TOGETHER
for a sustainable future

## OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.


This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

## FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

## CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org
ne/in/spo.nilo?l
? Tune lopa


# LOW-COST MODULAR PREFABRICATED WOODEN BRIDGES 

SM/BHU /84/010

BHUTAN

## Technical report: Launching the UNIDO Bridge *

Prepared for che Kingdom of Bhutan by the United Nations Industrial Development Organization acting is executing agency for the United Nations Development Programme

Backstopping offcier: R. M. Hallett, Industrial Management and Rehabilitation Branch

United Nations Industrial Development Programme Vienna

```
* This document has been reproduced without formal editing.
v.9n ?9?1?
```


## TABLE OF CONTENIS

## Page

INTRODUCTION ..... 1
BRIDGE LAUNCHING

1. General ..... 1
2. Rigging Calculations ..... 1
3. Setring Out ..... 8
4. Anchorages ..... 8
5. Derricks - construction and erection ..... 8
6. Girder Construction and Launching ..... 11
7. Decking ..... 15
8. Dismantling Derricks ..... 16
9. Rigging Hardware ..... 16

## LAUNCHING THE U:IDO BRIDGE

INTRODUCTION

This technical report is a revision of the Expert's earlier report prepared for the Government of the Commonwealth of Dominica. (UNIDO/IO/R. 223 - "Launching the UNIDO Bridge" - 24 January 1986 English.

It includes the actual weight of bridge panels made of Chir pine, and the use of four legged derricks rather than two legged shear legs.

Reference is made to the "TRADA Drawings". These drawings comprise Part 5 of the report "Prefabricated Modular Wooden Bridges" (UNIDO/IO/R.163) prepared for UNIDO by the Timber Research and Development Association.

BRIDGE LAUNCHING

1. General

The UNIDO bridge is launched from the NEAR side of the gap to the FAR side. Pairs of PANELS (TRADA Drawing Fig. 15) are assembled with horizontal and vertical bracing to form a stable GIRDER. The NOSE of this girder is supported from a travelling block which runs on a MAIN LINE. The main line is anchored at each end to a DEADMAN anchorage and is supported at each end by either a four legged DERRICK or a two legged SHEAR LEGS (and the details which follow the use of derricks is described). The words in HIGHLIGHTED CAPITAL LETTERS are used in the sense defined in the introductory paragraph and are hereafter used only in this sense.

## 2. Ripging Calculations

The general arrangement of the rigging is shown in Fig. 1. It is possible to calculate by statics the forces in every component of the rigging, once the dimensions of derricks, slings etc. are known. The expert attaches considerable importance to these calculations, so that the engineer in charge vill know the forces involved at every stage of launching. In longer spars and denser timbers the working load limits of the various components are easily exceeded.


The girders weigh several tons each and an accident could easily prove fatal either by a man being cut in half by a broken wire strop or by being crushed by a falling girder. Such accidents can be prevented if the engineer in charge is aware of all forces at every stage of the launch.

The most important launching forces are the tension in the main line ( $T$ ) and the brizontal force(h)required either to restrain the girder from moving forwards or to pull it across to the far bank.

The programme in Table l, written for a HP IlC calculator calculates in Kg. Force first $T$ then $h$. This is done for span $L$ from 3 m to 30 m at launching distances $d$ in 3 m increments, and for sags of 1 m to 7 m . At the start of each cycle the display momentarily shows in turn L, $d$ and $S$. Thus 12, 6, 4 indicates that the following figures will refer to $T$ then $h$ in a 12 m span, launched 6 m across the gap with a 4 m sag. Note that when $h$ is negative it indicates that the bridge will launch itself across the gap, a potentially dangerous situation requiring a tie back line. The notation used is shown in Figure 2. $w$ the weight per lineal metre of girder complete with horizontal and vertical bracing, may be calculated as shown at the end of the programme but it is safer to weigh several pairs of panels with their associated bracing and bolts on a weighbridge and determine $w$ from the weighbridge figure.
The forces as determined for Chir pine ( $560 \mathrm{~kg} / \mathrm{m}^{3}$ ) for derricks set back 2 m from the abutments are given in Table 1.

From this table a safe launching sequence may be determined.
At the final stage of the launch, the resultant forces on the far derifck may lie behind it, causing its head to kick backwards. The heads of the two sets of derricks shouid, therefore be tightly tied together. Whether this will happen or rot may be determined by summing the vectors of $T$ for the final stage of the launch.

TABLE 1 HP \|C ${ }^{-4}$ PROGRAMME



TABLE 2
MIMLIME TEASION AND HORIZONTAL FORCE - KS
CHIR PINE PANELS. GIRDER WEIGHT $165 \mathrm{Kg} / \mathrm{M}$ DERRICK HEADS 2M BACK FROM ABUTKENT



Figure 2. Programe notation

## 3. Setting Out

On any site but one with flat and levei approaches, the Expert recommends that a longitudinal profile sinould be surveyed for about 25 m beyond each abutment and plotted tc a scale of $1: 50$. The example for the Panchingchu bridge is shown in Fie. 3. With the derricks drawn in position and the lengths of blocks, shackles, slings etc. drawn, the position of the deadman anchorages may be determined. The Expert recommends that the positions of the derricks and anchorages should be taped out, r.ot merely paced as shown in the video, "Short cut" and they should be located on an accurately set out centre iine.
4. Anchorages

The anchorages used are of the "deadman" type. A trench is dug at the anchorage position 1.8 m deep $x 2 \mathrm{~m}$ long $x 0.6 \mathrm{~m}$ wide, perpendicular to the centre line. A narrow trench is dug on the centre line rising at 30 degrees from the bottom of the main trench. A sound lug, 300 mr diameter by 1.8 m long is placed in the trench and a 8 m long sling is passed behind the $\log$ and botn eyes evened up at ground level. Do not wrap the sling completely round the log.

The trench is backfilled and rammed in 200 m layers.
If the soil is soft wet silt or clay of low shear strength the size of the anchor should be increased by using a longer log or by driving timber palings in front of it to mobilise more passive earth resistance. The engineer here must exercise his field knowledge of so:? mechancis. The total force to be taken, particularly at the far anchorage is approximately the sum of $T$ and $h$ for the sag obtaining at the final stage of seating the girders and can be determined from Table 1.
5. Derricks - construction and Erection

The derricks are constructed to the details shown in Pip. 4. Sound pine poles are suitable.

Note that the hanger for the block on the far side derrick should be hung from the near side away from the gap pair of legs, while that for the 5 ton chain block and top line block should be hung from the front side - next to the gap - pairs of legs. This is to avoid shear failures in the heads of these soft green poles as happened at Panching.


5. Derricks Contd

The derricks are built lying on their nearsides with the head lying away from the gap as shown in the photograph Fig 5. A rope is tied to the head of the main line fixed to the block and this rope is elevated about 6 $m$ by a light pole. The lower feet are propped away from the abutment, or better, tied back to the anchorages, then pulling with a Tirfor which will raise the derrick.

A hold back line with a gang of men can control the final stage.

The main line should be reeved and slings etc attached before raising the derricks so as to avoid having to climb them later.
6. Girder Construction and La ..lching

Two pairs of trusses are stood up on the platform and braced together as shown in Figs 22 and 24 of the TRADA Drawings to make a 6 m long girder. The trusses are spaced apart by temporary spacers 700 mm long with 1,100 mm nailing pieces on top. Male ends should lead. It is recommended that two $150 \times 12 \mathrm{~mm}$ coach screws should be used in each end of the horizontal diagonal braces rather than the nails shown in the TRADA drawings, especially in hard timbers. Drilling upwards is easier than nailing. The trusses must be carefully checked for line and squareness. The nose is supported by a 150 $x \quad 150 \mathrm{~mm}$ timber slung from the traveller. The wire from the far Tirfor is also fixed to the traveller. A tie back rope is attached to the rear of the trusses and to the rear anchorage or to a post dug at least 1.2 m into the ground on the bridge centre line.

By tightening up on the main line and hoisting with the chain block, the 6 m length of girder is swayed 3 m across the gap. The girder must be under the control of the holdback rope since at this stage it has a strong tendency to go to the middle of the gap. The wire from the far Tirfor is merely kept from being too slack at this stage.

The assembly is lowered at the rear when the points of the two rear trusses are just behind the abutment. Two more trusses are added and the operation is repeated. After the halfway mark is reached the girder will have to be pulled across by the far Tirfor and the holdback rope is required only when the chain block is lifting behind the vertical.

The main line must be kept as slack as is consistent with girder assembly. the ma $n$ in control of the main Tirfor to want to trice up the nose as much as possible. This tendency must be resisted and the sag must be kept as large as possible to minimise the main line tension.
-12-


Fig. 5 Derricks ready for hoisting


Fig. 6 Derrick being hoisted


Fig. 7 Girder construction - start


Fig. 8 Landing girder on abutments


Fig 9 Pulling over of derrick

## 6. Girder Construction <br> Contd.

Photographs of early and iater stages of the launching are shown in Figs 8 and 9.

When the final pair of trusses is assembled the nose of the girder should be at about its final level. The chain block must be suspended from a sling sufficiently long so that it is almost chock a block when lifting the rear of the girder clear of the construction platform since it will be fully extended when finally lowering the girder. Note that the standard 10 ft . (3.05m) extension is barely adequate. If a l2ft extension block is not available then temporary slings will be required to support the girder while the chain block is re-hung from a longer sling. If this situation occurs then provision for hanging two additional slings plus additional shackles will be required.

Under the control of the far tirfor and the main line, the nose of the girder is landed on the far abutment. It is convenient if the ends of the girder are landed on 1200 mm long pieces of board which in turn rest on short pieces of pipe or reinforcing steel. These small rollers aid considerably in skidding the girder sideways over to its final position.

Should the girder bow sideways more than 200 mm at any stage of launching a potentially dangerous situation is developing and the girder must be de-launched and the bowing rectified. The reason will probably be found to be out of square end plates MK 10. Shimming may be required.

After the second girder is launched and positioned the two girders should be connected together at the $20 r r e c t$ centre distance. $(1,400 \mathrm{~mm} \mathrm{c-c}$ of inner trusses - see Figure 24 of TRADA Drawings). Any overall bow can be corrected by pulling sideways with a Tirfor anchored to a suitable tree on the river bank. Note that in this case the sling should not go round the top chord as this would interfere with nailing of the decking.

## 7.

Decking
Nailing the decking may start from one end and proceed across the bridge or if there is sufficient labour and hammers, at both ends working towards the centre.

Structurally the most important decking is at the ends of the bridge. As the decking approaches the end(s), and the dead load reaches its maximum, careful watch for lateral movement must be maintained and the silghtest movement corrected by pulling with the Tirfor winches and the chain block. At this stage the derricks and anchorages should have been dismantled and there will be plenty of slings and steel wire rope available.

After both girders are in position and any additional trusses for a six or eight truss bridge have been positioned the derricks can be dismantled. This can be done by pulling them over with a long rope, ensuring that all personnel are well clear of the general landing area. See $\mathrm{Fi}_{i} \mathrm{~S}$.
9. Rigging Hardware

The following pages are copied from their catalogue by kind permission of the McMaster-Carr supply company, P 0 Box 435 Chicago, Ill. 60880. U.S.A. They contain information on hardware items which the Exnert has found suitable for launching the UNIDO bridge. Sizes recommended are underlined. Note that the prices are in US dollars, early 1985 and are subject to change.

The correct method of application of wire "Buildog" clips is also shown.


Natural Fiber Rope

## Prembun \& Standerd Grade Manila Rope











Synthetic Fiber Rope
Hrigh Strengln Shock Besintind mfton Plope


 ifoencth sudretisouty compensares Fun shengit regornet on aryiz 7

 reat porst mesosis ana





2imploor

bitanang

I! 3.

WRE ROPE Moisting
nephove now stefi vitM m.

 cos stover
 man wor cep repes Cer be weet m temperatures obeve zoop leed lo:

Extia nouovte won STERL wit neminerint wite mope cone-ms moreatest struetytr a0cis 's
 whe mesists arasmor ane C.witic un nas good tetigy ressisiar:-

Stan-Flex Preformed Hoisting Rope innacassimationc

 nes Ee strore
 ossenehomstor Fore suec






Correct Use of Wire Rope Clamps
 ,


U-some mastell over Deed End of nope ch) No

seandard Patiern-Light Duly

Oneral


## RECOMMENDED METHOD OF APFLYING CROSBY CLIPS TO GET MAXIMUM HOLDING POWER

Turl back the specilied amount of rope trom the thimble. Apply the tirst clip one base width from the dead end of the wre rope (U-bott over dead end live end rests in clip saddle). Tighten nuls evenly to recommended torque.


Apply the ner alp as near the loop as possible. Turn'or nuls lirm, but do not tighton

Tie enliciency rating of a properly prepared
 for sises $1^{\prime \prime}$ through 3" is som. This rating is based upon the catalog breaking strength of wire rope. II a pulley is used in place of a thimbte for turning baik the rope, add one additional clip.

The number ol clips shown is based upon using right rogular or Lang lay wire rope. $6 \times 19$ class or $€$ $\times 37$ class. Stace - ? Ce or IWRC. IPS or EIPS. II Seale construction or similar largs outer wire type


Space addilional clips, if required. equally belween the first iwo. Turn on nuts - take up rope slack ... tighten all nuts evenly on all clips to recommended torque.

## NOTICE!

Apply the initial load and relighten nuts to the recommended torque. Rope will stretch and shrink in diameler when loads are applied. Inspect periodically and retighten. The tightening torque values shown are based upon the threads being clean. dry, and free ol lubrication.
construction in the $6 \times 19$ class is to be used for sizes 1 inch and larger, add one additional clip. The number of clips shown also applies to right regular lay wire rope, $8 \times 19$ class, libre core, IPS. sizes 1 h inch and smaller; and right regular lay wire rope. $18 \times 7$ class. libre core. IPS or XIPS, sizes the inch and smaller.
For other classes of wire rope not mentioned above. it may be necessary to ads sddilional clips to the number shown. )

| $\begin{gathered} \text { Pibe } \\ \text { nether } \end{gathered}$ | $\begin{aligned} & \text { minting } \\ & \text { Cliph } \\ & \text { Con } \end{aligned}$ |  | Trump |
| :---: | :---: | :---: | :---: |
| $\because$ |  | $3 \%$ | 45 |
| 1/4.0 | 2 | 31/. | . 75 |
| i $\%$ | 2 | 4 3/9. | . 15 |
| 4/1/6 | 12 | $5 \%$ | 30 |
| 1/3 | 2 | $6 \%$ | 45 |
| $1 / 16$ |  | 7 | 65. |
| $1 /$ | 3 | 11\% | 85 |
| 4/14101 | 3 | - 1? | . 95 |
| $4 /{ }^{\prime}$ | 3 | . 12 | . .95 |
| $1 / 4$ |  | 10 | 130 |
| $1 / 8$ | 4 | . 19 | 225. |
| 1 | - 5 | - 26. | 323 |
| $11 /$ | 6 | - 34 | 225 |
| $11 / 4$ | 7 | 4 | 360 |
| $11 / 8$ | - $i$ | 4.4 | 360 |
| $1 \%$ | 8 | 14 | 380 |
| .1\% | 8 | 58 | 430 |
| i\% | 8 | 61 | . S 9 |
| 2 | 0 | 11 | 750 |
| 2\% | 8 | 73 | . 750 |
| $21 / 7$ | 9 | 84 | . 750 |
| $21 \%$ | 10 | 100 | -730 |
| 3 | 10 | 108 | 1200 |
| $3^{1 / 2}$ | 12 | 149 | 1200 |

II a greater number ol clips are used inan shown iri the lable. the amount of rope lurn-back should be incenased proportionalaly
ABOVE BASED ON USE OF GENUINE CROSEY ALIPF ON NEW ROPE. CHECK AND RETIGHTEN TO THE RECOMIMENDED TORQUE. WILL CAUSE A REDUCTICIN IN THE EFFICIENCYRATINGS.

