations is discussed. The need for sensitivity studies

is presented. An optimization program is described and illustrated.
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2. Fundamental Concepts for Modeling
The dynamic model of a machine is the mathematical relationship
between variables based on physical laws. The following tasés are
included in the modeling activity:
2.1 Identification of the required output
2.2 Identification of the duty cycle -
2.3 Definition of the system's mass, elastic and damping
characteristics
2.3 Identification of the excitation and restraints
2.5 Specification of the design variables to be considered
2.5 Application of Newton's and Euler's. equations of motion plus
the equations of continuity and constraint to produce a
system of equations which will predict the required output in
terms of the specified design variables.
The output required from the model should bé identified as the
) first step. If the model is to be used to design for improved
performance, the variables which account for good performance must be
identified. For example, good performance of a forklift truck may be
related tc the number of pallets moved per day. If the model is to be
used to reduce cost, the energy consumption would be a significant
variable. If the model is to be used to predict torsional vibrations,
the combining of one inertia with an adjacent inertia will reduce the
complexity of the problem, but it also eliminates one degree of freedom

and it's related mode of vibration from the solution. Hence, the

desired output significantly affects the mathematics of the model. .
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The identification of a duty cycle for a machine is essential in
order to predict performance. Several different duty cycles may be
used if the apoiication of the machine varies. For example, a forklift
truck operating in a lumber yzrd has significantly different operating
requirements than when operating in a warehouse per Figure 2.1. The
duty cycle may require different configurations of the system. For
example, the torsional vibration of a fishing vessel with a food proc-
essing plant (Figure 2.2) may have different duty cycles with different
power outputs for the following drivetrain configurations:

Engine at idle speed and all clutches disengaged.

Engine at rated speed and clutch to gen;rator engaged.

Engine at rated speed and clutches to generator and propeller

engaged.

Engine not at rateq speed, propeller engaged, and generator off

line. .

Shipping and Receiving Cycle

Pickup
Load

Figure 2,1 Forklift Truck Duty Cycles
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Elastic
Coupling
Elastic G .
12 Cylinder Engine Coupling Generator
000000
o/ oo
Turbocharger Clutch

Propeller

Figure 2.2 Factory Ship Power Train Mass-Elastic Diagram

The mass, elastic and dissipative characteristics of the machine
are required for the equations of motion. Hemce, the configuration of
the machine must be developed before the model can be formulated. The
mathematical model of the machine must be complex enough to produce the
required output, but simple enough tu allow completion of the analysis
uithin_the cost and time constraints. The number of equations in the
model may be reduced by using equivalent masses, equivalent inertias,
equivalent spring rates and equivalent damping. Careful judgement must
be used when reducing the original system to these equivalent quanti-
ties in order to assure that the mathematical model will properly
represent the original syscem.

Equivalent mass of a system may be determined by writing the
different equations for the system and combining tham into one
differential equation with a single variable representing ail of the
mass and inertia terms. For the geared system of Figure 2.3, this

procedure is as follows. The equations of motion for the pinion and

for the gear are:
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Ip @ = Tin * Tgp
Ig ac = Tpe * Tout -
The angular displacement relationship for pinion and gear is:

ep == 8 *® Ratio.
The second derivative gives the angular acceleration relationship:

a, = - ag * Ratio.
A C.C.W. torque on the gear by the pinion will produce a C.C.W. torque
on the pinion due to the reaction of the gear:

TpG = + TGp * Ratio.
Substituting these equations into the differential equation for the
gear gives:

Ig(- up/Ratio) =+ Tcp * Ratio + T4
Divide by Ratio,

2 . - -
IG ap/Ratio = TGp Tout/Ratio

Add this latter differential equation to the first differential

equation:
2 -
(Ip + I,/Ratio )ap = Tip = Tour/Ratio
Tsin Bp TGp
1
\ \ P Pinion
Gear
| smm— }
,//7{/:’ EEE Ie
8¢ TpG Tout

Ali variables are shown in the
positive direction, CCW.

Figure 2.3 Original Mass-Elastic Diagram for Geared System
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If the original system is replaced by an equivalent system as
shown in Figure 2.8 in which all shafts rotate at engine spee&. the
sign of Tout is reversed and the differential equation for the gear
pair would be:

lequiv ®p = Tin = Toug/Ratio
Comparison of this latter differential equation with the prior equation
shows that the equivalent inertia is

I - I, *+ Ig/Ratio®.

equiv

e S Jogut = 8p/Ratio

quuiv
Figure 2.4 Equivalent Mass-Elastic System

An alternative method for obtaining the equivalent inertia is to
equate the kinetic energy cf the original system to the kinetic energy
of the equivalent system per Reference 6. For this sample problem,
the equivalent inertia of the gear pair referred to pinion speed may be
obtained as follows:

KE = KE

original equivalent

lI 2¢1— 2 !
2% "2 lcu” "7 lequiv ¥
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8y cancelling the one half and using the relationship between the
angular velocities,

wg =~ mp/Ratio,
The kinetic energy equation becomes

2 2 2
Ip wp® + Ic(up/Ratio) = quuiv wp” -

Solve this expression for I which agrees with the former

equiv’®
equation.

2

I I ~» IG/Ratio

equiv © ‘p

A mechanical linkage has an equivalent inertia which changes in
magnitude as the position changes. Consider the engine's slider crank
mechanism of Figure 2.5. The angular velocity of each link and the
linear velocity of the center of gravity of each link are evaluated for
an input crank speed of 1 radian per second as illustrated in Figure
2.6. (This calculation was performed by a four-bar linkage program for
a linkage with the output crank located at 90° from the path of the
piston and for an "infinitely" long output crank.)

The inertia of the piston, connecting rod and c¢rankshaft may be
represented by an equivalent inertia, ng, which has the speed of the
crankshaft. IEQ has a different value for each position of the crank-
shaft. The magnitude of IEQ may be obtained by equating the kinetic
energy of the original system to the kinetic energy of the equivalent
system at each position:

.5 x IEQ X u22 = 5% I x m22 + .5 x Mg x Vuz
+ .5«x I3 X w32 + 5% M3 X VCG32
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MB = Piston assembly mass

Mg = 0.119 1b sec?/in
H3 = Connecting rod weight
My = 0.355 1b sec?/in
13 = Inertia of connecting rod about
center of gravity
I; - 31.6 1o in sec®
I, = Inertia of crankshaft N
I, = 30 1b in sec®
£ = Length of connecting rod = 23 inches .
R = Radius or crank
R=5.25 in
AC = Distance from rod end to C.G. of rod
AC = 5 in

Figure 2.5 Schematic of Engine Piston and Crank Mechanism

R T L
v v v v

(in/sec)

Linear Velocity
Angular Velocity
(rad/sec)

. .
IN]

o o .
LS

b L 13 23 =

87, Crankshaft Position (Degrees)

Figure 2.6 Velocities of Piston and Crank Mechanism
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" Ieq = oo,

82

Igq (Lb in sec2)

u"'
#
is
3
&

82 (Degrees)

Figure 2.7 Equivalent Inertia as a Function of Crank Position

This latter equation shows that the equivalent inertia of a linkage is
the sum of the products of velocity ratios times the mass and inertia
values of the links. This ratio of velocities is independent of the
actual speed of the linkage, since it is established by the position
and configuration of the mechanism. The dependence of the velocity
ratio on the mechanism position may be illustrated by con3idering the
velocity polygon of a mechanism. The shape of the polygon is a func-
tion of position while the size is determined by the magnitude of the
velocity. This is illustrated in Figure 2.8 showing the graphical
solution to the velocity equation:

Y8 = Va * VBsa
If V, is doubled, the polygon will double in size but the ratio VA/VB

will not change at this position.
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OA
v A vB
A B

Figure 2.8 Velccity Polygon for Linkage

when a mass is supported by the free end of a spring, whose
opposite end is stationary, portions of the spring's mass move with
different velocities. The equivalent mass of the spring will be
considered as that fraction of the spring's mass which moves with the
velocity of the free end. The kinetic energy of .the spring with one
end fixed may be equated to the kinetic energy of a massless spring

supportiag an equivalent mass on its free end per Figure 2.9.
KEopiginal * KEoquivalent
L 2 2
IO.SXV XGN'.SMEQ‘J

where, v = Velocity of particle of spriz mass = Vv x X/L

dm = Mass of particle of spring = p X A X dx

¥ = Distance from stationary end to particle of mass
Vv = Velocity of free end of spring
L = Length of spring

p = Mass density of spring
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A = Area of spring normal to x-direction.

Hence,

L
. Hspring - Io dm = px AXx L

L
Mgq = [o (x/L)2(p x A x dX)

For a shaft in torsion with one end fixed and the other end sup-
porting an inertia, J, (Figure 2.9) the equivalent inertia due to that
part of the shaft which moves is obtained as follows

KEoriginal = Eequivalent
JA(KE) = .5 x Jgq x w?

L 2 2
.5 fo wy x de = .5x JEQ X

The angular velocity of the shaft varies from zero at the base to w at
the free end. So the angular velocity of a particle located a distance
X from the free end is

up = w x X/L

The mass moment of inertia of a particle with radius of gyration r is

2

dJ_ = p x A x r© x dX

p

L
.5 x Io P X AKX r2 x (w x X/L)2 x dX = .5 x JEQ X mz

- 2/3 2,3 .
JEQ px AxL x rc/3 M x r</3 Jshaft/3
Hence, the equivalent inertia of a shaft with one end stationary is
equal to one third of the inertia of the total shaft. This equivalent

inertia rotates at the speed of the free end of the shaft.
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Mgq —
\,_._L___.'
Mgq = ‘spring/3 JeQ = Ishart’3
Hspring = Mass of spring Jshaft = Mass moment of inertia
of shaft

Figure 2.9 Equivalent Inertia of Fixed End Spring

The elastic properties of the machine must also be quantified in
order to create a mathematical model of the dynamic system. The elas-
tic deformations provide storage for the potential energy, which may be
changed into kinetic energy at a later phase. The elastic properties
may be characterized by spring constants. An example of a spring
constant would be the ratio of the change in fcrce on a gear tooth to
the change in deflection of the tooth per Figure 2.10. An example of

torsional stiffness would be the ratio of the change in shaft torque to

the corresponding angular deflection.
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K = AF/aX /

Force per inch of
face width (in/in)
1\
R

Displacement per inch
of face width (in/in)

Figure 2.10 Gear Tooth Stiffness from Finite Element Analysis

The elastic characteristics of some machines are more complex than
these two examples and equivalent spring constants may be used to
simplify the model. If several springs are in parallel, as when more
than one pair of teeth of a helical gear shares the load, this multiple
spring system may be represented by an equivalent system with only oﬁe
spring. This is illustrated in Figure 2.11 and the equivalent spring
constant is evaluated as follows for the equivalent system. This
expression is valid for parallel torsion springs also.

Kgq = F/X = (Fy+Fp+F3)/X = Fy/X + Fp/X + F3/X = Ky +Kp*Kg

n
Keq = L K;
i=1
where, F = Total force on all springs

X = Deflection of each spring
Kgq = Equivalent spring constant, 1b/in

n = Number of springs in parallel
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K1 = Spring constant of original spring, 1b/in

F = Fl + FZ + F3 F

s

Original System Equivalent System

Figure 2.11 Springs in Parallel

If springs are in series, as the torsional spring constants of a
stepped shaft, the equivalent system may be simplified. The total
deflection at the end of the shaft is 6, which is made up of the sum of
the deflections of the individual springs. The torque on each spring
in series is the same.

0 ’01 + 62 + 63 'T/Kl + T/Kz + T/K3

n
= T(1/Ky * 1/Ky + 1/K3) = Tx I (1/K)
i1

But, the equivalent system's spring constant is

80,

n
is1

KEQ = Equivalent spring constant, 1lb in/radian
n = Number of springs in series

K1 = Spring constant for original spring, lb in/radian




- 91 -

This expressior is valid for series extension springs also. A pair of
gear teeth in mesh is another series spring arrangement (Reference 7)

with each tooth having a stiffness, KT' per Figure 2.12.

Original Single pair of teeth
Stepped Shaft in contact

\ - .

N K1 «k

\ 2 g

=

\ 1

\ T

. Series springs
Equivalent Shaft represent tooth stiffness

%}747 = fi?’a Kr

a 1

Figure 2.12 Springs in Series

The equivalent spring constant concept may be useful when
nonlinear relationships exist between deflections and torque (or
force). This nonlinearity may be a function of torque (or
displacement) as in the elastic coupling illustrated in Figure 2.13.
The equivalent spring constant is usually taken as the slope of the
force (or torque) versus deflection curve at the operating point.

For systems with gears, the original system may be replaced by an
equivalent system with all {nertias onerating at the same speed. The

equivalent system must have an eguivalent spring constant which will
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allow it to store the same amount of potential energy as the original

system, since the nature of a vibrating system is to transform kinetic

*

energy into potential and then reverse this transformation. The

L e e e o - - - C AT
y
40

g ! 1 ! H
§' 1 — Op?tating .
o . Point
]
9 I ) 1]

l.'_.'_...Operating

1 + 1 Range

6= Anguiar deflection

Figure 2.13 Nonlinear Springs

potential energy is stored in the springs as they deflect and is equal
to the product of the average force times the displacement. Consider
representing the original gear with the dual speed shaft system by an
equivalent single speed system as in Figure 2.14. Equate the potential
energies of these two systems to obtain the equivalent spring constant.
In this sample, the

PE E

original * PEequivalent

5 x Ky x (05 - 63)2 = 5% KEQ X (62 x Ratio - 63 X Rat10)2
Hence,

Kon = K/Ratio?

EQ 1 ’

The equivalent inertias are also shown in the figure.
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N 03: 63 x Ratio

Kgo

8; = 62 x Ratio
Jeg = J1 + J2/Ratio?

Original System Equivalent System
(Referred to Motor Speed)

Figure 2.14 Equivalent Spring Constant

Pressurized Rubber Tube
Friction Material

Figure 2.15 40 Inch Pneumatic Clutch in Test Stand
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<

Clutch Torque (Lb In)

A 5 A

Clutch Gland Angular Deflection (Rad/Ans)

Figure 2.16 Torsional Deflection of 30 Inch Clutch

. / Dial Indicator

Clutch Drum

Clutch Housing -

Y

S ' \- Cylinder "3" ' \- '

- * SctrainCage
 Cyliades 3
Cj--:é:i'; ' . in Poisson
' v Arrangezenc
' Valve -/ Pressui~ Gage

Alr Supply

Figure 2.17 Device for Scatic Measurements of Torsional

Clutch Stiffness and Damping
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Dial Indicator
Clu\tch bnn I_(~
- /= Clutch Zub Q/

-

Cylinder "L” \s:un Cage in_

ﬁ Cylinder "R" Poisson Arrangement
Valve . Pressure Cage )

Air Scpply i

Figure 2.18 Device for Static Measurements of Radial

Clutch Stiffness and Damping

The torsional stiffness of a pneumatically activated clutch as
fllustrated in Figure 2.15 may be evaluated as the mean slope of the
torque deflection curve. Values of relative damping and torsional
stiffness were measured in the zero frequency test device designed by
Cardenas (Reference 8) in Figure 2.17. Typical load curves are shown
in Figure 2.16. The results of tests by Elahi are are in Table 2.1

(Reference 9). This work was supported by Marine Gears, Inc.
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The radial stiffness of these clutches may also be evaluated by
removing one bearing to allow the shaft to deflect radially and
rerouting the hydrauiic lines to cause both cylinders to move in the
same direction. This test setup is shown in Figure 2.18. the radial
stiffness results of tests ﬁy Elahi (Reference 9) are in Table 2.2.
The test data in Figure 2.20 is typical for the 40 inch clutch.

Some pneumatic clutches do not allow the elastomer air bag to be
deflected as the torque is transmitted by metal members. This results
in a more rugged design, but the torsional stiffness is much higher and
the energy dissipating capability of the elastomer is not available.

The damping characteristics of a system must be included in the
dynamic model. The dissipation of energy by damping is one method for
keeping the amplitudes of vibrating systems from reaching dangerous
magnitudes. Damping may be achieved by viscous damping of a fluid,
hysteresis damping in an elastic solid or coulomdb friction damping
bet;;en solids.

The viscous damper may be subjected to a harmonic excitation
source,

P = P, sin{wt + ¢) ,
which leads the displacement,
X = X, sin(wt) ,
by a phase angle ¢. The resulting work is
W= %P, X, sine
The damping force is
PoberecxwxX,.
Py s 90° out of phase with the displacement Xo- Hence, the damping

work per cycle is
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W=xxCcXxax on .

Damping by material hysteresis is due to internal friction which
heats the material. Elastomer materials, such as rubber, have high
hysteresis loss when strained. The elastomer material of the
pressurized tube of the 80 inch clutch shown in Figure 2.15 provides
damping. The area under the torque versus deflection curve for
increasing torque is larger than the area under the curve traced as the
clutch returns to the unloaded position per Figure 2.16. The
hysteresis energy dissipated per cycle, Hd. is equal to the area
between these two curves per Figure 2.19. The energy of a linear
elastic deflection from che mean position to the maximum amplitude,
Xpax- 13

Wg = .5xkx xmaxz
Relative damping, ¥, is a term for characterizing hysteresis damping:
v = Wy/W,
The relative damping for this 40 inch clutch with elastomer air bags
was evaluated under static conditions and the values are given in
Table 2.1.

The model of a system wilh hysteresis damping may be simplified by
expressl.g the energy loss per cycle as a function of an equivalent
viscous damping function. This i{s obtained by equating the energy
dissipated per cycle for hysteresis damping to the energy dissip&ted
per cycle by an equivalent viscous damper.

¥ X Wy = %x Cpoxwx X2

We = .5 x K x X2




TABLE 2.1 Relative Damping and Torsional Stiffness of Clutches

Clutch Maximum Minimum Mean 2¢ Torsional

Size Torque Torque Torque v Stiffneas Relative
(inch) (1b-in) (1b-in) (1b-in) (Radian) (1b-in/rad) Damping
26 53,0717 15,198 34,138 0.001531 24,741,346 0.8277
26 52,142 18,706 35,424 0.001358 24,621,502 1.0290
26 78,447 52,376 65,112 0.000962 27,100,832 0.9237
30 76,460 27,825 52,143 0.000905 53,734, 394 0.8818
30 82,305 27,203 54,754 0.001062 51,870,470 0.8267
30 138,423 91,658 115,011 0.000878 53,263,098 0.6654
30 133,980 91,19 112,586 0.000840 50,933,222 1.1148
35 116,91 1,620 79,266 0.001960 38,413,776 0.7106
35 184,953 95,633 141,793 0.002554 36,147,220 0.9439
40 153,387 43,023 98,205 0.001537 71,804,815 0.9685
4o 227,976 144,034 186,005 0.001342 62,549,926 0.7348
u8 200,000 60,818 130,409 o0.o001217 114,299,509 1.319
48 287,500 191,266 239,383 0.000637 151,073,784 1.5638
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Figure 2.19 Hysteresis Damping Energy

Clutch Maximum Radial
Size Radial Force -Stirfness
(inch) (1b) (1b/in)
26 3971 132,188
30 3520 87,710
30 3365 87,349
30 3456 87,592
3¢ 5622 87,143
30 5049 88,182
35 2019 80,047
ho 5889 143,298
48 5623 138,572

TABLE 2.2 Radial Stiffness of Pneumatic Clutches
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“wed

Radial Force (1b)

0.000 .08 e.00 9.038% 9.028 8.028 .02¢ ..828 .00 8.0

Radial Deflection (in)

Figure 2.20 Radial Deflection of ¥0 Inch Clutch

Hence, the equivalent value of viscous damping is:

]

CEQ. le(xxozl(tx»xxo)z-ix—'x—'x—!

rTXuw

Where,
K = Torsional stiffness of member with hysteresis

w = Natural frequency of vibration.

3. Types of Excitation

The type of excitation for a mechanical system may be steady
state, periodic, aperiodic or random. The method of analysis is
different for each type.

For periodic excitation, the response of a linear system will also
be periodic and the initial conditions will establish the amplitudes.

The excitation of an internal combustion engine's gas pressure pulses
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may be represented as a periodic excitation by a Fourier analysis of

the gas pressure as shown in Figure 3.1. If the crankshaft speed, a,
is constant, the time, t, is a function of crank position, 6.

t = 8/0
Hence, the period, T, for one cycle of a two stroke cycle engine with
speed, w, is

T =2x/w .
The Fourier expansion of the function is

x(t) = £(t) = (k)

x(t) = X3ve *+ I B(n) Sin(nwt) +, § C(n) Cos(nut)

n=1 n=1
NO
Xave = (kZ‘ (k) at)/T

NO = T/At = Number of data sets in one period

t = (k-.5)at, for k=1, 2, 3,...N0

At = Time increment between data sets. (The first data set
is at t = At/2 and the last set fs at t = T -at/2 -

xave = Average value cf function over one period

"T = Total number of harmonic components

n = Number of a harmonic. 1 $n§ Np

The coefficients B(n) and C(n) must be evaluated for each value of n.

NO

B(n) = (2/T) [ rik) x sin((n x 2 x »/T) x (k-.5)at)at
k=1
NO

C(n) = (2/T) [ f(k) x Cos((n x 2 x »/T) x (k-.5)at)at
ks

B(n) = Amplitude of nth sine harmonic.

C(n) = Amplitude of nth Cosine harmonic.

The phase angle between the harmonic components is

¢(n) = arctan (C(n)/B(n)) .
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Figure 3.1 Engine Cylinder Pressure (Two Stroke Cycle)

INPUT DATA

ENGINE SPEED = 209.43 RAD/SEC
NUMBER OF HARMONICS = 10
TOTAL TIME PERIOD = .03 SEC

FOURIER SERIES COEFFICIENTS
CONSTANT COEFFICIENT XBAR = 165.07 -

N BN CN

1 119.04 185.140
2 87.923 87.642
3 90.502 32.504
L] 53.280 .G10
5 44,167 -6.100
6 20.327 -18.589
7 13.113 -12.340
8 .305 -10.703
9 .uo7 -2.005
10 -5.023 -4.967

TABLE 3.2 Fourier Coefficients for Engine Gas Pressure
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TIME PRESSURE CRANKSHAFT POSITION
(Seconds) (PSI) (Degrees)
0 220 10
.00 620 12
.002 780 28
.003 580 36
.00k 385 a8
.005 280 60
.006 205 T2
.007 175 8h
.008 130 96
.009 106 108
.01 100 120
.01 . 98 132
012 . 95 148
.013 90 156
L0184 88 168
.015 19 180
.016 10 192
.017 10 204
.018 10 216
.019 12 228
.02 13 280
.021 10 252
.022 25 264
.023 30 276
.024 a5 288
.025 = 50 300
.026 80 312
.027 100 324
.028 145 336
.029 210 348
.03 220 360

TABLE 3.1 Engine Gas Pressure Versus Time and Crankshaft Position.

Each harmonic component has a unique frequency, which is equal to
the product of the engine speed and the harmonic number, n. At n=2a
harmonic pressure, with a frequency of 418.8 rzd/sec is produced by the

engine. The magnitude of this pressure component is

N
P(t) = 165.07 + J' 87.9 * Sin(2 x 209.4 x t)
ne
Np
+ 187.6 Cos(2 x 209.4 x t)
n=1\
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Actual Data

Fourier Values \/F

Function F(T)
(Gas Pressure, Psi)

Ee—

0.03 0.05 0.013 0.0i5 0.020 0.025 3.230

Time (Seconds)

Figure 3.2 Graph of Fourier Representation of Engine Gas Pressure

- This harmonically varying press;re produces forces which could excite a
resonant vibration, if the system has a natural frequency of 418.8
randians/second. As the values of n increase above 11, the amplitudes
decrease. This indicates that the energy of the higher harmonics will
be too small to produce significant vibration amplitudes after overcom-
ing the damping. These harmonic pressures also produce harmonic compo-
nents of crankshaft torque. The response of a linear system may be
obtained by summing the response for each of the harmonic components.

Aperiodic excitation is a nonrepeating pulse. The pulse is
equival;nt to the sum of numerous natural frequencies. The shape of
the pulse determines {ts frequency content. For example, a step would

contain .uigh frequencies in order to define the sharp corner. The
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Fourier Integral mcy be used to transform an aperiodic function, f(t),

from the time domain into an equivalent function, g(w), in the

frequency domain. In the frequency domain, the system response may

then be characterized in terms of gain, the ratio of output to input.

The Fourier Integral (10) may be expressed as

£(t) -[ glw) el®t dy

where,

1 -
- — -ius
glw) - I_. £(s) e ds

The dummy variable s may be repalced by the_variable t and the
following relationship may replace e 19t i, the expression for glw).

e 1wt | cos(wt) - 1 Sin(wt)

Hence,
1 - i -
gtw) == | £t) costut) at - =" £t stntat) ot
- 2% /-= 2x /-=
or,
g(w) = A - B
where,
1 [}
A -—[ £(t) Cos(wt) dt
2% /) ~=
1 -
B -—I £(t) Sin(wt) dt
2% /-~
. The absolute value of g(w) is

lgw)! = (a2 + 82)-5
The phase angle for g(w) is

¢ = Tan"'(B/A) .
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If the system gain, M, and the excitation are both expressed in the

frequency domain, the system response at a frequency w would be
€output = M X Eexcitation °

If the excitation of the system is random, it may be expressed in
statistical terms as a power spectral density function, Ps' The power
spectral density function is a function of frequency. The auto-
covariance function, C(t), may also be used to locate periodic content
of random functions (11 and 12). The following equation shows how C(t)
will have larg: values when the lag index corresponds to the period of
a harmonic componeni of the data. However, if the relationship between
the data, Y(t) and Y(t+t), is truly randomn, with values above and

below zero, the value of C(t) will approach zero.

I (T |
c(r) = Lim —[ Y(t) x Y(t + 1) dt
2T

T+e -

For numerical methods the following form is convenient.

1 n-R
C(R) =— ¥ Y(1) x Y(i+R)
nR ga1
where,
C(R) = C(t) = the autocovariance function.
T = the time length of the data record.
t = time
1 = Lag value. (The maximum value of t should not exceed 5 to 10%
of the length of the data record.)
At = Time interval between measured values of Y(i).
Y(1) = Y(t) = Variable under study (The data must be processed so

Y(1{) has a mean value of Zzero.

n = Total number of data points.
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M= t.ax/At = Total number of frequency bands.
R = t/4t = Lag index = 0, 1, 2, ..., M

Tae Fourier Transform of the autocovariance function is

1
gle) = ;j Clv) x e-iwt g

--

or

1 - i -
glw) = —-'I C(t) Cos(wt) dr - —-I C(t) Sin(wt) dx
2y ‘~= 2% ‘-=

Since C(t) is an even function and Sin(ut) is an odd function, this

equation becomes:

1
glw) = —] C(t) Cos(wr) dt .
2% ‘-»

Power sepectral density is
P(w) = 2g(w)
where,

OSuwse

1 -
glw) = — I C(x) Cos(wt) dx
2x ‘0

The maximum frequency which can be identified by the data is

fmax * 1/7(2 x At)

The frequency bands, M, divide this maximum frequency into increments
Af.

Af = foay/M = 1/(2 x M x At)
Define H as an integer with the following relationship to frequency fH:

fH-HXAf
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The values of H are taken as the values of R to establish the
connection between C(tr) and P(fﬂ). At t = 0 and v = = the values of R

are zero and M respectively. For numerical methods the following form
is convenient

M
P(fH) = (2/x) IR-O C(R) x Cos(xHR/M) dt

The Fouwrier Transform will place the autocovariance function into the
frequency domain. The area under the plot of P(w) versus w is the mean
square value of the function Y(t). Peaks in P(w) identify frequencies,
w, of harmonics in Y(t). The power spectral density function and the
correlation function are very useful in signature analysis, which gives
early warning of failures in bearings or gears by showing changes in
the power spectrum of noise or acceleration signals.

A simple example of the use of the power spectral density function
in signature analysis may be based on data for the acceleration of the
driver of a vehicle (13). The rear shock absorbers were not active for
the acceleration data in Figure 3.3. The power spectral density for
this data is given as a function of frequency in Figure 3.4. The power
spectral density function has its largest spike at l1vcps. which is
near the natural frequency of wheel hop for the independently sprung
front wheels. The next largest spike is 2 cps which is close to the
body roll natural frequency of the vehicle.

For the condition with active rear shocks, the acceleration data
is characterized as a probability density function in Figure 3.5. The
probability density function gives a good indication of the magnitude
scatter of the data. The probability of encountering loads  in excess

of one standard deviation (.035 g's) is 20%, when shocks are active.
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This data for active shocks is given in the frequency domain in Figure

3.6. The signature of the machine shown in Figure 3.6 {s similar %o
the signature of Figure 3.3 as the two dominant frequencies appear in
botn figures, however, the magnitudes are significantly different which

indicates a significant change in the m.chine itself.

N, Integration of Equations of Motion
The predictive model aust be based on the fundamental laws of
physics, mathematical principles, the equations of continuity and
constraint functions. The differential equations of motion, which
define the reiationships between forces and movement, will require
numerical integration methods for most cases. The modified Euler
predictor corrector method and the Rung;-!(utta method are two popular
integration methods. The fourth order accuracy Runge-Kutta method can
provide a solution to the first order differential equation of the form
dx/dt = F(t,x) .
The solution at one time interval past k is
Aoy = Xy * (ag + 22, + 2aj ¢+ ay)/6 ,

where ’

[
-
]

at x F(t), (x)]

[
N
[ ]

at x F{(t + .5 x at), (X, + .5 x a,)]

]
w
[ ]

At x F[(f. *+ .5xat), (X, + .5x az)]
ay = at x F{(t » av), (X, » ap)] .
A computer algorithim for solving a system of differential

equations is given by Singiresu S. Rao (1) and Charles M. Haberman (2)

presents the theory.
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A critical factor in the numerical integration is the choice the
integration step size, At. If At is too small, the computer time will
be excessive. If it is extremely small the computational accuracy of
the computer may introduce errors. However, if At is too big, the
solution will cease to be independent of the value of At. A practical
suggestion for evaluating the size of At is to assign a value to At and
perform the numerical integration over an interval with the maximum
dynamic characteristics. The value of At is then plotted on the log
scale of semi-log paper while the terminal value of the dependent
variable is plotted¢ on the other axis. Then change the value of At by
a factor of 5 and repeal the prior procedure. The graph will show no
variation in the value of the dependent variable for values of At which
are small enough. The example in the next section will illustrate this

technique.

5. Example: Vehicle Simulation

Suppose that it is desired to determine the change in the
performance of a vehicle when different gear ratios are used in it's
three speed transmission. The first step is to develop a predictive
model for this vehicle. The duty cycle for this model requires the
vehicle to start from rest and travel 1000 feet up a one degree slope.
The output from the model is to be the time required to reach the end
of this path. the data of Table 5.1 defines the problem and Figure 5.1

fllustrates the original system.
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TABLE 5.1 Data for Vehici2 Simulation

WEIGHT OF THE VEHICLE (LB) = 2000

WHEEL BASE LENGTH OF THE VEHICLE (FT) = 8
HORIZONTAL DISTANCE FROM THE FRONT AXLE TO THE
CENTER OF GRAVITY (FT) = &

VERTICAL DISTANCE FROM THE GROUND TO THE CENTER OF
GRAVITY (FT) = 2.3

DISTANCE TO BE TRAVELED (FT) = 1000

INTEGRATION TIME INCREMENT (SEC) = .1

TIME TO SHIFT THE TRAMSMISSION (SEC) = .S

NUMBER OF FIRST ORDER DIFFERENTIAL EQUATIONS = 2
ROAD INCLINE (DEGREES) = 1

NUMBER OF TRANSMISSION GEAR RATIO SELECTIONS = 3
INERTIA OF ENGINE (LB FT SECY) = .016667

INERTIA OF FLYWHEEL (LB FT sgcz) - .020833
INERTIA OF CLUTCH (LB FT S = .0081667
INERTIA OF WHEEL (LB FT SEC°) = .583333

RADIUS OF REAR WHEEL (FT) = 1

DRAG COEFFICIENT .8

PROJECTED FROMTAL AREA OF VEHICLE (FTZ) = 25
COEFFICIENT OF TRACTION OF TIRES = .65
EFFICIENCY OF THE DRIVE TRAIN = .85

COEFFICIENT OF ROLLING RESISTANCE = .02

RATIO FOR GEAR DRIVE
GEAR = 1 RATIO = 2.779%
GEAR = 2  RATIO = 2.05A43
GEAR = 3  RATIO = 1
DIFFERENTIAL RATIO = 8.111

Figure 5.1 Vehicle Schematic RRW
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The forces acting on this vehicle to produce its dynamic motion
are described below. It is important to note that the fcrce FR depends
on the actual mass and not on the equivalent mass.

W = Weight of vehicle, 1b.

FG = The resistance due to gravity as the vehicle moves up a
slope of alpha, lb.

Fg = W x Sin(Alpha)

FA' = Air drag resistance, 1lb.

Fy' = -0012 x AF x DC x V2

Fy = Fy'/V°

AF = Projacted frontal area of vehicle, rel.

V = Velocity of vehicle, ft/sec.

DC = Drag coefficient

FI = Inertia force

Fp=-MxX

M = Actual mass of vehicle, 1b sec?/rt

M= W/g

FF = Moment about front tire contact point due to static
weight only, 1b ft.

FF = LF x W x Cos(Alpha) + H x W x Sin(Alpha)

FR = Force normal to rear wheels due to static weight and
dynamic loads, 1lb.

FR = (- Fp x H » FF)/LT = (M x X x H + FF)/LT

TENG = Torque produced by engine on crankshaft, l1b ft. The

following expresison was obtained from a least squares

fit of data for this engine.
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TENG = .00197285 x R3 - .3302= x RZ + 13.456 x R - 25.283

R = Engire speed, RPM, divided by 100.

Mu = Coefficient of traction Setween tire and road.

? = Thrust force of ground on tire, 1b. The value of P
dep.nds on engine torque, gear ratio and wheel radius,
but must not exceed P_. ., which is the maximum slip
force. Hence,

PSPy

P = TEMG x GR(I) x GRD x EFF/RRW
GR(I) = Gear ratioc in transaission.
GRD = Geur ratio in differential
EFF = Mechanical efficiency of transaission.
Pgax = Mu X FR
In order to simplify the differential equation of motion, the

original system will be replaced by an equivalent system per Figure 5.2

with a tra ~ating mass, which has the same linear velocity as the E

vehicle. .ne equivalent mass is obtained by equating the kinetic

energy of the original and equivalent systems.

KEoriginal = KEequivalent

5 x (Wg) x V¥ o S(IprIgeI) x wgl + 5N x Iy) x w2 = .5 x MgV

But,
wg=Vx GR(I) x GRD/RRW
wy = V/RRW

Combine these three quations to obtain:

Mgq = (W/8) + (Ig*LpeIc) x (GR(I) x GRD/RRW)? + (B x 1,,)/RAW?
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FarFr.Fg

Figure 5.2 Equivalent System for Vehicle

The differential equation of motion for this vehicle is:
quxf-P-FG°FR-FAxV2
When the clutch i{s engaged,

P = TENG x GR(I) x GRD x EFF/RRW

ir, P < Ppox -

So, X = (P-Fg-Fp=-Fyx V¥ Mg
Otherwise, if P > Pnax' se% P = Pnax as follows.

P=Ppay =MuxFR = Mu(M x X x H + FF)/LT

PeMuxXxHxMLT - mu(LF x Cos(Alpha) + H x Sin(Alpha))W/LT
For this latter case, the equation of motion is

X = {+ Mu(LF x Cos(Alpha) + H x Sin(Alpha)) x W

CLT (- Fo-FR-Fax V) /(Mg *LT - Mux H x M) .

When the clutch is disengaged,

P=20
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In orer to use the Runge-Kutta method of integration, the variables

will be redefined per standard practice as in Table 5.2.

TABLE 5.2 Variable Definitions for Vehicle

0ld Variable New Variable Tnitial Differential
Name Name Value Equation
X xx(1) 0 F(1) = % = XX(2) = XX(1)
VeXx Xx(2) 0 F(2) = X = £F/Mpg = XX(2)
X

The size of the integration step, At, was varied from .001 to 0.5
seconds by factors of 5 while the distance traveled in 5 seconds wWas
evaluated. This initial 5 seconds is associated with the maximum
dynamic conditions for this problem. The results as shown in Figure

; 5.3 indicate that significant numerical error is created for this
proplen when At is greater than 0.10 seconds.

The displacement versus time and velocity versus time plots for

this system's performance are shown in Figure 5.4 and 5.5.

190

Position of vehicle
after S seconds (FT)
8
Sum
T~

120
__ar[

Integration time increment (sec)

Figure 5.3 Investigation of Integration Step Size
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6. Solutions of Algebraic Equations
6.1 Solution of an Equation
The solution of a linear or nonlinear equation may be obtained by
drawing a graph of the function to determine those values of the
independent variable which reduce the function to zero. A nonlinear

equation may have more than one root. Figure 6.1 illustrates how the

function, £(X), behave as X varies.

4
T

)

Function
£(X

Figure 6.1 Solution to Function

The value of x which produces a zero value of the function, may be
obtained by the Newton-Raphson numerical method. This method starts
with the first two terms of the Taylor series expansion of the function
f£(X) about the position x:

£(X, + AX) = £(X;) + &X x £°(Xj)

t'(Xn) s the slope of the function at X = X,.
The small value AX which may be added to X, to make f(X, ¢ 8X) approach
zero may be obtained by rearranging the Taylor series to solve for AX.
An initial trial value for X, must be estimated.

f(X, + 8X) = 0

£(X,) * 8X x £°(X) = 0
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The slope may be approximated:
00X, = [£0x) - £.x, D r(x, - x,_y)
X = - £(X) x (X, - X /e - £, ]
Add AX to Xn to bring xn closer to the root as follows.
Xp-1 = Xy
xn = Xn + AX
Repeat the above procedure of calculating the correction increment AX

and modifying X, and Xy-1- When r(xn) approaches zero, the solution

has been obtained.

6.2 Solution of a System of Linear Equations

The Gaussian elimination method with pivot elements is a popular
method for finding the roots of a system of linear equations.
Reference 3 gives a Fortran subroutine for this method. The following
system of linear equations may be expressed in matrix form as

indicated.
K11Xy * KopXy + Ky3X3 = Ry
K21Xy * KppX5 + Kp3Xq = Ry

K31Xy * K3pX, + K33x3 = Rq

K11 K2 Kygf I Xy Ry
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The Gaussian method uses the rules of algebra to modify the matrix
equation until the diagonal of [K] has unity for each value and the
entries in (K] below the diagonal are zero. The values of X,, Xz and

x3 may then be obtained directly.

6.3 Solution of a System of Non-linear Equations
A non-linear system of equations may be solved by Newton's
iterative method (Reference 4). The two equations below
r(X,y) =0
g(X,y) =0
may be satisfied if they are equal to zero when X = X, + X and y = ¥,

+ Ay. The Taylor expansion about (X ) is

o*Yo

£(X ) + AX x 3f(X )/3X + Ay x 3f(X°.yo)/3y =0

olyo oly°

8(Xy,¥o) * AX x 38(X,,¥,)/3X + 8y x 38(X,,¥,)73y = 0

Rearranging these two equations into matrix form produces the

following.
or(X,.,v.) (X _ ,v.)
——lo O — O AX - f(xo'yo)
) ¢ oy
ag(X . ,y.) 3g(X .,y
il Al L1 LA AL 12 1 oy - g(Xy,Yg)
aX Yy

Values of the partial derivatives provide the slope. The values of AX

and Ay may then be evaluated as the changes in X and y which are

required in order to approach the roots. Before repeating the above

calculations, new values of X and y are needed. .
Xy = X5 * &X

Yy = Yo * b
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This process is repeated until the functions approach zero.

The numerical values of the slopes 3f(X,,y,)/3X, 3f(xo.yo)lay.
3g(X,,y,)(/3X and 3g(xo.y°)lay may be difficult to evaluate for some
functions by taking the partial derivatives. An alternative is to
estimate these slopes numerically over a small increment about the

point xo,yo. The size of the increment must be small so it's size does

not influence the magnitude of the slope.

7. Sensitivity Studies

Sensitivity studies quantify the relationship between the input
parameters, which are independent design variables selected by the
designer, and the output variable, which is the dependent variable
representing value, performance or cost. The sensitivity study shows
how the output variable responds to a change in the input variable,
that is, it quantifies the amount of improvement in value (or the
change in cost) for a specified change in a design variable.

Sensitivity studies help the engineer to develop a realistic model
as it aids his visualization of the mathematical relationships between
the variables. On the other hand, the optimization study normally
determines the set of values of the input variables which will produce
the "best"” value of the output without regard to how the variables
change in approaching this "oest" value. Figure 7.1 fllustrates a
sensitivity study in which the current performance (cycles completed
per shift) for the machine can be improved by 8.6 percent by an
increase in vehicle rated speed of 25 percent while the performance can
be improved an additional 5.5% by increasing the vehicle speed aﬁ

additional 25%. The rate of change in performance is decreasing and
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the safety of the operation is rapidly decreasing as the vehicle speed
is increased. In the next Section, which discusses optimization, the
sensitivity study is applied to the “"optimum® set of design variables

to quantify the manner in which each variable approaches this optimum

condition.

Cycles completed per shift

'y 1 ' [ ' L

50 100 150

Vehicle rated speed
(Percent of current value)

Figure 7.1 Sensitivity Study: Fork Lift Truck Performance

8. Optimization by the Complex Method

The Complex Method of optimization of a aultivariable, nonlinear,
constrained problem was studied by Dr. G. H. Michaud (S). This method
finds the maximum or minimum value of a function.

To describe this method, consider a problem with n design
variables. For a set of values for these n variables, the output of
the system may be evaluated. Each set of n design variables locates a
vertex in n-space. Each design variable is considered as one of the
coordinates for the vertex in n space. Now consider k sets of these
design variables from which k values of the output may be evaluated.

If we select a problem with two independent design variables, n will be
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equal to two. If we select k as equal to three times n, then k = 5.
Michaud usually used k = 2n, but 3 n may provide a more dynamic search.
A plot of the six vertices in n-space is given in Figure 8.1. The six
sets of design variables were scattered between upper and lower bounds
for each of the independent variables. These sets of values may be

randomly generated between these boundaries.

o
> 4.5 S.4
(o)
3.2 o
xz o 4.3
o
2.7
0O
3.1
L 1 [ 1 1
X

Figure 8.1 Complex for Two Space

The magnitude of the output parameter, which is to be optimized,
is given beside each vertex in Figure 8.1. The output is to be
maximized. The vertex with the lowest performance, has an output value
of 2.7. This vertex with the lowest performance is removed and the
centroid of the coordinates of the remaining vertexes is determiend.

Figure 8.1 shows the five remaining vertexes plus the centroid.

1 k
(Xg)e -:'-( I (X)) (X))




X.
i

Figure 8.2 Complex Method Moving Strategy

The next step is to obtain an improved value of the independent
variable by moving along a line from the rejected vertex, (X;)g, and

through the centroid, (X,),, to a new value (X;) The (X{)pe, 18 2

new*
point beyond the centroid by a times the distance between the réjected
vertex and the centroid. Box (3) used a value of a = 1.3.
(X Dpew = al(Xy) - (59)5) » [x4]4

If this new point is within the bounds of the design space, the search
continues with (X,),.. providing the one of the independent variables
for a new vertex.

The value of the output parameter is evaluated for the set of
values at (xi)neu' The process is repeated by identifying the set of
independent variables with the lowest performance and rejecting it.

Then another new set of variables is obtaiend by marching from the

rejected vertex through the centroid again.
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If the new design point had been outside of the design space, a
new trial value would have been lcoated by moving in toward the
centroid by the factor beta:

X )new = Bl(X dpew = (X1 + (X))o

One way to stop is to perform a certain number of iterations and
observe the value of the output to determine if it is converging.

Dr. Michaud's Designer-Augmented Optimization Program requires the
user to identify the output variable, which he calls the “objective
function."” He created a subroutine, OBJFUNK, which contains this
function and the user must build this subroutine OBFUNK for each
problem. His program also has a subroutine, TEST, which contains the
upper and lwoer bounds for each independent design variable.

Subroutine TEST must also be rebuilt for each probleam.

In order to combine some of the concepts of sensitivity studies
with the concepts of optimization as described by Dr. Michaud, his
optimization program was modified to produce sensitivity studies about
the optimum design point. The sensitivity study keeps all design
variables at their optimum values except one, which is allowed to vary
while the output (performance) is evaluated. The results are presented
in graphical foram to aid in visualization of the sensitivity of the
system's performance to changes in each particular design variable.

In order to demonstrate the use of this optimization/sensitivity
program, the code from Example 1 for the vehicle with three speed
transmission is inserted into subroutine OBFUNK, the output parameter,
which is to be optimized, is chosen as the time reuqgired to travel 1000
feet. This is a minimization problem. The value of k is taken as 2n.

The independent design parameters are the final drive gear ratio, the
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transmission ratio in first gear and the transaission ratio in second
gear. (The transmission ratio in third gear is 1 to 1.) 1The optimum
gear ratios are

First Gear Ratio = 1.9

Second Gear Ratio = 1.0

Final Gear Ratio = 2.9
The sensitivity studies are shown in Figures 8.3, 8.% and 8.5 for
first, second and final drive ratios. The ratios in first and in the
final drive are not very strong influences, if adequately large ratios
are given to provide starting torque. However, second gear ratio has a
much narrower band of desirable values in between the extremes of high

and low values.

X(1) MR- 240 X(1)MY: 4,205
O3 W = 15,8402 N BX = 1349918
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Figure 8.3 Vehicle Travel Time, 0BJ, versus First Gear Ratio,

X(1)
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Figure 8.5 Vehicle Travel Time, 0BJ, versus Final Drive Ratio,
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LECTURE 3

TORSIOMAL VIBRATIONS
ABSTRACT:

Torsional vibrations in geared systems may cause presature fail-
ures. Sensitivity studies, which show the change in torsional vibra-
tions due to variations in the inertia, elastic and damping
characteristics, are presented to illustrate how a system may be tuned

- to improve performance. A computational technique, based on the finite
element method, that takes advantage of qualities unique to torsional
systeas is developed for analyzing the vibratory stresses in forced-

damped torsional systems.

1. INTRODUCTION:

Torsional vibrations of power train systems may produce excessive
vibratory stresses in the drive train and may cause ‘hammering' of the
gear teeth. The vibratory stresses may produce ratigue failure of the
sharts. The gear tooth hammering, which is produced when the vibratory
torque exceeds the mean torque, produces impact loads between the
mating teeth which can be several times the vibratory torque in the
gear shafts (1).'

Torsional vibrations are produced by masses rotating out of a
steady state position to twist the shaft. This rotation procduces a
restoring torque in the twisted shaft, which stores potential energy in
the shaft. This stored potential energy accelerates the mass towards
its steady-state position. However, due to the kinetic energy of the
mass, it overshoots the steady state position. The repetition of this

interchange from kinetic to potential energy and vice versa requires a

1Numbers in parentheses refer to references.
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spring and a mass and constitutes the natural frequency of vibration.
At a given natural frequency, all of the masses are tuned to vibrate in
wnison (i.e., at the same number of vibrations per minute). .

Each natural frequency has a ur’jue shape (mode shape) for its
deflection curve. The number of no.:- (i.e., points with zero deflec-
tion) is one for the first natural frequency and increases by one fcr
each higher frequency. (Counting the nodes is one way to determine if
all natural frequencies have been located.) The zero mode has no nodes
and represents the rigid body motion of the system. The mode shape is
made up of the relative amplitudes of the angular displacements for
each lump.

In ord¢er to maintain a torsional vibration, a periodic excitation
torque must be applied to produce the vibratory motion énd to overcome
the continual energy loss of damping. Excitation torque may be pro-
duced by the internal co-bugtion engine's gas pressure and recipro-
~cating mechanisa, by the propeller blades moving through differences in
streamlines behind struts, by puamp and compressor impeller blades or by
reciprocating mechanisms of pumps and compressors. The magnitudes of
these aoplication torques are not usually adequate io produce damage;
however, if the system has a natural frequency occurring at or near the
frequency of an excitation torque, a resonant condition will occur and
the application torque will be amplified.

The vibration excitation torque is normally divided into harmonic
components to facilitate the analysis. (The alternate approach would
be to use numerical integration to evaluate the response of the system
to the total excitation torque.) This division of the excitation into

single harmonics tends to focus the analysis on one natural frequency
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at a time. The first and second harmonic components of the gas
pressure curve for the engine curve of Figure 1.1 (8) are shown in

Figure 1.2. (In order to transform the gas pressure into torque, the

kinematics of the reciprocating slider crank mechanisa must be

considered.)
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The analysis of torsional vibrations is well defined in
the literature. Den Hartog (3) describes the fundamentals of engine
excitation, damping devices and the Holze.. solution. Harrington (4)
quantifies the energy sources and sinks for marine systems. Handbooks

on torsional vibrations by the British Internal Combustion Engine
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Research Association (5) and Ker Wiison (6) are available. The
Underwriters for the Maritime industry have published Rules (7 and 8)
for guidance of torsional vibration analysis.

The Holzer (11) method of analysis of free or forced, undamped
torsional vibration systems has been popular because of the simple and
repetitive nature of the calculations required. Holzer's table in
these cases consists of real numbers. Hartog and Li (12) extended
Holzer's method to include the analysis of frie, damped torsional
systems. Later, Spaetgens and Vancouver (13) further extended the
sethod to solve the forced, damped torsional vibration problem. The
arithmetic in this case involves complex number;s, which detracts from
the ‘'simple calculations’ advantage of the method. However, with the
advent of computers, programs were written to carry out most of the
tedious calculations. Wu and Chen (14) have written complete computer
programs to analyze free or forced, unqauped or damped single branch
torsional systems. As indicated in their paper, some trial and error
is required in the solution of the forced, damped torsional vibration
problem. This is not desirable in computer methods as it could lead to
considerable computer time and cost. Also the task of extending
Holzer's method to analyze multi-branch, multi-junction, forced damped
torsional systems does not appear to be easy.

TORVAP-A (15), a computer program for the torsional vibration
analysis of multi-branch, multi-ju-ction systems developed by BICERA
(British Internal Combustion Engine Research Association) uses transfer
matrices to arrive at a system of simultaneous equations for an
equivalent torsional system with a reduced number of degrees of

freedom. The other degrees of freedom are evaluated by working back
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with the known degrees of freedom and appropriate transfer matrices.
Thus the method essentially consists of two passes, with multiplication
of transfer matrices required in each pass. The results of the
intermediate stages are not stored. This reduces computer storage
requirements but increases the number of calculations required. This
program is reported tc be faster and less expensive to use than the
Holzer table method.

A method that reduces the number of calculations, while requiring
little additional storage, would be an improvement over TORVAP-A. Such
a method, based on the theory of finite elements, is presented in this
paper.

One of the traditional methods currently in use for analyzing
torsional systems assumes that the mode shape of the idealized
free-undamped system is identical to the mode shape of the real

forced-damped system (3). That is, the inertia forces are assumed to
. dominate the damping forces and excitation forces near resonant speeds.
Conclusions drawn from results obtained by this traditional method have
sometimes proved tc be unsatisfactory because the damping forces and
excitation forces may be large enough to distort the mode shape.
Lloyd's Register of Shipping outlines the step by step method of
analysis based on this traditional method and then comments that if it
is unsatisfactory a forced, damped solution is to be used. However
Lloyd's Register of Shipping does not outline the latter method of

analysis or provide any guidance for the evaluation when the

traditional method {s unsatisfactory.
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The effect of various design parameters (e.g., flywheel inertia,
coupling torsional stiffness, etc.) on the torsional vibrations of a
system may be used to tune the system-for good torsional perréfnance.
Sensitivity studies which show this interaction are included in this

paper.

2. COMPUTATIONAL TECHNIQUE BASED ON THE FINITE ELSMENT METHOD:

The theory for a torsional analysis method, uhich is based on the
FEM, is presented in this section. The basic finite element for the
torsional vibration system consists of one disk and one spring with an

external and internal damper (Figure 2.1).

J
. . K
- i |
- = " oR
TL o TR
[N !
1 ]

Figure 2.1 The Basic Finite Element

vwhere

=
]

coefficient of stiffness of the spring

[
]

rotational mass moment of inertia of the disk about an axis

through its center and perpendicular to the plane of the disk .

internal damping coefficient

[g]
-
L]

(2]
[ ]

° external damping coefficient
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°L'°R = angular displacements at the left and right ends of the
eiement respectively R
TL.TR = torques at the left and right ends cf the element respectively
From elementary theory of finite elements, the element stifiness
matrix is [E]. The stiffness equation is:
(e] (o] = [T]
or, the expanded form of this equation is:
K - J*wtwejRu*(C+C,) - K - j*w*C, 8y, T,
- K - jtwiC, K + jhw*C, op i T
The values of °L' TL. op and TR that satisfy the above equation,
will satisfy the equations of motion. Note tHat, in general, 6 and T
are complex quantities, which have real and imaginary components.
The stiffness matrix can also be cbtained by rearranging terms in
the transfer natrix7.

Let the displacement vector be 8 = 6 * el¥t

and the exciting torque vector be T = -T # elWt

og | |1 - 1/tkegmurcy) 1 0 oL
™l |o 1 WRIR = JhRC 1 T,

1 - (WhRJ-JRAC )/ (Ko JhurC, ) - 1/(K+3*usC,) oL
Wik - AeC, 1 T,

Let A = whwhJ - jhyRC
and B and K + j*u'c1
Then 85 = (1 - A/B)¥%, - T /B
which gives
T, = -0g *B + (B - A)%e

»
and T R = A.QL * TL
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which gives
T'g = B*(e - op)

But T'R = -TR since T'R is the remainder torque which oust be
opposed by T for the element to satisfy the equations of motion.
Therefore,

Tp = -BX6y - 68p) 2

Equations 1 and 2 in the matrix fors are:

lrL' B - A 8| o
K - whvRJ ¢ §RR(CeCy) - K - Jnercg ) e
- K - Jewec, K+ jowrc, | |og

or,
(1] = [E] (o]
The following example problem will illustrate the various steps in

the finite element method (Figure 2.2). Assume consistent units for all

quantities.
Node --- 1 2 3 4 5 6 7
G — T i :{ 8 :ll: 2 T 2 ]: .5 | 0.5
| 1
| PR — 2 3 1 2 1.5 3 L .
Figure 2.2 Illustrative Torsional System
Node -- T2 2 8 5 6 T

Applied Torques --- 8 8 -3 -1 8 8 -6
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The harmonic frequency of the applied torque is two radians per
seconG. 4

This problem may be solved as a one branch systeam, however, for
illustrative purposes this solution considers the system to be made up
of two branches with one junction.

Branch 1: This branch consists of nodes %, 3, 2, 1. DNode ¥ is

- the junction node. The stiffness matrix of this branch [S], obtained

by assembling the appropriate element stiffness matrices (E] as per the

typical finite element procedure, is given below.

Ty 0y
3] s1 |3
T 7]
) T 7
where
- ] 2-2%22 -2 0 0
-2 2+8-1%22 -8 0
(s] -
0 -8 8+4-3522 -y
0 0 -4 y-2%22
-6 2 0 o
-2 6 -8 0
s] ={o -8 0 -k
0 0o -4 -4

The branch stiffness matrix is always tri-diagonal and symmetric.
. The off-diagonal elements are simply the negative of the diagonal
value, -K, or it is -(*K*j'w'cl) when internal damping is present.

Therefore, from a comuter storage point of view, it is only necessary

to store the diagonal elements.
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As other branches can be linked to this branch only at the extreme
ends, only the two degrees of freedom at the ends of a branch need be
retained to add to the system stiffness matrix. A super-ele-;nt
stiffness matrix, equivalent to the branch stiffness satrix, but with
only two degrees of freedom can be obtained as follows.

The equations up to this point are: -

Equation
1 % -2 0 0 0y 0 )
2 -2 6 -8 0 03 -3
3 0 -8 0 - o, 8
X 0 0 - al T, 0

The values of Ty and T, are omitted in the right hand vector.
They will be added to the first and last entries of the right hand
vector later as they should be added only once.
Eliminate 03 from equations 1 and 3 and retain equations 1, 3 and
R by the following process, which forces column 2 of the above equation
to be zero:
Multiply equation 2 by 1/3 and add to equation 1.
Multiply equation 2 by 8/6 and add to equation 3.
The resulting matrix equation is:
1 -20/3 -8/3 0 oy -1
3 -8/3 -3273 -t ozl - | 5
4 0 -4 -4 0, 0 -

Eliminate 02 from equations | and 8 and retain equations ! and 4

which have the end nodes.
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Branch 2: this branch consists of nodes 7, 6, 5, ¥. Node ¥ is
the junction node.

The branch stiffness satrix is:

[(.5-1%22) -.5 0 0 o 0
-.5 (.5+3.5-3%2%) -3.5 0 0 8

0 -3.5 (3.5+2-1.5%2°) -2 og 8

0 0 -2 (-0%221 | o 0

The values of T-, and Ty are omitted from®the right hand vector as
they will be added later. Also the value of J in the (A,8) position of
the stiffness matrix is set to zero at this step as it was included in
the matrix for branch one and should- be added only once at the junction
node.

The super—element stiffness matrix is reduced as follows by elimi-
nating all displacement variables except at the ends of the branch.

-3-5 -05 0 0 07 0

-05 .6 -3'5 o 06 8
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-3.5151515 .h282521 | l 87 | -1.4858514523
°~|

LA28282% -1.8787878 8.7272727
Assemble the super-element stiffness matrices to form the system
stiffness equation. The values of T, T, and T-, are added to the right

hand vector as shown below.

-6-1.8787878 1 3282824 oy -2+8.7272727-1
1 -2.5 0 I l 6] - =1.5+8
. 8282828 0 -3.5151515 0q -1.8585454-6
-7.8787878 1 k242828 oy 5.7272727
1 -2.5 0 o,‘l - ! 6.5
.5282828 0 -3.5151515 og ~7.8545858

The system stiffness matrix, which {s formed by the assembly of
symmetric super-element stiffness matrices, is also symmetric.

The above system of equations can be solved to obtain the angular
displacements of the super-element's degrees of freedom. (The super-
element's degrees of freedom will be referred to as the 'master' de-
grees of freedom in the future.) The solutions are:

0y = -1
9 = -3
87 = 2

All of the stiffness matrices will be complex if damping is

present in the system.
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Let the degree of a junction node be defined as the number of
Junction nodes directly linked to it, ignoring intermediate ?odes in
the branches. All other master nodes (non-junction nodes at the
termination of branches) are of degree zero. Only master nodes are
assigned degrees.

As an example, consider the following systea with 16 nodes and 8

branches as shown in Figure 2.3.

Figure 2.3 Torsional System to Illustr~ate Degree of Nodes
Node -1 [ 6 7 10 1 13 15 16
Degree - O 1 2 0 0 0 1 0 0
All other master nodes are of degree O.
Knowing the displacements at the master nodes, values at nodes
adjacent to the master nodes may be calculated from equations obtained
by adding together appropriate elements in the branch equilibrium

equations. Displacements at all other nodes may be calculated directly

from the brarch equilibrium equations.
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To ensure that no more than one unknown is present in an equation
at any time during back substitution, nodes adjacent to the master
nodes should be solved for in increasing degree of the naster'nodes.
For example, in the above figure, displacements at the non-saster nodes

would be solved for in the following order:

Branch Direction (node to node)

1 ( 1 =-=-=> & )

3 nodes ( 11 ~—=> 6 )

] with ( 10 --=> 6 ) First
5 degree ( 7 -—-> & ) pass

6 of zero ( 16 ---> 13 )

7 (15 --=> 13 )

2 nodes with 4 ===> 6 ) Second
8 degree of one ( 13 --=> 6 ) pass

In the first example problem, which was solved as a two branch
system, nodes 1, & and 7 are of degree 0. Therefore displacements at
all of the non-master nodes may be solved for in one pass.

The equilibrium equations for the whole system (without reduction

“to super-elements) are:

-4 - 0 0 0 0 o| | s 8
-4 o -8 0 0 0 o] | e, 8
o -8 6 -2 0 0 ol |5 -3
0 0 -2 -6+2 -2 0 of | ey =]
0 0 0 -2 -5 ~-3.5 o | e 8
0 0 0 0o -3.5 -8 -.5| | e 8
0 0 0 0 o -5 -3.50 ], 6

Having calculated the displacements at the master nodes 1, 4 and

7, the displacements at nodes 2, 3, 6 and 5 are calculateZ from

equations 1, 2, 7 and 6 respectively.
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From equation 1 : 6, = 1
From equation 2 : 03 = .5
From equation 7 : 0¢ = -2
From equation 6 : 8 = 2

The torque in a shaft can be calculated by the following formula:
{1yl - Kn'[en-l - °n]
. where (n-1) and n are the nodes on the shaft and K, is the stiffness of

the shaft.

The stress in the shaft can be calculated by the following
foraula:

Th = ‘l‘n'cIJn
where ¢ is the radius of the shaft
and Jn is the polar moment of inertia of the shaft

The fundamental equations for the finite element of a shaft and
mass with damping have been developed. A scheme which greatly reduces
the numerical difficulties in the solution of a system which has many
masses has been described. In order to implement these concepts in an
efficient manner, a computer program must be designed to carry out

these operations for a general system.

3. SATOV - A Computer Program for the Finite Element Method:
A computer program, SATOV (Stress Analysis for Torsional Vibra-
- tions), was written in Fortran for analyzing the vibratory stresses in

a forced, damped, multi-branch torsional system(18). It is based on

the procedure presented in the previous chapter.
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The program can handle either externally applied torques or engine
excitations. The results can be output in any of the following ways:
1 - Printout of the displacement at each node
2 - Printout of the torque or stress in each shaft
3 - Plot of the vibratory torque of stress in each shaft versus
the engine speed (for engine excitation) or frequency of the
harmonic forcing torques (for external excitation)

The input for the case of externally applied torques is as

follovs:
Line 1 - IGOPR, IPLOT, 1 IGOPR = 0 - printout suppressed
= 1 - printout activated
IPLOT = 0 - plots suppressed
= 1 - plots activated
Line 2 - FMIN, FMAX, FINC FMIN = minimum frequency (rad/sec)
FMAX = maximum frequency (rad/sec)
FINC = increment frequency (rad/sec)
Line 3 - NBRNCH NBRNCH = number of branches in the system
Line 4 - NODMAX NODMAX = number of nodes in branch 1
_Line 5 - +NOD, +0J, +0K NOD = Node number, negative if the

node is a junction node

0J = Rotational mass moment of
inertia, negative if an exter-
nal damper {s present at this
mass

OK = Spring stiffness coefficient,
negative if an internal damper
is present parallel to the
spring

If both OJ an OK are both positive, skip line 6.

Line 6 - Cor €4 Co " external damping coefficient
C1 = internal damping coefficient

Line 7 - +NOD, +0J, +0K

up to NODMAX

Line N+¢1 - +NOD, +0J, +OK

Repeat starting at line 4 rfor each branch of the system
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Line M+1 - Complex torques applied at nodes in branch 1 (in the same

order in which the nodes were specified for this brancn)

Line M*2 - Complex torques applied at nodes in branch 2

Line M*NBRNCH - Complex torques applied at nodes in branch NBRNCH

For the case of engine excitation, data input is as follows:

Line 1

Line 2

*® NOTE

Line 3

Line 4

Line S

Line 6

Line 7

* NOTE

Line 8
Line 9

IGOPR, IPLOT, O IGOPR = O printout suppressed
= 1 printout activated
IPLOT = O pl-  suppressed

1 pluws activated

IORD, ORD(1), TAMP(1). ORD(2), TAMP(2), ---——, ORD(IORD),
TAMP( IORD)
IORD = number of orders to be analyzed
ORD(I) = order number
TAMP(I) = excitation torque amplitude for order
number ORD(I)
For a V - engine TAMP(I) = V ¥ Torque amplitude
where V = 2 ® COS( ORD(I)*.S*ALPHA )
where ALPH/A = V angle of engine

FMIN, FMAX, FINC FMIN = minimum engine speed (rpm)
FMAX = maximum engine speed (rpm)
FINC = increment engine speed (rpm) .

NBRNCH NBRNCH = number of branches in the system

NODMAX NODMAX = number of nodes in branch 1

NCYL, NSTKE NCYL = number of cylinders for the engine in
this branch

NSTKE = 2 for two stroke engine
= § for four stroke engine

(1), 1(2), I(3), ---, I(NCYL) these are the firing orders
according to the node numbers

In the case of a v - engine these are the firing orders in only
one of the two banks. The V-factor, used in calculating the
torque amplitude, takes into account the effect of the other
bank of cylinders.

+NOD, +0J, +OK ) as explained for the case of externally
Cos Cy ) applied torques

repeat from line 5 for each branch of the system.

For the sample problem of chapter 2, the input data would be:




1,0,1

2.,2.,1.

2

8

-4,2.,2.

3,1.,8.

2,3.,4.

1,2.,0.

N

Tsle, o5

6,3.,3.5

5,1.5,2.

-4,2.,0.
-1.,0.,-3.,0.,8.,0.,8.,0.
-6.,0.,8.,0.,8.,0.,-1.,0,

- 146 -

The following problem gives an example of input data for the case of
engine excitation.

K1

K3
K4

KS

Cylinder>
Node =-=-=-> 1 2

J1 J2

q

Figure 3.1 Example Problem with Engine Excitation

1.5E6 Ji = 20.
13.05E6  J2 = 110.
16.5E6 J3 = 2.5
16.5Eb6 Ji = 2.5
?2.755 J5 = 2.5

Jé = 1:0,

COo = 2.E4

CI = 1.E4
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Let the engine have the following characteristics:
3 cylinders, 4 stroke, 1-3-2 firing order.
Orders of excitation torque of interest are 1.5 and 4 with
corresponding torque amplitudes of 750C. ant 3%000.
The range of engine speed, which is of interest is,
500 rpm < n < 800 rpm
R Only vibratory torque plots are required for each shaft.
The data input would be:

0,1,0
2,1.5,7500., u.,4000.
500., 800.,4.
1
6
3, 4
3, 5, &4
1, 20., -1.5Eb
0.,1.El4
2,110,, 13.05Eb6
3, -2.5, 16.5E6
2.E4, 0.
4, 2.5, 16.5E6
5, -2.5, 12.7TE6

- 2.E4, 0.

6, 110., 0.

The output plot of this example is shown in Figure 3.2.
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The program SATOV was used to evaluate the forced-damped response
for the system illustrated in Figure 3.3, which encompasses élmost all
possible variations that could be encountered in a real torsional
system. The data are given in Table 3.1. The results were compared
with those obtained from the ANSYS* finite element software package.

The frequency of the excitation torque is 800 rad./sec.

19 20 2

Figure 3.3 Torsional System for Testing the Program SATOV

TABLE 3.1 Mass-Elastic-Damping Data

INERTIA TORSIONAL STIFFNESS
(1b.in.sec.) (1b.in./rad.)

J1 = 40 K1,2 = 30.E6

J2 = 70 K2,3 = 40.E6

33 = 20 K3.,4 = 80.E6

Ji = 30 K4,5 = 20.E6

J5 = 50 K5,6 = 60.E6

J6 = 60 K6,7 = 4O.E6

J7 = 20 K7,8 = 70.E6

J8 = 40 K8,9 = 60.E6

20.E6

J9 = 70 K9,10
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J10 = 30 K10,11 = 60.Eb

Jn =10 xé.tz = 30.E6

J12 = 40 K12,13 = 40.E6

J13 = 20 K13,18 = 200.E6

J1a = 70 K1%,15 = 150.E6

Ji5 = 30 K15,16 = 20.E6 )
Ji6 = 60 K6,17 = B0.Eb _
17 = 10 K17,18 = 50.E6

J18 = 80 K18,19 = 300.E6

Ji19 = 40 K19,20 = 100.E6

J20 = 30 - K20,21 = 80.E6

J21 = 60

DAMPING COEFFICIENT EXCITATION TORQUE
- (ib.in.sec./rad.) (1b.in.)

TAMP(I) = 0. +0. i for I =1 to d

C! = 10000. TAMP(S) = 5000 + 0 i
TAMP(I) = 0. + 0. i for I =6 to8
€2 = 20000. TAMP(9) = 8000 + 3000 i
TAMP(I) = 0. + 0. f for I = 10 to 15
TAMP(16) = 6000 + O {
TAMP(I) = 0. + 0. i for I = 17 to 21
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DISPLACEMENTS
TV ANSYS
Node Real Imaginary Real Imaginary
(radians) (radians) (radians) {radians)
1 .339848E-3 .180834E-3 .33984%9€E-3 .180837E-3
2 .498473E-4 .285226E-4 .498477E-4 .2635229€-4
3 -.223497€-3 ~-.118918€-3 -.223498€-3 -.118929E-3
4 ~.324410€E-3 -.172611E-3 -.324411E-3 -.122612€E-3
] -.420827E-3 -.182111€-3 -.420829€-3 -.183112E-2
é -.310458E€-3 -.101807€-3 -.3104605-3 -.101808€-3
7 -.296527E-3 -.876311E~-4 -.296529€-3 -.976326E-4
8 -.234344E-23 ~-.4335064E-4 -.234344E-3 -.633079€-4
9 -.618107E-4 -.826484E-5 -.818115E-4 -.826572E-S
10 .194246E-3 .239731E-4 .194249€-3 -.259759€E-4
11 .217439E-3 .2906743€E-4 .2174423€-3 .290775E-4
12 .899598E-4 .1046911E-3 .899604E-4 .1069125-3
13 .332699€-3 .195027E-3 .332701E-3 .195029€-3
14 .339954E-3 .200169E-3 . 3399S4E-3 .200:21E-3
13 .288783€E-3 .147240E-3 .288790E-3 .147242E-2
16 -.839987E-3 -.160044E-3 -.439990E-3 -.160046E-3
17 -.161110€-3 -.328322€-4 -.161111€E-3 ~.528322E-4
18 -.210100E-4 ~.688972E-5 -.210099€-4 -.4689974E-5
19 . 392%80E-5 .194322€E-5 . 3923595E-4 .194328E-5
20 .3352141E-4 .279446E-4 .832184E-4 ,272449E-9
21 .163877€-3 .337394E-4 .143878E-3 .S537401E-4

Table 3.2 Comparison of Displacements from ANSYS and SATOV
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The performance of the SATOV software is given credibility by the
comparison of output from SATOV with output from the commercial software

package ANS!S.Z

The results are almost identical. However, the cost of
the large general purpose ANSYS package is several thousand dollars per
month. A special purpose finite element package offers advantages in size

and economy when a general purpose package is not otherwise needed.

N, SENSITIVITY STUDIES:

Sensitivity studies of the response of the torsional vibrations to
a change in the size of a design variable can aide the analyst as the
system is tuned. A plot of natural frequencies and excitation
harmonics versus engine speed can indicate the proximity of a resonance
condition for any engine speed. However, the sensitivity study can
provide insight into the interaction of the variables which constitute
the systea.

The system of Figure 3.1 was analyzed and produced the ten natural
frequencies identified on Figure 4.2 as f,, f,, ..f;g- The prime mover
iS a sixteen cylinder, two stroke, internal combustion engine which may
be operated at different speeds between low idle and rated speed, when
the generator is not producing 60 Hz current. The harmonic associated
with a major critical speed (3) is the eighth orcer harmonic, which
excites the system at a frequency equal to eight times the engine
speed. The eighth harmonic is not close to resonance with any of the
system's natural frequencies when the engine speed is operating at the
rated speed, 9CO RPM. However, the third order harmonic and the tenth

harmonic are close to resonance with natural frequencies at this speed.

ZANSYS is the registered tradename of a finite element software
package written and marketed by Swanson Analysis Systems, Inc.
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It is more desirable to tune frequencies out of the aperating speed

However,

range than to dampen the vibrations to acceptable levels.

aetyedoag

J03%a0UeH toajue)

Ya231d
s assp
oy
] asydnoy vieH
I
8 180 YN
1.3 asgdnon
m wnag wnag
yantd
)
b1 avoy
a ...:..i..ou
= 1esynirg
»
g
n
>
()
b
- sujdug
m aspuy 149
8 useIn}g
a
g
nu asdweg
F -
e
sond
)

Figure 4.1

——rtr
.., W e ... W

-
[ W )

- -4

HIA 'UOFIRIQIA JO sepdusnbes] TRanIen

200

Engine Speed, RPM

Figure 4.2




- 154 -

In order to conduct the sensitivity study to evaluate the changes
needed to retune or dampen the system, a system model must be
constructed. Even though the analysis process is well defined, the
analyst must exercise his oun judgement in order to obtain the
desired results. The modeling of the system consists of dividing the
inertias into lumps which are separated by spring constants. the
damping may be distributed across the lumps of inertia if a damped
natural frequency is to be evaluated. (If an undamped analysis is to
be used, the damping appears in an energy balance equation which
establishes an overall amplitude scaling factor (3). The undamped and
unforced analysis assumes that damping torques and excitation torques
" are small and will not significantly change the relative amplitudes of
the mode shape.) The natural frequencies and mode shapes may be
obtained by the damped Holzer method or by the finite element method.
The analyst must use an adequate number of inertia lumps which
usually results in a branched mass-elastic diagram (10). The same
mass-elastic diagram may be used for the finite element diagram as for
the damped-branched Holzer method. The addition of entrained water to
the propeller inertia value, the consideration of misfiring by an
internal combustion engine, and the integration of nonlinear stiffness
of an elastic coupling are some of the factors which the analyst must
consider. If the nuaber of lumped inertias i{s small, the time required
to perform the analysis and evaluate the results is low; however, if

the number is too small to represent the system, the results may

contain errors. -
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In order to illustrate difffculties due to the lumping of inertias,
consider Figure 3.3 which has a gear, coupling, propeller and two shafts.
Most models would represent this system by three lumps of inertia, one
made up of the gear plus half of shaft 1. A second lump consisting of the
coupling plus half of shaft 1 and half of shaft 2. A third lump consist-
ing of the propeller plus half of shaft 2. Now consider that the inertia
of the coupling may be of the same magnitude as the inertia of half of the
long shaft 2. This model {s satisfactory for the propeller mode. How-
ever, in the coupling mode, the propeller and gear will move very little
due to their large inertias while the coupling has high relative ampli-
tudes. Hence, the two shafts tend to act like two springs each of which
have one end fixed and the other end free. Therefore, for the coupling
mode, the equivalent inertia of the second lump should be equal to the
inertia of the coupling plus sne third of the inertias of the two shafts.
' This does change the natural frequency. If the three lump system had
been replaced with five or more lumps, the distribution of the inertias

would have been more representative of the system for all modes of vibra-

tion.
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The misfiring engine presents many different possibilities for the
analysis (e.g., is partial firing occurring, which cylinder is misfiring,
how many cylinders are misfiring?). One suggestion is to assume that
compression of the air-gas mixture occurs without an ignition. This will
establish some pressure harmonic components. Also, the variable torque
due to the mass of the reciprocating slider-crank mechanism should be
incl.led. The location of the misfiring cylinder will influence the value
of the phase vector sum of the piston displacements, £8.(3) It is sug-
gested that the phase vector sums be evaluated for the engine with each
cylinder misfiring and that only the worst case be used in the analysis.

The sensitivity study of the system shown in Figure 4.4 will be used
as an example. The first natural frequency mode shape of Figure 4.5 shows
the propeller swinging in opposition to the remainder of the system with
the node located in the propeller shaft, which has low stiffness. The

large stress is at the node since it experiences the full inertia torque.
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This first mode can be excited by the first or second engine harmonic or
by the 3 blade propeller when the engine speed is 583 RPM. The mode shape
for the second natural [~equency (Figure U4.6) shows the gear, G, and
cluteh, CD, swinging in opposition to the engine while the large propel-
ler, which is on the end of the long propeller shaft, does not move appre-
ciably from its steady state position. The third mode (Figure 4.7) shows
the engine and gear swinging in opposition to the flywheel. This is a
characteristic of this engine. The third mode (Figure 4.8) shows the
engine damper swinging against the engine while the large flywheel is
relatively stationary. The engine damper provides significant damping at
vibrations of this frequency, which produces relative large deflections of

the crankshaft.

ENGINE
]-298 RATIO 0
PROPELLER
CLUTCH
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Figure 4.4 Marine Vessel Mass-Elastic Diagram
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The sensitivity of the amplitude scaling factor (This is the factor

which is multiplied times the mode shape amplitudes to change these rela-
tive amplitudes to absolute values.) as a function of engine daamping is
shown in Figure 4.9. The influence of flywheel inertia on the values of
natural frequencies may be useful in retuning a system (Figure 4.10). The
gensitivity of the mode shapes to flywheel inertia is indicated in Figure
4.11. The sensitivity of the natural frequencies to the stiffness of the
elastic coupling, which is often changed to retune a system, si given in
Figure 4.12. Since the elastic coupling has the node for the second
frequency, the change in coupling stiffness has a maximum impact on mode
2. The sensitivity of natural frequencies to propeller shaft stiffness is
used to retune the system (Figure 4.13). The sensitivity of mode shapes to
changes in propeller inertia are shown in Figure 4.13. The sensitivity of

natural frequencies to propeller inertia is shown in Figure 4.15.
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LECTURE & : AN INTRODUCTION TO THE FINITE ELEMENT METHOD

ABSTRACT:
The Finite Element Method allows the mechanical designer to
analyze complex shapes for stresses, deflections, vibrations.’and

thermal distributions. This paper gives an introduction to the Finite

Element Method.

1. INTRODUCTION:

The mechanical designer tends to optimize function and minimize
the.naterial in a design. This often results in components with
complex geometry which can not be analyzed by the equations from
strength of materials because of their simplified assumptions (e.g.,
the shape is a long prismatic member). (On the other hand, the Civil
Engineer tends to design structures using long prismatic members, which
can be analyzed.) Two approaches were available to size these
components with irregular shapes prior to the 1960's: the Theory of
Elasticity Method and the Experimental Method.

The Theory of Elasticity Method with its elegant mathematics is
not well suited to the needs of the practicing engineer. However, it
is an excellent research method and'haa been used in many thesis
dissertations to obtain the solutions of special case geometry and
loading combinations. Professor R. J. Roark recognized the value of
these solutions to practicing engineers and published a book, Formulas
for Stress and Strain, containing many of these soluticns (1)'. Tnis
book has been regularly updated and serves the intended purpose well,
however, the research has not covered all of the cases required by the

practicing engineer.

11. Numbers in parentheses identify references.
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The Experimental Method presents many options for sizing compo-
nents and some of these options are listed below.

1. Manufacture the component, load it and observe any failures
which occur. The load many be a static load or it may be a
~epeating load, which will produce fatigue.

2. Coat the component with a dbrittle coating (1), which has a low
strain threshold. Load the part and observe the crack
patterns in the coating to identify areas of high tensile
strains.

3. Make a replica of the part from a birefringent material.
Strain this replica in a polariscope to identify the
differences in the principal stresses over the part.

k. Apply strain gages to the surface of the part and measure
strains on the surface.

One reason for the wide acceptance of the Experimental Method is
because it reduces the number of assumptions. On the other hand,
before the Experimental Method can be applied, the component {or its
replica) must be manufactured and the designer does not have a rational
method for sizing the part for the initial drawing.

The analysis of frames, which are assembled from uniform prismatic
members, was accelerated by the availability of the computer in the
1950'sf By modeling the elastic deflection of a redundant frame using
matrix methods, the forces and deflections could be analyzed.

Practicing engineers began to use the Finite Element Method, FEM,
for the analysis of stresses and deflections of complex geometric

shapes in the 1960's. This method provided an analytical method as an

alternative to the Experimental Method. The idea of the FEM is to
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divide the solution domain into a finite number of subdomains, which
are called elements. These elements are connected only at their node
points and on the element boundaries (2). By using small ele;ents of
material, whose force and deflection characteristics are known, a model
of a complex shape can be constructed mathematically and the resulting
equations can be solved.

Two types of finite elements are discussed in this paper: (a)
"natural® elements and (b) elements based on assumed modes of

displacement.

2. NATURAL ELEMENTS: Bar Element:

The finite element method may be based on the stiffness method to
define the relationship between displacements, d, stiffness, k, and
forces, r. The stiffness equation for a finite element 1is

(x]{d} = {r}

The bar type of finite element illustrated in Figure 2.1 is a
uniform prismatic member which is aligned with the x-axis and subjected
to axial loads. The ends of the bar element have nodes, which are
labeled { or j. Other elements may be attached to these nodes. Forces

may be applied at the nodes. The matrix quantities k, d and r for this

element are:
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Expansion of the stiffness equation into two linear equations by matrix
multiplication yields the expected results:

‘ui + UJ = pj L/AE

A = Cross sectional area

E = Modulus of Elasticity i b

L < langs Ry s -
u = Displacement of ith node Py

u, = Displacement at jth node | _‘i—‘

p{ = Axial force applied to i node L bt

pj = Axial force applied to j node

NOTE: All forces are shown in the positive directions to illustrate the
sign convention. .

Figure 2.1 One Dimensional Bar Element
A two dimensional bar element i{s illustrated in Figure 2.2. It
_can have x and y displacements at each node and X and y components of
forces may be applied at each node. The input data will be the initial
positions of each node [(xi, ¥y) and (xj. yj)]. the force components at
each node [(p;, q;) and (pj. qj)]. the cross sectional area (A), and
the modulus of elasticity (E). The element length (L) is calculated.
L = (x5 - xi)2 + (yy - y1)2]’5
The sines and cosines of the element's positicn angle are

S=Sin8 = (Yj - Yi)/L

C=Cos B = (xJ - xi)/L




Figure 2.2 Two Dimensional %Sar Element
The stiffness equation for this two dimensional element has the
following form since it has two degrees of freedom at each node.
(k] {d} = (r}
k1,1 k1,2 ki3 Ky
(kearl = } k2,1 k2,2 *z2,3 kp.u

k3,1 k3,2 k3,3 K3y
Ky, 1 *y,2 kg3 kyy

ug Py
{d} =|v, {r} = qy
Y3 Pj
Yj 9y

The values of any column in k may “e obtained by setting all displace-
ments equal to zero except for the one displacement, which is multi-
plied by this column. Figure 2.3 illustrates a bar element with all
displacements fixed except U;. Using these values for displacements,
the forces obtained will be equal to the stiffness, since spring rate
is defined as the force required to produce a unit deflection. Substi-

tute the following value of d {nto the stiffness equation.
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{d} =

00O~

The result is:

k1,1 Py
kK, 2] = | %
1,3 P
k1,4 q;

Values of the these force components may be cbtained by using the
equation for axial deflection (4) of a uniform bar subjected toc an
axial load (P).

A = PL/AE

A =CosBu; ~Cxil

P = AAE/L = C AE/L = p,/C
Hence,

py = C2 AE/L.
.From static equilibrium requirements,

py = =Py * -c2 aAE/L
And for the vertical component Vis
& = Cos 8 uy = C
P = A AE/L = CAE/L = qi/sin 8 = qi/S

Hence,

9 = CS AE/L = -4




»pi, U

Figure 2.3 Bar Element with u; =1, and Uy = V; o=V o= 0.

Values for the second column may be cbtained by assuming the
following values for displacements: vy = 1 and u; = uJ - vj = 0.

0
{d} =
o
o

The axial deflection of the bar is

A=S vy = Sx1

_and
? = AAE/L = S AE/L = qils.
Hence,
2
ql = s AE/L = -QJ
and,

Py = CS AE/L = ~Py-
Substitute into the stiffness equation to obtain values for column 2 of

the k matrix.

ki, K1,z k1,3 Ky 0 CS AE/L
ka1 k2,2 k2,3  Kay 1 - | s® e
k3,1 k3,2 k3,3  Kgy 0 -CS AE/L
kg1 ka2 ka3 Kyy 0 -s2 AE/L

Hence,
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k3.2 'Cg AE/L
Ky, 2 -s% AE/L

k1.2 CS AE/L
kz'z = Sﬁ! AE/L

This process may be continued until the following stiffness

equation for the bar element is obtained for two dimensional space.

¢ cs €@ -cs uy Py
AE
L1} 2 2 )
- cs s s s vy a;
<2 s ¢ cs ug P
-cs -s2 cs s2 v, a;

If a structure contains more than one element, the stiffness
equation of all of the elements can be combined, into a single matrix
equation, which can easily be evaluated for the unknown displacements
and reactions. Each element stiffness equation may be expanded to
structure size to allow the matrix addition. The structure of Figure
2.4 has two element3. The stiffness equation for each element after
éxpansion to structure size is shown below. The number of degrees

of freedom for the structure is 6, so the K matrix must be 6 x 6.

CATA

Elezent ! Element 2
Nodes 1,2 2,3
ctiffaess LT Ky
Length Ly Ly
hrea Aq ko
Displacements u1-u1-3 ug=uy
v,ev,=0 v, ov 1
01 1772
uj'uz u '“3'0
v -Vz v -13-0
Forces 71" pi-pz-?Coso
Qt'ﬂ1 Qt'qz-‘FSSHO kl

1
v 'pz'Fc“. 91.93
QJ'Q o-FSind QJ'Q
£

21 s180° 2;;.

VaVa¥s
-0 co~l -8
:--I s=0 k 2 \

Figure 2.4 Structure FE Model
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For element 1:

0 0 0 0 u,y Py
A E 0 1 0 -_l vy 9|
(k,] = L o o o 0 wul = | P
0 -1 0 1 \L )
For element 2:
0 1 ] | u, P>
52_52. 0 0 0 0 \L qQ
(ky] = » -1 o LA uz| = | p3
0 (] 0 (] v3 a3

Element 1 must have rows 5 and 6 and columns 5 and 6 added to k; in
order to accommodate the degrees of freedom uj and v3. Element 2 must
have rows ! and 2 and columns 1 and 2 added to k, to accommodate
degrees of freedom u, and vy If zeros are placed in k; and k, in
these added rows and columns as shown below, then their addition will

not modify the force-deflection contribution by these two elements.

0 0 0 0 0 “uy Py
0 1 ¢ -1 0 0 V4 qq
0 0 0 0 ] 0 u

vely oo ? -
0 0 0 0 e v3 q3

The stiffness equation for the structure is the sum of the element
stiffness equations. For this structure the stiffness equation with

the external forces and the displacement boundary conditions is
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0 3 0 0 0 0 0 Py
A -AE
o 2B o L1 o 0 0 a,
L L
A -A .
0 0o B2, 2 u,| = | Fcoss
L2 L2
~A,E AE
o —1+ o 41 o 0 vo F Sin 8
L Ly
1
-A A
L2 L2
0 o o 0 0 0 0 a3

This structure stiffness equation may be solved by Gaussian methods for
the unknown displacements (u, and v,), since F, 8, A, E and L are
known. After u, and v, are evaluated, their values may be substituted
into the structure stiffness equation to obtaié the ground reactions,

py» Qy» P3 and q3.

3. NATURAL ELEMENTS: Beam Elements
. The beam element is based on elastic beam theory. The beam
element has one node at each end and each node has two degrees of

freedom: transverse deflection, w, and slope, 6. The displacement

vector is
Wy
¥
%

Each node may have a moment, m, or a transverse force, q. Hence, the

loading vectcr is
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{rl = {oy

The stiffness equation is

(k] {d} = (rl.
The values of the entries in (k] may be obtained by assigning a
displacement of unity to one degree of freedom and a value of zero to

the other three displacements. For example, a displacement

fd} =

O O O =~

gives the following from the stiffness equation.

kq,1 qj
kel T ™
k3,1 9y
k8,1 nJ

Figure 3.1 shows a beam element which matches the example displacement.
Castigliano's Theorem may be applied with the above equation to
evaluate the stiffness values.

w 3 [*¥ ax I" 3 (qyx - m)%ax

vi - e— - e— —

3q 3qy 0 2EI 0 3qq 2EI
[L
Vi =1 = 0 (qlxz - mix)/(EI)dx
L3 m Lz
1os ey 5 - =D

Substitute, q; = ky ; and My = k, ; from above into this latter

equation.
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EL = ky 41373 - Ky 1272

Repeating this calculation for other unit displacements will yield the

other equations and the stiffness matrix kKgp,y 33ay be obtained for the

beam element.

12 6L -12 6L
- 6L a2 -6L 212
6L 212 -6L a2

[l

gt
T

M
i

v, 1

Figure 3.1 Beam Element with

Displacements: v; = 1, 9y = vJ = ej =0

4. NATURAL ELEMENTS: Frame Element

The Beam element and the Bar element give the same values of
displacement and stress as obtained by strength of materials methods.
These two elements may be expanded to six degrees of freedom and KBar
added to Kpppy tO create the Frame element with three degrees of free-~

dom per node: axial deflection, transverse deflection, and slope. The

resulting stiffness equation is (2):
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(K] fa} = (r}

F G H - = H uy Py
P -G -p Q L q;

H Q T -H -Q B 9 = oy
-F G -H F ¢ -H uy P
-G -P -Q P -Q w5 qj
H Q B -H -9 T 0; M
where,

L= (x5 - ‘1)2 + lyy - yi)?‘]'S

C= (xj - x)/L S = (yj - yy)/L

Sy = AE/L ¢y = 6EL/L2 G = S, SC - DSC

T =4 EI/L p=12E/L3 H=-CS

B -2 EI/L F=50C2+Ds?® pa=s s2+0c?

Q=¢C

A finite element program, FRAME, which uses the Frame element is
given in appendix A. This program evaluates the deflections and
reactions of a structure. This program is used to evaluate the bending
moment reactions and the deflection of a wall of the transmission
housing in Figure 4.1. The thrust wall supports the thrust bearing for

the propeller force. The thrust wall is shown in Figure 4,2.

e

Propeller

nn

Thrust
Bearing

Figure 4.1 Transmission
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node 1 4

\\\‘\
L7/ L4l

)

2 o

- x 1q = 50,000 1b,
Distributed around bearing

Figure 4.2 Thrust Wall of Transmission Housing
The moments of inertia vary from one end of the wall to the other. The
values of location, area, section width (SH,. SW,, SH3) and inertia

are- given for the midpoints of each section of the wall in Table 4.1,

TABLE 4.1 Data for Transmission Wall

Node Location Area Inertia Force Moment
(inches) (inches®) (1nchesu) (1b) (1b-in)

1 0.00 45 2.0 0 0

2 4.00 u7 42.0 0 0

3 7.50 54 140.0 0 0

'} 8.23 64 2u5.0 0 0

S 9.00 T4 315.0 0 Q

6 9.69 95 345.0 0 0

7T 10.39 98 157.5 2083 0

8 10.69 82 141.0 4167 0

9 11.49 69 107.5 4167 0

10 12.79 4s 87.5 4167 0

11 14,29 25 80.0 4167 0

12 16.20 25 76.5 4167 0

13 18.00 4167 0
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The forces, moments and deflections evaluated by tnis program are

given in Table 4.2. The lack of visual aids to illustrate the output

is a significant handicap for this type of program. However, the cost

of the program is sometimes a limiting factor.

SEFLECTION OF NODES
NCDE NSURBER 1

TABLE 4.2

MOOE WUMSER 14

“DETLECTION .0 X-DEFLECTION . 0
Y Deritction o Y-DEFLECTION . 5.297434E-03
ANGULAR DEFLECTION = O ANGULAR DEFLECTICN » -1.29659Z-04
NCDE NUMBER 2 NODE MUMBER 15
X-DEFLECTION « 0 X-DEFLECTION .0
Y-DEFLECTION « 8.543022E-04 Y-DEFLECTIOX 4.929388%-03
AKGULRA DEFLECTION = 3.73S371E-C4 ANGULAR DEFLECTICY = -2.549617E-04

NODE NUM2ER 3
X-DESLECTICN
¥-DETLECTICN

ANGULAS TEFLECTION

NCDE NUNMAER 4
X-DEFLECTICN

Y-DEFLEITION

RNGULAR JESLZCTION

NODE NMPER 3
X-DEFLECTION
Y-DEFLEZTION

ANGULAS DEFLICTION

RODE NUM2ES 6
X-DETLEITION
Y-SEFLECTION

ANGUL3R DETLECTION

NODE NMEER 7

0
2.343:1228-23
£.36C998E-04

0
2.668212-02
4.305C172-CA

21.93938E-C3
&,SS3E631E-04

¢
3.291223E-32
§.3034028-2¢

NODE NUMBER 16
X-OEFLECTICN
Y-DEFLECTION
ANGULAR DEFLECTION

NODE NUMSER 17
X-DEFLECTION
Y-DEFLECTION
ANGULAR DETLECTION

NCDE WURSER 13
X-DEFLECTION
Y-DEFLECTIGN
ARGULAR DEFLECTISN

NODE NUM3ER 19
X-DEFLECTICH
Y-DEFLECTICN
ANGULAR DETLECTICON

MNODE NUMEER 20

[}
4.4834285-03
-3.362382E-04

[}
4.011703£-03
-3 .87S9€E9E-08

[
3.693139€-0)
-4 .081899£-04

0
3.56979¢E-03
-4 ,2435357E-24

z2TIoN - 0 X-DETLECTION + 0
Y¥-SEFLECTION © 3.5734942-23 Y-DEFLECTION, * 3.277612E-23
ANGULAZ DEFLICTICH o 4.1651433-04 ARGULAR DZFLICTICN  -4.201088E2-04
- = NODE WUMBER 21
N eTIoN . 0 X-DETLECTION s 0
Y-CEFLZCTION e 3.596322-0 Y-pEFLECTICN. ¢ 1.93%8742-03
ANGULAZ DEFLECTICN » ¢_083514E-04 ANGULAR DETLECTION « -4 2S.8%7E-04

NODE NUMBER 12
YoEriecTioN e 0 Z-DEFLzCTIoN O
v.DEFLEZTION s 4.01562£-03 ¥-DEFLECTION s 2.664945E-03

ANGULAR DEFLECTION

NOUE NUMBER 10
X-DEFLECTICN
Y-DEFLECTION

ANGULAR CEFLECTION

%ODE NUMBER 13
X-DEFLECTION
Y-DEFLECTION -

ANGULAR DEFLECTION

NODE NUNMSER 12
X-DEFLECTION
Y-DEFLECTION

ANGULAR DEFLECTION

NOOE NUMBER 13
%-DLTLECTIC

Y-DEFLICTION

ANGULAR DEIFLECTION

3.875264£-04

[
4.406879€-03
3.365273€E-04

0
4;9313882-03
2.543902¢2-04

[}
$.2969428-03
1.2911882-04

[
5.415:97€-03

c4.,2%C291¢C-07

ANGULAR DEZLECTICN

NODE NUMSER 23
X-DEFLECTION
Y-DEFLECTION
ANGULAR DEFLICTICHM

NODE NUMEER 24
X-JEFLECTION
Y-DEFLECTION

ANGULAR DETLECTION = “T T2 87E 0%

NODE NUMDER 25
X-DEFLECTION
Y-DEFLECTION
ANGULAR DEFLECTION

-4.30299E-04

0
2.23994E-03
-§.358452E-04

0
0.5208272-04

- -

e 0
* 0
* 0
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5. ELEMENTS BASED ON ASSUMED DISPLACEMENT FIELDS:

A more general finite element is based on the Rayleigh-RiEz
solution of a variational problem (6). The displacement (or the
temperature for a thermal element) within the eiement is assumed to be
adequately described by a simple polynomial. The coefficients of the
polynomial define the shape of the displacements across the element.
The equations of equilibrium for this wgeneral element" may be obtained
by the "principal of minimum potential energy"” (2): "Among all
admissible configurations of a conservative system, those that satisfy
the 2quations of equilibrium make the potential energy séationary with
respect to small variations in displacement. If the stationary
condition is a minimum, the equilibrium state is stable.” The
locations of the minimums for the Potential Function, tp. may be
determined by setting the partial derivatives of L with respect to
‘each variable equal to zero. If the displacement variables are a;, a;
and as, the following three equations will be equations of equilibrium.

am,/day = 0
auplaaz =0
aup/3a3 =0

In order to illustrate this concept, consider a bar with two
elements as shown in Figure 5.1. Assume the displacements, u, of
points along the bar vary in a linear manner as defined by the
following displacement function.

vV =a, +ass for 0sysltL
v =ag +ays for L Sy s2L

where,
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0sssL
Since the polynomial coefficients (a, through a,) have little physical
meaning, it is desirable to replace these coefficients with other

variables which do have physical significance such as the displacements
of the nodes: v,;, Vv, and v3-
AR
{p} = Vo
Va
o
Substitution of boundary conditions at the nodes into the displacement
function for element 1-2 gives:
vy =a; *ays =a, at s =0
Vo = a; *ays =ay ¢+ aZL at s =L

These two equations may be placed in matrix form:

v 1 0..a
MUEN .

T
L
bt
1L
\Q

Figure 5.1 Structure with Two Elements

or, the inverse yields




- 188 -

1 0 ]{v1'

a
(= 1
a, - UL WL v

Hence,

PR TR

Combine these equations to repalce the coefficients a,; and a, with the

nodal displacements v, and \FT

1 0
- 1/L /L

v=[1+s]

T
V2
The shape function N, which gives the relationship betwen displacements

at any point in an element and the displacements at the nodes is

(u] = [v + s](

S 1l -sn) (sl

Hence,
v - W} - (el
2
Tor element 2-3,
v - ]('?
V3

If this element {s not subjected to initial strains, the strain
energy per unit volume of material due to applied loads is
U = .5[ey]T E [ey]
where,
E = Modulus of elasticity
€y * Strain in y-direction
For plane problems, the relationship betwen strain, Eyo and
displacement in the y-direction, v, is:
€, = /3y = 3v/3s = 3/3s ([n){a}) = [~ 1L 1u}{d}

Therefore, the total strain energy in elements 1 and 2 is given by U,.
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T
L v - /L v
Uy - [ s ! | g, [ ]l Y s
0 \’2 /4L '2
T
L v -1/ v
. I 25] 2 g2 [- L ]| 2] ads
0 '3 1/L V3
v, T Ly w2 -anl vy
2 = Ve
T
2 2
v 171 - /L v
* -3 vzl I:;z 2l qp2 -an2| :
3 - = v3
T
U1 . S |'1 E1A1 1 - II IV1
'2 L‘ - - ' 1 VZ
+ .5 Vz 5252. ! -1 lvz
V3 '..2 -1 1 V3

The potential for the force R to do work during displacement D is U,

where R and D represent all forces on the structure and their nodal

displacements.
up = - [6]T(R] = - [ el
2 J Vi V2 v3liral
3

Hence, the total potential function {s

%, = Uy + Uy = .5[p]T[k,](0] + .5[p]7[x,][0] - [0]*(R]
where, the stiffness matrices are expanded to structure size by adding
rows and columns of zeros:

1 1 0

0 o0 =0

o O o

0

1 -1
-1
Applying the principal of minimum potential energy will y.eld the
equations of equilibrium for this structure based on nodal

displacements.
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axy/30 = [K,J(D] + (k,1(p] - (R] =0

or,

A
-1—'1. -1 1 (4] VZ + —2& 0 1 -1 '2 - Pz =0
Ly L2
1 v

0 o o V3 0 = 3

The boundary conditions to be applied to this matrix equation are

v 0
(p) = [vol = |v2
Y3 V3
r L
{(R1 = |rpf= |O
l‘3 P

The matrix equation of equilibrium may be solved to yield nodal
displacements and nodal reactions. The strain may be evaluated at any
point, ¥, in the element by the relationship

€y = 9v/3s
since,

dy = ds
where,

v is the assumed displacement function, which is dependent on the

nodal displacements:

V1
v=[(N] |v5

v2
ys= ["] V3|

The stress may be evaluated from Hook's law using these strains.
(g} = (E] (E}
The Raleigh Ritz method may also be used to develop the

{scparametric element.




- 191 -

6. ISOPARAMETRIC ELEMENTS:

The isoparametric element may be used to model general shapes
because it's sides may be curved and the element may be nonrectangular.
Body fixed coordinates £ and n are used for this element, ;ith
magnitudes ranging from +1 to -1 as shown in Figure 6.1. Assumed
displacement function, u, for the two-disensional isoparametric solid
element, STIFA2, in the ANSYS (2) finite element software is given
below in terms of the element's coordinates £ and n. The last two
terms may be omitted. The Rayleigh Ritz method is used to set up the
solution. ¢

U=.25 (0 -0 +mug + (1 +)1 - my; +

(O +0 ~my, + (1 -8)(1 n)(Uy) »

U1 - €3 « Uy(1 - vd)

(1,1) -
Y.V n »§
(1,-1)
(-1,1)
(-1%1)
* x,u

Figure 6.1 Two-Dimensional Isoparametric
Element
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7. EXAMPLE: Comparison of Beam Element and Isoparametic Element.

The isoparametric element may be used to model components with
high strain gradients or complex geometries which do not match’ the
assumptions for the beam element (e.g. the root of a gear tooth,. Om
the other hand, if a beam element can be used, the efficiency and
accuracy of the solution should be improved.

The analysis of the cantilever beam (Figure 7.1) for stress and
deflection using one beam element is compared to the analysis when
using various combinatinns of the- ANSYS (3) isoparametric element
STIFIZ.. The correct answer per strength of materials theory may be
obtained by using only one beam elea'em:,. Figure 7.2 shows the element
model and the deflected model, which gives the maximum deflection of
.00667 inches. The stress at the wall is

Sy = MC/I = 3,000 psi.

(3) Note: ANSYS is a registered tradename of a Finite Element Software
“package by Swanson Analysis. Inc. Some of the ex;lples in this paper

were completed using the PC/ED and PC/Linear versions of ANSYS.

lq = -50 1b

t

1

T L =10
b-l._-L-.L/

Figure 7.1 Cantilever Beam h
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ANSYS-PC.

ANSYS-PC.
gﬂﬂh“:'“ JUN » 1n
ELEMENTS Eig?%_
Nin=: 1EP:

ST=ss i‘g'
XF=s 2D=|’““

:g}( , ;JL_> . | XFs

F. E. Model Deflected Shape

Figure 7.2 Cantilever Beam Model
Using One Beam Element.

The analysis of the cantilever beam using one isoparametric ele-
ment gives a maximum deflection of .00507 inches, as indicated in the
deflection plot of Figure 7.3. However, the plot of the stress in the
xfdirécticn (Sx): which is along the axis of the beam, indicates that
stress is not changing as the distance from the load is increased (i.e.
Sx is not a function of bending moment). Hence, the stress calcula-
tions are not valid for this model. (The one isoparametric element
model gives a value of stress at the wall of Sy = 1500 psi). (The

input code for ANSYS {s in Appendix B.)
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4 AESYSPC,

= R

EE— 1

ISOPARENETRIC 1 ELEMENT ISOPARNETRIC + ELEMENT ‘,‘f:

F. E. Model Deflected Shape
: with Stress Sx

Figure 7.3 Cantilever Beam Model Using
One Isoparametric Element

The analysis of the cantilever beam 'using four isoparametric
elements with an aspect ratio of 10 per Figure 7.4 gives a maximum
deflection of .00615 inches. The distribution of the stress Sx is

significantly improved and at the wall S, = 2226 psi.
ANSYS-PC. ANSYS.PC.
JUN & e "

O o

#:i’:! $ CLOBAL
= .

= e

‘ 174
ISOPARANETRIC ELDGENT WITH » ELENENTS ISOPARMNETRIC ELEMENT WITH o n,qiogs

F. E. Model Deflected Shape
with Stress Sx

Figure 7.4 Cantilever Ream Model
Using Four Isoparametric Elements

The analysis of the cantilever beam was repeated with the four
elements arranged in a ﬁanner to produce an aspect ratio (the ratio of
length over width) of 2.5 per Pigure 7.5. The maximm deflection is
.00662 and at the wall the stress S, is 2,625 psi. The vertical stress

Sy is shown in the figure and the values are negligible.




ANSYS-PC, ANS
JUN 5 e JIN’% "
vt s - s
.”= ' flgl
§hass !
-& $ CLomL
‘J = B -ceee
2 : " mae

s S ot e | !«
- JFRglvey TPl YIRS .
s il B
e
Wy

SHN= -4
SHR:wa

ISOPAMNETRIC ELDWENT + ELENDNTS ISOPAMMNETRIC ELEMENT » nmn{*?'“

F. E. Model Deflected Shape with Stress Sx

N

I,

i
| 1
s s

!ﬂ!: ooss2
M= ¢
i=u=i4:
3
STty
:

ISOPARMANETRIC ELEMENT + ELDMENT

Deflected Shape with Stress Sy

Figure 7.5 Cantilever Beam Model Using Four
Parallel Isoparametric Elements

The conclusions from this comparison are:

1.

2.

3.

5.

For bending of primematic bars, the beam element is the most
accurate and efficient.

The density of the isoparametric elements over the area of a
strain gradient will significantly affect the accuracy.

The values of deflection are generally more reliable than the
values for stress.

The arrangement of the elements and the aspect ratio will
significantly affect the accuracy.

As the number of elements {s increased in an area, the
stresses and deflections should converge toward the true

answer.
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8. EXAMPLE: Gear Teeth

The FEM has been used extensively to evaluate the stress and
deflection of gear teeth. The value of the stress concentrati;n factor
used in the International Standards Organization (ISO) method for
rating tooth strength (8) is evaluated by the FEM. The distribution of
the load across the face of the tooth due to deflections of the elastic
system must be evaluated in order to determine the amount of helix
modification required. The end of the pionion adjacent to the powered
shaft has the highest torque so this end of the pinion should have the
largest deflection. The FEM may be used to evaluate this
load-deflection condition (9). .

The stiffness of a single tooth may be evaluated by the FEM. The
node numbers and the subsequent elements are shown in Figure 8.1.
ANSYS PC/Llinear software plus the Solids Modeling package produced
this model. The entire load is applied to node 7 which produces the
~gross tooth deflection with local distortion due to the point load per
Figure 8.2. The transverse deflection (ux) of the tooth is shown in
Figure 8.3. The vertical component of stress, sy, is shown in Figure
8.4 and illustrates the influence of the radial .load, W.. on the

bending stress of the tooth. The compressive stresses add on the side

opposite to the point of load application.
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Figure 8.1 Finite Element Model
of Gear Tooth

r
Undeflected

Shape L A\ S
Point Load /Q%J%I { ‘ﬁ\ Deflect;d
|

L ]

Figure 8.2 Tooth Deflection
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fezss voow
Figure 8.3 Transverse Displacement of Tooth
TN Fi.
NI RRERER E3F
ﬁ/-“ T VL S
m,u : -
[N L igE
J_{ r,c' of H
Y .l

N —

Figure 8.4 Vertical (sy) Component
of Tooth Stress

9. EXAMPLE: Transverse Vibration
The transverse vibration and longitudinal vibrations in geared
systems may be of critical importance even though they receive less

attention than the more subtle torsional vibration. The natural
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frequencies for the transverse vibration of the shaft and gears of
Figure 9.1 are given in Table 9.1 and the first mode shape is plotted

in Figure 9.2.

W5 = 386 1b

Canter of '

Bearing I

I

Lengths: 8 10 5 15 8
Nodes: } 2 3 & s 6
Elements: 1 4 2 S 3

Figure 9.1 Counter Shaft Vibration
in Transmission

TABLE 9.1
NATURAL FREQUENCIES FOR

TRANSMISSION SHAFT

MODE FREQUENCY (VPM)
1 116.2
2 517.5
) 3 829.1

y 27117.
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ANSYS -PC.-
JUN 22 %3
19:27:%0
DISPL.
STEP=:

HEE
DH)_(: 533
Dl§i=33

h XF=2
e ———

TITLE

Figure 9.2 First Mode Transverse Vibration of Transmission Shaft

10. COMCLUSIONS

The Finite Element Method provides a tool, which allows the
mechanical designer to analyze complex geometric shapes with coéplex
loading for stress, deflection and temperature distributions. The FEM
'uses a numerical procedure to solve the system of equations, so an
answer is produced even though it may not be representative of the
physical system. The successful use of the FEM requires the designer
to have a deep understanding of stress and strain in addition to
understanding the performance and limitations of the various types of
elements. The FEM has not eliminated the need for the Experimental
Method, but it has reduced the lost time spent in testing various
faulty configurations for a component. The Experimental Method still
provides for overall quality cvontrol. The FEM helps create an optimum

design.
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1 CLS

10 °‘THIS PROGBRAM WRITTEN BY E.W. JONES AND F BUCHHOLZ

15 'THIS PROGEAM USES THE SARDED MATRIX TO EVALUATE DISPLACEMENTS AS *®

16 °SUGGESTED BY B. COOK. HOWEVER REACTIONS ARE BASED ON THE UNBANDED MATRIX."
20 "REFRENCE R.D.COOK, “CORCEPTS AND APPLICATIONS OF FINITE ELEMENT ANALYSIS®

30 LPRINT THIS PROGAAM WILL PERFORM A FINITE ELEMENT °
40 LFRINT " ANALYSIS USING A FRRME ELEMENT."

S0 LPRINT * PROGRAM : FXAME "

60 LPRINT

65 PRINT "THIS FINITE ELEMENT PROGRAM USES THE FRAME ELEMENT."
66 PRIRT “ecoccccaccssscnvasacscans esevecevacses”™
70 IKPUT "NUMBER OF NODES s = NUMKP
80 INPUT "NUMBER OF ELEMENTS = =; NUMEL
90 INPUT ~IS PRINTED STIFFNESS MATRIX REQUIRED (Y/N) =: ANSWS
100 INPUT "ARE VALUES OK (Y/N) . =: ARSS
110 IF ANSS = ~Y" OR ANSS = "y" GOTO 130

120. GOTO 70

130 LPRINT - NUMBER OF NODES = *=; NUMNP

140 LPRINT " NUMBER CFf ELEMENTS = -

NUMEL
150 DIM ID(3. NUMNP), NOD(2, NUMEL), SE(6. 6). KX(6). XK2(€)
160 LERINT

170 LPRINT * EACH ELEMENT FAS ONE MODE °I° AND ANOTHER NODE °J°.°
1e0 LPRINT " THE COORDINATES OF THESE 2 NODES ARE: (XI,YI) AKND (XJ,Y¥J5).°

150 SKIP = O

200 GOSUB 6:0

. 205 PRINT

210 GOSUB €10

220 GOSUB 1100

230 GOSUB 1260

<40 GOSUB 1620

250 GCSUB 2110

260 :..oo.o.ooocovoo..-.o..o..o..coo.o..-.oo....oo..o-....ooo.--o...-.o..
265 "IXPUT OF NODE COCRDINATE. MCDULUS OF ELASTICITY. CSOSS SECTIONAL AREA.
266 -~ AND MOMENT OF INERTIA.

oo

270 IMAGES = * s o .o8m o _SSS +SSSe _8SSW +NSSS 58 5.8 sms
.89 sosm sms”
27% IMOGES = ~ vo o8 """ csmus _ssm om . uam”" """

280 FNINT "ELEMENT NUMBER:“: N
290 INPUT = X AND Y COORDINATES OF THE LOWEST NODE., IN =": XI. YI
3606 IXPUT "~ X AND Y COORDINATES OF THE HIGHEST NCDE. IN =-: XJ. YJ

310 INPUT = MODULUS OF ELASTICITY. Psi s": E

320 INPUT " CROSS SECTIONAL AREA. I s"; A

330 INPUT = MOMENT OF INERTIA, IN 4 ==; 1

340 PRINT

350 INPUT "ARRE VALUES CK (Y/N) "; ANSS

352 PRINT

260 IF ANSS = "Y~ OR ANS$ - "y~ GOTO 38v

270 GOTO 290

380 LPRINT

3191 IF SKIP = 1 GOTO 39S

392 LPRINT ~ ELEMENT XI Y1 xJ YJ ELASTIC ARE
A INERTIA"

393 LPRINT ~ NUMBER MCDULUS”
39S SKIP = 1

410 LPRINT USING IMAGES: N, XI, YI. XJ, YJ, E. A, I

90 L = ((XJ - XI) " 2 « (YT - Y1) " %) " .9
S00 C = (XJ - X1y / L




510
520
525
530
535
S40
545
550
555
560
565
570
S75
580
585
590
$95
600
610
611
612
613
623
630
659
560
661
662
663
664
665
666
667
668
669
670
671
672
673
674
680
690
760
710
720
730
740
750
768
770
760
790
800
810
820
830
832
834
836
840
g4d
(21
830
852
886
860
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S =(YJ-YI)/ L

S eA-E/L:Ta4~E-1/L:8=2-E-1/1L
Ci=6~E=-1/1L i:D=12-E~I/L 3
F=S1°+-¢C l’D'S-z:G'SIOC.S-D°S'C
H=-CleS:P=S1~S 2+D=-C 2:Q=C1 ~C
SE(1. 1) = F: SE(1, 2) = G: SE(1. 3) = H: SE(1, 4) = -
SE(1. S5) = -G: SE(1, 6) = H

SE(2. 1) = &: SE(2. 2) = P: SE(2, 3) = Q: SE(2. 3) = -G
SE(2. S) = -P: SE(2, 6) = Q

SE(3. 1) = H: SE(3. 2) = Q: SE(3, 3) = T: SE(3. 4) = -H
SE(3. 5} = -Q: SE(3, 6) = B

SE(4, 1) = -F: SE(4, 2) = -G: SE(4&, 3) = -H: SE(4, 4) = F
SE(4. 5) = G: SE(4, 6) = -H

SE(S. 1) = -G: SE(S. 2) = -P: SE(5, 3) = -Q: SE(S. 4) =G
SE(S. S) = P: SE(S5, 6) = -Q

SE(6. 1) = H: SE(6., 2) = C: SE(6, 3) = B: SE(6, 4) = “H
SE(6., 5) * -Q: SE(6. 6) = T

RETURN

’ ABRAY ID

‘ow ow essescseaveese UNBANDED i R Y T L T L L2 Ll b i
NEQ2 = NUMNP - 3

[T I YT T T 2L Il d L4 s dddnd BANDED P T I T L 2 L 4 L4 d dbdadd
FOR N = 1 TO NUMNP .

FORJ =1 TO03

INI. B) = O

IE J > 1 THEN GOTO 666

PRINT ~1IS X-d.0.f. FOR NODE-; N; = FIXED (Y/N3~: INPUT ; ANSW$
IF ANSWS = "Y* OR ANSWs = ~y” THEN ID(J. N) = 1

GOTO 673

IF J > 2 THEN GOTO 670

PRINT "IS Y-d.0.f. FOR NODE": N; = FIXED (Y/N)~: INPUT . ANSWS
IF ANSWS = "Y™ OR ANSWS = "y* THEN ID(J. N) = 1

GOTO 673

PRINT "IS THETA-d.o.f. FOR NODE": N: " FIXED(Y/N)": INPUT ; ANSWsS
1F ANSWS = "Y" OR ANSWs = “y" THEN ID(J, N) = !

GOTO 673

PRINT

PRINT ~ID(";: J; *.": N: =) ==: ID(J. N)

REXT J

NEXT N

REQ = O

FOR N = 1 TO NUMNP

FGR J =1 TO 3

1F ID(J. N) > O THEN GOTO 770

NEQ = NEQ + 1

ID(J. ¥) = NEQ

GOTO 780

ID(J, N) = O

NEXT J

NEXT N

RETURN

'........"..........................................................

* BANDED MATRIX ROUTINE

Ls=0

MBARND = O

FOR N = 1 TO NUMEL

PRINT "ELEMENT NUMBER:“:; N

INPUT * LOWEST NODE KUMBER =*: NOD(1, N)
INPUT = HIGHEST NODE NUMBER ="; NOD(2. N)
PRINT

I « NOD(1, N)

J s NOD(2. N)

KK(1) = I[D(1. I)




862 XX(2) = IN2. I}

866 KK(3) =~ ID(3. I}

868 KK(4) = ID1. J)

870 KK(5) = ID(2. J)

874 EK(6) = ID(3, J)

876 FOR I = 1 TO 6

880 IF KK(I) <= 0 THEN GOTO 910
884 K = KK(I)

888 FOR J = 1 TO 6

862 IF KK(J) ¢ K THEN GOTO 906
gea I = KK(J) - K + 1

900 IF MBAND ¢ L THEN MBRND = L
906 KEXT J

910 REXT 1

912 NXEXT N

31090  RETURR

1100i ° (23 porpprpippepr e YY T Y TYI T T T T L 2 1L DL L L L4 A St hdaddd

1110~ *STEU'CTURAL STIFFNESS MATRIX IN BANDED AND UNBARDED FORM:

1120  wenaccenccs

1125° IF SKIP = 1 GOTO 1136

1£30:DIN SC(NEQ. MBAND), RE(6), R(NEQ2), P(NEQ2:. RS(NEQ)
1135°DIR DEFLECTINEQ2). IF(REQ2. NEQ2), R2(NEQ2)

136 ."--~~--ceeceomscssemcoccoooscos oo s s oSS eooSSTTSTeT
1140. FOR N = ; TO NUMEL

1150 GOSUB 260

1160 I = NOD(1, X)

1170 J = NOD(2, W)

1180 XK(1) = ID(1,

1290 KK(2) = ID(2,

1200

1210 KK(4) = ID(1,
1220 KK(5} = ID(2,

1230
1231
1232
1323
1234
1235
1236

3)
)
KK(3) = ID(3., 1)
J)
J)

KK(6) = ID(3, J)

XK2(6) = 3 = NOD(2. N)

KK2(3) = 3 = ¥OD(1, M)

KK2(S) = KK2(6) - 1 -
KK2(4) = KK2(6) - 2

KK2(2) = KK2(2) - 1

KK2(3) = KK2(3) - 2

1240 FOR I =1 TO 6

1250

IF KK(I) ¢= 0 THEN GOTO 1303

1260 K = KX(I)

1270

R(K) = E(K) * RE(I)

1280 FORJ = 1 TO 6

1290

IF KK(J) < K THEN GOTO 1302

1300 L = KK(J) - K~ 1

1301
1302
1303

S(K, L) = S(K, L) + SE(I, J) “BANDED STIFFNESS MATRIX.
KEXT J
NEXT 1

136S FOR I = 1 TO 6

1308

K s KK2(I)

1310 R2(K) = R2(K) - RE(I)

1315

FORJ =1 TO 6

1325 L2 = KK2(J)

1330

STIF(K, L2) = STIF(K, L2) - SE(I, J) "UNBANDED STIFFNESS MATRIX.

1335 NEXT J

1238

NEXT I

1345 NEXT N

13%0
1360

RETURN

-
PP NOODOPEOOTTIRVONSS ..........................................

1370 °PRINTS STIFFNESS MATRIX IN BANDED FORM

13.0 '-..-..oo-o-oo.oco..cco.o...o.o....-.oc.o-ooooo.oo-.o.o.oo.-oocoooo
1390 IF ANSWs s "N” OR ANSWs = "X~ GOTO 1480

1400 LPRINT

1410 LPRINT ~ STIFFNESS MATRIX IN BANDED FORM®

1820 LPRINT




1440
1450
1460
1470
1480
1490
2500
1505
1510
1520
1540
1560
1570
15680
1590
1600
1610
1620
1625
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1e20
1830
1840
1850
1860
1870
188¢C
1890
1900
1910
1920
1930
1940
1950
1560
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
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LPRINT " S(": J; *:=: K: *)="; S{J. K)

MY YT YYD AL AL L L2 2 2 2 2 a4 dddd Pt YXI I XTI T LT T L L 2 d b bl

"EXTERNAL FORCES APPLIED

LPRINT

LPRINT " EXTERNAL FORCES APPLIED TO THRE STRUCTURE"
FOR N = 1 TO NUMNP

FORJ =1 TO 3

IF ID(J, N) = 0 GOTO 1610

PRINT "NODE NUMBER": N

IF J = 1 THEW INPUT “FORCE IN X-DIRECTION ~; RS(ID(J, N))
IF J = 2 THEN INPUT "FORCE IN Y-DIRECTION “: BRS(ID(J. N))
IF J = 3 THENW INPUT "MOMENT ABOUT THE Z-AXIS": BS(ID(J. N))
NEXT J

MEXT N

LPRINT

FOR I = 1 TO NEQ

R(I) = RS(I)

LPRINT * R(=; I; ~)=": BS(I)

NEXT I

LPRINT

RETURN

. GAUSS ELIMINATION SOLVE=R

IF MBAND > 1 GOTO 1770

FOR N = 1 70 NEQ

R(N) = R(N) / S(N, 1)

NEXT N

RETURN

oM IFLAG GOTO 1790, 1930
*REDUCTION Of COEFFICIENT MATRiIX
FOR N = 1 70 REQ™ -

FCR L = 2 TO MBAND

IF S(N, L) = 0 GOTO 1500

I1=2N-L -1

C = S(N, L) / S(N, 1)

J =0

FCR K = L TO MBAND

JesJ 1

S(I. J)'S(I. J) - C = S(N, K)
NEXT K

S(K, L) =¢C

NEXT L

NEXT N

“FORWARD REDUCTION OF VECTOR CONSTANT.

FOR N = 1 TO NEQ
FOR L = 2 TO MBAND

IF S(%, L) = 0 GOTO 1980

I =sN+L -1

R(I) = R(I) - S(N, L) » R(N)

NEXT L

R(N) = R(N) / S(N, 1)

NEXT N

*SOLVING UKKNOWNS BY BACK SUBSTITUTION.

PR N = 2 TO NEQ
NsNEQ-1 -NM

TOR L = 2 TO MBAND

IF S(N, L) = 0 GOTO 2000
KsNeL-1

R(N) « R(N) - S(N, L) = R(K)
NEXT.L




2090
2100
2110
2120
2130

2135
2140
2145
2156
2160
2170
2180
2185
2190
2200
2201
2216
2214

220
2221
2230
2240
2:41
2250
2251
2260
2261
2264
2274
2275
2276
2277
2278
2279
2201
2:82
2283
2284
2285
2287
2291
2293
2294
2295
2300
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NEXT M
RETURN

'......Q..O..'........‘..........-...-.O..........‘..-.'.O.-...-~.....

*DEFLECTION RESULTS

LPRINT

LPRINT * DEFLECTION OF NODES*®
COUNT = O

FOR N = 1 TO NUMNP

LPRINT

LPRINT * NODE NUMBER": N
FORJ =1 TO 3

COUNT = COUNT + 1

IF ID(3, N) = 0 GNTO 2240

i1F J = 1 THER LPRINT © X-DEFLECTION = *; RUIDCI. ¥))
IF J = 1 TREM DEFLEC(COUNT) = R(ID(I. K))

1IF J » 2 TEEN LPRINT * Y-DEFLECTION « »: R(ID(J. N))
IF J = 2 THEN DEFLEC(COUNT) = RC(ID(J. N))

1F J = 3 THEN LPBINT ° ANGULAR DEFLECTION = * R(ID‘J. N))
IF 3 = 3 THEN DEFLEC(COUNT) = R(IKI, N))

GOTO 2264

IF J = 1 THEN LPRINT * X-DEFLECTION = 0"

iIE 3 = 1 THEMN DEFLECI(COUNT) =

IF 3 = 2 THEN LPRINT * Y-DEFLECTION = 0"

IF J = 2 THEN DEFLEC(COUNT) = 0

IF J = 3 THEN LPRINT " ANGULAR DEFLECTION = 0"

IFJ = 3 THEM DEFLEC(COUKT) = ©

WEXT J

NEXT N

(oo ree YT I T I Il d 4 4d RESULTANT FORCE VECTOR Pt T T2 T2 L L L L LA i
LPRINT

LPB;P;T . essceees RESULTANT FORCE VECTOR ccocccc”

PRI

PRINT "EORCES AND REACTIGCNS VECTOR FOR STRUCTURE:"

FCR ROW = 1 TO NUMNP .~ 3

s =0 -

FCR COL = 1 TO MUMNP =~ 3

suM = STIF(ROW, COL) - DEFLEC(COL) - sUM

P(ROW) = SUM

PRINT "P(": ROW: ") ="; P(ROW)

LPRINT ° P(~: ROW: =) =": P(ROW)

NEXT ROW

INPUT DO YOU WISH THE PROGRAM TO RUN ANOTHER EXTERKNAL FORCE (Y/N)": REPLYS

IF REPLYS = "Y" OR REPLYS = "y" THEN GOSUB 1510: IFLAG = 2: GOSUB 1690: GOS

UB 2110

2330

END
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METAL FAILURES IN TRARSMISSIONS

ABSTRACT :
Failures in transmissions may occur in shafts, bearings or gears.
Analysis for stress and deflection is used to size parts to prevent failures

and to determine the root cause of failures which have occurred.
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1. INTRODUCTION:

The transmission designer must postulate the potential scenarios
by which the system may fail and apply analysis to size the components
properly. The analysis is based on physical properties of materials,
the nature ~f the loading and environment and stress-strain relation-
ships. This paper reviews these concepts. The gear design standards

are based cn these fundamental ideas.

2. FAILURES TYPES AND CHARACTERISTICS:

Component failures of transmissions may produce failure of the
system. Different types of gear failures are illustrated in the

rican Gear Manufacturers Association publicgkion AGMA-110.03 and

Shipley's "Gear Failures", (1 and 6)'.

a. Wear of tooth contact surfaces

b. Pitting of teeth at pitch line
- ¢. Breaking of teeth under static load

d. Breaking of t-=eth under repeated load

e. Scoiing of teeth

f. Involute interference of teeth

g. BSearing failures

h. Shaft fatigue

i. Fretting of shaft in hub

J. Excessive deflection

k. Abrasive wear

1. Low cycle crack propagation

lNullbers in parentheses designate references.
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Material tests show characteristics of different types of
failures:

2.1 A uniaxial tensile test of a ductile bar produced the failure of
Figure 2.1. The necking down of the test specimen in the area of
fajilure is typical ductile behavior. The ductile material failed
in shear as indicated by the 45° failure line. Mohr's circle for
the unjaxjal test specimen is given in Figure 2.2 and shows the
maximum shear to be at an angle of 2 ¢ = 90° from the principal

axis, which is 6 = 45° on the part.

[}

I s —
. Y

Mohz's Circle 7lement of Materisl

Figure 2.2° Element of Material From Surface of
Tensile Test Bar with Stress Calculations
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2.2 A torsion test of a brittle rod produced the failure of Figure
2.3. No necking due to yielding is apparent. The brittle
material failed in tension as indicated by the 35° fajlure lines.
Mohr's circle for this torsion test is shown in Figure 2.3 and
indicates that the maximum normal stress occurs at 2 & = 90° from

the principal axis.

Figure 2.3 Brittle Rod Torsion Test Failure

Direction
v of o,
Tcl/J
.
26;9
° , -L—. o- 0
oy = Te/3 = TelJ
Mohs's Circle Zlepent of Material

Figure 2.4 Element of Material From Surface of Brittle
Chalk Torsion Test with Stress Calculations
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2.3 A fatigue failure (1) ic shown in Figure 2.5. The beach marks,
which appear like the rioges of sand on the ocean beach, indicate
the progression of the crack as it moved from the crack initiation
site and across the material as the variable stress cycles were

applied.

Figure 2.5 Fatigue Failure
2.4 Steady state overload is shown by the case hardened gear tooth
fajilure of Figure 2.6. The granular nature of the entire failure
area does not indicate any of the stress variations, which smooth

the crack area, as shown in the fatigue failure.

Figure 2.6 Steady State Overload Failure of Gear Tooth
2.5 Direct shear under steady state loading of a shear pin {s shown in

Figure 2.7. The texture of the entire cross section is the same.




Figure 2.7 Shear Pin Failure

2.6 Fretting (2) is a failure mode which may occur in a shaft which is
press fitted into a hub. The fretting is caused by relative
motion between the rotating shaft as it bands and rubs against
the more rigid hub. A brown powder from the oxidized wear products
may appear between these rubbing surfaces. The fretting action
of one surface rubbing on the other may develop small cracks which
may propagate through the part as a fatigue failure.

2.7 Pitting failure (1) of a gear tooth may occur due to the compres-
sive contact force. Hertz's equations give the surface compres- ¢
sive stress and the distribution of shear stress belcw the
surface for contacting arcs such as gear teeth and roller bear-
ings. The pitting crack may be initiated belcw the surface by a
shear stress. The crack subsequently grows upward to the sur-
face to free the particle of metal and create the pit. Pressures
of the lubricant, which is trapped in the crack may assist this
action. (Non-destructive pitting may occur due to poor contact

between teeth to redistribute the loading evenly across the tooth
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face. This nondestructive pitting does not produce failure of the
tooth as in severe pitting and may be acceptable for some applica-
tions.) .

2.8 Abrasive wear (6) of gear teeth may be produced by hard foreign
particles in the lubricant. Grooves appear on the tooth surface as
the hard particles slide over the teeth.

2.9 Involute interference may be produced by the tip of one tooth
digging into the flank of the mating tooth. This is due to
incorrect geometry such as too few teeth in the pinion. (3)

2.10 Impact loading (2) is due to the application of loads at a rate
which is less than the longest natural period of the structure.
The impact load may produce stresses which are several times
higher than this same load would produce if applied during a time
equal to or greater than three times the longest natural
frequency.

2.11 Initial cracks in a component may propagate through the part to
produce a failure by fracture. The initial cracks may be due to

grinding or welding. This type of fracture progresses because of

the high stress at the crack *ip.

3. FAILURE PREDICTION:

The relationships between failures of materials, the loading on
the material, and the properties of the material are used by the
designer to size new components. this section reviews some of these

relationships.
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An abnormal load may produce a general yielding type of failure in

a ductile material. The large deformations due to yielding may serve

as a warning to the operator. The ductile material may allow é€nough

stress redistribution at the tip of a crack to inhibit its growth.

However, if the load is applied rapidly, time may not allow yielding.

The impact resistance of materials also decreases when hardness

increases as indicated by the fracture toughness and charpy valves.

Bf? “or ductile materials, such as unhardened steel, failure under
static loads has a good correlation with the distortion energy and
the octahedral shearing stress theories (5). The octahedral
shearing siress is

Toet = (9xx * Oyy * 922)/3:
For a uniaxial tensile test specimen with cross-sectional area, A,
and load, P, the octahedral shearing stress at failure is

T * = (P/A + 0 + 0)/3 = Sy/3

oct
where,

6..' = P/A = Sy = yield stress

xX
0,,' =0
°zz' = 0.
Hence, the factor of safety, FS, is
FS = 150¢'/Toct = Sy/(oy, * © yy * 0,2)
3.2 For high cycle fatigue (4), both brittle and ductile materials
fail by fracture instead of by general yielding at stresses well
below the yield stress. The fatigue railure is initiated by a

small crack and as the stress cycles conti-:e, the crack elongates

and forms the beach marks on the fracture surface.
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The endurance limit, Se, for steel is the maximum value of
alternating stress which may be applied without producing a fa-
tigue failure. The endurance limit, Se®, for an actual cénponent
may be evaluated from the endurance limit, Se, obtained from a
reversed bending test of a standard test bar. To obtain Se',

- multiply Se by factors which compensate for the differences be-
tween the actual component and the standard test bar.

ASe' = Se ka kb kc kd ke kf
where,

k

a is the surface finish factor

kyp is the size factor
kc is the reliability. factor
kg is the temperature fzctor
ke is the modifying factor for stress concentration
ke i= the modifying factor for other effects (e.g., non reversed bending)
The material properties for fatigue may be represented by the

Modified Goodman line, which lies at the bottom of the fatigue

data scatter on a plot of alternating versus mean stress. For

combined stress states, the distortion energy theory m2y be

applied to obtain representative values for alternating, ca', and

mean, °m" stress components, which establish a state of stress by

the load line whose slope is ua' over °m' per Figure 3.1.

2

- 2 2
03" = [oy," = 0530y, * 0ya~ * 3 Txya
2

- 2
On' = [oxn” = Oxmym * %ym * 3 Txym

33
2)-5
- The factor of safety is evaluated using the allowable value

of alternating stress, S

= '
FS Sa/oa

ao
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, - 28 -

... 5. ) R4 Load line for component

i Failure of material occurs
H Sa o~ above this line .
- R

-

3 ' dew-

s % ]

g L) -~

. ] -~

a.l " : T~ -~

- ) 4 v

<

Mean Stress, o '
Figure 3.1 Hodified Goodman Diagram

For contacting surfaces, vwhich transait forces, the compressive
stress at the area of contact and the shear stresses below the
contact surface are based on Hertz's equations (5). The contact
area is formed by the elastic deformation of the two bodies. The
analysis may be applied to two eliptical bodies, with each body
having two different radii of curvature at the contact point like
crowned gear teeth or per Figure 3.2. The theory may be simplified
if the two contacting bodies are cylindrical (4). In this latter
case, the area of contact has a half width b.

b = {2P[C(1-,2)/E, ] + [C1-up2)/E 1)/ (xe1 /ey * 1/d,, D>
where,

P is the normal force between the two bodies

¥y and y, are Poisson's ratios for cylinder 1 and cylinder 2

E, and E; are the compressive moduli of elasticity for

cylinder 1 and cylinder 2

d;o and dy, are the diameters of cylinder 1 and cylinder 2

L is the length of the contact area

x is 3.11159

The maximum pressure value, which is the compressive siress, over

the width 2b {s
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p = -2P/(wdbL).
The maxiaum shear stress occurs below the contact sur(ace a
distance, Z.

Z=.7861 xDd

Figure 3.2 Contacting Elliptical Shaped Bodies

The rolling action of uncrowned gear teeth is like two cylinders
with diameters defined by the tooth surfaces at the point of contact -
(7). The radius of the contacting cylinder, p. is defined bv the in-
volute function as illustrated in Figuré b-. At the pitch circle, the
value of o is

p = d,,/2 = (d/2) Sin ¢
where,

d is the pitch diameter of pinion

¢ is the involute angle
At any other diameter, dy, the radius is

p = (4,72) Sin ¢,
The diameter of the larger contacting cylinder, which represents the
gear tooth surface, is

°2c - dG Sin ¢ = ng d Sin ¢

vhere,
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dG is the pitch diameter of gear

m; is the ratio of gear teeth dividied by pinion teeth.

p=cp
p-lalhu;oftvllhu;cyrudcr
at pitch peint
' & = Roll angle,
¢ = Involute angle

Figure 3.3 Diameter of Rolling Cylinders
Representing Involute Tooth Contact

For helical gears, the radii of the contacting cylinders is in the
section normal to the pitch helix. This section has a pitch ellipse
instead of a pitch circle like the spur gear pair (7 Using the
equation of an ellipse, the diameters of contacting cylinders are

dye = @ Sin ¢ /Cos?y

doe = % die
where,

¢ is the helix angle

Tire compr€33ive 3Lr883, Sp» of external helical gear and pinion
teeth is obtained by substitution of the latter two equations into the
equation for p. The average length,t, nf teeth sharing the load is a
function of face width, F, and contact ratio.

t = F x(Contact Ratio)/Cose
The force normal tc the tooth is

)
P = W, /(Cos v*Cos ¢,
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where,
"t. is the tangential load in the transverse plane
¢, is the normal pressure angle.

2 [dp0 * ayMidydp) 0
x [(1-p/E; + (1-0,°)/E,

o =p = {

2 .
. Cos’y  [M; + 1] 1 -3

% = YFlContact Ratiold Sine Cose, Mg (-2 )(I/E, + V/E))

Define an elastic constant (8), Cp. as
¢, = [1/s0d) /e, + 1E])3
Define a curvoture factor (8), C,, as
2
Co = (Sine, Cose,/Cos )M/ (Mg + 1)IR
Hence, the equation for compressive stress at the pitch line is
W 1 -3

t
o0 = Cp {— ]
Fd CCECOntact Ratio]

3.3 Components which contain cracks may be analyzed by fracture
mechanics principles to determine if the crack will propagate or
remain dormant. For example, a weld area may contain cracks. An
inspection o7 the weld may identify all cracks in excess of a
threshold length, which is below the detection capability of the
instrument. Hence, the analyist may postulate that cracks as
long as the threshold length still exist in the component. For a
Mode I crack, the "stress intensity factor®, Ky, is (5)

Ky = o(x 3) £(A)
where,
¢ = stress norsal to crack
a = crack length or half length

£f(1) = a function of crack and component sizes
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A critical value of the stress intensity factor is defined as
the "Fracture Toughness", KIC‘ The values of KIC are highly
dependent on temperature. Simjlar steels may have significantly
different values of Kj. at 30°F. When Kg exceeds Kjc, the crack
will continue to grow even though the load is constant.

Breaking of gear teeth is normally associated with the bend-
ing loading of the tocth. Lewis proposed that a gear tooth could

be modeled as a parabola, which is inscribed in the tooth, shaped

_beam with the apex located at the intersection of the tooth load

and the centerline of the tooth. This beaa would have a constant
bending stress since the thickness, t, of she beam would vary as
the square of the distance,t, from the apex. The location of the
point of tangency of the parabola with the tooth surface identi-
fies the position, a, of maximum bending stress, St‘ The load is
shown in Figure 3.%. The bending stress for a rectangular cross
section is:

S, = Me/L = Wy & 6/(F t9)
The distance x and the 90° inscribed triangle may be used to
identify the location of the maximum bending stress, "a". By
similar triangles,

Tan a = Tan &

(t72)/x = £/(t/2)
so,

tz = Ufx
Hence, the thickness'can be eliminated from the stress equation.

Sy = Ht6/("xF)
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Divide the numerator and denominator by the circular pitch, p, and
define y, which depends on the point of lcad application, as
follows:

y = 2x/3p
Hence,

Sy = W 3p/(2x F p) = W /(F p y)
Define a tooth form factor, Y,

y=Yx
and substitute the diametral pitch, P4, into the equation.

p = x/Py

Sy = W Pg/(F Y).

’ ]
W __ Paraboia contacts
tooth at "a".

Figure 3.4 Tooth With Lewis Parabola Inscribed

The stress field at the root of the tooth will bde amplified due to
the changing cross section and fillet radii. The fatigue strength of
the tooth may be adversely affected by the surface finish, tooth size,
etc. Hence, for fatigue analysis, the value of S¢ should be modified
by a stress concentration factor, K¢.

The load sharing capability due to the contact ratio allows more
than one tooth to share the load. Hence, the value of S, should be

modified due to the contact ratio.
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These factors result in the following relationship for bending
stress.

Sy = Wy Py Kfl[Cont.act Ratio(F Y)]

N, Conclusions:

The design and manufacture of gears represeants an advanced
combinztion of art and science. The fundamental equations for
compressive stress and bending stress of gear teeth as presented in
this paper provide the basis for the AGMA 218.01 Standard (8); however,
modifying factors (9) are added in the Standard to ada, . these

equations to the real world enviromment.
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LECTURE 6

A REVIEV OF AGMA 218.01, AGMA STANDARD FOR RATIN; "THE PITTING RESISTANCE
AND BENDING STRENGTH OF SPUR AND HELICAL INVOLUTE GEAR TEETH

ABSTRACT :
The AGMA 218.01 Standard for rating the pitting and bending

strength of spur and helical gears is reviewed in this paper.

1. INTRODUCTION:

The American Gear Manufacturer's Standard, AGMA 218.01, for Rating
the Pitting Resistance and Bending Strength of Spur and Helical
Involute Gear Teeth was introduced by the AGMA Committee for Gear
Rating in 1982. "The purpose of this Standard is to establish a common
base for rating various types of gears for,{ifferent applications and
to encourage the maximum practical degree of uniformity and consistency
between rating practices within the gear industry. It provides the
basis from which more detailed "AGMA Application Standards™ are
developed and provides a basis for calculating approximate ratings in
the absence of such standards." (1)!

The Standard includes those factors which influence the life and
operation of the gear set. This standard is based on fundamental
principles: Hertz's equation for compression and Lewis's equation for
bending. When these equations are developed for members shaped like

gear teeth, they take the following form per reference (2).

i3 ! 5
Eq. 1 Compressive Stress: sc = l y
P'rd c,[Contact Ratio)

. Wy Pgq Kp
(Contact Ratio (F Y)]

Eq. 2 Bending Stress: S¢

The difficulties in adapting the Lewis equation to gear tooth

stress are reviewed by Wellauer (3) and includz:

1Numbers in parentheses identify references.
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The distribution of load across the face width and over the

tooth profile, which vary with accuracy, tolerances, wear
and deflection.

Stress concentration at root.

Size effect on fatigue life.

The variation in load position on the tooth as the gear
rotates.

The compressive stress due to the radial component of load.

The modification of the Lewis equation to the gear enviromment is

discussed by Dudley (3). He comments on four modifying factors:

Ko»

sl

v’

the overload factor, which accounts‘for the roughness of the
driving and driven apparatus.

the size factor, which reflects the experimental results
showing lower endurance limits in components with larger cross
sectional areas.

the load distribution factor, which depends on misaligament of
axes of rotation, aligmment errors due to tooth inaccuracies,
and elastic deflections of shafts and bearings under load.

the aynamic factor, which is determined by the pitch line
velocity, mass-elastic characteristics of teeth and gears, and

accuracy of tecth.

The comments of Wellauer and Dudley were made for a standard which

. preceeded AGMA 218.01, but most of these comments do apply to AGMA

218.01.

Eq.

The bending strength equation in AGMA 218.01 is:

wt Ka Pd Ks Km

K, F J

3 s, -
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where,
St is the bending stress number
Ka is the application factor for bending strength
Kg is the size factor for bending strength
Km is the load distribution factor for bending strength
Kv is the dynamic factor for bending strength
J is the geometry factor for bending strength
Pd is the diametral pitch, nomial, in the plane of rotation
Pq = Ppq COS ¥g
Pnd is the normal diametral pitch
Vg is the helix angle at standard pitch diameter.
The geometry factor, J, (1) is defined by the equation:
J = YC*/(Kf my)
where,
Y is the tooth form factor
Ke is the stress concentration factor
my is the load sharing ratio, which depends on the transverse
contact ratio LY and the face contact ratio mg.
For Normal Helical Gears with mp > 1.0:
my = F/lpin
where,
Lpin is the minimum value of the total length of lines of
contact in the contact zone. .

For most helical gears with mp 2 2.0 a conservative approximation

for my is:




- 229 -

where,

Py = Normal base piteh = (x Cose,)/P g

- The normal profile angle of the equivalent standard rack

cutter.

Pnd = Normal diametral pitch

Z = Length of line of action in transverse plane.

The profile contact ratio, ", (%) is

B, = z Np/(td Cosé, )
wnere,

d = Operating pitch diameter of pinion

Np = Number of teeth on pinion

o - Operating transverse pressure angle
Cv is the helical factor and is unity for spu; gears and helical

gears with mp > 1.0.
The geometry factor may be substituted into equation 2, if the helical
factor is added, to obtain:
P, 1

Eq. b st-wtf:’—

This equation may be modified to reflect total load. The load "t
is the mean value of the tangential load and is evaluated from the
maximum horsepower rating. However, the total load includes a dynamic
component due to internally generated tooth loads, which are induced by
non-conjugate meshing action of the teeth. This dynamic component is
represented by the dynamic factor K. Also, the total load contains a

- variable component due to externally applied loads which are in excess

of "t (1). The application factor, K,, makes allowance for any exter-

nally applied loads.
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The equation may be modified to show the non-uniform distribution
of load along the lines of contact due to cutting accuracy, aligmment,
elastic deflection, clearances, thermal expansion, crowning, and
centrifugal deflections by the load distribution factor Km'

The equation may be modified for the size of the tooth by the size
factor, K.

Apply these four factors to Equation ¥ to obtain Equation 3 for
the bending stress number, st.

The allowable magnitude for this bending stress number is
determined by material properties and the desired life as defined by
the following equation:

St s Sat KL/(Kt KR)
where,

S_. = allowable bending stess number which is based on the

at
satistical probability of one percent failures occurring
after 107 cycles.

KL = life factor for bending strength, which depends on the number
of cycles required.

KT = temperature factor for bending strength

KR = reliability factor for bending strength, which accounts for

the normal statistical distribution of failures found in

materials tested in a laboratory when evalauting sat' (For 1

failure per 100, after 107 cycles, Kg = 1.)
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As experience is gained and as analytical methods are advanced,
the values used for the factors like K, Kg» Ks' and K, will improve.
This will reduce the need for large values for factors of saéety.
because the unknowns will be reduced. This is a major area for future
research.

The application factor K, makes allowances for all externally
applied loads in excess of the noainal tangential load "t' The prime
mover and the driven load are the major contributors toc the variations
in the externally applied loads. System vibration, acceleration
torques, overspeeds, variation in system operation, ard changes in
process load conditions are sources of externmal loads.

The values of the life factors K; and C; for various materials
could benefit from more test results. The wear of the gear teeth due
to compressive stress presents a fatigue condition similar to that of
roller bearings.

The factor of safety is not explicitly mentioned in AGMA 218.01.
The implicit statement that

(Sg) < Sgy Ky /(Kp Kp)
allows the designer to select a factor of safety.

Service factors, KSF' have been used which included the applica-
tion factor, Ka' and which sometimes included the reliability factor
and 1ife factor. If only Ka is included, the value of KSF may be taken

as Ka. However, if KR and KL are also included in KSF' then the fol-

lowing relationship should he used:

Ksp = K3 Kp/Kp .
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These comments have been primarily limited to tle bending
strength, however, a similar rational would lead from Equation 1 to the
AGMA 218.01 equation for the conpres;ive stress number, Sc'

The AGMA 218.01 Standard is a general standard which provides the
basis from which more detailed "AGMA Application Standards™ may be
developed. These "AGMA Application Standards®™ may provide appropriate
values for Service Factors, Kgp and Cgp-

The AGMA 218.01 Standard is providing a good design guide, which
improves product uniformity and helps the gear industry in the U.S.A.
achieve a standard method for evaluating different gear designs.

The art and science of gearing is a légacy which modern man
enjoys. I express appreciation to all of those who have contributed to

this knowledge. Figure 1 is a sketch of an early contribution from

China (5).
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Figure 1. Sketch of South Pointing Chariot with Pin Gearing
of Chinese Origin, circa 2600 B.C., displayed by
Smithsonian Institution, Washington, D.C. and
Referred to by Dudley in his Comments on the
History of Gearing (5).
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ABSTRACT:
The use of computers for the design and manufacture of gears has
been a fruitful endeavor. This paper gives brief examples of some

computer aided design software for gears.

INTRODUCTION:

The application of the computer to the tasks of engineering,
draving and manufacturing gears has been rewarding.

Computer aided drafting provides the capability to see different
views quickly, to enlarge or reduce sections.easily. to reproduce
similar designs using the old_database and to check for interferences.
The countershaft of a dredge pump gear, which was drawn by AutoCAD, is

shown in Figure 1.1. The economic impact of computer aided drafting is

Figure 1.1 Gears for Dredge Pump
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probably not significant in terms of the reduced number of draftsmen
required, because of the added cost of equipment, maintenance,
software, and machine operatcrs. However, the economy of the’total
engineering and manufacturing activities may be greatly improved due to
better quality control and the reduction of time.

The availability of computers for the engineering design function
has resulted in many design software packages. The finite element
software allows the engineer to analyze the stresses and deflections of
parts having complex geometry. Programs which design gear sets are
common. This software often uses data from the cutting hobs as input
values. Other programs may be used in manufacturing to select change
gears or cutting tools.

An an example of commercial software for gear design, GEARTECH
Software, Inc. offers three basic packages:

AGMA218

SCORING+

GEARCALC.
Appendix A gives some features of these packages. You may use a
demonstration package for this software while you are here at the
Znengzhou Research Institute. If you desire copies of this
demonstration disk or if you wish to purchase the actual software,
contact

GEARTECH Software, Inc.

1017 Pomona Ave.

Albany, CA 94706

U. sl A.
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A second example is software by Universal Technical Systems, Inc.

The options of their gear design program #500 are given in appendix B.
UTS also developed the mathematical modeling software, TK Solzer/plus.
which solves equations. You may use a demonstration package for TK
Solver while you are here at the Zhengzhou Research Institute. We are
prohibited from copying this software. If you desire copies of TK
Solver/plus or the Gear Program #500, contact

Universal Technical Systems, Inc.

1220 Rock Street

Rockford, IL 61101

U. S. A.
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APPENDIX A
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GEARTECH Software, Inc. offers an
integrated system of gear desigfi/
analysis programs.

GS! specializes in high-quality, user-riendly sotware for
gear engineers. At programs are designed 10 work inde-
pendenily or togother as an integrated system. You move
from one modute 10 the next with a single keystroke —
without losing any common data.

The system provides an on-line database that gives you fast
access 10 youwr previously analyzed gearsets. This provides
you with automatic documentation ol your gear designs and
allows you 10 return 10 work-in-progress without having to
re-key input data — just a few keystrokes ret:ieves your
record irom disk. il a new job is similar t0 an old one, youcan
retrieve the old tecord, alter a few values 10 create the new
record, and be ready 0 run in seconds.

The inleractive, menu-driven command structure features
full screen editing that permits you 10 enter or modify data
quickly and efliciently. All inputl data is automatically
checked 10 ensure that it has the proper numeric format and
is within: the range ol reasonable values. Format and out-of-
range errors are highlighted and error messages are dia-
played 10 help you correct the errant data. Built-in geometry
audit routines prevent costly errors by catching design
errors (interference, excessive undercut and many more).

Al programs are capable of analyring spur and helical,
exteqnal and internal gearsets with either standard or non-
standard geometry. Algorithms are optimized for fast pro-
gram execution 10 help you perform accurate, sophisticated
analyses in a fraction of the ime required using manual
methods.

Fiexible, logically organized reports make documentation of
your work a pleasure. You may select reports in summary or
extended form, in any order you wish. The input Data Sum-
mary gives you an exact record ot program input including
all your analysis decisions. Never again wonder how you
oblained a panticular result or have difticulty repeating pro-
gram fruns.

ANl GS! programs are supplied with a User’s Manual that
explains every aspect of instaliation and operation of each
program. Program capabilities are fully described and tutor-
ial axamples are provided 10 guide you through a program's
operation. Each User's Manual includes an extensive theo-

retical section which explains the basis of all analyses .

periormed.

GSl programs are the friendiies|, most powerful gear design
and analysis software you ca~. buy.

< .

AGMVIAZI8

Introduced in 1984, AGMA218 is rapidly becoming the
indusiry standard program for rating spur and helical gesr-
ing. itrates gears exactly as intended by the American Gear
Manutacturers Assoclation Standard:

“AGMA STANDARD For Rating the Pitting Resist-
ance and Bending Strength of Spur and Helicat
nvolute Gear Teeth, AGMA 218.01, Dec 1982",

This is the AGMA's most up-to-date standard for rating
parallel-axis gearsets, As this standard is updated by the
AGMA, GSI revises AGMA218 to keep it current with the
iatest technological advances. With AGMA218, you can rate
a gearset in a few minutes rathef than spend hours with
frustrating, error-prone hand calculations.

AGMA218 performs two basic types of analyses:

Lite Rating — given the transmitted power and pinion speed,
the pitiing lile and bending fatigue lives are calculated
for a single load and speed, or for an entire spectrum of
loads with the resullant lile determined from Miner's
Rule.

Power Rating — given the pinion speed and a required
design lite, the allowable transmitted power based on
gear tooth pitting and bending fatigue are calculated for
both the pinion and gear. The aliowable power rating of
the gearset is the minimum of the four power capacities.

AGMA218 is integrated with and automatically transfers
common data to SCO* "NG+.

AGMAZ218 features include:

¢ Analyzes all materials and heat-ireatments covered
in the AGMA Standard 218.01

o Considers effects of addendum moditication, tooth thin-
ning lor backlash, stock allowance for finishing and
complete tool geometry

¢ Calculates full gear geometry including | and J factors,
loads, deraling (actors, strengths, stresses and lile or
power ratings

@ Uses Miner's Rule to analyze up to 50 discrete loads with
an on-line data base for storing up to 100 load arrays

¢ Calcuviates the dynamic factor and {oad distribution fac-
tor it not input by the uaer

o Considers numbe: of conlacis per revolution and uni-
directional or reverse bending foads

& Oulput includes screen, hevd-copy dr disc reports

SCORING+

SCORING+ performs a compiste analysis of the tiibology of
spur and helical gears. i considers all the known parame-
ters which conwl the pitting, scoring (scuffing) and wear of
gear teath, SCORING+ gives you the analytical powsr you
need (0 make important decisions concerning gear geome-
try, tooth modification, surface roughness, and lubricant and
material properties. You can integrate SCORING+ with our
program AGMA218 (pitting and bending Istigue lives) and
have a complete set of tools for analyzing all the common
gear lailure modes.

SCORING+ caiculstes the EHD fiim thickness using the
Dowson and Higginson equation and the flash temperature
using Blok's critical temperature theory. The speclfic film
thickness heips you determine whether the gearset is oper-
ating in the full or partial EHD regime or is boundary lubri-
cated, and gives you the dats you need 10 assess the proba-
bility of wear-related distress, The flash tlemperature is your
bast criterion (or predicling the probability of scoring
(scuffing).

SCORING+ performs a compiete kinematic anulysis of the
gear tooth velocities 80 you can quickly see how changes in
pitch or addendum modification alfect specific sliding ratio,
and approach versus recess action. The Hertzian contach
siress is col .'sled at each point of contact o you can seq
exacllywt... themaximum stress occurs. SCORING+ pro-
vides graph.cai plots of EHD film thickness, flash tempera-
ture, specific sliding and Herzian stress. This is an extremely
useful capability, allowing you o instantly review the results
of a SCORING+ analysis.

SCORING+ features include:

¢ Caiculates EHD fim thickness and probability of wear

® Calculates flash temperature and probability ol scoring

e Calculates rolling, sliding and entraining velocities, and
specific sliding (slide/roll) ratios

¢ Calculates Hertzian contact siress

® Provides options for constan or variable coefficient of
friction

® Provides single-key entry of defaull values for tool
geometry and MiL-L-7808 lubricant

¢ Provides complete gear geomeiry calculation, audit and
report

® Provides screen or hard-copy plots of EHD film thick-
ness, flash temperature, specific sliding snd Hertzian
stress

® Output includes screen, hard-copy or disk reporis
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Price List for Gear Software
<::> © (Revised May1988)

Universal Technical Systems, Inc.
1220 Rock Street, lockdord, IL 61101
Phone: (815) 963-2220, 800-435-7887

Program Description Price §
#500  This Spur and Helical Gear Analysis Software Program uses an
Expert Systems approach to design gear tooth profile and the
cutting edge geometry of the tooling. ( You need to purchase Option
1,2, or 3 before any of the other options can be added.)
Option
1 Optimum tooth profile a.id tooling design when gears are
hobbed 1950
2 Optimum tooth profile and tooling design when gears are -
shaped 1950
3 Combination of options 1 and 2 3150
4 Analysis of tooth profile when gears are shaved.
This option also includes the design of shaving cutter 700
5 Specific sliding ratios (includes calculation and plotting) 500
6 Profile modification using Tip relief, topping, or semi
topping hobs 1500
7 J-Factor balancing (balances strength of gear and pinion) 1700
8 Root fillet Grinding (includes design of grinding wheel} 1500
34 Almen - Straub stress factor calculation 700
40 UTS Data file Access 500
This option is used to connect output of UTS Gear Analysis
programs to other programs such as CAD/CAM, tooling
database, etc.
50 Integrated Tooling Database 1500
This option is used to design a cutting tool, automatically
search for the closest tool available in your database and
re-run program 500 with the new data.
#540 Load Rating of Gear Sets Using AGMA Standard 218.01 1200
(see program numbers 60-5401, 5402, 5405 for other load rating
programs)
#550 Load Rating of Gear Sets Using AGr'A Standards
210.02, 211.02, 220.02, 420.04, 421.06 700
#580 Minimum Weight Gearbox Design 1500

Computer System Requirement

IBM-PC family {PC, XT, AT, PS/2) or a 100% compatible with the following configuration:

o PCDOS 2.1 or Higher

minumum memory 640K RAM

one floppy and one hard drive

color monitor with graphics card preferred

HP series plotter with RS232C interface (optional for program #500)

Versions for HP 200 and 300 series are also available, please call for details.

All prices subject 1o change without notice
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