

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

16702

Distr. LIMITED

UNIDC/ICPT 10 April 1987 ---

ENGLISH

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION

2

Information Brochure on the Work of the Industrial Development Division

THE INDUSTRIAL DEVELOPMENT DIVISION IN ASIA AND THE PACIFIC

7?8

Industrial Investment Division

I.

THE INDUSTRIAL DEVELOPMENT DIVISION IN ASIA AND THE PACIFIC

Table of Contents

Page

ION							
oject		•	•	•	•	•	5
Prepa	ral	tio	n.	-	•	•	6
e:							
•	•	•	•	•	•	•	6
t Stu	di	28	•	•	•	•	7
sten	•	•	•	•		•	8
•	•	•	•	•	•		12
and							
• •		•	•	•	•	•	15
•	•	•	•	•	•	•	19
•		•			•	•	21
•	•	•	•	•	•	•	21
•	•	•	•	•	•	•	22
	ION oject Prepa e: t Stu stem and	ION ojects Preparat e: t Studio stem .	ION ojects . Preparatio e: t Studies stem . and	ION ojects Preparation. e: t Studies . stem and 	ION ojects Preparation e: t Studies and 	ION ojects Preparation e: t Studies and and	ION ojects

ANNEXES

Annex 1.	UNIDO Investment Promotion Services	•	23
Annex 2.	"How to Start Manufacturing Industries":		
	Complete list of available profiles and		
	sample profiles on Cassava Starch Making,		
	Ammonia, Kefrigerator Assembly	•	25
Annex 3.	Specimen Project Summary: Automotive foundry		
	in India	•	45
Annex 4.	Specimen COMFAR and PROPSPIN Print-outs	•	46
Annex 5.	Sample IMPRIS Data Sheets	•	52
Annex 6.	Projects in Asia and the Pacific Promoted		
	and Concluded through the Investment		
	Promotion Services 1980-85	•	56
Annex 7.	Participants from Africa in the Investment		
	Promotion Officials Orientation		
	Programme 1978-85	•	62
Annez 8.	UNIDO Publications Relevant to		
	Investment Promotion		65
		-	-

1. INTRODUCTION

•

The mandate of the United Nations Industrial Development Organization (UNIDO) is to "promote and accelerate industrial development in developing countries with a view to assisting in the establishment of a new international economic order."¹. It fulfils this mandate by helping to establish new industrial plants and expand the productive capacity of existing ones, by enhancing the skills of the local workforce, by determining priority industrial subsectors in the context of a given country's resource endowment and by strengthening the ability of government departments and other official institutions to formulate policies which will encourage investment in industry by both local and foreign entrepreneurs.

In carrying out this mandate, UNIDO encounters a number of obstacles to industrial development, such as:

- the lack of well-prepared, "bankable" industrial investment projects, capable of attracting the financial and other resources needed for their implementation;

- the lack of convertible funds to purchase or replace plant and machinery;
- shortages of skilled labour, technical personnel and managerial staff;

- lack of know-how to apply modern production technologies;

shortcomings in the <u>physical</u> infrastructure: inadequate
 telecommunications and transport networks, unreliable utility supplies,
 insufficient adaptation of facilities to adverse climatic conditions;

- shortcomings in the <u>institutional</u> infrastructure: inadequate development policies which adversely affect the climate for investment, both foreign and domestic; complex administrative procedures which hamper individual enterprise; an inability to come to grips with the problems of a large and loss-making public sector.

UNIDO has long recognized that by inducing industrialists in more advanced countries to co-operate with entrepreneurs in developing countries in setting

up productive facilities it can mobilize resources far in excess of the amounts it can itself allocate to technical assistance, whether from its own budget or from the budgets of financing agencies with which it co-operates. The encouragement of direct foreign investment and the search for new mechanisms to promote it, e.g. the redeployment of plant and machinery from industrialized to developing countries, and the sale o technology under buy-back arrangements, will continue to be a priority activity for the organization.

This policy has been encouraged in recent years by the trend of many developing countries away from state involvement in industry and towards greater support for the private sector. In the words of the International Finance Corporation "Now, after several decades of experience with ε variety of state interventions and regulations, many governments have begun to look to the private sector to play a more prominent role in wheir countries' development...The causes of this shift include the recognition of the above-average growth rates that have been achieved by those developing countries that did encourage the private sector. The shift reflects an increasing concern for efficiency in a period of heightened scarcity of resources."².

The Industrial Investment Division (IID)³ of UNIDO is thus the arm of the organization which aims to accelerate the flow of private sector resources for industrial expansion from more advanced to developing countries. Located within UNIDO's Department for Industrial Promotion, Consultation and Technology, the Division is concerned with:

i. Identifying and formulating industrial investment projects in developing countries;

ii. Helping local sponsors of such projects obtain the financial, technical and human resources needed to implement them, which effectively means bringing them to the attention of industrialists in more advance^A countries and seeking appropriate sources of local and foreign finance. In addition to the staff and other resources available at UNIDO Headquarters in Vienna, IID operates a network of Investment Promotion Services located in Cologne, Milan, Paris,

Seoul, Tokyo, Vienna, Warsaw, Washington DC and Zurich staffed by UNIDO personnel which play a valuable catalytic role by keeping firms in their host countries regularly informed about industrial investment opportunities arising in developing countries and by helping local project sponsors find a suitable foreign partner.

In carrying out its work programmes IID is fully supported by other parts of UNIDO in assessing technological feasibility of projects, in the preparation of pre-investment studies, in designing manpower development programmes and industrial studies with a regional or subsectoral focus, or both.

¹UNIDO constitution, Article 1.

²International Finance Corporation, 1986 annual report, p. 9 ³IID was established in 1986; prior to this its functions were carried out by the Investment Co-operative Programme Branch within the Division of Industrial Operations.

2. PROJECT IDENTIFICATION AND FORMULATION

2.1 Generating Industrial Investment Projects

IID's involvement commences at the level of project generation, i.e. helping determine what type of manufacturing facilities would make sense in the context of a given developing country's resource endowment. For this purpose the Division has prepared a series of guides entitled "How to Start Manufacturing Industries" covering the manufacture of some 300 different products (see Annex 2 for a complete list and three specimen Profiles)..

Each profile contains a brief description of the requirements for a particular manufacturing process: raw materials, machinery and equipment, labour, investment and production costs, and is intended to serve project promoters and sponsors in developing countries as a reference guide to identify products suited to local manufacture on a small to medium scale. The selection of appropriate technologies and the ultimate feasibility of any manufacturing idea generated through use of the series must of course be ascertained by more exhaustive study. The profiles are intended primarily for use by:

- Officials of national planning commissions, ministries of industry and related institutions who seek to convert sectoral plans for industry which are based on the country's resource endowment into concrete investment projects
- Importers who wish to exploit import substitution opportunities by manufacturing the goods they trade in
- Other individuals who perceive an opportunity of manufacturing for the domestic market and/or for export and wish to learn more about the technology and processes involved and their approximate cost.

One of the main problems in designing this series is that developing countries, notwithstanding the features they have in common, differ materially in terms of type and availability of resources, level of technology and size and sophistication of internal markets. For this reason the profiles are not intended for use in preparing a formal pre-investment study. Examples of the "How to Start Manufacturing Industries" series and a list of those currently available are attached as Annex x.

2.2 Industrial Project Formulation and Preparation

Frequently, project ideas are generated by local sponsors based on their own observations and commercial activities without outside assistance, in which case IID's involvement commences at the project preparation stage. In order for a project idea to be capable of interesting a potential foreign partner, it must be set out in a coherent manner with evidence that the basic assumptions concerning the level of initial investment, operating costs, estimated sales, marketing arrangements, cash flow and return on investment are realistic.

The local sponsor must also have decided how he intends to raise the foreign and local currency resources needed and whether, in addition to the capital to be contributed by himself and the foreign partner, he counts on obtaining loan and/or equity funds from a development or other financial institution, and on what erms. The question of control must also be resolved: does the local sponsor intend to be the majority partner, or will he be satisfied with less than 50% of the equity. Information on the sponsor himself, his business experience and the scale of his existing operations, if any, is of particular concern to future partners, so that appropriate details must be supplied.

Project sponsors - even those who are already in business - do not always have the technical knowledge required for project preparation, and IID has therefore prepared two questionnaires to serve as a check-list when formulating industrial projects and ensure that no essential information is omitted. One is designed to elicit basic information on a project at an early stage of preparation, while the other is for use when formal pre-investment work resulting in the preparation of a feasibility or pre-feasibility study has already been carried out. A specimen project summary is attached as Annex 3.

2.3 UNIDO's Project Preparation Software - PROPSPIN AND COMFAR

A pre-investment study covering the life of an industrial project will contain many hundreds of figures reflecting the various aspects of implementation and operation and that are largely interdependent. Exploring the effects of changes in one set of parameters on the project's outcome, e.g. a reduction in sales or an increase in manufacturing costs on net profit (so-called sensitivity analysis), is an essential part of project preparation but, done manually, time-consuming and prone to error.

In order to simplify this procedure, UNIDO has developed application software for project formulation and evaluation. The main advantage of such software is that, once entered into the system, any item of data can be changed at will, the effect on the project as a whole being recalculated by the programme in a few seconds. At present, two such software packages are available - PROPSPIN and COMFAR. PROPSPIN uses a commercial spreadsheet system as its base and can be adapted by the user to suit the specific structure of his project. COMFAR has been developed in house by UNIDO and is designed for the preparation of feasibility studies structured according to UNIDO's "Manual for the Preparation of Industrial Feasibility Studies." Specimen print-outs of PROPSPIN and COMFAR are shown as Annex 4.

2.4 External Financing of Pre-Investment Studies

The commissioning of pre-investment studies from consultants is a costly affair and an outlay few project sponsors are willing to undertake since, if the conclusions are unfavorable, the expenditure will have to be written off. However, IID has access to technical assistance funds for pre-investment studies, which are provided on the understanding that the cost need only be reimbursed if the project concerned is implemented.

In order to identify a suitable foreign partner, IID must also obtain information regarding the type of co-operation desired. The type of input most frequently sought is finance for the convertible currency portion of the initial investment in the form of a medium to long-term loan or equity participation. But the local sponsor may also seek assistance in choosing the most appropriate technology for the planned facility. He may need training for local staff, expatriate managers to run the project in its initial years, and assistance in gaining access to overseas markets. All this information must be included in the project profile so that prospective foreign partners can know what is expected of them.

3. PROJECT PROMOTION

After all necessary information has been collected, IID can endeavour to identify firms (and financing institutions) in industrialized countries interested in implementing projects of a given type with partners in a developing country. The principal tools it has for this purpose are

I. Its computerized Investment Promotion Information System (INPRIS),

II. Its Investment Promotion Services; and

III. Events it organizes for the purpose of putting local project sponsors into personal contact with potential partners from developed and more advanced developing countries.

3.1 Investment Promotion Information System

The INPRIS data bank consists of five files (see Annex 5 for specimens):

i. Investor File

The investor file containing details of over 3,000 public and private firms that have expressed willingness to participate in industrial projects in developing countries. The information stored includes the firms' names and addresses, the person to be contacted, and the products and countries or regions preferred for a co-operative venture.

Firms entered in the investor file regularly receive details of investment project identified by IID. Their names also appear in searches of the database when enquiries are received from ministries of industry and investment promotion agencies in developing countries for information on potential partners for a particular venture. The system allows multi-criterion questions to be asked, e.g. which potential partners in Italy would be interested in a textile project in Indonesia.

ii. Project File

The INPRIS project file contains some 2,700 entries describing industrial

investment opportunities in developing countries that require foreign co-operation, which may be in the form of joint venture partnerships, transfer of technology, management expertise and marketing know-how (or any combination thereof). These projects come from both private and public sources in developing countries - ministries of industry, national development corporations and finance institutions, planning commissions, local manufacturers and traders and even individuals. Each entry contains basic details taken from the project questionnaire: whether it is a new plant or the expansion or rehabilitation of an existing one, the products to be manufactured, the rated capacity and planned annual output of the plant, energy, raw material and labour requirements, the proposed marketing arrangements, the total initial cost of the project and with what combination of equity and loans and from what sources it is to be financed. The existence or otherwise of a pre-investment study and a local spsonsor is also indicated.

Once a project is entered in the project file it is promoted in three ways:

a. Publishing lists of projects under promotion

INPRIS entries referring to projects under promotion are published in booklet form two to three times per year and distributed to potential partners, to development banks and institutions, bilateral and multilateral aid agencies. IID responds to the resulting enquiries by sending a copy of the project questionnaire and any supporting information available, including the name and address of the local sponsor, who can then be contacted direct.

b. Matching requests from prospective partners

Entrepreneurs in developed countries seeking project opportunities in specific industrial subsectors, countries or regions, or seeking a particular form of co-operation, receive a print-out of the corresponding entries in the Projects file. Here again IMPRIS's mulci-criterion search capability makes it possible to combine any desired parameters, e.g. projects in the furniture industry of Ghana seeking access to foreign markets. As in the case of the project booklets, project questionnaires and details of local sponsors are available for each project.

c. Affording remote access to the INPRIS data files

IID supplies project information to institutions and companies that specialize in this type of data in machine readable form. Subscribers to such services are thus able to learn of projects under promotion from sources outside UNIDO. However, further information on such projects can only be obtained from IID itself.

iii. Bank File

UNIDO as a technical assistance agency cannot itself provide funds for industrial investment projects except as regards their technical assistance components - pre-investment studies to determine their feasibility, evaluation of appropriate technologies, training and related matters. UNIDO is however able to bring project proposals to the attention of development finance institutions (DFIs) and can also provide information on such institutions to project sponsors and potential partners, for which purpose a bank file has been set up within INPRIS containing some 600 entries covering international, regional and national DFIs, including ones operating along Islamic lines, i.e. not granting interest-bearing loans. This file can generate print-outs of DFIs that are willing to finance projects in a particular country or region. together with details of the type of finance that can be supplied, the conditions under which loans can be made, the maximum participation in a given project, whether the institution will finance pre-investment studies and other relevant details. Here again it is possible to perform multi-criterion searches, e.g. a list of all development finance institutions that will take equity in private sector projects in Kenya.

Although the bank file is not linked as closely as the project and investor files, it provides useful supplementary information, especially at the early stages of project promotion and negotiation.

iv. Institution File

Information on industrial investment project proposals reach IID from a variety of sources, including ministries of industry, investment promotion agencies, national and regional development corporations, manufacturers' associations. In order to ensure that the project generation resources of all such bodies can be fully utilized, about 1,200 of them were gathered in a single data bank which can be used by IID staff members and consultants carrying out project identification missions to a given developing country or region. Institutions entered in the data bank also receive details of current investment promotion activities such as Industrial Project Promotion Forums (IPPF).

v. Sponsor File

This databank contains details of firms in developing countries that are interested in redeploying plant and machinery from industrialized countries which is serviceable and still viable in a different technological env; onment. Information on approx. 1,000 such firms is currently available.

Once information on an opportunity for redeployment reaches the Division, a search is made in the sponsor file and copies of the relevant entries are mailed to the firms that emerge from the search. If interested, they can establish direct contact with the plant concerned for discussions on putting the redeployment into effect.

Who can use INPRIS ?

The INPRIS data banks are available to manufacturers, development institutions, industry associations and private and public sector enterprises in both industrialized and developing countries and requests for information are welcomed.

Applications are also welcomed for data to be entered in the appropriate data bank. In the case of industrial investment projects, the local sponsor should complete a copy of the appropriate Industrial Investment Project Questionnaire, available from IID. Firms and development finance institutions wishing to be included in the investor and bank files, should write for a copy of the appropriate form to IID. Entrepreneurs in developing countries interested in learning about redeployment possibilities should also write to the Division.

3.2 Investment Promotion Services

One of the obstacles to the transfer of industrial resources from industrialized to developing countries is that many companies that are interested in some form of direct involvement often fail to pursue their interest, either because they are unaware of the opportunities that exist or because they are unable to evaluate the quality of projects that come their way and doubt the competence of the local sponsors who are promoting them. There are also misgivings about operating in a remote part of the world with an unfamiliar language, culture, and political system.

This leads to investment in developing countries being regarded as a high risk undertaking, with a possibility of the investment being lost through expropriation or adverse political events, on at least being affected, owing to foreign exchange shortages, by delays in obtaining spare parts and other essential items and in repatriating earnings and capital.

In order to correct such misconceptions by alerting firms in industrialized countries to the many profitable business opportunities in developing countries - and also to assist local project sponsors in their search for a suitable partner - UNIDO has established offices in major cities of eight leading industrial nations. These "Investment Promotion Services" (IPS), as they are generally known, exist by agreement with the relevant host country government, which also meets their staff, office accommodation and travel outlays. As previously mentioned, such services exist in Cologne FRG, Paris France, Seoul Korea, Tokyo Japan, Vienna Austria, Warsaw Poland, Washington DC USA and Zurich Switzerland. Agreements has been signed with the Governments of Italy and of the Republic of Korea for the establishment of IPSs in Milan and Seoul, which are expected to become operational during 1987. In 1985, the Services obtained partners for industrial projects in developing countries for a total investment value of at least US\$628 million. The number of projects promoted in 1985 was 93, compared to 47 in 1984, representing an increase of nearly 100 per cent.

The mandate of the IPSs vis-d-vis potential investors in industrial countries is to:

- identify industrial firms in their respective host countries, and particularly those in the small to medium-scale bracket, which are looking for opportunities for industrial co-operation in developing countries and bring suitable project proposals to their attention;

- provide such firms with advice on ways of putting such co-operation into effect in the form of joint ventures, leasing, sub-contracting, licensing, limited-time partnerships, buy-back arrangements and any other legitimate form of resource transfer.

- provide these firms with details of banks and other financing institutions willing to participate in the funding of industrial projects in developing countries

- provide information on the investment climate in developing countries legal and fiscal regulations, incentives available to foreign investors and the arrangements regarding profit remittances and repatriation of capital.

The activities of IPSs specifically directed towards developing countries are to:

- help project sponsors in developing countries to identify partners in IPS host countries, bring the prospective partners into personal contact and support them in their negotiations;

- alert sponsors to sources of technical assistance funding for the preparation of pre-investment studies on industrial project proposals

- organize visits to their host countries by representatives of government and industry in developing countries and visits by host country industrialists to specific developing countries.

- build up data banks of information on government and other institutions in IPS host countries concerned with the transfer of industrial resources to developing countries The IPSs also distribute information on IID events such as the Investment Project Promotion Forum (p.x) and the Country Presentation Meeting (p.x) and workshops on the financial and technical aspects of project promotion.

In addition to their "matchmaking" role, the IPS's assist developing countries to improve their own project promotion capability through the "learning by doing" on-the-job orientation programme for investment promotion officials from developing countries. The objectives of the programme are to

- familiarize the participants with all aspects of project identification, formulation, evaluation and promotion; and

- acquaint them with the institutions and mechanisms available for the encouragement of overseas investment in their host country.

Initiated in 1978, these programmes have to date provided 253 participants from 64 developing countries with an opportunity of acquiring project preparation and promotion skills at first hand. The participants usually bring with them priority industrial investment projects from their home country authorities and use the resources of the IPS to promote them. If an IPPF or CPM is forthcoming in their home country or region, they also assist in organizing it, e.g. by preparing a guide to foreign investment regulations for participants and continue their active role during the meeting by helping local sponsors in their discussions with potential partners and following up the contacts made.

After returning home, participants usually take up responsible posts in government or in development institutions and are often able to exercise a beneficial influence on the country's foreign investment climate. IID endeavours to maintain the links established by using orientation programme alumni as focal points for subsequent investment promotion activities and project follow-up.

In order to improve their service to the numerous industrial firms interested in industrial co-operation with developing countries, the IPSs are proceeding to install their own automated data banks. The Cologne FRG IPS, for example, already has a computerized roster of some 8,000 German firms, the aim of which is to simplify and accelerate the matching of potential partners in the Federal Republic with suitable projects and sponsors in developing countries. The IPSs are also starting to make arrangements for on-line access to IMPRIS, so that the files at UMIDO's Headquarters can be searched for project details in response to enquiries from host country companies. This gives an added dimension to the help the IPSs can give to local sponsors and potential partners.

The Paris office has pioneered a network of regional counterpart organizations which help to give its work greater impact in other regions of the country. These organizations arrange missions by local industrialists to selected developing countries and host visits by representatives of industry and government from developing countries. They also organize workshops on topics relevant to industrial co-operation with the Third World.

The IPSs also aim to establish links with the business press, which can help publicize industrial co-operation between industrialized and developing countries in general and the Services' investment promotion activities in particular. In recent years the UNIDO IPSs have devoted much effort to promoting projects in Latin America, and have achieved noteworthy results. The results per IPS maybe summarized as follows:

3.3. Investment Project Promotion Forums and Country Presentation Meetings

In fulfilling its "matchmaker" role IID attaches great importance to personal contacts between project sponsors in developing countries and potential partners in industrialized countries. In view of the time and expense entailed, such personal contacts require careful preparation if they are to justify the outlays involved. IID has developed a number of types of meetings and refined them to a point where their contribution to UNIDO's overall objective of accelerating the creation of productive capacity in developing countries is widely acknowledged and there is a long waiting list of countries whose requests for such meetings are still in the pipeline for lack of resources to respond to them.

Investment Project Premotion Forums (IPPF)

The type of event with perhaps the greatest impact is the Investment Project Promotion Forum, formerly known as "Investor's Forum" or "Investment Promotion Meeting, of which a number are held every year in various developing countries or regions of the globe. These meetings provide an opportunity for project sponsors from developing countries and potential partners from other countries (both industrialized and more advanced developing) to sit together and discuss a portfolio of projects prepared specially for the meeting.

The planning phase of such meetings, which usually cost between US\$50,000 and US\$100,000, may last 9 to 12 months from the date of receipt of the government request. Consultants are appointed and sent to the field to identify and formulate a suitable portfolio of projects to be screened and vetted at UNIDO Beadquarters, lists of projects and often the project questionnaires themselves have to be disseminated to potential investors all over the world, hundreds of meetings between project sponsors and potential foreign partners have to be scheduled, the logistics of providing suitable premises and all necessary equipment must be dealt with. IID staff travel to the location of the meetings to provide secretariat services while it is proceeding. Depending on the country(ies) participating the number of projects can vary between 50 and 150 of which between 52 and 102 are eventually implemented.

These investment forums focus almost entirely on the practical aspects of project promotion. After a brief opening session at which the participants are welcomed by the sponsors and by members of the host government(s), face-to-face meetings between project sponsors and potential partners commence, the latter having had an opportunity to acquaint themselves with the projects in advance of the meetings and to specify those that interest them. The first step towards implementation of a project is the signing of a "declaration of intent" which bears witness to the parties' intention to implement the project jointly. At this point IID ceases its involvement, unless specifically requested by the parties who may wish assistance in identifying sources of finance or in drafting an appropriate joint venture agreement. Even after a project has been successfully promoted it continues to be held on IID's files until the parties reach full agreement on the details of its implementation: the location, the production technology, the marketing arrangements, the total initial investment required and the sources thereof, the legal form and structure of the new enterprise and the sharing of its equity between the partners, the date of commencement and the timetable for implementation. When these matters have been settled, for IID the project is provisionally concluded and no further activities are undertaken - unless some unforeseen obstacles arise, the foreign partner withdraws and the local sponsor again requests help in finding a replacement.

IID has by tradition devoted considerable effort and resources to organizing investment project forums in Asia and the Pacific. To date forums have been held in Sri Lanka (1981); Bangladesh, Ghouangzhon Province of China (1982); Pakistan (1983); Nepal, South Pacific Region Fiji, Papua New Guinea, W. Samoa, Solomon Islands, Tonga, Vanuatu - (1984); and Fujian Province of China (1985).

Country Presentation Meetings (CPM)

Country Presentations Meetings are arranged to enable representatives of industry and government from developing countries to visit UNIDO Headquarters and the IPSs and discuss investment opportunities with potential partners, while at the same time providing first-hand information on the investment climate and explaining the advantages their countries can offer foreign investors.

On the industrialized countries' side, IID invites attendance by senior staff of banks, manufacturers' associations and federations of industry as well as individual entrepreneurs. The presentations are supported by a portfolio of industrial investment project proposals which include many sectors of industry. CPMs, by giving the participants an opportunity of generating new project ideas, often prepare the way for investment promotion meetings in the countries which are the subject of the presentation and help them mobilize maximum participation. To ensure the success of CPMs the Services use all their contacts with individual industrialists and industry associations as well as public and private information media. A large number of presentation meetings have been held for countries of Asia and the Pacific region - Bangladesh, Sri Lanka, Thailand (1981); (%ina, Indonesia, Malaysia, Sri Lanka (1982); China, Nepal, Sri Lanka, South Pacific Region (1984); Burma, India (1985); and Bangladesh, Chima, Fiji, India, Indonesia, Korea, Malaysia, Philippines, Sri Lanka, Thailand (1986).

4. Subsectoral Project Identification and Preparation Programme

- 19 -

In order to demonstrate to developing countries how to generate well-identified and well-prepared investment projects, IID designed a new subsectoral programme approach, first tested in 1983 through a programme financed by Japan covering the electronics industry. The programme approach aims at bringing together industrialists from industrialized countries or selected developing countries, and their counterparts from a group of developing countries, who are already active in the selected subsector or are interested in entering it.

The assistance of UNIDO experts, combined with the practical expertise of industrialists from developing and industrialized countries from the very early stages of investment project generation, ensures the preparation of better quality projects and enables potential technical partners to be involved in project design from the early stages. Each programme concentrates on a specific industrial subsector and a group of developing countries where the development of the subsector has been accorded priority and where small and medium-size industries predominate.

The programme approach enables developing countries to convert sectoral development plans into specific industrial investment opportunities for new, rehabilitation, expansion or redeployed projects, and to identify the technical assistance and programme-lending needs which are required to attain the objectives of these plans and improve the countries' investment climate. Furthermore, implementation of the programme requires the full participation of nationals from developing countries, who thereby receive valuable on-the-job training. Developing countries that participate in the programme also contribute financially to the implementation costs of the programme.

The subsectoral programme approach includes the preparation of documentation on the characteristics of the selected industrial subsector, of an annotated outline for the compilation of pre-investment data covering each developing country, and of production plant profiles to help industrialists in developing countries prepare projects. The documentation may be utilized by other developing countries in subsequent programmes covering the same subsectors.

8.

Following the programme in the electronics sector financed by Japan, a second programme is currently under implementation with financing from Italy. It covers production in developing countries of equipment which utilizes or produces energy from selectednew and renewable energy sources. Another programme to identify and promote investment projects in the metalworking industry was formulated during 1985 and is expected to be implemented in co-operation with the Government of Japan in 1986.

5. Other IID Activities

5.1 Research and Studies

ŧ

In addition to its project identification and promotion activities, IID prepares studies on topics relevant to this work with the aim of keeping abreast of new developments in the field. Many of these studies are of interest to project sponsors and potential partners since they concern the problems faced by industry in developing countries.

Recent studies concern such areas as the impact of tax and oher incentives on the level of foreign investment in selected Asian countries; the chances of setting up an international repair and maintenance agency to correct the under-utilization of plant in Africa; countertrading and buy-back as innovative sources of funding for industrial development; examples of how Islamic banks use risk capital as an alternative to loan finance.

This research is carried out partly by IID staff members but also by outside consultants chosen for their expertise in a given field. The resulting studies are used by the Division to guide and focus its work so as to maximize the benefits to its clients in both industrialized and developing countries.

5.2 Seminars and Workshops on Investment Promotion related Topics

IID attaches considerable importance to arranging meetings at which it can share its expertise in the field of identifying, preparing and promoting industrial investment projects with interested institutions and individuals, and where it can exchange with them views and experience on such topics.

From time to time, therefore, workshops and seminars are arranged in co-sponsorship with organizations whose aims and objects, like those of IID, concern the overall topic of financing industrial development in developing countries. Events of this type are:

- the Expert Group Meeting on Industrial Joint Ventures and COmpensation Agreements, held in Vienna in March 1982 - the Workshop on Financial Markets and Project Financing, held in Aden, Democractic Yemen, in December of 1984 and co-sponsored by the Arab Industrial Development Organization:

- the Workshop on Investment Project Identification and Preparation, held in Fujiang, China in November 1986;

- the Workshop co-sponsored by the Islamic Development Bank on the Industrial Financing Activities of Islamic Banks held in Vienna in June 1986.

5.3 Technical Assistance

Developing countries often need help in help in selecting the correct "mix" of measures to attract foreign direct investment in product've facilities while ensuring that the benefits of such investment are equitably shared between the investor and the host country. Within the scope of UNIDO's technical assistance resources, IID can give such help. Examples are the modification of laws regulating foreign investment, the preparation of foreign investment guides, and help with setting up foreign investment promotion offices to ensure that their place within the governmental structure will enable them to carry out their function of creating and maintaining an at ractive foreign investment climate.

IID has particularly broad experience in designing investment guides to developing countries and regions, such as the one to the SADCC countries prepared for the Harare Investment Project Promotion Forum held in 1986, or the one to the Fujiang province of China, prepared for the 1986 IPPF held there.

1990 Involution Loundaron and 1698

- 23 -

Cologne, Federal Republic of Germony

Address: Unter Sachsenhäusen 10 - 26 D-5000 Cologne 1 Federal Republic of Germany

Telephone: 120451 Telex: 17221349 UN KOELN

Paris, France

.

Address: 118, Rue de Vaugirard F-75006 Paris France

Telephone: 45443802 Telex: 203503 ONUDI PR F

Tokyo, Japan

Address: Shin-Aoyama Building, Zast-1009 1-1-1, Minamiaoyama, Minatoku Tokyo Japan Telephone: 4029341

Telex: 2425528 UNIDO J

Vienna, Austria

Room D 1863 Vienna International Centre P.O.Box 300 A-1400 Vienna Austria

Telephone: 26313943 Telex: 135612 UNO A

Warsaw, Poland

Address: Stawki 2 PL-00950 Warsaw Poland Telephone: 398723, 397112

Telex: 817916 UNIDO PL

Need of Service: Mr. Ulrich WEDER

Head of Service: Mr. Christophe GUILLEMIN

Head of Service: Mr. Mitsuo SAITO

Head of Service: Mr. Hans Joerg BAUER

Head of S rvice: Mr. Krzysztof LOTH

Washington, D.C., United States of America

Head of Service: Mr. Robert Y. JUSTIS, Jr.

Address: Suite 215 1660 L Street, N.W. Washington, D.C. 20036 USA Telephone: 6595165

Telex: 9102406649 IPS WSH

Zurich, Switzerland

Address: Loewenstrasse 1 CH-8001 Zurich Switzerland

-

Telephone: 2212320 Telex: 814456 UNIT CH Head of Service: Mr. Franz X. STIRNIMANN

- 24 -

HOW TO START MANUFACTURING INDUSTRIES

LIST OF AVAILABLE PROFILES

Background Hote to Profiles G17 to G76, pages xi-xv, in Volume II Fart A : Food ISIC 311, 312*

In Volume I:

1. .

A1	3117	Baking Plant
A2	3117	Biscuit Making Plant
A3	3115	Vegetable Oil Milling Plant
A4	3116	Rice Milling Plant
A5	3117	Instant Hoodle Making Plant
A6	3114	Fish Meal Making Plant
▲7	3121	Ice Making and Refrigeration Plant
88	3121	Cassava Starch Making Plant
A9	3121	Starch Syrup Making Plant
A10	3116	Flour Milling Plant
A11	3112	Fresh Hilk Making Plant
A12	3113	Concentrated Fruit Juice Making Plant
A13	3115	Margarine Making Plant
A14	3121	Soy Sauce Brewing Plant
A15	3113	Tomato Ketchup Making Plant
A16	3122	Assorted Animal Feed Making Plant
A17	3119	Candy Making Plant

In Volume II:

+	A18	3118	Mini White Sugar Mill
+	A19	3118	Cube Sugar
+	A20	3113	Gari Production
÷	A21	3116	Decoration of Groundnuts and Millet/Sorghum
+	▲22	3117	Pasta Production
+	▲23	3113	Fruit Processing and Soft Drinks

- + A24 3116 Flour Milling Plant
- A25 3116 Dry Milling of Maize

In Volume III:

A26	3113	Cashew Juice and Kernel Processing Plant
▲27	3115	Castor Oil and Pomace Plant
A28	3118	Cane Sugar Processing Plant
A29	3113	Aseptic Banana Puree Processing Plant
A30	3113	Tropical Fruit Nectar Processing Plant
A31	3116	Meals from Pregelatinized Flour
A32	3115	Milk Processing Plant
A33	3121	Cassava Flour and Starch Processing Plant
A34	3116	Soy Flour Processing Plant
A35	3111	Poultry Processing Plant
A36	3111	Cattle Slaughter House

÷

€ -

^{*} International Standard Industrial Classification number

⁺ Addition to Volume II

•

...

.

	<u>In Vol</u>	lune I:	
	B1	3212	Woven Bag Making Plant
	B2	3215	Plastic Filament Twine and Rope Making Plant
	B3	3215	Polypropylene Soft Rope and String Making Plant
	B 4	3213	Socks Making Plant
	B 5	3212	Terry Towel Plant
	<u>In Vo</u>	lume II:	
+	B6	3212	PP Woven Bag Making Plant
	<u>In Vo</u>	lume III	:
	B7	3211	Polyester Fabrics Making Plant
	B 8	3211	Cotton Yarn and Fabric Plant
	B9	3211	Nylon Tyre Cord Fabric Plant
	B10	3213	Socks Knitting
	B11	3215	Twine and Rope Making Plant
	B12	3219	Hanufacture of Shoulder Pads for Garment
Part	C :	Textile 323, 32	e, Wearing Apparel and Leather Industries ISIC 321, 322, 24*
	In Vo	lume I:	
	C1	3220	Working Clothes Sewing Plant
	C2	3220	Men's Dress Shirt Sewing Plant
	C3	3220	Underwear Making Plant
	C4	3220	Outerwear Knitting Plant
	<u>In Vo</u>	lume II:	:
	C5	3231	Leather Production
	C6	3231	Wet-blue Leather
	C7	3231	Crust Leather
	C8	3231	Finished Leather
	C9	3240	Footwear Production
	C10	3233	Leather Goods Production
+	C11	3240	Shoe Haking Plant
	In Vo	olume II	<u>1</u> :
	C12	3220	Men's Shirts Making Plant
Part	D :	Wood a	nd Wood Products ISIC 331*
	<u>In V</u>	olume 1:	
	D1	3311	Plywood Making Plant
	D2	3311	Savmill
	D3	3319	Woodscrew Making Plant
	<u>In V</u>	olume II	:
+	D4	3310	Production of Parquet Flooring
+	D5	3310	Joinery Plant
+	D6	3310	Plywood Making Plant
+	D7	3310	Chalkboard Making Plant
* Inter	natio	nal Stan	dard Industrial Classification number

ii

1

1

Part E : Paper and Paper Products ISIC 341*

In Volume I:

8. -

.

El 3411 Toilet Paper Making Plant

E2 3412 Corrugated Board Box Making Plant

E3 3411 Straw Pulp and Yellow Board Making Plant

E4 3412 Kraft Beg Making Plant

Part F : Printing and Publishing ISIC 342*

In Volume I:

F1 3420 Printing Plant

Part G : Industrial Chemicals ISIC 351* and other Chemical Products ISIC 352*

- 27 -

In Volume I:

G1	3513	Urea Resin Adhesive Making Plant
G2	3511	Packaged Type Oxygen Plant
G3	3512	Mc squito Coils Making Plant
~ *		

G4 3512 Aerosol Insecticide Making Plant

In Volume II:

	G5	3511	Fatty Acids
	G6	3511	Fractionation of Fatty Acids
4	G7	3511	Furfuryl Alcohol
4	G8	3513	Furfurylic Resins from Organic Wastes
	G9	3511	Sulphation of Higher Alcohols
	G10	3511	Synthesis of Higher Alcohols
	G11	3511	Sulphuric Acid
	G12	3511	Phenol
	G13	3523	Glycerine from Natural Products
	G14	3523	Soap
	G15	3511	Sulphonation of Alkylbenzene
	G16	3511	Alkylation of Benzene
(NOTE	: for	Files G	17 to G76, see also the Background Notes - Basis of Calculations
	- i1	n Volume	II, pages xi-xv)
	G17	3513	ABS Resins
	G18	3511	Acetic Acid via Acetaldehyde Oxidation
	G19	3511	Acetic Acid from Methanol and CO
	G20	3511	Acetaldehyde
	G21	3511	Acetic Anhydride
	G22	3511	Acetone from Propylene
	G23	3511	Acrylic Esters
	G24	3511	Acrylonitrile
	G25	3511	Adipic Acid
	G26	3511	Ammonia
	G27	3511	Aniline
	G28	3511	Aromatics Extraction - BTX from Reformate
	G29	3511	Caprolactam
	G30	3511	Caustic-Chlorine (Diaphragm Cell)
	G31	3511	Cumene
	G32	3511	Cyclohexane
	C33	3511	Dimethyl Terephthalate (DMT)
	G34	3511	Ethanol

* International Standard Industrial Classification number

⁺ Additions to Volume II

	G35	3511	Ethylbenzene ·
	G36	3511	Ethylene from Ethane
	G37	3511	Ethylene from LPG/Propane
	G38	3511	Ethylene from Maphta
	G39	3511	Ethylene from Gas Oil
	G40	3511	Ethylene Dichloride - Balanced Oxychlorination
	CA1	3511	Ethylene Oxide
	C42	3511	Ethylene Glycol
	C43	3511	Formeldebyde
	C44	3511	Nudroeen from Natural Cat
	240	3511	
	G4J 044	3511	Mathemal from Matural Car
	640	3511	Methenul Lion Mether use Methel Metheerulete wie Acetone Cyanohudzie
	047	3311	Helayi Helastiyiste vis accious tyshonyuiin Mitais Asid Bash
	G48	3311	NICTIC ACIG - WEBK
	GAY	3211	Nitric Acig ~ Concentrateg
	GSO	3513	Nylon-O
	G51	3511	Parallins Recovery
	G52	3511	Phenol
	G53	3511	Phthalic Anhydride (Xylene Oxidation)
	G54	3513	Polybutadiene Rubber (BR)
	G55	3513	Polyethylene Low Density (LDPE) - Tubular Reactor
	G56	3513	Polyethylene Low Density (LDPE) - Autoclave Reactor
	G57	3513	Polyethylene High Density (HDPE) - Slurry Process
	G58	3513	Polyethylene High Density (HDPE) - Gas Phase Process
	G59	3513	Polypropylene - Liquid Phase Process
	G60	3513	Polypropylene - Vapour Phase Polymerisation (BASF)
	G61	3513	Polystyrene
	G62	3513	PVC - Suspension Polymerisation
	G63	3511	Propylene Oxide - Clorohydrin Process
	G64	3511	Propylene Oxide (Co-product Styrene)
	G6 5	3511	Propylene Oxic - Co-product TBA
	G66	3511	Propylene Glycol by Oxide Hydration
	G67	3513	Styrene
	G68	3513	SBR - Cold Emulsion Process
	G69	3511	Sulphuric Acid (Single Absorption Process)
	670	3511	Synthesis Gas from Partial Oxidation of Fuel Oil
	671	3511	Terephthalic Acid (TPA) - Fibre Grade
	672	3513	Unsaturated Polyesters
	673	3511	Urea
	C74	3511	Vinvi Acetate - Ethviene Vanour Phase Oxidation
	675	3511	Vinyl Chloride
	676	3511	n-Inje outcornery by Adsorption
	677	3511	Ovalic Acid
,	C78	3513	Polystyrana Rasin Makina Plant
•	670	3511	Nitrohensene Nekine Plunt
	0/7	3611	Pentaerethrital Makine Plant
	C01	2512	TPH Making Plant
	001	JJ16 2811	tirentes Disvide Nebine Dient
	002	JJ11 JK11	sscensum province neming signs Parnaldahuda Making Blant
*	003	JJ]] 2813	lossturated Dolyastar Dasia Diana
•	004	2513	underwisten futgediet medin flänt Calaium Parkanata Making Blant
	003	2511	WE Making Plant
	660	3213	vov neklug flant. Staveh Hudrelusis Broducte Diest
•	- Gið /	2210	alaich nygrolysls fiogucts flant.

* International Standard Industrial Classification number + Additions to Volume II

•	C88	3511	Louryl Sulphate Making Plant
•	C89	3511	Caustic Sode Making Plant
•	C90	3511	Sulfuric Acid Hobing Flant
•	C91	3511	Trichloroethene Hoking Plant
•	G92	3512	TAM Synthesis Technology
•	693	3512	DEP Synthesis Technology
•	694	3512	DOVP Synthesis Technology
•	G95	3511	Azodicarbonsmide Haking Plant

In Volume III:

G96	3513	PVC Paste Resin Woking Plant
G97	3511	Sodium Chlorite Making Plant
C98	3512	Phosphate Fertilizer Plant
C99	3511	Mixed Xylene Separation Plant
G100	3511	Calcium Carbide Making Plant
C101	3513	Epoxy Resin Making Plant
G102	3511	Hexane/Cyclohexane Solvent Plant
G103	3512	Complex Fertilizer Hoking Plant
G104	3512	KAP Insecticides Making Plant
G105	3512	Liquid Pesticides Manufacturing Plant
G106	3512	Production of Powdered Pesticides
G107	3512	BPHC and MIPC Insecticides Making Plant
G108	3511	Linear Alkylbenzene Plant
G109	3512	MTX Insecticides Making Plant
G110	3511	Tricalcium Phosphate Plant

Part H : Other Chemical Products ISIC 352*/Petrolium Refineries ISIC 353*/ Hanufacture of Hiscellaneous Products of Petrolium and Coal ISIC 354*

In Volume 1:

H1	3529	Match Making Plant
H2	3523	Toilet Soap Making Plant
H3	3523	Detergent Making Plant

In Volume II:

+	H4	3522	Plasma Fractions Making Plant
+	NS	3529	Dynamite Making Plant
+	H6	3529	Carbon Black Making Plant
•	117	3521	Paint Making Plant
•	HB	3529	Sensitizing Paper Making Plant
•	89	3529	Adhesive Making Plant
•	810	3529	Self-adhesive Tape Making Plant
•	811	3522	Ursodesoxycholic Acid Synthesis
÷	H12	3522	Riboflavin Tetrabutvrate Synthesis
Ĩ	N13	3522	Rifempicin Synthesis Technology
	114	3522	Saccharin Nakine Plant
-	N15	3522	Amorycillin Synthesis Technology
	N16	3522	Cenhalothin Synthesis technology
Ţ	117	3522	Personal Persona Synthesis Technology
•	1110	2520	Match Makine Plant
•	810	2527	Head Oil Reconstration
+	n17	5550	Used VII Regeneration
•	H20	3330	Transformer Uli Heking Flant

*International Standard Industrial Classification number + Additions to Volume II

- 30 -In Volume III: . 3530 Petroleum Solvent Making Plant 121 3521 Paint and Varnish Manufacturing Plant 1122 3529 Production of Light-Sensitive Faper 123 3529 1124 Footwear Glue Manufacture 125 3521 PVAC (Polyvinyl-Acetate) Wall Coating Coal Tar Distillation Plant 3540 1126 Part J : Rubber Products ISIC 355*

<u>In Volume I</u>: J1 3559 V-Belt Haking Plant <u>In Volume III</u>: J2 3551 Tire Haking Plant

Part K : Plastic Products ISIC 356*

In Volume I:

K1	3560	Polyethylene Bag Making Plant
K2	3560	Agricultural Use PVC Film Making Plant
K3	3560	Unplasticized PVC Pipe Haking Plant
K4	3560	Plastic Container Making Plant
K5	3560	Polyester Button Haking Plant
K6	3560	PVC-Asbestos Tile Making Plant
K 7	3560	PVC Wall Covering Making Plant
K8	3560	PVC Flexible Tube Haking Plant
K9	3560	Fastener Equipped Polyethylene Bag Making Plant
K10	3560	Plastic Container Making by Blow Moulding
K11	3560	Rigid Polyvinyl Chloride Corrugated Sheet Making Plant.
K12	3560	PVC Plastisol Houlding Plant

In Volume II:

+	K 13	3560	Rigid	IAC	Pipe	Making	Plant
---	-------------	------	-------	-----	------	--------	-------

- + K14 3560 PVC Flooring Making Plant
- + K15 3560 MRP Ballistic Helmet Making Plant

In Volume III:

K16	3560	BOPP (Polypropylene) Film Making Plant
K1 7	3560	Rotary Thermoforming of Plastomers
K18	3560	Plastic Bottle Production

Part L : Pottery, China and Earthenware ISIC 361*/Manufacture of Glass and Glass Products ISIC 362*

In Volume I:

LI	3610	Wall	Tile	Making	Plant
----	------	------	------	--------	-------

- L2 3610 Ceramic Tableware Making Plant
- L3 3610 Sanitary Ware Making Plant
- L4 3610 Porcelain Insulator Making Plant

* International Standard Industrial Classification number

+ Additions to Volume II

ł

_...

• •

Ś

•

- ---

đ. .

	<u>In Vo</u>	lune II:		
•	1.5	3610	Coramic Bod for Corbon Film Resistor	
*	16	3620	Insulation Class Tiber Nation Plant	
•		5020		
	In Vo	lune III:	•	
	L7	3620	Tube and Bulb Glass Makine Plant	
	1.8	3620	Classmare Nekine Plant	
	1.9	3620	Sheet Class Nekine Plant	
	-			
Part H :	Other	Mineral	Products ISIC 369*	
	In Vo	lune I:		
	161	3699	Crinding Wheel Making Plant	
	162	3699	Concrete Block Making Plant	
	83	3691	Refractories Haking Plant	
	M4	3699	Concrete Pole and Pile Making Plant	
	MS	3699	Cypsum Board Making Plant	
	MG	3699	Nume Pipe Making Plant	
	H 7	3699	Aggregate Plant	
	In Vo	lume II:	•	
		2601	Maraia Tila Mahina Bland	
+	NQ	36071	Commt_Based Tile Plant	
•	87 MIA	3691	General-Dased IIIe Flant Firshrick Meanfeaturing Diest	
•	MII	3690	Protection Matine Plant	
•	M12	3690	Costed Abreeines Making Flank	
+	M13	3601	Clay Brick Making Plant	
•	813	3071	city stick making right	
	<u>In Vo</u>	lune III	:	
	H14	3691	Brick Factory	
	H15	3699	Concrete Block Factory	
Part N :	Iron I ndu :	and Stee stries IS	l Basic Industries ISIC 371*/Non-Ferrous Metal IC 372*	Basic
	In ve	olune I:		
	W1	3710	Foundry	
	<u>In V</u>	olume II:		
+	#2	3710	Spiral Weld Pipe Making Plant	
+	M 3	3710	Tin Plate Making Plant	
+	M 4	3720	Zinc Making Plant	
*	N 5	3720	Atomized Hetal Powder Plant	
Part 0 :	Fabr :	icated He	etal Products ISIC 381*	
	In V	olume I:		
	<u> </u>	1810	Hire and Hire Product Mables Plane	
	02	3819	Electroplating Plant	

* International Standard Industrial Classification number + Additions to Volume II

	03	3819	Canning Plant
(04	3819	Aluminium Cooking Ware Making Plant
(05	3619	Gebion Making Plant
(06	3819	Pipe Fitting Naking Plant
(07	3819	Can Making Plant
(06	3819	Crown-Cap Making Plant
(09	3819	Coin Makine Plant
	010	3819	Wire Mail Making Plant

~

- 32 -

In Volume II:

_ •

8

8

+	011	3819	Steel Fabrication and Ironwork Factory
+	012	3819	Electroplating Workshop
+	013	3819	Hetal Punching Plant
+	014	3819	Leaf Spring Haking Plant
+	015	3811	Automatic Key Set Haking Plant
+	016	3819	Crow Cap Haking Plant
+	017	3819	Can Haking Plant
+	018	3819	Vacuum Hetallized Film Making Plant
+	019	3819	Copper Covered Steel Wire Plant
+	020	3319	Electroplating Plant
+	021	3819	Pipe Fittings Hoking Plant
+	022	3819	Dunet Wire Making Plant
+	023	3819	Wire Rope Making Plant

In Volume 111:

024	3819	Building Materials Made of Steel
025	3811	Production of Mand Tools
026	3813	Manufacture of Studded Tubes
027	3811	Manufacture of Locks

Part P : Non-electrical Machinery ISIC 382*

In Volume I:

P1 3829 Pump Assembling Plant

In Volume II:

P 2	3824	Machinery Maintenance and Repair Shop
P 3	3824	Small-Scale Repair Workshop
24	3829	Air Conditioner Haking Plant
25	3829	Elevator/Escalator Making Plant
P6	3829	Puno Assembling Plant
27	3821	Diesel Engine Assembly Plant
P8	3829	Ball Joint Makine Plant
P9	3829	Carrier and Return Boller Making Plant
P10	3823	Rolling Mill Plant
P11	3822	Power Duster and Hist Blower Plant
1. V/		·
	P2 P3 P4 P5 P6 P7 P8 P9 P10 P11	P2 3824 P3 3824 P4 3829 P5 3829 P6 3829 P7 3821 P8 3829 P9 3829 P10 3823 P11 3822

P12	3829	Washing Machine Making Plant
P13	3829	Refrigerator Assembling Plant
P14	3824	Sieve for Building Materials

^{*} International Standard Industrial Classification number

⁺ Additions to Volume II

.~

₽.

...

3829	Assembly of Wheel Tractors
3823	Manufacture of Welding Machines
3823	Spare Parts Making Plant for Machine Tools
3822	Power Tiller Haking Plant
3829	Water Pump Haking Plant
3823	Engine Lathe Making Plant
3823	CNC Hilling Machine Making Plant
3823	Drilling Machine Making Plant
3823	Hydraulic Press Making Plant
3823	Shearing Machine Making Plant
3823	Press Brake Making Plant
3823	Hack Saving Machine Making Plant
3823	Gas Welding Machine Making Plant
3824	Concrete Mixer Making Plant
3824	Crusber Making Plant
3624	Concrete Batcher Making Plant
3824	Rocker Shovel Loader Making Plant
	3829 3823 3823 3822 3829 3823 3823 3823

Part Q : Electrical Machinery, Apparatus, Appliances ISIC 383*/ Supplies, Manufacture of Transport Equipment ISIC 384*

In Volume I:

Q1	3839	Arc Welding Electrode Making Plant
Q2	3839	Dry Cell Making Plant
Q3	3839	Wire and Cable Making Plant

In Volume II:

	Q4	3831	Automotive Starter and Generator Rebuild Plant
	Q5	3843	Engine Block, Engine Head, Water Pump Rebuilding
	Q6	3843	Truck Brake Relining Plant
	Q7	3843	Carburator and Fuel Pump Rebuild Plant
+	80	3839	Electrical Switches, Sockets and Plugs
+	09	3831	Electrical Motor Assembling Plant
+	Q10	3832	Telephone Assembling Plant
+	Q11	3839	Electric Lamp Making Plant
+	012	3831	Transformer Assembling Plant
+	013	3833	Mixer Making Plant
+	014	3833	Electric Fan Assembling Plant
+	015	3832	Stereo Phonograph Making Plant
+	016	3832	TV Tuner Making Plant
+	017	3832	Deflection Yoke Making Plant
+	018	3839	Carbon Rod Making Plant
+	019	3839	Electronic Ballast for Fluorescent Lamp
+	020	3831	V.S. Motor Assembling Plant
•	021	3839	Head Lamp Making Plant
+	022	3839	Arc Welding Electrode Making Plant
+	Q23	3843	Front and Rear Axle Making Plant
+	Q24	3843	Shock Absorber Making Plant
+	Q25	3843	Brake Cylinder Making Plant
+	Q26	3843	Wheel Disc Making Plant
+	Q27	3843	Radiator Making Plant
•	028	3843	Clutch Cover Assembly Making Plant
+	029	3843	Transmission and Transfer Making Plant
	030	3844	Two-Wheeler Assembling Plant
+	Q30	3844 3844	Two-Wheeler Assembling Plant

* International Standard Industrial Classification number

+ Additions to Volume II

			e)
	In Vo	lune III	- 34 -
	031	3832	TV Assembline Plant
	032	1833	Rice Cooker Assembling Plant
	033	3839	Dry Coll Naking Plant
	034	3831	AC Concretor Assembling Plant
	035	3837	Condenser Manufacturine Plant
	036	3839	Computertion Cable Making Plant
	750	2843	Con Mostor Makine Plant
	1CV	3833	Plannia Cables and Mires
	029 020	3033	BIECCIC GENES and WILLS
	4097 040	3033	Nenel Boston Nemfacturing Plant
	040	3633	Mater mater memulacturing risks
	Q41	3031	Manufacture of Distrig-Clon Transformers
	Qez	3631	HERELECTURE OF SWITCHES
	Qes	3639	Manufacture of 2 my ruses
	Qee	3839	Hanutacture of Electrical Fittings
	Q45	3839	Hanufacture of Plugs
	Q46	3843	Car Cooler Haking Plant
Part R :	Profe Optica	ssional, al Goods	Scientific, Measuring and Controlling Equipment, and ISIC 385*
	<u>In Vo</u>	lume I:	
	R 1	3851	Absorbent Cotton Making Plant
	R2	3851	Sanitary Napkin Making Plant
	R3	3851	Water Meter Making Plant
	<u>In Vo</u>	lume II:	•
•	R 4	3851	Thermometer/Pressure Gauge Plant
+	R5	3851	Watt Hour Meter Assembling Plant
	•		
rart 5 :	Utner	Manuraci	curing industries 1510 390*
	<u>In Vo</u>	lume I:	
	S1	3909	Cellophane Tape Making Plant
	S2	3909	Pencil Making Plant
	S 3	3909	Sign Pen Making Plant
	S 4	3909	Chalk Making Plant
	S 5	3909	Carbon Paper Haking Plant
	S6	3909	Tootbrush Making Plant
	<u>In Vo</u>	lune II:	
+	S 7	3909	Polyester Zipper Making Plant
	In Vo	lume III:	•
	90	3707	nanuxacture of riastic dippers
Part T :	Repai	r Servico	es ISIC 951*
	<u>In Vo</u>	lume I:	
	T1	9513	Automobile Repair Plant

^{*} International Standard Industrial Classification number + Additions to Volume II

- ,

Part U : Forestry and Logging ISIC 121* and 122*

In Volume II:

+ U1 1210 Small-scale Charcoal Production

Part V : Water Works and Supply ISIC 420*

In Volume II:

+ V1 4200 Solar Desalination Unit

+ Additions to Volume II

^{*} International Standard Industrial Classification number

FILE: AS

20

***** .

How To Start Manufacturing Industries Cassava Starch Making Plant

Starch, which is a supply source of carbohydrate, one of the three essential elements of food, occurs widely in farm produce. The starch industry is to extract starch from farm produce to manufacture agricultural processed goods.

Starch is contained in the grains of rice, wheat, maize, etc. and also in the roots and tubers of potatues, sweet potatoes, cassava and the like. The grain starch contained in rice, maize, etc. is generally small in particle. As their starch grain is surrounded by protein, the extraction of starch is more difficult than that in potato, cassava, etc. The starch in the roots and tubers of potato, cassava, etc. is large in particle and easily settles, and moreover, the fat and protein existing with starch is small in quantity, and thus good starch can be extracted comparatively easily.

The production scale of the starch industry ranges from such a large one as 1,000-ton-per-day to 1-ton-per-day as seen in the cottage industry run by farmhouses. The production scale is greatly affected by the conditions of location involving the supply of raw material, demand and supply of the product and so forth.

Outline of Starch Production

As mentioned above, starch can roughly be classified into the grain starch and the roots and tuber starch. Consequently, the method of production of starch varies to some extent depending on the raw materials to be used. Anyway, the production of starch starts with crushing or grinding the raw material to destroy its tissue. In this way, the starch in the tissue is extracted and the fiber and protein are removed. The grain starch of wheat and maize is crushed by the dry process, and the root and tuber starch of potato and cassava is ground by the wet process, and then the starch is extracted by filtering it through water and also washing with running water. The process from gathering the raw material up to the manufacture of a final product is outlined as follows:

Gathering of rew material \rightarrow washing \rightarrow crushing or grinding \rightarrow extracting \rightarrow refining

Manufacture of Cassava Starch

Cassava is a plant originated in South America. The starch accumulated in its root and tuber is extracted. Cassava is widely cultivated in the tropics, namely in Indonesia, the Philippines, Malaysia, Thailand, Africa and Brazil. The yield per hectare is 10 to 40 tons, varying depending on the growing conditions. Cassava reportedly contains an average of 18% of starch. In case the starch yield is supposed to be 80% of the raw material and a 10-ton-per-day plant is to be set up, the quantity of cassava that should be supplied to this plant would become as below:

$$10 \tan x \frac{1}{0.18} x \frac{1}{0.8} = 70 \tan x$$

In case the plant is a sumed to be operated for 250 days a year, it wi'' need 70 tons x 250 = 17,500 tons of cassava per year. In order to establish a plant manufacturing 10 tons of starch a day, careful planning must be mapped out in respect of cultivation and gathering of cassava. The present data is concerned with a cassava starch manufacturing plant having a production scale that can easily be industrialized. And in preparing the data, the conditions prevailing in developing countries have been taken into consideration. (1) Production Scale: 5 tons/day

- (2) Specification of Product: Water - 18 to 19% Starch - 90 % This corresponds to the 3rd grade of the JAS (the Japaness Agriculture and Porestry Standards)
- (3) Requirement of Raw Material: 36 tons/day
- (4) Requirement of Utilities: Industrial water 20 tons/hour Pare water ... 15 tons/hour Electric power 20 kWh Chemicals ... given quantity
- (5) Required Manpower: 12 to 28 including manager 1 engineer 1 clerical worker 3
- (6) Required Area for Plant Site: Building: 200 to 400 m² Land: 1,000 m²

Others

In materializing this plan, it is necessary to investigate the situation of raw material, starch market, utilities such as water, electric power and the like.

Item				No.
Weighing platform	a scale .			}
Separator		 .	1	L
Washing machine			1	l (with a 5 h.p. motor)
Chute			1	
Peeling table			1	L
Conveyor			1	(with a 2 h.p. motor)
Grinder				(each with a 7.5 h.p. motor
Starch extractor			1	(with a 7 h.p. motor)
Sieve (cylindrical))			(with a 1 h.p. motor)
Milk tank			1	l
Self plying pump			1	(with a 1 h.s. motor)
Nozzle separator				(with a 15 h.p. motor)
Settling pond				(made of concrete)
Grinder				(with a 3 h.p. motor)
Packing machine				l set
Delivery pump .				1
Refuse conveyor				l (with a 2 h.p. motor)

Fig. 1: Process Flow Shoot for Casson Starch Making Float (production capacity: 5 teas/day)

.

-1

(

(

.

Cassava starch making plant

This information has been prepared by the Japan Consulting Institute (JCI) and reproduced by UNEDO with special permission from JCI. Further reproduction of this document without permission of JCI is prohibited. Any inquiry about the information

Any inquiry about the information contained should be sent to: IO/COOP, Registry file No. ID/ 562/12, UNIDO, P.O. Box 300, A-1400 Vienna, Austria.

File: 026 ISIC 3511

How to Start Manufacturing Industries

AMONIA

- 38 -

Natural gas is mixed with steam and reformed over two stages to yield hydrogen and carbon monoxide. Reaction is highly endothermic and takes place at 800° C and 32 bar. In the second stage air is added so that the heat of combustion of part of the hydrogen supplies heat for the remainder of the endothermic reaction. Exit temperature is 1 000°C.

Exit gases are cooled and compressed and passed through a series of absorbers to take out water and carbon dioxide. The gases are compressed to the ammonia synthesis pressure of 225 bar. The ammonia catalyst is a promoted iron catalyst. The ammonia is condensed out of the synthesis loop by refrigerated cooling. Ammonia contents of 15-20 percent are obtained at the converter exit. Inerts are regularly purged and either burnt for fuel or processed further for hydrogen or argon recovery.

Uses

The major use for ammonia is in the fertiliser industry and containing 82 percent nitrogen, it is the most concentrated nitrogen fertiliser. Other uses are in the manufacture of nitric acid, in commercial explosives and fibres.

.

.

A plant capacity of 330 000 tonnes per year would occupy an area of 15 000 square metres. The smallest feasible size as built in Sweden is in the range 4-5 000 tonnes per year.

This information has been prepared for UNIDO by Chem Systems International Ltd., United Kingdom.

Any inquiry about the information contained should be sent to: 10/COOP, Registry file No. 1D/562/12, UNIDO, P.O. Box 300, A-1400, Vienna, Austria.

COST OF PRODUCTION ESTIMATE FOR-AMMONIA (EXPRESSED IN CONSTANT 1980 US DOLLARS) PROCESS - NATURAL GAS * HILL CAPITAL COST BATTERY LIMITS BASTS COCATION- BENELUX 76.30 330 000 TONNES PER YEAR OFFSITES 36.73 CAPACITY-330 000 TONNES PER YEAR PRODUCTN-113.33 TOTAL FIXED INV. - 1980 YEAR STR.TIME- 8000 HOURS PER YEAR **JORKING** 24.89 UNIT* RAU MATERIALS QUANTITY/TONNE PRICE* ANNUAL COST ĊŌŚŦ 8.8200 GCAL 18.100 52 681 860 NATURAL GAS CATALYST+CHEMS 1.0455 DOLLARS 1.000 345 000 53 026 860 TOTAL RAW MATERIALS 160.69 UTILITIES POVER .0160 MUH 61.500 324 720 COOLING WATER .2000 KTONNE 17.000 1 122 000 BLR.FEED WATER .0008 KTONNE 450.000 118 800 1 565 520 TOTAL UTILITIES COST 4.74 OPERATING COSTS 35.00 MEN @ 17 700 \$/YEAR 619 500 LABOUR 1.00 MEN @ 29 200 \$/YEAR SUPERVISION 29 200 0 .04×BLCC 3 063 855 MAINTENANCE 3 712 555 TOTAL OPERATING COST 11.25 OVERHEAD EXPENSES DIRECT OVERHEAD .400× LAB+SUPERVISION 259 480 .650× OPERATING COSTS 2 413 161 GEN PLANT OVERHEAD @ INSURANCE+PTY TAX @ .015* TOTAL FIXED CAP 1 699 913 .100× BLCC+ .050×0FF8 9 496 196 DEPRECIATION 0 .100× WORKING CAPITAL 2 488 748 INTEREST 16 357 497 TOTAL OVERHEAD EXPENSES 49.57 BYPRODUCT CREDIT Ē TOTAL BYPRODUCT CREDIT . . . 74-882-432 -- 228.25 NET COST OF PRODUCTION VARIABLE COST OF PRODUCTION 165.43 CASH COST OF PRODUCTION 197.47 TRANSFER PRICE @ 10.0PC RETURN ON FIXED INV 260.59 TRANSFER PRICE @ 15.0PC RETURN ON FIXED INV 277,76 TRANSFER PRICE . 20.01°C RETURN ON FIXED INV 294.93

* \$/UNIT. TONNE=METRIC TON=2204.6 LB.

9.

- 40 -

VARIATION ANALYBIB F	n r (ALHOHM		N	NTURAL C	BAB	BE ł	1EI.UX		LI	NG FACT	OR 0.41	5	
CARF MI		1		2		3		4		5		4		7
			M											
PLANT CAPACITY PLANT CUTPUT		330000 330000		330600 200500		330000 247500		330000 178000		244000 244000		178000 178000		132000 132000
CAPIIM, COSI	uirrið	POLLA	! 9											
M.CC Offsiter Total fixed Unrking		74.4 36.7 113.3 24.9		76.6 36.7 113.3 22.1		76.6 36.7 113.3 20.2		74.4 36.7 113.3 17.4		66.3 31.0 70.8 20.4		55.0 24.4 01.3 15.0		42.2 20.2 62.5 11.1
	<u>POLLARS</u>	191 831		PUCI - (BASED C	N NATUI	RAL GAS	AT 118.	1/0CM.	>				
RAU MATERIALS Ufelities Ryprid, credit		140.7 4.7 .0		140.7 4.7 .0		140.7 4.7 .0		160.7 4.7 .0		140.7 4.7 .0		140.7 4.7 .0		140.7 4.7 .0
VAR JANLE COST OPFOAT LON OVERHEAD (EXCL. DEPH)		125.4 11.3 20.0		145.4 13.2 23.5		125.4 15.0 25.0		125.4 10.6 30.7		125.4 12.5 22.4		135.4 14.4 24.0		125.5 17.7 29.0
CANI CONT NEPRECLATION	ni ai ta 10 10 ta 4 a ta 1	197.5 20.0		-262.I 33.9	• to as to as as as a	-267.3- 30.4	, 14 d C C C C T	215.6 40.0	*******	-266.3 31.1	****	284.3		-212.1 39.7
NET COST OF PROPOSITION ON INVESTMENT		-226.2 51.5 THEMT)		234.8	1 1 40 gar 140 kat an an di	-2447.8- 60.7	a dage anna glang tilte date linns fan	243.8 65.7		-231.4 55.7	1 M m d m k + + =	23 7.6 41.6	1 mai - 10 mili	71.0
TRANSFER PRICE		-277.8	******	-298.8		-31373-		-348.8-		-287.1		-38872-		-32276
•••••••••••••••••••••••••••••••••••••••	rffect-d	FRATOR	878-37	PRICE-9		A								
PRICE CHANNE M PRICE S/NCAL	+2 0X 21.7	-20X 14.5	+20X 21.7	-20X 14,5	+20X 21.7	-20X 14,5	+20X 21.7	-20X 14.5	+20X 21.7	-20X 14.5	+20X 21.7	-20X 14.5	+29% 21.7	-20X 14,5
NET COST OF PRIDA TRANSFER PRICE	250.2 307.7	194.3 245.8	247.9 328.5	204.0 264.7	276.5 345.2	212.7 201.4	274.7 300.0	231.1 316.9	263.4 317.1	177.5 255.2	270.9 332.5	207.1 268.7	284.7 354.7	219.8 290.8

Ç,

Refrigerator Assembling Plant

3.

With the insprovement in the living standard, these has been conspicuous changes in the improved distary life surrounding our living. In particular, the desize to preserve fresh vegetables, fruits and meats in the household and enjoy eating them for a long time is quite natural, necessitating to have refrigerators in almost all individual houses.

As alcohol absorbs the heat of evaporation when evaporating, the refrigerator makes use of the property of absorbing the heat from outside when liquid vaporizes. Such a cooling action is carried out by the refrigeration cycle consisting of a compressor, radiator, capillary tubes and cooler.

The high-pressure refrigerant gas composed by a composetor radiates its heat when passing through this pipes of a radiator. The freezer is a small compartment surrounded by the compressor and specially closed by

Table 1. Specification of Refrigerator

		Are 8 + 80		112	
78.47		18.5" \$ 19.5" \$ 16.5"	7	11	
11 H	113	States - States - States	•	я –	179
78. xes 8	107	271247154			
18 30 C	1 175	371347154	7		
78 1JU C	194	filling a dillana a 1,47 mm	•	71	[# .
78 372 C	236	filling a delana a 1.51 Jam			•
TR 330 F	7.	differen a fifteren a 1 juli sente	<u> </u>	L	

a separate door and capeble of keeping the temperature as low as -20°C.

It is based on the principle that the naturally formed 'rost is deforsted by a heater or it is automatically semoved because the high-pressure sefrigerant at high temperature directly flows to the refrigerator instead of passing through the condenser by means of a change-over cock.

The plant manufacturing such refrigerators requires relatively large investments and high-level technology, but its contribution to the national economy as a result of the investment is not only significant but also enhances the people's living standard.

Products and Specifications

Refrigerators produced in this plant range from 48 to 500 liters in capacity including three-door types. They are of European style with the use of clean pipes requiring no cord heater in addition to being economical of electric power.

The refrigerator is characterized by its quick freezing time of only 30 minutes with no frosting as well as by being capable of an automatic control, providing the maximum capacity in a cabinet made of the steel plate with minimum thickness.

Contents of Technology

1) Process Description

The cold-rolled steel piste (SPCC) first undergoes shearing, multi-notching, cold rolling and forming, and bending to be welded and assembled with such prosformed cabinet component parts as a front piste, bottom piste, angle structure and other components into a cabinet.

The cabinet moved by a conveyor enters the conting lines, where it is degreased, conted, washed with demimeralized water, pre-dried, conted with anti-static agent for glazing and dried to be moved to the assembly section by a conveyor again.

interiors are made of the plastic shoet by vacuum forming and further processed for assembly. The back plate is first prepared by pressing and forming, and welded with radiator pipes prior to assembly. It is then coated with acrylic argintetic agent for glazing for further assembly. This freezer and evaporator are argon-welded to be assembled with a cooler, undergoing thorough lask tests by a helium leak tester. On completion of assembling interiors, cooler, back plate and the like, the cabinet is preliminarily treated ' with wethane and placed in a prehesting formace. Since the foaming jig is already heated, the wethane liquid is foamed by means of the high-pressure foaming

Refrigerator Assembling Process Diagram Cabinet Cohiect perts Sheet metal work Cobinct wolding & Pass work and the second Cost pre-locatiment inner floor Actylic gluzing & anti-static cooling uer 🛱 Drying Vacu Thick plate He leak sest Cooler assembly Press work Rediction pipe Cab et weih Acrylic glazing welding and assembling pec-treatment COMP plate **Pre-heating** Urethane for Compressor ٠ly Pagel surge Lower door Uneth ne sfier-tre naint inc Refrigeration cycle welding and amembly Upper do Pre-quembly Press work Ges charging Uppe Acrylic plazing and Acrylic glazing Wiring Vacuum founing ir dooi Urethe ne pre-lreatment **Unit testing** Total Un Uverhave foaming Interiors Lower door anembly طخت rier : lossection. 1 3."

- 43 -

- 44 -

device for the cohinet. It is placed then in a cure-heating formace and assembled with welded sefageration cycle system along with a compressor.

8

The welded and assembled sefigesstar is vacuum deied and filled with R-12 from gas to be followed by wiring. In the unit laboratory after the elapse of 20 minutes, the B-point temperature is measured, and deforouting and ampere are configmed following highpressure leak tests. A start-up test with 88 percent power source as well as low-pressure leak test are also conducted. The upper and lower doors are pressformed, coated with acrylic resin for glazing. The doors are fixed with inside component parts and also insulated by wethane foaming for the final assembly, and then assembled to the cabinet.

Other component parts are amenabled and interiors are inserted prior to such final tests as imminition resistance test, start-up test and leak test. The refrigerator thus finished is packed by an automatic packing machine including PP banding.

2) Equipment and Machinery

Spot welder
Trolly conveyor
Slot conveyor
Belt conveyor
Tapping machine
Power press
Vacuum forming machine
Urethane foaming
Helium leak tester
Lathers
Die casting machine
Injection molding machine
Grinding machine
Projection welder
Shearing machine
Cold rolled forming mechine
High speed precision press
Compressor manufacturing facilities
Painting equipment
Crank press
Oil press
Compressor assembly facilities

3) Rew Materials

Rew materials	Requisement (per unit of product)
Shel plate	2.3 kg
Rein	0.8 kg
Silicate steel plate	5 kg
Urethane A liquid	2.5 kg
Unthese B liquid	2.5 kg

Note : Base on the product of 200 L capacity

Example of Plant Capacity and Construction Cost

1) Plant capacity : 60.000sets/month

· Besis : 8 hours/day, 330 days/year

2) Estimated Equipment Cost

o Manufacturing machinery	:	US\$1,000,000
o Utility facility	:	USS 400,000
o Installation cost	:	US\$ 500,000
Total	:	US\$1,900,000
3) Required Space		
o Site area	:	22,000 m ²
o Building area	:	7,600 m ²
Total	:	29,600 m ²
4) Personnel Requirement		
o Manager	:	6 persons
o Engineer	:	20 persons
o Operator	:	290 persons
Total	:	316 persons

This information has been prepared by the Technology Transfer Center (TTC) of the Koren institute of Machinery and Metals (KIMM) and reproduced by UNIDO with special permission from TTC. Further reproduction of this document without permission of TTC is prohibited.

Any inquiry about the information contained should be sent to:

IPCT/IL/PROM, Registry file No. ID/562/12, UNIDO, P.O. Box 300, A-1400 Vienna, Austria

UNIDO

etc for Cars/LCVs & other Ductile

austempered ductile Iron Castings

1st Phase : 9000 tpa (By 1988)

2nd Phase : 15000 tpa (By 1991)

Andhra Pradesh State, INDIA.

Warangal (120 km from Hyderabad

Planned capacity/output:

Market: Domestic _100 %

Export _NILS

a new project

the expension/modern
 of an existing project

C other studies:

a feesibility study deted 1.1.1985

I a detailed project description 1.1.1985

Location:

This is

1

estment Co-operative Programmie — 45 —

(2375)PROJECT SUBMARY

0

0

0

0

ď

D

D

ď

te e tracti

Sale of tuchoolog

Turnkey project

Market access

Exection

Manageme

Technical

Training

Marketing

Equipment supply

لنصا

6.75

0.42

2,04

11,43

_7.10

ET.

0

D

Country:	*151	<u>c</u>	Dute of submission:		
THDIA	110/026/1/86-01		3710	16.1.19	86
Project tide: "BIODERIF AUT	CHOTIVE POUNDRY P	NOJECT"			
··· Preject :	numer.	Total project of En SUS millio	cent n equivalent)	Foreign co-operation sough	t
ProductIntricate	automotive cast- er Heads/Blocks,	Land and buildings: Machinery	2,22	Cash investment Essaity	0

and an

Other:

Tetal:

Ferti

15

15

15

luckies es

Ovinership structure:

S local arisate

% local State

% foreign

There is a local pertner:

Fublic sector

Private sector

Not yet identified

55% Local (Public)

Brief description of the project : APCCL, in joint venture with M/s.APIDC (a state Industrial Development Corporation) is setting up a modern automotive foundry plant, to manufacture highly sophisticated, 100% import substitute engine items like cylinder Heads, Blocks etc.

Today, the country is experiencing an unprecendented boom in the automotive industry as a result of liberalised governmental policies, which have lead to many collaborative ventures with leading internationalgia nts for the manufacture of State-of-the-art volicies. All these plants are importing sophisticated castings as both technology and manufacturing facilities are not indigenously available.

On Govt. of India's special request to strengthen this core sector, UNIDO is providing technical assistance.

Reputed Indian consultants have prepared a feasibility report, envisaging application of many world's latest equipments/processes, Now the reputed British consultants (N/S.BCIRA) are being appointed for consultancy/Ingingering.

For further details a brief "Project Profile" is enclosed.

SIGNA Responsible Officer: P.J.Venkatesh Managing Director.

*To be filled in hy UNIDO

PROPSPIN PROJECT PROFILE

•

Summary

IDE	NTIFICATION			Date: Run Num.:	16/4/1987 0
1.	Project Title:	Muffler Factory			
2.	Product:	Mufflers			
3.	Location:	Panama			
•••	200202000		Sponsor:	CNI	
4.	Capacity:	78,000 DCS	Prep. by:	G. Appelgr	en.
5	Constr. period	:			
••	Composition person	•			
FIN	ANCIAL SUMMARY	CURRENCY: US dol	lars		
6.	Total Investme	nt:	570,300		
7.	Internal Rate	of Return:	73	*	
8.	Payback Period		2	Years	
9.	Breakeven Poin	t:	17	% Cap Util	lization
10.	Debt/Equity Ra	tio:	2.16	(Initial)	
11.	Return on Equi	ty:	183	% at Full	Operation
OPE	RATIONS SUMMARY	,			
			Year 1	Year 3	Year 5
12.	Capacity Utili	zation %:	45	50	60
13.	Total Sales:		877.500	975,000	1,170,000
14.	Selling Price/	unit (composite):	25.00	25.00	25.00
15.	Total Number o	of Persons Employed:	16	16	16
1.19	T OF ATTACHED 9	CHEDULES			PAGE
010					
1 a -	ld Investment Debt Servic	Tables, including Cap e, Depreciation & Amo	pital Structu prtization	re, 	. 1-3
2 a -	2d Operations Materials, Marketing 4	Analysis, Including (Labour, Energy, Over) Administration	Capacity, Sal neads, Techno	es, logy, 	. 4-6
3	Net Income	Statement	• • • • • • • • • • • • • •		. 7
4	Cashflow St	tatement			. 8
5	Balance She	et			. 9
6	Ratio Analy	vsis			. 10
-					. –

UNIDO Industrial Investment Division, 1987

PROPSPIN - RATIO ANALTSIS

Scheinle 6

Project Title: Hufflers fa Location: Passas	ctory	late:	16/4/1987		kun Hunber Lacone Tax	3			
Project So.: Sponsor: Present So: C. Annalder		Base Tear: Startup: Taflation	1987 1988		Rate (S): Income Tax Defer Try:	43			
rtepates of. a. apperate	:# 		•		•======	•			
Period	1	2	3	4	\$	6	?	•	;
-Betura on Tot Invest S	52.5	\$2.9	42.3	43.3	57.9	58.8	66.2	67. 1	68.6
-Return on Equity 3	199.1	199.1	134.0	136.9	183.2	186.1	209.5	212.4	215.3
-leturn on Sales S	40.5	40.9	24.8	25.3	28.2	28.7	29.8	30.2	30.6
-Payback Period Calc:									
Intitial Invest. 5	10,300	Annual Cas	hfler = N	+Bep+(1-ta	arrate)Int				
Annual Cashflov -5.1	108+05 456.700	455.70	315.957	315.957	386,722	386,722	423.717	423.717	423.717
Cumulative Cashflow	455.700	313.400	1.225.356	1.545.313	1.932.035	2.318.751	2.142.474	3.166.191	3.589.905
Looks period	1	2	3	1	5	3	1	1	;
Payback Period:	2 Jears	•	·	•		•		•	·
-Debt Service Coverage	8.4	8.4	Z.6	2.9	3.8	4.2	ş.:	5.7	332
-investment Turnover	1.5	i.5	1.7	1.7	2.1	2. I	2.2	2.2	2.2
-Jebt/Equity Batio	2.2	2.2	1.8	1.4	1.1	0.7	0.4	0.0	ê.ú
-Investment/Raployee	35,644								
-Internal Bate of Beturn		IER:	12.9	3					
-Breakeven Point Calculat	ĨOB	lear		lear		Diff		Set	
		:		i					
X Cap Util		9¢				15			
Sales:		975,000		1,267,500				1,350,000	
cost of Operati	085	496,751		357,040		30,Z89	_	797,714	
Fixed Cost		195,739		195,789			•	133,789	
Variable C	ost	300 , 962		391,251		90,2 89		501,925	
BBP (%):	17								

-

•

•	1	BOPSPIN	- CASEPLO							:	Schedule 4
Project Title: Muffle Location: Panana	rs factory	********	hte:	16/4/1987	********	tas Jusier Incone Tax	3		********		*********
Project So.:			Jase Year:	1381		BALE (3):	43				
Speasor: Prepared By: G. App	elgren		Startup: Inflation:	1200		lacone Tax Jefer.Trs:	2				
Tor	t Cap (Days)	•	l	2	3	4	5	6	1	1	,

Het Profit (Loss)			358,729	358.729	241.471	246.659	330.113	335.302	377.485	382.674	387.262
lear & Anort			43.355	43.355	43.355	43.355	35.855	35.855	35.855	35.855	35,855
lacr in Ace Pay	45	21,040	31,560	•	4,075	•	8,149	•	4,075	•	•
lew lexity		180,190	•		•		•		-		
Sev Loans		390,110									
Total Sources		591,340	433,644	402,084	288,900	290,014	374,117	371,157	417,415	418,529	423,717
		*******	******	*******	******	********	*******	*******	*******		
USES OF CASE											
Incr (Becr) in Cash	Bai	100,137	228,988	332,731	154,722	171,121	195,697	236,459	258,995	275,394	331,822
leer in Acc Revbl	30		73,125	0	8,125	0	16,250	•	8,125	0	3
Inc in Inventories											
ias Material	60	23,498	23,498	0	5,222	0	10,444	0	5,221	Ģ	Ŷ
13-Process	. 15		15,544	15,544	16,876	16,876	19,384	19,384	20,715	10,715	20,715
Finished Goods	30		38,680	0	2,716	9	4,808	1	- 2;715	0	, 3
Spares	120	404	0	0	0	0	0	0	6	0	5
Fized Assets		467,300) 0	0	0	Q	13,000	0	ĩ	0	13,009
Leçaynents			0	Ĵ	65,018	65,918	65,018	65,018	65,019	65,018	Ģ
Dividends			53,809	53,809	36,221	36,339	49,517	50,295	56,623	57,401	58,173
Addi Payout-Beinv			•	0	0	0	0	1	0	Ũ	5
Istal Jses		591,340	433,644	402,054	288,900	290, ji4	374,117	371,157	417,415	418,529	423,717
						********					*******

CONTROL NUMBER: 001904 ISIC: 3512 UGA/035/V/84-09 PROJECT NUMBER: COUNTRY: Uganda PROJECT TITLE: Pesticides Manufacture PRODUCT & CAPACITY: 2,160 to 5,000 tons/year of pesticides, fungicides, herbicides, etc. COOPERATION SOUGHT: LMS, SOT, AFE TOTAL PROJECT COST: US\$ 13,436,000 PROJECT IS: lev STUDY AVAILABLE: Yes LOCAL SPONSOR: Yes PROJECT STATUS: AS ON (DATE): 850220 Active ACTIVITY RECORD: 850304 ACTIVITY: Khartoum IPH DATE ENTERED 850220 REFERENCE: Mr. Maadi 850524 ACTIVITY: Project questionnaire sent to Chanelle Veterinary DATE Ltd., Loughrea, Ireland ENTERED 850524 REFERENCE: Letter of 850517 850626 ACTIVITY: Project questionnaire sent to East African DATE Development Bank, Kampala, Uganda ENTERED 850626 REFERENCE: Letter of 850617 (in reply 9 May letter) DATE 850725 ACTIVITY: Project questionnaire sent to Pracht Air Service GmbH, Kelsterbach, FRG ENTERED 850725 REFERENCE: Letter of 850715 DATE 850731 ACTIVITY: Project questionnaire sent to Micron Mills Ltd., East Peckham, Kent, England ENTERED 850731 REFERENCE: Letter of 850722 DATE 850809 ACTIVITY: Project questionnaire sent to Industries Development Corporation, Haifa, Israel ENTERED 850812 REFERENCE: Letter of 850731 350813 ACTIVITY: Project questionnaire sent to Commonwealth DATE Development Corp., London, England ENTERED 850813 REFERENCE: Letter of 850809 in reply ICP's 9 May letter 850815 ACTIVITY: Project questionnaire sent to B.R.I., Brussels, DATE Belgium ENTERED 850815 REFERENCE: Letter of 850726 860807 ACTIVITY: Project questionnaire sent to Hamro GmbH, Hamburg, FRG DATE ENTERED 860910 REFERENCE: Letter from company of 860804

UNIDO INVESTMENT PROMOTION INFORMATION SISTEM (IMPRIS) - PROJECT FILE

UNIDO INVESTMENT PROMOTION INFORMATION SYSTEM (IMPRIS) - PROJECT FILE 001905 CONTROL NUMBER: 3522 ISIC: PROJECT NUMBER: UGA/036/V/84-09 COUNTRI: Uganda Pharmaceutical Products (Dweyogerere) PROJECT TITLE: PRODUCT & CAPACITY: Cough syrup, expectorants, antibiotic syrup, antibiotic capsules, creams and ointments 4,500 bottles/hour and 28,000 capsules/hour COOPERATION SOUGHT: LNS, SOT, TEX PROJECT IS: Expansion TOTAL PROJECT COST: US\$ 328,000 LOCAL SPONSOR: Yes STUDY AVAILABLE: Tes AS ON (DATE): 850220 PROJECT STATUS: Active ACTIVITY RECORD: 850304 ACTIVITY: Khartoum IPH DATE ENTERED 850220 REFERENCE: Hr. Naadi 850311 MCTIVITY: Project questionnaire sent to S.A. AJH, Liege, Belgium DATE ENTERED 850312 REFERENCE: Letter from company of 850301 850325 ACTIVITY: Project questionnaire sent to Prodesfarma S.A., San DATE Justo Desvern (Barcelona), Spain ENTERED 850326 REFERENCE: Telex of 850325 DATE 850417 ACTIVITT: Project questionnaire sent to Hans Lig1 GmbH, Neu-Ulm, FRG ENTERED 850417 REFERENCE: Letter of 850412 850524 ACTIVITY: Project questionnaire sent to Chanelle Veterinary DATE Ltd., Loughrea, Ireland ENTERED 850524 REFERENCE: Letter of 850517 850725 ACTIVITY: Project questionnaire sent to Pracht Air Service DATE GmbH, Kelsterbach, FRG ENTERED 850725 REFERENCE: Letter of 850715 850731 ACTIVITY: Project questionnaire sent to Merrell Dow DATE Pharmaceuticals Mideast/Africa, Geneva, Switzerland ENTERED 850731 REFERENCE: Letter of 850725 850731 ACTIVITY: Project questionnaire sent to Micron Mills Ltd., East DATE Peckham, Kent, England ENTERED 850731 REFERENCE: Letter of 850722 850802 ACTIVITY: Project questionnaire sent to Dott. Bonapace & C., DATE Milan, Italy ENTERED 850802 REFERENCE: Letter of 850724 860807 ACTIVITY: Project questionnaire sent to Hamro GmbH, Hamburg, FRG DATE ENTERED 860910 REFERENCE: Letter from company of 860804

£

{

- 53 -

- 744 -

WILDO INVESTMENT PROMOTION INFORMATION SYSTEM (IMPRIS) - INSTITUTION FILE

£ -

CONTROL NO.: 000275 CODE NUMBER: GABOII NAME OF INSTITUTION: Chambre de Commerce, d'Agriculture, d'Industrie et des Mines du Gabon MAIL ADDRESS: B.P. 2334 Libreville Gabon TONN ADDRESS: TITLE OF CED: President TITLE: Secretaire General CONTACT NAME: Dominique Mandza **TELEX: 5554 GO** TELEPHONE: 72 20 64, 72 07 53 TYPE: COC CARLE: ... 850715 DATE: UNIDO INVESTMENT PROMOTION IMPORMATION SYSTEM (IMPRIS) - INSTITUTION FILE CONTROL NO.: 000037 CODE NUMBER: GHA001 NAME OF INSTITUTION: Bank for Housing and Construction MAIL ADDRESS: M.I. Ministries Post Office North Liberia Road Асста Ghana TOWN ADDRESS: ... TITLE OF CEO: The President TITLE: ... CONTACT NAME: ... TELEX: 2096 BANKHOUSE TELEPHONE: 66143-9 TYPE: CON BANKHOUSE, ACCRA CABLE: 840917 DATE: UNIDO INVESTMENT PROMOTION INFORMATION SYSTEM (INPRIS) - INSTITUTION FILE CONTROL NO.: 000038 CODE NUMBER: GHA002 NAME OF INSTITUTION: Ghanaian Enterprises Development Commission MAIL ADDRESS: P.O. Box N. 189 Norocco Road Асста Ghana TOWN ADDRESS: ... TITLE OF CEO: The President TITLE: ... CONTACT NAME: ... TELEX: ... **TELEPHONE:** 21537, 27507 TYPE: DFI, PRM CABLE: ENTECON, ACCRA DATE: 840917

- 9 -

WHIDD INVESTMENT PROMOTION INFORMATION SISTEM (IMPRIS) - INSTITUTION FILE

CONTROL NO.: 000039 CODE NUMBER: GHA003 MAKE OF INSTITUTION: Ghana Investments Centre NAIL ADDRESS: P.O. Box H193 Actra Ghana TOWN ADDRESS: ... TITLE OF CEO: ... CONTACT NAME: Mr. K. Amoah

TELEPHONE:65125CABLE:Investment AccraDATE:851007

.

TITLE: Project Development Division TRLEX: 2229 TIPE: PRM

TITLE: ...

TELEX: ...

TYPE: COC

UNIDO INVESTMENT PROMOTION INFORMATION SYSTEM (IMPRIS) - INSTITUTION FILE

CONTROL NO.: 000795 CODE NUNBER: GRA004 NAME OF INSTITUTION: Ghana National Chamber of Commerce MAIL ADDRESS: P.O. Box 2325 Асста Ghana TOWN ADDRESS: ... TITLE OF CEO: Executive Secretary CONTACT NAME: ... TELEPHONE: • • • CABLE: ... DATE: 841122

UNIDO INVESTMENT PROMOTION INFORMATION SYSTEM (IMPRIS) - INSTITUTION FILE

CONTROL NO.: 000041 CODE NUMBER: GRA005 NAME OF INSTITUTION: National Investment Bank MAIL ADDRESS: P.O. Box 3726 Accra Ghana TOWN ADDRESS: 37 Kwame Mkrumah Avenue TITLE OF CEO: The President **TITLE: Nanager** CONTACT NAME: John Acquah Frimpong TELEPHONE: 21312 TELEX: 2161 INVESTOR CABLE: INVESTBANK TYPE: COM DATE: 841114

- 10 -

- 55 ~

INDUSTRIAL INVESTMENT PROJECTS PROMOTED AND CONCLUDED THROUGH THE INVESTMENT PROMOTION SERVICES (IPS) OF THE UNIDO INDUSTRIAL INVESTMENT DIVISION 1980-1985

ASIA AND THE PACIFIC

Country	Project Title	Total Investment in US\$ million	IPS	Year
Bangladesh	Ceramics Combined leather tanning and shue	2.0		
	factory Industrial alcohol from	7.2	Brussels	1980
	molasses	15.0	Brussels	1982
	Fertilizer granulating Deep sea fishing and	3.7	Brussels	1982
	fish processing	0.1	New York	1982
	Ceramics Expansion of production of rickshaws and	2.0	New York	1983
	bicycles	0.5	Zurich	1984
China	Light trucks	0.3	Tokyo	1985
	Antibiotics	0.3	Tokyo	1985
	Knitting machines	0.3	Tokyo	1985
	Glass fibre	1.0	Tokyo	1985
	Ferrite cores plant	0.25	Warsaw	1985
	Integrated circuits	0.2	Warsaw	1985
	Thyristors production	6.0	Warsaw	1985
	Wheel barrow production	n.a.	Paris	1985
	See weed processing Marble extraction and	n.	Par1s	1983
	processing	n.#.	Paris	1985
	Perlite	2.2.	Paris	1985
	Pork carving machine	n.. .	Paris	1985
	Prefabricated houses	n.s.	Paris	198.
	Fotato production	1.8.	Paris Design	198:
	rabilication	n.s.	rat18	7222

-

+

.

8.

Country	Project Title	Total Investment in US\$ million	IPS	Year
Chipa			_	
cont'd	Heat resistant glue	n.a.	Paris	1985
	Shoe manufacture	D.4.	Paris	1985
	Holiday sites and		- •	
	river boats	n.a.	Paris	1985
	Cosmetics	D.8 .	Paris	1985
	Sports glasses	D.4.	Paris	1985
	Automobile factory	100.0	Paris	1985
	Brewery	16.0	Paris	1985
	Chemical products	n.a.	Vienna	1984
	Telephone equipment	5.0	Vienna	1984
	Video tape recorder	2.0	Tokyo	1984
	Formwork technology	D.#.	Vienna	1983
	Colour video tape			
	Tecorders	5.0	Tokyo	1984
	Plarmaceuticals	0.2.	Brussels	1982
	Brevery and malt house	n.s.	Brussels	1982
	Vine making	3.0	Vienna	1982
	Lacquer	10.0	Vienna	1982
	ferrous oxide powder	5.0	Vienna	1982
	Push-button telephones	12.0	Vienna	1982
	Stored control digital			
	telephone switching	() ()	N1	1003
	systen	63.U	Drussels	1303
	Colour Video Cape	5 0	B-b	1003
	recorders	5.0	Tokyo	1083
	Formork technology	D.4.	Vienna	1004
	Fan coll air conditions	3.7	Cologne	1904
	Clay grinding coating	16.0	C -1	1004
		17.0	VOIOgne	1004
		10.0	Diussels Viecos	1004
	UNERICAL PRODUCTS	B.Z.	Vieuna	1004
	Telephone equipment	B.2.	Vienna Tobaro	1004
	VIGEO LAPE TECOTOET	1 4 .U	TORÃO	1704

.

- 57 -

Country	Project Títle	Total Investment in US\$ million	IPS	Year
	<u></u>			
India	Peanut flakes Jelly filled telephone	2.5	Nev York	198 1
	cables	n.e.	Brussels	1984
	Process control valves	n.s.	Paris	1985
	Petroleum valves	n.a.	Paris	1985
	Coal handling equipment	D.2 .	Paris	1985
	Capasitors	n.a.	Paris	1985
	Hydro turbínes	6.0	Paris	1985
	Peanut flakes	2.5	Nev York	1981
Indonesia	Automobile engines	240.0	Tokyo	1985
	(incomposition)	5.0	Tabas	1095
	(liou casting)	5.0	Tokyo	1005
	Erquid Hozen eggs	54 4	Tokyo	1005
	Flevetor secondly	5.0	New York	1097
	Oil inductor proceeding	1 5	New York	1084
	Scrap steel processing	4.7	New York	1984
	Automotive components	4.2 48.8	New York	1024
	Sheet elass	24.0	Reveals	1980
	Shipbuilding	24.0	DIUSSCIO	1700
	(small boats)	60.0	Brussels	1981
	Veneer wafer board	27.6	New York	1981
	Elevator assembly	5.0	New York	1982
	Refractory materials	16.5	Tokyo	1982
•	Filter aids production	0.7	Tokyo	1983
	Filter rods	9.5	Tokyo	1983
	Cashey puts and			2703
	processing Production of wood	n.a.	Tokyo	1983
	producte	0.3	Colorna	1082
	0il industry processing	1.5	New York	102/
	Scrap steel processing	4.2	New York	1084
	Automotive components	48.8	New York	1084
	Filter aids production	0.7	Tokyo	1981
	Filter rods	9_5	Tokyo	1982
	Cashey puts and	~ * #		
	processing	8.4.	Tokyo	1981
	Vepeer wafer board	27.6	New York	1981

Country	Project Title	Total Investment in US\$ willion	IPS	Year
			—	
Kelevsie	Battery manufacturing	1.6	New York	1981
	Small forging plant Tyre retreading and	2.3	Zurich	1980
	rubber	2.3	Cologne	1981
	Battery manufacturing Electric typewriter	1.6	Hew York	1981
	cassettes	0.12	Vienns	1 982
Nepal	Electric motors	• •	_	
	manufacturing plant	3.0	Warsaw	1985
	Sugar retiner	9.0	Tokyo	1983
	voltage stabilizers	0.97	Tokyo	1 98 5
	Diesel engines, irrigation pumps	0.42	Tokyo	1985
Pekistan	Activated carbon			
	menufacturing	5.2	Zurich	1985
	Machine tool manufacturing	1.5	Zurich	1985
	Production of dumpers	5.1	Cologne	1980
	Farm implements production	3.5	Cologne	1980
	Polyester plant	88.0	New York	1981
	Asbestos pipes	15.8	Brussels	1982
	Tractor assembling	n.. .	Zurich	1983
	Expansion household appliances of plastic	1.0	Zurich	1984
rn111pp1nes	vente iv components	2.0	New York	1 620
	Electronica plant	3.9	Nev York	1980
	Integrated circuit			~ / //
	lead frames	1.3	Tokyo	1983
	Chopsticks	0.015	Tokyo	1984

Country	Project Title	Total Investment in US\$ million	IPS	Tear
Sri				
Lanka	Food processing plant	2.0	New York	1980
	Travler building	1.3	New York	1980
	Production of rubber		-	
	gloves	0.5	Vienna	1983
	Semiconductor plant	19.0	Hew York	1981
	Seafood processing	1.5	Hew York	1981
	Gen cutting	0.3	Nev York	1751
	Sportsvear	0.3	lew York	1981
	Germent production	0.2	lev Tork	1981
	Germent production	0.4	New York	1981
	Ready-made garments	U.4	New Iotk	1991
	C.I.T.C. Industries,			1001
	tootvest products	0.3	New Iork	1701
	Electronic components	24.0	New York	1063
	Terry fabric weaving	0.3	new lork	1082
		2.5	Zurich	1083
	Casnew processing	2.0	cut ten	1703
	KAW BACEFIAI IOF		Tohra	1083
	concrete aggregate	u.e.	Tokyo	1083
	Accembly of electronical		IOKYU	1903
	Assembly of electronical	0.5	Inrich	1984
	devices Tranda for attracting	0.5	641 I.C.W	1704
	lieus in ittreating	1.6	Zurich	1984
	Solid turne and			
	meter batches	A .0	Brussels	1980
	Cerlon Synthetic Tertile		21.000010	
	Nille (Contex) Ltd.	8.0	Brussels	1980
	Food processing plant	2.0	New York	1980
	Travler building	1.3	New York	1980
	Semiconductor plant	19.0	New York	1981
	Nanufacture of rubber			
	components	2.5	Cologne	1981
	Sen-food processing	1.5	New York	1981
	Mini sugar plant	1.0	Zurich	1981
	Tes packaging	7.0	Zurich	1981
	Music movement	1.5	Zurich	1981
	Renewable energy			
	equipment			

.

•2

Country	Project Title	Total Investment in US\$ million	195	Year
	anne fabric maring	0.3	New York	1962
	Shin-breaking	2.6	Toky0	1982
	Nodernization of			~
	government factory in Kolonnews	2.8	Tokyo	1962
	Cocomt fibre rope	0.1	Tokyo	1962
	and nets	Delle	Tokyo	1982
	Buddhist altar		-	
	Lesther Insustries	0.5	Brussels	1983
	STOKES	Ū.2	Brussels	1983
	Jilming.	0.5	Brussels	1983
	Report interest			
		n.a .	Tokyo	1983
	Commuter software	n.a.	Tokyo	1983
	Production of rubber			1092
	eloves	0.5	Vienna	1703
	Freential oil	0.3	Zurich	1703
	Cochey DIOCESSIDE	2.0	Zurich	1983
	Tobacco products	0.8	Brussels	1984
	Ricycle manufacture	1.8	Cologne	1994
	Assembly of electronical devices	0.5	Zurich	1984
	Treads for retreading plants	1.6	Zurich	1984

-

-

, *****

Theiland	Non-ferrous tubular			
	casings and fillings) Zinc refinery Typewriter ribbons	4.0 104.0 1.0	Brussels Brussels Vienns	1980 1980 1982

•

UNIDO INDUSTRIAL INVESTMENT DIVISION INVESTMENT PROMOTION OFFICIALS ORIENTATION PROGRAMME*/ 1978-1985

.

ASIA AND THE PACIFIC

Country	Name of official	Tear(s)	Location of Programme
			
Bangladesh	Mr. Hague Mr. A.W.S. Mahund Mr. Aminuddin Ahued Mr. Sekander Ali Mr. Mir Mohaumed Ali Mr. Golam Robbani Mr. Salehuddin Mr. Anwar Hossein	1979/81 1981/83 s/t 1979 s/t 1979 s/t 1981 s/t 1982 s/t 1982 1985/86	New York New York New York New York Brussels Brussels Cologne
China	Mr. Xie Mr. Li Bao Mr. Tan Mr. Song	1984 1984 1983/84 1984/85	Paris Paris Tokyo Tokyo
India	Mr. S.K. Roy Choudhur Mr. Hohan Murti	y s/t 1983 1985/86	Brussels París

- -

^{*/} The Orientation Programme enables officials from project promotion agencies or similar institutions in developing countries to be attached to one of UNIDO's Investment Promotion Services for a period of up to one year. During this time, the officials are introduced to project promotion techniques by UNIDO staff whose aim is to guide them in promoting industrial investment projects in their individual countries and in locating, and negotiating with, potential partners in the host country.

Indonesia	Mr. Risaldi Kasri Mr. Sakri Widhianto Mr. Sudradjat Mr. Hidayat Mr. Siahaan Mr. Soeroto Mr. Suud Mr. Rusbandi Mr. Marsjanto Mr. Benny Rusbandi Mr. Hermanto	1980/82 1984/85 s/t 1983 s/t 1983 s/t 1983 s/t 1983 s/t 1983 s/t 1983 s/t 1981 s/t 1980 s/t 1982 s/t 1985	New York Tokyo Brussels Brussels Brussels Brussels New York New York New York Cologne
Meleysia	Mr. Ang Poh Eng Ms. Modh. Hariri Mr. Tan Mr. Halimi Ms. Elizabeth Teh Mrs. Kooi-Sim Foo	<pre>s/t 1983 s/t 1983 s/t 1981 s/t 1981 s/t 1981 s/t 1983</pre>	Brussels Brussels Brussels Brussels New York Brussels
Philippines	Ms. Lumauig Mr. Cravena Mr. C.F. Cabuling Mr. Rosario Ms. Angeles Mr. Usop Mr. Chan Ms. Amatyakul Mr. Meesanka Mr. Vuthisombut Ms. Victoria Agaab Mr. Jesusito L. Bunag Mr. Amado Sison	1979/81 1983/84 s/t 1983 s/t 1983 s/t 1981 s/t 1981 s/t 1981 s/t 1981 s/t 1981 s/t 1981 s/t 1978 s/t 1979 s/t 1980	New York Tokyo Brussels Brussels Brussels Brussels Brussels Brussels New York New York

┞

.

_ _

.

Country	Name of official	Tear(s)	Location of Programme
Singapore	Mr. Yep	ø/t 1981	Brussels
Republic of Korea	Mr. Yoo Donkyu	1982/83	Paris
Sri Lanka	Hr. de Alwis Mr. Kadirgamar Hs. Indra Phillips Mr. Fernando Ms. Jayasekera Mr. Masinghe Ms. Denis Ramannayake Ms. Anura Gunasekera Ms. Lulika Wijeratme	1978/81 1981/82 1983/84 1981/82 1982/83 1984/85 s/t 1978 s/t 1979 s/t 1982	Hev York Hev York Tokyo Zurich Zurich Zurich Hew York Hev York Hev York
Thailand	Mr. L. Pittaya Mr. S. Thalerngsok Mr. T. Kitisak Mr. Sart Sirisinha Mr. V. Mahatanankoon Mr. A. Panananda Mr. P. Angsupun	<pre>s/t 1983 s/t 1983 s/t 1983 s/t 1984 s/t 1980 s/t 1980 s/t 1980 s/t 1982</pre>	Brussels Brussels Brussels New York New York New York New York

۲ · · ·

•

•

•

Annex 8.

UNIDO PUBLICATIONS RELEVANT TO INDUSTRIAL INVESTMENT

- 1. Manual on the Establishment of Industrial Joint Venture Agreements in Developing Countries
- 2. Financial Resources for Industrial Projects in Developing Countries, Vols I-IV, 1983
- 3. Manual for the Preparation of Industrial Feasibility Studies
- 4. Directory of Development Finance Institutes
- 5. Manual for the Evaluation of Industrial Projects
- 6. Guidelines for Project Evaluation
- 7. Development Banking in the Eighties

: