TOGETHER
for a sustainable future

OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org
 LIMITED

ID/WG. $471 / 4$ (SPEC.) 18 November 1987

United Nations Industrial Development Organization

Expert Group Meeting for the Latin American and Caribbean Region, in Preparation of the First Consultation on the Sugar-cane
Processing Industry
Vienna, Austria, 8-10 December 1987

> Prepared by the UNIDO Secretariat

Taible of Contents

Page
Introduction. 4
I. The Sugar-cane Industry in Latin Anerica 5
Production 5
Characteristics of sugar cultivation and processing 6
lemarks on the suggar mills 7
Consurution 7
Comparative figures 8
Fron an export-oriented to a domestic-oriented production 8
Trade 8
Consequences for Latin Anerica's income 10
II. Sugar-cane By-products in Latin Anerica and in the Worid. 10
Present ation of by-products 10
The potential use of by-products. 12
Cane tops 12
Bagrasse. 12
Utilization as fuel 12
Production of fibrous products 13
Pulp and paper 13
Particleboard and fibreboard. 14
Production of chemicals 14
Filter cake 14
Molasses 14
Yeast 16
Lysine. 16
Citric acid 16
Monosodium glutamate 16
Dextran 16
III. Production and Consumption of the Main By-products 16
Bagasse. 16
Paper 17
Board 17
Purfural 18
Molasses 18
Fuel alcohol programes in Latin America and the Caribbean countries 20
Alcochemistry in Brazil 21
The Brazilian National Alcohol Programe 22
Statistical analysis of the Brazilian ethanul market 23
Production statistics 23
Consumption and exports 24
The perspectives for the Brazilian alcochemistry 24
Table 1 Sugar Production 5
Table 2 Sugar Consurption 7
Table 3 Sugar Trade in Latin America. 9
Table 4 Utilization of Bagasse as Fuel 12
Table 5 Products Obtained from Molasses. 15
Table 6 World Bagasse Production. 17
Table 7 Morld Molasses Production 18
Table 8 Molasses Inports in Selected Countries. 19
Table 9 Molasses Exports in Selected Countries 20
Table 10 Sumary of Ethanol Production Capacity. 21
Table 11 Brazilian Alcohol Production from 1970/71 to 1984/85. 23

Introduction

Following a decision taken at the second session of UNIDO's Industrial Development Board, held in August 1986, the First Consultation on the Food-Processing Industry with euphasis on sugar-cane processing will be convened in the bienniv 1988-89. In order to identify the priority issues to be submitted for consideration at the Consultation, the UNIDO Secretariat is organizing regional and expert group meetings, one of which is the Bxpert Group Meeting for the Latin American and Caribbean region. This meeting is expected to advise USIDO on the selection of regional priority issues for subsequent submission to the Consultation itself.

Latin Anerica is one of the principal producers of sugar in the world (28.3\% in 1986/87 with exports of 39.6\%). Whe cane sugsar iodustry in the region has sccupied a privileged position within industrial activities carried out on this continent. In view of the importance of sugar for the countries of South Anerica and the Caribbean, the present situation on the world sugar market may have serious consequences for their economies. It could als? trigser off the "multiplier chain" and influence other branches of industry and agro-sectors. Added to the structural problems are the high stock volumes and prices which are below the stimulative profuction cost.

This inforeation paper, prepared by the Secretariat, covers not only the general aspects of and data on the sugar-cane industry in Latin Anerica but also presents some facts and figures on sugar-cane by-products which are viemed as promising alternatives for the development of the industry. Many export-oriented economies, especially in Latin Anerica, have already started to analyse and introduce the production of sugar by-products and derivatives to diversify the market and acquire wider economic independence and stability. The information presented might be of interest to the participants and may serve as background for discussions and evalustion of the prospects for the development of the sugar-cane industry in Latin Anerica at the Consultation.

I. The Sugar-cane Industry in Latin America

Production

1. Sugar is obtained fron two main sources: beet and cane. Cane sugar represents about 63\% of the world sugar output.
2. Since suggar-cane grows in tropical and sub-tropical regions, nearly all Latin Anerican countries are producers.
3. The region's current production anownts to 29 It. It is the numer one producer in the world with a share of 28% of the world's sugar production and 50\% of total sugar-cane output.

Table 1
Sugar Production
(1000 tons raw equivalent)

	1986/1987		1985/1986		1984/1985		1983/1984	
World total	101845		98497		100433		98011	
Latin America total share	$\begin{aligned} & 28809 \\ & 28.32 \end{aligned}$		$\begin{aligned} & 27011 \\ & 27.47 \end{aligned}$		$\begin{aligned} & 29079 \\ & 29.98 \end{aligned}$		$\begin{aligned} & 30429 \\ & 31.05 \end{aligned}$	
Of which		2 world total		$\begin{aligned} & \text { I world } \\ & \text { total } \end{aligned}$		2 wor 1 d total		$\begin{aligned} & 2 \text { world } \\ & \text { total } \\ & \hline \end{aligned}$
Cuba	7200	7.4	7347	7.4	8101	8.3	8331	8.3
Dominican Rep.	830	0.4	799	0.8	1043	1	1192	1.2
Mexico	4080	4	3994	4	3489	3.4	3297	3.3
Argentina	1119	1	1259	1.2	1317	1.3	1525	1.5
Brazil	9179	9	7371	7.5	8704	9	10211	10.5
Colombia	1317	1.3	1216	1.2	1367	1.3	1274	1.3

Source: F.O. Licht, 1987.
4. As can be seen from Table 1, the main producers in Latin America are also major participants in the world sugar market:

Brazil is the world's largest producer with an output of more than 9 million tons in 1986, which accounts for 9% of the world total.

Cubs, where sugar is the key sector of the econony, produces 7.2 million tons, 7.4\% of world total.

Mexico and Arsentina also produce significant amounts, namely 4x and 1\% respectively of world output.
5. The anount of land planted in the resion accounts for 7 nillion hectares and the production is processed in some 650 sugar mills and alcohol distilleries.
6. The sugar industry employs 2.5 million Latin Americans.

Characteristics of susar_cultivation and_processing
7. Sugar-cane cultivation in Latin America is characterized by high costs of growth, harvesting and tramsportation.
8. Field work represents 60.8% of the total production cost:

The size of the areas devoted to sugar differs sreatly, from 50,000 acres to 5 nillion and great differences can be noted in gields.

Varietal development is not widespread in Latin America; many comercial varieties are used.

Pertilizers are not used adequately; in the past five years the harvested area increased by $7 x$ while cane productivity only increased by 1\%. Sugar-cane has suffered from neglect.

Machinery for land preparation, sowing and cultivation has grown in the region as a whole, but some countries remain far behind -

Oxen are still used for land preparation;
More than 70\% of cane delivered to sugar mills is cut by hand;
Lack of skills among labour has led to inproper use of machipery.
Trapsprtation is undertaken by carts or wasons, pulled by tractors, and with trucks and rail, but ox-drawn carte are still wideapread.

The pricing system in force in many countries does not offer incentives to producers for improving the quality of surar-cane so that technological development remains limited.

Remarts on the sutar mills

9. In Latin Anerica, techniques and equipment dating from the turn of the century co-exist with isolated advances introduced through techmology transfers.
10. Very little can be done for diversification, competition, pollution and enersy savings because of insufficient financial poasibilities.
11. The machinery is often obsolete, enersy is masted and pollution from the burning of sugar-cane and its by-products is high.
12. The sugar industry is also lnown for its lack of organised maintenance besed on preventive and more destructive techniques.

Consurtion

13. Sugar is a very important element in the diet of the Latin Americans, since it is a significont nutrient in countries where mutrition is a serious proble..

Table 2
Surar Consuretion
(1000 tons raw equivalent)

Source: P.O. Licht, 1987
14. Consumption of sugar in Latin America amounted to approximately 18 million tons in 1986. Between 1970 and 1984, the consumption of the region grew at a yearly rate of 3.4%, i.e. from 10 million to over 16 million. The pest two years confir this trend. However the consumption growth lies below population growth which amounts to 7\%.
15. In absolute terms consumption grew over 60% between 1970 and 1984 and if this trend continues, consumption could reach 26 millions tons by the end of the century, and practically all sugar produced would be for internal consurption by the year 2000.

Coparative figures

16. Latin America's actual per capita consumption anounts to 42 kg ; the world average is approximately 20 kg a year. The region's rate of consumption growth is nearly 40% higher than that of the world total and the current regional consumption is double the world's per capita averafe.
17. The trend differs according to the size and development level of the country: Brazil accounts for more than 38% of the region's consuption and therefore plays a major role in the evolution of the growth rate. Its consumption increase between 1985 and 1987 was around 6.3\%, the regional rate was 5.5\%.
18. Iatin Anerica's consumption in world consumption has continued increasing: it was 14.3% in $1970,17.7 \%$ in 1984 and should reach 19% by 1990.
19. The penetration of other sweetemers: caloric or non-caloric is very low in this region. Only Argentina produces significant quantities of high fructose corn syrup.

Fron an export-oriented to a domestic-oriented production

20. A very important point in the evolution of the sugar industry in Latin Anerica is the recent shift from a traditionally export-oriented industry to one geared mainly towards domestic consumption.
21. In 1970, consumption represented 46% of the total production; in 1984 the share grew to 55\% and in 1986 reached 66\%.
22. Two reasons may explain this shift: the increasing internal consumption as a comsequence of lower prices in the mid 1970s and the changes that occurred over the past ten years on the sugar market.

Trade

23. Sugar is the third major source of foreign currency for Latin America, after oil and coffee.
24. In 1986, the region exported more than 10 t; it is the major producer in the world with slmost 40\% of the world sugar exports (see Table 3).
25. The region's first exporter is Cuba with more than 73\% of Latin America's total and 24% of the world's total. Brazil follow, representing 12% of the restion's total and 4.7\% of the world's total.

Table 3

Sugar Trade in Latin America

(1000 tons raw equivalent)

Source: F.O. Licht, 1987
26. Cuba dedicates the major part of its production to export, whereas Brazil as well as Mexico and Argentina which have larger absorption capacities, dedicate the major part of their production to consumption and the rest to export.
27. For smaller countries such as the Doainican Republic, Guyana and Belize, sugar accounts for more than 30% of the country's total exports.
28. The participation of the region in world total exports has continued to fall in the last 15 years - from $53 x$ to 40% - while imports rose from 1% to 2%.
29. The destination of export has also changed as a consequence of the narrowing of the traditional markets. Sales to the United States, Japan and the ESC fell from 44x to 19% of total exports while those to the Soviet Union and China increased from 23* to 44\%. The USSR is about to become the region's main customer with 35\% of the total exports.

Consequences for_Latin America's incone

30. The income of foreign currency has been sharply affected. In 1974, 8445 million MTRD of sugar was sold to the free market for us $\$ 5.511$ billion. It was a very good year, and prices were high.
31. In 1985, the sales fell to $\mathbf{6 . 9 5 0}$ million MTRU, for a value of US $\$ 1.079$ billion.
32. As sugar is important to the economy of many Latin American countries. the problem is all the more acute for their trade balance in the context of lack of capital, of general financial difficulties and economic stagnation.

II. Sugar-cane_By-products_in Latin America_and in the World

Presentation of by-products

33. In vien of the current economic situation of the sugar-cane industry the search for alternative or supplementary activities within the industry is a reality which calls for minimizing the economic problems caused by the serious crisis of augar oversupply on the world market. One of the ways to deal with this problem is the diversification of the sugar-cane industry, which means asong others the rational use of available resources and by-products.
34. The use of by-products and the production of derivatives began several years ago in Latin America and in particular in member countries of CBPLACRA. Mot all efforts have been successful; many of them are on the verge of nchievins their objectives, some of them have failed and resulted in losses of investments and time. Nevertheless, within the current need to diversify the sugar-cane industry in Latin America and the Caribbean, a number of countries of the region continue to initiate and carry out programes of this kind with short, medive and long-term targets.
35. Sugar-cane is a very valuable raw material with various potential fields of application. The purpose of its diversified use and the so-called industrialization is not only focused on the elimination of existins extra stocks and support of the world prices by cutting down export supplies, but also presents tood opportunities for the whole econony of the region in general. The follcwing considerations, published in the GEPLACBA papers, are of relevant importence:

- The development of by-products will make it possible to diversify the economies of the sugar exporting countries to eliminate their dependence on a single product.
- The growing scarcity of many non-renemble raw materials gives bagasse, one of the principal by-products, an advantage in the production of pulp, paper and fibreboard.
- By-products can be used as a source of export with which to earn hard currency.
- The scarcity of fodder in many countries makes molasses, pith, cane trash and cane top increasingly inportant as cattle feed.
- The direct use of sugar cane as a raw material may help to solve food problems.
- The by-products of sugar-cane are becoming a tangible and promising source of energy in some countries with an inadequate supply of oil.
- There are new possibilities opened up in the cheaical industry to use the sugar-cane by-products for further steps of processing.

36. These outlines are based on the factual development of the sugar industry and the ad hoc manufacturing of by-products on an experimental basis.
37. Prior to the start of massive production of fuel alcobol in Brazil in 1975, the chemical industries had provided additional outlets for sugar in times of oversupply and depressed prices. In the late 1980s the low prices for sugar which then prevailed led to purchases of sugar by manufacturers of alcohol and cheaicals as an alternative feedstock for their operations. Such transactions played a significant part in reducing the volume of excess sugar supplies but over the years the picture has changed with important implications for the sugar market due to the drop in oil prices, technological obstacles in the way of a massive introduction of "exotic" fuels, infrastructure problems, etc.
38. Nevertheless, this initial experience led to the conclusion that the diversification of the sugar industry is the only way to stabilize growth rates or at least to preserve the volumes of production in this sector of economy at a given level.
39. Until now, the main efforts of the sugar-producing and sugar-exporting countries have concentrated on several components of sugar-cane processing such as cave tops, bagasse, molasses and filter muds.

The potential use of by-products

Cane tops

40. Cane tops have always been used as fodder but on a very linited scale. 130 million tons are produced annually with about 28% dry matter; but most of it is left in the fields. Its value can be considered to be approximately $\$ 10$ per ton fresh.

Barkase

41. The bagusse is the fibrous residue that is obtained in the nilling station of the sugar factory during the extraction of juice. In conparison with other vesetable residues, bagasse as a fibrous material, has a series of properties with the sreatest possibilities for industrial use, since large anovints are available (its production anounts to approximately 150 nillion tons yearly). Prom the industrial point of view, the bagasse can be divided into two fractions: the fibre (70x of the whole bagasse) and the pith (30\%).
42. The fibre constitutes the industrially required fractions for the production of pulp, paper and particle boards.
43. The most extenced uses of bagasse are as a raw material for the manfacturing of pulp, paper, particle boards, furfural and of course, as fuel in the boiler furnaces of the sugar mills, 1 t bagasse (dry basis) being equivalent to $0,34 t$ fuel oil. Bagasse can also be used for animal feed.

Utilization as fuel

44. Before 1973, when light crude oil was at lower than $\$ 3$ per barrel and electricity was US cents 2 per $k W h$, there was no incentive to use surplus bagase as fuel. However, after the price rises of 1973 and 1979, the situation changed and even if the barrel of crude oil, after climbing to uS $\$ 34$ has dropped since the beginning of 1986, the generation of electricity from sirplus bagasse is an economic potential in most non-oil producing Third World countries.
45. The use of bagasse as a domestic and industrial energy source is one which can have good economic and social benefits. The following comparison of heat values illustrates the basis for this assertion:

Table_4

	(BTU)__Per__pound
Bagasse (field moisture)	3,900
Bagasse (bone dry)	8,350
Peat	$590-3,400$
Wood (air dried)	$3,500-4.500$
Lignite coal	$5,500-12,000$
Charcoal	$11,000-13,000$
Bituinous coal	$11,000-16,000$
Anthracite coal	$15,000-16,500$

Source: World Bank
46. As a rough indicator, bagasse briquettes could be produced in some regions at about US\$ 30 per ton whereas firewood in many cane growing countries sells at US\$ $35-70$ per ton. Charcoal could be produced at US\$ 55 per ton under the same assumptions and comonly sells for between US $\$ 75$ and us 100 per ton.
47. Today, countries having a large sugar production per capita (say 500 to 600 kg) such as Fiji, Barbados, Mauritius, should be in a position to generate a fair percentage of their national electricity requirement from surplus bagasse.

Production of fibrous products

48. The main fibrous products are pulp and paper, particleboards and fibreboards.

Pulp and paper

49. The establishment of . paper industry has become an important element in the development programes of many countries, due mainly to the problems they face in acquiring pulp since supplies of wood have been nearly exhausted in some areas.
50. More than 70 factories exist having a total production capacity of nearly 25 million tons per year. In addition, new installations are being projected to produce different kinds of pulp and paper.
51. The factories are located on each continent where sugar-cane is grown. More than 27 countries use bagasse for producing pulp and paper, nost of which are in Asia and Latin America. Mexico, Peru, Argentina, Cuba, Brazil and Colombia are the largest producers in Latin America. In Latin American and Caribbean countries, there are 43 factories producing cellulose from bagasse, with an installed capacity of over one million tons annually. Of these 43 plants, 33 operate normally while the other factories are shut down for a variety of reasons such as lack of raw material, pollution problems, and economic difficulties.
52. The price of pulp and paper has risen recently, and it is forecast tbat pulp will be worth close to 600 dollars per ton in the future, which will cause difficulties for paper producers and pulp importers.
53. The pulp and paper industry based on bagasse has expanded considerably due to the rising prices of these products and the scarcity of renewable raw materials.
54. The world trend shows a considerable increase in the production of paper from bagasse in the last 20 years. Most sugar-cane producing countries have a need for paper, and new factories would meet their domestic market needs.

Particleboard and fibreboard

55. The production of fibreboard and particleboard from bagasse has a sound commercial outlook provided that a sufficiently large local market exists for this material.

Particleboard

56. This product could be widely used, especially in the furniture industry. A close relationship exists between the furniture and the panel industries, and in some countries they operate as a single unit. Particleboard is used in kitchen furniture, wardrobes, desks and other household furniture.
57. For the Latin Anerican and Caribbean region, particleboard protuction is mainly concentrated in Cuba, which has eight plants for manufacturing bagasse panels.

Fibreboard

58. Fibreboard is used mainly in the construction industry (for room divider panels, doors, thermal and acoustic insulation and for other decorative purposes after the surface has been adequately treated). It is also used in the furniture industry for cabinets, drawers, etc.

Production of chemicals

59. Furfural is the most important by-product in this field. It is used as a raw material for the production of furfuryl alcohol, tetrahydrofuran and other derivatives.
60. World production doubled in the last decade. More than 90% of all the furfural produced is used in the industrialized countries, the main importer being the European Economic Comunity.
61. There are approximately ten factories in the world that produce furfural from bagasse, and others are plamed in different countries. Generally speaking, there is a surplus plant capacity in the world for furfural and the production of furfuryl alcohol might have a better potential for countries with appropriate chemical expertise.

Pilter_cake

62. Filter cake is the waste from the filtration of juice in sugar production. The amount of filter cake obtained differs from one sugar mill to another and even within a single sugar mill, since it depends on many factors including the clarification system, extraction technology, and variety of sugar cane.

Molagazes

63. This by-product has a broad spectrum of utilization.
64. In Latin American and the Caribbean countries the yearly production of molasses, taking beet and cane molasses together, is 37 million tons and export of this commodity has reached 7 million tons.
65. The major consumers of molasses are the United States, Japan and the EBC. These markets consume around 80\% of the total world molasses supply. The price of molasses is characterized by great fluctuations on the world market. Nearly all the molasses on the international market cowe from sugar-cane. The sugar beet countries consume their own molasses.
66. The main industrial use of blacistrap molasses is in alcohol production. This industry exists in nearly all the sugar-cane producing countries. The production of potable alcohol from molasses is very inportant in many countries.
67. Industrial alcohol can also be obtained fros molasses; most importance being placed on the production of ethanol.
68. Molasses can be used to make various other products such as lysine, yeast, citric acid and monosodiun glutamate.
69. Molasses is also used in cattle-feed production.

Table 5
Products obtained fron molasses

Yeest

70. Teest production is a very ancient industry. Its technology is well known throughout the world. Anong the best known yeasts are saccharomyces and torule yeast.
71. There are no significant technological difficulties involved in yeast production. Bquipment traditionally used in the fermentation industry mainly comprises fermenters, stirrers, pums and tanks.

Lreine

72. Lysine is an essential amino acid used as an additive to animal feed. It is mainly produced in France, Czechoslovakia, Bulgaria, the USSR, Japan and Mexico. In the latter two lysine is produced from sugar-cane.

Citric acid

73. Citric acid is obtained by fermenting molasses. It is used in food products and beverages as an acidifier; to bring out flavour and as a preservative.

Moposodius gluterate

74. It is one of the best-known flavourings in the food industry, used in the form of a white crystalline powder. The main producer is Japan foll wed by the United States, France, Italy and the BEC countries. The technology for producing monosodiv glutamate is rather sophisticated.

Dextren

75. Dextran is a polymer of glucose with high molecular meight.
76. As a conclusion it can be said that some of these by-products have relatively suall or saturated markets, other require substantial investments and are subject to economies of scale (e.g. pulp and paper). The inportant issue at this stage is that opportunities have not been adequately explored in many countries, and any evaluation of sectoral development should be taken into account when planning domestic food, feed and energy markets. Animal feed/litter; building materials, charcoal, fuel briquettes, electricity generation and potable and fuel ethanols appear to be the most promising for further evaluation.

III. Production_and_Consurtion_of_the_Main_By-products

Bagasge

77. Bagasse is produced at the rate of approximately $150-200$ million tons annually (with mill run basis and 50\% moisture). The main producers are south and Central Anerica with $116,310,000$ nt in 1984 especially Brazil, Mexico and Cuba.

Toble 6

Vorld Barsase Production
(in 1000 nt)

| | 1975 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| N-America | 8,248 | 8,029 | 7,844 | 9,456 | 8,146 | 9,346 | 8,367 | 9,168 |
| Europe | 85 | 16 | 10 | 56 | 66 | 62 | 48 | 46 |
| Africa | 16,800 | 19,653 | 18,934 | 20,539 | 22,358 | 20,306 | 22,161 | 23,852 |
| Centr.Anerica | 42,340 | 47,747 | 42,255 | 37,071 | 40,570 | 40,195 | 43,249 | 40,528 |
| South America | 35,878 | 39,129 | 42,993 | 53,313 | 59,083 | 68,484 | 73,061 | 76,806 |
| Asia | 42,210 | 52,466 | 42,996 | 55,226 | 71,024 | 66,193 | 63,701 | 65,270 |
| Oceania | 10,478 | 11,147 | 12,611 | 8,181 | 8,820 | 8,659 | 8,268 | 7,322 |

Source : Energy statistics yearbook United Nations 1981, 1984 and 1985
78. Nost of the bagasse is used to generate the stean and energy required by the sugar factories and approximately 8 million tons are available as surplus for paper, board, etc.

Peper

79. Bagasse is used for producing cellulose for the paper industry, which is a basic element in the development programes of many countries, due to the probless some countries face in acquiring pulp, since supplies of wood have been exhausted in some areas.
80. About 27 countries use bagasse for producing puip and paper, most of which are in Asia and Latin America where 43 plants are recorded with on installed capacity production of over 1 million tons annually.

Board

81. There are approximately 40 bagasse plants that produce fibreboard and particleboard in the world, of which 25 produce particleboard and 15 fibreboard. The production capacities of these plants range from $\mathbf{3 , 0 0 0}$ to 39,000 tons per year.
82. In Latin American and Caribbean comeries there are 19 plants which produce boards from bagasse, 15 of which produce particleboard. Their total production capacity reaches $1,360 \mathrm{Mr} / \mathrm{D}$, ranging from 30 to $470 \mathrm{Mr} / \mathrm{D}$.

Purfural

83. Between 70x-75\% of all the furfural produced in the world is turned in furfuryl alcohol which from the conmercial viewpoint is the most inportant chenical derivative of furfural and is mainly used in the production of furan resins.
84. Around the world there are anproximately 10 plants that make furfural from bagasse and others are being planned in different countries. In member countries of GEPLACBA production began in the Dominican Republic which between 1983 and 1984 produced about 340 MT through a discontinuous process which calls for $25 t$ of bagasse to produce 1 ot of furfural. Brazil has also been producing furfural since 1975 through this process and its production reached 2,395 at and 2,940 at of furfuryl alcohol in 1987.

Molasses

85. The world production of molasses fluctuates around the level of 36 million tons yearly and cane molasses is produced at the rate of 20 aillion tons yearly but only 6 million tons are exchanged on the international market with the remaining 14 million being consumed by the producers themselves.
86. The main producer is the Latin American and Caribbean resion which produces nearly 13 million tons of cane molasses with Brazil in first place (5,339,870 t in 1986/87) followed by Cuba (2,320,000 t in 1984/85) and Mexico ($1,425,000 t$ in 1984/85).

Table 7

World Molasses Production
National crop years
(in 1,000 tons)

1984/85 $1983 / 84 \quad 1982 / 83 \quad 1981 / 82 \quad 1980 / 81 \quad 1979 / 80$

Morth America	1,755	1,752	1,663	1,789	1,737	1,785
West Europe	4,669	4,587	5,344	5,183	4,204	4,209
East Burope	5,017	4,803	4,985	4,311	4,234	4,637
Africa	2,507	2,261	2,507	2,335	2,122	2,180
Cent America	5,464	5,400	5,017	5,389	4,893	4,901
South America	7,571	7,509	6,942	6,612	6,909	7,320
Asia	8,331	8,306	9,330	9,493	6,674	5,225
Oceania	938	818	879	871	842	741
MORLD	36,252	35,436	36,667	35,983	31,615	30,998

Source: PO Licht 1985
87. Nearly all the molasses on the international market come from sugar-cane since the sugar beet countries consume their onn molasses.
88. The main molasses-consuaing countries are developed countries, in particulare the EEC, the United States and Japen. These 3 markets consume around 80x of the total world molsases supply.

Toble 8

Yolasses I (in $1,000 \mathrm{~m}$)

	1982/83	1983/84	1984/85	1985/86
Morth Ameriga (DSA)	$\begin{gathered} 1,725 \\ (1,584) \end{gathered}$	$\begin{gathered} 1,533 \\ (1,350) \end{gathered}$	$\begin{gathered} 1,783 \\ (1,661) \end{gathered}$	$\begin{gathered} 1,500 \\ (1,360) \end{gathered}$
EEC	3,609	3,702	3,172	3,161
Eastern Europe	150	90	98	114
Asia	1,203	1,096	1,049	1,060
(Japan)	(915)	(814)	(769)	(780)
Other countries	85	136	55	65
TOTAL	6,772	6,557	6,157	5,900

Source: GEPLACBA bulletin vol IV N-3 March 1987
89. The EBC is currently the major importer of molasses, having replaced the United States a few years ago. Its imports have risen in the last ten years but have currently stabilized at approximately 2,5 to $\mathbf{3 , 0}$ million tons.
90. The United States also represents an important molasses market for the member countries of GSPLACRA. These accounted for 53% of the total American molasses imports in 1985 (60% in 1984) and that can be explained by the geographical situation.
91. Australia and South Africa are also two other main molasses euppliers of the United States.
92. Japan is another large molasses importer, with anmual figures of nearly 700,000 to $900,000 \mathrm{t}$.
93. As far as exports are concerned, nearly 5,575,000 mt molassea were exported in 1985/86 (a decrease in comparison to 1982/83).
94. The nost important exporting region is Asia, and particularly Indonesia, Thailand and the Philippines followed by the member countries of CIEPLACBA with Brazil (500,000 mt cane molasses exported in 1985/86), Cuba (200,000 mt) and Mexico (178,000 mt).

Trable 9
Molassess Buports in Selected Countries (in $1,000 \mathrm{mt}$)

1982/83 1983/84 1984/85 1985/86

North Anerica	425	501	451	397
South and Cent Averica	953	1,529	1,344	1,382
ESC	1,081	738	694	615
Africa	724	387	619	544
Asia	3,060	2,911	2,237	2,055
Oceania	316	301	442	332
Other countries	83	257	250	250

Source: GEPLACBA Bulletin vol IV N-3 March 1987
95. The prospects of the world molasses market are hard to predict given the lack of relisble statistics. However it appears to be a market with little growth in the Onited States and slightly more in the other principal markets such as the EEC, Japan and other Western Buropean countries.
96. As far as the member countries of GBPLACEA are concerned, their ond domestic consumption has been increasing, primarily for animal feed and more recently in the production of alcohol.

Puel alcohol_prosrames_in Latin_American and_Caribbean countries
97. Between 1977 and 1984, there was a seven-fold increase in world production of ethanol, primarily for fuel purposes. This has resulted for the most part from the aifift in relative prices of petroleum and sugar.

Teble 10
Sumary of Ethonol Production Capacity (Million liters per year)

	1977	1984	- Construction	
			In progress	Planned
Developed Countries	1/A	2,750	368	417
of which - USA	38	1,643	360	367
Developins Countries	M/4	10,850	574	2,449
Of which - Brazil	1,210	10,000	508	686
- Other South Anerican	-	309	40	880
- Central Aner./Car.	-	137	18	239
- Africa	-	88	-	128
- dsia	$\underline{-}$	470	8	516
TOTAL	1,850	13,600	942	2,866

Source : Compiled from World Bank Working Papers.
98. In Latis America, Argentina, Brazil and Poraguay, have already initiated Fuel Alcohol Progremmes. Bolivia, $B 1$ Salvador, Guatemala, Panama, Peru, Dominican Republic and Uruguay are currently considering the possibility of setting up progromes of this kind.

Alcochemistry_in_Brazil

99. The case of Brazil is of particular interest because it has the largest and most comprehensive scheme for ethanol production and because its production costs are the lowest in the world, therefore constituting a "best case" analysis for substitution.

The Brazilion National Alcohol Programe

100. The Brazilian alcohol industry emerged as a consequence of its huge industrial complexes fo: sugar production, which needed a rational outlet for molasses. In 1929, the Great Depression seriously affected the Brazilian sugar industry because it brought international sugar prices down to drastically low levels, forcing the Brazilian Government to intervene in this sector of the economy so as to curb the effects of the crisis. One of the first reasures adopted made it compulsory to blend 5* alcohol with gasoline. Thus Brazil has been producing alcohol for fuel since the 1930's.
101. Brazil adopted its national alcohol fuels programe, PROALCOOL, in 1975 in response to rapidly increasing oil import costs, as well as falling sugar prices. The objectives of this programe were the following:

- to increase the growth of sugar-cane and other biomasses for enersy purposes;
- to reduce the dependence of import energy sources and feedstocks through large-scale use of local renewable resources such as ethanol;
- to reduce regional imbalances and improve the per capita distribution of income by expanding and increasing the nation's agroindustrial activities associated with the production of alcohol;
- to dynamize the capital goods sector through the increased demand for equipment to expand and build new distilleries;
- to minimize the costs of transporting feedstocks and energy sources;
- to reduce expenditures for imported oil, thus directly benefiting the balance of payments.

102. An output of 5 billion.liters of alcohol was originally forecast for 1985. In 1979 the PNA was reformulated and a target output of 10,7 billion liters was set for 1985. Brazil is both the largest ethanol producer in the world and the country that has developed the alcochemical industry to the greatest extent at the world level. It now has 11 industrial complexes in which the following products are obtained: ethane, acetaldehyde, acetic acid, acetates, ethylic esters, ethylamines and ethyl chlorate.
103. It is estimated that the PROALCOOL Programe has created 500,000 new jobs (direct).
104. More than 60\% of all Brazilian cars are nowadays fuelled by alcohol and about 90\% of all new cars manufactured in Brazil run solely on alcohol.
105. This remarkable technological succeas is not without its problems. The basic issue remains the cost of alcohol in relation to oil-based fuels.

Statistical analysis of the Brazilian ethanol market
Production statistics
Table 11
Brazilian_Alcohol Production fron 1970/71 to 1984/85
(1,000 liters)

SUGAR CANE CROP YEAR	ANHYDROUS (200 proof)	HYDRATED (185 proof)	TOTAL
1970/71 a)	252397	384841	637238
1971/72 a)	389984	223084	613068
1972/73 a)	388891	292081	680972
1973/74 a)	306215	359764	665979
1974/75 a)	216528	408457	624985
1975/76 a)	232621	323006	555627
1976/77 a)	300340	363682	664022
1977/78 a)	1176948	293456	1470404
1978/79 a)	2095597	395006	2490603
1979/80 a)	2713360	683095	3396455
1980/81 a)	2104027	1602348	3706375
1981/82 a)	1453098	2787025	4240123
1982/83 a)	3550401	2268693	5819094
1983/84 b)	2471078	5403221	7874299
1984/85 b)	2102585	7148967	9251552
1985/86 b)	3207871	8610870	11818741
1986/87 b)	2127517	8192003	10319520
1987/88 c)	-	-	13237000

a) June/May
b) May/April
c) Projection

[^0]106. As can be segn from the previous table, since 1977 production has been incressing very quickly. Over 60\% of the entire cane crop is now channelled to distilleries.
107. The share of anhydrous alcohol in the total production is also increasing: it emounted to $73,9 \%$ in 1986. In 1986/87, for the first time, a backward movement was recorded due mainly to a drought during the preceding year.

Consuption and exports

108. In 1984, Brazil used about 75\% of its ethanol output for domestic fuel purposes in a ratio of two-third pure alcohol and one-third in gasoline blends for older engines. In addition, $6,3 \%$ was used by the chemical industry and nearly 7\% was channelled to other internal uses. The balance of just over 11\%, or nearly one billion liters was mainly exported to the United States.

The perspectives for the Brazilian alcochenistry

109. The Brazilian alcochenical industry dates back over half a century and great progress has been made over the past decade particularly because of the Sovernment policy to fix alcohol prices at levels equal to gasoline prices.
110. The economics of alcochemical processes compared to prices of petrochemical products are linked to the price of oil on the international market. That is, the rising prices of oil make alcochemistry more feasible and vice versa, when oil prices are low, alcochemical procisses are no longer economically feasible. In short, the future of alcochemicals is linked with the behaviour of international oil prices.

[^0]: Source : F.O. Licht
 (Internationaler Melasse- und Alkoholbericht - June 1987)

