

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

16701

Distr. LIMITED

UNIDO/ICPT 10 April 1987

UNITED NATIONS
INDUSTRIAL DEVELOPMENT ORGANIZATION

ENGLISH

Information Brochure on the Work of the Industrial Development Division

THE INDUSTRIAL DEVELOPMENT DIVISION IN AFRICA

582

Industrial Investment Division

THE INDUSTRIAL DEVELOPMENT DIVISION IN APRICA

Table of Contents

		Page
1.	INTRODUCTION	2
2.	PROJECT IDENTIFICATION AND FORMULATION	
2.1	Generating Industrial Investment Projects	5
2.2	Industrial Project Formulation and Preparation	6
2.3	UNIDO's Project Preparation Software:	
	PROPSPIN AND COMFAR	6
2.4	External Financing of Pre-Investment Studies	7
3.	PROJECT PROMOTION	
3.1	Investment Promotion Information System	8
3.2	Investment Promotion Services	12
3.3	Investment Project Promotion Forums and	
	Country Presentation Meetings	15
4.	SUBSECTORAL PROJECT IDENTIFICATION	
	AND PREPARATION PROGRAMME	19
5.	OTHER IID ACTIVITIES	
5.1	Research and Studies	21
5.2	Seminars and Workshops on	
	Investment Promotion related Topics	21
5.3	Technical Assistance	22
ANNE	EXES	
	Annex '. UNIDO Investment Promotion Services	23
	Annex 2. "How to Start Manufacturing Industries":	
	Complete list of available profiles and	
	sample profiles on Cassava Starch Making,	
	Ammonia, Refrigerator Assembly	25
	Annex 3. Specimen Project Summary: Poultry Parming	
	in Migeria	45
	Annex 4. Specimen COMPAR and PROPSPIN Print-outs	46
	Annex 5. Sample IMPRIS Data Sheets	52
	Annex 6. Projects in Africa Promoted and Concluded	-
	through the Investment Promotion	
	Services 1960-85	56
	Annex 7. Participants from Africa in the Investment	-
	Promotion Officials Orientation	
	Programme 1978-85	63
	Annex 8. UNIDO Publications Relevant to	~~
	Investment Promotion	65
		~

1. INTRODUCTION

The mandate of the United Nations Industrial Development Organization (UNIDO) is to "promote and accelerate industrial development in developing countries with a view to assisting in the establishment of a new international economic order." It fulfils this mandate by helping to establish new industrial plants and expand the productive capacity of existing ones, by enhancing the skills of the local workforce, by determining priority industrial subsectors in the context of a given country's resource endowment and by strengthening the ability of government departments and other official institutions to formulate policies which will encourage investment in industry by both local and foreign entrepreneurs.

In carrying out this mandate, UNIDO encounters a number of obstacles to industrial development, such as:

- the lack of well-prepared, "bankable" industrial investment projects, capable of attracting the financial and other resources needed for their implementation;
- the lack of convertible funds to purchase or replace plant and machinery;
- shortages of skilled labour, technical personnel and managerial staff;
- lack of know-how to apply modern production technologies;
- shortcomings in the <u>physical</u> infrastructure: inadequate telecommunications and transport networks, unreliable utility supplies, insufficient adaptation of facilities to adverse climatic conditions;
- shortcomings in the <u>institutional</u> infrastructure: insdequate development policies which adversely affect the climate for investment, both foreign and domestic; complex administrative procedures which hamper individual enterprise; an inability to come to grips with the problems of a large and loss-making public sector.

UNIDO has long recognized that by inducing industrialists in more advanced countries to co-operate with entrepreneurs in developing countries in setting

up productive facilities it can mobilize resources far in excess of the amounts it can itself allocate to technical assistance, whether from its own budget or from the budgets of financing agencies with which it co-operates. The encouragement of direct foreign investment and the search for new mechanisms to promote it, e.g. the redeployment of plant and machinery from industrialized to developing countries, and the sale o technology under buy-back arrangements, will continue to be a priority activity for the organization.

This policy has been encouraged in recent years by the trend of many developing countries away from state involvement in industry and towards greater support for the private sector. In the words of the International Finance Corporation "Now, atter several decades of experience with a variety of state interventions and regulations, many governments have begun to look to the private sector to play a more prominent role in their countries' development...The causes of this shift include the recognition of the above-average growth rates that have been achieved by those developing countries that did encourage the private sector. The shift reflects an increasing concern for efficiency in a period of heightened scarcity of resources."².

The Industrial Investment Division (IID)³ of UNIDO is thus the arm of the organization which aims to accelerate the flow of private sector resources for industrial expansion from more advanced to developing countries. Located within UNIDO's Department for Industrial Promotion, Consultation and Technology, the Division is concerned with:

- i. Identifying and formulating industrial investment projects in developing countries;
- ii. Helping local sponsors of such projects obtain the financial, technical and human resources needed to implement them, which effectively means bringing them to the attention of industrialists in more advanced countries and seeking appropriate sources of local and foreign finance. In addition to the staff and other resources available at UNIDO Headquarters in Vienna, IID operates a network of Investment Promotion Service? located in Cologne, Milan, Paris,

7

Seoul, Tokyo, Vienna, Warsaw, Washington DC and Zurich staffed by UNIDO personnel which play a valuable catalytic role by keeping firms in their host countries regularly informed about industrial investment opportunities arising in developing countries and by helping local project sponsors find a suitable foreign partner.

In carrying out its work programmes IID is fully supported by other parts of UNIDO in assessing technological feasibility of projects, in the preparation of pre-investment studies, in designing manpower development programmes and industrial studies with a regional or subsectoral focus, or both.

UNIDO constitution, Article 1.

²International Finance Corporation, 1986 annual report, p. 9

³IID was established in 1986; prior to this its functions were carried out by the Investment Co-operative Programme Branch within the Division of Industrial Operations.

2. PROJECT IDENTIFICATION AND FORMULATION

2.1 Generating Industrial Investment Projects

IID's involvement commences at the level of project generation, i.e. helping determine what type of manufacturing facilities would make sense in the context of a given developing country's resource endowment. For this purpose the Division has prepared a series of guides entitled "How to Start Manufacturing Industries" covering the manufacture of some 300 different products (see Annex 2 for a complete list and three specimen Profiles)..

Each profile contains a brief description of the requirements for a particular manufacturing process: raw materials, machinery and equipment, labour, investment and production costs, and is intended to serve project promoters and sponsors in developing countries as a reference guide to identify products suited to local manufacture on a small to medium scale. The selection of appropriate technologies and the ultimate feasibility of any manufacturing idea generated through use of the series must of course be ascertained by more exhaustive study. The profiles are intended primarily for use by:

- Officials of national planning commissions, ministries of industry and related institutions who seek to convert sectoral plans for industry which are based on the country's resource endowment into concrete investment projects
- Importers who wish to exploit import substitution opportunities by manufacturing the goods they trade in
- Other individuals who perceive an opportunity of manufacturing for the domestic market and/or for export and wish to learn more about the technology and processes involved and their approximate cost.

One of the main problems in designing this series is that developing countries, notwithstanding the features they have in common, differ materially in terms of type and availability of resources, level of technology and size and sophistication of internal markets. For this reason the profiles are not intended for use in preparing a formal pre-investment study.

Examples of the "How to Start Manufacturing Industries" series and a list of those currently available are attached as Annex x.

2.2 Industrial Project Formulation and Preparation

1

Frequently, project ideas are generated by local sponsors based on their own observations and commercial activities without outside assistance, in which case IID's involvement commences at the project preparation stage. In order for a project idea to be capable of interesting a potential foreign partner, it must be set out in a coherent manner with evidence that the basic assumptions concerning the level of initial investment, operating costs, estimated sales, marketing arrangements, cash flow and return on investment are realistic.

The local sponsor must also have decided how he intends to raise the foreign and local currency resources needed and whether, in addition to the capital to be contributed by himself and the foreign partner, he counts on obtaining loan and/or equity funds from a development or other financial institution, and on what terms. The question of control must also be resolved: does the local sponsor intend to be the majority partner, or will he be satisfied with less than 50% of the equity. Information on the sponsor himself, his business experience and the scale of his existing operations, if any, is of particular concern to future partners, so that appropriate details must be supplied.

Project sponsors - even those who are already in business - do not always have the technical knowledge required for project preparation, and IID has therefore prepared two questionnaires to serve as a check-list when formulating industrial projects and ensure that no essential information is omitted. One is designed to elicit basic information on a project at an early stage of preparation, while the other is for use when formal pre-investment work resulting in the preparation of a feasibility or pre-feasibility study has already been carried out. A specimen project summary is attached as Annex 3.

2.3 UNIDO's Project Preparation Software - PROPSPIN AND COMPAR

A pre-investment study covering the life of an industrial project will contain many hundreds of figures reflecting the various aspects of implementation and

ŧ

operation and that are largely interdependent. Exploring the effects of changes in one set of parameters on the project's outcome, e.g. a reduction in sales or an increase in manufacturing costs on net profit (so-called sensitivity analysis), is ar essential part of project preparation but, done manually, time-consuming and prone to error.

In order to simplify this procedure, UNIDO has developed application software for project formulation and evaluation. The main advantage of such software is that, once entered into the system, any item of data can be changed at will, the effect on the project as a whole being recalculated by the programme in a few seconds. At present, two such software packages are available - PROPSPIN and COMFAR. PROPSPIN uses a commercial spreadsheet system as its base and can be adapted by the user to suit the specific structure of his project. COMFAR has been developed in house by UNIDO and is designed for the preparation of feasibility studies structured according to UNIDO's "Manual for the Preparation of Industrial Feasibility Studies." Specimen print-outs of PROPSPIN and COMFAR are shown as Annex 4.

2.4 External Financing of Pre-Investment Studies

The commissioning of pre-investment studies from consultants is a costly affair and an outlay few project sponsors are willing to undertake since, if the conclusions are unfavorable, the expenditure will have to be written off. However, IID has access to technical assistance funds for pre-investment studies, which are provided on the understanding that the cost need only be reimbursed if the project concerned is implemented.

In order to identify a suitable foreign partner, IID must also obtain information regarding the type of co-operation desired. The type of input most frequently sought is finance for the convertible currency portion of the initial investment in the form of a medium to long-term loan or equity participation. But the local sponsor may also seek assistance in choosing the most appropriate technology for the planned facility. He may need training for local staff, expatriate managers to run the project in its initial years, and assistance in gaining access to overseas markets. All this information must be included in the project profile so that prospective foreign partners can know what is expected of them.

3. PROJECT PROMOTION

After all necessary information has been collected, IID can endeavour to identify firms (and financing institutions) in industrialized countries interested in implementing projects of a given type with partners in a developing country. The principal tools it has for this purpose are

- I. Its computerized Investment Promotion Information System (INPRIS),
- II. Its Investment Promotion Services; and
- III. Events it organizes for the purpose of putting local project sponsors into personal contact with potential partners from developed and more advanced developing countries.

3.1 Investment Promotion Information System

The INPRIS data bank consists of five files (see Annex 5 for specimens):

i. Investor File

The investor file containing details of over 3,000 public and private firms that have expressed willingness to participate in industrial projects in developing countries. The information stored includes the firms' names and addresses, the person to be contacted, and the products and countries or regions preferred for a co-operative venture.

Pirms entered in the investor file regularly receive details of investment project identified by IID. Their names also appear in searches of the database when enquiries are received from ministries of industry and investment promotion agencies in developing countries for information on potential partners for a particular venture. The system allows multi-criterion questions to be asked, e.g. which potential partners in Italy would be interested in a textile project in Indonesia.

ii. Project File

The INPRIS project file contains some 2,700 entries describing industrial

investment opportunities in developing countries that require foreign co-operation, which may be in the form of joint venture partnerships, transfer of technology, management expertise and marketing know-how (or any combination thereof). These projects come from both private and public sources in developing countries - ministries of industry, national development corporations and finance institutions, planning commissions, local manufacturers and traders and even individuals. Each entry contains basic details taken from the project questionnaire: whether it is a new plant or the expansion or rehabilitation of an existing one, the products to be manufactured, the rated capacity and planned annual output of the plant, energy, raw material and labour requirements, the proposed marketing arrangements, the total initial cost of the project and with what combination of equity and loans and from what sources it is to be financed. The existence or otherwise of a pre-investment study and a local spsonsor is also indicated.

Once a project is entered in the project file it is promoted in three ways:

a. Publishing lists of projects under promotion

INPRIS entries referring to projects under promotion are published in booklet form two to three times per year and distributed to potential partners, to development banks and institutions, bilateral and multilateral aid agencies. IID responds to the resulting enquiries by sending a copy of the project questionnaire and any supporting information available, including the name and address of the local sponsor, who can then be contacted direct.

b. Matching requests from prospective partners

Entrepreneurs in developed countries seeking project opportunities in specific industrial subsectors, countries or regions, or seeking a particular form of co-operation, receive a print-out of the corresponding entries in the Projects file. Here again INPRIS's multi-criterion search capability makes it possible to combine any desired parameters, e.g. projects in the furniture industry of Ghana seeking access to foreign markets. As in the case of the project booklets, project questionnaires and details of local sponsors are available for each project.

c. Affording remote access to the INPRIS data files

IID supplies project information to institutions and companies that specialize in this type of data in machine readable form. Subscribers to such services are thus able to learn of projects under promotion from sources outside UNIDO. However, further information on such projects can only be obtained from IID itself.

iii. Bank File

UNIDO as a technical assistance agency cannot itself provide funds for industrial investment projects except as regards their technical assistance components - pre-investment studies to determine their feasibility, evaluation of appropriate technologies, training and related matters. UNIDO is however able to bring project proposals to the attention of development finance institutions (DFIs) and can also provide information on such institutions to project sponsors and potential partners, for which purpose a bank file has been set up within INPRIS containing some 600 entries covering international, regional and national DFIs, including ones operating along Islamic lines, i.e. not granting interest-bearing loans. This file can generate print-outs of DFIs that are willing to finance projects in a particular country or region, together with details of the type of finance that can be supplied, the conditions under which loans can be made, the maximum participation in a given project, whether the institution will finance pre-investment studies and other relevant details. Here again it is possible to perform multi-criterion searches, e.g. a list of all development finance institutions that will take equity in private sector projects in Kenya.

Although the bank file is not linked as closely as the project and investor files, it provides useful supplementary information, especially at the early stages of project promotion and negotiation.

iv. Institution File

Information on industrial investment project proposals reach IID from a variety of sources, including ministries of industry, investment promotion agencies, national and regional development corporations, manufacturers' associations. In order to ensure that the project generation resources of all

such bodies can be fully utilized, about 1,200 of them were gathered in a single data bank which can be used by IID staff members and consultants carrying out project identification missions to a given developing country or region. Institutions entered in the data bank also receive details of current investment promotion activities such as Industrial Project Promotion Forums (IPPF).

v. Sponsor File

f

This databank contains details of firms in developing countries that are interested in redeploying plant and machinery from industrialized countries which is serviceable and still viable in a different technological environment. Information on approx. 1,000 such firms is currently available.

Once information on an opportunity for redeployment reaches the Division a search is made in the sponsor file and copies of the relevant entries are mailed to the firms that emerge from the search. If interested, they can establish direct contact with the plant concerned for discussions on putting the redeployment into effect.

Who can use INPRIS ?

The INPRIS data banks are available to manufacturers, development institutions, industry associations and private and public sector enterprises in both industrialized and developing countries and requests for information are welcomed.

Applications are also welcomed for data to be entered in the appropriate data bank. In the case of industrial investment projects, the local sponsor should complete a copy of the appropriate Industrial Investment Project Questionnaire, available from IID. Firms and development finance institutions wishing to be included in the investor and bank files, should write for a copy of the appropriate form to IID. Entrepreneurs in developing countries interested in learning about redeployment possibilities should also write to the Division.

3.2 Investment Promotion Services

One of the obstacles to the transfer of industrial resources from industrialized to developing countries is that many companies that are interested in some form of direct involvement often fail to pursue their interest, either because they are unaware of the opportunities that exist or because they are unable to evaluate the quality of projects that come their way and doubt the competence of the local sponsors who are promoting them. There are also misgivings about operating in a remote part of the world with an unfamiliar language, culture, and political system.

This leads to investment in developing countries being regarded as a high risk undertaking, with a possibility of the investment being lost through expropriation or adverse political events, or at least being affected, owing to foreign exchange shortages, by delays in obtaining spare parts and other essential items and in repatriating earnings and capital.

In order to correct such misconceptions by alerting firms in industrialized countries to the many profitable business opportunities in developing countries - and also to assist local project sponsors in their search for a suitable partner - UNIDO has established offices in major cities of eight leading industrial nations. These "Investment Promotion Services" (IPS), as they are generally known, exist by agreement with the relevant host country government, which also meets their staff, office accommodation and travel outlays. As previously mentioned, such services exist in Cologne FRG, Paris France, Seoul Korea, Tokyo Japan, Vienna Austria, Warsaw Poland, Washington DC USA and Zurich Switzerland. Agreements has been signed with the Governments of Italy and of the Republic of Korea for the establishment of IPSs in Milan and Seoul, which are expected to become operational during 1987. In 1985, the Services obtained partners for industrial projects in developing countries for a total investment value of at least US\$628 million. The number of projects promoted in 1985 was 93, compared to 47 in 1984, representing an increase of nearly 100 per cent.

The mandate of the IPSs vis-à-vis potential investors in industrial countries is to:

- identify industrial firms in their respective host countries, and particularly those in the small to medium-scale bracket, which are looking for opportunities for industrial co-operation in developing countries and bring suitable project proposals to their attention;
- provide such firms with advice on ways of putting such co-operation into effect in the form of joint ventures, leasing, sub-contracting, licensing, limited-time partnerships, buy-back arrangements and any other legitimate form of resource transfer.
- provide these firms with details of banks and other financing institutions willing to participate in the funding of industrial projects in developing countries
- provide information on the investment climate in developing countries legal and fiscal regulations, incentives available to foreign investors and the strangements regarding profit remittances and repatriation of capital.

The activities of IPSs specifically directed towards developing countries are to:

- help project sponsors in developing countries to identify partners in IPS host countries, bring the prospective partners into personal contact and support them in their negotiations;
- alert sponsors to sources of technical assistance funding for the preparation of pre-investment studies on industrial project proposals
- organize visits to their host countries by representatives of government and industry in developing countries and visits by host country industrialists to specific developing countries.
- build up data banks of information on government and other institutions in IPS host countries concerned with the transfer of industrial resources to developing countries

The IPSs also distribute information on IID events such as the Investment Project Promotion Forum (p.x) and the Country Presentation Meeting (p.x) and workshops on the financial and technical aspects of project promotion.

In addition to their "matchmaking" role, the IPS's assist developing countries to improve their own project promotion capability through the "learning by doing" on-the-job orientation programme for investment promotion officials from developing countries. The objectives of the programme are to

- familiarize the participants with all aspects of project identification, formulation, evaluation and promotion; and
- acquaint them with the institutions and mechanisms available for the encouragement of overseas investment in their host country.

Initiated in 1978, these programmes have to date provided 253 participants from 64 developing countries with an opportunity of acquiring project preparation and promotion skills at first hand. The participants usually bring with them priority industrial investment projects from their home country authorities and use the resources of the IPS to promote them. If an IPPF or CPM is forthcoming in their home country or region, they also assist in organizing it, e.g. by preparing a guide to foreign investment regulations for participants and continue the active role during the meeting by helping local sponsors in their discussions with potential partners and following up the contacts made.

After returning home, participants usually take up responsible posts in government or in development institutions and are often able to exercise a beneficial influence on the country's foreign investment climate. IID endeavours to maintain the links established by using orientation programme alumni as focal points for subsequent investment promotion activities and project follow-up.

In order to improve their service to the numerous industrial firms interested in industrial co-operation with developing countries, the IPSs are proceeding to install their own automated data banks. The Cologne PRG IPS, for example, already has a computerized roster of some 8,000 German firms, the aim of which is to simplify and accelerate the matching of potential partners in the Federal Republic with suitable projects and sponsors in developing countries. The IPSs are also starting to make arrangements for on-line access to IMPRIS, so that the files at UMIDO's Headquarters can be searched for project details in response to enquiries from host country companies. This gives an added dimension to the help the IPSs can give to local sponsors and potential partners.

The Paris office has pioneered a network of regional counterpart organizations which help to give its work greater impact in other regions of the country. These organizations arrange missions by local industrialists to selected developing countries and host visits by representatives of industry and government from developing countries. They also organize workshops on topics relevant to industrial co-operation with the Third World.

The IPSs also aim to establish links with the business press, which can help publicize industrial co-operation between industrialized and developing countries in general and the Services' investment promotion activities in particular. In recent years the UNIDO IPSs have devoted much effort to promoting projects in Latin America, and have achieved noteworthy results. The results per IPS maybe summarized as follows:

3.3. Investment Project Promotion Forums and Country Presentation Meetings

In fulfilling its "matchmaker" role IID attaches great importance to personal contacts between project sponsors in developing countries and potential partners in industrialized countries. In view of the time and expense entailed, such personal contacts require careful preparation if they are to justify the outlays involved. IID has developed a number of types of meetings and refined them to a point where their contribution to UNIDO's overall objective of accelerating the creation of productive capacity in developing countries is widely acknowledged and there is a long waiting list of countries whose requests for such meetings are still in the pipeline for lack of resources to respond to them.

Investment Project Promotion Forums (IPPF)

The type of event with perhaps the greatest impact is the Investment Project Promotion Forum, formerly known as "Investor's Forum" or "Investment Promotion Heeting, of which a number are held every year in various developing countries or regions of the globe. These meetings provide an opportunity for project sponsors from developing countries and potential partners from other countries (both industrialized and more advanced developing) to sit together and discuss a portfolio of projects prepared specially for the meeting.

The planning phase of such meetings, which usually cost between US\$50,000 and US\$100,000, may last 9 to 12 months from the date of receipt of the government request. Consultants are appointed and sent to the field to identify and formulate a suitable portfolio of projects to be screened and vetted at UNIDO Headquarters, lists of projects and often the project questionnaires themselves have to be disseminated to potential investors all over the world, hundreds of meetings between project sponsors and potential foreign partners have to be scheduled, the logistics of providing suitable premises and all necessary equipment must be dealt with. IID staff travel to the location of the meetings to provide secretariat services while it is proceeding. Depending on the country(ies) participating the number of projects can vary between 50 and 150 of which between 5% and 10% are eventually implemented.

These investment forums focus almost entirely on the practical aspects of project promotion. After a brief opening session at which the participants are welcomed by the sponsors and by members of the host government(s), face-to-face meetings between project sponsors and potential partners commence, the latter having had an opportunity to acquaint themselves with the projects in advance of the meetings and to specify those that interest them. The first step towards implementation of a project is the signing of a "declaration of intent" which bears witness to the parties' intention to implement the project jointly. At this point IID ceases its involvement, unless specifically requested by the parties who may wish assistance in identifying sources of finance or in drafting an appropriate joint venture agreement.

Even after a project has been successfully promoted it continues to be held on IID's files until the parties reach full agreement on the details of its implementation: the location, the production technology, the marketing arrangements, the total initial investment required and the sources thereof, the legal form and scructure of the new enterprise and the sharing of its equity between the partners, the date of commencement and the timetable for implementation. When these matters have been settled, for IID the project is provisionally concluded and no further activities are undertaken - unless some unforeseen obstacles arise, the foreign partner withdraws and the local sponsor again requests help in finding a replacement.

IID has by tradition devoted considerable effort and resources to organizing investment project forums in Africa. To date forums have been held in Morocco and for the 15 ECOWAS countries in Senegal (1980, 1982, 1984, 1986); for the Arab countries in the Gulf region (1981); in Lusaka for the countries of sub-Saharan Africa (1983); in Khartoum for the Sudan, Uganda, Yemen, Djibouti, Egypt, Somalia and Central Africa - Gabon, Burundi, Cameroon, Central African Republic, Chad, Congo, Equatorial Guinea, Sao Tomé - (1985); and in Harare for the SADCC countries - Angola, Botswana, Lesotho, Malawi, Mozambique, Swaziland, Tanzania, Zambia, Zimbabwe, - (1986).

Country Presentation Meetings (CPM)

Country Presentations Meetings are arranged to enable representatives of industry and government from developing countries to visit UNIDO Headquarters and the IPSs and discuss investment opportunities with potential partners, while at the same time providing first-hand information on the investment climate and explaining the advantages their countries can offer foreign investors.

On the industrialized countries' side, IID invites attendance by senior staff of banks, manufacturers' associations and federations of industry as well as individual entrepreneurs. The presentations are supported by a portfolio of industrial investment project proposals which include many sectors of industry. CPMs, by giving the participants an opportunity of generating new project ideas, often prepare the way for investment promotion meetings in the countries which are the subject of the presentation and help them mobilize

maximum participation.

To ensure the success of CPMs the Services use all their contacts with individual industrialists and industry associations as well as public and private information media. A large number of presentation meetings have been held for African countries: Benin, Egypt, Kenya, Mauritania, Mauritius, Rwanda, Zaire (1981); Kenya, Lesotho, Senegal (1982); Tanzania, Zambia and Zimbabwe (1983); Cameroon and Senegal (1984); Cameroon, Congo, Senegal and Tunisia (1985); Ethiopia, Ivory Coast, Rwanda, Senegal, Zimbabwe (1986).

Į.

4. Subsectoral Project Identification and Preparation Programme

In order to demonstrate to developing countries how to generate well-identified and well-prepared investment projects, IID designed a new subsectoral programme approach, first tested in 1983 through a programme financed by Japan covering the electronics industry. The programme approach aims at bringing together industrialists from industrialized countries or selected developing countries, and their counterparts from a group of developing countries, who are already active in the selected subsector or are interested in entering it.

The assistance of UNIDO experts, combined with the practical expertise of industrialists from developing and industrialized countries from the very early stages of investment project generation, ensures the preparation of better quality projects and enables potential technical partners to be involved in project design from the early stages. Each programme concentrates on a specific industrial subsector and a group of developing countries where the development of the subsector has been accorded priority and where small and medium-size industries predominate.

The programme approach enables developing countries to convert sectoral development plans into specific industrial investment opportunities for new, rehabilitation, expansion or redeployed projects, and to identify the technical assistance and programme-lending needs which are required to attain the objectives of these plans and improve the countries' investment climate. Furthermore, implementation of the programme requires the full participation of nationals from developing countries, who thereby receive valuable on-the-job training. Developing countries that participate in the programme also contribute financially to the implementation costs of the programme.

The subsectoral programme approach includes the preparation of documentation on the characteristics of the selected industrial subsector, of an annotated outline for the compilation of pre-investment data covering each developing country, and of production plant profiles to help industrialists in developing countries prepare projects. The documentation may be utilized by other developing countries in subsequent programmes covering the same subsectors.

Following the programme in the electronics sector financed by Japan, a second programme is currently under implementation with financing from Italy. It covers production in developing countries of equipment which utilizes or produces energy from selectednew and renewable energy sources. Another programme to identify and promote investment projects in the metalworking industry was formulated during 1985 and is expected to be implemented in co-operation with the Government of Japan in 1986.

5. Other IID Activities

5.1 Research and Studies

In addition to its project identification and promotion activities, IID prepares studies on topics relevant to this work with the aim of keeping abreast of new developments in the field. Many of these studies are of interest to project sponsors and potential partners since they concern the problems faced by industry in developing countries.

Recent studies concern such areas as the impact of tax and oher incentives on the level of foreign investment in selected Asian countries; the chances of setting up an international repair and maintenance agency to correct the under-utilization of plant in Africa; countertrading and buy-back as innovative sources of funding for industrial development; examples of how Islamic banks use risk capital as an alternative to loan finance.

This research is carried out partly by IID staff members but also by outside consultants chosen for their expertise in a given field. The resulting studies are used by the Division to guide and focus its work so as to maximize the benefits to its clients in both industrialized and developing countries.

5.2 Seminars and Workshops on Investment Promotion related Topics

IID attaches considerable importance to arranging meetings at which it can share its expertise in the field of identifying, preparing and promoting industrial investment projects with interested institutions and individuals, and where it can exchange with them views and experience on such topics.

From time to time, therefore, workshops and semilars are arranged in co-sponsorship with organizations whose aims and objects, like those of IID, concern the overall topic of financing industrial development in developing countries. Events of this type are:

- the Expert Group Meeting on Industrial Joint Ventures and COmpensation Agreements, held in Vienna in March 1982

;

- the Workshop on Financial Markets and Project Financing, held in Aden,
 Democractic Yemen, in December of 1984 and co-sponsored by the Arab Industrial
 Development Organization;
- the Workshop on Investment Project Identification and Preparation, held in Fujiang, China in November 1986;
- the Workshop co-sponsored by the Islamic Development Bank on the Industrial Financing Activities of Islamic Banks held in Vienna in June 1986.

5.3 Technical Assistance

Developing countries often need help in help in selecting the correct "mix" of measures to attract foreign direct investment in productive facilities while ensuring that the benefits of such investment are equitably shared between the investor and the host country. Within the scope of UNIDO's technical assistance resources, IID can give such help. Examples are the modification of laws regulating foreign investment, the preparation of foreign investment guides, and help with setting up foreign investment promotion offices to ensure that their place within the governmental structure will enable them to carry out their function of creating and maintaining an attractive foreign investment climate.

IID has particularly broad experience in designing investment guides to developing countries and regions, such as the one to the SADCC countries prepared for the Harare Investment Project Promotion Forum held in 1986, or the one to the Fujiang province of China, prepared for the 1986 IPPF held there.

nado ina**grafi**ni interazion apinices

Cologne, Federal Republic of Germany

Head of Service: Mr. Ulrich WEDER

Address:

Unter Sachsenhausen 10 - 26

D-5000 Cologue 1

Federal Republic of Germany

Telephone: 120451

Telex: 1/221349 UN KOELN

Paris, France

Head of Service: Mr. Christophe GUILLEMIN

Address:

118, Rue de Vaugirard

F-75006 Paris

France

Telephone: 45443802

203503 ONUDI PR F Telex:

Head of Service: Tokyo, Japan Mr. Mitsuo SAITO

Address:

Shin-Aoyama Building, East-1009 1-1-1, Minamiaoyama, Minatoku

Tokyo Japan

Telephone: 4029341

2425528 UNIDO J Telex:

Head of Service: Vienna, Austria Mr. Hans Joerg BAUER

Room D 1863 Vienna International Centre P.O.Box 300 A-1400 Vienna

Austria

Telephone: 26313943

Telex: 135612 UNO A

Warsaw, Poland Head of Service: Mr. Krzysztof LOTH

Address: Stawki 2 PL-00950 Warsaw

Poland

Telephone: 398723, 397112 817916 UNIDO PL Telex:

Washington, D.C., United States of America

Head of Service: Mr. Robert Y. JUSTIS, Jr.

Address: Suite 215 1660 L Street, N.W. Washington, D.C. 20036 USA

Telephone: 6595165

Telex: 9102406649 IPS WSH

Zurich, Switzerland

Address: Loewenstrasse 1 CH-8001 Zurich Switzerland

Telephone: 2212329

Telex: 814456 UNIT CH

Head of Service:

Mr. Franz X. STIRNIMANN

7. -

HOW TO START MANUFACTURING INDUSTRIES

LIST OF AVAILABLE PROFILES

Background Mote to Profiles G17 to G76, pages xi-xv, in Volume II Part A : Food ISIC 311, 312*

	In Vo	lune I:	
	A1	3117	Baking Plant
	A2	3117	Biscuit Making Plant
	A3	3115	Vegetable Oil Milling Plant
	A4	3116	Rice Milling Plant
	A5	3117	Instant Moodle Making Plant
	A6	3114	Fish Meal Making Plant
	A7	3121	Ice Making and Refrigeration Plant
	A8	3121	Cassava Starch Making Plant
	A9	3121	Starch Syrup Making Plant
	A1C	3116	Flour Milling Plant
	A11	3112	Fresh Milk Making Plant
	A12	3113	Concentrated Fruit Juice Making Plant
	A13	3115	Margarine Making Plant
	A14	3121	Soy Sauce Brewing Plant
	A15	3113	Tomato Ketchup Making Plant
	A16	3122	Assorted Animal Feed Making Plant
	A17	3119	Candy Making Plant
	In V	olume II	:
+	A18	3118	Mini White Sugar Mill
+	A19	3118	Cube Sugar
+	A20	3113	Gari Production
+	A21	3116	Decoration of Groundnuts and Millet/Sorghum
+	A22	3117 3113	Pasta Production
+	A23	3113	Fruit Processing and Soft Drinks
+	A24	3116	Flour Milling Plant
+	A25	3116	Dry Milling of Maize
	<u>In V</u>	olume II	īī:
	A26	3113	Cashew Juice and Kernel Processing Plant
	A27	3115	Castor Oil and Pomace Plant
	A28	3118	Cane Sugar Processing Plant
		3113	Aseptic Banana Puree Processing Plant
		3113	Tropical Fruit Nectar Processing Plant
	A31	3116 3115	Meals from Pregelatinized Flour
	A32	3115	Milk Processing Plant
		3121	Cassava Flour and Starch Processing Plant
		3116	Soy Flour Processing Plant
	A35		Poultry Processing Plant
	A36	3111	Cattle Slaughter House

^{*} International Standard Industrial Classification number

⁺ Addition to Volume II

Part	B :	Textile	- 26
	In Vo	lune I:	
	B1	3212	Woven Bag Making Plant
	32	3215	Plastic Filament Twine and Rope Making Plant
	B3	3215	Polypropylene Soft Rope and String Making Plant
	34	3213	Socks Making Plant
	B 5	3212	Terry Towel Plant
	In Vo	lume II:	•
•	B6	3212	PP Woven Bag Making Plant
	In Vo	olume III	
			-
	B 7	3211	Polyester Fabrics Making Plant
	B8	3211	Cotton Yarn and Fabric Plant
	B9	3211	Hylon Tyre Cord Fabric Plant
	B 10	3213	Socks Knitting
	B11	3215	Twine and Rope Haking Plant
	B12	3219	Manufacture of Shoulder Pads for Garment
Part	C:	Textil	e, Wearing Apparel and Leather Industries ISIC 321, 322, 24*
	In V	olume I:	
	C1	3220	Working Clothes Sewing Plant
	C2	3220	Hen's Dress Shirt Sewing Plant
	C3	3220	Underwear Making Plant
	C4	3220	Outerwear Knitting Plant
	In V	olume II	
	C5	3231	Leather Production
	C6	3231	Wet-blue Leather
	C7	3231	Crust Leather
	C8	3231	Finished Leather
	C9	3240	Footwear Production
	C10	3233	Leather Goods Production
+	C11	3240	Shoe Making Plant
	In V	olume II	<u>u</u> :
	C12	3220	Hen's Shirts Making Plant .
Par	t D :	Wood a	and Wood Products ISIC 331*
	In V	olume 1	
	D1	3311	Flywood Making Plant
	D2	3311	Savmill
	D3	3319	Woodscrew Making Plant
	In V	olume I	<u>L</u> :
+	D4	3310	Production of Parquet Flooring
+	D5	3310	Joinery Plant
+	D6	3310	Plywood Making Plant
+	D7	3310	Chalkboard Making Plant

^{*} International Standard Industrial Classification number + Additions to Volume II

Paper and Paper Products ISIC 341*

	In Volume I:		
	E1	3411	Toilet Paper Haking Plant
	E 2	3412	Corrugated Board Box Making Plant
	E3	3411	Straw Pulp and Yellow Board Making Plant
	E4	3412	Kraft Beg Making Plant
Part	F:	Printing	and Publishing ISIC 342*
	In Vo	lune I:	
	F1	3420	Printing Plant
Part	G:	Indus*r	ial Chemicals ISIC 351* and other Chemical Products ISIC 352*
	In Vo	lume I:	
	G1	3513	Urea Resin Adhesive Haking Plant
	G2	3511	Packaged Type Oxygen Plant
	G3	3512	Mosquito Coils Making Plant
	G4	3512	Aerosol Insecticide Making Plant
	In Vo	lume II:	
	G5	3511	Fatty Acids
	G6	3511	Fractionation of Fatty Acids
	G7	3511	Furfuryl Alcohol
	G8	3513	Furfurylic Resins from Organic Wastes
	G9	3511	Sulphation of Higher Alcohols
	G10	3511	Synthesis of Higher Alcohols
	G11	3511	Sulphuric Acid
	G12	3511	Phenol
	G13	3523	Glycerine from Matural Products
	G14	3523	Soap
	G15	3511	Sulphonation of Alkylbenzene
****	G16	3511	Alkylation of Benzene
(NO			317 to G76, see also the Background Notes - Basis of Calculations
			e II, pages xi-xv)
	G17 G18	3513 3511	ABS Resins
	G19	3511	Acetic Acid via Acetaldehyde Oxidation Acetic Acid from Methanol and CO
	G20	3511	Acetaldehyde
	G21	3511	Acetic Anhydride
	G22	3511	Acetone from Propylene
	G23	3511	Acrylic Esters
	G24	3511	Acrylonitrile
	G25	3511	Adipic Acid
	G26	3511	Ammonia
	G27	3511	Aniline
	G28	3511	Aromatics Extraction - BTX from Reformate
	G29	3511	Caprolactam
	G30	3511	Caustic-Chlorine (Diaphragm Cell)
,	631	3511	Cumene
	G32	3511	Cyclohexane
	G33	3511	Dimethyl Terephthalate (DMT)
	G34	3511	Ethanol

^{*} International Standard Industrial Classification number

⁺ Additions to Volume II

	G35	3511	Ethylbenzene
	G36	3511	Ethylene from Ethane
	G37	3511	Ethylene from LPG/Propene
	G38	3511	Ethylene from Maphta
	G39	3511	Ethylene from Gas Oil
	G4O	3511	Ethylene Dichloride - Balanced Oxychlorination
	G41	3511	Ethylene Oxide
	G42	3511	Ethylene Glycol
	G43	3511	Formaldehyde
	G44	3511	Hydrogen from Matural Gas
	G45	3511	Isopropenol
	G46	3511	Methanol from Matural Gas
	G47	3511	Methyl Methacrylate via Acetone Cyanohydrin
	G48	3511	Nitric Acid - Weak
	G49	3511	Nitric Acid - Concentrated
	G50	3513	Nylon-6
	G51	3511	Paraffins Recovery
	G52	3511	Phenol
	G53	3511	Phthalic Anhydride (Xylene Oxidation)
	G54	3513	Polybutadiene Rubber (BR)
	G55	3513	Polyethylene Low Density (LDPE) - Tubular Reactor
	G56	3513	Polyethylene Low Density (LDPE) - Autoclave Reactor
	G57	3513	Polyethylene High Density (HDPE) - Slurry Process
	G58	3513	Polyethylene High Density (HDPE) - Gas Phase Process
	G59	3513	Polypropylene - Liquid Phase Process
	G60	3513	Polypropylene - Vapour Phase Polymerisation (BASF)
	G61	3513	Polystyrene
	G62	3513	PVC - Suspension Polymerisation
	G63	3511	Propylene Oxide - Clorohydrin Process
	G64	3511	Propylene Oxide (Co-product Styrene)
	G65	3511	Propylene Oxic - Co-product TBA
	G66	3511	Propylene Glycol by Oxide Hydration
	G67	3513	Styrene
	G68	3513	SBR - Cold Emulsion Process
	G69	3511	Sulphuric Acid (Single Absorption Process)
	G70	3511	Synthesis Gas from Partial Oxidation of Fuel Oil
	G71	3511	Terephthalic Acid (TPA) - Fibre Grade
	G72	3513	Unsaturated Polyesters
	G73	3511	Urea
	G74	3511	Vinyl Acetate - Ethylene Vapour Phase Oxidation
	G75	3511	Vinyl Chloride
	G76	3511	p-Xylene - Recovery by Adsorption
+	G77	3511	Oxalic Acid
+	G78	3513	Polystyrene Resin Making Plant
+	G79	3511	Nitrobenzene Making Plant
+	G80	3511	Pentaerythritel Making Plant
+	G81	3512	EPW Making Plant
+	G82	3511	Titanium Pioxide Haking Plant
+	G83	3511	Formaldehyde Making Plant
•	G84	3513	Unsaturated Polyester Resin Plant
+	G85	3511	Calcium Carbonate Making Plant
•	G86	3513	CHC Making Plant
*	G87	3510	Starch Hydrolysis Products Plant.

^{*} International Standard Industrial Classification number + Additions to Volume II

•	C88	3511	Louryl Sulphate Making Plant
•	C89	3511	Caustic Sode Making Plant
•	G90	3511	Sulfuric Acid Making Plant
•	G91	3511	Trichloroethane Haking Plant
•	G92	3512	TAM Synthesis Technology
•	G93	3512	DEP Synthesis Technology
•	G94	3512	DOVP Synthesis Technology
•	G95	3511	Azodicarbonamide Making Plant

In Volume III:

G96	3513	PVC Paste Resin Haking Plant
G97	3511	Sodium Chlorite Making Plant
G98	3512	Phosphate Fertilizer Plant
G99	3511	Mixed Xylene Separation Plant
G100	3511	Calcium Carbide Making Plant
G101	3513	Epoxy Resin Making Plant
G102	3511	Hexane/Cyclohexane Solvent Plant
G103	3512	Complex Fertilizer Making Plant
G104	3512	KAP Insecticides Making Plant
G105	3512	Liquid Pesticides Manufacturing Plant
G106	3512	Production of Powdered Pesticides
G107	3512	BPMC and MIPC Insecticides Making Plant
G108	3511	Linear Alkylbenzene Plant
G109	3512	MTX Insecticides Making Plant
G110	3511	Tricalcium Phosphate Plant
		-

Part H: Other Chemical Products ISIC 352*/Petrolium Refineries ISIC 353*/ Manufacture of Miscellaneous Products of Petrolium and Coal ISIC 354*

In Vo	olume 1:	
H1	3529	Match Making Plant
H2	3523	Toilet Soap Making Plant
H3	3523	Toilet Soap Making Plant Detergent Making Plant

In Volume II:

+	H4	3522	Plasma Fractions Making Plant	
+	H 5	3529	Dynamite Making Plant	
+	Н6	3529	Carbon Black Making Plant	
+	H7	3521	Paint Making Plant	
+	H8	3529	Sensitizing Paper Making Plant	
+	H9	3529	Adhesive Making Plant	
•	H10	3529	Self-adhesive Tape Making Plant	
+	H11	3522	Ursodesoxycholic Acid Synthesis	
+	H12	3522	Riboflavin Tetrabutyrate Synthesis	
•	H13	3522	Rifampicin Synthesis Technology	
+	H14	3522	Saccharin Making Plant	
•	H15	3522	Amoxycillin Synthesis Technology	
•	H16	3522	Cephalothin Synthesis technology	
+	H17	3522	Pyrantel Pamoate Synthesis Technology	
+	H18	3529	Match Making Plant	
+	H19	3530	Used Oil Regeneration	
•	H20	3530	Transformer Oil Making Plant	

^{*}International Standard Industrial Classification number

⁺ Additions to Volume II

-	In Volume III:		4		
	H21	3530	Petroleum Solvent Moking Plant		
	1122	3521	Paint and Varnish Monufacturing Plant		
	E23	3529	Production of Light-Sensitive Paper		
	E24	3529	Pootwear Glue Manufacture		
	H25	3521	PVAC (Polyvinyl-Acetate) Wall Coating		
	H26	3540	Coel Ter Distillation Plant		

Part J: Rubber Products ISIC 355*

In Volume 1:

J1 3559 V-Belt Making Plant

In Volume III:

J2 3551 Tire Making Plant

Part K: Plastic Products ISIC 356*

In Vo	lune 1:	•
K1	3560	Polyethylene Bag Making Plant
K2	3560	Agricultural Use PVC Film Making Plant
K3	3560	Unplasticized PVC Pipe Making Plant
K4	3560	Plastic Container Making Plant
K5	3560	Polyester Button Making Plant
K6	3560	PVC-Asbestos Tile Making Plant
K 7	3560	PVC Wall Covering Making Plant
K8	3560	PVC Flexible Tube Making Plant
K9	3560	Fastener Equipped Polyethylene Bag Making Plant
K10	3560	Plastic Container Making by Blow Houlding
K11	3560	Rigid Polyvinyl Chloride Corrugated Sheet Making Plant
K12	3560	PVC Plastisol Houlding Plant

In Volume II:

- + K13 3560 Rigid PVC Pipe Making Plant
- + K14 3560 PVC Flooring Making Plant
- + K15 3560 MRP Ballistic Helmet Making Plant

In Volume III:

K16	3560	BOPP (Polypropylene) Film Making Plant
K17	3560	Rotary Thermoforming of Plastomers
Y18	3560	Plastic Bottle Production

Part L: Pottery, China and Earthenware ISIC 361*/Manufacture of Glass and Glass Products ISIC 362*

In V	olume I:	
Li	3610	Wall Tile Making Plant
L2	3610	Ceramic Tableware Making Plant
L3	3610	Sanitary Ware Making Plant
L4	3610	Porcelain Insulator Making Plant

^{*} International Standard Industrial Classification number

⁺ Additions to Volume II

		• .	- 3I - ·		
	T- W-1				
		lune II:			
•	LS L6	3610 3620	Ceramic Rod for Carbon Film Resistor Insulation Glass Fiber Making Plant		
•			_		
	In Vo	lune III:			
	L7	3620	Tube and Bulb Glass Hoking Plant		
	18	3620	Glasswere Heking Plant		
	L9	3620	Sheet Glass Haking Plant		
Part M :	Other	Mineral	Products ISIC 369*		
	In Vo	luse I:			
	MI	3699	Grinding Wheel Making Plant		
	142	3699	Concrete Block Making Plant		
	113	3691	Refractories Haking Plant		
	H4	3699	Concrete Pole and Pile Making Plant		
	MS	3699 3699	Gypsum Board Haking Plant Hume Pipe Haking Plant		
	M6 M7	3699	Aggregate Plant		
	In Vo	lume II:			
+	198	3691 3692	Mosaic Tile Making Plant Genent-Based Tile Plant		
+	И9 M10	3691	Firebrick Manufacturing Plant		
•	M11	3699			
•	M12	3699	Coated Abrasives Making Plant		
+	H13	3691	Clay Brick Haking Plant		
	In Vo	olume III			
	H14	3691	Brick Factory		
	M15	3699	Concrete Block Factory		
Part N :	Iron and Steel Basic Industries ISIC 371*/Mon-Ferrous Metal Basic Industries ISIC 372*				
	In V	olume I:			
	M1	3710	Foundry		
	In V	olume II	•		
•	M2	3710	Spiral Weld Pipe Making Plant		
•	M3	3710			
•	34	3720			
+	M 5	3720			
Part 0:	Fabr	icated N	etal Products ISIC 381*		

Part

In Volume I: Wire and Wire Product Making Plant 3819 01 Electroplating Plant 02 3819

^{*} International Standard Industrial Classification number

⁺ Additions to Volume II

			- 32 -
ě	03	3819	Conning Plant
	04	3819	Aluminium Cooking Ware Making Plant
	05	3819	Gebion Making Plant
	06	3819	Pipe Fitting Neking Plant
	07	3819	Con Making Plant
	06	3819	Crown-Cap Haking Plant
	09	3819	Coin Meking Plant
	010	3819	Wire Hail Haking Plant
	In Vol	wae 11:	
•	011	3819	Steel Fabrication and Ironwork Factory
+	012	3819	Electroplating Workshop
•	013	3819	Metal Punching Plant
•	014	3819	Leaf Spring Making Plant
+	015	3811	Automatic Key Set Haking Plant
+	016	3819	Crow Cap Making Plant
+	017	3819	Can Making Plant
•			Vacuum Metallized Film Haking Plant
•			Copper Covered Steel Wire Plant
	020		Electroplating Plant
	021		Pipe Fittings Making Plant
•	022		Dunet Wire Making Plant
•	023	3819	Wire Rope Haking Plant
		une III:	• •
	024	3819	Building Materials Made of Steel
	025	3811	Production of Hand Tools
	026	3813	Manufacture of Studded Tubes
	027	3811	Manufacture of Locks
Part P:	Non-e	lectrical	Machinery ISIC 382*
	In Vo	lume 1:	
	P1	3829	Pump Assembling Plant
		lume II:	
+	P2	3824	Machinery Maintenance and Repair Shop
•	P3	3824	Small-Scale Repair Workshop
+	P4	3829	Air Conditioner Making Plant
•	P5	3829	Elevator/Escalator Making Plant
+	P6	3829	Pump Assembling Plant
+	P7	3821	Diesel Engine Assembly Plant
*	P8 P9	3829 3829	Ball Joint Making Plant Carrier and Return Roller Making Plant
•	P10	3823	Rolling Mill Plant
* *	P10	3822	Power Duster and Mist Blower Plant
•	F 1 1	7022	that master and mist binast traut

In Volume III:

P12	3829	Washing Machine Making Plant
P13	3829	Refrigerator Assembling Plawt
P14	3824	Sieve for Building Materials

^{*} International Standard Industrial Classification number

⁺ Additions to Volume II

3829 P15 Assembly of Wheel Tractors 3823 P16 Manufacture of Welding Machines **P17** 3823 Spare Parts Making Plant for Machine Tools 3822 P18 Power Tiller Making Plant P19 3829 Water Pump Making Plant 3823 P20 Engine Lathe Making Plant 3823 **P21** CMC Milling Machine Making Plant **P22** 3823 Drilling Machine Making Plant **P23** 3823 Hydraulic Press Making Plant **P24** 3823 Shearing Machine Making Plant P25 3823 Press Brake Making Plant **P26** 3823 Hack Sawing Machine Making Plant P27 3823 Gas Welding Machine Making Plant P28 3824 Concrete Mixer Making Plant P29 3824 Crusher Making Plant P30 3824 Concrete Batcher Making Plant P31 3824 Rocker Shovel Loader Making Plant

Part Q: Electrical Machinery, Apparatus, Appliances ISIC 383*/ Supplies, Manufacture of Transport Equipment ISIC 384*

In Vo	lume I:	
Q1	3839	Arc Welding Electrode Making Plant
Q2	3839	Dry Cell Making Plant
Q3	3839	Wire and Cable Making Plant
In Vo	lume II:	
Q4	3831	Automotive Starter and Generator Rebuild Plant
Q5	3843	Engine Block, Engine Head, Water Pump Rebuilding
Q6	3843	Truck Brake Relining Plant
Q7	3843	Carburator and Fuel Pump Rebuild Plant
Q8	3839	Electrical Switches, Sockets and Plugs
Q9	3831	Electrical Motor Assembling Plant
Q10	3832	Telephone Assembling Plant
Q11	3839	Electric Lamp Making Plant
Q12	3831	Transformer Assembling Plant
Q13	3833	Mixer Making Plant
Q14	3833	Electric Fan Assembling Plant
Q15	3832	Stereo Phonograph Making Plant
Q16	3832	TV Tuner Making Plant
Q17	3832	Deflection Yoke Making Plant
Q18	3839	Carbon Rod Making Plant
Q19	3839	Electronic Ballast for Fluorescent Lamp
Q20	3831	V.S. Motor Assembling Plant
Q21	3839	Head Lamp Making Plant
Q22	3839	Arc Welding Electrode Making Plant
Q23	3843	Front and Rear Axle Making Plant
Q24	3843	Shock Absorber Making Plant
Q25	3843	Brake Cylinder Making Plant
Q26	3843	Wheel Disc Making Plant
Q27	3843	Radiator Making Plant
Q28	3843	Clutch Cover Assembly Making Plant
Q29	3843	Transmission and Transfer Making Plant
Q30	3844	Two-Wheeler Assembling Plant

^{*} International Standard Industrial Classification number

⁺ Additions to Volume II

In Vo	lume 111:	- 34 -
Q31	3832	TV Assembling Plant
Q32	3833	Rice Cooker Ass bling Plant
Q33	3839	Dry Cell Making Plant
Q34	3831	AC Generator Assembling Plant
Q35	3832	Condenser Manufacturing Plant
Q36	3839	Communication Cable Making Plant
Q37	3843	Car Heater Making Plant
Q38	3833	Electric Cables and Wires
Q39	3833	Heaufacture of Pressing Irons
Q40	3833	Water Meater Manufacturing Plant
Q41	3831	Hanufacture of Distribution Transformers
Q42	3831	Manufacture of Switches
Q43	3839	Manufacture of 2 NVO Fuses
Q44	3839	Menufacture of Electrical Fittings
Q45	3839	Manufacture of Plugs
Q46	3843	Car Cooler Making Plant
		Scientific, Measuring and Controlling Equipment, ISIC 385*
In Vo	lume I:	
R1	3851	Absorbent Cotton Making Plant
R2	3851	Sanitary Napkin Making Plant
R3	3851	Water Meter Making Plant
In Vo	lume II:	•
R4	3851	Thermometer/Pressure Gauge Plant
R5	3851	Watt Hour Meter Assembling Plant
Other	Manufact	uring Industries ISIC 390*
In Vo	lume I:	
S1	3909	Cellophane Tape Making Plant
52	3909	Pencil Making Plant
S3	3909	Sign Pen Making Plant

and

Part S:

S1	3909	Cellophane Tape Making Plant
52	3909	Pencil Making Plant
S3	3909	Sign Pen Making Plant
S4	3909	Chalk Making Plant
S 5	3909	Carbon Paper Making Plant
S6	3909	Tootbrush Making Plant
In V	olume II:	
S7	3909	Polyester Zipper Making Plant
In V	olume III	;
S8	3909	Manufacture of Plastic Zippers

Part T: Repair Services ISIC 951*

In Volume I:

9513 Automobile Repair Plant

Part R:

^{*} International Standard Industrial Classification number

⁺ Additions to Volume II

Part U: Forestry and Logging ISIC 121* and 122*

In Volume II:

+ Ul 1210 Smell-scale Charcoal Production

Part V: Water Works and Supply ISIC 420*

In Volume II:

+ V1 4200 Solar Desalination Unit

^{*} International Standard Industrial Classification number

⁺ Additions to Volume II

- How To Start Manufacturing Industries

Cassava Starch Making Plant

Starch, which is a supply source of carbohydrate, one of the three essential elements of food, occurs widely in farm produce. The starch industry is to extract starch from farm produce to manufacture agricultural processed goods.

Starch is contained in the grains of rice, wheat, maize, etc. and also in the roots and tubers of potatoes, sweet potatoes, cassava and the like. The grain starch contained in rice, maine, etc. is generally small in particle. As their starch grain is surrounded by protein, the extraction of starch is more difficult than that in potato, cassava, etc. The starch in the roots and tubers of potato, cassava, etc. is large in perticle and easily settles, and moreover, the fat and protein existing with starch is small in quantity, and thus good starch can be extracted comparatively easily.

The production scale of the starch industry ranges from such a large one as 1,000-ton-per-day to 1-ton-per-day as seen in the cottage industry run by farmhouses. The production scale is greatly affected by the conditions of location involving the supply of raw material, demand and supply of the product and so forth.

Outline of Starch Production

As mentioned above, starch can roughly be classified into the grain starch and the roots and tuber starch. Consequently, the method of production of starch varies to some extent depending on the raw materials to be used. Anyway, the production of starch starts with crushing or grinding the raw material to destroy its tissue. In this way, the starch in the tissue is extracted and the fiber and protein are removed. The grain starch of wheat and maize is crushed by the dry process, and the root and tuber starch of potato and cassava is ground by the wet process, and then the starch is extracted by filtering it through water and also washing with running water. The process from gathering the raw material up to the manufacture of a final product is outlined as follows:

Gathering of raw material → washing
→ crushing or grinding → extracting
→ refining

Manufacture of Cassive Starch

Cassava is a plant originated in South America. The starch accumulated in its root and tuber is extracted. Cassave is widely cultivated in the tropics, namely in Indonesia, the Philippines, Malaysia, Thailand, Africa and Brazil. The yield per hecture is 10 to 40 tons, varying depending on the growing conditions. Cassava reportedly contains an average of 18% of starch. In case the starch yield is supposed to be 80% of the raw material and a 10-ton-per-day plant is to be set up, the quantity of cassava that should be supplied to this plant would become as below:

$$10 \cos x \frac{1}{0.18} \times \frac{1}{0.8} = 70 \cos x$$

In case the plant is assumed to be operated for 250 days a year, it will need 70 tons x 250 = 17,500 tons of cassava per year. In order to establish a plant manufacturing 10 tons of starch a day, careful planning must be mapped out in respect of cultivation and gathering of cassava. The present data is concerned with a cassava starch manufacturing plant having a production scale that can easily be industrialized. And in preparing the data, the conditions prevailing in developing countries have been taken into consideration.

- (1) Production Scale: 5 tons/day
- (2) Specification of Product:
 Water 18 to 19%
 Starch 90 %
 This corresponds to the 3rd
 grade of the JAS (the Japanese Agriculture and Forestry
 Standards)
- (3) Requirement of Raw Material: 36 tone/day
- (4) Requirement of Utilities:
 Industrial
 water 20 tone/hour
 Pure water . . . 15 tone/hour
 Electric
 power 20 kWh
 Chemicals . . . given quantity
- (5) Required Manpower: 12 to 28 including manager 1 engineer 1

Land: 1,000 m² Others

In materializing this plan, it is necessary to investigate the situation of raw material, starch market, utilities such as water, electric power and the

Table 1: Required Machinery and Equipment

Item	No.
Weighing platform scale	. 2
Separator	. 1
Washing machine	. 1 (with a 5 h.p. motor)
Chute	. 1
Peeling table	. 1
Conveyor	
Grinder	
Starch extractor	
Sieve (cylindrical)	
Milk teak	•
Self plying pump	
Nouzle separator	
Settling pond	
Grinder	
Packing machine	•
Delivery pump	
Refuse conveyor	
POB price of machinery and equipment	

Profess grinder perception Strike ong laiwten weA erre dress le been gadine? المضما mende street ومد چلېدلا ودار ابانسلا اند 7=4 Ann Albi Cassors starch making plant Refere Jee extraction radour, enered Veighing conveyor (heew to sheet) aides gallare! Totate weeks Separate per Seguine ned was ye siye Fig. 1: Process Flow Short for Consens Starch Habing Plant (production capacity: 5 templay)

Any inquiry about the information contained be aent to:
10/COOP, Registry file No. ID/
562/12, UNIDO, P.O. Box 300,
662/12, UNIDO, P.O. Box 300, Further reproduction of this does name without permission of JCI is prohibited. This information has been prepared
by the Japan Consulting Institute
(JCI) and reproduced by UNIDO
with special permission from JCI.

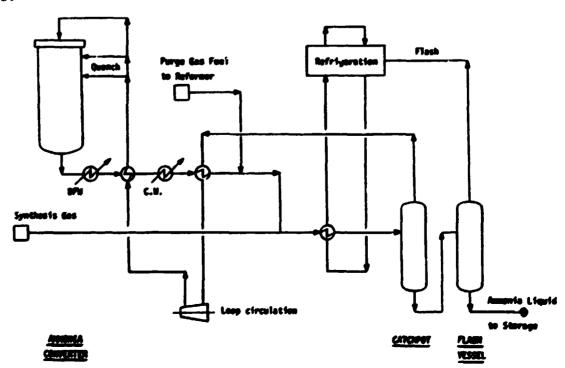
)

7

Pile: 026 INIC 3511

How to Start Manufacturing Industries

\$


AINOPPA

Natural gas is mixed with steam and reformed over two stages to yield hydrogen and carbon monoxide. Reaction is highly endothermic and takes place at 800°C and 32 bar. In the second stage air is added so that the heat of combustion of part of the hydrogen supplies heat for the remainder of the endothermic reaction. Exit temperature is 1 000°C.

Exit gases are cooled and compressed and passed through a series of absorbers to take out water and carbon dioxide. The gases are compressed to the ammonia synthesis pressure of 225 bar. The ammonia catalyst is a promoted iron catalyst. The ammonia is condensed out of the synthesis loop by refrigerated cooling. Ammonia contents of 15-20 percent are obtained at the converter exit. Inerts are regularly purged and either burnt for fuel or processed further for hydrogen or argon recovery.

Uses

The major use for ammonia is in the fertiliser industry and containing 82 percent nitrogen, it is the most concentrated nitrogen fertiliser. Other uses are in the manufacture of nitric acid, in commercial explosives and fibres.

A plant capacity of 330 000 tonnes per year would occupy an area of 15 000 square metres. The smallest feasible size as built in Sweden is in the range 4-5 000 tonnes per year.

This information has been prepared for UNIDO by Chem Systems International Ltd., United Kingdom.

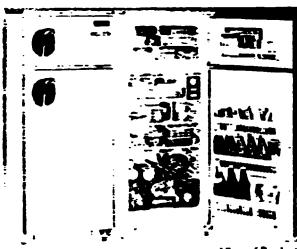
Any inquiry about the information contained should be sent to: IG/COOP, Registry file Wo. ID/562/12, UNIIO, P.O. Box 300, A-1400, Vienna, Austria.

File: G26

COST OF PRODUCTION ESTIMATE FOR-AMMONIA (EXPRESSED IN CONSTANT 1980 US DOLLARS) PROCESS - NATURAL GAS

PROCESS - NATU	iral gas	
BASTS	CAPITAL COST	\$ MILL
LOCATION- BENELUX	BATTERY LIHITS	76.50
CAPACITY- 330 000 TONNES PER YEAR	OFFSITES	36.73
PRODUCTN- 330 000 TONNES PER YEAR		
YEAR - 1988	TOTAL FIXED INV.	113.33
STR.TIME- 8000 HOURS PER YEAR	UORKING	24.89
Whitie pas nous ier ienk	WORK ING	24.07
RAU MATERIALS QUANTITY/TONNE	PRICE* ANNUAL COST	UNIT*
who intrints foundation	TATOL MINUNE COST	ČÖŠŤ
NATURAL GAS 8.8200 GCAL	18.100 52 681 860	<u> </u>
CATALYST+CHEMS 1.0455 DOLLARS		
CATALISTICHENS 1.0433 DULLAKS	1.000 345 000	
	-22-127-271	444
TOTAL RAW MATERIALS	53 026 860	160.69
UTILITIES		
	61.500 324 720	
COOLING WATER .2008 KTONNE	17.000 1 122 000	
BLR.FEFD WATER .0008 KTOPNE	450.000 118 800	
TOTAL UTILITIES COST	7775657520	4.74
OPERATING COSTS	5 555 551	
LABOUR 35.00 MEN @ 17 700 \$/	YEAR 619 500	
SUPERVISION 1.00 MEN @ 29 200 \$/		
MAINTENANCE @ .04×BLCC	3 063 855	
TOTAL OPERATING COST	3 712 555	11.25
OVERHEAD EXPENSES		
DIRECT OVERHEAD . 400x LAB+SU		
GEN PLANT OVERHEAD @ .650× OPERAT	ING COSTS 2 413 161	
INSURANCE+PTY TAX @ .015x TOTAL F	FIXED CAP 1 699 913	
DEPRECIATION @ .100x BLCC+ .	.050×OFFS 9 496 196	
	3 CAPITAL 2 488 748	
• • • • • • • • • • • • • • • • • • • •		
TOTAL OVERHEAD EXPENSES	716 357 497	49.57
BYPRODUCT CREDIT	20 00: 471	47.01
TOTAL BYPRODUCT CREDIT		.00
WING BIFRODUCI GREDII	U	. 00
MET COST OF BROWNICTION	74-332-432	
NET COST OF PRODUCTION	14 002 432	726.25
WARTAGE CORT OF BROWNOTTON		4/2 "
VARIABLE COST OF PRODUCTION		165.43
CASH COST OF PRODUCTION		197.47
TRANSFER PRICE @ 10.0PC RETURN ON FI		260.59
TRANSFER PRICE # 15.0PC RETURN ON FI		277.76
TRANSFER PRICE # 20.0PC RETURN ON FI	IXED INV	294.93
* \$/UNIT. TONNE=METRIC TON=2204.6	_B .	

VARIATIW MMM.YRIB FO	IR <i>(</i>	MHONIA		N	NTURAL C	SAS	BEI	ÆL.UX		LANG FACTOR 0.45		TOR 0.45		
CARF MI		1		2:		3		4		5		٥		
	ONNEB !	er ann	M											
PLANT CAPACITY PLANT CUTPUT		230000 730000		330000 2 0 0500		330000 247500		330000 1 7000 0		244600 244600		178000		13200 13200
Colim. Cosi	WIFFION	POLLO!	!											
M.CC OFFSITER TOTAL FIXED WORKING		76.4 36.7 113.3 24.9		76.6 36.7 113.3 22.1		76.6 36.7 113.3 20.2		74.4 36.7 113.3 17.4		44.3 31.0 70.0 20.4		55.0 26.4 01.3 15.0		42. 20. 42. 11.
9		PER ION	ME 1305	MČI -	BASED (M MATUI	RAL BAS	AT 418	1/GCAL	,				
RAM MATERIALS UTILITIES PYPRUP. CREDIT		140.7 4.7		140.7 4.7		140.7 4.7		140.7 4.7		140.7 4.7		140.7 4.7		140.
VARTAMLE COUT OPFOAT (ON OVERWAD (EXCL. BEPM)		145.4 11.3 20.6		135.4 13.2 23.5		135.4 15.0 25.6		125.4 10.0 30.7	o mir van dan een 410 Mg el	125.4° 12.5 22.4	* 10 e0 e0 f0 f0 f0 e0 e0	735.4 14.4 24.6		125. 17. 29.
CASH COST DEPRECIATION		20.0		33.9		30.4		48.0		31.1		34.4		39.
NET CORT OF PROBLEM RETURN ON INVESTMENT (AT 15% ON TOTAL FIXE		51.5		40.4		-24473 - 24473 - 24473		233.5° 65.7		73174° 86.7	1 W 42 40 40 75 64 4	237.5° 41.4	1 200 - 40 450 PM - 44 430 PM	71.
transfer Price	~~~~~	-277.6		-298.8		-31373		-34876		-287.1		-38672-		3227
	FFECT 0	F RAYOR	- EX5 - 3X	PRICE	ZRYXTIO	W	****							
	+20% 21.7	-20X 14.5	+20X 21.7	-20X 14.5	+20X 21.7	-20X 14.5	+20X 21.7	-20X	+20% 21.7	-20X 14.5	+20X 21.7	-20X 14.5	+24% 21.7	-20: 14.
NET COST OF PROBU TRANSFER PRICE		194.3 245.0			276.5 345.2	212.7 281.4	274,9 300,8	231.1 316.7	243.4 317.1		270.9 332.5			


.

í

H.

FILE: P-13 ISIC: 3829

Refrigerator Assembling Plant

₹.

View of Product

With the improvement in the living standard, there has been conspicuous changes in the improved dietary life surrounding our living. In particular, the desire to preserve fresh vegetables, fruits and meats in the houshold and enjoy eating them for a long time is quite natural, necessitating to have refrigerators in almost all individual houses.

As alcohol absorbs the heat of evaporation when evaporating, the sefrigerator snakes use of the property of absorbing the heat from outside when liquid suporizes. Such a cooling action is carried out by the sefrigeration cycle consisting of a compressor, radiator, capillary tubes and cooler.

The high-pressure refrigerant gas compressed by a compressor radiates its heat when passing through thin pipes of a radiator. The freezer is a small compertment surrounded by the compressor and specially closed by

Table 1. Specification of Refrigerator

-	******	Product describes (0 × 0 × 0)	-5	112	#1
nø.		165° 1 165° 1 165°	23	13	1
7E H0	102	Silano Pilano e Wilano	49	50	179
70 mm f	307	為ア:おぞ:私ど	 		-
##	179	カナ: 30で: 30で	, m	•	#
10 1MC	,	سالان وساله و ساله	•	71	-
THE STATE OF	220	Miss of Mark of J.P. Imm		•	•
10 M	>=	660mm = 672mm = 1,611mm			79

a separate door and capable of keeping the temperature as low as -20°C.

It is based on the principle that the asterally formed frost is deforsted by a heater or it is automatically semoved because the high-pressure sefrigerant at high temperature directly flows to the refrigerator instead of passing through the condenser by means of a change-over cock.

The plant manufacturing such refrigerators requires relatively large investments and high-level technology, but its contribution to the national economy as a result of the investment is not only significant but also enhances the people's living standard.

Products and Specifications

Refrigerators produced in this plant range from 48 to 500 liters in capacity including three-door types. They are of European style with the use of clean pipes requiring no cord heater in addition to being economical of electric power.

The refrigerator is characterized by its quick freezing time of only 30 minutes with no frosting as well as by being capable of an automatic control, providing the maximum capacity in a cabinet made of the steel plate with minimum thickness.

Contents of Technology

1) Process Description

The cold-rolled steel pinte (SPCC) first undergoes shearing, multi-notching, cold rolling and forming, and bending to be welded and assembled with such pres-formed cabinet component parts as a front plate, bottom piete, angle structure and other components into a cabinet.

The cabinet moved by a conveyor enters the coating lines, where it is degreesed, coated, washed with demineralized water, pse-dried, coated with anti-static agent for glazing and dried to be moved to the assembly section by a conveyor again.

interiors are made of the plastic sheet by vacuum forming and further processed for assembly. The back plate is first prepared by pressing and forming, and

welded with radiator pipes prior to assembly. It is then coated with acrylic agricultic agent for glazing for further assembly. The freezer and evaporator are argon-welded to be assembled with a cooler, undergoing thorough leak tests by a helium leak tester.

On completion of assembling interiors, cooler, back plate and the like, the cabinet is preliminarily treated with methane and placed in a preheating furnace. Since the fouring jig is already heated, the methane liquid is feamed by meins of the high-pressure feaming

Refrigerator Assembling Process Diagram Cabinet Cobinet parts Coat pre-treatment Acrylic glazing & anti-static coeting **Drying** Thick plate Cooler assembly He leak test Radiation pipe Acrylic glazing Radiation pape and anti-static coating welding and assembling pre-treatment COMP plate **Pro-heating** Refrigeration cycle welding and assembly Upper door Gas charging Acrylic glazing Wiring Unit section Total Urethane foaming Interiors amembly ルッ."

FILE: P-13

device for the cabinet. It is placed then in a cure-hexing furnace and assembled with welded refrigeration cycle system along with a compressor.

The welded and assembled refrirements is vacuum dried and filled with R-12 freen gas to be followed by wiring. In the unit inhoratory after the chapte of 20 minutes, the B-point temperature is measured, and deforesting and ampere are confirmed following highpressure leak tests. A start-up test with \$5 percent power source as well as low-pressure leak test are also conducted. The upper and lower doors are pressformed, coated with acrylic stain for glazing. The doors are fixed with inside component parts and also insulated by wethere forming for the final assembly, and then assembled to the cabinet.

Other component parts are assembled and interiors are inserted prior to such final tests as insulation resistance test, start-up test and leak test. The refrigerator thus finished is packed by an automatic packing machine including PP bonding.

2) Equipment and Machinery

Spot welder **Trolly conveyor** Slot conveyor **Belt conveyor** Tapping machine Power press Vacuum forming machine Urethane forming Helium leak tester Lethers Die casting machine Injection molding seachine Grinding mechine Projection welder Shearing mechine Cold rolled forming machine High speed precision press Compresser manufacturing facilities Painting equipment Crank press Of press Compressor assembly facilities

3) Raw Materials

Rew materials	Requirement (per unit of product)
Stoci plate	2.3 kg
Resin	0.8 kg
Silicate steel plate	5 kg
Urethene A liquid	2.5 kg
Urethane B liquid	2.5 kg

Note: Base on the product of 200 Lespacity

Example of Plant Capacity and Construction Cost

1) Plant capacity: 60,000sets/month Bais: 8 hours/day, 330 days/year

2) Estimated Equipment Cost

o Manufacturing machinery : US\$1,000,000 e Utility facility US\$ 400,000 o lastallation cost US\$ 500,000 Total US\$1,900,000

3) Required Space

22,000 m² o Site area o Duilding area 7,600 m²

Total 29,600 m²

4) Personnel Requirement

o Manager 6 persons o Enginee: 20 persons o Operator 290 persons Total 316 persons

This information has been prepared by the Technology Transfer Center (TTC) of the Korea Institute of Mechinery and Metals (KIMM) and reproduced by UNIDO with special permission from TTC. Purther reproduction of this document without permission of TTC is prohibited.

Any inquiry about the information contained should be sent to: IPCT/II/PROM: Registry file No. ID/562/12, UNIDO, P.O. Box 300, A-1400 Vicane, Austria

N I G E R I A MIR/051/V/85-11

*ISIC: 1110, 3111

6/11/85

POULTRY FARMING INTEGRATED

Project summery	Total project cost (in \$US million equivalent)	Fereign co-operation sought	
Product: EGGS, CHICKEN, FULLETS, ETC	-	Cash investment	
Plenard capacity/eveput: LARGE	Mechinary and equipment: 1,250,00 Working capital: 250,000 Other: 1,33,000 Total: US\$ 2,593,00	Loons [] Joint voneure [] Subcontracting []	1
Lecusion: CROSS RIVER STATE Mortust: Domestic 100. %	Foreign . enchange US1 , 250 , 000 Ownership structure:	Equipment supply	1
Export NIL % This is If a new project the expension/modernization	60 % local private / % local State LO % foreign	Market access	
We have 2 : infaibility study deted b detailed project description other studies:	There is a local partner: Public sector Private sector Not yet identified	Management () Technical () Training () Marketing ()	

Brief description of the project

Responsible Officer:

^{*}To be filled in by UNIDO.

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION Project Profile Screening and Pre-appraisal Information System

PROPSPIN PROJECT PROFILE

Summary

	FICATION	Muffler Factory		Date: Run Num.:	16/4/1987 0
2. Pro	oduct: cation:	Mufflers Panama	Sponsor:	CNI	
	pacity: nstr. period	78,000 pcs	Prep. by:		ren
FINANC	IAL SUMMARY	CURRENCY: US dol	lars		
6. To	tal Investme	ent:	570,300		
	ternal Rate		73	*	
	yback Period		2	Years	
	eakeven Poin		17	% Cap Util	lization
10. De	bt/Equity Re	itio:	2.16	(Initial)	
	turn on Equi		183	% at Full	Operation
OPERAT	IONS SUMMARY	7			
			Year 1	Year 3	Year 5
12. Ca	pacity Utili	zation %:	45	50	60
13. To	tal Sales:		877,500	975,000	1,170,000
14. Se	lling Price/	unit (composite):	25.00	25.00	25.00
15. To	tal Number o	of Persons Employed:	16	16	16
LIST O	F ATTACHED S	SCHEDULES			PAGE
1a-1d		Tables, including Cap ce, Depreciation & Amo			. 1-3
2a-2d	Materials,	Analysis, Including C Labour, Energy, Overh Administration	eads, Techno	logy,	. 4-6
3	Net Income	Statement	•••••		. 7
4	Cashflow St	tatement	• • • • • • • • • • •	• • • • • • • • • •	. 8
5	Balance She	eet	• • • • • • • • • • • •	• • • • • • • • • •	. 9
6	Ratio Anal	ysis	• • • • • • • • • • • •	• • • • • • • • • •	. 10

	Propspin	- RATIO A	Mal73[S						Schedule 6
Project Title: Bufflers Pactory Location: Pages	*******	Date:	16/4/1987		Run Humber Income Tax				,
Project Io.: Speasor:		Base Year: Startup:			Rate (%): Income Tax	43			
Prepared By: G. Appelgren		Inflation:			lefer.Its:				
Period	1	2]	4	5	6	?		\$
-Betarn on Tot Invest 5	62.9	62.9	42.3	43.3	57.9	58.8	66.2	67.1	56.0
-Beturn on Equity I	199.1	199.1	134.0	136.9	183.2	186.1	209.5	212.4	215.3
-Betara on Sales S	40.9	40.9	24.8	25.3	28.2	28.7	29.8	30.2	39.6
-Payback Period Calc: Intitial Invest. 570,300		Appual Cas	thflow = MI	!+ B es+(1-ti	avrate) int				
		455,700	315,957	315,957					
Lockup period Payback Period: 2	l Tears	2	3	4	5	•	•	3	3
-Debt Service Coverage	1.4		-						
-Investment Turnover	1.5								
-Debt/Equity Estio -Investment/Employee 35,644	2.2	2.2	1.8	1.4	1.1	0.7	3.4	ŷ.0	:.6
-Internal Bate of Beturn		IEE:	12.9	•					
-Breakeven Point Calculation		Year 1		?ear		Diff		šef	
% Cap Util		50		85		15		100	
Sales:		975.000		1,267,500				1,950,000	
Cost of Operations		496,751		587,040		90,289	_	797,714	
Fixed Cost		195,789		135,789		90,289	•	195,789	
Variable Cost		300,962		391,251		30, 283		501,925	

BEP (%): 17

•	?	10737 []	- CASEPLO	T						\$	ichedule (
Project Title: Bufflers Pac	tory			**********	******	Im Imjer	3	+=	*****		
Location: Panana			late:	16/4/1987		Iscone fax					
Project Io.:			luse lear:	-		late (1):	43				
Sponsor:			Startup:	1988		Income Tax					
Prepared By: G. Appelgren	1		Inflation:	•		Defer . Irs:	2				
Vori Cap	(Days)	•	l	2	3	1	5	6	7	1	9
SOURCES OF CASE									******		
Het Profit (Loss)			358,729	358,729	241,471	246,659	330,113	335,302	377,485	382,574	387,862
Depr & Amort			43,355	43,355	43,355	43,355	35, 855	35,855	35,855	25,855	35,855
Incr in Acc Pay	45	21,040	31,560	•	4,075	•	1,149	•	4,075	•	•
Sev Squity		180,190								•	
New Loans		390,110	1								
Total Sources		591,340	433,644	402,084	288,900	290,914	374,117	371,157	417,415	418,529	423,717
USES OF CASE											
Incr (Decr) in Cash Bai		100,137	228,988	332,731	154,722	171,121	195,697	236,459	258,995	275,394	331,822
leer in Acc Bevol	20		73,125	9	8,125		16,250	0	8,125		• ;
Inc in Inventories	•••				- •				•		
žav Kateriai	60	23,498	23,498	ð	5,222		10,444	•	5,222	E	į
In-Process	15		15,544		16,876		19,384	19,384	20,715	25,715	26,715
Finished Goods	30		31,610		2,716	9	4,868	9	2,715	0	;
Spares	120	404		•	0	•		9	9	0	;
Fized Assets		467,300) 6	•	0	•	13,000	ð	í	•	13,96
kerayments		-	•	\$	65,018	65,018	65,018	65,018	65,918	65,018	i
Dividends			53,809	53,869	36,221	36,359	49,517	50,295	56,623	57,401	58,:73
Acii Payont-Reinv			0	6	0	0	Ů	9	6	9	į
Istal Uses		59:,340	433,644	402,054	288,360	290,ji4	374,117	371,157	417,415	418,529	423,717

WHIDO INVESTMENT PROMOTION INFOGMATION SISTEM (IMPRIS) - PROJECT FILE

CONTROL NUMBER: 001904

ISIC: 3512

PROJECT NUMBER: UGA/035/V/84-09 COUNTRY: Uganda

PROJECT TITLE: Pesticides Hanufacture

PRODUCT & CAPACITY: 2,160 to 5,000 tons/year of pesticides, fungicides,

herbicides, etc.

COOPERATION SOUGHT: LMS, SOT, AFM

TOTAL PROJECT COST: US\$ 13,436,000 PROJECT IS: New STUDY AVAILABLE: Yes LOCAL SPONSOR: Yes PROJECT STATUS: Active AS ON (DATE): 850220

ACTIVITY RECORD:

DATE 850304 ACTIVITY: Khartoum IPM ENTERED 850220 REFERENCE: Hr. Naadi

DATE 850524 ACTIVITY: Project questionnaire sent to Chanelle Veterinary

Ltd., Loughrea, Ireland

ENTERED 850524 REFERENCE: Letter of 850517

DATE 850626 ACTIVITY: Project questionnaire sent to East African

Development Bank, Kampala, Uganda

ENTERED 850626 REFERENCE: Letter of 850617 (in reply 9 May letter)

DATE 850725 ACTIVITY: Project questionnaire sent to Pracht Air Service

GmbH, Kelsterbach, FRG

ENTERED 850725 REFERENCE: Letter of 850715

DATE 850731 ACTIVITY: Project questionnaire sent to Micron Mills Ltd., East

Peckham, Kent, England

ENTERED 850731 REFERENCE: Letter of 850722

DATE 850809 ACTIVITY: Project questionnaire sent to Industries Development

Corporation, Haifa, Israel

ENTERED 850812 REFERENCE: Letter of 850731

DATE 850813 ACTIVITY: Project questionnaire sent to Commonwealth

Development Corp., London, England

ENTERED 850813 REFERENCE: Letter of 850809 in reply ICP's 9 May letter

DATE 850815 ACTIVITY: Project questionnaire sent to B.R.I., Brussels,

Belgium

ENTERED 850815 REFERENCE: Letter of 850726

DATE 860807 ACTIVITY: Project questionnaire sent to Hamro GmbH, Hamburg, FRG

ENTERED 860910 REFERENCE: Letter from company of 860804

HILLDO INVESTMENT PROMOTION IMPORMATION SISTEM (IMPRIS) - PROJECT FILE

CONTROL NUMBER:

001905

ISIC:

3522

PROJECT JUNEER:

DGA/036/V/84-09 COUNTRY: Uganda

PROJECT TITLE:

Pharmaceutical Products (Bueyogerere)

PRODUCT & CAPACITY: Cough syrup, expectorants, antibiotic syrup, antibiotic

capsules, creams and ointments

4,500 bottles/hour and 28,000 capsules/hour

COOPERATION SOUGHT: LMS, SOT, TEX

TOTAL PROJECT COST: US\$ 328,000

PROJECT IS:

STUDY AVAILABLE: Yes PROJECT STATUS:

Active

LOCAL SPONSOR: Yes AS OF (DATE): 850220

ACTIVITY RECORD:

850304 ACTIVITY: Khartoum IPH

ENTERED 850220 REFERENCE: Mr. Haadi

850311 ACTIVITY: Project questionnaire sent to S.A. AJM, Liege, Belgium

ENTERED 850312 REFERENCE: Letter from company of 850301

850325 ACTIVITY: Project questionnaire sent to Prodesfarma S.A., San DATE

Justo Desvern (Barcelona), Spain

ENTERED 850326 REFERENCE: Telex of 850325

850417 ACTIVITY: Project questionnaire sent to Hans Lig1 GmbH, Neu-DATE

Ulm, FRG

ENTERED 850417 REFERENCE: Letter of 850412

850524 ACTIVITY: Project questionnaire sent to Chanelle Veterinary DATE

Ltd., Loughrea, Ireland

ENTERED 850524 REFERENCE: Letter of 850517

850725 ACTIVITY: Project questionnaire sent to Pracht Air Service DATE

GmbH, Kelsterbach, FRG

ENTERED 850725 REFERENCE: Letter of 850715

DATE 850731 ACTIVITY: Project questionnaire sent to Merrell Dow

Pharmaceuticals Mideast/Africa, Geneva, Switzerland

ENTERED 850731 REFERENCE: Letter of 850725

850731 ACTIVITY: Project questionnaire sent to Micron Mills Ltd., East DATE

Peckham, Kent, England

ENTERED 850731 REFERENCE: Letter of 850722

850802 ACTIVITY: Project questionnaire sent to Dott. Bonapace & C., DATE

Milan, Italy

ENTERED 850802 REFERENCE: Letter of 850724

DATE 860807 ACTIVITY: Project questionnaire sent to Hamro GmbH, Hamburg, FRG

ENTERED 860910 REFERENCE: Letter from company of 860804

1.

UNIDO INVESTMENT PROMOTION IMPOSMATION SYSTEM (IMPRIS) - INSTITUTION FILE

. CONTROL NO.: 000275 COOR WHITER: GAROLL MANE OF INSTITUTION:

Chambre de Commerce,

d'Agriculture, d'Industrie et

des Nines de Gabon

WAIL ADDRESS: B.P. 2334

Libreville

Cabon

TOWN ADDRESS: ...

TITLE OF CEO: President

CONTACT NAME: Dominique Nandra TITLE: Secretaire General

TELEX: 5554 GO TELEPHONE: 72 20 64, 72 07 53 TYPE: COC •••

CARLE: DATE:

050715

UNIDO INVESTMENT PRONOTION INFORMATION SISTEM (IMPRIS) - INSTITUTION FILE

CONTROL NO.: 000037 CODE NUMBER: GHAOC1 NAME OF INSTITUTION:

Bank for Housing and

Construction

MAIL ADDRESS: M.I. Ministries Post Office

North Liberia Road

Accra Ghana

TOWN ADDRESS: ...

TITLE OF CEO: The President

CONTACT NAME: ...

TELEPHONE:

66143-9

BANKBOUSE, ACCRA TYPE: COM

DATE: 840917

CABLE:

UNIDO INVESTMENT PROMOTION INFORMATION SYSTEM (IMPRIS) - INSTITUTION FILE

CONTROL NO.: 000038 CODE NUMBER: GHA002 NAME OF INSTITUTION:

Chanaian Enterprises Development

Commission

MAIL ADDRESS: P.O. Box M. 189

Morocco Road

Accra Chana

TOWN ADDRESS: ...

TITLE OF CEO: The President

CONTACT NAME: ...

TELEPHONE: 21537, 27507

CABLE: DATE:

ENTECON, ACCRA 840917

TELEX: ... TYPE: DFI, PRE

TITLE: ...

TITLE: ...

TELEX: 2096 BANKHOUSE

- 55 -

WHITE INVESTMENT PROMOTION INFORMATION SYSTEM (IMPRIS) - INSTITUTION FILE

CONTROL NO.: 000039 CODE NUMBER: GHAOO3 MANE OF INSTITUTION:

Ghana Investments Centre

MAIL ADDRESS: P.O. EXE M193

8

ACCTA Chana

TOWN ADDRESS: ... TITLE OF CEO: ...

CONTACT NAME: Nr. K. Amoah

TITLE: Project Development

Division

TELEX: 2161 INVESTOR

TELEPHONE:

65125

TELEX: 2229

CARLE:

Investment Accra

TYPE: PRE

DATE:

851007

UNIDO INVESTMENT PROMOTION INFORMATION SYSTEM (IMPRIS) - INSTITUTION FILE

CONTROL NO.: 000795 CODE NUMBER: GHA004 MANE OF INSTITUTION:

Ghana National Chamber

of Commerce

MAIL ADDRESS: P.O. Box 2325

Accra Ghana

TOWN ADDRESS: ...

TITLE OF CEO: Executive Secretary

TITLE: ... CONTACT NAME: ... TELEX: ... TELEPHONE: ... TIPE: COC CABLE: ...

841122 DATE:

UNIDO INVESTMENT PROMOTION INFORMATION SYSTEM (IMPRIS) - INSTITUTION FILE

CONTROL NO.: 000041 CODE NUMBER: GHA005 MINE OF INSTITUTION:

National Investment Bank

MAIL ADDRESS: P.O. Box 3726

ACCTA Ghana

TOWN ADDRESS: 37 Kwame Mkrumah Avenue

TITLE OF CEO: The President

CONTACT NAME: John Acquah Primpong TITLE: Nanager

TELEPHONE: 21312

INVESTBANK CABLE:

TYPE: COM

DATE: 841114

INDUSTRIAL INVESTMENT PROJECTS PROMOTED AND CONCLINED THROUGH THE INVESTMENT PROMOTION SERVICES (IPS) OF THE UNIDO INDUSTRIAL INVESTMENT DIVISION 1980-1985

AFRICA

Country	Project Title	Total Investment in US\$ million	178	Year	
Algeria	Lockswithery (building hardware)	20.0	Brussels	1983	
Benin	Charcoal Sugar came complex	2.3 190.0	Cologne Brussels	1980 1980	
Burundi	Coffee plant Glass bottles Brewery	30.0 31.5 18.4 0.7	Brussels Zurich Brussels Brussels	1981 1981 1983 1984	
Cemeroon	Brevery and soft drinks Feedmill	10.0 0.74	Brussels Cologna	1983 1984	
United Republic of Cameroon	Animal feed	1.0	Brussels	1982	
Congo	Menufacturing of prefabricated bungalows	8.5	Paris	1983	

.

Country	Project Title	Total Investment in USS million	IPS	Year .
Egypt	Proces food processing	1.75		
•	Tomato growing project	16.0		
	Paper sack factory Reinforced concrete	9.0		
	pipes	5.5	Brussels	1980
	Vaccine production	1.5	Cologne	1980
	Prosen food processing Class containers for	1.75	New York	1981
	pharmaceuticals	46.0	Brussels	1981
	Heat processing	20.6	Vienna	1981
	Tomato growing project	16.0	New York	1981
	Heat processing	4.0	Vienna	1982
	Production of sanitary			
	irrigation material	10.5	Cologne	1984
	Paper sack factory	9.0	Zurich	1984
Gabon	Palm oil	1.5	Brussels	1984
Chans	Agro business	15.0	New York	1981
	Charcoal	2.8	Cologne	1981
	Fodder Mill	0.6	Cologne	1980
	Agro business	15.0		
Guines	Ceramics	7.5	Cologne	1981
	Mamou Cannery Kindia soft drinks	B.8.	Paris	1983
	complex Menufacturing of	B.6.	Peris	.983
	candles Pharmaceutical	B.4.	Paris	1983
	products	B.8.	Paris	1983
	Mineral water in Mesesh Animal food and	2.0	Paris	1984
	fertilizer	3.5	Paris	1984
	Tomato causing	6.25	Paris	1965
	Mineral water in Masesh Animal food and	2.0	Paris	1984
	fertiliser	3.5	Paris	1984

Country	Project Title	Total Investment in US\$ million	176	Year
Ivory				
Coast	Benene transformation	- B.S	Paris	1984
	Electric transformers	1.5	Brussels	1980
	Underwear knitting	0.7	Brussels	1980
	Sanitary were factory Assembly of light	8.0	Cologne	1981
	trucks	13.8	Brossels	1981
	Benana transformation	B.S.	Paris	1984
Kenya	Asbestos cement pipes			
	and roof sheets	• •		2000
	(expansion) Glass factory	1.2	Brussels	1980
	Flower seed plantation	14.1 0.5	Cologne New York	1980
	Sunflower hybred seed	V. 5	MEA TOLK	1980
	plantation	D.4.	New York	1980
	Cassava	1.0	Zurich	1980
	Fertiliser mixing		000000	
	complex	2.5	Brussels	1980
	Charcoal production,			
	oil pyrolisis and			
	_ latex refining	4.0	Zurich	1982
	Tannery	10.0	Brussels	1983
	Mosquito coils	1.3	New York	1983
Liberia	Palm oil refineries			
	(rehabilitation)	3.0	Brussels	1984
Socialist People's Libyan Arab				
Jamahiriya	Poultry	120.0	Cologne	1980

Country	Project Title	Total Investment in USS million	178	Year '
Hadagascar	Ammonia-Orea	150.0	Brussels	1980
Mali	Shea-aut extraction	4.0	Brussels	1980
Mano River Union	Dry cell batteries	2.9	Zurich	1980
Mauritania	Fish processing	69.0	Cologne	1981
Meuritius	Refrigerators and deep-freezers Electronic assembly Tourist project (Hotel expansion)	1.5 n.a. 1.5	Cologne Vienna Cologne	1982 1981 1984
Horocco	Chemical plant Distribution and copying equipment	1.0	New York	1980
	recycling plant Repair shope	4.0 2.5	New York Zurich	1980 1980
	Seaweed harvesting	0.8	New York	1981
	Biscuit factory	1.2	New York	1981
	Steel structures	n.e.	Zurich	1982
	Phosphates Sunflower hybred seed	0.4	Brussels	1983
	plentation	2.2.		

:

(

Country	Project Title	Total Investment in US\$ million	175	Tear
Bigeria	Aminel feed mill	1.7	Brussels	1980
	Chicken form complex	45.0 6.0	Cologne	1980 1960
	Electronic industry Brevery	6.0	Cologne Cologne	1980
	Polyurethan	0.5	Cologne	1980
	Automobile sperk plug		0000	
	project	7.7	Brussels	1980
	Peanut flakes	2.0	Hew Tork	1981
	Bettery manufacturing	5.0	New York	1981
	Food processing	52.0	Hev York	1981
	Phermaceutical	1.5	New York	1981
	Book and connercial	0.7	Vienas	1981
	printing Diesel engines, tractors,	U. /	ATEMM	1701
	agricultural equipment Printing inks and colour	22.0	Cologne	1981
	pignents	1.5	Brussels	1983
	Particle board plant	11.7	Cologne	1984
Rvanda	Brewery and carbonated			
	drinks	18.5	Brussels	1980
	Quinquina pocessing Precious and seni- precious stones	5.0	Brussels	1980
	exploitation	0.22	Cologne	1982
Senegal	Retreading plant	0.6	Zorich	1980
_	Limestone extraction	5.0	Brussels	1980
	Fish processing	5.6	Brussels	1981
	Floor and wall tiles	6.2	Cologne	1982
	Textiles Brickyard	65.0 B.4.	New York Paris	1982 1982
	Deep-frosen fish	2.2.	Paris	1982
	Colour laboratory	1.15	Peris	1983
	Metallic joinery	0.7	Peris	1983
	Electronic components	0.5	Paris	1983

(

Country	Project Title	Total Investment in US\$ million	IPS	Tear .
			_	
Senegal coat'd	Toghert and dairy		-	
coat a	products	0.6	Paris	1963
	Soft drinks	0.7	Paris	1983
	Production of			
	travelling goods in leather	1.0	Vienna	1963
	Electrodes namefacturing	1.0	ATCOME	1363
	plant	0.8	Zurich	1963
	Expension cool storage			
	house	0.5	Zurich	1984
	Expansion of electrical fixtures and	-		
	installations	0.6	Zurich	1984
	Fishing Vessels	1.0	Zurich	1985
Somalia	Pumps	0.5	Cologne	1983
Suden	Integrated poultry complex	38.0	Brussels	1983
Swaziland	Brake and clutch			_
	linings	4.8	Cologne	1980
	Bousehold candles	0.19	Cologne	1983
Tensenia	Bottle-vorks Cassava processing	29.0	Brussels	1980
	plant	20.0	Brussels	1980
	Flat glass Textile complex	30.0 72.0	Brussels Brussels	1980 1980
	Toothpaste mesufacturing		Cologne	1981
	Assembly of fire vessels			
	and construction of			4000
	floating dock	4.0	Brussels	1984

Country	Project Title	Total Investment in US\$ willion	IPS	y -
Togo	Retreading plant Industrial brick plant	0.6 7.2	Zurich Cologne	1900 1902
	Cold store	0.2	Zurich	1983
Traisis	Construction of engines and trucks Leather finishing and	19.0	Cologne	1961
	shoe desing Tennery	3.7 1.2	Brussels Brussels	1962 1983
Zambia	Cosmetics factory Ceramics manufacture	0.07 3.0	Warsaw Cologne	1985 1982
	Mushroom cultivation and processing Drugs manufacture	0.5 5.0	Cologne Brussels	1982 1984
Zinbabwe	Printing press Electrical viring	1.0	Peris	1982
	accessories Dairy products	2.4. 6.6	Brussels Brussels	1983
	brances		71222672	1983

UNIDO IMUSTRIAL INVESTMENT DIVISION INVESTMENT PROMOTION OFFICIALS ORIENTATION PROFRAMME*/ 1978-1985

AFRICA

Country	Name of official	Tear(s)	r(s) Location o Programe	
Algeria	Hr. Omer Acudj	s/t 1982	Brussels	
Angola	Mr. Pedro	1983/84	Paris	
	Ms. O. Lima	s/t	Paris	
Cameroon	Hr. Clarence Borland	1984/85	Hew York	
	Hs. Mbozo 'o Efous	1984/85	Hew York	
	Hr. Aka Amvan	s/t 1984	Hew York	
Congo	Mr. Bouity	1983/84	Paris	
	Ms. A. Gome	s/t 1983	Paris	
	Mr. Missie Says	s/t 1983	Paris	
	Mr. F.F. Dibes	s/t 1982	Paris	

The Orientation Programs enables officials from project promotion agencies or similar institutions in Seveloping countries to be attached to one of UNIDO's Investment Promotion Services for a period of up to one year. During this time, the officials are introduced to project promotion techniques by UNIDO staff whose aim is to guide them in promoting industrial investment projects in their individual countries and in locating, and negotiating with, potential partners in the host country.

Egypt	Mr. M.S. Beyoumi Mr. Massen Gedel Hek Mr. A.A. El-Din Massy Mr. Mohemed Balah Mr. Mohemed Hourd Mr. Mohemed Sadek	o/t 1978 o/t 1979 o/t 1979 o/t 1961 o/t 1961 o/t 1961	New York New York New York New York New York
Cuinea	Mr. Millineao	1983/85	Peris
Ivery Coast	Mr. Kassi Mr. C. Kouadio Beni	1583/84 e/t 1982	Peris Brussels
Kenya	Hr. Hg' ang'a Mr. Macharia Hr. Jamah Mbaru Hr. J.E.O. Hwencha Hr. O.C. Kanidi Hr. H.W. Haragwa Hr. J.W. Hurage Hr. Henry Mjoroge Hr. I. Saida Odera	1979/81 1981/82 s/t 1979 s/t 1980 s/t 1980 s/t 1980 s/t 1980 s/t 1980 s/t 1983	Hew York Drussels
Helevi	Hr. Giveh	1985/86 1985	Cologne New York