TOGETHER
for a sustainable future

OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org

China national technical develophent centre of gears

DP/CPR/85/015/11-01

the peopie's republic of ciIna

Technical report : Rating, optimum design and computer aided

 design of gears and gear systems *Prepared for the Government of the People's Republic of China by the United Nations Industrial Development Organization, acting as executing Agency for the United Nations Developrient Programe

Based on the work of E. William Jones
UNIDO Expert

Backstopping officer : H. Seidel, Engineering Industries Branch

United Nations Industrial Developaent Organization Vienna

[^0]
TABLE OF CONTENTS

page

1. INTRODUCTION 1
2. LECTURES SERIES 1
3. ORGANIZATION OF ZRIME 5
4. FACILITIES FOR GEAR WORK 7
5. RESEARCH AND TECHNICAL SERVICE 16
6. CONSULTING ACTIVITIES 17
7. VISIT to Sichuan gearbox plant 18
8. CONCLUSIONS 19
APPENDIX : Participants in lectures on Gears CAD 21
LECTURE 1 : Conputer aided design : steady state and kinematic simultation 25
LECTURE 2 : Predicting the performance of dynamic 77
mechanical systems
LECTURE 3 : Torsional vibrations 129
IECTURE 4 : An introduction to the finite Element method 171
LECTURE 5 : Metal failures in transnissions 209
LECTURP 6 : A review of AGMA 218.01 , AGMA standard 226
for rating the pitting resistance and bending strength of spur and helical involute gear teeth
LECTURE 7 : Gear CAD 235
1.INTRODUCTION:

The purpose of this project is to introduce the status and trends in gear rating, optimum design and the computer aided design of gears and gear systems and to provide assistance in the development of a computer aided design syster for high speed gears and gear systens. This will be accomplished by presenting a series of lectures to engineers and educators in China, by providing assistance to engineers developing a CAD systen for gears, and by suggesting advisory opinions on aspects of research works, gear rating and optimum design.
2. LECTURE SERIES:

The lecture series to be given at ZRIME consists of seven different, but related, topics. The titles of the lectures are:
A. Computer Aided Design: Steady State and Kinematic Simulation
B. Predicting the Performance of Dynamic Mechanical Systems
C. Torsional vibrations
D. An Introduction to the Finite Eleme」t liethod
E. Metal Failures in Transmissions
F. A Review of AGMA 218.01, AGMA Standard for Rating the Pitting Resistance and Bending Strength of Spur and Helical Involute Gear Teeth
G. Gear CAD

After the lectures are completed, demonstrations and trainning sessions are provided for three groups of about 20 persons. These sessions use an IBM-XT 286 computer to provide experience with the following software:
A. Gear Design Software by Geartech Software, Inc.:

1. GEARCAIC:

Evaluates macima capacity gear set with minimum volume and veight. Allows designer to select. tooth numbers and addendum modification based on the application.
2. AGMA 218.01 :

Verifies compressive stress, bending stress, and gear life for the design from gearcalc.
3. SCORTNG:

Verifies the probably of wear and scoring for the design from gearcaic by evaluating flash temperatures, sliding velocities, and elastohydrodynamic silm thickess.
B. Mini TK solver:

Solves linear and non-linear systems of equations. It is a mathematical "tool box" from Universal Technical Systems,Inc.
C. GEARPORC:

Evaluates gear tooth forces and bearing reactions for a shaft supported by two bearings and carrying any number of extirnal gears.
D. FOURBAR:

Evaluates the positions and velocities of points on a fourbar mechanism. Graphical output of the positions is given to illustrate setup of graphics code. E. INERTIA:

Evaluates the mass moment of inertia, weight, and torsional spring rate for a stepped rotor system. F. VEHICLE SIMULATION:

Evaluates the displacement versus time of a vehicle dynamic model with a three speed, shiftable transmission.
G. OPTIFIUM:

Optimization method for multivariable, non-linear, constrained problem using the complex method. This program is a modification of Dr.G.H.Michaud's work to evaluate sensitivity studies and provide graphical output. It evaluates the variables to give the maximum or the minimum value of the objective function and the graphical sensitivity study shows hov the optimum value changes with each variaole.
H. FRAME:

Evaluates tne reactions and deflections of a structure using the plane frame element. The frame finite element has three degrees of freedom at each of its two nodes: X, Y and θ.

One major theme of the first four lectures is to provide a course in computer aided design methods includine mocelin: of cynamic systers.
fost of the exemples are selected for gear systems in order to show the relevance. The torsional vibration analysis and finite element analysis are important CAD methods. An example evaluating the internal tooth dynamics is not explicitly presented, but the numerical integration method, the process of creating an equivalent mass-elastic system, and the PEM for evaluating the varying tooth stiffness are covered. Hence, the fundamentals for evaluting internal gear tooth forces are explained.

One major theme of the last three lectures is to show the development of the AGHiA218.01 standard for gear design relative to fundamentals and the experiences by the American gear Manufacturing Association's members.

The lectures were attended by 72 engineers from 34 different industries and institutions representing all areas of the nation. Their names and affiliations are listed in Appendix A. This list indicates the broad interest in this project. The three intereerters were experts:

lic. Jia Jun

Senior Engineer of naterials, fiot Processing Department
úhengzhou Research Institute of liecharical Engineering

Mr. Ding-Hong Yan - 5-

Vice Director
Gear Research Institut ϵ
Fiechanical Engineering Department. Shanghai University of Technology

Professor Zongying Ou

Dalian Institute of Technology
Department of Mechanical Ingineering
Director of Mechanical Lesign Division

A copy of these lectures is attached to this report for reference.
3. GRGANIZATION OF ZRIFiE:

The Jhengzhou Research Institute of isechanical angineering has three research divisions and one design division:
A. Hechanical Streng:h and Vibrations Livision.
.ت̈tructural inalysis
.Fatigue and Fracture
.otrain measurement
B. Hot Frocessing Division.
.Foundry
.forging
...elding
C. Electrical and liechanical Design Division
. This Eroup desiens products for commercial production

This division has five departments:
1.Fundamental Technology Department.
.Dasic research topics:
gear rating,lubrication
life prediction
gear CAD
new developments
2.Technical Developments Department.
.The goal is to assist the Government with tine development of net products per the Five Year Plan, and to cievelop needed equipment or assist in selecting foreign equipment.
3. Fiaterials and Heat Treating Department. .Conduct research on domestic materials including Carburizing, Nitriding and Induction hardening.
4. Gear Hanufacturing Research Department. .Conduct research on gear manufacturing methods includiñ honing, shaving, grinding and hobbing.
5.Technical Services Department.
.Conducts national symposiums and seminars, develops the China gear standards, publishes a bimonthly gear journal, represents China on the International jtancards CreanizEtion committes TC-60, represints jhine on IrTCi,f. (and will host the Eall Isruin.

> meeting at ZRIriE), provides headquarters for the China Hechanical Transmission Society which is a branch of the China Hechanical Engineering Society.

The National Center for Quality Control of Gears is also located at ZRIPE. This group inspects the qualty of gears in the factories and reports their findings in order to correct any deficiencies and assure the quality of the Nation's gear products.

ZRIME has approximately 900 .employees and about 45% are engineers. The Gear Division has 155 employees and 115 are engineers.

Each division has a Chief Engineer. The divisions are relatively independent and self supporting. The divisions coordinate their efforts to provide mutual support tbrough the Director of the Gear jivision tir...ang.
4. FACILITIES FOR GEAR WORK:

In order to indicate the capability of the Gear Division and the National Center for Quality Control of Gears, some of the equipment and facilities are listed below.

This list is not complete.

1. Pfauter hobbing machine

$$
1.25 \text { meters maximum diamotisr }
$$

2. China made hobbing machine
1.5 meters maxinum diameter
3. China made hobbing machine
2.0 meters maximum diameter can cut large modules.
4. MAAG Shaper SH75K

700mm max. diameter
320mm max. stroke
Quality: DIN 4, AGMA 12-13

5. Shanghai gear grinder 320mm max. diameter

5 max. module

6. MAAG Grinder SD62

620 mm max. diameter
15 max module
Quality: DIN 4, AGMA 12-13

7. Controls for wear and lubrication test

8. Klingelnberg Hob Grinder 300 mm max. diameter

Quality: AAA

9. Klingelnberg Tester
(used with MAAG SD62 Grinder)
1.2 m max. diameter

10. Klingelnberg machine to check accuracy of hob. 300 mm max. hob diameter

11.Klingelnberg machine SPOO to inspect cylindrical and spirol bevel gears is on order. 900 mm max. diameter
12. VG450 for checking profile of master gears, 450 mm max. diameter

Quality: AGMA 13 or higher

.3. Concentricity measurement-laser
0.5 arc second accuracy

14. Goulder Mikron machine to check profile of
large turbine gears
10 module maximum
1 m minimum diameter

15. Four Square Test Stand:

250 Kig max. power
Computer control is on order. Measures noise, vibration, torque, efficiency, and oil temperature for a complete assembled gear system.

16. Four Square Test Stands:

Four test stands with 150 mm center distance and four with 100 mm center distance. For test of lubrication, scoring and wear. Size of wear particles in oil, vibrations, and dynamic loads are ronitored.

17. Plasma carbonitride heat treating

500 mm max. diameter

18. Gas carburizing heat treatment 1.2 m max. diameter 2.4 m max. width

4 mm case depth is achieved

19. Plasma Nitride heat treating Ring gear, 900 mm max. diameter 2.3 m max. width

20. B\&K Noise and Vibration instruments for measurement in field by portable system and tape recorder. Analysis of data by FFT on main computer.
21. Computer facilities include an IBl 4381 with connected terminals, a lerge design terminal, and a Calcomp plotter. Seven IBM PC computers are in the Gear Division.
22. The ADINA finite element code is used.
5. REGEACCH AND MECEIICAD SIRVICE:

The gear research and the technical service provided by $厶$ RII: are important to the development of the iation as it strirss to provide transportation, food and energy to the citizens. The fundamental research on gear materials which are manufactured and processed within the Nation is necessary to establish the life and reliability of these materials. The life and reliability of gears depends on the material in addition to all of the machining and heat processing operations which are used to menufacture the gear.

The basic research on gear life, heat treating and new materials will be beneficial to China and to the world. The research on contact fatigue life is of special, interest to the members of the INC-TC60 Eroup.

The need for a national standard for gears does exist in China. There are several different standards in use today. The values of these standards provide good designs, but the values are not all interchangable between the cifferent stanciards. The gears manufactured from the new China materials and by new China processes are act all included in these other standards.

The technical interchange sponsored by LRIilis is very healthy for the gear experts across the Nation as it multiplies their progress. The international activities of \dot{Z} RI: s accomplishes the same result across the worli.
6. CONSULTIEG ACTIVITIES:

Each lecture contained a period for questions. ilso, in the follcwing days, guestions concerning the lecture and other projects were discussed.

Examples are:

1. The analrsis of lateral vibrations per the API 163 Standard
2. The activity in the U.S.A. on ductile iron gear research
3. VISIT MC SICEUAR GEARBCX ELANT:

The purpeses of the visit to the plant were to present lectures and training an the Computar Siced Design of Gears and on Stanciards and to gain a firsthend view of the state of gear manufacturing tecknolog as it is practiced in China today. Due to the limited time, only one day of lecturing was presented on تue topcis of torsional vibrations and the AGMA 218.01 standard. However, copies of all seven lectures were provided to them.

The Sichuan Gearbox Plant is a subsidiary of China State Shipbuilding Corporation." The prodicts of this plant include gearboxes, clutches, couplings and dampers. The plant is located in Jiangjin on the Long Piver and has 1200 emplojees. The plant nas eight shops, which include:

1. Gearbox manufacturing
2. Gearbox assembly testbeds
3. Heat treatment (carburize, induction, nitride)
4. Fress shop
5.Forging and welding
5. Friction disk manufacture

The plant started in 1966. In 1978 - 1979 license agreements with Lomann \& Stolterfoht and with Geislinger were mede to menufacture marine gears anc alastic danping couplings respectively. A tour of the fac ility showed that it is an excellent sear plant mith the machines, testing ecuizment, zuality cortroi anc zensornei resuizsa to co the ;oo correctly.
8. CONCLUSICNS:

The organization of ZRIV E and the Gear Division is well slanneci to advance the cevelooment or sears within the Nation. The nigh technology of gears anc gear systems is a combination of art and science. The performance of a gear system depends on the nature of the perent material, the machining operations, the heat treating process, the gear design analysis, the system design, and the operating conditions. The Gear Division is organized to consider all of these factors. The interactions witin ineustry, universities anci otner institutions is very beneĩicial to all.

The facilities at $\angle R I f i=$ are adequate to perform Comfuter Aided Design of gears. Fowever, the softiare and harduare are rapicly advancing anc rlans Eor resuiam up̧aaing sinouic exist.
a solicis mocieling soft:fare package shouic ue consicered.
 systems within the iation will aici in comaerciai sevミiopmerts in China's gear industry.

The UFindC support for the computerized control of the carburizing heat treating process, vill be very inelpiul.

Whe UNIDC Gear CAD project has provided a good exchange of ideas on computer aided design of jears snc an increasec uncerstamding of the american Gear 1.anufacturer's Stanciards for gear design.

The rapid adrances in gear technology, computer aided testing, computer aided manufacturing, and gear CAD in China and in the world present a need for a long range education and training program.

Where is a need for a training facility at GRHi in orcier to provicie effsctive training in modern sear technology such as hot processing metrocis, manufacturine methods, quality measurements, and computer aiced design and analysis. The facility should be furnished with adequate computers and other equipment to allow the particiopnts to receive personal training. Eerhaps 10 training stations wcule be appropriate. (The 386 computers should be consiciered.) Audio visual equipment is needed. It is recommended that these needs be consiciered.

Participants in Lectures on Gear CAD In Zhengzhou, July, 1988

name	AGE	technical title	AFFILIATIONS
1. Chen Zegao	56	Senior Engineer	Shanghai Research institute of Hoist
2. Mei Jianping	35	Teacher	Ėast China Institute of Chemical Engineering
3. Jin Guopin	42	Teacher	Technologz College, Shanghai University
4. Leng Xiangzhu		Teacher	Xuzhou Gear Plant
5. Cheng Dahei	43	Engineer	Kaifeng Air Separator factory
6. Yhang Qiankun		Assistant Engineer	Kaifeng Air Separator Factory
7. Yao Hongli			Ansan Tractor Research Institute
8. 'ru Jiang			Ansan Tractor Research Institute
9. Weng Jianshe	30	Graduate	Changchun Research Institute of Optical Machine
10. Shen Qingzhu	24	Graduate	Changchun Research Institute of Optical Machine
11. Li Debao	40	Engineer	Dalian Research Institute of Hoist
12. Zhao Wei	30	Graduate	Northeastern Institute of Technology
13. Li Jingfeng	24	Graduate	1
14. Ding shichao		Graduate	"

15. Shen Tao	24	Engineer	Shenyang Blower Works
16. Wang yuhua	28	Engineer	"
17. Tong Rongchu	48	Engineer	Beljing Gear Company
18. Ma yuanjing	25	Assistant Engineer	"
19. Liu xitian	46	Engineer	Taiyuan Research Institute of Holst
20. Jia Yi		Teacher	Gear Research Institute, Taiyuan University of Industry Technolog:
21. Tang zhengbao	53	Associate Professor	Central China University of Science and Technology
22. Zhong ylfang	53	Associate professor	1
23. Che Hexlang	53	Associate professor	1
21. Yang Kaixiou	45	Teacher	"
25. Li Haixiang	49	Associate Professor	Wuhan Institute of Water Transporation Engineering ${ }_{\text {N }}^{\sim}$
26. Fan Qi	26	Assistant	"
27. Xie Peillin	42	Teacher	Wuhan Institute of Navy Engineer
28. Żhou Jingyu	38	Techniclan	Hubei Vehicle Elements Factory
29. Yan shaomu	23	Techniclan	1
30. Li Rei	23	Assistant Engineer	"
31. Cuen Lin		Assistant Entineer	"
32. Gao Xiangqun	49	Sentor Engineer	Zhuzhou Research Institute No. 608

33. Heil Gang	26	Graduate	Zhurhou Research Institute No. 608
34. Deng Dize	49	Senior Engineer	Changqing Vehicle Office
35. Yang Peilin	25	Assistant	Xian Jaotong University
36. Liu Geng	27	Assistant	Shanxi institute of Mechanical Engineer
37. Wang Xiaoguang	31	Assistant	Northwestern University of Industry Technology
38. Liu Renxian	50	Professor	Xian Institute of Metallurgical Architecture Engineer
39. Wang Yuhang		Assistant Englener	Xian Research Institute if Heavy-duty Machinery
40. Liang Botao		Graduate	Gear Research Section, Luoyang Inctitute of Technolony
41. zhang Jianzhong		Assistant Engineer	Luoyang Mining Ma:hinery Plant
42. Pei Jingning	30	Engineer	"
43. Liu Guoping	30	Engineer	"
44. Zhou Jillang	54	Professor	Luzyang Tractor Research Institute
45. Sun Gongwe!	48	Senior Engineer	"
46. An Lical	. 50	Engineer	"
47. Wu Xucheng		Engineer	"
48. Wang Luming	54	Sentor Engineer	"
49. Wang Shiyan	30	Englneer	"
50. Zhao Kaotian	30	Engineer	"
51. Yu Reixi	45	Engineer	"

52. Li Shuping
53. 2hou yu 35
54. 2hou Xiaodong
55. Ai Chunting
56. Yan Dinghong
57. Hu ziqiang
58. Ou zonhying
59. Chang Keqin
60. Zhang Tingjian
61. Liu Zhilei
62. Li Xiouzhen
63. Zhang Zhiwei
64. Xia Yi
65. Gao xinshu
66. Jing Xian
67. Zhu shiqing
68. Xu Jiaoyao
69. Liuo Shijun
70. Cai Neng
71. Wang Jifeng

Engineer
Engineer
Engineer
Graduate
Teacher
Teacher
Assistant
Professor
Engineer
Engineer
Assistant Engineer
Engineer
Assistant Engiener
Engineer
Assistant Engineer
Engineer
Assistant Engineer
Engineer
Graduate
Graduate
Graduate

Luoyang Tractor Research Institute
${ }^{\prime \prime}$
11
Beijing University of Science and Technology Wuhan University of Industry Technology

Shanghai University of Industry Teclinology.
"
Dallan University of science and Techns:iogy
Zhengzhou Research Institute of Mechanical Engineer
"
"
"

LEGTURE 1
 COAPUTER AIDED DESIGN :
 Steady State and Kinenatic Simultation
 PREFACE

Seven lectires on the computer aided design of gears and gear systems are documented in this manuscript. These lectures were presented in a national meeting at the Zhengzhou Research Institute of Mechanical Engineering (ZRIME) in Zhengzhou, China. ZRIME is responsible for standards, research and development relative to the nation's gear industry and is part of the State Comission of Machinery Industry of the People's Republic of China.

The first three papers deal with the use of computers in the dynamic simulation of mechanical and gear systems and include torsional vibration studies. The fourth paper gives an introduction of the finite element method for computer analysis of stresses and deflections for non-prismatic shapes like gear teeth. The fifth paper discusses gear failures and outlines the Lewis and the Hertz equations for bending and compressive stresses in gear teeth. The sixth paper introduces the AGMA 218 Standard and shows how the Lewis and Hertz equations are modified for the American Gear Manufacturer's Standard on gear design. The last lecture introduces comercial software for computerized gear design.

The preparation, organization and management of this meeting by the Gear Division of ZRIME was exceptional. The personal care shown by each member of the staff is appreciated. The funding of this project by the United Nations Industrial Development Organization made this technology exchange possible. The technical competence of interpreters Jia Sun, Ding-Hong Yan, Zongying Ou and Mr. Mao added greatly to the presentations. The careful typing of the manuscripts by Mrs. Rook and Mrs. Yeatman was a significant contribution. Many of the examples and
research results are based on activities with Marine Gears, Inc. The efforts of my co-authors and of many graduate students are gratefully acknowledged. Carol's support made it possible for me to participate in this project.
E. Willian Jones

ABSTRACT:
Modern computers with low cost graphics are changing the scope of the mechanical designer's responsibilities and the way he performs his tasks. Some of the implications of Computer Aided Engineering are presented. The response of the engineer to the CAE environment is demonstrated by software for gear forces and for mechanism design.

1. INTRODUCTION:

The availability of low cost, fast computers with large memory and good graphics is producing a revolution in design departments. In the recent past computers were used primarily for engineering calculations which had extensive complexity or length. The major problems for the designer included digesting the voluminous output, sumarizing the results briefly, accessibility of the computer, time required per run, learning to program, training and retraining to use new hardware and software. The access problem is rapidly disappearing with the changing price to performance index. The low cost of graphics is providing a visual solution to the problem of coping with the volumes of printed output. Modern software with considerations for human factors is much easier to use. The computer offers the potential to perform calculations at a fixed quality level by reducing the human variation. The level of quality control depends on the maturity of the software, and it is still vulnerable to human errors in the input data. The use of a common data base and the integration of Computer Aided Design with Computer Aided Manufacturing are important. The potentlal of today's computers to contribute to the design task is making significant improvements.

Engineering design is an iterative process, which produces a specification for a product, which will fill a human need. The quality of the product and the timeliness with which the design task is completed are significant factors in determining the value of the product.

Engineering management faces different questions as their task changes from managing people to managing a machine room with operators. The yearly fees for maintenance and software rental are a large part of the engineering budget. The changing CAE technology makes hardware and software technically obsolete rapidly, which requires upgrading of software and hardware and retraining of personnel. The lack of standardization and interchangability of hardware and software have been major problems and are beginning to get some attention from the hardware and software suppliers. The Construction Industry Institute's Design Committee is currently studying the impact, implications and needs of CAE for the construction industry. Even though CAE is still in the evolutionary stage the engineering comunity needs to be involved with CAE so we will grow also.

The training required to practice engineering is changing. The designer with a workstation can perform a larger and more complex task in a shorter time span. This reduction in time span reduces the conscious and subconsious thought time which the designer applies to the task. This may reduce the designers creative responses during the design phase. Conversely, the computer may allow the designer to study more alternatives during the design phase since it can reduce the repetitive manual labor. The enlarged scope of the task argues that the designer's training and qualifications must be increased to match
his responibilities. While the designer must have some computer skills, he must also understand the physics of the application, the constraints on how to design for manufacturability, servicability, safety and human factors, and he must have the mature judgement necessary to make decisions.

The benefits of CAD/CAE are still being debated. Some suggest that a benefit is in the reduced number of draftemen on the task, however, the savings on the drafting expense is more than offset by the cost and maintenance of the computer and software. Much of the savings are outside of the design room. These savings include:

1. The reduced cost of rework during manufacturing.
2. The reduced loss due to scrap material.
3. The creation of a common data base for all.
4. Electronic transmission of drawings to remote sites.
5. The reduction in product development time.

A creative approach is required in the evaluation of CAE benefits because the task is usually redefined in the CAE environment. As an example, in 1975 Caterpillar Tractor Company evaluated the Finite Element Method. Some questions were:

1. Can the FEM reduce the time required between the initiation of design and the relsase for production?
2. What education and skills are required for use of the FEM? Several engineers with different levels of education and experience were given different components of a.new product, which had been designed by conventional methods. Since these engineers were learning the FEM, the time required for their solutions was not representative.

However, if the FEM could predict any major failures of these components prior to testing, then the component could be redesigned prior to the test. A failure of a component, during the test of this high speed product, would produce faitures of other components also. A failure during the test would produce a delay of several months in the product release date because:

1. First, the failures must be analyzed to determine the "root cause."
2. Then, the component with the "root cause" aust be redesigned.
3. The redesigned component must be manufactured. If the component is a forging or casting, the die or mold must be reworked.
4. The test must be rebuilt and restarted with zero credit for fatigue cycle testing.

Hence, the major gains from this CAE application were in the Proving Grounds Budget.

The results of this study showed a stress in a fillet of a forging to be above the endurance limit. A one inch fillet ricius would have been satisfactory but the component drawing showed half of an inch. A review of the original layout showed a one inch radius in this transition region, but the draftsman's circle templet had a maximum hole size of one inch. Hence, the designer's intuition had been correct, but without calculations to reinforce this intuition an oversight was made. The drawing was changed. After this study, Caterpillar created a group for performing finite element analysis for their product design groups.

Some general purpose software packages have been developed and examples are given, but the list of examples is not intended to be complete.

1. Computer Aided Design and Drafting.
2. Dynamic Simulation
3. Mathematics, Statistics
4. Word Processing
5. Finite Elements

CADAM, Autocad

ACSL, CSNP
MATHLIB, MATHCAD, TKSOLVER

Word Perfect, Microsoft Word ARSYS, MSC-NASTRAN

Special purpose CAD software can be a good engineering aid. First, there are small, homemade. special purpose CAD packages for personal tasks. Engineers should identify these tasks. Five examples are given below. The program INERTIA is typical of this class of programs. The program GEARFORC is for one area of technology, but it has a more general group of users since it is designed to evaluate the bearing reactions for ali combinations of helical gears and pinions. The program FOURBAR is.general for one area of technology and it uses graphics to help show the output. These three programs can analyze an existing configuration. The fourth example deals with the use of CAD In the synthesis (invention) of a configuration. The fifth example indicates the coupling of Computer Aided Design and Computer Aided Drafting software. The challenge for the mechanical designe. is to identify tasks, which are repeated and require significant human efforts, and to develop software to perform these tasks.
2. EXAHPLE ONE: Inertia and Torsional Stiffness

The calculation of mass moments of inertia and torsional stiffnesses of aembers with circular cross-sections is an often repeated task in evaluating the mass-elastic characteristics of a gear train. Hence, a progral to evaluate and add inertias and spring rates may be very useful even though it is elementary. Since the majority of errors in prograns occur due to faulty input of the data, the progran must print all inpent data on bard copy for future reference and quality control. The progran INBRIIA is listed in Appendix A and the output for the shafting section of Figure 2.1 is given in Table 2.1.

Figure 2.1 Shaft Section

3. EXAMPLE TWO: Generalized Bearing Reaction Program

The calculation of the bearing reaction forces on a shaft, which is supported by two bearings in a helical gear transmission, is a common task. A program for evaluating the bearing reactions, which allows for any number of gears on the shaft and for any rumber of pinions to be in mesh with each gear. is developed in this example.

TABLE 2.1 Output fron Progran: INERTIA

```
    TORSIONAL STIFFNESS AND INERTIA
    PROGRAM: INERTIA
MATERIAL DENSITY = . 283 POUNDS/CUBIC INCH
NUMBER OF DISCS = 6
    DISC NUMBER = 1
    OUTSIDE DIAMETER = 24 INCHES
    INSIDE DIMMETER = 10 INCHES
    LENGTH OE DISC = 5 INCHES
    DISC NUHBER = 2
    OUTSIDE DINMETER = 12 INCHES
        INSIDE DIAMETER = 0 INCHES
        LENGTH OF DISC = 5 INCHES
    DISC NUMBER = 3
        OUTSIDE DIAMETER = 4 INCHES
        INSIDE DIAMETER = 0 INCHES
        LENGTH OF DISC = 50 INCHES
    DISC NUMBER = 4
        OUTSIDE DIAMETER = 8 INCHES
        INSIDE DIAMETER = 2 INCHES
        LENGTH OE DISC = 10 INCHES
    DISC NUMBER = 5
    OUTSIDE DIAMETER = 7 INCHES
    INSIDE DIAMETER = 6 INCHES
    LENGTH OF DISC = 15 INCHES
    DISC NUMBER = 6
    OUTSIDE DIAMETER = 10 INCHES
    INSIDE DIAMETER = 6 INCHES
    L.ENGTH OF DISC = 7.5 INCHES
TORSIONAL STIFFNESS = 5310063 INCH POUNDS/RADIAN
SHAFT INERTIA = 27.43824 IN. LB. SEC. SEC.
TOTAL WEIGH%' = 727.9261 POUNDS
```

(The word pinion normally refers to the smaller of the two mating gear elements, but in this example the word 'pinion' refers to the elements which are meshing with that element on the shaft whose bearing reactions are to be evaluated.)

A typical gear and shaft arrangement is shown in Figure 3.1.
Bearing number 1 is chosen as the location of the origin of the right hand coordinate system. The positive z-axis is directed to the right along the cencerline of the shaft. Distarces to the left of the origin have negative values for the z-coordinate. The x-axis is horizontal and the y-axis is vertical. This Pigure shows two ecars. Each gear has one mating 'pinion'. There is a force F_{s} in this figure and the sign of this force is positive, if the force is directed upward. If $\mathrm{F}_{\mathbf{s}}$ is due to gravity, the numerical magnitude must have a negative sign. The angular orientation for each pinion is identified by the angle θ, which is the rotation about the z-axis. This angle is measured from the positive x-direction with the positive direction defined by the right hand rule and illustrated in Figure 3.2. The positive direction for the helix angle is selected as the right hand helix per Figure 3.3 .

The tangential component of the cooth load is

```
HT}=P\times396,000/(2\timesN\timesN\timesd/2
```

where,

```
P = Input power, horsepower
N = Speed of shaft under study (CCN is positive), RPM
d = Pitch diameter of gear with speed N, inches
d= NT
N
P
```

$\dagger=$ Helix angle (right hand helix is positive), degrees
$\boldsymbol{\#}_{n}=$ Pressur sle in normal plane, degrees.

Eigure 3.1 Transmission Gear, Shaft and Bearing Arrangement

Figure 3.2 Sign Convention for Pinion Location

Figure $3.3 \mathrm{~s}:$ gn Convention for Hellx Angle

The components of the force of the pinion on the gear are illustrated in Figure $: .4$ and the magnitudes are given in Table 3.1. The signs of these forces depend on whether the gear is driving or is being driven. The radial force on the gear is

```
UR:N,M)=ABS(UT) }\times\mathrm{ Tan@ 
```


Figure 3.4 Helical Gear Forces

TABLE 3.1 Equations for Components of Forces Acting on Gear N due to Pinion M

Symbol for	When the	When the
force component	gear is driven	gear is driving
WTX (N, M)	$W T \times \operatorname{Cos} \theta$	$-W T \times \operatorname{Cos} \theta$
$W T X(N, M)$	$-W T \times \operatorname{Sin} \theta$	WT $\times \operatorname{Sin} \theta$
WRX (N, M)	$-W R \times \operatorname{Cos} \theta$	$-W R \times \operatorname{Cos} \theta$
$W R Y(N, M)$	$-W R \times \operatorname{Sin} \theta$	$-W R \times \operatorname{Sin} \theta$
$W A(N, M)$	$-W T \times \operatorname{Tan} \psi$	WT $\times \operatorname{Tan} \psi$

The sum of the moments may be used to evaluate the components of the forces at the bearings. The moment of force F is given by the mixed triple scalar product (i) ${ }^{\boldsymbol{l}}$ of the three vectors, λ, r and E. $M=\lambda \cdot(r \times F)$
where,
$\lambda=A$ unit vector parallel to the axis about which the moment is evaluated.

$$
\lambda=i \lambda_{x}+j \lambda_{y}+k \lambda_{z}
$$

λ_{x}, λ_{y} and λ_{z} are the direction cosines of the axis about which the moment is evaluated.
i, j and $k=$ unit vectors along x, y and z axes respectively.
$r=$ The position vector of the force relative to a point on the axis of rotation.
$r=i x+j y+k z$
$F=$ The force vector

$$
\bar{F}=i F_{x}+j F_{y}+k F_{z}
$$

Hence,

$$
M=\left|\begin{array}{lll}
\lambda_{x} & \lambda_{y} & \lambda_{z} \\
x & y & z \\
r_{x} & F_{y} & F_{z}
\end{array}\right|
$$

Each pinion will produce a moment if due to tooth contact forces on the gear. If each external force, which is not produced by tooth contact, is divided into x and y component: (F_{x} and E_{y}), then each component will also produce a moment. M. For the gear and shaft arrangement of Figure 3.1 the sums of the moments about the x-axis, $\left[M_{x i}\right.$, and about the y-axis, $\left[M_{y}\right.$:, at bearing one are given below and the

[^1]equations for the y-component, $R_{y 2}$, and the x-component, $R_{x 2}$, of the reactions at bearing number two are derived from these moment equalions.
\[

$$
\begin{aligned}
& \sum M_{x 1}=\left|\begin{array}{ccc}
1 & 0 & 0 \\
.5 d_{2} \cos \theta_{1} & .5 d_{2} \sin \theta_{1} & z_{2} \\
\left(W_{T 2 x}+W_{R 2 x}\right) & \left(W_{T 2 y}+W_{R 2 y}\right) & W_{A 2}
\end{array}\right| \\
& +\left|\begin{array}{ccc}
1 & 0 & 0 \\
.5 d_{3} \cos \theta_{4} & .5 d_{3} \sin \theta_{4} & z_{3} \\
\left(W_{T 3 x}+W_{R 3 x}\right) & \left(W_{T 3 y}+W_{R 3 y}\right) & W_{A 3}
\end{array}\right| \\
& +\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & Z_{5} \\
F_{5 x} & E_{5 y} & 0
\end{array}\right|+\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & Z_{6} \\
R_{x} & R_{y} & R_{z}
\end{array}\right|=0 \\
& R_{2 y}=\left[\left[.5 W_{A 2} d_{2} \operatorname{Sin} \theta_{1}-Z_{2}\left(W_{t 2 y}+W_{R 2 y}\right)\right]+\left[\left(.5 W_{A 3} d_{3} \operatorname{Sin} \theta_{4}\right.\right.\right. \\
& \left.\left.-Z_{3}\left(W_{T 3 y}+W_{R 3 y}\right)\right]+\left[0-Z_{5} F_{5 y}\right]\right\} / Z_{6} \\
& \Sigma M_{y 1}=\left|\begin{array}{ccc}
0 & 1 & 0 \\
.5 d_{2} \cos \theta_{1} & .5 d_{2} \operatorname{Sin} \theta_{1} & z_{2} \\
\left(W_{T 2 x}+W_{R 2 x}\right) & \left(W_{T 2 y}+W_{R 2 y}\right) & W_{A 2}
\end{array}\right| \\
& +\left|\begin{array}{ccc}
0 & 1 & 0 \\
.5 d_{3} \cos \theta_{4} & .5 d_{3} \operatorname{Sin} \theta_{4} & z_{3} \\
\left(W_{T 3 x}+W_{R 3 x}\right) & \left(W_{T 3 y}+W_{R 3 y}\right) & W_{A 3}
\end{array}\right|
\end{aligned}
$$
\]

$$
\begin{aligned}
+ & \left|\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & Z_{5} \\
F_{5 x} & F_{5 y} & 0
\end{array}\right|+\left|\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & Z_{6} \\
R_{2 x} & R_{2 y} & R_{2 z}
\end{array}\right|=0 \\
R_{2 x}= & \left\{\left[\left(.5 W_{A 2} d_{2} \cos \theta_{1}-Z_{2}\left(W_{T 2 x}+W_{R 2 x}\right)\right]+\left[.5 d_{3} W_{A 3} \cos \theta_{4}\right.\right.\right. \\
& \left.\left.-Z_{3}\left(W_{T 3 x}+W_{R 3 x}\right)\right]-\left[Z_{5} F_{5 x}-0\right]\right\} / Z_{6}
\end{aligned}
$$

The values of $R_{2 y}$ and $R_{1 y}$ only depend on four entries in the array for $E M_{X 1}: \operatorname{MXI}(2,2), \operatorname{MX1}(2,3), \operatorname{MXI}(3,2)$ and $\operatorname{MX1}(3,3)$. The array for [Mxi may be represented for any general case by the following equation.

$$
+\sum_{n=1}^{N F Y}\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cdots 0 & F Y(N, 2) \\
0 & F Y(N, 1) & 0
\end{array}\right|=\operatorname{MX1}(3,(3(N P+N F Y)))
$$

where,
NOG = Number of gears in system.
NP = Number of pinions meshing with the Nth gear.
NFY = Number of forces in the y-direction.
$F Y(N, 1)=$ Magnitude of the Nth force in the y-direction, $1 b$.
$F Y(N, 2)=$ Distance along the 2-axis from bearing number 1 to the Nth Porce in the y-direction, in.

For the general case, data for the evaluation of MXI may be stored in an array with 3 rows and 3 (NP $+N F Y$) columns. The equation for MXI may be rewritten with the noncontributing terms set equal to zero.
$\left.\operatorname{MX1}=\left\lvert\, \begin{array}{ccc|ccc|cc|}1 & 0 & 0 & 1 & 0 & 0 & 1 & 0\end{array}\right.\right]$

Therefore, for one pinion in mesh with one gear:
$\operatorname{MX1}(2,2)=.5 d_{2} \operatorname{Sin} \theta_{1}$
$\operatorname{MX1}(2,3)=Z_{2}$
$\operatorname{MX1}(3,2)=W_{T 2 Y}+W_{R 2 Y}$
$\operatorname{MX1}(3,3)=W_{A 2}$

Each additional pinion in mesh with the gear adds three columns to the array. Each external force contributes three additional colums to the array. The values of elements of the array will be defined as follows for the case above.

$$
\begin{aligned}
& \operatorname{MX1}(2,8)=0 \\
& \operatorname{MX1}(2,9)=Z_{5} \\
& \operatorname{MX1}(3,8)=F_{5 y} \\
& \operatorname{MX1}(3,9)=0
\end{aligned}
$$

With this definition of the array MXI, the following algorithm will evaluate the y-component of the bearing reaction at bearing number two, $R_{2 y}:$

C Initializz bearing reartions
RIY $=0$
$R 2 Y=0$
$C \quad S X=$ Number of columns in arrays MXI and MX2.
$S X=3^{*}(N P+N F Y)$

```
For \(I=2\) to \((S X-1)\) step 3
    R2Y \(=\operatorname{R2Y}+[\operatorname{MXI}(2, I) * \operatorname{MXI}(3, I+1)-M X 1(2, I+1) * M X 1(3, I)] / 26\)
    \(R 1 Y=R 1 Y+(\operatorname{MXX} 2(2, I) * M X 2(3, I+I)-M X 2(2, I+i) * \operatorname{MX2} 2(3, I)) / 26\)
```

 Next I
 The equation for $R_{1 y}$ is also evaluated in this algorithe. The terms of the equation for $R_{1 y}$ are the same as for $R_{2 y}$ except the distances along the z-axis. The array MX2 is defined as follows for each pinion:

```
MX2(2,2)=MXI (2,2)
MX2(2,3)=MX1(2,3)-26
MX2(3,2)=MX1(3,2)
MX2(3,3)=MX1(3,3)
```

The array MX2 is defined as follows for each force:

```
MX2(2,8)=MX1(2,8)
MX2(2,9)=MX1(2,9) - 26
MX2(3,2)=MX1(3,8)
MX2(3,3)=MX1(3,9)
```

The form of the equation for $R_{2 x}$ is the same as for $R_{2 y}$ even though the terms differ. The terms in $R_{2 x}$ are from the first and third columns of the 3×3 arrays instead of from the second and third columns. Tre above algorithm would produce the value of $R_{2 x}$, if values of the terms in the first column are transferred into the second column of array MY1 as follows:

```
MY1(2,2)=.5d_2 Cos 的
MY1(2,3)= 22
MY1(3,2) = WT2x + W R2x
MY1(3,3)=W W2.
```

For the Eorces,

$$
\begin{aligned}
& M Y 1(2,8)=0 \\
& M Y 1(2,9)=Z_{5} \\
& M Y 1(3,8)=F_{5 X} \\
& M Y 1(3,9)=0 .
\end{aligned}
$$

The number of colums in this array, MY1. will be

$$
S Y=3^{*}(N P+N F X)
$$

Hence, the following algorithe will produce the bearing reaction forces, R1X and R2X, in the x-direction at bearings one and two respectively.

C Initialize bearing reactions
$R 1 X=0$
H2X $=0$
$C \quad S Y=$ Number of colums in arrays MY1 and MY2.
$S Y=3 *(N P+N F X)$
For I = 2 to (SY-1) Step 3
$R 2 X=R 2 X+[M Y 1(2, I) * M Y I(3, I+1)-M Y I(2, I+1) * M Y I(3, I)] / 26$
$R 1 X=R 1 X+[M Y 2(2, I) * M Y 2(3, I+1) * M Y 2(2, I+1) * M I 2(3, I)] / 26$
Next I
The equation for RiX given is the algorithm depends on array MY2 which differs from array MY: by the following definitions.
$\operatorname{MY2}(2,2)=M Y 1(2,2)$
$M Y 2(2,3)=M X 1(2,3)-26$
MY2 3,2$)=M Y(3,2)$
MY2 (3,3) $=$ MY1 $(3,3)$

For each y Porce, the array MY2 is

```
MY2(2,8)=MY1(2,8)
MY2(2.9) = MII(2.9) - Z6
MI2(3,8)=MY(3,8)
MY2(3.9) = MY1(3.9)
```

A program listing for "GEAFORC", which uses this algorith , is in Appendix B. The data of Table 3.2 represents an example problem. The progran output for this problem is given in Table 3.3.

4. EXANPLE THREE: Four-Bar Linkage Kinematics

The four-bar linkage is a commonly used mechanisia which has a highly developed design methodology (2,3.4). The analysis of the Tour-bar linkage provides a good example for the application of computer aided design methods. Eirst the logical progression of the analysis must be developed. After the analysis is complete, computer graphics may be applied to plot data or to illustrate the motion of the mechanism.

The analytical procedure for determining the positions, velocities and accelerations of a four-bar linkage has been often published (5) and the following equations follow the outline used by Professor Rezek of Purdue University. For reference, it is repeated In brief form. For one given position of the input crank, link R_{2}, the four links may be assembled in the uncrossed configuration as illustrated in Figure 4.1 or in the crossed configuration of Figure 4.2. The first step in the analysis will be to identify the lengths, R_{1}, R_{2}, R_{3} and R_{4}, of the

TABLE 3．2 Input Data for＂GEAFORC＂

 PACGニ̃M：GESRFORC

THE IRFLT EATA ：
THERE FRE 2 GERRS
THERE SiEE A TOTKL CE 2 PIMICN（S）
NO GEAR HNS MORE THEN 2 PIMIOM（S）
THE DISTRMCE BETUEEM BERRINGS iS 58.142 IMCHES
THE SHRFT SPEED ：S－789．7 RPM
fog Gear mumger 1
GErR suiber 1 has ：pimicn（s）
PSESSUEE RAGLE 20 DEGREES
HELIX AHGLE $=-14.3615$ CEGREES
DISTANCE EECM SEG．：TO GERR $:=7.065$ IBCHES
 PITCH DIFMETER
$=25.35941$ INCHES

nimsea
$=79$

GOR PINION ：CM GEAK 1

anglilar eesision＝og eEg？EES
iMPUT FCTEL $\quad=$ こ2EO HOẼSETOFES
Fr－a cekr muries？ 2
fREZ wimera ，ifes ；Pinton（S）
P品SSUEE EHGLE 20 JEGREES
HELIX AHGLE＝－14．3615 DEGREES
DISTARCE EPOM ERG．：TO GERR $2=29.896$ INCIES
DISTANCE EPCM SRG． 2 TO GERE $2=-28.246$ INCTHES
PITCH DIAMETER $=22.1082$ INCHES
THE NCRYAL DEAMEEAAL PITCH 3.175 TEETH／＇N．
KLMEES OE TEETH ON GERS $\quad 68$

GOR EIMION I ON GERR 2
PINION NUMEER 2 IS A DRIVEN PINION
ANGULAR PGSITION＝$\geqslant 0$ OEGREES
INPUT PONER ： 2000 HORSEPCNER

THE EXTEENAL LORDS ：
EX 1 ： 0 POUNCS
EX ：IS 0 INCHES EEOM BEG 1
EX 1 IS－58．142 ：HCHES SROM BRG 2

```
EY 1 : 0 ?OUNDS
EY I :S 0 INCHES S?OM SRG :
EY 1 :S -ธ3.142 ::OC:ES FÃCM E.gG 2
```


table 3.3 Output from "GEAFORC" Program

RESULTS

genr TOOTH EOACES:

```
GEMR MUHEEE 2
    PINICN NUTSEER 1
```

 THE TRWGENTIEL EOOTH SOAD IS \(=-12599\) EOUARS
 THE X-COMP. CF TEE TRHG. TOOTH LCAD IS \(=: 25 e 8\) EOUNES
 HHE Y-CGAP. OF TERE TMNG. TOORH LCRD IS : 0 POUNDS
 Fi= BFDIKL TOOTA LCKD IS \(=6729\) ?OUNDS
 FTE Y-CCHP. SE THE ETDIAE TEOTH LCZD IS \(=0\) FOUNCS
 IHE Y-CCMP. OF THE RMDIME FOCTH LOAD \(: S=-4730\) POUNDS

जE.AS !HMEEP 2
FIN:OM MUMEER :

THE X-CCEP. GE TEE TEMG. TCCTH EEAD IS $=-i 4440$ POUNDS
ITE Y-CCRT. CE THE YZNG. TCCZA LOND IS $=-1$ POUHDS
THE NMDIRL FCOTH LC3D iS $=5425$ ZOUNDS
F:E X-CCHP OF THE FADIFi ECOTH LCAD is $=0$ FCUNOS

EEARING RE凡C戸̇GNS:

EOR EEARING NUMGER :
$21=7903$ POUNDS
21Y = 6790 BOUNES
$31 X=-4044$?OUNES
EOR EEMRING NUMEER 2 :
R2 = 6787 POUNDS
R2Y = 3364 POUNDS
R2X = 5395 POUNES

THE TCTAL AKJAL LOAD, WA $=473$ EOLROS
four Iinks and to determine the initial position of the input crank angle, θ_{2}. The second step is to determine if these four links will be assembled in the crossed or uncrossed configuration.

The geometry of the triangle connecting points D, A and C of figure 4.3 may be analyzed by the half angle equations.

$$
\begin{aligned}
& S_{1}=.5(A C+R 1+R 2) \\
& A=2 \operatorname{Tan}^{-1}\left[\left(S_{1}-A C\right)\left(S_{1}-R_{2}\right) /\left[S_{1}\left(S_{1}-R_{1}\right)\right]\right] \cdot 5 \\
& B=2 \operatorname{Tan}^{-1}\left[\left(S_{1}-A C\right)\left(S_{1}-R_{1}\right) /\left[S_{1}\left(S_{1}-R_{2}\right)\right]\right] \cdot 5
\end{aligned}
$$

The angle B may be determined Pras Figure 4.3 by evaluating the distances A_{y} and A_{x} and applying the tangent function.

$$
\begin{aligned}
& A_{x}=R_{1}-R_{2} \cos \theta_{2} \\
& A_{y}=R_{2} \operatorname{Sin} \theta_{2} \\
& B=\operatorname{Tan}^{-1}\left(A_{y} / A_{x}\right)
\end{aligned}
$$

Figure 4.1 Uncrossed Configuration of Four-Bar Linkage

Figure 4.2 Crossed Configuration of Four-Bar Linkage

Figure 4.3 Geometry for Four-Bar Analysis

If the ATN function from BASIC is used to evaluate β, its value will only be correct if $A_{x} \geq 0$. The following logic makes the correction when $A_{x}<0$.

$$
\text { If } A_{x}<0 \text { then } B=B+\pi
$$

The relatiunship between A_{x} and $A C$ is

$$
A C=A x / \operatorname{Cos} B
$$

The half angle equations may be applied to triangle ABC to obtain γ.

$$
\begin{aligned}
& S=.5\left(A C+R_{3}-R_{4}\right) \\
& r=2 \operatorname{Tan}^{-1}\left[(S-A C)\left(S-R_{4}\right) /\left(S\left(S-R_{3}\right)\right)\right] \cdot 5 \\
& 1=2 \operatorname{Tan}^{-1}\left[(S-A C)\left(S-R_{3}\right) /\left(S\left(S-R_{4}\right)\right)\right] \cdot 5
\end{aligned}
$$

For the uncrossed configuration:

$$
\begin{aligned}
& \theta_{3}=-\beta \\
& \theta_{4}=\pi-(\beta+\gamma) .
\end{aligned}
$$

For the crossed configuration:

$$
\begin{aligned}
& \theta_{3}=2 \pi-(\beta+\phi) \\
& \theta_{4}=\pi-B+\gamma
\end{aligned}
$$

In order to plot the ilnkage in its various positions, the $x-y$ coordinates of points A, B and P are specified below as a Punction of the input crank angle. Point P is a point on the coupler link.

$$
\begin{aligned}
& X_{A}=R_{2} \operatorname{Cos} \theta_{2} \\
& Y_{A}=R_{2} \operatorname{Sin} \theta_{2} \\
& X_{P}=X_{A}+R_{3} \operatorname{Cos}\left(\theta_{3}+\theta_{5}\right) \\
& Y_{P}=Y_{A}+R_{3} \sin \left(\theta_{3}+\theta_{5}\right) \\
& X_{B}=R_{4} \operatorname{Cos} \theta_{4}+R_{1} \\
& Y_{B}=R_{4} \operatorname{Sin} \theta_{4}
\end{aligned}
$$

The positions and velocities for the uncrossed and crossed mechanisms in Figure 4.4 are given ir Tabels 4.1 and 4.2. The accelerations may be easily added using equations from (6).

TABLE f.i
foug ear linkage positions and velocities
HIE IS NOT A CROSSED TYPE LINKAGE .

TABLE 4.2

EOUR GAR LIHKAGE POSITIONS AND UELCCITIES
THIS IS A CROSSED TYRE LENKAGE.

Uncrossed

Crossed

$$
\begin{aligned}
& R_{1}=14 \\
& R_{2}=9 \\
& R_{3}=20 \\
& R_{4}=12 \\
& R_{5}=10 \\
& g_{5}=45^{\circ}
\end{aligned}
$$

Figure 4.4 Four-Bar Linkages for Example Problem

The $x-y$ coordinates of points A, B and P may now be plotted using the elementary graphies commands included in QuickBASIC. The comands used for this task are

CLS = Clears the screen on the monitor so a new graph may be started.

SCREEN $2=$ Sets the specification to match the display screen with 610×200 pixels. Supports CGA, EGA, VGA and MCGA.

VIEW = Defines screen limits for graphical output.
WINDOW = Defines logical dimensions of current viewport.
LINE = Draws a line from one point to another.
CIRCLE = Draws a circle of specified radius around a specific center.

Before applying these commands, the size of the graph required must be determined. This is determined by performing a bubble sort on all x-dimensions and y-dimensions to determine the maximum and minimum
values of x and y required by the data for this problem. Since the data is in dimensioned arrays, this bubble sort is easily performed by a For-Nexi loop. After the maximum and minimum values of the x and y are determined, this information is combined with the information on Window size to obtain a scaling factor. Then all values of data are scaled to fit within the window. If screen width to height ratio is $4 / 3$ and the ratio of y-pixels to x-pixels is $350 / 640$, multiply x-dimensions by (4/3)(350/640) to give true scale on plotter.

The graphical output for the mechanism is given in Figure 4.5. The computer program listing is given in Appendix C.

Uncrossed

Crossed

Figure 4.5 Graphical Output from FOUR3AR Program

5. EXAMPLE FOUR: Synthesis

Synthesis is the process of "building up" a complex whole from simple elements. Synthesis is that creative step in the design process which invents a configuration for the solution to the previously defined problem. Analysis may be a sizing process, which may occur after the synthesis of the solution's configuration, to assure proper reliabllity and performance. However, analysis may become part of the
synthesis process. This example uses the design of a mechanism, which must produce a specific movement, to illustrate the use of synthesis in computer aided design. The dyad method used in this example is developed nicely by Sandor and Erdman in Reference 4.

The design problem is to synthesize a mechanism which will move a gear blank from position 1 to position 2 and then to position 3 for various manufacturing operations as shown in Figure 5.1. The design targets for the motion of this part are:

$$
\begin{array}{ll}
r_{1}=0 & \delta_{1}=0 \\
r_{2}=40^{\circ} & \delta_{2}=-2 x+6 i y \\
r_{3}=90^{\circ} & \delta_{3}=-10 x+8 i y .
\end{array}
$$

Figure 5.1 Gear Transport Problem Definition

If the solution is assumed to be in the form of a four bar mechaaism, the lengths and positions for half of the machanism may be synthesized by working with vectors \bar{W} and \bar{Z} to produce the desired displacements, $\bar{\delta}$, of P while the coupler link containing 2 rotates through the desired angles Y. The vectors \bar{W} and \bar{Z} as shown in figure 5.2 represent the original positions of the input crank, $D A$, and the line $A P$, respectively. The $s m$ of \bar{W} plus \bar{Z} forms the vector pair, the dyad, for the initial position. This dyad is defined by the following vector equation

$$
\bar{W}+\bar{Z}=W e^{i \ni_{1}}+Z e^{i Y_{1}}
$$

Figure 5.2 Dyad for Half of Four-Bar Mechanism

When the dyad moves to position 2 , the displacement of P is $\bar{\delta}_{2}$ and the angle of rotation of the coupler link, which contains $工$, is \boldsymbol{E}_{2} • Where,

$$
\xi_{2}=r_{2}-r_{1}
$$

The dyad in position 2 as iliustrated in Figure 5.3 is given by the rollowing vector equation.

$$
W e^{i\left(\theta_{1}+\phi_{2}\right)}+z e^{i\left(\gamma_{1}+\xi_{2}\right)}=W e^{i \theta_{1}} e^{i \phi_{2}}+z e^{i \gamma_{1}} e^{i \xi_{2}}
$$

Figure 5.3 Dyad Moving from Position 1 to Position 2

The vector $100 p$ equation for positions 1 and 2 may be written as Collows:

$$
W e^{i\left(\theta_{1}+\psi_{2}\right)}+Z e^{i\left(\gamma_{1}+\xi_{2}\right)}-W e^{i \theta_{1}}-Z e^{i \gamma_{1}}=\bar{\delta}_{2}
$$

or

$$
\bar{W}\left(e^{i \psi_{2}}-1\right)+\bar{z}\left(e^{i \xi_{2}}-1\right)=\bar{\delta}_{2}
$$

For the first and third positions the following equation may be written for the vector loop.

$$
\bar{W}\left(e^{i \Psi_{3}}-1\right)+\bar{Z}\left(e^{-\xi_{3}}-1\right)=\bar{\delta}_{3}
$$

with,

$$
\varepsilon_{3}=r_{3}-r_{1}
$$

These last two vector equations may be changed into four nonlinear algebraic equations by using the Euler's relationship from Figure 5.4. The real or x component of the unit vector \bar{r} is Re and the imaginary or y component is I_{m}.

Figure 5.4 Unit Vector on Complex Plane

The two vector $100 p$ equations may be placed in matrix form.

$$
\left|\begin{array}{cc}
\left(e^{i \Phi_{2}}-1\right) & \left(e^{i \xi_{2}}-1\right) \\
\left(e^{i \|_{3}}-1\right) & \left(e^{i \xi_{3}}-1\right)
\end{array}\right|\left|\begin{array}{l}
\bar{W} \\
\bar{Z}
\end{array}\right|=\left|\begin{array}{l}
\bar{\delta}_{2} \\
\bar{\delta}_{3}
\end{array}\right|
$$

If the complex elements in the square matrix are expanded into real and imaginary components using Euler's relationship, this matrix equation becames

$$
\left|\begin{array}{ll}
\left(R_{1}+i I_{1}\right) & \left(R_{2}+i I_{2}\right) \\
\left(R_{3}+i i_{3}\right) & \left(R_{4}+i I_{4}\right)
\end{array}\right|\left|\begin{array}{l}
\bar{W} \\
\bar{z}
\end{array}\right|=\left|\begin{array}{c}
\bar{\delta}_{2} \\
\bar{\delta}_{3}
\end{array}\right|
$$

where,

$$
\begin{array}{ll}
R_{1}=\cos \psi_{2}-1 & I_{1}=\operatorname{Sin} \psi_{2} \\
R_{2}=\cos \xi_{2}-1 & I_{2}=\operatorname{Sin} \xi_{2} \\
R_{3}=\cos \psi_{3}-1 & I_{3}=\operatorname{Sin} \psi_{3} \\
R_{4}=\cos \xi_{3}-1 & I_{4}=\operatorname{Sin} \xi_{3}
\end{array}
$$

But, the other vectiors may also be expanded into real and imaginary components.

$$
\begin{aligned}
& \bar{W}=W_{R}+i W_{I} \\
& \bar{z}=Z_{R}+i Z_{I} \\
& \bar{\delta}_{2}=\delta_{2 R}+i \delta_{2 I} \\
& \bar{\delta}_{3}=\delta_{3 R}+i \delta_{3 I}
\end{aligned}
$$

Substitution into the matrix of vector equations and separating the real and imaginary components produces the following matrix of four algebraic equations.

$$
\left|\begin{array}{cccc}
R_{1} & -I_{1} & R_{2} & -I_{2} \\
I_{1} & R_{1} & I_{2} & R_{2} \\
R_{3} & -I_{3} & R_{4} & -I_{4} \\
I_{3} & R_{3} & I_{4} & R_{4}
\end{array}\right| \quad\left|\begin{array}{l}
W_{R} \\
W_{I} \\
Z_{R} \\
Z_{I}
\end{array}\right|=\left|\begin{array}{l}
\delta_{1 R} \\
\delta_{1 I} \\
\delta_{2 R} \\
\delta_{2 I}
\end{array}\right|
$$

The above four algebraic equations contain the rollowing unknown: $\dagger_{2}, \dagger_{3}, \xi_{2}, \xi_{3}, K_{R} ; H_{I}, Z_{R}$ and Z_{I}. For the stated problea, values of rotation of the coupler link \bar{Z} are given:

$$
\xi_{2}=40^{\circ} \quad \xi_{3}=90^{\circ}
$$

Hence, there are four equations and six unknowns. In order to solve the equations, two of the remaining six variables must be defined. One method of solution would be to assume a valve for each of the two angles. \oplus_{2} and ψ_{3}. This changes the four equations from nor-linear to Iinear equations and values for W_{R}, W_{I}, Z_{R} and Z_{I} may be obtained directly by Gauss elimination. The negatives of these values may be plotted fram point P to locate the pivot point A and the ground pivot D.

The locations of all possible ground pirots, D, and their corresponding circle points. A, ray be evaluated by performing the above proceedure in a pair of nested do loops. The outer loop could vary \boldsymbol{w}_{3} through 360° in increments of perhaps 10° while the inner loop could

Abstract

vary ϕ_{2} through 360° in similar increments. The two curves traced by these pairs of pivot point locations are Burmeister Curves and Shey define all possible design combinations which will perform the stated task. In order to manage the wide spread of data, a test of the values of H_{R}, W_{I}, Z_{R} and i_{I} could be conduc, $s d$ and those values outside of the feasible region could be discarded prior to plotting the data.

6. EXAMPLE FIVE: Integration of Computer Aided Drafting with Computer Aided Design and Analysis

A program may calculate the sizes of four gears in a gear train configuration based on bending stress and contact stress. The data Crom the progran may be transmitted to a Gear Generation Program, GGP. These two prograns can be Linked together by using the BASIC comand CHAIN.

The GGP program formats the values of the dimensions of the gears so this information can be read by the computer aided drawing system, Autocad. The program generates the positions of the ends of each straight ifne section of the drawing, the positions of each arc section of the drawing, and the position and content of any text. Figure 6.1 identifies the positions of generic points on this standard drawing. The output is written to the Drawing Interchange Flle, otherwise known as the DXF file. The DXF file contains inforamtion needed by the AutoCAD software to create a drawing. (Other CAD systems may use IGES instead of DXF.)

The oXF file must be written in a specific arrangement, but many sections can be omitted for sinplification. The rile for this example is considered simple, since it uses only a few sections. The general rile structure has rive sections:

Figure 6.1 Generic Transsission with Coordinate Definition
A. HEADER section - General information about the drawing is : ound here. Each parameter of the READER section has a variable name and an associated value. This section may be omitted if no special settings are needed to complete the drawing.
B. TABLES section - This section defines named items such as line types, layers, eext styles, and views. It may be omitted if not needed.
C. BLOCXS section - This section contains the entities for each block in the drawing. A block is a set of entities, such as lines. arcs, circles, and text, which when grouped together fore a compound object. For example, a square can be drawn and be defined as a block called "square." Each time the block "square" is inserted into the drawing, the square appears. Usuaily blocks are much more complex and are used to eliminate repetitious drawing or conponents that are used frequently. The blocks section may also be omitted if no blocks are used.
D. EXTITIES section - This section contains the drawing entities, including any block references. The entity commands are as follows:

LINE	POINT	CIRCLE
ARC	SOLID	TEXT
INSERT	TRACE	

This is the main section of the program and in some instances the only section.

ミ. END OF FILE - This is the last seciton. It is the signal to AutoCAD that the file is complete. The program must end with this section.

DXF files are composed of multiple groups, each occupying two lines in the DXF file. The first line is a group code, which is a positive integer. The group value is the second line of the group. This value is in a format specified by the group code. The group codes are categorized in the following way:

GROUP CODE RANGE	FOLLOWING VALJE
$0-9$	String
$10-59$	Floating Point
$60-79$	Integer

After examining the outline of the DXF file, it is apparent that it has a definite pattern. After each "SECTION" is called, there is a 2 group code, which indicates that the name of the section follows. The Gear Generation Program in Appendix D shows that there is only one section, ENTITIES, plus the END OF FILE section that closes the program. On line 1300 a LINE INPUT statement is used to input a file name for the DXF file being created. In line 1400 the DXF file is opened and the following program can be written in the file. The comand PRINT \#1 must be used to write each bit of information to the DXF file.

The DXF rile starts with a 0 group code, followed by SECTION. The section is then named by entering a 2 group code followed by the ENTITIES section name, so these are the first outputs of GGP. From line 1850 to line 2500, coordinates are calcualted for the gear train using data calculated in the Gear Design program.

In lines 2800 through 3900, the outlines of the four gears are generated. The entity command LINE is used to accomplish this. The following comands are used In a subroutine to draw one line. Definitions are to the right of each entry.

0	group code 0 precedes each entity
INE	command to draw a line
8	group code for layer name
0	layer name for line (default)

10	group code for ist $x=$ coordinate
$X 1$	ist x-coordinate
20	group code for 1st y-coordinate
$Y 1$	1st y-coordinate
11	group code for 2nd x-coordinate
$X 2$	2nd x-coordinate
21	group code for 2nd y-coordinate
$Y 2$	2nd y-coordinate

The above group codes are always ised in this manner. To draw a line, values would be assigned to $\mathrm{X} 1, \mathrm{Y} 1, \mathrm{X} 2$, and $Y 2$. To draw a line connected to this first line, X2 and Y2 can be used as a first set of coordinates, then assign values to a set of new coordinates X3 and \mathbf{v}. Lines 4000 through 6700 draw the axes of the gear train.

Calculations can be executed anywhere in the GGP program as long as they do not interfere with the order of commands in the DXF file.

Text is created in the file by using the following command series:

0	group code 0 precedes entity
TEXT	command to input text
8	layer group code
0	layer name (default)
10	group code for text start point (x-coord.)
X	group code for text start point (y-coord.)
20	y-coordinate start point
Y	group code cor text height
40	text heignt value

group code for text value
text value

At the end of the ENTITIES section and before END OF FILE, the DXF file must be closed. First, the section must be closed by another 0 group code followed by ENDSEC. The file is then closed by another 0 group code foliowed by EOF.

The listing of the DXF created by GGP is in Appendix E.
Figure 6.2 shows the drawing created by Autocad using a Gear Design Program and this Gear Generation Program.

Creating the DXF file by this method is complicated on personal computers. Larger mainframes have enhanced capability for graphical design.

[^2]
heference list

1. Seer. F. P. and Johnson, Jr., E. R., Vector Mechanics for Engineers: Statics, McGraw-Hill Book Co.. 1972.
2. Hall, Jr., A. S., Kinematics and Linkage Design. BALT Publishers, West Lafayette, Indiana, 1966.
3. Paul, Burton, Kinematics and Dynamics of Planar Machinery, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1979.
4. Sandor, G. N., and Erdman, A. G.. Advanced Mechanism Design: Analysis and Synthesis, Vol. 2, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1984.
5. Shigley, J. E., and Uicker, Jr.. J. J.. Theory of Machines and Mechanisms, McGraw-Hill Book Co.. 1980.
6. Mabie, H. H., Reinholtz, C. F., Mechanisms and Dynamics of Machinery, John Wiley and Sons, Inc.. 1987.

APPENDIX A

PROGRAM : 'INERTIA'

```
1 LPGINT - TORSIONAL STIEENESS AND INERTIA"
LPRINT *
DIM K(40), [(40)
EPRINT
g LNPUT "TOTAL NUMBES OE DISCS*: I2
O WT =0
1 K1 = 0
2 INEETIA = 0
14 INPGT "WEIGit DENSITY OE MATERIAL. LG/IN`3 (ENTEZ . 293 EOR STEET)= *: WL
16 LPRINT " MATERIAL DENSITY = * WI: " POUNDS/CUSIC INCH-
18 SPRINT " NUM3ER OF DISCS = ": I2
ig L?aINT
:0 EOR 11 = 1 TO 12
21 LFRINI " DISC NUMEEB = % il
25 FR!NT "EISK NUMBE彐 =": l1
30 INPUT " OUISIDE DIAMETER, IN m"; DL
35
4 0
50
50
80
\varepsilon2
50
100
!02 K(II) = 11500C00 * 3.14159 * (D1 4 - D2 4) / (! - 32)
104 KI = K! - 1/K(II)
I05 WT = WI - W
106 NEXT II
107 K2 = 1 / Kl
IO8 LTRINT " IORSIONAL STEEENESS : ": K2: " INCH POUNDS/EADIBN"
I09 LPRINT " SHAFT INERTIA *: INERTIA: "IN. L3. SEC. SEC."
110 L?RINT " TOTAL WEIGHT * ":HT: " POUNDS"
120 END
```


APPENDIX B

PROGRAM : "GEAFORC"

```
51 REM
54 REM
55 REM
50 REM
57 REM
53 REM
100 CLS
900 PI = 3.1415927%
9IO PRINT "THIS PROGREM CALCULATES THE REACTIONS ET THE TWO SEARIMGS"
920 PRINT * WHICH SUPPORT A 'SHAFT' IN A HELICAL GEAZ TRANSMISSION."
930 PRINT " THE WORD "GEAR" REEEERS TO THE GEAR E!EMENES ON THIS 'SHIMET" AND"
940 PRINT " THE WORD 'PINION* REFERS TO TNE ELEMENTS WTIICH ARE IN MESH WITH*
950 PRINT " THE GEAR ELEMENES ON THIS *SHANT`."
980 TNPUT "SPEED OF 'SHAEE. (CCW IS POSITIVE), RPM ="; SS
990 INPUT "TOTAL NUM3ER OE 'PIMIONS' MESHIMG NITH ALL 'GEFRS* z"; EP
995 PPINT "gEARING 1 IS TतE CRIGIN FOR THE RIGHT HEND"
996 PRINT " COORDINAEE SYSTEK. THE DISTANCE EREM SEA.ENG"
10CO PRINF NUMBER 1 TO EEARING NUMBES 2 IS POSITIVE IE"
L.306 PRINT " QEARING < IS TO THE RIGHT OE BEARIKG :."
¿007 IMRUK MISENNCE ERCM BEAZING 1 TC SEARING 2, IN =*: DES
```



```
iO20 INPUT MMAK HO. OE 'PINEONS' MESHING WITE ANY C:OE 'SEAR' =": MNP
i03C DIM THETA(NCG. MMP), S?(NOG), FO(NOG. MNP)
O035 C!S
1040 EOS N = I TS MGG: EOR M = 1 TO MNE: THETA:N. :I = 0: NCXT M: NEXE N
1050 EOS N = 1 TO NOG
:050 P?INT "GEAR NUM3ESz":N
1070 [SPUT " MUMSER OE .N:OMS IN MES: NITH T%SS GEER="; GP(N)
1075 PRIN: ..............
1035 PRENT " PINIOH z": M; "ON GEA? =: : N
ICE7 INPUT " IS THIS R DRIUEN PINION ? iE YES. THEN INPUT I : IE NO. THE:% :|FIJT
g": DG(N. M:: PRINT : PQINT
```



```
4) - PI / 180
1100 NEXT M
1:10 PRINT : ERINT : PEENT
1:20 NEKT N
&130 DIM 2AiNOG), HA(NOG), D(NDG, 2;, N(NOG), P(NSG, MNZ). PD(NOG;. NEXINOG , MNE
). MTY(NOG , MNP ), WRX(NCG. MNP), WRY{NOG. MNP), WAINOG , MNP, WF(NOG. MNP), WR( I
OG, NNP). NOTEETH(NOG), O?ITCH(NCG)
1140 CLS
:150 EOR N : 1 TO NOG
i160 PRINT "EOR GEAR NUMBER": N
1170 INPUT " PRESSIJRE AIIGLE z": 2A(N)
1175 PR(N) = PA(N) - P! / 180
1190 INRUT " HELIX ANGLE s": HA(N)
1193 HN(N) = HA(N) - P! / 130
1200 INPUT " DISTANCE EROM SEARING : TO GEAR CENTER*": D(N, 1)
1205 D(N. 2) = D(N, 1) - 2ab
```



```
1232 ?NP!T " NUMBER OE TEET:Os"; :OTEETH(N;
1233 Pa!NT : PRINT
:235 PD(N) = NOTEETH:N: / (DP:TCH(N) - C.JS(HA(N)))
:240 NEX: %
2200 F.TA N: EO NOT
2030 ESR M : L TO G?iN;
```



```
2037 IMPUT ENPUL MSRSETOWEA.HP =*: P(N, M)
```



```
2060 %TX(N, M) = -FT{N. M) - SEN(TतTERA(N. M))
二070 &TY(N, M) = Wi(N, M) - COS(THE\゙R(N. M))
2372 IE EG(N,M) = : TREN STX(N, H) = -WTX(N,M): WTY(N, M) = -WTY(N, M)
2080 WRX(N. M) = -WR(N. M) - COS(THETEX(N. M))
2090 WRY(N,M) = -FR(N, M) - SIN(THETR(N, M))
2!:0 WA(N,M) = -NT(N. M) - TRN(HA(N))
21:5 IE DG(H,M) = 2 THEN HN(N.M) = -HA(N, M)
2:20 NEXT M
2:30 CLS
2140 YEXI N
3000 INPUT *NUMRER CF EKIERHAL LOADS IN THE X-DIR.=": NEX
3010 INTUT *MUMBER OF EXTEANAL LOADS IN THE Y-DIR. %": NEY
3030 DIM EX(NEX, 3). EY(NEY. 3)
3040 EOR N = 1 TO NEX
3045 RRINT "THE SIGN CONVENTION IS RIGHT HAND EULE WITH Z POSITIVE TO THE RIGHT*
3046 PRINT WARD Y POSITIVE UPNARD AND X POSITIVE INHARD. THE ORIGIN IS AT BEARIN
G.1.*
3047 PSINT
3050 PRYNT "EOR FORCE FX":N *
3050 INPUT " MHGNATL'DE OE ECRCE IS X DIRECTION (INWAND IS POSITIVE), LS=*; rX(N
. 1)
3070 INPUT * DISTANCE EROM BEARING #1 TO EORCE EX (TS THE RIGHT IS PCS.). IN=":
    EN(N, 2)
3075 EX(&, 3) = EX(M, 2) - DBB
30a0 C!S.
3092 NEXT N
3:05 ELS
3110 FGR N = 1 TO NEY
3::5 PRINE "EE A EORCE IS ACTING TO THE PIGHE OE THE SREGEEIED BEARENG IE IS A P
OSITIVE DISFAMCE EKOM THE 3EARIMG.": PRINT : PEIMT : PRINT
3:20 ERIMT "EOR EORCE EY: N
```



```
1)
3\4J INPET " DISTANEE FZOM BEARING E: IO FORCE EY (TO IHE PIGGT IS POS.), IN=":
    =%(N,2)
3;45 E!fN, 3) = EY(N, 2) - nge
3i50 CLS
315% 8ENT N
3:70 CIS
3750 SX = (NP * NFY) - 3: SY = (NH NFK) - 3
3750 DEM MX:{3, SX), MY1(3, S'), MX(2i3, SX), MY2(3, SY)
3900 ESR I m I TO 3: FCR II m I TO SX: MXI(I, II) = O: NEXI II: NEXI I
3320 FOR I = I TO 3: FOR II = 1 TO SK: MX2{:. II) = 0: NEKT IF: NEXT I
3640 EOR I * 1 TO 3: FOR II = : TC SY: MYI(I, II) 0: NEXT II: NEXT I
3a60 EOR i= = TO 3: FOR II = 1 TO SY: MYZ(I.II) = 0: NEXT II: NEXT I
4020 I! = -2
4 0 3 0 ~ E O R ~ M ~ = ~ 1 ~ T O ~ N O G ~
4050 FOR NN = 1 TO GP(M)
4050 II = II * 3
4!00 MX!{2. II * 1) = 1 / 2 - 2D(M) - SIN(THETA(M, NN))
4103 MX1:2.II - 2)=D(M.1)
```



```
4:03 MXI(3. [I * 2) = NR(M.NN)
4112 REM
4115 M:&(2, [1 * 1)=1//2 PO(M) COS(THETA(M, NN))
4!13 1MY!(2,II (2) = OiM,1)
412: MY:(3, Ii , 1) = WTX(M, Nid) . WRK(M, NR)
4:24 M!1(3, [I . 2) = WA:M, NN)
4127 2EG
```



```
4:3:MX2:2.I! * 2)= D(M. 2)
```



```
i1:3 M%2:3. [! - 2) = &M:M. Nन̈)
```



```
3155 :30IMT
7200 EOR N = 1 `O NOG
9210 CORIN: TAE(IO): "SOR GEAR NUM9ER": *
#215 :3RI:T TASi:5:: "GEAR NUMBER": s: "HAS": GR(N): "ermION(S;"
7250 LPRIMT TAG(IS): "PRESSURE ANGEE =": PA!N) - !90 / PI: "DE
GREES"
9230 [?SINT TAZ(15): "HELEX ANGLE =": HA(N) - 180 / PI; "DE
GaEES"
9300 LRRINT TAB(:5): "GISTANCE EROM gRG. I TO GEAR": N: "*": D(N. 1): "INCHES"
9310 L?RINT TAB(15): "DISTANCE FROM BRG. 2 TO GEAR": N: "= ": D(N, 2): -INCHES"
932C EPRINT TAS(IS): "?ITCH DLAMETER =": PD(N); "INCKES"
3322 LPRINT TAB(15): "THE NOEHAL DIAMETRPL PITCH =": DPITCH(N): "TEETH/IN.
3324 iPRINT TR员(15): "NUMSER OE TEETH ON GEAS = ": NOTEETH(N)
9330 EPRINT
9350 REM NEXT N
9490 !2RINT
9500 REM ECR N=1 IC NOG
#520 FOR M = 1 TO G?(N)
7540 LPRINT TRE(13): "EOR PINION": M: "ON GEAR": N
9560 LPRIHT
3565 IE DG(N, M) = 0 THEN As = " DRIVING "
9570 IE DG(1., M) = 1 THEN AS = " DRIVEN *
3575 LPRIN{ TAS(15): "PINIO& NUMOER": N: "IS R": A5: "PINION"
9580 CPRINT Tha(i5): "AMGULAR POSITION = "; THETA(N. m) - 180 / PI:*-DEGAEES"
9600 L?RINE Tİ3(15): "IHPUT PGHER = ": P(N. M): "HORSEPOWER"
3620 :MEXI M
9640 [PR[:%
9560 MEXT : 
9665 IE NEX > 0 THEN GOTO 76a0
9567 IE NEY = O THEN GOTO 9780
958C EPRIAT
9700 [?2!NT T:E(13); "THE EKTERMPG ESADS :"
372C LPRI:T
9730 EOR :H = i TO NE:
9740 L?R[NT TA3(15): "EX": 隹 " = ": EK(%. 1); "?OUNNS"
9750 LPR[NT TA3(15): "EX": %; "!S ": EM(N. 2): "INCHES FROM BZG 1"
9760 (2RT:F TA3:IS): "FK": N; "IS ": EX!N. j); "INCHES EROM ERG 2"
9765 LPRINT
9770 NEXE : 
9775 LRRIHT
9780 FOR N = : TO NEY
9790 LPRENT TAS(IS): "E!": N: " = ": EY(N, 1): "?OUNDS"
9300 LPRINT T:3(15): "EY": N: "!S ": EY(N, 2): "INCHES EROM BRG 1"
99:0 LRRINT TRB(:E): "EY":N: "IS ": FR(N. 3): "INCHES ENOM BRS 2"
9815 LPRINT
9820 NEK: N
9825 IE NEY = O THEM GOTO 10000
9850 REM
10000 LPRINT CHas(12;
1000: LPRINT : LPRINT : LPRINT
10002 LPRINT TAB(10): " RESULTS": EPSINT
:0005 CPRINT TAB(10): " GEAR TOOTH SORCES:"
10010 LPR!NT
10020 FOR N = 1 TO NOG
L004S L?RINT TAB(12): "GEAR NUMBEå": N
10060 EOR M. = 1 TO GP(N)
!0055 L?RINT TAB(12): n ?INICN MIMBER": M
10070 L?a!:NT
10075 WT(N,M) = IMT(WT(N,M))
L0033 שTK(N, M) = iNT(wT:S(S, M))
1003s wT:(N,M) = IMT(ST:(N,M):
1:090 Wa(N, M) = INT!%'R.:%,M!)
10035 Wax(n, :1) = [!T(%PX(N, M))
```



```
?cunims"
```



```
0 PIUNDS"
- pounics
IOIGO LPRINT TAB(:5 ): " THE Ẍ-CCHP. OE THE RADIAL TCOTH LOAD IS = `: GRXiN. M::
" POUNDS" (TNT TÄG(15): - THE Y-COMP. OE THE RARIAL TOOTH LOAD [S = ": WRY(A. M):
- FOCNDS
IC2IO :RRINT TAS(15): "THE AXIAL :Z-COMPONENT) TOOTH LOAD IS = ": WA(X. M::
- POLNDS*
19220 NEK: M
:3243 LPRINT
10260 NEX: N
1040J LPRINT
0920 LPRIN
10420 LPRINI
13440 LPRINT
10450 LPRINE : GaTO 6072
:S50: END
```


APPEMDIX D

Progran : " Gear Generation Program


```
2-0. FTXis.IM= 8:
E=7: =TY:0.:1= ri
24%% FTx\o.こノ= &% - ミ= - Eこ:こ
Z4LE PTY:C, =1= 酋
Z4こ: PTX{S,5%=x0 + E2 + Fミ:ユ
24こ0 ETY(&.こ)= %
24+4) PTX(6.f)= xu + E= - ミミバ
=*SO PTY(5,4)= 10
2460 =Tx!3.5,= x.) + EJ - ESi=
2470) PTY(0,5)= Y:
2480 PTX(j.j)= x.) + T7
2490 PTT((0,0) = Y.)
zacos 5Sm
OSN% REM
2700 Nam4
2900 FOR I=1 TO 4
29Ev FOR J=! T0 4
29(0) PFITST #1,0
J(n)0 POINT #1,"-IME"
z:ON PPINT #l.g
=こ`n COINT *:."こ"
jwog PRINT #l.l.j
ESN: FRINT #:,FT(!I,J)
```



```
zamy EPINT #l,FTYII.J,
ZF1: OC{pit w1,1:
Zアニ% CR!MT #:,FTKCI,J-!:
O7-j FRIMT *1,2!
G74:% FRINT #l,Fir:I.J-1:
zsinj next J
SOO: MEXT I
400N% FOC: \=1 T: }7\mathrm{ STEF=
4100 eFIMT *l.O
42O% FRINT #l."'INE"
4FON FCIN: IL,E
4GO% FFInt N1,"%" This Draws Axis for
45%O FRTNT #!.:O
4%%: FFIMT #l,FTxiE,J:
47%% FrymT #:,O
GOM: FC!mT m!.fTM!S,I;
4FO% FEINT #:, 1:
SOM% FFINT m!.f!x!E,:J-!:=
SImj FCINT #:, =!
SEry% PRINT MI,FIYCE,:I-1:
E=O) MEXT J
S4.0% FOR i=1 TO S STEP =
gsing PRINT mb.t
JóuO% FFIMT #l,"LINE*
gTODSFINT #l,E
SEM:
SOOM FPINT #:,DU
b.OO) FRINT W!,FTX(G,J,
OLO: FFINT M1, こ%
62OG FFINT *L,FTY(O,J)
STON FEINT W1.t!
G4in: FFINT W!.FTX(O.(J-b))
GSigi FG!NT #!,Z!
bain'; FRINT MI,FTYiS.(J.!:)
G7.%% RIEXT J
BC.% FCINT M:,C
SO%'FFF!MT ":,"E:DDEE:"
```



```
THOG FEINT M1."EDF"
7E%CCOSE \
75N: EN:C
```


APPERDIX E

File ：＂Drawing Interchange File＂

$1)$	8	$\begin{aligned} & 11 \\ & =0.09147 \end{aligned}$
SECT：SN	9	21.914
－	10	14． 59659
Entities	5.5	0
O	20， 17.1941	LINE
LIME	17.19481	8
9	115	0
－	15.358	10
10	31719481	30.99147
5． 5	17.19481	20
30	$\stackrel{0}{0}$	14.39639
27．98972	Line	11
115	0_{0}^{8}	50.99147
15． 38835	10	21
21 -7.98972	15． 15	1.60361
－7．98972	＝0	O
LINE	17.19481	
8	11	0
1	15．	10
10	21	50.99147
15． 5 58ご	－1．194a1	$2 \cdot$
$=0$	0	1.30501
37.98872	LINE	11
11	B	19．8585
15．コごご	\bigcirc	21
$2!$	$11)$	i． 0 U351
17．：？381	15．30－5：	0
0	$0 \cdot$	LINE
line	－1．19481	e
a	11	0
0	5．	10
1）	21.9381	18．838J
15．ごヨニこ	－1．19481	20
90	LItE	1.60551
17．13431	LIfE	11
11	${ }^{8}$	18．8こ日
5．	10	
21 17.16481	5.3	14．506．37
9	20	LINE
LINE	－1．19481	8
8	5_{5}^{11}	0
$1)$		10
10	17 19431	18．9385：
5．こ	17.19431	20
20	0	E6．78375
17．19481	live	11
11	8	－0．99147
玉．こ	0	23
21 asara	10．8コ8コニ	－6．78575
27．953：－	18．808ゴ	5
LINE	14．39639	LINE

Predicting the Performance of Dynamic Mechanical Systems Abstract:

A mathematical model may be used to evaluate the performance of high speed machines. This model may be used to predict the contribution of various design variables to the required specifications. This paper reviess some aspects of dynamic systems: model formulation, solutions of equations, numerical integration, sensitivity studies, and optimization.

1. Introduction

Mathematical models are used to design dynamic systems which must meet specific performance criteria. For example, the performance of a vehicle with different design parameters may be predicted for a specific duty cycle. Or the displacement versus time characteristic of a variable speed mechanism may be evaluated. The model may be used to optimize the performance of the system and it may be used to quantify the sel.sitivity of the performance to changes in each design variable. However, the configuration of the machine is also constrained by considerations of economics, safety, aesthetics, manufacturability and standards. The accuracy of the model's predictions is an important consideration. The quest for the absolute model may lead the engineer through infinite difficulties according to Professor B. E. Quinn of Purdue University.

This paper gives a review of some fundamental concepts which are used in dynamic modeling of machines. The solution of algebraic and differential equations is discussed. The need for sensitivity studies is presented. An optimization program is described and illustrated.
2. Fundamental Concepts for Modeling

The dynamic model of a machine is the mathematical relationship between variables based on physical laws. The following tasks are included in the modeling activity:
2.1 Identification of the required output
2.2 Identification of the duty cycie
2.3 Definition of the system's mass, elastic and damping characteristics
2.4 Identification of the excitation and restraints
2.5 Specification of the design variables to be considered
2.5 Application of Newton's and Euler's equations of motion plus the equations of continuity and constraint to produce a system of equations which will predict the required output in terms of the speciffed design variables.

The output required from the model should be identified as the first step. If the model is to be used to design for improved performance, the variables which account for good performance must be identified. For example, good performance of a forklift truck may be related to the number of pallets moved per day. If the model is to be used to reduce cost, the energy consumption would be a iignificant variable. If the model is to be used to predict torsional vibrations, the combining of one inertia with an adjacent inertia will reduce the complexity of the problem, but it also eliminates one degree of freedom and it's related mode of vibration from the solution. Hence, the desired output significantly affects the mathematics of the model.

The identification of duty cycle for a machine is essential in order to predict performance. Several different duty cycles may be used if the appiication of the machine varies. For example, a forklift truck operating in a lumber yard has significantly different operating requirements than when operating in a warehouse per Figure 2.1. The duty cycle may require different configurations of the system. For example, the torsional vibration of a fishing vessel with a food processing plant (Figure 2.2) may have different duty cycles with different power outputs for the following drivetrain configurations:

Engine at idle speed and all clutches disengaged.
Engine at rated speed and clutch to generator engaged.
Engine at rated speed and clutches to generator and propeller engaged.

Engine not at rated speed, propeller engaged, and generator off line.

Shipping and Receiving Cycle

Figure 2.1 Forklift Truck Duty Cycles

Figure 2.2 Factory Ship Power Irain Mass-Elastic Diagram

The mass, elastic and dissipative characteristics of the machine are required for the equations of motion. Hence, the configuration of the machine must be developed before the model can be formulated. The mathematical model of the machine must be complex enough to produce the required output, but simple enough to allow completion of the analysis within the cost and time constraints. The number of equations in the model may be reduced by using equivalent masses, equivalent inertias, equivalent spring rates and equivalent damping. Careful judgement must be used when reducing the original system to these equivalent quantities in order to assure that the mathematical model will properly represent the original system.

Equivalent mass of a system may be determined by writing the different equations for the system and combining them into one differential equation with a single variable representing ail of the mass and inertia terms. For the geared system of Figure 2.3. this procedure is as follows. The equations of motion for the pinion and for the gear are:

$$
\begin{aligned}
& I_{p} \alpha_{p}=T_{i n}+T_{G p} \\
& I_{G} \alpha_{G}=T_{p G}+T_{\text {out }} .
\end{aligned}
$$

The angular displacement relationship for pinion and gear is:

$$
\theta_{\mathbf{p}}=-\theta_{\mathbf{G}} \quad \text { Ratio. }
$$

The second derivative gives the angular acceleration relationship:

$$
\alpha_{p}=-\alpha_{G} * \text { Ratio. }
$$

A C.C.W. torque on the gear by the pinion will produce a C.C.W. torque on the pinion due to the reaction of the sear:

$$
T_{p G}=+T_{G p} * \text { Ratio. }
$$

Substituting these equations into the differential equation for the gear gives:

$$
I_{G}\left(-\alpha_{p} / \text { Ratio }\right)=+T_{G p} * \text { Ratio }+T_{\text {out }}
$$

Divide by Ratio,

$$
I_{G} \alpha_{p} / \text { Ratio }{ }^{2}=-T_{G p}-T_{\text {out }} / \text { Ratio }
$$

Add this latter differential equation to the first differential equation:

$$
\left(I_{p}+I_{C} / \text { Ratio }{ }^{2}\right) a_{p}=T_{i n}-T_{\text {out }} / \text { Ratio }
$$

Ali variables are shown in the posiさive direction, CCW.

Figure 2.3 Original Mass-Elastic Diagram for Geared System

If the original system is replaced by an equivalent system as shown in Figure 2.4 in which all shafts rotate at engine speed, the sign of $T_{\text {out }}$ is reversed and the differential equation for the gear pair would be:

$$
I_{\text {equiv }} a_{p}=T_{\text {in }}-T_{\text {out }} / \text { Ratio }
$$

Comparison of this latter differential equation with the prior equation shows that the equivalent inertia is

$$
I_{\text {equiv }}=I_{p}+I_{G} / \text { Ratio }^{2}
$$

Figure 2.4 Equivalent Mass-Elastic System

An alternative method for obtaining the equivalent inertia is to equate the kinetic energy of the original system to the kinetic energy of the equivalent system per Reference 6. For this sample problem, the equivalent inertia of the gear pair referred to pinion speed may be obtained as rollows:

$$
\begin{aligned}
& K E_{\text {original }}=K E_{\text {equivalent }} \\
& \frac{1}{2} I_{p} \omega_{p}^{2}+\frac{1}{2} I_{G} \omega_{C}^{2}=\frac{1}{2} I_{\text {equiv } v} \omega_{p}^{2}
\end{aligned}
$$

By cancelling the one half and using the relationship between the angular velocities,

$$
\omega_{\mathrm{G}}=-\omega_{\mathrm{p}} / \text { Ratio },
$$

The kinetic energy equation becomes

$$
I_{p} \omega_{p}^{2}+I_{G}\left(\omega_{p} / \text { Ratio }\right)^{2}=I_{\text {equiv }} \omega_{p}^{2}
$$

Solve this expression for $I_{\text {equiv, which agrees with the former }}$ equation.

$$
I_{\text {equiv }}=I_{p}+I_{G} / \text { Ratio }{ }^{2}
$$

A mechanical linkage has an equivalent inertia which changes in magnitude as the position changes. Consider the engine's slider crank mechanism of Figure 2.5. The angular velocity of each link and the linear velocity of the center of gravity of each link are evaluated for an input crank speed of 1 radian per second as illustrated in Figure 2.6. (This calculation was performed by a four-bar linkage program for a linkage with the output crank located at 90° from the path of the piston and for an "infinitely" long output crank.)

The inertia of the piston, connecting rod and crankshaft may be represented by an equivalent inertia, $I_{\text {EQ }}$, which has the speed of the crankshaft. I $I_{E Q}$ has a different value for each position of the crankshaft. The magnitude of $I_{\text {EQ }}$ may be obtained by equating the kinetic energy of the original system to the kinetic energy of the equivalent system at each position:

$$
\begin{aligned}
& .5 \times I_{E Q} \times \omega_{2}^{2}= .5 \times I_{2} \times \omega_{2}^{2}+.5 \times M_{B} \times V_{4}{ }^{2} \\
&+.5 \times I_{3} \times \omega_{3}^{2}+.5 \times M_{3} \times V_{C G 3}{ }^{2} \\
& I_{E Q}=I_{2}\left(\omega_{2} / \omega_{2}\right)^{2} \cdot M_{B}\left(V_{4} / \omega_{2}\right)^{2}+I_{3}\left(\omega_{3} / \omega_{2}\right)^{2}+M_{3}\left(V_{C G 3} / \omega_{2}\right)^{2}
\end{aligned}
$$

$M_{B}=$ Piston assembly mass
$M_{B}=0.1191 \mathrm{~b} \mathrm{sec} /$ in
$M_{3}=$ Connecting rod weight
$M_{3}=0.3551 \mathrm{~b} \mathrm{sec}{ }^{2} / \mathrm{in}$
$I_{3}=$ Inertia of connesting rod about
center of gravity
$I_{3}=31.610 \mathrm{in} \mathrm{sec}{ }^{2}$
$I_{2}=$ Inertia of crankshaft
$I_{2}=301 b$ in sec^{2}
$\ell=$ Length of connecting rod $=23$ inches
R = Radius or crank
$R=5.25$ in
$A C=$ Distance from rod end to C.G. of rod
$A C=5$ in

Figure 2.5 Schematic of Engine Piston and Crank Mechanism

Figure 2.6 Velocities of Siston and Crank Mechanism

Figure 2.7 Equivalent Inertia as a Function of Crank Position

This latter equation shows that the equivalent inertia of a linkage is the sum of the products of velocity ratios times the mass and inertia values of the links. This ratio of velocities is independent of the actual speed of the linkage, since it is established by the position and configuration of the mechanism. The dependence of the velocity ratio on the mechanism position may be illustrated by considering the velocity polygon of a mechanism. The shape of the polygon is a function of position while the size is determined by the magnitude of the velocity. This is illustrated in Figure 2.8 showing the graphical solution to the velocity equation:

$$
V_{B}=V_{A}+V_{B / A}
$$

If V_{A} is doubled, the polygon will double in size but the ratio V_{A} / V_{B} will not change at this position.

Figure 2.8 Velccity Polygon for Linkage

When a mass is supported by the free end of a spring, whose opposite end is stationary, portions of the spring's mass move with different velocities. The equivalent mass of the spring will be considered as that fraction of the spring's mass which moves with the velocity of the free end. The kinetic energy of the spring with one end fixed may be equated to the kinetic energy of a massless spring supportiag an equivalent mass on its Pree end per Figure 2.9.

$$
\begin{aligned}
& K E_{\text {original }}=K E_{\text {equivalent }} \\
& \int_{0}^{L} .5 \times v^{2} \times d m=.5 M_{E Q} v^{2}
\end{aligned}
$$

where, $\quad V=$ velocity of particle of spri 3 mass $=V \times X / L$ dim = Mass of particle of spring $=\rho \times A \times d X$
$X=$ Distance from stationary end to particle of mass
$V=$ Velocity of free end of spring
$L=$ Length of spring

- = Mass density of spring
$A=$ Area of spring normal to x-direction.
Hence,
- $M_{\text {spring }}=\int_{0}^{L} d m=\rho \times A \times L$

$$
M_{E Q}=\int_{0}^{L}(X / L)^{2}(\rho \times A \times d X)
$$

$$
M_{E Q}=\rho \times A \times L / 3=M_{\text {spring }} / 3
$$

For a shaft in torsion with one end fixed and the other end supporting an inertia, J, (Figure 2.9) the equivalent inertia due to that part of the shaft which moves is obtained as follows

$$
\begin{aligned}
& K E_{\text {original }}=K E_{\text {equivalent }} \\
& \int d(K E)=.5 \times J_{E Q} \times \omega^{2} \\
& .5 \int_{0}^{L} \omega_{p}^{2} \times d J_{p}=.5 \times J_{E Q} \times \omega^{2}
\end{aligned}
$$

The angular velocity of the shaft varies from zero at the base to ω at the free end. So the angular velocity of a particle located a distance X from the free end is

$$
\omega_{p}=\omega \times X / L
$$

The mass moment of inertia of a particle with radius of gyration r is

$$
\begin{aligned}
& d J_{p}=\rho \times A \times r^{2} \times d X \\
& .5 \times \int_{0}^{L} \rho \times A \times r^{2} \times(\omega \times X / L)^{2} \times d X=.5 \times J_{E Q} \times \omega^{2} \\
& J_{E Q}=\rho \times A \times L \times r^{2} / 3=M \times r^{2} / 3=J_{S h a f t} / 3
\end{aligned}
$$

Hence, the equivalent inertia of a shaft with one end stationary is equal to one third of the inertia of the total shaft. This equivalent inertia rotates at the speed of the free end of the shaft.

Figure 2.9 Equivalent Inertia of Fixed End Spring

The elastic properties of the machine must also be quantifled in order to create a mathematical model of the dynamic system. The elastic deformations provide storage for the potential energy, which may be changed into kinetic energy at a later phase. The elastic properties may be characterized by spring constants. An example of a spring constant would be the ratio of the change in force on a gear tooth to the change in deflection of the tooth per figure 2.10. An example of torsional 3tiffness would be the ratio of the change in shaft torque to the corresponding angular deflection.

Figure 2.10 Gear Tooth Stiffness Prom Finite Element Analysis

The elastic characteristics of some machines are more complex than these two examples and equivalent spring constants may be used to simplify the model. If several springs are in parallel, as when more than one pair of teeth of a helical gear shares the load, this multiple spring system may be represented by an equivalent system with only one spring. This is illustrated in Figure 2.11 and the equivalent spring constant is evaluated as rollows for the equivalent system. This expression is valid for parallel torsion springs also.

$$
K_{E Q}=F / X=\left(F_{1}+F_{2}+F_{3}\right) / X=F_{1} / X+F_{2} / X+F_{3} / X=K_{1}+K_{2}+K_{3}
$$

$$
K_{E Q}=\sum_{i=1}^{n} K_{i}
$$

where, $\quad F=$ Total force on all springs
$X=$ Deflection of each spring
$K_{E Q}=$ Equivalent spring constant, $1 b / i n$
$n=$ Number of springs in parallel
$K_{i}=$ Spring constant of original spring, lb/in

Original System

Equivalent System

Figure 2.11 Springs in Parallel

If springs are in series, as the torsional spring constants of a stepped shaft, the equivalent system may be simplified. The total deflection at the end of the shaft is θ, which is made up of the sum of the deflections of the individual springs. The torque on each spring in series is the same.

$$
\begin{aligned}
\theta & =\theta_{1}+\theta_{2}+\theta_{3}=T / K_{1}+T / K_{2}+T / K_{3} \\
& =T\left(1 / K_{1}+1 / K_{2}+1 / K_{3}\right)=T \times \sum_{i=1}^{n}\left(1 / K_{1}\right)
\end{aligned}
$$

But, the equivalent system's spring constant is

$$
K_{E Q}=T / \theta
$$

so,

$$
K_{E Q}=\sum_{i=1}^{n}\left(1 / K_{i}\right)
$$

$K_{E Q}=$ Equivalent spring constant, Ib in/radian
$n=$ Number of springs in series
$K_{i}=$ Spring constant for original spring, ibin/radian

This expressior is valid for series extension springs also. A pair of gear teeth in mesh is another series spring arrangement (Reference 7) with each tooth having a stiffness, K_{T}, per Figure 2.12.

Figure 2.12 Springs in Series

The equivalent spring constant concept may be useful when nonlinear relationships exist between deflections and torque (or force). This nonlinearity may be a function of torque (or displacement) as in the elastic coupling illustrated in Figure 2.13. The equivalent spring constant is usually taken as the slope of the force (or torque) versus deflection curve at the operating point.

For systems with gears, the original system may be replaced by an equivalent system with all inertias onerating at the same speed. The equivalent system must have an equivalent spring constant which will
allow it to store the same amount of potential energy as the original system, since the nature of a vibrating system is to transform kinetic energy into potential and then reverse this transformation. The

Figure 2.13 Nonlinear Springs
potential energy is stored in the springs as they deflect and is equal to the product of the average force times the displacement. Consider representing the original gear with the dual speed shaft system by an equivalent single speed system as in Figure 2.14. Equate the potential energies of these two systems to obtain the equivalent spring constant. In this sample, the

$$
\begin{aligned}
& P E_{\text {original }}=P E_{\text {equivalent }} \\
& .5 \times K_{1} \times\left(\theta_{2}-\theta_{3}\right)^{2}=.5 \times K_{E Q} \times\left(\theta_{2} \times \operatorname{Ratio}-\theta_{3} \times \operatorname{Ratio}\right)^{2}
\end{aligned}
$$

Hence,

$$
K_{E Q}=K_{1} / \text { Rat } 10^{2}
$$

The equivalent inertias are also shown in the figure.

Figure 2.14 Equivalent Spring Constant

Clutch Gland Angular Deflection (Rad/Ans)

Figure 2.16 Torsional Deflection of 40 Inch Clutch

Flgure 2.17 Device for S'catic Measurements of Torsional
Clutch Stiffness and Damping

Figure 2.18 Device for Static Measurements of Radial Clutch Stiffness and Damping

The torsional stiffness of a pneumatically activated clutch as illustrated in Figure 2.15 may be evaluated as the mean slope of the torque deflection curve. Values of relative damping and torsional stiffness were measured in the zero frequency test device designed by Cardenas (Reference 8) in Figure 2.17. Typical load curves are shown in figure 2.16. The results of tests by Elahi are are in Table 2.1 (Reference 9). This work was supported by Marine Gears, Inc.

The radial stiffness of these clutches may also be evaluated by renoving one bearing to allow the shaft to deflect radially and rerouting the hydraulio lines to cause both cylinders to move in the same direction. This test setup is shown in Figure 2.18. the radial stiffness results of tests oy Elahi (Reference 9) are in Table 2.2. The test data in Figure 2.20 is typical for the 40 inch clutch.

Some preunatic clutches do not allow the elastomer air bag to be deflected as the torque is transmitted by metal members. This results In a more rugged design, but the torsional stiffness is much higher and the energy dissipating capability of the elastomer is not available.

The damping characteristics of a system must be included in the dynamic model. The dissipation of energy by damping is one method for keeping the amplitudes of vibrating systems from reaching dangerous magnitudes. Damping may be achieved by viscous damping of a fluid. hysteresis damping in an elastic solid or coulamb friction damping between solids.

The viscous danper may be subjected to a harmonic excitation source,

$$
P=P_{0} \sin (\omega t+1) .
$$

which leads the displacement,
$x=x_{0} \sin (\omega t)$.
by a phase angle $\$$. The resulting work is
$W=\pi P_{0} X_{0} \sin$
The damping force is
$P_{0}=c x \omega x X_{0}$.
P_{0} is 90° out of phase with the displacement X_{0}. Hence, the damping work per cycle is
$W=x c x \omega x x_{0}^{2}$.
Damping by material hysteresis is due to internal friction which heats the material. Elastomer materials, such as rubber, have high hysteresis loss when strained. The elastomer material of the pressurized cube of the 40 inch clutch shown in Figure 2.15 provides damping. The area under the torque versus deflection curve for increasing torque is larger than the area under the curve traced as the clutch returns to the unloaded position per Figure 2.16. The hysteresis energy dissipated per cycle, W_{d}, is equal to the area between these two curves per Figure 2.19. The energy of a linear elastic deflection Prom ine mean position to the maximum amplitude. $X_{\text {max }}$ is

$$
w_{e}=.5 \times k \times x_{\max }^{2}
$$

Relative damping, ψ, is a tern for characterizing hysteresis damping:

$$
\downarrow=W_{d} / W_{e}
$$

The relative damping for this 40 inch clutch with elastoser air bags was evaluated under static conditions and the values are given in Table 2.1.

The model of a system with hysteresis damping may be simplified by expressi.ig the energy loss per cycle as a function of an equivalent viscous damping function. This is obtained by equating the energy dissipated per cycle for hysteresis damping to the energy dissipated per cycle by an equivalent viscous damper.

$$
\begin{aligned}
& \forall_{e}=\pi \times{C_{E Q}} \times \omega \times X_{0}^{2} \\
& W_{e}=.5 \times K \times x_{0}^{2}
\end{aligned}
$$

TABLE 2.1 Relative Damping and Toralonal Stiffness of Clutches

Clutch S12e (1nch)	Maximum Torque $(10-1 n)$	Minimum Torque $(10-1 n)$	Mean Torque ($16-1 n$)	${ }^{2} \phi_{V}$ (Radian)	Torsional Stiffness ($2 \mathrm{~b}-1 \mathrm{n} / \mathrm{rad}$)	Relative Damping
26	53.077	15,198	34,138	0.001531	24,741,346	0.8277
26	52.142	18,706	35.424	0.001358	24,621,502	1.0290
26	78.447	52,376	65.412	0.000962	27,100,832	0.9237
30	76.460	27,825	52.143	0.000905	53,734,394	0.8818
30	82,305	27,203	54.754	0.001062	51,870,470	0.8267
30	138,423	91,658	115,041	0.000878	53,263,098	0.6654
30	133,980	91,191	112,586	0.000840	50,933,222	1.1148
35	116.911	41.620	79,266	0.001960	38,413,776	0.7106
35	184,953	95.633	141.793	0.002554	36,147,220	0.9439
40	153.387	43,023	98,205	0.001537	71,804,815	0.9685
40	227.976	144.034	186,005	0.001342	62,549,926	0.7348
48	200,000	60,818	130,409	0.001217	114,299,509	1.3191
48	287.500	191,266	239,383	0.000637	151,073,784	1.5638

Figure 2.19 Hysteresis Damping Energy

Clutch	Maximum	Radial
Size	Radial Force	Stiffness
(inch)	(10)	$-(10 / i n)$

26	3971	132,188
30	3420	87,710
30	3365	87,349
30	3456	87,592
36	5622	87,143
30	5049	88,182
35	2019	80,047
40	5889	143,298
48	5623	138,572

table 2.2 Radial Stiffness of Pneumatic Clutches

Figure 2.20 Radial Deflection of 40 Inch Clutch

Hence, the equivalent value of viscous damping is:

$$
C_{E Q}=\frac{\phi}{2} \times K \times x_{0}^{2 /\left(\pi \times \infty \times x_{0}\right)^{2}=\frac{.5 \times K \times \psi}{\pi \times \omega}}
$$

Where,
$\mathrm{K}=$ Torsional stiffness of member with hysteresis
ω = Matural frequency of vibration.

3. Types of Excitation

The type of excitation for a mechanical system may be steady state, periodic, aperiodic or random. The method of analysis is different for each type.

For periodic excitation, the response of a linear system will also be periodic and the initial conditions will establish the amplitudes. The excitation of an internal combustion engine's gas pressure pulses
may be represented as a periodic excitation by a Fourier analysis of the gas pressure as shown in Figure 3.1. If the crankshaft speed, a, is constant, the time, t, is a function of crank position, θ.

$$
t=\theta / \omega
$$

Hence, the period, T, for one cycle of a two stroke cycle engine with speed, ω, is
$T=2 \pi / \omega$.
The Fourier expansion of the function is
$x(t)=f(t)=f(k)$
$x(t)=x_{\text {ave }}+\sum_{n=1}^{\infty} B(n) \operatorname{Sin}(n \omega t)+\sum_{n=1}^{\infty} C(n) \operatorname{Cos}(n \omega t)$
$x_{\text {ave }}=\left(\sum_{k=1}^{N O} r(k) \Delta t\right) / T$
NO = T/At = Number of data sets in one period
$t=(k-.5) \Delta t$, for $k=1,2,3, \ldots N 0$
$\Delta t=$ Time increment between data sets. (The first data set is at $t=\Delta t / 2$ and the last set is at $t=T-\Delta t / 2$.
$X_{\text {ave }}=$ Average value of function over one period
$N_{T}=$ Total number of harmonic components
$n=$ Number of a harmonic. $1 \leq n \leq N_{T}$
The coefficients $B(n)$ and $C(n)$ must be evaluated for each value of n.
$B(n)=(2 / T) \sum_{k=1}^{N O} f(k) \times \sin ((n \times 2 \times \pi / T) \times(k-.5) \Delta t) \Delta t$
$C(n)=(2 / T) \sum_{k=1}^{N O} f(k) \times \operatorname{Cos}((n \times 2 \times \pi / T) \times(k-.5) \Delta t) \Delta t$
$B(n)=$ Amplitude of nth sine harmonic.
$C(n)=$ Amplitude of nth Cosine harmonic.
The phase angle between the harmonic components is
$\phi(n)=\arctan (C(n) / B(n))$.

Figure 3.1 Engine Cylinder Pressure (Two Stroke Cycle)

INPUT DATA

```
ENGINE SPEED
\(=209.43\) RAD/SEC
NUMBER OF HARMONICS \(=10\) TOTAL TIME PERIOD \(=.03\) SEC
```

FOURIER SERIES COEFFICIENTS CONSTANT COEFFICIENT XBAR $=165.07$

N	BN	CN
1	119.04	185.140
2	87.923	87.642
3	90.502	32.504
4	53.280	.010
5	44.167	-6.100
6	20.327	-18.589
7	13.113	-12.340
8	.305	-10.703
9	.407	-2.005
10	-5.023	-4.967

TABLE 3.2 Fourier Coefficients for Engine Gas Pressure

TIME (Seconds)	PRESSURE (PSI)	CRANKSHAFT POSITION (Degrees)
0	220	10
.001	640	12
.002	780	24
.003	580	36
.004	385	48
.005	280	60
.006	205	72
.007	175	84
.008	130	96
.009	106	108
.01	100	120
.011	98	132
.012	95	144
.013	90	156
.014	88	168
.015	10	180
.016	10	192
.017	10	204
.018	10	216
.019	12	228
.02	13	240
.021	10	252
.022	25	264
.023	30	276
.024	45	300
.025	50	312
.026	80	336
.027	100	348
.028	145	360

table 3.1 Engine Gas Pressure Versus Time and Crankshaft Position.

Each harmonic component has a unique trequency, which is equal to the product of the engine speed and the harmonic number, n. At $n=2 a$ harmonic pressure, with a rrequency of $418.8 \mathrm{rad} / \mathrm{sec}$ is produced by the engine. The magnitude of this pressure component is

$$
\begin{aligned}
P(t)= & 165.07+\sum_{n=1}^{N} T 7^{T} .9 * \sin (2 \times 209.4 \times t) \\
& +\sum_{n=1}^{N} T^{T} 87.6 \cos (2 \times 209.4 \times t .)
\end{aligned}
$$

Eigure 3.2 Graph of Fourier Representation of Engine Gas Pressure

- This harmonically varying pressure produces forces which could excite a resonant vibration, if the system has a natural frequency of 418.8 randians/second. As the values of n increase above 11 , the amplitudes decrease. This indicates that the energy of the higher harmonics will be too small to produce significant vibration amplitudes after overcoming the damping. These harmonic pressures also produce narmonic components of crankshaft torque. The response of a linear system may be obtained by suming the response for each of the harmonic components. Aperiodic excitation is a nonrepeating pulse. The pulse is equivalent to the sum of numerous natural frequencies. The shape of the pulse determines its frequency content. For example, a step would contain ilgh frequencies in order to deflne the sharp corner. The

Fourier Integral me.y be used to transform an aperiodic function, $f(t)$, from the time domain into an equivalent function, $g(a)$, in the frequency domain. In the frequency domain, the system response may then be characterized in terms of gain, the ratio of output to input. The Fourier Integral (10) may be expressed as

$$
f(t)=\int_{-\infty}^{\infty} g(\omega) e^{i \omega t} d \omega
$$

where,

$$
g(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(s) e^{-i \omega s} d s
$$

The dumm variable s may be repalced by the variable t and the following relationship may replace $\mathrm{e}^{-\mathrm{i} \omega \mathrm{t}}$ in the expression for $\mathrm{g}(\omega)$.

$$
e^{-i \omega t}=\cos (\omega t)-i \operatorname{Sin}(\omega t)
$$

Hence,

$$
g(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(t) \cos (\omega t) d t-\frac{i}{2 \pi} \int_{-\infty}^{\infty} f(t) \sin (\omega t) d t
$$

or,

$$
g(\omega)=A-I B
$$

where,

$$
\begin{aligned}
& A=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(t) \cos (\omega t) d t \\
& B=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(t) \sin (\omega t) d t
\end{aligned}
$$

The absolute value of $g(\omega)$ is

$$
|g(\omega)|=\left(A^{2} \cdot B^{2}\right) \cdot 5
$$

The phase angle for $g(\omega)$ is
$\phi=\operatorname{Tan}^{-1}(B / A)$.

If the system gain, M, and the excitation are both expressed in the frequency domain, the system response at a frequency would be
$g_{\text {output }}=M \times g_{\text {excitation }} \cdot$
If the excitation of the system is random, it may be expressed in statistical terms as a power spectral density function. $\mathrm{P}_{\mathbf{s}}$. The power spectral density function is a function of frequency. The autocovariance function, $C(\tau)$, may also be used to locate periodic content of randow functions (11 and 12). The following equation shows how C(τ) will have large values when the lag index corresponds to the period of a harmonic componeni of the data. However, if the relationship between the data, $Y(t)$ and $Y(t+t)$, is truly randomn, with values above and below zero, the value of $C(\tau)$ will approach zero.

$$
\left.C(\tau)=\operatorname{Lim}_{T+\infty} \frac{1}{2 T} \int_{-T}^{T} Y(t) \times Y(t+\tau) d t \right\rvert\,
$$

For numerical methods the following form is convenient.

$$
C(R)=\frac{1}{n-R} \sum_{i=1}^{n-R} Y(i) \times Y(i+R)
$$

where,
$C(R)=C(\tau)=$ the autocovariance function.
$T=$ the time length of the data resord.
$t=t i m e$
T. Lag value. (The maximum value of τ should not exceed 5 to 108 of the length of the data record.)

$Y(1)=Y(t)=$ Variable under study (The data must be processed so $Y(1)$ has a mean value of zero.
$n=$ Total number of data points.
$M=\tau_{\text {max }} / \Delta \tau=$ Total number of frequency bands.
$R=t / \Delta t=$ Lag index $=0,1,2, \ldots ., M$
The Fourier Transform of the autocovariance function is

$$
g(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} c(\tau) \times e^{-i \omega t} d t
$$

or

$$
g(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} c(\tau) \cos (\omega t) d \tau-\frac{1}{2 \pi} \int_{-\infty}^{\infty} c(\tau) \sin (\omega t) d \tau
$$

Since $C(\tau)$ is an even function and Sin(cit) is an odd function, this equation becones:

$$
g(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} c(\tau) \cos (\omega \tau) d \tau
$$

Power sepectral density is

$$
P(\omega)=2 g(\omega)
$$

where,

$$
0 \leq \omega \leq \varnothing
$$

$$
g(\omega)=\frac{1}{2 \pi} \int_{0}^{\infty} c(\tau) \cos (\omega \tau) d \tau
$$

The maximum frequency which can be identified by the data is

$$
f_{\max }=1 /(2 \times \Delta t)
$$

The frequency bands, M, divide this maximum frequency into increments Δr.

$$
\Delta f=f_{\max } / M=1 /(2 \times M \times \Delta t)
$$

Define H as an integer with the following relationship to frequency f_{H} :
${ }^{9} H=H \times \Delta r$

The values of H are taken as the values of R to establish the connection between $C(\tau)$ and $P\left(P_{H}\right)$. At $\tau=0$ and $\tau=$ the values of R are zero and M respectively. For numerical methods the following form is convenient

$$
P\left(P_{H}\right)=(2 / \pi) \int_{R=0}^{R=R} C(R) \times \operatorname{Cos}(\pi H R / M) d \tau
$$

The Fourier Transform will place the autocovariance function into the frequency domain. The area under the plot of $P(\infty)$ versus is the mean square value of the function $Y(t)$. Peaks in $P(\alpha)$ identify frequencies, ω, of harmonics in $Y(t)$. The power spectral density function and the correlation function are very useful in signature analysis, which gives early warning of failures in bearings or gears by showing changes in the power spectru of noise or acceleration signals.

A simple example of the use of the power spectral density function in signature analysis may be based on data for the acceleration of the driver of a vehicle (13). The rear shock absorbers were not active for the acceleration data in Figure 3.3. The power spectral density for this data is given as a function of frequency in Figure 3.4. The power spectral density function has its largest spike at 11 cps , which is near the natural frequency of wheel hop for the independently sprung front wheels. The next largest spike is 2 cps which is close to the body roll natural frequency of the vehicle.

For the condition with active rear shocks, the acceleration data is characterized as a probability density function in Figure 3.5. The probability density function gives a good indication of the magnitude scatter of the data. The probability of encountering loads. In excess of one standarc deviation (. $035 g^{\prime} \mathrm{s}$) is 20%, when shocks are active.

This data for active shocks is given in the frequency donain in Figure 3.6. The signature of the machine shown in Figure 3.6 is similar to the signature of Figure 3.4 as the two dominant frequencies appear in botin figures, however, the magnitudes are significantly different which indicates a significant change in the mehine itself.
4. Integration of Equazions of Motion

The predictive model must be based on the fundamental laws of physics, mathematical principles, the equations of continuity and constraint functions. The differential equations of motion, which define the reiationships between forces and movement, will require numerical integration methods for most cases. The modified Euler predictor corrector method and the Runge-Kutta method are two popular Integration eethods. The fourth order accuracy Runge-Kutta method can provide a solution to the first order differential equation of the fore $d x / d t=F(t, x)$.

The solution at one time interval past k is

$$
x_{k+1}=x_{k}+\left(a_{1}+2 a_{2}+2 a_{3}+a_{4}\right) / 6
$$

where,

$$
\begin{aligned}
& a_{1}=\Delta t \times F\left[(t),\left(X_{k}\right)\right] \\
& a_{2}=\Delta t \times F\left[(t+.5 \times \Delta t),\left(X_{k}+.5 \times a_{1}\right)\right] \\
& a_{3}=\Delta t \times F\left[(t+.5 \times \Delta t),\left(X_{k}+.5 \times a_{2}\right)\right] \\
& a_{4}=\Delta t \times F\left[(t+\Delta t),\left(X_{k} \cdot a_{3}\right)\right] .
\end{aligned}
$$

A computer algorithim for solving a system of differential equations is given by Singiresu S. Rao (1) and Charles M. Haberman (2) presents the theory.

Figure 3.3 Vertical Driver Acceleration versus Tine - U.S. 52 Highway

Driver Acceleration (G)

Figure 3.5 Probability Density of Driver Acceleration with Strocks - U.S. 52

Figure 3.4 Power Spectrua of Driver Acceleration - U.S. 52

Figure 3.6 Power Spectrum of Driver Acceleration with Shocks - U.S. 52

Abstract

A critical factor in the numerical integration is the choice the integration step size, Δt. If Δt is too sall, the computer time will be excessive. If it is extremely small the computational ascuracy of the computer may introduce errors. However, if Δt is too big, the solution will cease to be independent of the value of Δt. A practical suggestion for evaluating the size of at is to assign a value to at and perform the numerical integration over an interval with the maximum dynamic characteristics. The value of at is then plotted on the log scale of semi-log paper while the terninal value of the dependent variable is plotted on the other axis. Then change the value of Δt by a factor of 5 and repeat the prior procedure. The graph will show no variation in the value of the dependent variable for values of Δt which are small enough. The exanple in the next section will illustrate this technique.

5. Example: Vehicle Simulation

Suppose that it is desired to determine the change in the performance of a vehicle when different gear ratios are used in it's three speed transmission. The first step is to develop a predictive model for this vehicle. The duty cycle for this model requires the vehicle to start from rest and travel 1000 feet up a one degree slope. The output from the model is to be the time required to reach the end of this path. the data of Table 5.1 defines the problem and Figure 5.1 illustrates the original system.

TABLE S.1 Data for Vehicia Simulation

```
WEIGHT OF THE VEHICLE (LB) = 2000
WHEEL BASE LENKIH OF THE VEHICLE (FT) = 8
HORIZONTAL DISTANCE EROM THE FRONT AXLE TO THE
CENITER OF CRAVITY (FT) = 4
VERTICAL DISTANCE FROM THE GROUND TO THE CENTER OF
GRAVITY (FT) = 2.4
DISTANCE TO BE TRAVELED (FT) = i000
IMTEGRATION TINE INCRENENT (SEC) = .1
TIME TO SHIFT THE TRANSNISSION (SEC) = .5
WUMBER OF FIRST ORDER DIFFEREITIIAL EQUATIONS = 2
ROAD IMCLINE (DECREES) = 1
NUMBER OF TRANSMISSION GEAR RATIO SELECTIONS = 3
INERTIA OF EMGINE (LB FT SEC'2) = .016667
IMERTIA OF FLYNHEEL (LB FT Sg\C') = .020833
IMERTIA OF CLUTCH (LB ET SECY}\mp@subsup{}{}{2}\mathrm{ ) =.0041667
IMERTIA OF MAEEL (LB FT SEC') = .583333
RADIUS OF REAR WHEEL (FT) = 1
DRAG COEFFICIENT . }
PROJECTED FROWTAL AREA OF VEHICLE (FT'2)=25
COEFFICIEIT OF TRACIION OF TIRES = . }6
EFFICIENCY OF THE DRIVE TRAIN = . }8
COEFFICIEMT OF ROLLING RESISTANCE = . 02
RATIO FOR GEAR DRIVE
GEAR = 1 RATIO = 2.7794
CEAR = 2 RATIO = 2.0543
CEAR = 3 RATIO = 1
DIFFERENTIAL RATIO = 4.111
```


The forces acting on this vehicie to prodice its dynanic sotion are described below. It is important to note that the fcree FK depends on the actual mass and not on the equivalent mass.
$W=$ Weight of vehicle, 10.
$F_{G}=$ The resistance due to gravity as the vehicle moves up a slope of alpha, Ib.
$\mathbf{F}_{\mathbf{G}}=\mathbf{W} \times \operatorname{Sin}($ Alpha)
$F_{A}{ }^{\prime}=$ Air drag resistance. 1 b .
$F_{A}^{\prime}=.0012 \times A F \times D C \times V^{2}$
$E_{A}-E_{A} \cdot N^{2}$
$A F=$ Projected frontal area of vehicle, ft ${ }^{2}$.
$V=$ Velocity of vehicle, rt/sec.
DC = Drag soefficient
$F_{I}=$ Inertia force
$F_{I}=-M x \overline{\mathbf{X}}$
$M=$ Actual mass of vehicle, ib $\sec ^{2} / f t$
$M=W / g$
FF = Moment about front tire contact point due to static weight only, ib ft.
$F F=L F \times W \times \operatorname{Cos}(A l p h a)+H \times W \times \operatorname{Sin}(A l p h a)$
$F R=$ Force normal to rear wheels due to static weight and dynamic loads, lb.
$F R=\left(-F_{I} \times H+F F\right) / L T=(M \times \ddot{X} \times H+F E) / L T$
TENC - Torque produced by engine on crankshaft, lb ft. The following expresison was obtained from a least squares fit of data for this engine.

TENG $=.00197285 \times R^{3}-.330 \ll \times R^{2}+13.456 \times R-25.283$
R = Engire speed, RPM, divided by 100.
mu: Coefficient of traction between tire and road.
$P=$ Thrust force of ground on tire, 1b. The value of P dep-nds on engine ta-que, gear ratio and wheel radius, but must not exceed $P_{\text {max }}$, which is the maximum slip force. Hence,
$P \leq P_{\max }$
$P=T E A G \times G R(I) \times G R D \times E F F / R R W$
CR(I) = Gear ratio in transinission.

CRD = Geir ratio in differential
EFF $=$ Mechanical efficiency of transaission.
$P_{\text {max }}=\operatorname{Mu} \times \mathbf{F R}$
In order to simplify the differential equation of motion, the original system will be replaced by an equivalent system per Figure 5.2 with a tra. ating mass, which has the same linear velocity as the venicle. Ine equivalent mass is obtained by equating the kinetic energy of the original and equivalent systems.
$K_{\text {original }}=K E_{\text {equivalent }}$
$.5 \times(W / g) \times V^{2}+.5\left(I_{E}+I_{F}+I_{C}\right) \times \omega_{E}^{2}+.5\left(4 \times I_{W}\right) \times \omega_{W}^{2}=.5 \times M_{E Q} V^{2}$ But.
$\omega_{E}=V \times \operatorname{GR}(I) \times G R D / R R W$
$\omega_{W}=V / R R N$
Combine these three quations to obtain:

$$
M_{E Q}=(W / g)+\left(I_{E}+I_{F}+I_{C}\right) \times(G R(I) \times G R D / R R W)^{2}+\left(4 \times I_{W}\right) / R R H^{2}
$$

Figure 5.2 Equivalent System for Vehicle

The differential equation of motion for this vehicle is:

$$
M_{E Q} \times \ddot{X}=P-F_{G}-F_{R}-F_{A} \times v^{2}
$$

When the clutch is engaged,

$$
P=\operatorname{TENG} \times \operatorname{GR}(I) \times G R D \times E F F / R R W
$$

if, $\quad P<P_{\text {max }}$ -
So, $\quad \ddot{X}=\left(P-F_{G}-F_{R}-F_{A} \times V^{\bar{c}}\right) / M_{E G}$.
Otherwise, if $P>P_{\text {max }}$, se: $P=P_{\max }$ as follows.
$P=P_{\text {max }}=M u \times F R=\operatorname{Mu}(M \times \bar{X} \times H+F F) / L T$
$P=M u \times \ddot{\mathrm{X}} \times \mathrm{H} \times \mathrm{M} / \mathrm{LT}-\operatorname{Mu}(\mathrm{LF} \times \operatorname{Cos}($ Alpha $)+\mathrm{H} \times \operatorname{Sin}(A l p h a)) \mathrm{H} / \mathrm{LT}$
For this latter sase, the equation of motion is
$\ddot{x}=1+\operatorname{Mu}(L F \times \operatorname{Cos}(A 1 p h a)+H \times \operatorname{Sin}(A 1 p h a)) \times W$
$\left.+L T *\left(-F_{G}-F_{R}-F_{A} \times v^{2}\right)\right\} /\left(M_{E Q} * L T-M u \times H \times M\right)$.
When the clutch is disengaged,

$$
\begin{aligned}
& P=0 \\
& \tilde{x}=\left(-F_{G}-F_{R}-F_{A} \times v^{2}\right) / M_{E Q}
\end{aligned}
$$

In orer to use the Runge-Kutta method of integration, the variables will be redefined per standard practice as in Table 5.2.

TABLE 5.2 Variable Definitions for Vehicle

Old Variable Name	New Variable Name	Tnitial Value	Differential Equation
\mathbf{X}	$\mathbf{X X}(1)$	0	$F(1)=\dot{X}=X X(2)=\dot{X}(1)$
$V=\dot{X}$	$X X(2)$	0	$F(2)=\ddot{X}=\Sigma P / M_{E Q}=\dot{X} X(2)$

The size of the integration step, Δt, was varied from . 001 to 0.5 seconds by factors of 5 while the distance traveled in 5 seconds was evaluated. This initial 5 seconds is associated with the maximum dynamic conditions for this problem. The results as shown in Figure 5.3 indicate that significant numerical error is created for this problem when Δt is greater than 0.10 seconds.

The displacement versus time and velocity versus time plots for this system's performance are shown in Figure 5.4 and 5.5 .

Figure 5.3 Investigation of Integration Step Size

Figure 5.4 Vehicle Performance: Position versus Time

Figure 5.5 Vehicle Performance: Velocity versus Time

6. Solutions of Algebraic Equations

6.1 Solution of an Equation

The solution of a linear or nonlinear equation may be obtained by drawing a graph of the function to determine those values of the indepensent variable which reduce the function to zero. A nonlinear equation may have more than one root. Figure 6.1 illustrates how the function, $f(X)$, behave as X varies.

Figure 6.1 Solution to Function

The value of x which produces a zero value of the function, may be obtained by the Newton-Raphson numerical method. This method starts with the first two terms of the Taylor series expansion of the function $f(X)$ about the position x_{n} :
$f\left(X_{n}+\Delta X\right)=f\left(X_{n}\right)+\Delta X \times f^{\prime}\left(X_{n}\right)$
$f^{\prime}\left(X_{n}\right)$ s the slope of the function at $X=X_{n}$.
The small value ΔX which may be added to X_{n} to make $f\left(X_{n} * \Delta X\right)$ approach zero may be obtained by rearranging the Taylor series to solve for Δx. An initial trial value for X_{n} must be estimated.

$$
\begin{aligned}
& f\left(X_{n}+\Delta x\right)=0 \\
& f\left(X_{n}\right)+\Delta x \times f^{\prime}\left(X_{n}\right)=0
\end{aligned}
$$

The slope may be approximated:

$$
\begin{aligned}
& f\left(x_{n}\right)=\left[f\left(x_{n}\right)-f\left(x_{n-1}\right)\right] /\left(x_{n}-x_{n-1}\right) \\
& \Delta x=-f\left(x_{n}\right) \times\left(x_{n}-x_{n-1}\right) /\left[f\left(x_{n}\right)-f\left(x_{n-1}\right)\right]
\end{aligned}
$$

Add Δx to X_{n} to bring X_{n} closer to the root as follows.

$$
\begin{aligned}
& x_{n-1}=x_{n} \\
& x_{n}=x_{n}+\Delta x
\end{aligned}
$$

Repeat the above procedure of calculating the correction increment ΔX and modifying X_{n} and X_{n-1}. When $f\left(X_{n}\right)$ approaches zero, the solution has been obtained.

6.2 Solution of a System of Linear Equations

The Gaussian elimination method with pivot elements is a popular method for finding the roots of a system of linear equations. Reference 3 gives a Fortran subroutine for this method. The following system of linear equations may be expressed in matrix form as indicated.

$$
\begin{aligned}
& K_{11} x_{1}+K_{12} x_{2}+K_{13} x_{3}=R_{1} \\
& K_{21} x_{1}+K_{22} x_{2}+K_{23} x_{3}=R_{2} \\
& K_{31} x_{1}+K_{32} x_{2}+K_{33} x_{3}=R_{3}
\end{aligned}
$$

$$
\left|\begin{array}{lll}
K_{11} & K_{12} & K_{13} \\
K_{21} & K_{22} & K_{23} \\
K_{31} & K_{32} & K_{33}
\end{array}\right|\left|\begin{array}{l}
x_{1} \\
X_{2} \\
X_{3}
\end{array}\right|=\left|\begin{array}{l}
R_{1} \\
R_{2} \\
R_{3}
\end{array}\right|
$$

The Gaussian method uses the rules of algebra to modify the matrix equation until the diagonal of $[K]$ has unity for each value and the entries in $\left[K\right.$] below the diagonal are zero. The values of X_{1}, X_{2} and X_{3} may then be obtained directly.

6.3 Solution of a System of Non-linear Equations

A non-linear system of equations may be solved by Newton's iterative method (Reference 4). The two equations below

$$
\begin{aligned}
& f(x, y)=0 \\
& g(x, y)=0
\end{aligned}
$$

may be satisfied if they are equal to zero when $X=X_{0}+\Delta X$ and $y=y_{0}$ - Δy. The Taylor expansion about (X_{0}, y_{0}) is

$$
\begin{aligned}
& f\left(X_{0}, y_{0}\right)+\Delta X \times \partial f\left(X_{0}, y_{0}\right) / \partial X+\Delta y \times \partial f\left(X_{0}, y_{0}\right) / \partial y=0 \\
& g\left(X_{0}, y_{0}\right)+\Delta x \times \partial g\left(X_{0}, y_{0}\right) / \partial x+\Delta y \times \partial g\left(X_{0}, y_{0}\right) / \partial y=0
\end{aligned}
$$

Rearranging these two equations into matrix form produces the following.

$$
\left|\begin{array}{ll}
\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial x} & \frac{\partial f\left(x_{0}, y_{0}\right)}{\partial y} \\
\frac{\partial g\left(x_{0}, y_{0}\right)}{\partial x} & \frac{\partial g\left(x_{0}, y_{0} j\right.}{\partial y}
\end{array}\right| \begin{aligned}
& \Delta x \\
& \Delta_{y}
\end{aligned}\left|=\left|\begin{array}{l}
-f\left(x_{0}, y_{0}\right) \\
-g\left(x_{0}, y_{0}\right)
\end{array}\right|\right.
$$

Values of the partial derivatives provide the slope. The values of ΔX and Δy may then be evaluated as the changes in X and y which are required in order to approach the roots. Before repeating the above calculations, new values of X and y are needed.

$$
\begin{aligned}
& x_{1}=x_{0}+\Delta x \\
& y_{1}=y_{0}+\Delta y
\end{aligned}
$$

This process is repeated until the functions approach zero.
The numerical values of the slopes $\partial f\left(X_{0}, y_{0}\right) / \partial X, \partial f\left(X_{0}, y_{0}\right) / \partial y$, $\partial g\left(X_{0}, y_{0}\right)\left(/ \partial X\right.$ and $\partial g\left(X_{0}, y_{0}\right) / \partial y$ may be difficult to evaluate for some functions by eaking the partial derivatives. An alternative is to estimate these slopes numerically over a small increnent about the point X_{0}, y_{0}. The size of the increment must be sall so it's size does not influence the magnitude of the slope.

7. Sensitivity Studies

Sensitivity studies quantify the relationship between the input paraneters, which are independent design variables selected by the designer, and the output variable, which is the dependent variable representing value, performance or cost. The sensitivity study shows how the output variable responds to a change in the input variable, that is, it quantiries the amount of improvement in value (or the change in cost) for a specified change in a design variable.

Sensitivity studies help the engineer to develop a realistic model as it aids his visualization of the mathematical relationships between the variables. On the other hand, the optimization study normally determines the set of values of the input variables which will produce the "best" value of the output without regard to how the variables change in approaching this "oest" value. Figure 7.1 illustrates a sensitivity study in which the current performance (cycles completed per shift) for the machine can be improved by 8.6 percent oy an increase in vehicle rated speed of 25 percent while the performance can be improved an additional 5.5% by increasing the vehicle speed an additional 25\%. The rate of change in performance is decreasing and
the safety of the operation is rapidly decreasing as the vehicle speed is increased. In the next section, which discusses optimization, the sensitivity study is applied to the "optimun set of design variables to quantify the manner in which each variable approaches this optimu condition.

Figure 7.1 Sensitivity Study: Fork Lift Truck Performance

8. Optimization by the Coaplex Method

The Complex Method of optimization of a multivariable, nonlinear, constrained problem was studied by Dr. U. H. Michaud (5). This method Pinds the maximum or ainimu value of a function.

To describe this method, consider a problem with n design variables. For a set of values for these n variables, the output of the system may be evaluated. Each set of n design variables locates a vertex in n-space. Each design variable is considered as one of the coordinates for the vertex in n space. Now consider k sets of these design variables from which k values of the output may be evaluated. If we select a problem with two Independent design variables, n will be
equal to two. If we select k as equal to three times n, then $k=5$. Michaud usually used $k=2 n$, but 3 n may provide a more dynamic search. A plot of the six vertices in n-space is given in Figure 8.1. The six sets of design variables were scattered between upper and lower bounds for each of the independent variables. These sets of values may be randonly generated between these boundaries.

The magnitude of the output parameter, which is to be optiaized. is given beside each vertex in Figure 8.1. The output is to be maximized. The vertex with the lowest performance, has an output value of 2.7. This vertex with the lowest performance is removed and the centroid of the coordinates of the remaining vertexes is determiend. Figure 8.1 shows the five remaining vertexes plus the centroid.

$$
\left.\left.\left(x_{i}\right)_{c}=\frac{1}{k-1} \mathbb{a} \sum^{k}\left(x_{i}\right)_{j}\right)-\left(x_{i}\right)_{R}\right]
$$

Figure 8.2 Complex Method Moving Strategy

The next step is to obtain an improved value of the independent variable my moving along a line from the rejected vertex, $\left(X_{i}\right)_{R}$, and through the centroid. $\left(X_{i}\right)_{c}$, to a new value $\left(X_{i}\right)_{\text {new. }}$ The $\left(X_{i}\right)_{\text {new }}$ is a point beyond the centroid by a tiaes the distance between the rejected vertex and the centroid. Box (3) used a value of $a=1.3$.

$$
\left(x_{i}\right)_{\text {new }}=a\left[\left(x_{i}\right)_{c}-\left(S_{i}\right)_{R}\right]+\left[x_{i}\right]_{c}
$$

If this new point is within the bounds of the design space, the search continues with $\left(X_{i}\right)_{n e w}$ providing the one of the independent variables for a new vertex.

The value of the output parameter is evaluated for the set of values at $\left(X_{i}\right)_{\text {new }}$. The process is repeated by identifying the set of independent variables with the lowest performance and rejecting it. Then another new set of variables is obtaiend by marching from the rejected vertex through the centroid again.

If the new design point had been outside of the design space, a new trial value would have been lcoated by moving in toward the centroid by the factor beta:

$$
\left(x_{i}\right)_{\text {new }}=\theta\left[\left(x_{i}\right)_{\text {new }}-\left(x_{i}\right)_{c}\right]+\left(x_{i}\right)_{c}
$$

One way to stop is to perform a certain number of iterations and observe the value of the output to determine if it is converging.

Dr. Michaud's Designer-Augented Optinization Progran requires the user to identify the output variable, which he calls the "objective function." He created a subroutine, OBJFUAK, which contains this function and the user must build this subroutine OBFUNK for each problem. His progran also has a subroutine, TEST, which contains the upper and lwoer bounds for each independent design variable. Subroutine TEST must also be rebuilt for each problea.

In order to combine some of the concepts of sensitivity studies with the concepts of optimization as described by Dr. Michaud, his optimization program was modified to produce sensitivity studies about the optimus design point. The sensitivity study keeps all design variables at their optimum values except one, which is allowed to vary while the output (performance) is evaluated. The results are presented in graphical form to ald in visualization of the sensitivity of the systea's performance to changes in each particular design variable.

In order to demonstrate the use of this optimization/sensitivity program, the code from Example 1 for the vehicle with three speed transmission is inserted into subroutine OBFUNK, the output parameter, which is to be optimized, is chosen as the time reuqired to travel 1000 feet. This is a minimization problem. The value of k is taken as $2 n$. The independent design parameters are the rinal drive gear ratio, the
transission ratio in first gear and the transission ratio in second gear. (The transinission ratio in third gear is 1 to 1.) 1The optimu gear ratios are

```
First Gear Ratio = 1.9
    Second Gear Ratio \(=1.4\)
    Final Gear Ratio \(=2.9\)
```

The sensitivity studies are shown in Figures 8.3.8.4 and 8.5 for first, second and rinal drive ratios. The ratios in first and in the final drive are not very strong influences. if adequately large ratios are given to provide starting torque. However, second gear ratio has a much narrower band of desirable values in between the extreaes of high and low values.

Figure 8.3 Vehicle Travel Time, OBJ, versus Eirst Gear Ratio, $X(1)$

Figure 8.4 Vehicle Travel Tine, OBJ, versus Second Gear Ratio. $X(2)$

Figure 8.5 Vehicle Travel Time, OBJ, versus Final Drive Ratio, $x(3)$

1. Rao, Singiresu S., Mechanical Vibrations, Addision-Wesley Publishing Company, 1986.
2. Haberman, Charles M., Engineering Systems Analysis. Charles E. Merrell Books. Inc.. Colunbus, Off, 1965.
3. Tse, Francis S., et al. Mechanical Vibrations Theory and Applications, Allyn and Bacon, Inc., 1963.
*. Hildebrand, Francis B.. Advanced Calculus for Applications. Prentice-Hall. Inc.. 1962.
4. Michaud, G. H., "User's Manual I, A Designer-Augmented Cptiaization Systen," Ph.D. Thesis, Purdue University, 1974.
5. Harrison, H. L.. Bollinger, J. G.. Introduction to Automatic Controls, International Textbook Company. 1969.
6. Mestorides. E. J., A Handbook on Torsional Vibration. The British Internal Combustion Engine Research Association, Canbridge University Press. 1958.
7. Cardenas, Jaime, "Design of a Test Machine for Measuring Dynanical Properties of Torsional Elastomer Couplings." M.S. Thesis, Mississippi State University, 1982.
8. Elahi, Mehran, MMeasurement of Static and Dynamic Characteristics of Elastomer Couplings Using Computerized Data Acquisition System," M. S. Thesis, Hississippi State University, 1985.
9. Hylie, Jr.. C. R., Advanced Engineering Mathematics, McGraw-Hill, 1960.
10. Bendat, J. S., and Piersol, A. G., Random Data: Analysis and Measurement Procedures, Wiley-Interscience, New York, 1971.
11. Meirovitch, Leonard, Elements of Vibration Analysis, McGraw-Hill. 1986.
12. Jones, E. W., "Relating Pavement Roughness to Vehicle Behavior," Ph.D. Thesis, Purdue University, 1974.

LECTURE 3

TORSIOMAL VIRRATIONS
ABSTRACT:
Torsional vibrations in geared systems may cause premature failures. Sensitivity studies, which show the change in torsional vibrations due to variations in the inertia, elastic and damping characteristics, are presented to illustrate how a system may be tuned to improve performance. A computational technique, based on the finite element method. that takes advantage of qualities unique to torsional systens is developed for analyzing the vibratory stresses in forceddamped torsional systems.

1. INTEODUCTION:

Torsional vibrations of power train systems may produce excessive vibratory stresses in the drive train and way cause 'hammering' of the gear teeth. The vibratory stresses may produce fatigue failure of the shafts. The gear tooth havmering, which is produced wen the vibratory torque exceeds the mean torque, produces impact loads between the mating teeth which can be several times the vibratory torque in the gear shafts (1). 1

Torsional vibrations are produced by masses rotating out of a steady state position to twist the shaft. This rotation produces a restoring torque in the twisted shaft, which stores potential energy in the shaft. This stored potential energy accelerates the mass towards Its steady-state position. However, due to the kinctic energy of the mass, it overshoots the steady state position. The repetition of this interchange frow kinetic to potential energy and vice versa requires a

[^3]spring and a mass and constitutes the natural frequency of vibration. At a given natural frequency, all of the masses are tuned to vibrate in unison (i.e., at the same number of vibrations per minute).

Each natural frequency has a un' 1 ue shape (mode shape) for its derlection curve. The number of no: : (i.e.. points with zero deflection) is one for the first natural frequency and increases by one for each higher irequency. (Counting the nodes is one way to determine if all natural frequencies have been located.) The zero mode has no nodes and represents the rigid body motion of the system. The mode shape is made up of the relative amplitudes of the angular displacements for each lump.

In order to maintain a torsional vibration, a periodic excitation torque must be applied to produce the vibratory motion and to overcome the continual energy loss of damping. Excitation torque may be produced by the internal combustion engine's gas pressure and reciprocating mechanis: by the propeller blades moving through differences in streanlines behind struts, by pump and compressor impeller blades or by reciprocating mechanisms of pumps and compressors. The magnitudes of these application torques are not usually adequate to produce damage; nowever, if the system has a natural frequency occurring at or near the frequency of an excitation torque, a resonant condition will occur and the application torque will be amplified.

The vibration excitation torque is normally divided into harmonic components to facilitate the analysis. (The alternate approach would be to use numerical integration to evaluate the response of the system to the total excitation torque.) This division of the excitation into single harmonics tends to rocus the analysis on one natural frequency
at a time. The first and second harmonic components of the gas pressure curve for the engine curve of Figure 1.1 (8) are shown in Figure 1.2. (In order to transform the gas pressure into torque, the kinematics of the reciprocating slider crank mechanisa must be considered.)

Figure 1.1 Engine Gas Pressure Curve for One 360° Cycle

Figure 1.2 Gas Pressure Harmonics
The analysis of torsional vibrations is well defined in the literature. Den Hartog (3) describes the fundamentals of engine excitation, damping devices and the Holro. solution. Harrington (4) quantifies the energy sources and sinks for marine systems. Handbooks on torsional vibrations by the British Internal Combustion Engine

Research Association (5) and Ker Wiison (6) are available. The Underwriters for the Maritime industry have published Rules (7 and 8) for guidance of torsional vibration analysis.

The Holzer (11) method of analysis of free or forced, undamped torsional vibration systems has been popular because of the siaple and repetitive nature of the calculations required. Holzer's table in these cases consists of real numbers. Hartog and Li (12) extended Holzer's method to include the analysis of frce, damped torsional systems. Later, Spaetgens and Vancouver (13) further extended the eethod to solve the forced, damped torsional vibration problem. The arithmetic in this case involves complex numbers, which detracts from the 'simple calculations' advantage of the method. However, with the advent of computers, programs were written to carry out most of the tedious calculations. Wu and Chen (14) have written complete computer programs to analyze free or forced, undamped or damped single branch iorsional systems. As indicated in their paper, some trial and error is required in the solution of the forced, damped torsional vibration problem. This is not desirable in computer methods as it could lead to considerable computer time and cost. Also the task of extending Holzer's method to analyze multi-branch, multi-junction, forced damped torsional systems does not appear to be easy.

TORVAP-A (15), 3 computer program for the torsional vibration analysis of multi-branch, multi-ju ction systems developed by BICERA (British Internal Combustion Engine Research Association) uses transfer matrices to arrive at a system of simultaneous equations :or an equivalent torsional system with a reduced number of degrees of freedom. The other degrees of freedom are evaluated by working back
with the known degrees of freedom and appropriate transfer matrices. Thus the method essentially consists of two passes, with multiplication of transfer matrices required in each pass. The results of the intermediate stages are not stored. This reduces computer storage requirements but increases the number of calculations required. This program is reported tc be faster and less expensive to use than the Holzer table method.

A method that reduces the number of calculations, while requiring little additional storage, would be an improvement over TORVAP-A. Such a method, based on the theory of finite elements, is presented in this paper.

One of the traditional methods currently in use for analyzing torsional systems assumes that the mode shape of the idealized free-undamped system is identical to the mode shape of the real forced-damped system (3). That is, the inertia forces are assumed to dominate the damping forces and excitation forces near resonant speeds. Conclusions drawn from results obtained by this traditional method have sometimes proved to be unsatisfactory because the damping forces and excitation forces may be large enough to diatort the mode shape. Lloyd's Register of Shipping outlines the step by step method of analysis based on this traditional method and then comments that if it is unsatisfactory a forced, damped solution is to be used. However Lloyd's Register of Shipping does not outline the latter method of analysis or provide any guidance for the evaluation when the traditional method is unsatisfactory.

The effect of various design parameters (e.g., flywheel inertia, coupling torsional stiffness, etc.) on the torsional vibrations of a system may be used to tune the system-for good torsional performance. Sensitivity studies which show this interaction are included in this paper.
2. COMPUTATIONAL TECHNIQUE BASED ON THE EINITE ELSMENT METHOD:

The theory for a torsional analysis method, which is based on the FEM, is presented in this section. The basic finite element for the torsional vibration system consists of one disk and one spring with an external and internal damper (Figure 2.1).

Figure 2.1 The Basic Finite Element
where

```
K = coefficient of stiffness of the spring
J = rotational mass moment of Inertia of the disk about an axis
        through its center and perpendicular to the plane of the disk
C1}=\mathrm{ internal damping coefficient
Co = external damping coerficient
```

${ }^{\theta_{L}}{ }^{\theta_{R}}=$ angular displacements at the left and right ends of the eiement respectively
$T_{L}, T_{R}=$ torques at the left and right ends of the element respectively Erom elementary theory of finite elements, the element stiffness matrix is [E]. The stiffness equation is:
$[E][\theta]=[T]$
or, the expanded form of this equation is:

$$
\left|\begin{array}{cr}
K-J^{*} w^{*} w^{+} j^{*} w^{*}\left(C_{0}+C_{i}\right) & -K-j^{*} w^{*} C_{i} \\
-K-j^{*} w^{*} C_{i} & K+j^{* *} w_{i}^{*} C_{i}
\end{array}\right| \begin{gathered}
\theta_{L} \\
\theta_{R}
\end{gathered}\left|=\left|\begin{array}{l}
T_{L} \\
T_{R}
\end{array}\right|\right.
$$

The values of $\theta_{L}, T_{L}, \theta_{R}$ and T_{R} that satisfy the above equation. will satisfy the equations of wotion. Note that, in general, θ and T are complex quantities, which have real and imaginary components.

The stiffness matrix can also be obtained by rearranging terms in the transfer matrix ${ }^{7}$.

Let the displacement vector be $\bar{\theta}=0 * e^{i \omega t}$
and the exciting torque vector be $T=-T * e^{i w t}$
$\left|\begin{array}{c}\theta_{R} \\ T_{R}^{*}\end{array}\right|=\left|\begin{array}{cc}1 & -1 /\left(K+j^{*} W^{*} C_{i}\right) \\ 0 & 1\end{array}\right| \begin{array}{cc}1 & 0 \\ W^{*} W^{*} J-j^{*} W^{*} C_{0} & 1\end{array}\left|\begin{array}{c}\theta_{L} \\ T_{L}\end{array}\right|$
$\left.=\left|\begin{array}{cc|c}1-\left(w^{*} W^{*} J-j^{*} w^{*} C_{0}\right) /\left(K+j{ }^{*} w^{*} C_{i}\right) & -1 /\left(K+j{ }^{*} W^{*} C_{1}\right) \\ w^{*} W^{*} J-j^{*} w^{*} C_{0} & 1\end{array}\right| \begin{gathered}{ }^{0} L \\ T_{L}\end{gathered} \right\rvert\,$
Let $A=W^{*} W^{*} J=J^{*} W^{*} C_{0}$
and B and $K+j^{*} W^{*} C_{i}$
Then $\theta_{R}=(1-A / B){ }^{*} \theta_{L}-T_{L} / B$
which gives
and

$$
\begin{aligned}
& T_{L}=-\theta_{R} * B+(B-A){ }^{*} \theta_{L} \\
& T_{R}^{*}=A^{*} \theta_{L}+T_{L}
\end{aligned}
$$

which gives

$$
T_{R}^{*}=B^{*}\left(\theta_{L}-\theta_{R}\right)
$$

But $T_{R}^{*}=-T_{R}$ since T_{R}^{*} is the remainder torque which must be opposed by I for the element to satisfy the equations of motion. Therefore,

$$
\begin{equation*}
T_{R}=-B \times\left(\theta_{L}-\theta_{R}\right) \tag{2}
\end{equation*}
$$

Equations 1 and 2 in the matrix form are:

$$
\left.\left|\begin{array}{l}
T_{L} \\
T_{R}
\end{array}\right|=\left|\begin{array}{lr}
B-A & -B \\
-B & B
\end{array}\right| \begin{aligned}
& \theta_{L} \\
& \theta_{R}
\end{aligned} \right\rvert\,
$$

$=\left\{\begin{array}{l}K-w^{*} w^{*} J+j^{*} w^{*}\left(C_{0}+C_{1}\right) \\ -K-j^{*} w^{*} C_{1}\end{array}\right.$

or,

$$
[T]=[E][\theta]
$$

The following example problem will illustrate the various steps in the finite element method (Figure 2.2). Assume consistent units for all quantities.

Figure 2.2 Illustrative Torsional System

Nocie	$-\infty$	1	2	3	4	5	6	7
Applied Torques	---	8	8	-3	-1	8	8	-6

The harmonic frequency of the applied torque is two radians per second.

This problem may be solved as a one branch system, however. for illustrative purposes this solution considers the systen to be eade up of two branches with one junction.

Branch 1 : This branch consists of nodes 4. 3. 2. 1. Wode is the junction node. The stiffness matrix of this branch [S]. obtained by assembling the appropriate element stiffness eatrices [E] as per the typical finite element procedure, is given below.
$\left|\begin{array}{l}T_{4} \\ T_{3} \\ T_{2} \\ T_{1}\end{array}\right|=[s] \quad\left|\begin{array}{l}\theta_{4} \\ \theta_{3} \\ \theta_{2} \\ \theta_{2}\end{array}\right|$
where
$[S]=\left|\begin{array}{cccc}2-2 * 2^{2} & -2 & 0 & 0 \\ -2 & 2+8-1 * 2^{2} & -8 & 0 \\ 0 & -8 & 8+4-3 * 2^{2} & -4 \\ 0 & 0 & -4 & 4-2 * 2^{2}\end{array}\right|$
$[S]=\left|\begin{array}{cccc}-6 & -2 & 0 & 0 \\ -2 & 6 & -8 & 0 \\ 0 & -8 & 0 & -4 \\ 0 & 0 & -4 & -4\end{array}\right|$
The branch stiffness matrix is always tri-diagonal and symmetric. The off-diagonal elements are simply the negative of the diagonal value, $-K$, or it is $-\left(+K+j{ }^{*} W^{*} C_{i}\right)$ when internal damping is present. Therefore, from a comuter storage point of view. it is only necessary to store the diagonal elements.

As other branches can be linked to this branch only at the extreme ends, only the two degrees of freedoa at the ends of a branch need be retained to add to the systen stiffness matrix. A super-element stiffness matrix, equivalent to the branch stiffness matrix, but with only two degrees of freedon can be obtained as follows.

The equations up to this point are:
Equation
\(2\left|\begin{array}{cccc}-6 \& -2 \& 0 \& 0

-2 \& 6 \& -8 \& 0

0 \& -8 \& 0 \& -4

0 \& 0 \& -4 \& -4\end{array}\right|\)| θ_{4} |
| :---: |
| θ_{3} |
| 0 |
| θ_{2} |
| θ_{1} |\(\left|=\left|\begin{array}{c}0

-3

8

0\end{array}\right|\right.\)

The values of T_{1} and T_{1} are onitted in the right hand vector. They will be added to the first and last entries of the right hand vector later as they should be added only once.

Elininate 0_{3} from equations 1 and 3 and retain equations 1.3 and 4 by the following process, which forces colunn 2 of the above equation to be zero:

Multiply equation 2 by $1 / 3$ and add to equation 1.
Multiply equation 2 by $8 / 6$ and add to equation 3 .
The resulting matrix equation is:

1
3

-8 / 3 \& -32 / 3 \& -4

0 \& -4 \& -4\end{array}\right| \quad\left|$$
\begin{array}{l}\theta_{4} \\
0_{2} \\
0_{1}\end{array}
$$\right|=\left|$$
\begin{array}{c}-1 \\
4 \\
0\end{array}
$$\right|\)

Eliminate θ_{2} from equations 1 and 4 and retain equations 1 and 4 which have the end nodes.

$$
\left|\begin{array}{cc}
-6 & 1 \\
1 & -5 / 2
\end{array}\right|=\left|\begin{array}{l}
0_{4} \\
0_{1}
\end{array}\right|=\left|\begin{array}{l}
-2 \\
-3 / 2
\end{array}\right|
$$

Branch 2: this branch consists of nodes 7, 6, 5. 4. Node is the junction node.

The branch stiffness eiatrix is:
(. $5-12^{2}$)
$-.5$
$\left(.5+3.5-3=2^{2}\right)$
0
-3.5
-3.5
0
$\left(3.5+2-1.5^{-2} 2^{2}\right)$
-2
0

The values of T_{7} and T_{4} are onitted from the right hand vector as they will be added later. Also the value of J in the $(4,4)$ position of the stiffness matrix is set to zero at this step as it was included in the matrix for branch one and should be added only once at the junction node.

The super-element stiffness matrix is reduced as follows by eliminating all displacement variables except at the ends of the branch.

$$
\begin{array}{|}
\left|\begin{array}{cccc}
-3.5 & -.5 & 0 & 0 \\
-.5 & -8 & -3.5 & 0 \\
0 & -3.5 & -.5 & -2 \\
0 & 0 & -2 & 2
\end{array}\right| \begin{array}{l}
0 \\
\theta_{7} \\
\theta_{6} \\
\theta_{5} \\
\theta_{4}
\end{array}\left|=\left|\begin{array}{l}
0 \\
8 \\
8 \\
0
\end{array}\right|\right. \\
\left|\begin{array}{ccc}
\theta_{5} \\
-111 / 32 & 7 / 32 & 0 \\
0 & 33 / 32 & -2 \\
7 / 32 & -2 & 2
\end{array}\right| \begin{array}{l}
\theta_{7} \\
\theta_{5} \\
\theta_{4}
\end{array}\left|=\left|\begin{array}{c}
-.5 \\
4.5 \\
0
\end{array}\right|\right.
\end{array}
$$

Assemble the super-element stiffness matrices to form the system stirfness equation. The values of T_{4}, T_{1} and T_{7} are added to the right hand vector as shom below.
$\left|\begin{array}{ccc}-6-1.8787878 & 1 & .4242424 \\ 1 & -2.5 & 0 \\ .4242424 & 0 & -3.5151515\end{array}\right|\left|\begin{array}{l}\theta_{4} \\ \theta_{1} \\ 0_{7}\end{array}\right|=\left|\begin{array}{c}-2+8.7272727-1 \\ -1.5+8 \\ -1.4545454-6\end{array}\right|$
$\left|\begin{array}{ccc}-7.8787878 & 1 & .4242424 \\ 1 & -2.5 & 0 \\ .4242424 & 0 & -3.5151515\end{array}\right|\left|\begin{array}{c}\theta_{4} \\ 0_{1} \\ 0_{7}\end{array}\right|=\left|\begin{array}{c}5.7272727 \\ 6.5 \\ -7.4545454\end{array}\right|$

The system stiffness matrix, which is formed by the assembly of symetric super-element stirfness matrices, is also symetric.

The above system of equations can be solved to obtain the angular displacements of the super-element's degrees of freedom. (The superelement's degrees of freedom will be referred to as the 'master' degrees of freedom in the future.) The solutions are:

$$
\begin{aligned}
& \theta_{4}=-1 \\
& \theta_{1}=-3 \\
& \theta_{7}=2
\end{aligned}
$$

All of the stiffness matrices will be complex if damping is present in the system.

Let the degree of a junction node be defined as the number of junction nodes directly linked to it, ignoring intermediate nodes in the branches. All other master nodes (non-junction nodes at the termination of branches) are of degree zero. Only master nodes are assigned degrees.

As an example, consider the following system with 16 nodes and 8 branches as shown in Figure 2.3.

Figure 2.3 Torsional System to Illustrate Degree of Nodes

| Node -1 | 4 | 6 | 7 | 10 | 11 | 13 | 15 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Degree - 0 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 0 |

$A 11$ other master nodes are of degree 0.
Knowing the displacements at the master nodes, values at nodes adjacent to the master nodes may be calculated from equations obtained by adding together appropriate elements in the branch equilibrium equations. Displacements at all other nodes may be calculated directly from the brar ch equilibrium equations.

To ensure that no more than one unknown is present in an equation at any time during back substitution, nodes adjacent to the master nodes should be solved for in increasing degree of the master nodes. For exauple, in the above rigure, displacements at the non-master nodes would be solved for in the following order:

In the first example problem, which was solved as a two branch system, nodes 1, 4 and 7 are of degree 0 . Therefore displacements at all of the non-master nodes may be solved for in one pass.

The equilibrium equations for the whole system (without reduction to super-elements) are:
\(\left|\begin{array}{ccccccc}-4 \& -4 \& 0 \& 0 \& 0 \& 0 \& 0

-4 \& 0 \& -8 \& 0 \& 0 \& 0 \& 0

0 \& -8 \& 6 \& -2 \& 0 \& 0 \& 0

0 \& 0 \& -2 \& -6+2 \& -2 \& 0 \& 0

0 \& 0 \& 0 \& -2 \& -.5 \& -3.5 \& 0

0 \& \theta_{2}

\theta_{3}

0 \& 0 \& 0 \& 0 \& -3.5 \& -8 \& -.5

\theta_{4}

0 \& 0 \& 0 \& 0 \& 0 \& -.5 \& -3.5\end{array}\right|=\)| θ_{1} |
| :---: |
| θ_{5} |
| θ_{6} |
| θ_{7} |\(\left|\begin{array}{c}8

8

-3

-1

8

8

-6\end{array}\right|\)

Having calculated the displacements at the master nodes 1, 4 and 7, the displacements at nodes 2, 3, 6 and 5 are calculater from equations 1, 2, 7 and 6 respectively.

```
Fron equation \(1: \theta_{2}=1\)
From equation \(2=0_{3}=.5\)
From equation 7 : \(0_{6}=-2\)
From equation \(6: 0_{5}=2\)
```

The torque in a shaft can be calculated by the following formula:

$$
\left[T_{n}\right]=K_{n}\left[\theta_{n-1}-\theta_{n}\right]
$$

where $(n-1)$ and n are the nodes on the shart and K_{n} is the stiffness of the shart.

The stress in the shart can be calculated by the rollowing formula:

$$
\tau_{n}=T_{n} c / J_{n}
$$

where c is the radius of the shart
and J_{n} is the polar moment of inertia of the shaft
The fundamental equations for the finite element of a shaft and mass with damping have been developed. A scheme which greatly reduces the numerical difficulties in the solution of a systen which has many masses has been described. In order to implement these concepts in an efficient manner, a computer program must be designed to carry out these operations for a general system.
3. SATOV - A Computer Program for the Finite Element Method:

A computer program, SATOV (Stress Analysis for Torsional Vibrations), was written in Fortran for analyzing the vibratory stresses in a forced, damped, multi-branch torsional system(18). It is based on the procedure presented in the previous chapter.

The program can handle either externally applied torques or engine excitations. The results can be output in any of the following ways:

1 - Printout of the displacement at each node
2 - Printout of the torque or stress in each shaft
3 - Plot of the vibratory torque of stress in each shaft versus the engine speed (for engine excitation) or frequency of the harmonic forcing torques (for external excitation)

The input for the case of externally applied torques is as follows:

Line 1 - ICOPR, IPLOT, 1

Line 2 - FMIM, FMAX, FINC

ICOPR = 0 - printout suppressed - 1 - printout activated

IPLOT $=0$ - plots suppressed = 1 - plots activated

FHIN = ninimun frequency (rad/sec)
FMAX $=$ maximum frequency (rad/sec)
FINC = increment frequency (rad/sec)

Line 3 - NBRMCH \quad NBRNCH = number of branches in the system
Line 4 - MODMAX mODMAX = number of nodes in branch 1
Line 5 - +MOD, +OJ, +OK

MOD $=$ Node number, negative if the node is a junction node
$0 J=$ Rotational mass moment of inertia, negative if an external damper is present at this mass
OK = Spring stiffness coefficient, negative if an internal damper is present parallel to the spring

If both $0 J$ an $O K$ are both positive, skip line 6.
Line $6-C_{0}, C_{1}$
C_{0} = external damping coefficient
C_{i}^{0} - internal damping coefficient

Line 7 - +NOD, +OJ, +OK
up to nODMAX
Line $N+1$ - +NOD, +OJ, +OK

Repeat starting at line 4 for each branch of the system

Line M+1 - Complex torques applied at nodes in branch 1 (in the same order in which the nodes were specified for this branci)

Line M+2 - Complex torques applied at nodes in branch 2

Line M+NBRNCH - Complex torques applied at nodes in branch NBRNCH

For the case of engine excitation, data input is as follows:
Line 1 - IGOPR, IPLOT, 0

$$
\begin{aligned}
\text { IGOPR } & =0 \text { printout suppressed } \\
& =1 \text { printout activated } \\
\text { IPLOT } & =0 \text { pl suppressed } \\
& =1 \text { pluss activated }
\end{aligned}
$$

Line 2 - IORD, $\operatorname{ORD}(1), \operatorname{TAMP}(1), \operatorname{ORD}(2), \operatorname{TAMP}(2), \cdots, \operatorname{ORD}($ IORD), TAMP(IORD)

IORD = number of orders to be analyzed ORD(I) = order number $\operatorname{TAMP}(I)=$ excitation torque amplitude for order number ORD (I)

* NOTE * For a V - engine TAMP(I) $=V$ Torque amplitude where $V=2 * \operatorname{COS}(\operatorname{ORD}(I) * .5 * A L P H A)$ where $A L P H / A=V$ angle of engine

Line 3 - FMIN, FMAX, FIMC FMIN = minimum engine speed (rpm) FMAX = maximum engine speed (rpm) FINC - increment engine speed (rpm) .

Line 4 - NBRNCH
NBRNCH = number of branches in the system
Line 5 - NODMAX NODMAX = number of nodes in branch 1
Line 6 - NCYL, NSTKE

NCYL = number of cylinders for the engine in this branch
NSTKE $=2$ for two stroke engine

- 4 for four stroke engine

Line $7-I(1), I(2), I(3), \cdots, I(N C Y L)$ these are the firing orders according to the node numbers

* NOTE * In the case of a v - engine these are the firing orders in only one of the two banks. The V-factor, used in calculating the torque amplitude, takes into account the effect of the other bank of cylinders.

Line 8 - +NOD, + OJ, + OK , as explained for the case of externally
Line $9-C_{0}, C_{1}$) applied torques
repeat from line 5 for each branch of the system.
For the sample problem of chapter 2, the input data would be:

```
1,0,1
2.,2..1.
2
4
-4,2.,2.
3.1.,8.
2,3:.4.
1,2.,0.
4
7.1.,.5
6,3..3.5
5,1:5,2.
-4,2.,0.
-1.,0.,-3.,0.,8.,0.,8.,0.
-6.,0.,8.,0.,8.,0.,-1.,n,
```

The following problea gives an example of input data for the case of engine excitation.

Figure 3.1 Example Problem with Engine Excitation

$K 1=1.5 E 6$	J1 $=20$.	CO $=2 . E 4$
$K 2=13.05 E 6$	$\sqrt{2}=110$.	$C I=1 . E 4$
$K 3=16.5 \pm 6$	$\mathrm{J} 3=2.5$	
$K 4=16.5 E 6$	$54=2.5$	
K K $=12.7 E 6$	$\sqrt{5} \cdot 2.5$	
	J6-1:0.	

```
Let the engine have the following characteristics:
3 cylinders, 4 stroke, 1-3-2 firing order.
Orders of excitation torque of interest are 1.5 and 4 with
corresponding torque amplitudes of 750C. ant 4000.
The range of engine speed, which is of interest is,
    500 rpm < n < 800 rpm
Only vibratory torque plots are required for each shaft.
    The data input would be:
0,1,0
2,1.5,7500., 4.,4000.
500., 800..4.
1
6
3,4
3,5,4
1, 20., -1.5E6
0.,1.E4
2,110., 13.05E6
3, -2.5, 16.5E6
2.E4, 0.
4, 2.5, 16.5E6
5, -2.5, 12.7E6
2.E4,0.
6, 110., 0.
```


Figure 3.2

The program SATOV was used to evaluate the forced-damped response for the system illustrated in Figure 3.3, which encompasses almost all possible variations that could be encountered in a real torsional system. The data are given in Table 3.1. The results were compared with those obtained from the ANSYS* finite element software package. The frequency of the excitation torque is $800 \mathrm{rad} . / \mathrm{sec}$.

Figure 3.3 Torsional System for Testing the Program SATOV

INERTIA	TORSIONAL STIFFNESS
(lb.in.sec.)	(1b.in./rad.)
$\mathrm{Jl}=40$	$\mathrm{K} 1,2=30 . \mathrm{E} 6$
$\mathrm{J} 2=70$	$K 2,3=40 . E 6$
$\mathrm{J} 3=20$	K3.4 $=80 . \mathrm{E6}$
$54=30$	K4,5-20.E6
$\sqrt{5}=50$	$K 5,6=60 . E 6$
$\mathrm{J} 6=60$	K6,7 $=40 . \mathrm{E} 6$
$J 7=20$	$\mathrm{K7,8}=70 . \mathrm{E} 6$
$\mathrm{J} 8=40$	$K 8,9=60 . E 6$
j9 - 70	K9,10 = 20.E6

$J 10$	$=30$	$K 10,11$	$=60 . E 6$
$J 11$	$=10$	$K 6,12$	$=30 . E 6$
$J 12$	$=40$	$K 12,13$	$=40 . E 6$
$J 13$	$=20$	$K 13.14$	$=200 . E 6$
$J 14$	$=70$	$K 14,15$	$=150 . E 6$
$J 15$	$=30$	$K 15.16$	$=20 . E 6$
$J 16$	$=60$	$K 6,17$	$=40 . E 6$
$J 17$	$=10$	$K 17,18$	$=50 . E 6$
$J 18$	$=80$	$K 19.20$	$=100 . E 6$
$J 19$	$=40$	$K 20.21$	$=80 . E 6$
$J 20$	$=30$		

DAMPING COEFFICIENT
(1b.in.sec./rad.)
$C 1=10000$.
$C 2=20000$.

EXCITATION TORQUE
(1b.in.)
$\operatorname{TAMP}(I)=0 .+0.1$ for $I=1$ to 4
$\operatorname{TAMP(5)}=5000+01$
$\operatorname{TAMP}(I)=0 .+0.1$ for $I=6$ to 8
TAMP(9) $=8000+3000 \mathrm{i}$
$\operatorname{TAMP}(I)=0 .+0.1$ for $I=10$ to 15
$\operatorname{TAMP}(16)=6000+01$
$\operatorname{TaMP}(I)=0 .+0.1$ for $I=17$ to 21
displacerents

	SATOU		ANSYS	
Node	$\begin{gathered} \text { Real } \\ \text { (radians) } \end{gathered}$	Imaginary (radians)	$\begin{gathered} \text { Real } \\ \text { (radians) } \end{gathered}$	Imaginary (radians)
1	. $339888 \mathrm{E}-3$. $180836 E-3$. $339869 \mathrm{E}-3$.180837E-3
2	.498473E-4	. 265226E-4	.498477E-4	.265229E-4
3	-. 223497E-3	-.119918E-3	-.223498E-3	-.1189!9E-3
4	-.324410E-3	-.172611E-3	-. 324411E-3	-.172E12E-3
5	-.42082?E-3	-. 183111E-3	-. 430829E-3	-. 183112 E -
6	-.310458E-3	-.101807E-3	-. 310460E-3	-. $101808 \mathrm{E}-3$
7	-. $296527 E-3$	-.876311E-4	-. 296529E-3	-. $976326 E-4$
8	-. $234344 \mathrm{E}-3$	-. $635064 E-4$	-. 234346E-3	-.635079E-4
9	-.618107E-4	-.826484E-5	-. $618115 \mathrm{E}-4$	-.825573E-5
10	. $194246 \mathrm{E}-3$. 259731 E-4	.194249E-3	-. 259759E-4
11	. $217439 E-3$. 290743 E -4	. $217443 \mathrm{E}-3$.290775E-4
12	. $399598 \mathrm{E}-4$.106911E-3	.899604E-4	. $1069125-3$
13	. $332699 \mathrm{E}-3$.195027E-3	. 332701 E-3	.19502:E-3
14	. 359954 E -3	. 200169 E -3	. 359956E-3	.200!71E-3
15	. 228783E-3	.14:240E-3	. 288790E-3	. $147242 \mathrm{E}-3$
16	-. $639987 E-3$	-. $160044 \mathrm{E}-3$	-. 639990E-3	-. $160048 \mathrm{E}-3$
17	-. 161110E-3	-. 528323E-4	-. $161111 \mathrm{E}-3$	-. 528328E-4
18	-.210100E-4	-. 688972E-5	-. 210099E-4	-. 689974E-5
19	. 592580E-5	. $194322 E-5$. $592595 E-4$.194328E-5
20	. 252161 E-4	. 279446E-4	. 8521 66E-4	. 27? ${ }^{\text {P49E-4 }}$
21	.163877E-3	. 537398 -4	. $163878 \mathrm{E}-3$.537401E-4

Table 3.2 Comparison of Displacements rrom ANSYS and SATOV

The performance of the SATOV software is given credibility by the comparison of output from SaTOV with output from the commercial software package AHSYS. ${ }^{2}$ The results are almost identical. However. the cost of the large general purpose ANSYS package is several thousand dollars per month. A special purpose finite element package orfers advantages in size and economy when a general purpose package is not otherwise needed.

4. SEMSITIVITY STUDIES:

Sensitivity studies of the response of the torsional vibrations to a change in the size of a design variable can aide the analyst as the systen is tuned. A plot of natural frequencies and excitation harmonics versus engine speed can indicate the proximity of a resonance condition for any engine speed. However, the sensitivity study can provide insight into the interaction of the variables which constitute the system.

The system of Figure 4.1 was analyzed and produced the ten natural Prequencies identified on Figure 4.2 as $f_{1}, f_{2}, \ldots f_{10}$. The prime mover is a sixteen cylinder, two stroke, internal coabustion engine which may be operated at different speeds between low idle and rated speed, when the generator is not producing 60 Hz current. The harmonic associated with a major critical speed (3) is the eighth order harmonic, which excites the system at a frequency equal to eight times the engine speed. The eighth harmonic is not close to resonance with any of the system's natural frequencies when the engine speed is operating at the rated speed, 900 RPM. However, the third order harmonic and the tenth harmonic are close to resonance with natural frequencies at this speed.

[^4]It is more desirable to tune frequencies out of the operating speed range than to dampen the vibrations to acceptable levels. However. with fixed propeller systems. this is not practical.

Figure 4.1

Figure 4.2

In order to conduct the sensitivity study to evaluate the changes needed so reture or dampen the system, a system model aust be constructed. Even though the analysis process is well defined. the analyst must exercise his own judgement in order to obtain the desired results. The modeling of the system consists of dividing the inertias into lumps which are separated by spring constants. the damping may be distributed across the lumps of inertia if a damped natural frequency is to be evaluated. (If an undanped analysis is to be used, the damping appears in an energy balance equation which establishes an overall anplitude scaling factor (3). The undanped and unforced analysis assumes that damping torques and excitation torques are small and will not significantly change the relative anplitudes of the mode shape.) The natural frequencies and mode shapes may be obtained by the damped Holzer method or by the rinite element method. The analyst must use an adequate number of inertia lumps which usually results in a branched mass-eiastic diagran (10). The same mass-elastic diagran may be used for the Iinite element diagram as for the damped-branched Holzer method. The addition of entrained water to the propeller inertia value, the consideration of misfiring by an internal combustion engine, and the integration of nonlinear stiffness of an elastic coupling are some of the factors which the analyst must consider. If the number of lumped inertias is small, the time required to perform the analysis and evaluate the results is low: however. if the number is too small to represent the system, the results may contain errors.

In order to illustrate difficulties due to the lumping of inertias. consider Figure 4.3 which has a gear, coupling, propeller and two shafts. Most models would represent this system by three lumps of inertia, one aade up of the gear plus half of shaft 1 . A second lump consisting of the coupling plus half of shaft 1 and half of shaft 2. A third lump consisting of the propeller plus half of shaft 2. Now consider that the inertia of the coupling may be of the same magnitude as the inertia of half of the long shaft 2. This model is satisfactory for the propeller node. How ever, in the coupling mode, the propeller and gear will move very little due to their large inertias while the coupling has high relative anplitudes. Hence, the two shafts tend to act like two springs each of which have one end fixed and the other end free. Therefore, for the coupling mode, the equivalent inertia of the second lump should be equal to the Inertia of the coupling plus one third of the inertias of the two shafts. This does change the natural frequency. If the three lump system had been replaced with five or more lumps, the distribution of the inertias would have been more representative of the system for all modes of vibration.

For $I_{2}=I_{c}+. S\left(I_{s 1}+I_{s 2}\right)=12$
$f_{1}=540.9 \mathrm{rad} / \mathrm{sec}$
$f_{2}=874.0$

Figure 4.3 Three Mass System Comparison of Method for Evaluating I_{2}.

The misfiring engine presents many different possibilities for the analysis (e.g., is partial firing occurring, which cylinder is misfiring, how many cylinders are misfiring?). One suggestion is to assume that compression of the air-gas mixture occurs without an ignition. This will establish some pressure harmonic components. Also, the variable torque due to the mass of the reciprocating slider-crank mechanism should be inclifed. The location of the misfiring cylinder will influence the value of the phase vector sum or the piston displacements, $28 .(3)$ It is suggested that the phase vector sums be evaluated for the engine with each cylinder misfiring and that only the worst case be used in the analysis. The sensitivity study of the system shown in Figure 4.4 will be used as an example. The first natural frequency mode shape of Figure 4.5 shows the propeller swinging in opposition to the remainder of the system with the node located in the propeller shaft, which has low stiffness. The large stress is at the node since it experiences the rull inertia torque.

This first mode can be excited by the first or second engine harmonic or by the 3 blade propeller when the engine speed is 584 RPM. The mode shape for the second natural i-equency (Figure 4.6) shows the gear, G, and clutch, $C D$, swinging in opposition to the engine while the large propeller, which is on the end of the long propeller shaft, does not move appreclably from its steady state position. The third mode (Figure 4.7) shows the engine and gear swinging in opposition to the flywheel. This is a characteristic of this engine. The third mode (Figure 4.8) shows the engine damper swinging against the engine while the large flywheel is relatively stationary. The engine damper provides significant damping at vibrations of this frequency, which produces relative large deflections of the crankshaft.

Figure 4.4 Marine Vessel Mass-Elastic Diagram

- 158 -

Figure 4.5 First Mode
ZND MOOE (325S2 VPM)

Figure 4.6 Second Mode

3RD MODE (38548 VPM)
Figure 4.7 Third Mode
4TH MODE (6222.5 VFN.)

Figure 4.8 Fourth Mode

The sensitivity of the amplitude scaling factor (This is the factor which is multiplied times the mode shape amplitudes to change these relative amplitudes to absolute values.) as a function of engine damping is shown in Figure 4.9. The influence of flywheel inertia on the values of natural frequencies may be useful in retuning a systen (Figure 4.10). The sensitivity of the mode shapes to flywheel inertia is indicated in Figure 4.11. The sensitivity of the natural frequencies to the stiffness of the elastic coupling, which is often changed to retune a system, si given in Figure 4.12. Since the elastic coupling has the node for the second frequency, the change in coupling stiffness has a maximum impact on mode 2. The sensitivity of natural frequencies to propeller shaft stiffness is used to retune the system (Figure 4.13). The sensitivity of mode shapes to changes in propeller inertia are shown in Figure 4.14. The sensitivity of natural frequencies to propeller inertia is shown in Figure 4.15.

Figure 4.9 Sensitivity of Amplitude Scaling Factor to Engine Damping

Figure 4.10 Sensitivity or Natural Frequencies to Flywheel Inertia

Figure 4.12 Sensitivity of Natural Frequencies to Elastic Coupling Stiffness

Figure 4.13 Sensitivity of Natural Frequencies
to Propeller Shaft Stiffness
first mode

THIRD MODE

Figure 4.14 Sensitivity of Mode Shapes to Propeller Inertia

Figure 4.15 Sensitivity of Natural Frequencies to Propeller Inertia

APPERDIX A

Progran : SATON

REFERENCE LIST

1. A.G.M.A., AGM Information Sheet Systems Considerations for Critical Service Cear Drives Manufacturers Association.
2. Jones, E. W., Peng, C. H., and Pan, C. T., Torsional Vibrations in Work Boat Power Trains From the Designer's Point of View, presented at the Hork Boat Show, New Orleans, LA, Jan. 1982.
3. Den Hartog, J. P., Mechanical Vibrations, McGraw Hill Book Co., New York, 1956.
4. Harrington, Roy L.. Marine Engineering, Society of Naval Architects and Marine Engineers, Hew York, MY. 1971.
5. Nestorides, E. J., A Handbook of Torsional Vibrations, British Internal Combustion Engine Research Association, University Press. Cambridge, 1958.
6. Wilson, Ker W.. Practical Solution of Torsional Vibration Problems, Volumes 1-5, Third Edition, Chapman $\&$ Hall Ltd.. 11 Hew Fetter Lane, London EC4.
7. Lloyd's, Rules and Regulations for the Construction and Classification of Steel Ships, Lloyd's Register of Shipping, West Sussex, RH10 2QN, England, 1976.
8. A.B.S., Rules for Building and Classing Steel Vesseis, American Bureau of Shipping, 45 Broad Street, New York, NY, 1977.
9. Jones, E. W., Buchholz, \&. J., Predicting the Performance of Dynamic Mechanical Systems, Zhengzhou Research Institute of Mechanical Engineering, Zhengzhou, PRC, 1988.
10. Tse, F. A., Morse, I. E., Hinkle, R. T., Mechanical Vibrations Theory and Applications, Allyn and Bacon, Inc., Boston, 1963.
11. Holzer. H., 'Analysis of Torsional Vibration', Springer, Berlin, 1921.
12. Hartog, J. P. and Li, J. P., 'Forced Torsional Vibrations with Damping: An Extension of Holzer's Method', Journal of Applied Mechanics, Trans. ASME, Vol. 68, 1946, p. A-276.
13. Spaetgens, T. W. and Vancouver, B. C., 'Holzer Method for Forced-Damped Torsional Vibrations', Journal of Applied Mechanics. Vol. 17. 1950, pp. シ: 6 63.
14. Jong-Shyong Wu and Wen-Hsiang Chen, "Computer Method for Forced Torsional Vibration of Propulsive Shafting Systems of Marine Engine With or Without Damping', Journal of Ship Research, Vol. 26, No. 3. Sept. 1982, pp. 176-189.
15. Edwards, A. J., 'TORVAP-A : A Computer Program for the Torsional Vibration Analysis of Multi-junction. Multi-branch Systems'. Computer Aided Design, Vol. 5, No. 3, July 1973.
16. Willian T. Thomson, 'Vibration Theory and Applications', Prentice Hall, New Jersey, 1965.
17. Robert D. Cook, 'Concepts and Applications of Finite Element Analysis'. Second Edition, John Wiley and Scns, New York, 1981.
18. Bangalore. Kumar N.. Comparison of a Forced-Danped Finite Element Method with a Method Using Free-Undamped Vibration Mode Shapes for Torsional Vibration Analysis, Master of Mechanical Engineering Thesis, Mississippi State University. 1985.

LECTURE 4 : AN INTEODUCTION TO THE FINITE ELENENT METEOD

 ABSTRACT:The Finite Element Method allows the mechanical designer to analyze complex shapes for stresses, deflections, vibrations, and thermal distributions. This paper gives an introduction to the Finite Element Method.

1. INTRODUCTION:

The mechanical designer tends to optimize function and minimize the material in a design. This often results in components with complex geometry which car not be analyzed by the equations from strength of materials because of their simplified assumptions (e.g.. the shape is a long prismatic member). (On the other hand, the Civil Engineer tends to design structures using long prismatic members, which san be analyzed.) Two approaches were available to size these components with irregular shapes prior to the 1960's: the Theory of Elasticity Method and the Experimental Method.

The Theory of Elasticity Method with its elegant mathematics is not well suited to the needs of the practicing engineer. However, it is an excellent research method and has been used in many thesis dissertations to obtain the solutions of special case geometry and loading combinations. Professor R. J. Roark recognized the value of these solutions to practicing engineers and published a book, Formulas for Stress and Strain, containing many of these solutions (1)'. This book has been regularly updated and serves the intended purpose well. however, the research has not covered all of the cases required by the practicing engineer.

[^5]The Experimental Method presents many options for sizing components and some of these options are listed below.

1. Manufacture the component, load it and observe any failures which occur. The load many be a static load or it may be a -epeating load, which will produce fatigue.
2. Coat the component with a brittle coating (4), which has a low strain threshold. Load the part and observe the crack patterns in the coating to identify areas of high tensile strains.
3. Make a replica of the part from a birefringent material. Strain this replica in a polariscope to identify the differences in the principal stresses over the part.
4. Apply strain gages to the surface of the part and measure strains on the surface.

One reason for the wide acceptance of the Experimental Method is because it reduces the number of assumptions. On the other hand, before the Experimental Method can be applied, the component (or its replica) must be manufactured and the designer does not have a rational method for sizing the part for the initial drawirg.

The analysis of frames, which are assembled from uniform prismatic members. was accelerated by the availability of the computer in the 1950's. By modeling the elastic deflection of a redundant frame using matrix methods, the forces and deflections could be analyzed.

Practicing engineers began to use the Finite Element Method, FEM, for the analysis of stresses and deflections of complex geometric shapes in the 1960's. This method provided an analytical method as an alternative to the Experimental Method. The idea of the FEM is to
divide the solution domain into a finite number of subdomains, which are called elements. These elements are connected only at their node points and on the element boundaries (2). By using small elements of material, whose force and deflection characteristics are known, a model of a complex shape can be constructed mathematically and the resulting equations can be solved.

Two types of finite elements are discussed in this paper: (a) "natural" elements and (b) elements based on assumed modes of displacement.
2. NATURAL ELEMENTS: Bar Element:

The finite element method may be based on the stiffness method to define the relationship between displacements, d, stiffness, k, and forces, r. The stiffness equation for a finite element is
$[k]\{d\}=\{r\}$

The bar type of finite element illustrated in Figure 2.1 is a uniform prismatic member which is aligned with the x-axis and subjected to axial loads. The ends of the bar element have nodes, which are labeled i or j. Other elements may be attached to these nodes. Forces may be applied at the nodes. The matrix quantities k, d and r for this element are:
$[k]=\frac{A E}{L}\left|\begin{array}{lr}1 & -1 \\ -1 & 1\end{array}\right|$
$(d)=\left\{\begin{array}{l}u_{1} \\ u_{j}\end{array}\right\}$
$\{r\}=\left\{\begin{array}{l}P_{1} \\ P_{j}\end{array}\right\}$

Expansion of the stiffness equation into two linear equations by matrix multiplication yields the expected results:

$$
\begin{aligned}
u_{i}-u_{j} & =p_{i} L / A E \\
-u_{i}+u_{j} & =p_{j} L / A E
\end{aligned}
$$

$A=$ Cross sectional area
$\mathrm{E}=$ Modulus of Elasticity
$\mathrm{L}=$ Length
$u_{i}=$ Displacement of ith node
$\mathbf{u}_{j}^{i}=$ Displacement at j th node
$\mathbf{p}_{\mathbf{i}}=$ Axial force applied to i node
$\mathbf{P}_{\mathbf{j}}=$ Axial force applied to \mathbf{j} node

NOIE: All forces are shown in the positive directions to illustrate tive sign convention.

Figure 2.1 One Dimensional Bar Element
A two dimensional bar element is illustrated in Figure 2.2. It can have x and y displacements at each node and x and y components of forces may be applied at each node. The input data will be the initial positions of each node $\left[\left(x_{i}, y_{i}\right)\right.$ and $\left.\left(x_{j}, y_{j}\right)\right]$, the force components at each node $\left[\left(p_{i}, q_{i}\right)\right.$ and $\left.\left(p_{j}, q_{j}\right)\right]$, the cross sectional area (A), and the modulus of elasticity (E). The element length (L) is calculated.

$$
L=\left[\left(x_{j}-x_{i}\right)^{2}+\left(y_{j}-y_{i}\right)^{2}\right]: 5
$$

The sines and cosines of the element's positicn angle are

$$
\begin{aligned}
& S=\sin B=\left(y_{j}-y_{i}\right) / L \\
& C=\cos B=\left(x_{j}-x_{i}\right) / L
\end{aligned}
$$

Figure 2.2 Two Dimensional Sar Element
The stiffness equation for this two dimensional element has the following form since it has two degrees of freedom at each node.
$[k]\{d\}=\{r\}$
$\left[k_{B A R}\right]=\left|\begin{array}{llll}k_{1,1} & k_{1,2} & k_{1,3} & k_{1,4} \\ k_{2,1} & k_{2,2} & k_{2,3} & k_{2,4} \\ k_{3,1} & k_{3,2} & k_{3,3} & k_{3,4} \\ k_{4,1} & k_{4,2} & k_{4,3} & k_{4,4}\end{array}\right|$
$\{d\}=\left|\begin{array}{l}u_{i} \\ v_{i} \\ u_{j} \\ v_{j}\end{array}\right|$
$\{r\}=\left|\begin{array}{l}p_{1} \\ q_{i} \\ p_{j} \\ q_{j}\end{array}\right|$
The values of any column in k may 'e obtained by setting all displacements equal to zero except for the one displacement, which is multiplied by this column. Figure 2.3 illustrates a bar element with all displacements fixed except u_{1}. Using these values for displacements, the forces obtained will be equal to the stiffness, since spring rate is defined as the force required to produce a unit deflection. Substitute the following value of d into the stiffness equation.

$$
\{d\}=\left|\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right|
$$

The result is:

$$
\left|\begin{array}{l}
k_{1,1} \\
k_{1,2} \\
k_{1,3} \\
k_{1,4}
\end{array}\right|=\left|\begin{array}{l}
p_{i} \\
q_{i} \\
p_{j} \\
q_{j}
\end{array}\right|
$$

Values of the these force components may be obtained by using the equation for axial deflection (Δ) of a uniform bar subjected to an axial load (P).
$\Delta=P L / A E$

$$
\Delta=\operatorname{Cos} B u_{i}=C \times 1
$$

$$
P=\Delta A E / L=C A E / L=p_{1} / C
$$

Hence,

$$
p_{1}=c^{2} A E / L
$$

From static equilibrium requirements,

$$
p_{j}=-p_{i}=-c^{2} A E / L
$$

And for the vertical component v_{i},

$$
\begin{aligned}
& \Delta=\operatorname{Cos} B u_{i}=C \\
& P=\Delta A E / L=C A E / L=q_{i} / \sin B=q_{i} / S
\end{aligned}
$$

Hence,

$$
q_{1}=C S A E / L=-q_{j}
$$

Figure 2.3 Bar Element with $u_{i}=1$, and $u_{j}=v_{i}=v_{j}=0$. Values for the second column may be obtained by assuming the following values for displacements: $v_{i}=1$ and $u_{i}=u_{j}=v_{j}=0$. (d) $=\left|\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right|$

The axial deflection of the bar is

$$
\Delta=S v_{i}=S \times 1
$$

and

$$
P=\triangle R E / L=S A E / L=q_{i} / S
$$

Hence,

$$
q_{i}=s^{2} A E / L=-q_{j}
$$

and,

$$
P_{i}=C S A E / L=-P_{j}
$$

Substitute into the stiffness equation to obtain values for column 2 of the k matrix.

$$
\left|\begin{array}{llll}
k_{1,1} & k_{1,2} & k_{1,3} & k_{1,4} \\
k_{2,1} & k_{2,2} & k_{2,3} & k_{2,4} \\
k_{3,1} & k_{3,2} & k_{3,3} & k_{3,4} \\
k_{4,1} & k_{4,2} & k_{4,3} & k_{4,4}
\end{array}\right| \quad\left|\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right|=\left|\begin{array}{cc}
C S & \text { AE/L } \\
S^{2} & \text { AE/L } \\
-C S & A E / L \\
-s^{2} & A E / L
\end{array}\right|
$$

Hence,

$$
\left|\begin{array}{l}
k_{1,2} \\
k_{2,2} \\
k_{3,2} \\
k_{4,2}
\end{array}\right|=\left|\begin{array}{rr}
C S & A E / L \\
S^{2} & A E / L \\
-C S & A E / L \\
-S^{2} & A E / L
\end{array}\right|
$$

This process may be continued until the following stiffness equation for the bar element is obtained for two dimensional space.

$$
\frac{A E}{L}\left|\begin{array}{cccc}
c^{2} & c s & -c^{2} & -c s \\
c s & s^{2} & -C S & -s^{2} \\
-c^{2} & -c s & c^{2} & c s \\
-c s & -s^{2} & c S & s^{2}
\end{array}\right|\left|\begin{array}{l}
u_{i} \\
v_{i} \\
u_{j} \\
v_{i}
\end{array}\right|=\left|\begin{array}{l}
p_{i} \\
q_{i} \\
p_{j} \\
q_{j}
\end{array}\right|
$$

If a structure contains more than one element, the stiffness equation of all of the elements can be combined. into a single matrix equation, which can easily be evaluated for the unknown displacements and reactions. Each element stiffness equation may be expanded to structure size to allow the matrix addition. The structure of Figare 2.4 has two element. The stiffness equation for each element after expansion to structure size is shown below. The number of degrees of freedon for the structure is 6 , so the K matrix must be $6 \times$ o.

$$
\text { Element } 1^{\text {ERTh }} \text { Element } 2
$$

Nodes

Ctiffsess
Length
hrea Displacements

Sorces

1.2	2,3
k_{1}	k_{2}
L_{1}	L_{2}
A_{1}	h_{2}
$\mathrm{L}_{1}-\mathrm{U}_{1}=2$	$\mathrm{u}_{2} \mathrm{Un}_{2}$
$v_{i}=v_{i}=0$	$\mathrm{v}_{1}{ }^{-v_{2}}$
$\mathrm{Uj}_{j} \mathrm{U}_{2}$	- ${ }^{-0}$
$\mathrm{v}_{\mathrm{j}}=\mathrm{V}_{2}$	
$P_{1} \bullet p_{1}$	$\mathrm{P}_{1}-\mathrm{P}_{2}-$ - \cos
$q_{i}-q_{1}$	$\begin{aligned} & q_{1}-q_{2}=-F S i n \theta \\ & p_{1}=p_{2} \end{aligned}$
$7 \mathrm{~F}^{2} 2$	
	$\begin{gathered} q j e q z \\ 8=180 . \end{gathered}$
col	$\mathrm{c}=-1$
g-0 1	$3=0$

Figure 2.4 Structure FE Model

For element 1:
$\left[k_{1}\right]=\frac{A_{1} E_{1}}{L_{1}}\left|\begin{array}{rrrr}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1\end{array}\right| \quad\left|\begin{array}{l}u_{1} \\ v_{1} \\ u_{2} \\ v_{2}\end{array}\right|=\left|\begin{array}{l}p_{1} \\ q_{1} \\ p_{2} \\ q_{2}\end{array}\right|$
For element 2:
$\left[k_{2}\right]=\frac{A_{2} E_{2}}{L_{2}}\left|\begin{array}{rlll}1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right| \quad\left|\begin{array}{l}u_{2} \\ v_{2} \\ u_{3} \\ v_{3}\end{array}\right|=\left|\begin{array}{l}p_{2} \\ q_{2} \\ p_{3} \\ q_{3}\end{array}\right|$
Element 1 must have rows 5 and 6 and columns 5 and 6 added to k_{1} in order to accommodate the degrees of freedom u_{3} and v_{3}. Element 2 must have rows 1 and 2 and columns 1 and 2 added to k_{2} to accommodate degrees of freedom u_{1} and \mathbf{v}_{1}. If zeros are placed in k_{1} and k_{2} in these added rows and columns as shown below, then their addition will not modify the force-deflection contribution by these two elements.
$\frac{A_{1} E_{1}}{L_{1}}\left|\begin{array}{rrrrrr}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right| \begin{aligned} & -u_{1} \\ & v_{1} \\ & u_{2} \\ & v_{2} \\ & u_{3} \\ & v_{3}\end{aligned}\left|=\left|\begin{array}{l}p_{1} \\ q_{1} \\ p_{2} \\ q_{2} \\ p_{3} \\ q_{3}\end{array}\right|\right.$
The stiffness equation for the structure is the sum of the element stiffness equations. For this structure the stiffness equation with the external forces and the displacement boundary conditions is
\(\left|\begin{array}{cccccc|}0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& \frac{A_{1} E_{1}}{L_{1}} \& 0 \& \frac{-A_{1} E_{1}}{L_{1}} \& 0 \& 0

0 \& 0 \& \frac{A_{2} E_{2}}{L_{2}} \& 0 \& \frac{-A_{2} E_{2}}{L_{2}} \& 0

0 \& \frac{-A_{1} E_{1}}{L_{1}} \& 0 \& \frac{A_{1} E_{1}}{L_{1}} \& 0 \& 0

0 \& 0 \& \frac{-A_{2} E_{2}}{L_{2}} \& 0 \& \frac{A_{2} E_{2}}{L_{2}} \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0\end{array}\right|\)| 0 |
| :--- |
| 0 |
| 0 |

This structure stiffness equation may be solved bj Gaussian methods for the unknown displacements (u_{2} and v_{2}), since F, B, A, E and L are known. After u_{2} and v_{2} are evaluated, their values may be substituted into the structure stiffness equation to obtain the ground reactions, P_{1}, q_{1}, P_{3} and q_{3}.

3. NATURAL ELEMERTS: Beam Elements

The beam element is based on elastic beam theory. The beam element has one node at each end and each node has two degrees of freedom: transverse deflection, w, and slope, θ. The displacement vector is

$$
\{d\}=\left|\begin{array}{l}
\omega_{1} \\
\theta_{i} \\
\omega_{j} \\
\theta_{j}
\end{array}\right|
$$

Each node may have a moment, m, or a transverse force, q. Hence, the loading vectcr is
$\{r\}=\left|\begin{array}{l}a_{i} \\ a_{i} \\ a_{j} \\ a_{j}\end{array}\right|$
The stiffness equation is
$[k]\{d\}=\{r\}$.
The values of the entries in [k] may be obtained by assigning a displacement of unity to one degree of freedon and a value of zero to the other three displacements. For example, a displacement
$[d]=\left|\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right|$,
gives the following from the stiffness equation.

$$
\left|\begin{array}{l}
k_{1,1} \\
k_{2,1} \\
k_{3,1} \\
k_{4}, 1
\end{array}\right|=\left|\begin{array}{l}
q_{i} \\
m_{i} \\
q_{j} \\
m_{j}
\end{array}\right|
$$

Figure 3.1 shows a beam element which matches the example displacement. Castigliano's Theorem may be applied with the above equation to evaluate the stiffness values.

$$
\begin{aligned}
& v_{1}=\frac{\partial U}{\partial q_{1}}=\frac{\partial}{\partial q_{1}} \int_{0}^{L} \frac{M^{2}}{2 E I} d x=\int_{0}^{L} \frac{\partial}{\partial q_{1}} \frac{\left(q_{1} x-m_{1}\right)^{2} d x}{2 E I} d \\
& v_{1}=1=\int_{0}^{L}\left(q_{1} x^{2}-m_{1} x\right) /(E I) d x \\
& 1=\left(q_{i} \frac{L^{3}}{3}-\frac{m_{1} L^{2}}{2}\right) /(E I)
\end{aligned}
$$

Substitute, $q_{1}=k_{1,1}$ and $M_{1}=k_{2,1}$ from above into this latter equation.
$E I=k_{1,1} i^{3} / 3-k_{2,1} i^{2} / 2$
Repeating this calculation for other unit displacements will yield the other equations and the stiffness matrix $\mathrm{K}_{\text {BEAM }}$ may be obtained for the bean element.

$$
\left[k_{\text {BEAM }}\right]=\frac{E I}{L^{3}}\left|\begin{array}{cccc}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -5 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right|
$$

Figure 3.1 Beam Element with Displacements: $v_{i}=1, g_{i}=v_{j}=\theta_{j}=0$
4. Natural elements: Frame Element

The Beam element and the Bar element give the same values of displacement and stress as obtained by strength of materials methods. These two elements may be expanded to six degrees of freedom and $K_{B a r}$ added to $K_{\text {BEAM }}$ to create the Frame element with three degrees of freedom per node: axial deflection, transverse deflection, and slope. The resulting stiffness equation is (2):

$$
[K]\{d\}=\{r\}
$$

$$
\left|\begin{array}{rrrrrr}
F & G & H & -F & -G & H \\
G & P & Q & -G & -P & Q \\
H & Q & T & -H & -Q & B \\
-F & -G & -H & F & G & -H \\
-G & -P & -Q & G & P & -Q \\
H & Q & B & -H & -Q & T
\end{array}\right| \quad\left|\begin{array}{l}
u_{i} \\
w_{i} \\
\theta_{i} \\
u_{j} \\
w_{j} \\
\theta_{j}
\end{array}\right|=\left|\begin{array}{l}
P_{i} \\
Q_{i} \\
m_{i} \\
P_{j} \\
q_{j} \\
M_{j}
\end{array}\right|
$$

where,

$$
\begin{array}{rlrl}
L & =\left[\left(x_{j}-x_{i}\right)^{2}+\left(y_{j}-y_{i}\right)^{2}\right] \cdot 5 & \\
C & =\left(x_{j}-x_{i}\right) / L & S & =\left(y_{j}-y_{i}\right) / L \\
S_{1} & =A E / L & C_{1} & =6 E I / L^{2} \\
T & =4 E I / L & G=S_{1} S C-D S C \\
B & =2 E I / L & D & =12 E I / L^{3} \\
Q & =C_{1} C & E=S_{1} C^{2}+D S^{2} & P=S_{1} S^{2}+D C^{2} \\
& &
\end{array}
$$

A finite element program, FRAME, which uses the Frame element is given in appendix A. This program evaluates the deflections and reactions of a structure. This program is used to evaluaie the bending moment reactions and the deflection of a wall of the transmission housing in figure 4.1. The thrust wall supports the thrust bearing for the propeller force. The thrust wall is shown in Figure 4.2.

Figure 4.1 Transmission

node 1

Figure 4.2 Thrust Wall of Transmission Housing

The moments of inertia vary from one end of the wall to the other. The values of location, area, section width ($S W_{1}, S W_{2}, S H_{3}$) and inertia are given for the midpoints of each section of the wall in Table 4.1.

TABLE 4.1 Data for Transmission Hall

Node	Location (inches)	Area (inches ${ }^{2}$)	Inertia (inches	Force (1b)	Moment (1b-in)
1	0.00	45	42.0	0	0
2	4.00	47	42.0	0	0
3	7.50	54	140.0	0	0
4	8.23	64	245.0	0	0
5	9.00	74	315.0	0	0
6	9.69	95	345.0	0	0
7	10.39	98	157.5	2083	0
8	10.69	82	141.0	4167	0
9	11.49	69	107.5	4167	0
10	12.79	45	87.5	4167	0
11	14.29	25	80.0	4167	0
12	16.20	25	76.5	4167	0
13	18.00			4167	0

The forces，moments and deflections evaluated by tinis program are given in Table 4．2．The lack of visual aids to illustrate the output is a significant handicap for this type of program．However．the cost of the program is sometimes a limiting factor．

TABLE 4.2
jer．sc：：OM Os mojes

\％Cos strinel 1	
x－25EPERE60s	－ 0
V－DEELSETIOS	－ 0
MOgS Muex 2	
	－ 0
Y－DEFLECETOM	－0．545422E－94
KNCUEMA DEFLECOPD	－3．735071E－04
nope suness 3	
－－SESLEC－ECN	－ 0
Y－DEELECT：CN	－ 2.3432275
AwCHLAS CEELECTIOA	－4．36csseE－04
NODE Muysen	
X－DEF：ECT：CN	－ 0
Y－SEE：E－TON	－ $2.663315-03$
RHCULR ${ }^{\text {SEEEEEIOM }}$	－4．3c5c17E．c4
70NE NTyets	
X－0EE！ETT： $0 x$	－ 0
Y－0EF゙E S ITM	2．9553E5－63
AMEULR DEFEECFIOS	－4．Es3E9！E－04
M9DE NUE3E5 6	
X－2ETEE5TIOX	－ 0
Y－EヒḞ゙ELこ：O\％	3．732223E－＊3
	－6．2334E：E－54
Nane xixete 7	
X－SEFLEET：En	0
Y－3EEREET：EN	3．371494E－E3
	－4．：45：4：5－04
Y－DEELEETION	0
Y－EEESEETION	3．59692さ－63
ANCLi＇in DEFLECTICM	4．9125：4E－04
MODE Muncest 9	
X－NEFLEET：ON	0
Y－9Fiseisiow	4．01542E－03
Higutni deftection	3．875264E．C4
NSOE Sunget 10	
x－gefiecil ${ }^{\text {ch }}$	0
Y－¢5FEECTIOM	4．4868748－03
スッフリ\％\％	3．365273E－04
MOEE MURAER 15	
X－DEFLEES：ON	0
T－BEEEETS0\％－	4：5318848．03
ANCULAR DEFLECT：ON	2.5439128 .04
NODE MJMEER 12	
X－AEETEET：ON	0
y－DEFGEET O 0	S． 2959428.03
AMCUEAR DEELECT：ON	！．2915885－04
soge Nugser ： 3	
Y－DETLEEF：EN	－ 0
Y－DEFIEET：ON	－5．425：97E．03
ANCJEAR BE\％LECT：ON	－．4．2562588．07

5. ELEMENTS BASED ON ASSUMED DISPLACEMENT FIELDS:

A more general finite element is based on the Rayleigh-Ritz solution of a variational problem (6). The displacement (or the temperature for a thermal element) within the eiement is assumed to be adequately described by a simple polynomial. The coefficients of the polynomial define the shape of the displacements across the element. The equations of equilibrium for this "general element" may be obtained by the "principal of minimum potential energy" (2): "Among all admissible configurations of a conservative system, those that satisfy the squations of equilibrium make the potential energy stationary with respect to small variations in displacement. If the stationary condition is a minimum, the equilibrium state is stable." The locations of the minimums for the Potential Function, π_{p}, may be determined by setting the partial derivatives of \bar{p}_{p} with respect to each variable equal to zero. If the displacement variables are a_{1}, a_{2} and a_{3}, the following three equations will be equations of equilibrium.

$$
\begin{aligned}
& \partial \pi_{p} / \partial a_{2}=0 \\
& \partial \pi_{p} / \partial a_{2}=0 \\
& \partial \pi_{p} / \partial a_{3}=0
\end{aligned}
$$

In order to illustrate this concept, consider a bar with two elements as shown in Figure 5.1. Assume the displacements, u, of points along the bar vary in a linear manner as defined by the Sollowing displacement function.

$$
\begin{aligned}
& v=a_{1}+a_{2} s \text { for } 0 \leq y \leq L \\
& v=a_{3}+a_{4} s \text { for } L \leq y \leq 2 L
\end{aligned}
$$

where,

$0 \leq s \leq L$

Since the polynomial coefficients (a_{1} through a_{4}) have little, physical meaning, it is desirable to replace these coefficients with other variables which do have physical significance such as the displacements of the nodes: v_{1}, v_{2} and v_{3} -

$$
[D]=\left|\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right|
$$

Substitution of boundary conditions at the nodes into the displacement function for element 1-2 gives:

$$
\begin{array}{ll}
v_{1}=a_{1}+a_{2} s=a_{1} & \text { at } s=0 \\
v_{2}=a_{1}+a_{2} s=a_{1}+a_{2} L & \text { at } s=L
\end{array}
$$

These two equations may be placed in matrix form:

$$
\left.\left\{\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right\}=\left[\begin{array}{ll}
1 & 0 \\
1 & L
\end{array}\right] \begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}
$$

Figure 5.1 Structure with Two Elements
or, the inverse yields

$$
\left\{\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}=\left[\begin{array}{cc}
1 & 0 \\
-1 / L & 1 / L
\end{array}\right]\left\{\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right\}
$$

Hence,

$$
\left.v=a_{1}+a_{2} s=\left.[1+s]\right|_{a_{2}} ^{a_{1}}\right\}
$$

Combine these equations to repalce the coefficients a_{1} and a_{2} with the nodal displacements ∇_{1} and v_{2}.

$$
v=[1+s]\left[\begin{array}{ll}
1 & 0 \\
-1 / L & 1 / L
\end{array}\right]\left\{{ }_{v_{2}}^{v_{2}}\right\}
$$

The shape function W, which gives the relationship betwen displacements at any point in an element and the displacements at the nodes is

$$
[A]=[1+s]\left[\begin{array}{ll}
1 & 0 \\
-1 / L & 1 / L
\end{array}\right]=[(1-s / L) \quad(s / L)]
$$

Hence,

$$
v=[N]\left\{\begin{array}{l}
\nabla_{2} \\
\nabla_{2}
\end{array}\right\}=[N]\{d\}
$$

for element 2-3.

$$
v=\left.[N]\right|_{v_{3}} ^{v_{2}}
$$

If this element is not subjected to initial strains, the strain
energy per unit volume of material due to applied loads is

$$
U_{0}=.5\left[\varepsilon_{y}\right]^{T} E\left[\varepsilon_{y}\right]
$$

where,

$$
E=\text { Modulus of elasticity }
$$

$$
\varepsilon_{y}=\text { Strain in } y \text {-direction }
$$

For plane problems, the relationship betwen strain, ε_{y}, and displacement in the y-direction, v, is:

$$
c_{y}=\partial v / \partial y=\partial v / \partial s=\partial / \partial s([N]\{\alpha\})=\left[\begin{array}{cc}
-1 / L & 1 / L
\end{array}\right]\{d\}
$$

Therefore, the total strain energy in elements 1 and 2 is given by U_{1}.

$$
\begin{aligned}
& U_{1}=\int_{0}^{L_{1}} \cdot 5\left|\begin{array}{r}
v_{1} \\
v_{2}
\end{array}\right|^{T}\left|\begin{array}{r}
-1 / L \\
1 / L
\end{array}\right| \quad E_{1}[-1 / L \quad 1 / L]\left|\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right| \quad A_{1} d s \\
& +\int_{0}^{L_{2} .5}\left|\begin{array}{l}
v_{2} \\
v_{3}
\end{array}\right|^{T}\left|\begin{array}{r}
-1 / L \\
1 /
\end{array}\right| \quad s_{2}\left[\begin{array}{ll}
-1 / L & 1 / l
\end{array}\right]\left|\begin{array}{ll}
v_{2} \\
v_{3}
\end{array}\right| \quad n_{2} d s \\
& U_{1}=.5\left|\begin{array}{l}
V_{1} \\
v_{2}
\end{array}\right|^{T} \quad \int_{0}^{L} E_{1} A_{1}\left|\begin{array}{rr}
1 / L^{2} & -1 \Lambda^{2} \\
-1 \Lambda^{2} & 1 / L^{2}
\end{array}\right| d s\left|\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right| \\
& +.5\left|\begin{array}{l}
r_{2} \\
v_{3}
\end{array}\right| \quad \int_{0}^{L_{2}} E_{2} A_{2}\left|\begin{array}{rr}
1 \Lambda^{2} & -1 \Lambda^{2} \\
-1 \Lambda^{2} & -1 \Lambda^{2}
\end{array}\right| \text { ds }\left|\begin{array}{l}
r_{2} \\
v_{3}
\end{array}\right| \\
& u_{1}=.5\left|\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right|^{T} \quad \frac{\varepsilon_{1} A_{1}}{L_{1}}\left|\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right|\left|\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right| \\
& +.5\left|\begin{array}{ll}
v_{2} \\
v_{3}
\end{array}\right|^{T} \quad \frac{E_{2} A_{2}}{L_{2}}\left|\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right|\left|\begin{array}{l}
v_{2} \\
v_{3}
\end{array}\right|
\end{aligned}
$$

The potential for the force R to do work during displacement D is U_{2}. where R and D rapresent all forces on the structure and their nodal displacements.

$$
u_{2}=-[\dot{D}]^{T}[R]=-\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]\left[\begin{array}{ll}
r_{r_{2}}^{r_{2}}
\end{array}\right]
$$

Hence, the total potential function is

$$
\pi_{p}=U_{1}+U_{2}=.5[D]^{T}\left[k_{1}\right][D]+.5[D]^{T}\left[k_{2}\right][D]-[D]^{T}[R]
$$

where, the stiffness matrices are expanded to structure size by adding rows and columns of zeros:

$$
\left[k_{1}\right]=A_{1} E_{1} / L_{1}\left|\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right| \quad\left[k_{2} 1=A_{2} E_{2} / L_{2}\left|\begin{array}{rrr}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right| .\right.
$$

Applying the principal of minimum potential energy will yield the equations of equilibrium for this structure based on nodal displacements.

$$
\partial \pi_{p} / \partial D=\left[K_{1}\right][D]+\left[K_{2}\right][D]-[R]=0
$$

or.
$\frac{A_{1} E_{1}}{L_{1}}\left|\begin{array}{rrr}1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right|\left|\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right|+\frac{A_{2} E_{2}}{L_{2}}\left|\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1\end{array}\right|\left|\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right|-\left|\begin{array}{l}r_{1} \\ r_{2} \\ r_{3}\end{array}\right|=0$
The boundary conditions to be applied to this matrix equation are

$$
\begin{aligned}
& {[D]=\left|\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right|=\left|\begin{array}{l}
0 \\
v_{2} \\
v_{3}
\end{array}\right|} \\
& {[R]=\left|\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right|=\left|\begin{array}{l}
r_{1} \\
0 \\
p
\end{array}\right|}
\end{aligned}
$$

The matrix equation of equilibrium may be solved to yield nodal displacements and nodal reactions. The strain may be evaluated at any point, y, in the element by the relationship
ey $=\partial v / \partial s$
since,
$d y=d s$
where,
V is the assumed displacement function, which is dependent on the nodal displacements:

$$
\begin{aligned}
& v=[N]\left|\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right| \\
& v=[N]\left|\begin{array}{l}
v_{2} \\
v_{3}
\end{array}\right|
\end{aligned}
$$

The stress may be evaluated frow Hook's law using these strains.
(o) $=[E]\{E\}$

The Raleigh Ritz method may also be used to develop the
iscparametric element.

6. ISOPARAMETRIC ELEMENTS:

The isoparanetric element may be used to model general shapes because it's sides may be curved and the element may be nonrectangular. Body fixed coordinates ξ and η are used for this element, with magnitudes ranging from +1 to $\mathbf{- 1}$ as shown in Figure 6.1. Assumed displacement function, u, for the two-dimensional isoparametric solid element, STIF42, in the ANSYS (2) finite element software is given below in terms of the element's coordinates ξ and n. The last two terms may be onitted. The Rayleigh Ritz method is used to set up the solution.

$$
\begin{aligned}
U= & .25\left((1-\xi)(1+n) U_{i}+(1+\xi)(1-n) U_{j}+\right. \\
& (1+\varepsilon)(1+n) U_{k}+(1-\xi)(1+n)\left(U_{l}\right)+ \\
& U_{1}\left(1-\xi^{2}\right)+U_{2}\left(1-n^{2}\right)
\end{aligned}
$$

Figure 6.1 Two-Dimensional Isoparametric Element
7. EXAMPLE: Comparison of Beam Element and Isoparametic Element.

The isoparametric element may be used to model components with high strain gradients or complex geometries which do not match the assumptions for the bean element (egg. the root of a gear tooth.i. On the other hand, if a beam element can be used, the efficiency and accuracy of the solution should be improved.

The analysis of the cantilever beam (Figure 7.1) for stress and deflection using one bean element is compared to the analysis when using various combinations of the ANSYS (3) isoparametric element STIF42. The correct answer per strength of materials theory may be obtained by using only one beam element. Figure 7.2 shows the element model and the deflected model, which gives the maximum deflection of .00667 inches. The stress at the wall is

$$
S_{X}=M C / I=3,000 \text { psi. }
$$

(3) Note: ANSYS is a registered tradename of a Finite Element Software package by Swanson Analysis: Inc. Some of the examples in this paper were completed using the PC/ED and PC/Linear versions of ANSYS.

F. E. Model

Deflected Shape

Figure 7.2 Cantilever Beam Model Using One Bean Element.

The analysis of the cantilever beam using one isoparametric element gives a maximum deflection of .00507 inches, as indicated in the deflection plot of Figure 7.3. However, the plot of the stress in the x direction $\left(S_{x}\right)_{\text {a }}$ which is along the axis of the bean, indicates that stress is not changing as the distance from the load is increased (i.e. S_{x} is not a function of bending moment). Hence, the stress calculations are not valid for this model. (The one isoparametric element model gives a value of stress at the wall of $S_{x}=1500 \mathrm{psi}$). (The input code for ANSYS is in Appendix B.)

Figure 7.3 Cantilever Bean Model Using One Isoparametric Element
. The analysis of the cantilever heam using four isoparametric elements with an aspect ratio of 10 per Figure 7.4 gives a maximun deflection of . 00615 inches. The distribution of the stress S_{x} is significantly inproved and at the wall $S_{x}=2226$ psi.

F. E. Model

Deflected Shape with Stress S_{x}

Figure 7.4 Cantilever Beam Model Using Four Isoparametric Elements

The analysis of the cantilever beas was repeated with the four elements arranged in a manner to produce an aspect ratio (the ratio of length over width) of 2.5 per Pigure 7.5. The maxima deflection is .00662 and at the wall the stress S_{x} is 2,625 psi. The vertical stress S_{y} is shown in the figure and the values are negligible.

F. E. Model

Deflected Shape with Stress S_{x}

Deflected Shape with Stress $\boldsymbol{S}_{\boldsymbol{y}}$
Figure 7.5 Cantilever Beam Model Using Four Parallel Isoparametric Elements

The conclusions from this comparison are:

1. For bending of primematic bars, the bean element is the most sccurate and efficient.
2. The density of the isoparametric elements over the area of a strain gradient will significantly affect the accuracy.
3. The values of deflection are generally more reliable than the values for stress.
4. The arrangement of the elements and the aspect ratio will significantly affect the accuracy.
5. As the number of elements is increased in an area, the stresses and deflections should converge toward the true answer.

8. EXAMPLE: Gear Teeth

The FEM has been used extensively to evaluate the stress and deflection of gear teeth. The value of the stress concentration factor used in the International Standards Organization (ISO) method for rating tooth strength (8) is evaluated by the FEM. The distribution of the load across the face of the tooth due to deflections of the elastic syste: must be evaluated in order to deteraine the amount of helix modification required. The end of the pionion adjacent to the powered shart has the highest torque so this end of the pinion should have the largest deflection. The FEM may be used to evaluate this load-deflection condition (9).

The stiffness of a single tooth may be evaluated by the FEM. The node numbers and the subsequent elements are shown in Figure 8.1. ANSYS PC/Llinear software plus the Solids Modeling package produced this model. The entire load is applied to node 7 which produces the gross tooth deflection with local distortion due to the point load per Figure 8.2. The transverse deflection (ux) of the tooth is shown in Figure 8.3. The vertical component of stress, sy, is shown in Pigure 8.4 and illustrates the influence of the radial $10 a d, W_{r}$. on the bending stress of the tooth. The compressive stresses add on the side opposite to the point of load application.

Node Numbers

Element Numbers

Figure 8.1 Finite Element Model of Gear Tooth

Figure 8.2 Tooth Deflection

Figure 8.3 Transverse Displacement of Tooth

Figure 8.4 Vertical (sy) Component of Tooth Stress

9. EXAMPLE: Transverse Vibration

The transverse vibration and longitudinal vibrations in geared systems may be of critical importance even though they receive less attention than the more subtle torsional vibration. The natural
frequencies for the transverse vibration of the shaft and gears of Figure 9.1 are given in Table 9.1 and the first mode shape is plotted in Figure 9.2.

Figure 9.1 Counter Shaft Vibration in Transmission

TABLE 9.1

NATURAL FREQUENCIES FOR

TRANSMISSION SHAFT

MODE
1

2
3
4

FREQUENCY (VPM)
116.2
517.5
829.1
2717.

Figure 9.2 First Mode Transverse Vibration of Transmission Shaft
10. CONCLUSIONS

The Finite Element Method provides a tool, which allows the mechanical designer to anaiyze complex geometric shapes with complex loading for stress, deflection and temperature distributions. The FEM uses a numerical procedure to solve the system of equations, so an answer is produced even though it may not be representative of the physical system. The successful use of the FEM requires the designer to have a deep understanding of stress and strain in addition to understanding the performance and limitations of the various types of elements. The FEM has not eliminated the need for the Experimental Method, but it has reduced the lost time spent in testing various faulty configurations for a component. The Experimental Method still provides for overall quality cvontrol. The FEM nelps create an optimum design.

REFERENCE LIST

1. Roark, R. J., and Young, W. C., Formulas for Stress and Strain, McGraw Hill Book Co.. 1975.
2. Cook, Robert D., Concepts and Applications of Finite Element Analysis, John Wiley and Sons. Inc.., 1981.
3. Boresi, A. P., and Sidebottom, O. M., Advanced Yechanics of Materials, John Wiley and Sons, Inc., 1985.
4. Dally, J. W., and Riley, W. F., Experimenta" Stress Analysis, McGraw Hill Book Co.. 1978.
5. Huebner, K. H., and Thornton, E. A., The Finite Element Method for Engineers, John Wiley \& Sons, 1982.
6. Bathe, Klalus-Jurgen, Finite Element Procedures in Engineering Analysis, Prentice-Hall. 1982.
7. Kohnke, P. C., ANSYS Engineering Analysis Systems Theoretical Manual, Swanson Analysis Systems, Inc., Houston, PA, 15342. 1983.
8. Dudiey, D. W., Handbook of Practical Gear Design, McGraw Hill Book Co., 1984.
9. Brownridge, C., and Hollingworth, D., Advanced Gearbox Technology in Small Turbo Propeller Engines, Gears and Power Transmission Systems for Helicopters and Turboprops, AGARD Conference Proceedings No. 369, Advisory Group For Aerospace Research anc Development, North Atlantic Treaty Organization.

APPEIDIX A

Progran ：FRume

```
CLS
    THIS PROGRAN GRITTEN BY E.W. JONES MND E BUCHITOLZ
    THIS PEOGENLI USES THE BRNDED MPTAIX TO EVALUATE DISPLACEMERTS AS -
    SUCGESTED BY &. COOK. HONEVER REACTIONS ARE RASED ON THE UMBAMDED MATRIX.-
    -a\FREMCE R.D.COOK. "CONCEPTS AND APPLICATIONS OE FIMITE ELENEMT AMALYSIS*
    LPAIMT - THIS PROGANM WILL PERFORM A FIMITE ELEMEMT -
    LFAINT - GMALYSIS USIMG A ERNME ELERINT."
    LPRINT
    LPRIMT
    PRIMT "THIS FIMITE ELEMIBIT PROGAMN USES THE FENNE ELEMENT ."
```



```
    IMPUT FMURBER OE ELEMIEITS = ": MURIEL
    IMFUT -IS FRIMIED STIFFNESS MMTRIX REQUIHED (Y/M) -: ANSNS
    IMPUT -ARE VHLUES OR (Y/K)
    IE MNSS = "Y" OR MRSS = "Y" GOTO 130
    G0TO }7
    lFRINT - munRER OF NODES = : munNs
    LPRIMT - MURBER CEE ELEWENTS = - MUMEL
        DIM ID(3. NUHNP), MOD(2, MUNEL), SE(6, 6), KK(6). KR2(E)
        LFRIMT
        LPRINT - EACH ELEMENT has ONE MODE 'I & RND ANOTHER MODE 'J`."
        LPRIMT "
        SKIP = 0
        GOSUS 6:0
        FRIMT
        cosub e10
        gosus }110
        GOSUB 1260
        GOSTB :690
        GCSUB 21i0
        ZMPUI OF NCDE COCRDIMATE. HCDULUS OF ELASIICITY, C5OSS SECTIONAL AREA,
    - ANL mONEMT OE INERTIA.
```



```
    ***.acx"
```



```
    FRIMT -ELEMEENT MURBER:": N
    IMPUT - X AND Y COORDIMATES OE THE LONEST NODE. IN =": XI. YI
    INFUT - X AND Y COORDIMATES OF THE HIGHESI NODE. IN ="; KJ, YJ
    :MPUT - MOUULUS OF ELASTICITY. PSI E": E
    IMPUT - CROSS SECTIOMAL AREA. i# En: A
    INPUT " MONENT OF INERTIA. IN'4 E": I
    P2INT
    INPUT "RaE valuES OR (Y/N) "; AMSS
    F⿰㇒⿻土一⿰丿𠃌⿱⿰㇒一大口
    IF NNSS * "Y" OR ANSs - "Y" GOTO 38v
    GOTO 290
    LPaIMT
    IF SKIP = 1 GOTO 395
    LPRIMI" KI ELEMENT XI YI XJ YJ ELASIIC ARE
    ImERTIA"
    Lmait
    sxip.1
    LPaIMT USING IMAGES: N. XI, YI. XJ. YJ. E. A. I
```



```
    c={(xJ-xI)
```



```
8\in2 KK(2) = ID(2. i)
866 KK(3) = ID(3. I)
568 KK(4) = [D(1.J)
870 KK(5) = ID(2.J)
874 KK(6) = ID(3, J)
8:6 FOR 1 = 1 TO 6
880 IE KK(I) <= O THEN GOTO 910
84 K = KK(I)
888 FOR J = 1 TO 6
8S2 IF KK(J) < K THEM GOTO 906
894 !. = KK(J) - K - I
900 IE MENID < L THEM MBAND = L
906 KEXT J
910 EEXT I
912 MEXT M
I090' RETURA
```



```
1225: IF SKIP = 1 GOTO 1136
```



```
1135:DIn DEFLEE(NEQ2). STIF(NEQ2, NEQ2), E2(NEQ2)
1136
1140. FOS M = ; TO NUNEL
1150 cosvB 260
$160 I = MOD(1. X)
1170 J = NOD(2.N)
1180 KK(1) = ID(1. ミ)
1290 KK(2) = ID(2. I)
1200 KK(3) = ID(3.1)
1210 KK(4) = ID(1.J)
1220}\textrm{KK}(5)=ID(2,J
1230 KK(6)=1D(3.J)
1231 5\times2(6) = 3 - !OD(2.N)
1232 KK2(3)=3 - MOD(1. N)
1283 KK2(5)= KK2(6) - 1
2234 KK2(4) = KK2(6)-2
1235 KK2(2) = KK2(3) - 1
1236 KK2(i) = KK2(3) - 2
1240 FOR I = 1 TO 6
i250 IE KK(I) < = O THEN GOTO 1303
:260 K = KK(I)
:270 a(K) = E(K) * RE(I)
1280 FOR J = 1 TO 6
1290 IF KK(J) < K THEM GOTO 1302
1300L = KK(J) K K L I SE(I, J) - gamDED SIIFFNESS MATRIK.
1301 S(K, L) = S(K. L) - SE(I, J) -BANDED SEIFENESS MATRIK.
1302 NEXT J
1303 NEXT I
1305 EOR I = 1 TO 6
1308 K - KK2(I)
1310 R2(K) = R2(K) - RE(I)
13:5 FOR J = 1 TO 6
1325 L2 = KK2(J)
{330 STIF(K.L2) = STIF(K. L2) - SE(I.J) UNBANDED STIEEMESS MATRIX.
133E NEXT J
1238 NEXI I
1345 NEXT M
2350 RETURM
```



```
1370 PPRINTS STIEFNESS MATRIX IM GANDED FORH
1380 -0-0-0-00-0-0-0-00-0-0-0-0-0-0-0-0-0-0
1390 IF RNSWS " "N" OR AMSWS = "R" GOTO 1480
1390 IF RNSWS = "N" OR MNSWS = "N GOTO 1480
1400 LPRIMT
14i0 LPRIMT " STIFFNESS MATRIX IM BANDED FORM"
1420 LPRINT
```

```
1430 FOR J = 1 TO NEQ
1440 FOR K= 1 TO PEAND
1450 LPRIMT * S(*:J: *:*; K; ")=": S(J.K)
1460 NEXT K
1470 NEXT J
1480
1490 EXTERMRL FORCES APPLIED
i500 LPaIKT
1510 LPRIMT * EXTERMAL FOACES MPPLIED TO TRE STRUCTURE*
2520 FOR H = 1 TO MUNMP
2540 FOR J = 1 TO 3
1560 IF ID(J,N) = 0 60TO 1610
1570 PRINT "NODE MURER": %
1580 IF J = I THEM IRPUI mFORCE IN X-DIRECTIOS =: RS(ID(J, M))
2590 IF J = 2 THEN INPUT GFORCE IN Y-DIRECTION : BS(ID(J.N))
1600 IF J = 3 THEN IHPUI mOMENT ABOUT THE Z-NXIS": BS(ID(J, N))
1610 MEXT J
1620 HEST N
1525 LPRINT
1630 FOR I = 1 TO NEQ
l640 R(I)=RS(I) a(":I:*)=": ESSI\
2660 NEXT I
1670 LPRINT
1680 EETUNH
```



```
1700
1710
:720 IF MRRND > 1 GOTO 1770
1730 FOR N = I TO NEQ
1740 E(N) = R(N)/S(M.1)
1750 NEXT N
1760 BETURM
1770 ON IELAG GOTO 1790. 1930
17e0 REDUCTION OE COEFFICIENT mATRIX
1790 FOR N = I TO NEQ
1800 FCR L = 2 TO MBALD
1810 IF S(N,L) = 0 GOTO 1500
1e20 I = N L L - 1
2830C=S(N.L)/S(M.2)
1840 J = 0
1850 FCR K=L TO MBAND
1860 J J J L
1870 S(I.J)=S(I,J) - C.S(M,K)
188C NBKT K
1890 S(N,L)=C
1900 NEXT L
2910 NEXT Y
1920 FORWRND REDUCTION OF VECTOR CONSTANT.
1930 FOR M = 1 TO NEQ
1940 FOR L a 2 TO MANND
1950 IF S(N,L) = 0 COTO 1980
1960 I = N L L I
1970 R(I) =R(I) - S(N.L) R(M)
1980 MEXT L
8990 R(N) R(N) / S(N. 1)
2000 NEXT N
2010 SOLVIMG UKNNOWNS BY BACK SUBSTITUTION.
2020 E TR H = 2 TO MEO
2030 H - HEO - 1 M N
2040 F0R L : 2 TO MEAND
2050 IF S(%.L) = COTO 2080
2060 K = N | L - 2
2070 R(N) = R(%) - S(N.L) - R(K)
2080. HETT.L
```

```
2c90 NEXT M
2:00 BETURM
```



```
2120 'DEFLECTION RESULTS
2130
2135 LPRIKT
2140 LPRIMT *
2145 COUNT =0
2150 FOR : = 1 5O RURNP
2160 LPEIMT
2170 LPRIMT .
2180 FOR J = 1 T0 3
2185 cOUNT = COUNT * 1
```



```
221G IE J = 2 TRMR LFRINT = (COUNT)=R(ID(J. N))
i211 IF J = 2 THEM DEFLEC(COUNT) = R(ID(J. N) NOULNR DEFLECTION = *: R(ID!J. M))
2&20 IF J = 3 THEEN LPAIMT (COUNT ) - R(ID(J,N))
2230 GOTO 2254 THEM LPRINT - X-DEFLECTION = 0-
```



```
2250 IE J = 2 THEN LPRINT (CONST) =0
22E1 IE J =2 THIEN PEFLEC(CONST) =0
2262 IF J = 3 TMEB DEFLEC(COUST) * 0
2264 NEXI J
2274 NEXT M
3275 -0-*-*-*-n-***-*****- RESUKTRMT FORCE VECTOR
2276 LPRIMT
2277 LPEINT
2278 २EIMT
2279 PRINT "FORCES AND RENCTIONS VECTOR FOR STRUCTURE:"
2201 FCR RON = }1\mathrm{ TO NURNP & 3
iz82 Sum = 0
2283 FCR COL = 1 TO MURLNP - }
2284 SUM = STIF(BON, COL ) - DEELEC(COL) - SUR
2285 NEXT COL
2287 P(RON) = SUM 
2293 LPRINT -
2294 NEXI KON
2295 IMPUT "DO YOU WISH THE PROGRAM TO RUN ANOTHER EXTERKAL FORCE (Y/N)": REPLYS
2295 IMPUT "DO YOU WISH SHL PRO M, THEN GOSUB 1510: IFLAG z 2: GOSUB 1690: GOS
2300 IF REPLYS = "Y" OR REPLYs = "Y" THEN GOSUB 1510: IFLAG = 2: GOSUB 1690: GOS
UB 2110
2330 END
```


trependix B
 ASSTS . MPTT

/TITLE.ISORARRHETRIC 1 ELENENT
KNM. 0
fCOI KIMD OF MALYSIS (STATIC)
ET.2.42.0.0.3
/CON ELENEXT TTPE:STIE 42. KEYOPT (5) $=3$
R.1.1
/COHAESL COMSTATI 1 IS * 1" (THICRMESS)
ER:1.30E6
/COL HOOULUS OE ELRSTICITX OF SEEEL
DSNS . 1. . 00073
/COR HISS DEASITY OF MATERIA.
MUXY. $1 . .29$
/COn porsson natio
GXY:1.12E6
fCON TOESIONAL EODOLUS
JCOM EITES FOUR NOOES MD THEI R COORDIMATES:
M:1:0.0
4.2.10.0
4.3.10.1
E.4.0.1
/COM GEMEDATE ELENENT BY CCH ENTAF OE MODE RMTBERS
E:1:2.3.4
/COI SPECIEY EIXED DSGREES OE FREEDCM:
D.1.UX
D.E.UY
D. 4. UX
D.4.UY
/COM ESTER EOR RT NODE 3 IN THE Y-DIEECIICN:
F.3:FY.-50
fCOM MUREEA RCDES ON PLOT:
mera. 1
FCOM PLOT OF EEEMEMTS:
EpLot
/COM sHow FOSEE ON PLOT:
FBC. 1
/COM SHON COORDTMATE SYSTEM ON NOOE PLOT:
CSPLT. 1
nelot . 1
JCOH WRITE RMALYSIS FILE:
SEWIIT
/COK TEEHINATE PAEPSOCESSIMO ACTEVITY:
PIRISK
/TITEE.CGNNTER SHAFT VIREAEION
KRN, 2
ET.i.3
KEY.Y. 2,1
EX.1.3GE6
DEMS.1..0C073
E.1.12.56.12.56.4
R.2.100.1000.40
R.3.100,1000,30

Rin.0.0
N,2,6.0
H. $3,13,0$
5.4.23.0
N.5.38.0
N.6.45.0

RERL.1
E.1.2
E. 3.4
E.5.6

REAL. 2
E. 2.3

RERI, 3
E.4.5
M.2.UY,5
D.1,UY
D.1.UX
D. 6. UY
D.6.UY
:SEL. .i
SVT:R. 3
FEEQ. 1.10
SV...i4.. 44
sEwnIT
FIMISH

LECTURE 5

ABSTRACT :
Failures in transmissions may occur in shafts, bearings or gears.
Analysis for stress and deflection is used to size parts to prevent failures and to deternine the root cause of failures which have occurred.

1. INTRODUCTIOA:

The transmission designer must postulate the potential scenarios by which the system may rail and apply analysis to size the components properly. The analysis is based on physical properties of materials. the nature of the loading and environment and stress-strain relationships. This paper reviews these concepts. The gear design standards are based on these fundamental ideas.
2. EAILURES TYPES AND CHARACTERISTICS:

Component failures of transmissions may produce failure of the systen. Different types of gear failures are illustrated in the Anerican Gear Manufacturers Association publication AGM-110.03 and Shipley's "Gear Failures", (1 and 6)'.
a. Wear of tooth contact surfaces
b. Pitting of teeth at pitch line
c. Breaking of teeth under static load
d. Breaking of teth under repeated load
e. Scosing of teeth
f. involute interference of teeth
g. Bearing railures
h. Shaft fatigue
i. Eretting of shaft in hub
j. Excessive deflection
k. Abrasive wear

1. Low cjucle crack propagation
[^6]Material tests show characteristics of different types of

failures:

2.1 A uniaxial tensile test of a ductile bar produced the failure of Figure 2.1. The necking down of the test specimen in the area of failure is typical ductile behavior. The ductile material failed In shear as indicated by the 45° failure line. Mohr's circle for the uniaxial test specimen is given in Figure 2.2 and shows the maximus shear to be at an angle of $20=90^{\circ}$ from the principal axis, which is $\theta=45^{\circ}$ on the part.

Figure 2.1 Aluminium Tensile Test Speciment Failure

Mohs's Circje

Hement of Material

Figure 2.2 Element of Material From Surface of
Tensile Test Bar with Stress Calculations
2.2 A torsion test of a brittle rod produced the failure of Figure
2.3. No necking due to yielding is apparent. The brittle material failed in tension as indicated by the 45° failure lines. Mohr's circle for this torsion test is shown in Figure 2.4 and indicates that the maximum normal stress occurs at $20=90^{\circ}$ from the principal axis.

Figure 2.3 Brittle Rod Torsion Test Failure

Figure 2.4 Element of Material From Surface of Brittle Chalk Torsion Test with Stress Calculations
2.3 A fatigue failure (1) is shown in Figure 2.5. The beach marks, which appear like the riages of sand on the ocean beach, indicate the progression of the crack as it moved from the crack initiation site and across the material as the variable stress cycles were applied.

Figure 2.5 Fatigue Failure
2.4 Steady state overload is shown by the case hardened gear tooth failure of Figure 2.6. The granular nature of the entire failure area does not indicate any of the stress variations, which smooth the crack area, as shown in the fatigue failure.

Figure 2.6 Steady State Overload Failure of Gear Tooth
2.5 Direct shear under steady state loading of a shear pin is shown in Pigure 2.7. The texture of the entire cross section is the same.

Figure 2.7 Shear Pin Failure
2.6 Fretting (2) is a failure mode which may occur in a shaft which is press fitted into a hub. The fretting is caused by relative motion between the rotating shaft as it bends and rubs against the more rigid hub. A brown powder from the oxidized wear products may appear between these rubbing surfaces. The fretting action of one surface rubbing on the other may develop small cracks which may propagate through the part as a fatigue failure.
2.7 Pitting failure (1) of a gear tooth may occur due to the compressive contact force. Hertz's equations give the surface compressive stress and the distribution of shear stress below the surface for contacting arcs such as gear teeth and roller bearings. The pitting crack may be initiated belcw the surface by a shear stress. The crack subsequently grows upward to the surface to free the particle of metal and create the pit. Pressures of the lubricant, which is trapped in the crack may assist this action. (Non-destructive pitting may occur due to poor contact between teeth to redistribute the loading evenly across the tooth
face. This nondestructive pitting does not produce failure of the tooth as in severe pitting and may be acceptable for some applications.)
2.8 Abrasive wear (6) of gear teeth may be produced by hard foreign particles in the lubricant. Grooves appear on the tooth surface as the hard particles slide over the teeth.
2.9 Involute interference may be produced by the tip of one tooth digging into the flank of the mating tooth. This is due to incorrect geometry such as too few teeth in the pinion. (3)
2.10 Impact loading (2) is due to the application of loads at a rate which is less than the longest natural period of the structure. The impact load may produce stresses which are several times higher than this same load would produce if applied during a time equal to or greater than three times the longest natura] frequency.
2.11 Initial cracks in a component may propagate through the part to produce a failure by fracture. The initial cracks may be due to grinding or welding. This type of fracture progresses because of the nigh stress at the crack *ip.

3. FAILURE PREDICTION:

The relationships between failures of materials, the loading on the material, and the properties of the material are used by the designer to size new components. this section reviews some of these relationships.

An abnormal load may produce a general yielding type of failure in a ductile material. The large deformations due to yielding may serve as a warning to the operator. The ductile material may allow enough stress redistribution at the tip of a crack to inhibit its growth. However, if the load is applied rapidly, time may not allow yielding. The impact resistance of materials also decreases when hardness increases as indicated by the fracture toughness and charpy valves.
3.1 :or ductile materials, such as unhardened steel, failure under static loads has a good correlation with the distortion energy and the octahedral shearing stress theories (5). The octahedral shearing stress is

$$
\tau_{\text {oct }}=\left(\sigma_{x x}+\sigma_{y y}+\sigma_{z z}\right) / 3
$$

For a uniaxial tensile test specimen with cross-sectional area, A, and load, P, the octahedral shearing stress at failure is

$$
\tau_{\text {oct }}{ }^{\prime}=(\mathrm{P} / \mathrm{A}+0+0) / 3=\mathrm{Sy} / 3
$$

where,

$$
\begin{aligned}
& \sigma_{x x^{\prime}}=P / A=\text { Sy }=\text { yield stress } \\
& \sigma_{y y^{\prime}}=0 \\
& \sigma_{z z}=0
\end{aligned}
$$

Hence, the factor of safety, FS, is

$$
\text { FS }=\tau_{\text {oct }}{ }^{\prime / \tau_{\text {oct }}}=S y /\left(\sigma_{x x}+\sigma_{y y}+\sigma_{z z}\right)
$$

3.2 For righ cycle fatigue (4), both brittle and ductile materials fail by fracture instead of by general yielding at stresses well below the yield stress. The ratigue railure is initiated by a small crack and as the stress cycles conti: $1 e$, the crack elongates and forms the beach marks on the fracture surface.

The endurance limit, Se, for steel is the maximum value of alternating stress which way be applied without producing a fatigue failure. The endurance limit. Se', for an actual component may be evaluated from the endurance linit. Se, obtained from a reversed bending test of a standard test bar. To obtain Se'. multiply Se by factors which compensate for the differences between the actual component and the standard test bar.

$$
S e^{\prime}=\operatorname{Se} k_{a} k_{b} k_{c} k_{d} k_{e} k_{f}
$$

where,
k_{a} is the surface finish factor
k_{b} is the size factor
k_{c} is the reliability. factor
$\mathbf{k}_{\mathbf{d}}$ is the temperature factor
k_{e} is the modifying factor for stress concentration
k_{f} is the modifying factor for other effects (e.g., non reversed bending)
The material properties for fatigue may be represented by the Modified Goodman line, which lies at the bottom of the fatigue data scatter on a plot of alternating versus mean stress. For combined stress states, the distortion energy theory may be applied to obtain representative values for alternating, ${ }_{a}$ ', and mean, σ_{m} ', stress components, which establish a state of stress by the load 1 ine whose slope is σ_{a} ' over σ_{m} ' per Figure 3.1.

$$
\begin{aligned}
& \sigma_{a}=\left[\sigma_{x a}^{2}-\sigma_{x a} \sigma_{y a}+\sigma_{y a}^{2}+3 \tau_{x y a}^{2}\right] \cdot 5 \\
& \sigma_{m}=\left[\sigma_{x m}^{2}-\sigma_{x m} \sigma_{y m}+\sigma_{y m}^{2}+3 \tau_{x y m}^{2}\right] \cdot 5
\end{aligned}
$$

The factor of safety is evaluated using the allowable value of alternating stress, S_{a}.

$$
F S=S_{a} / \sigma_{a}^{\prime}
$$

Figure 3.1 Modified Goodman Diagram
3.3 For contacting surfaces, which transmit forces, the compressive stress at the area of contact and the shear stresses below the contact surface are based on Hertz's equations (5). The contact area is formed by the elastic deformation of the two bodies. The analysis may be applied to two eliptical bodies, with each body having two different radii of curvature at the contact point like cromed gear teeth or per Figure 3.2. The theory may be simplified if the two contacting bodies are cylindrical (4). In this latter case, the area of contact has a half width b.

$$
b=\left\{2 P\left[\left[\left(1-\mu_{1}^{2}\right) / E_{1}\right]+\left[\left(1-\mu_{2}^{2}\right) / E_{2}\right]\right] /\left(\pi \ell\left[1 / d_{1 c}+1 / d_{2 c}\right]\right)\right\} \cdot 5
$$

where,
P is the normal force between the two bodies
μ_{1} and μ_{2} are Poisson's ratios for cylinder 1 and cylinder 2
E_{1} and E_{2} are the compressive moduli of elasticity for
cylinder 1 and cylinder 2
$d_{1 c}$ and $d_{2 c}$ are the diameters of cylinder 1 and cylinder 2
l is the length of the contact area
π is 3.14159
The maximum pressure value, which is the compressive siress, over the width 2b is

```
p=-2P!(\pibl).
```

The maximu shear stress occurs below the contact surface a distance. Z.

```
z=.7861\timesb
```


Figure 3.2 Contacting Elliptical Shaped Bodies
The rolling action of uncrowned gear teeth is like two cylinders with diameters defined by the tooth surfaces at the point of contact (7). The radius of the contacting cylinder. ρ. is defined by the involute function as illustrated in Figure 4. At the pitch circle, the value of 0 is
$p=d_{1 c^{\prime 2}}=(d / 2) \operatorname{Sin} \phi$
where,
d is the pitch diameter of pinion

- is the involute angle

At any other diameter, d_{1}, the radius is
$p=(d, / 2) \sin \phi_{1}$
The diameter of the larger contacting cylinder, which represents the gear tooth surface, is

$$
d_{2 c}=d_{G} \sin =m_{G} d \sin
$$

uhere,
d_{G} is the pitch diameter of gear
${ }^{6}$ is the ratio of gear teeth dividied by pinion teeth.

Figure 3.3 Dianeter of Rolling Cylinders Representing Involute Tooth Contact

For helical gears, the radil of the contacting cylinders is in the section normal to the pitch helix. This section has a pitch ellipse instead of a pitch circle like the spur gear pair (7) Using the equation of an ellipse, the diameters of contacting cylinders are

$$
\begin{aligned}
& d_{1 c}=d \sin \varphi_{n} / \cos ^{2} \psi \\
& d_{2 c}=d_{c} d_{1 c}
\end{aligned}
$$

where,

- is the helix angle
 teeth is obtained by substitution of the latter two equations into the equation for p. The average length, l, of teeth sharing the load is a function of face width, F, and contact ratio.
$\ell=F \times($ Contact Ratio)/Cos ϕ
The force normal tre the tooth is

$$
P=\psi_{t} /\left(\cos v^{*} \cos \omega_{n}^{\prime}\right.
$$

where,
W_{t} is the tangential load in the transverse plane
${ }^{*}$ n is the normal pressure angle.
$o_{c}=p=\left\{\frac{2 p}{\pi \ell} \frac{\left[d_{2 c}+d_{1 c}\right] /\left[d_{1 c} d_{2 c}\right]}{\left[\left(1-\mu_{1}{ }^{2}\right) / E_{1}+\left(1-\mu_{2}{ }^{2}\right) / E_{2}\right.}\right\}^{.5}$
$\sigma_{c}=\left\{\frac{2 W_{t}}{\pi F[\operatorname{Contact} \text { Ratio]d }} \frac{\operatorname{Cos}^{2} \phi}{\operatorname{Sin} \phi_{n} \operatorname{Cos} \phi_{n}} \frac{\left[M_{C}+1\right]}{M_{G}} \frac{1}{\left(1-\mu^{2}\right)\left(1 / E_{1}+1 / E_{2}\right)} i^{.5}\right.$
Define an elastic constant (8), C_{p}, as
$C_{p}=\left\{1 /\left[-\left(1-\mu^{2}\right)\left(1 / E_{1}+1 / E_{2}\right)\right]\right\} \cdot 5$
Define a curva*ure factor (8), C_{c}, as

$$
c_{c}=\left(\operatorname{Sin}_{n} \cos _{n} / \operatorname{Cos}^{2} \phi\right)\left[\mu_{g} /\left(M_{g}+1\right)\right] / 2
$$

Hence, the equation for compressive stress at the pitch line is

3.4 Components which contain cracks may be analyzed by fracture mechanics principles to determine if the crack will propagate or remain dormant. For example, a weld area may contain cracks. An inspection of the weld may identify all cracks in excess of a threshold length, which is below the detection capability of the instrument. Hence, the analyist may postulate that cracks as long as the threshold length still exist in the component. For a Mode I crack, the "stress intensity factor", K_{I} : is (5)

$$
K_{I}=\sigma(\pi a) \cdot 5^{\prime} f(\lambda)
$$

where,
0 = stress normal to crack
$a=$ crack length or half length
$f(\lambda)=a$ function of crack and component sizes

A critical value of the stress intensity factor is defined as the "Fracture Toughness". K_{IC}. The values of $\mathrm{K}_{\text {IC }}$ are highly dependent on temperature. Similar steels may have significantly different values of $K_{I C}$ at $30^{\circ} \mathrm{F}$. When K_{I} exceeds K_{IC}. the crack will continue to grow even though the load is constant.

Breaking of gear teeth is normally associated with the bending loading of the tocth. Lewis proposed that a gear tooth could be modeled as a parabola, which is inscribed in the tooth, shaped bean with the apex located at the intersection of the tooth load and the centerline of the tooth. This beas would have a constant bending stress since the thickness, t, of the bean would vary as the square of the distance, l, from the apex. The location of the point of tangency of the parabola with the tooth surface identifies the position, a, of maximum bending stress, S_{t}. The load is shown in Figure 3.4. The bending stress for a rectangular cross section is:

$$
S_{t}=M c / I=W_{t} \ell 6 /\left(F t^{2}\right)
$$

The distance x and the 90° inscribed triangle may be used to identify the location of the maximum bending stress, "a". By similar triangles,
$\operatorname{Tan} \alpha=\operatorname{Tan} \alpha$
$(t / 2) / x=\ell /(t / 2)$
so,

$$
t^{2}=4 l x
$$

Hence, the thickness can be eliminated from the stress equation.

$$
S_{t}=H_{t} G /(4 x F)
$$

Divide the numerator and denominator by the circular pitch. p, and define y, which depends on the point of load application, as follows:

$$
y=2 x / 3 p
$$

Hence,

$$
S_{t}=W_{t} 3 p /(2 x F p)=W_{t} /(F p y)
$$

Define a tooth form factor, Y.

$$
y=Y / \pi
$$

and substitute the diametral pitch. P_{d}, into the equation.

$$
\begin{aligned}
& p=\pi / P_{d} \\
& S_{t}=W_{t} P_{d} /(F Y) .
\end{aligned}
$$

 tooth at "a".

Figure 3.4 Tooth With Lewis Parabola Inscribed
The stress field at the root of the tooth will be amplified due to the changing cross section and fillet radii. The fatigue strength of the tooth may be acversely affected by the surface finish, tooth size, ecc. Hence, for fatigue analysis, the value of S_{t} should be modified by a stress concentration factor, K_{f}.

The load sharing capability due to the contact ratio allows more than one tooth to share the load. Hence, the value of S_{t} should be modifled due to the contact ratio.

These factors result in the following relationship for bending stress.

$$
\left.S_{t}=W_{t} P_{d} K_{\mathbf{f}} /[\text { Contact Ratio(} F Y)\right]
$$

4. Conclusions:

The design and manufacture of gears represents an advanced combination of art and science. The fundanental equations for compressive stress and bending stress of gear teeth as presented in this paper provide the basis for the AGAA 218.01 Standard (8); however. modifying factors (9) are added in the Standard to ada, - these equations to the real world environment.

REFERENCE LIST

1. A.G.M.A., American St- dard Nomenclature of Gear-Tooth Wear and Failure, AĠM 110.03 Hished by American Gear Manufacturers Association, hlexandi ... VA, 1964.
2. Collins, J. A., Failure of Materiais in Mechanical Design, Analysis, Prediction, Prevention, John Wiley \& Sons, 1981.
3. Mabie, H. M. and Reinholtz, C. F., Mechanisms and Dynamics of Machinery, John Wiley, 1987.
4. Shigley, J. E. and Mitchell, L. D., Mechanical Engineering Design, McGraw Hill Book Co.. 1983.
5. Boresi, A. P. and Sidebottom, O. M., Advanced Mechanics of Materials, John Wiley \& Sons, 1985.
6. Shipley, E. E., Gear Failures, Reprint from Machine Design December 7. 1967, The Penton Publishing Co., Cleveland, OH.
7. Dudley, D. W., Practical Gear Design, McGraw Hill Book Co., Inc., 1954.
8. A.G.M.A., AGYA Standard for Rating the Pitting Resistance and Bending Strength of Spur and Helical Involute Gear Teeth, AGMA Standard 218.01, Dec. 1982, published by American Gear :lanufacturers Association, Alexandria, VA.
9. Dudley, D. W., Handbook of Practical Gear Design, McGraw hill Book Co., Inc., 1984.

A REVIEN OF AGMA 218.01, AGHA STANDARD FOR RATIAG THE PITTING RESISTANCE aND BENDING STRENGTH OF SPUR AND hELICAL INVOLUTE GEAR TEETH

 ABSTRACT:The AGMA 218.01 Standard for rating the pitting and bending strength of spur and helical gears is reviewed in this paper.

1. INTRODUCTION:

The American Gear Manufacturer's Standard, AGMA 218.01, for Rating the Pitting Resistance and Bending Strength of Spur and Helical Involute Gear Teeth was introduced by the AGMA Committee for Gear Rating in 1982. "The purpose of this Standard is to establish a common base for rating various types of gears for different applications and to encourage the maximum practical degree of uniformity and consistency between rating practices within the gear industry. It provides the basis from which more detailed "AGMA Application Standards" are developed and provides a basis for calculating approximate ratings in the absence of such standards." (1) ${ }^{1}$

The Standard includes those factors which influence the life and operation of the gear set. This standard is based on fundamental principles: Hertz's equation for compression and Lewis's equation for bending. When these equations are developed for members shaped like gear teeth, they take the following form per reference (2).

Eq. 1 Compressive Stress: $S_{c}=c_{p}\left\{\frac{W_{t}}{F_{d}} \frac{1}{C_{c}[\text { Contact Ratio] }}\right] \cdot 5$

Eq. 2 Bending Stress: $\quad S_{t}=\frac{W_{t} P_{d} K_{f}}{[\text { Contact Ratio (F Y)] }}$
The difficulties in adapting the lewis equation to gear tooth stress are reviewed by Wellauer (3) and includs:

[^7]1. The distribution of load across the face width and over the tooth profile, which vary with accuracy, tolerances, wear and deflection.
2. Stress concentration at root.
3. Size effect on fatigue life.
4. The variation in load position on the tooth as the gear rotates.
5. The compressive stress due to the radial component of load.

The modification of the Lewis equation to the gear enviroment is discussed by Dudley (3). He comments on four modifying factors:
K_{0}, the overload factor, which accounts for the roughness of the driving and driven apparatus.
K_{s}, the size factor, which reflects the experimental results showing lower endurance limits in components with larger cross sectional areas.
K_{m}, the load distribution factor, which depends on misaligument of axes of rotation, alignment errors due to tooth inaccuracies, and elastic deflections of shafts and bearings under load.
K_{v}, the aynamic factor, which is determined by the pitch line velocity, mass-elastic characteristics of teeth and gears, and accuracy of tetth.

The comments of Wellauer and Dudley were made for a standard which preceeded AGMA 218.01, but most of these corments do apply to AGMA 218.01. The bending strength equation in AGMA 218.01 is:

Eq. $3 \quad S_{t}=\frac{W_{t} K_{a}}{K_{v}} \frac{P_{d}}{F} \frac{K_{s} K_{m}}{J}$
where,
S_{t} is the bending stress number
K_{a} is the application factor for bending strength
K_{s} is the size factor for bending strength
K_{m} is the load distribution factor for bending strength
K_{V} is the dynamic factor for bending strength
J is the geometry factor for bending strength
P_{d} is the diametral pitch, nomial, in the plane of rotation
$P_{d}=P_{\text {nd }} \operatorname{Cos} \psi_{s}$
$P_{n d}$ is the normal diametral pitch
ψ_{s} is the helix angle at standard pitch diameter.
The geometry factor, $J,(1)$ is defined by the equation:

$$
J=Y C_{\psi} /\left(K_{f} \mathrm{~m}_{\mathrm{N}}\right)
$$

where,
Y is the tooth form factor
K_{f} is the stress concentration factor
m_{N} is the load sharing ratio, which depends on the transverse contact ratio m_{p}, and the face contact ratio m_{F}.

For Normal Helical Gears with $\mathrm{m}_{\mathrm{F}}>1.0$:

$$
m_{N}=F / L_{\min }
$$

where,
$L_{\text {min }}$ is the minimum value of the total length of lines of contact in the contact zone.

For most helical gears with $m_{F} \geq 2.0$ a conservative approximation for m_{N} is:

$$
m_{N}=P_{N} /(.952)
$$

where,
$P_{N}=$ Normal base pitch $=\left(\pi \operatorname{Cos} \phi_{C}\right) / P_{n d}$
$\phi_{c}=$ The normal profile angle of the equivalent standard rack cutter.
$P_{\text {nd }}=$ Normal diametral pitch
$Z=$ Length of line of action in transverse plane.
The profile contact ratio, m_{p}, (4) is
$m_{p}=2 N_{p} /\left(\pi d \operatorname{Cos} \varphi_{t}\right)$
where,
d = Operating pitch diameter of pinion
$N_{p}=$ Number of teeth on pinion
$\phi_{t}=$ Operating transverse pressure angle
C_{ψ} is the helical factor and is unity for spur gears and helical gears with $\mathrm{m}_{\mathrm{F}}>1.0$.

The geometry factor may be substituted into equation 2 , if the helical factor is added, to obtain:

Eq. $4 \quad S_{t}=W_{t} \frac{P_{d}}{F} \frac{1}{J}$
This equation may be modified to reflect total load. The load W_{t} is the mean value of the tangential load and is evaluated from the maximum horsepower rating. However, the total load includes a dynamic component due to internally generated tooth loads, which are induced by non-conjugate meshing action of the teeth. This dynamic component is represented by the dynamic factor K_{v}. Also, the total load contains a variable component due to externally applied loads which are in excess of $W_{t}(1)$. The application factor, K_{a}, makes allowance for any externally applied loads.

The equation may be modified to show the non-uniform distribution of load along the lines of contact due to cutting accuracy, alignment, elastic deflection, clearances, thermal expansion, crowning, and centrifugal deflections by the load distribution factor K_{m}.

The equation may be modified for the size of the tooth by the size factor, K_{s}.

Apply these four factors to Equation 4 to obtain Equation 3 for the bending stress number, S_{t}.

The allowable magnitude for this bending stress number is determined by material properties and the desired life as defined by the following equation:

$$
S_{t} \leq S_{a t} K_{L} /\left(K_{t} K_{R}\right)
$$

where,
$S_{a t}=$ allowable bending stess number which is based on the satistical probability of one percent failures occurring after 10^{7} cycles.
$K_{L}=$ life factor for bending strength, which depends on the number of cycles required.
$K_{T}=$ temperature factor for bending strength
$K_{R}=$ reliability factor for bending strength, which accounts for the normal statistical distribution of failures found in materials tested in a laboratory when evalauting $S_{a t}$. (For 1 failure per 100, after 10^{7} cycles, $K_{R}=1$.)

As experience is gained and as analytical methods are advanced, the values used for the factors like $K_{a}, K_{\mathbf{m}}, K_{s}$, and K_{v} will improve. This will reduce the need for large values for factors of safety, because the unknowns will be reduced. This is a major area for future research.

The application factor K_{a} wakes allowances for all externally applied loads in excess of the nominal tangential load H_{t}. The prime mover and the driven load are the major contributors to the variations in the externally applied loads. System vibration, acceleration torques, overspeeds, variation in system operation, and changes in process load conditions are sources of external loads.

The values of the life factors K_{L} and C_{L} for various materials could benefit from more test results. The wear of the gear teeth due to compressive stress presents a fatigue condition similar to that of roller bearings.

The factor of safety is not explicitly mentioned in AGMA 218.01. The implicit statement that

$$
\left(S_{t}\right) \leq S_{a t} K_{L} /\left(K_{T} K_{R}\right)
$$

allows the designer to select a factor of safety.
Service factors, $K_{S F}$, have been used which included the application factor, K_{a}, and which sometimes included the reliability factor and life factor. If only K_{a} is included, the value of $K_{S F}$ may be taken as K_{a}. However, if K_{R} and K_{L} are also included in $K_{S F}$, then the following relationship should he used:

$$
K_{S F}=K_{a} K_{R} / K_{L}
$$

These coments have been primarily limited to ti.e bending strength, however, a similar rational would lead from Equation 1 to the AGMA 218.01 equation for the compressive stress number. S_{c}.

The AGiA 218.01 Standard is a general standard which provides the basis from which more detailed "AGMA Application Standards" may be developed. These "AGMA Application Standards" may provide appropriate values for Service Factors. K_{SF} and C_{SF}.

The ACMA 218.01 Standard is providing a good design guide, which improves product uniformity and helps the gear industry in the U.S.A. achieve a standard method for evaluating different gear designs.

The art and science of gearing is a legacy which modern man enjoys. I express appreciation to all of those who have contributed to this knowledge. Figure 1 is a sketch of an early contribution from China (5).

REFERENCE LIST

1. A.G.M.A., AGM Standard for Rating the Pitting Resistance and Bending Strength of Spur and Helical Involute Gear Teeth, AGMA 218.01. published by American Gear Manufacturers Association, Alexandria, VA, 1982.
2. Jones, E. H.. Metal Failures in Transmissions, Zhengzhou Research Institute of Mechanical Engineering. Zhengzhou, China. 1988.
3. Nellauer, E. J., Coordinated Rating for the Strength of Gear Teeth, ACMA 229.03, June, 1956, published by American Gear Manuracturers Association, Alexandria, VA, 1956.
4. Dudley, D.. Practical Gear Design, McGraw Hill Book Co.. Inc.. 1954.
5. Dudley, D. W., The Evolution of the Gear Art, published by American Cear Manuracturers Association, Alexandria, VA, 1969.

ABSTRACT:

The use of computers for the design and manufacture of gears has been a fruitrul endeavor. This paper gives brief examples of some computer aided design software for gears.

INTRODJCTIOM:

The application of the computer to the tasks of engineering. drawing and manufacturing gears has been rewarding.

Computer aided drafting provides the capability to see different views quickly, to enlarge or reduce sections easily, to reproduce siailar designs using the old database and to check for interferences. The countershaft of a dredge pump gear. which was drawn by Autocad, is shown in Figure 1.1. The economic impact of computer aided drafting is

Figure 1.1 Gears for Dredge Pump
probably not significant in terms of the reduced number of draftsmen required, because of the added cost of equipment, maintenance, software, and machine operators. However, the economy of the total engineering and manufacturing activities may be greatly improved due to better quality control and the reduction of time.

The availability of computers for the engineering design function has resulted in many design software packages. The finite element software allows the engineer to analyze the stresses and deflections of parts having complex geometry. Prograns which design gear sets are comm. This software often uses data from the cutting hobs as input values. Other programs may be used in manufacturing to select change gears or cutting tools.

An an example of commercial software for gear design, GEARTECH Software, Inc. offers three basic packages: AGMA218

SCORING+

GEARCALC.
Appendix A gives some features of these packages. You may use a demonstration package for this software while you are here at the Zhengzhou Research Institute. If you desire copies of this demonstration disk or if you wish to purchase the actual software, contact

GEARTECH Software, Inc.
1017 Pomona Ave.
Albany, CA 94706
U. S. A.

A second example is software by Universal Technical Systems, Inc. The options of their gear design program 500 are given in appendix B. UTS also developed the mathematical modeling software, TK Solver/plus, which solves equations. You may use a demonstration package for TK Solver while you are here at the Zhengzhou Research Institute. We are prohibited from copying this software. If you desire copies of TK Solver/plus or the Gear Program 5500, contact

Universal Technical Systems, Inc.
1220 Rock Street
Rockford, IL 61101
U. S. A.

GEARCALC

GEARCALC replecees the outmoded cur and in mothod of

 en alicient closed-lorm elgoritim to solve the surtace derability and bending strength ertieria simulaneousty. This

 geen deelgn.

GEARCALC was designed to be the frienciveat, moat powerhll gear design progran you can buy. Within minutes of entering pressure angia, helix engle and geep ratio along with material/haat-trealment data lond datia and required file, you have designed a maximum capecity gearet that has minimum volume and waight You may choose to bel. ance piring and bending faligue lives or asign extra capac. ity to eiker colteria. Change any one or fwo of the variablea: pinion diameter, tace width or diametral pilch, and GEARCALC instanity recatculates the gearsed geometry to mainmin the lie batance.

Whin GEARCALC. you can design the addendum modilicetions to maximise pining and waar reshatance, scoring realstance or bending strength.

GEARCALC is infegrated with programs ACMM218 and SCORingt and automaticality transiers common data incholing all the gearflool geornetry required by theae programs.

GEARCALC features include:

- Mavarial strengitas based on lavest values given in AGMA
214.01 Shaciard
- Addendum modicestion opilmized for maximum: piting and wear resistances scoing resiotance or bending strengith

Tocth combinations selected to schiove user speeilied tolerance on geen retio

Tooth combinations selected to achive hunting or nonhuniling ratlos

- Uner controls fece widn/pinion dionnem (F/d) ratio Uner controls operaing preavire ange

survend 49M200s PM
- Oupit inctudes sereen, hand-copy or diek reports

GEARTECH Software, Inc. offers an integrated system of gear desigñ/ analysis programs.

GSI specializes in high-qualliy, user-biendly software for gear engineers. All programs are designed to work independenlly or rogether as an invegraved syatem. You move from one modute to the nexi with a single keystroke without losing any common data.
The system prowides an on-line database that gives you last access to your proviously anniyzed gearsets. This provides you with aulomatic documentation ol your gear designs and anows you to return to work-in-progreas withoul having to re-key input data - just a fow keystrokes retieves your record hom disk. Ha new job is similar lo an old ona, you can retrieve the old recond, alter a lew values to create the new record and be ready io rin in seconds.
The inleractive, menu-diviven command structure foatures full screen editing that permits you to enter or modily data quickly and efticienty. All inpul data is automatically checked to ensure that il has the proper numeric format and is withir. the range of reasonable values. Format and out-ofrange errors are inghilighted and error measages are displayed to help you correct the errant data. Builh-in geometry audit routines prevent costly errors by catching design errors (interterence, excessive undercut and many more).
All programs are capable of analyzing spur and helical, external and invernal gearsets with elther standard or nonstandard geometry. Algorithms are optionized for fast program execulion to help you pertorm accurate, sophisticaled analyses in a fraction of the time required using manual methods.
Flexible. logically organized reports make documentation of your work a pleasure. You may select reports in summary or extended form, in any order you wish. The Inpul Data Summary gives you an exact record of program inpul including all your auralysis decisions. Never again wonder how you obtained a particular result or have difticulty repeating program runs.
All GSI programs are supplied with a User's Manual that explains every aspect of installation and operation of each program. Program capabilities are fully described and futortal examples are provided to guide you through a program's operalion. Each User's Manual inchudes an extensive theoretical section which explains the basks of all analyses pertormed.

GSI programs are the frienclliest mosi powertul gear design and analysis sotwere you car: buy.

AFMAEIE

Introduced in 1984, AGMN218 is rapidly becoming the Induatry standard program for rating spur and helical gearing. It rates gears exactly as Intended by the American Cear Manulacturers Association Standard:
"AGMA STANDARD For Rating the Piting Peciatance and Bending Strength of Spur and Hellical Involute Gear Teeth, AGMA 218.01, Dec 1982".
This is the AGMA's most up-to-date standard for rating parallel-axis gearsels. As this standard is updated by the AGMA, GSI revises AGMA218 to keep In current with the latest technological advances. With AGMA218, you can rate a gearset in a lew minutes rather than spend hours with frustrating, error-prone hand calculations.

AGMA218 pertorms two basic ypes of analyses:
Lie Rating - given the transmitted power and pinion speed, the pitting life and bending faligue lives are calculated for a single load and speed, or for an entire spectrum of loads with the resultant lite determined from Miner's Rule.
Power Rating - given the pinion speed and a required desion life, the allowabte transmitted power based on gear looth piling and bending latigue are calculated for bolh the pinion and gear. The allowable power rating of the gearset is the minimum of the four power capacities. AGMA218 is inlegrated with and automatically transters common data to SCO' 'NG+.

AGMA218 features include:

- Analyzes all materials and heal-Ireatments covered in the AGMA Standard 218.01
- Considers effects ol anddendum modification, 100 th thinning lor backlash, stock allowance for finishing and complete 1001 geometry
- Calculates full gear geometry including I and J lactors, loads, deraling lactors, strengths, stresses and life or power ratings
- Uses Miner's Rula to analyze up to 50 discrete loads with an on-line data base lor storing up to 100 loed arraye
- Calculates the dynamic lactor and load distribution factor il not input by the user
- Considers number of contacis per revolution and unidirectional or reverse bending loads
- Output includes screen, hard-copy ir disc reports

SCORING+

SCORING+ performs a complete analyeis of the tíbology of spur and helical geers. It considers all the known pareme. ters which conwid the pitiling, ecoring (scutting) and waer ol gear reath. SCORING+ gives you the analytical power you neod to make important dectations concerning gear geomeiry, tooth modificalion, surtace roughness, and lubricant and materdal properties. You can integraite SCORuNG+ with our program AGMA21s (pitting and bending taligue lives) and have a complete set of toots for analyzing all the common gear tailure modes.
SCORING+ calculates the EHD film thickness using the Dowsen and Higginson equation and the fiesh temperature using Elok's critical temperature theory. The specific film thickness helps you determine whether the gearsat is operating in the full or partial EMD ragime or is boundary lubricated, and gives you the date you need to assess the probebilly nt wear-rolated distress. The flash temperature is your best criterion lor predicting the probability of scoring (sculting).
SCORING+ pertorms a complete kinematic anulysis of the gear looth velocilies so you can quickly see how changes in pitch or addendum modfication afliect specific sliding ration and approach versus recens action. The Hertien contect atrese is catr uisted at each point of contact so you can sep oxaclly wh... the maximum stress occurs. SCORING + pro vides graphical plots of EHD film thickness, fiash temperature, epecilice sliding and Hertian stress. This is an oxtromely useful capability, allowing you to instanily review the results of a SCORING + analyals.

SCORING+ features include:

- Calculates EHD fim thlickness and probability of wear
- Calculates nash cemperature and probabiliy ol scoring
- Calculates rolling, sliding and entraining velocities, and specilic siliding (elide/roll) ratios
- Calculates Hertzian contact strese
- Provides options for constant of variable coetlicient of iriction
- Provides single-key entry of delaull values for 1001 geometry and MIL-L-7800 lubricanl
- Provides complete gear geometry calculation, audit and report
- Provides screen or hard-copy plots ol EHD film thick ness, hash tomperature, specific sllding and Hertian Atress
- Output includes screen,hard-copy or disk reports

APPENDIX B

Price List for ${ }^{-242}$ Gear Software
 (Revised May1988)

Unlversal Technical Systoms, Inc. 1220 Pock Street, Bockford, IL 61101 Phone: (815) 963-2220, 800-435-7887

Versions for HP 200 and 300 series are also avallable. please call for detalls.

[^0]: * This document has not been edited.

[^1]: ${ }^{1}$ Numbers in parentheses identify references.

[^2]: Figure 6.2 Four Gear Transmission Drawing from Automated Design Process

[^3]: 1 Numbers in parentheses refer to references.

[^4]: ${ }^{2}$ AASYS is the registered tradename of a pinite element software package written and marketed by Swanson Analysis Systems. Inc.

[^5]: 11. Numbers in parentheses identify references.
[^6]: INumbers in parentheses designate references

[^7]: ${ }^{1}$ Numbers in parentheses identify references.

