TOGETHER
for a sustainable future

OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org

ASSISTANCE TO THE PACKAGING CENTRE
DP|TUR|81|013|11-03
TURKEY

Technical report: Transit Package Testing and Development *

Prepared for the Government of Turkey by the United Nations Industrial Development Organization, acting as executing agency for the United Nations Development Programe

Based on the work of Zdzislaw I. Kostro, Expert in transit package testing and development

Backstopping officer: J. Belo, Agro-based Industries Branch

United Nations Industrial Development Organization
Vienna

[^0]
CONTENTS

PAGE

1. ABSTRACT
A. Title and number of the project 3
B. Objective and duration of the activity 3
C. Main conclusions and recommendations 3
II. Introduction 4
A.Background
2. The Packaging Research, Development and Testing Centre 4
3. The Project activity 5
4. Fulfillment of the objectives 5
III. Recommendation 6
A. General 6
B. Particular 8
IV. Report on the mission activites and outputs 9
A. Main duties and objectives 9
B. Substance of the activity 10
C. Result of the activity 10
V. Conclusions 15
VI. Acknowl edgements 171 - Organisational Chart of the Packaging ResearchDevelopment and Testing Centre18
2 - Organisational Chart of the TSE 19
3 - National Counterpart Staff 20
4 - Job Description 21
5 - Work Plan 23
6 - Session 1 Transit packages - the purpose and condition of performance 24
7 - Session 2 - The purpose of testing 31
8 - Guide line for stacking test 45
9 - Guide line for compression test 50
10- Seminar on the subject "Design, performan a and testing of wooden cases" 56
11- Elaboration of general testing method for transport packages - individual and multitest schedule 90
12-Auxiliary facilities for compression tester 108
13-List of additional equipment and indispensable testing and calibration accessories 109
14-Packaging literature reference 111
15-Visiting industry - summary 113
16-Itinerary o^{f} the mission 121
Appendix I (Scheme of Distribution of Measuring Stands). 42
Appendix II (Scheme of the measuring path of acceleration). 43
Appendix III (Scheme showing the angles of transversal and
longitudinal tilts of the vessel measuredduring the voyage)44
Appendix 1 (Types of glued joints used in fabricating "one-piece" parts) 76
Appendix 2 (Wooden boxes) 77
Appendix 3 and Appendix 4 (Wooden boxes coriscruction) 78
Appendix 5 (Basic types of nails) 87

I. ABSTRACT

A. Title and number of the Project:

The title of the project-Assistance to Packaging Centre DP/TUR/81/013. It has been commenced in 1983.
B. Objective and duration of the activity:

The expert entered the field on 17-th September after being briefed by Mr J.Belo at UNIDO in Vienna on 15-th and 16-th of September 1986.

The objective of the activity was the evaluation, testing and development of transport package.

The work plan was discussed with the Project Coordinator Mrs Gulden TARHAN in view of adaptation of job description to the actual possibility of its realisation - see Annexes 4 and 5.

The chief of the counterpart staff has been Mrs GUlden TARHAN, Director of the Packaging Research, Development and Testing Centre.

Details of the counterparts are given in Annex 3 .
The activity commenced of the field on the 17-th
of September 1986 and concluded on the 28 -th of November 1986.
C. Main conclusions and recommendations

Turkey, adequate to it s territory, population and industrial strength needs proper Packaging Centre as other developed countries.

In order to fulfill these requirements the Packaging Research Development and Testing Centre should be an autonomcus body within the Turkish Standards Institution.

A. Background

1. The Packaging Research Development and Testing Centre

The Packaging Research Development and Testing Centre was established in 1986, acting in the frame of the Turkish Standards Institution - TSE - see Annex 1.

The TSE was set up in 1954 within the body of Union of Chamber of Commerce, Chambers of Industry and Commodity Exchanges. Tine TSE became a Statutory Body on the 18-th of November 1960 by statute no. 132 passed by the Grand National Assembly. According to the Statute the TSE is an autonomous public institution subjected to private law.
The headquarters and laboratories of the TSE are located in Ankara.
The TSE has two regional offices in Istambul and Izmir and eighteen other smaller representative offices spread over the country.
The Secretary General appointed by the Board of Directors administers the services of the Turkish Standards
Institutions - TSE.
Eleven departments work under the secretary general, one of which is the Department of Laboratories and Quality Control. So far the Packaging Research Development and Testing Centre is situated fiom administrative point of view on a level of other laboratories under this Department see Annex 2.

The first stage of UNDP/UNIDO aided Project to set up the Packaging Laboratory commenced in 1977 and concluded in 1982. The second stage of the project - current one, commenced in 1983 is in the process of implementation up to the end of 1986 .

2. The Project Acitivity

The general activity of the Project Ref. No.DP/TUR/81/013 is to further equip the testing laboratories in order to develop packaging knowledge and application of packaging technology to the Turkish Industry.

The particular activities of the ongoing project have been just elaborated by the National Project Coordinator Mrs GUlden TARHAN in the Terminal Report as well as by Mr Suresh R.Bharucha /UNDP-New York/ and Mr Luis F.G.Madi /CETEA-Campinas, Brazil/ in the report Deep Evaluation conducted on October 1986 /therefore Expert does not find justification to repeat it s again/. The current project commenced in 1983 will be implemented after one month only in the end of December 1986. The sub-activity involves the examination of the test methods in use and advise on development of transit packages according to the Job Description - see Annex 4, and work plan of the Expert prepared by the National Project Coordinator - see Annex 5.
The sub-activity on transit package, testing and development commenced on the 17-th of September 1936 and concluded on the 28-th of November 1986.
3. Fulfillment of the objectives

The general objectives of the project were fulfilled in substance.

The same intermediate objectives are still under development but it should be noted with satisfaction the acceleration of implementation, in particular in the last months.

As for example, increase of substantial staff - about 30%, development of training, speed up adaptation of testing equipment, creation of awareness of the Packaging Centre activities by immediate and frequent contacts with industry. Development cooperation in packaging field at international level - the Secretary General of TSE has been elected Vice President of the World Packaging Organization in October 1986 in Tokyo.

III - RECOMAENDATIONS

A. General

1. Director of the Packaging, Research, Development and Testing Centre should be situated at a level with more autonamy within the TSE hierarchy /at present level sixth - see Annex $2 /$.
2. As soon as possible to employ additional professional staff, minimum double to compare with present quantity /at present about 10 testing apparatus is fit for cne person/.
3. To establish strongeconomy section in order to commence research in marketing and prepare prognosis of packay:ng development in Turkey.
4. Start to work on a basis of hours working schedule.
5. To organize 'Working Group Committee" consisting of people from foreign and domestic trades, communication, road, railway, air and industry in order to elaborate "guidelines" for performance of transport packages as a preparatory work to elaborate the National Standards in the future.
6. To elaborate propositions for the Government on the matter of issuing regulations about "Quality Certification" of packages manufactured by the Turkish industry.
7. To elaborate a programme of coordination system in the packaging field on a country level.
8. To organize "restricted" exhibition with examples of wrong performance of packages for selected representative people from government and industry by explaining real losses for the national economy or their effects to human health.
9. To prepare an application document to the International Trade Center /ITC/ - UNCTAD/6 AD :n Geneve in order to involve the Packaging Centre to the needs of International Computer Information System in Packaging Field on a basis of small scale Project.
10.To join IAPRI - the International Association of Packaging Research Institutes. It enables to access to some research papers and technical specifications which were done by other more developed packaging institutes.
11.1t is suggested that after about one year, it means in the half of ig88 in practice, UNIDO should arrange the mission to the Centre in order to evaluate the progress in the development of the overall activity and to make decision about the third stage of the project - Extension of the PRD and TC.

B. Particular

1. Implement as soon as possible all the remaining tasks concerned with adaptation and proper utilization of all the equipment in transport package testing laboratory.
2. Commence research works in the field of mechanical and climatic hazards occuring in transportation and storage in the country.
3. In order to render the possitility of carrying out of above mentioned research /p.2/ it is needed to purchase urgently indispensable apparatus and accessories - see Annex 13.
4. To speed up the repairing of the compression tester or to purchase the new one.
5. The transport package testing laboratory must be urgently equipped with thermohygrograph or other instruments measuring temperature and relative humidity as well as with auxiliary facilities as: fork lift truck, one-man push-cart, water tank for checking leakage of testing plastics bottles or drums, release device for testing heavy packagts on the drop tester.
6. To bring about finishing foundation constructions to enlarge foundation plate under vibration tester and fulfill the gaps /up to about 150 mm width/ between the foundation of the floor and the particular plates of the foundations under each of the transport testing equipment.

IV . REPORT ON THE MISSION ACTIVITIES AND OUTPUTS

A. Main dutics and objectives of the Job Description - see Annex 4 and Work Plan - see Annex 5.

The main duties covered by the mission were:

General: Evaluation and development of transit package for specific products, to enable the counterpart staff to continue the work in the future.

Specific:

1. Assisting the Counterpart staff in adaptation and improvement of existing transpert package testing equipment.
2. Elaboration of stacking test and compression test as well as evaluation of the test results.
3. Preparation uf the technical document about:

- General transport package test
- Wood and wooden packages performance

4. Improvement and cost reduction work on the package of some industrizl products.
5. Conducting technical discussions on transport methods, transit packages in the common use.
6. Preparing the seminar for other laboratory staff and technical personel from the Turkish industry on the subject: "Design, performance and testing of wooden cases."

B. Substance of the activity

The substance of activity was based on the transmission of the knowledge aimed at the proper performance of transport packages in order to assure their resistance to the hazards occuring during transport and storage.

It was im.plemented by delivering practical method of designing, performance and testing of transport packages.

C. Results of the activities

In all the above mentioned activities some of the counterpart staff were involved. The implementation and results of the activities are sumprized in the following points.

1. Testing equipment

After examining existing equipment in the transport testing laboratory as:

- inclined plane impact tester
- compression tester
- vibration table
- drop tester /release trap platform tester/ small one up to 2 m
- drop tester /release trap platform tester/, big one up to $4,5 \mathrm{~m}$

It was stated that most of them require adaptation, adjustment as well as calibration in order to bring them to full working capacity and enable that tests results will be in comparison with other packaging laboratories in the world.
a. Inclined plane impact tester, required:

- the bumper wall should be covered from front side by hardboard, plywood or some similar sheet of material,
- the bcffers of the bumper wall as well as of the dolly should be exchanged on some more elastic material,
- the upper plate of the ciolly ought to be covered by hardboard or plywood sheet to be equal and smooth, the steel buffers should be changed with some more elastic material. It was suggested to change the sliding bearings of the dolly with the ball or roller bearings.
b. Compression tester, required:
- to speed up the repair of the test recorder /about one year delay in repair by some indigenous firm/,
- to make auxiliary facilities in order to enable performance tests with packages of dimensions smaller than 500 mm .
c. Vibration table, required:
- to enlarge foundition plate from engine side in order to ascertain proper fixation of the vibration table botton frame to the foundation plate,
- after proper fixation of the vibration table, it should be conducted particular calibration by accelerometers and auxiliary facilities see Annex 13.

d. Drop Tester /small/

The equipment has been ready to test. It was suggested only to make sore specific protection of meta! sheets on the bottms against broken glass and liquid which could occur during testing some kind of packages with real products as bottle or similar.
e. Drop Tester / tig/

In principle the equipment has been ready to test. But in order to enable to carry out tests on heavy packages at different positions of the drop on corner edge or other precisley predetermined places of samples /according to the testing method/ it should be provided a release device /ASTM-D 997-80/ special predestined for this purpose.
A lot of above mentioned tasks have been implemented already, as for example:

- the bumper wall was covered with a kind of hardboard s.heet,
- the buffers of bumper as well as of the dolly were excilanged with rubber ones,
- the upper plate at the dolly was covered by hardboard sheet,
- the auxiliary facilities for compression tester were performed - see Annex 12 ,
- the purchase negotiations with supplying firms in order to buy accelerometers and auxiliary facilities have been started.

2. The guidelines for stacking test and compression test have been elaborated - see Anexes 8 and 9.
3. The specific technical elaboration on the subject of general tranport package testing methods on a basis of the actual Polish standard was implemented - see Annex 11.
4. The technical guidelines on wood and wooden packages performance were elaborated - see Annex 10.
5. The tasks concerning the cost reduction work on the packages of some of the industrial products were implemented partially due to the lack of time.

The problem was broadly discussed during the industry visits - see Annex 15 as well as with the counterpart staff.

Some particular "technical guideline" were done on the concrete sample of packaging of electrical equipment in wooden crates for the needs of AEG factory which should be the basic information for the counterpart staff, enabling them to design properly the wooden transport packages for industrial products.
6. Technical discussion on transport packages and other essential packaging problems were implemented on special sessions - see Annexes 6 and 17 as well as during industrial discussions with the counterpart staff.
7. The seminar on the subject "Desing, performance and testing of wooden packages" was implemented on the 20-th of November with the presence of about 50 participants from industry, science and commerce - see Annex 10.
8. The factory visits at Ankara Esenboga, Bolu, Hendek, Gebze, Istanbul and Antalya were implemented - see Annex 15.

During these visits an attempt was made to do fast assessment and after the n to suggest to help them in performance and designing of proper transport packages for industrial products. Many interesting discussions with representatives of the industry led to some essential remakrs:
a. there is a lack of national standards or other technical specifications for variety of packaging materials.
b. the most of manufacturers are not convinced of the importance of quality needed for their packages, because the users do not demand it.
c. some of the packages for industrial products are manufactured by subsuppliers with very low technical knowledge.

CONCLUSIONS

1. The Turkish Standards Institution undertook recently essential steps in order to speed up the development of the Packaging Centre by:

- increasing substantial staff /about 30 \%/
- accelerating provision with auxiliary means
- undertaking renovation of premises
- giving priority in performance by administration and workshops
- allocating additional funds for purchase of indispensabte equipment and accessories /fork lift, accelerometers/
- devoting special attention to the every day works of the Packaging Centre

2. The quantity of the staff in comparison with tasks and installed equipment of the Centre is still not adequate. It should be minimum doubled.
3. The weight of the Packaging Centre work has been concentrated up to now rather on retail packages and packaging materials testing rather than on the transit packages. Although it should be rather reverse, because with retail package and material testings any other branch institutes could be involved while equipment for transport package testing exists only at the Packaging Centre.
4. There is a lack of basic data on the subject of development in particular branches of the packaging industry. The data should be gathered by the Statistic Centre and transmitted to the Packaging Centre. It enables proper programming of long term research works and concentration on tasks requiring urgent improvements, for example - method of recycling of waste plastic packaging materials etc.
5. There is a lack of their own standardised methods for packaging testing that are specially important for conducting tests on transport packages. It should accelerate elaboration of standards concerning testing methods as well as quality of package and packaging materials /some basic documents on this subject were handed over to the counterparts/.
6. There is a lack of any data or even information on the subject of mechanical and climatic hazards typical for the country conditions.
7. In the last period of time the Packaging Centre has conducted hard works in training for industry and in spite of the shortage of the staff the Centre made intense contacts with the packaging users and manufacturers.
8. The Packaging Centre must speed up the works concerning transport packaging testing laboratory in connection with the provision of indispensable auxiliary facilities as well as the provision of the existing testing equipment in order to carry out tests in accordance with the zonditions existing in other packaging testing centres in the world.

The expert very much appreciates the support he received from the counterparts /Annex 3/ and other staff of the Packaging Research Development and Testing Centre; without whose close cooperation it would not have been possible to complete the mission satisfactorily.
The assistance extended by the management of the TSE and guidance given by the UNDP officials in Ankara, particularly by the Programme Development Officer, rendered the tasks easier and effectively.

Packaging Research, Development and Testing Centre

TSE ORGANIZASYON SEMASI

Mational counterpart Staff

(Pachaging Research Development and Testing Centre of Turkish Standarde Institution)

нам Qualification Discipline

Brperiance
In Pacionging
as of Iov. 1986

Ms. Giilden tartan
M.S.

Ghemicel Bugineering
11 5포

Mr. Hagan Salih ACAR B.S
Cheristisy.
7 518

Mr. Recep DEVECI
B.S.

Mechapical
478

Mr. Abditibadir Izldarn
BUIDO
B.S.

Physics
0 yrs

UNITED NATIONS INDESTRIAL DEVELOPMENT ORGANEZATION

CNIDO
 7 January 1986

PROJECT IN THE REPUDLIC OF TURKEX

1OB DESCRIPTION

DP/TUR/81/013/11-03/31.7.E

Post title
Expert in Transic Package Testing and Developmenc

Duration
2.5 monchs

Dese requined
April 1986

Duty sextion
Ankara, Turkey. Wich cravel within the country.

Purpoes of project

Duties

The Government has set up a Packaging Laboratory with a viev to assist the industry to improve the standard of packaging and develop a quality assurance programee. The project is concerned with the further equipping of this laboratory and training laboratory and industrial personnel in the application of packaging cechnology.

The expert will work with a cean of counterpart persoancl on the evaluation of transit packages and the development of transit packages for specific products. More specifically the expert will be expected to:

1. Examine the test methods already in use in che laboracory for similated eravel cests, the cechniques used for evaluating tese results and cheir applications to aceual performance prediceions, elaborating and increasing as necessary.
2. Advise on the developnenc of specifications and standards for cransit packs for seleceed produces, with special emphasis on cost reduction cechniques.
3. Purther develop the survey of eransport packagiag systems presencly being used in Iurkey for specific products, analyse their cose effectiveness and suggest modifications and a work programe designed to briag about Improvements.
4. Conduct cechnical discussion sessions on cranspore mechods, transit package performance evaluation, materials and cransit packages in comon use.
5. Co-operace wich the craining expert in preparing visually aided courses in transit packaging for use in training other laboratory staff and cechnical personnel from Turkish industry. These courses vill cover the principles, mechods of use and applications for che principle pieces of cransic cest equipment in the Inscicuce.

The expert will be expected to prepare a final report setting out the findings of the nission and making recomendations $c o$ the Government on further actions that might be caken.

Ondifications	University degree in science or engincering with a good knowledge of transport packaging macerials and system; extensive experience in che field of cesting, performance evaluation, standardisation and development of transpore packaging syscems.
Unguage	English
Eeckground infermetion	The Packaging Laboratcry has been operacing since the beginning of 1982 and che usual transit cest equipment for vibration, impact, drop and compression simulation has alresif been installed. A transit packaging expert worked wich the laboratory for 2 months in 1982 focusing on inclined plane impact, drop and long cerm compression cescing in particular and transit package design and cesting in general. The equipment for shore tern compression and vibration cesting were not available ac chat ciace and cherefore will be che special subjects for chis next consuleancy visit.

WORK PLAN DURING THE MISSION OF

TRANSPORT PACKAGING EXPERT

1/ The improvements and adaptation of

- Inclined impact test system
- Compression tester
-.Vibration tester
- Drop testers
- Stacking test system

2/ Elaboration of stacking test and compression test then evaluation of the test results.

3/ Preparation of the technical documents atout

- General transport packages tests
- wood and wooden packages

4/ Inprovements and cost reduction work on the package of some industrial products /pumps,electrical motor, etc./

5/ Conduct tectnical discussion sessions on transport methods, transit package performance evaluation, materials and transit packafes in common use.

下/ Preparing the seminar for other laboratory staif ard technical perscnnel irom Turkish imeustry

- Subject of the seminar : Desigr,performance ard testing of woccien cases.
- Date of the seminar : $2^{n} .11 .1086$

I/ Factcry Visits

- Antalij2 2n - x C/in/1an!.

Subject : Transit Paciages - The Drapose anci Conciitions on Per=ormance

Eefinitions of vackaging

There are many dackaging definitions,out one tolds that packaging may be defined as a means of ensuring the safe delivery of a product to the ultimate consurer in good conditions at a minimum cost.

This definition will be particular suit for us during discusing on transit package problems -out- nemertheless if it is retail or transit package me almays should treated its as a integral part or a product.
Than in order to properly designing anj new package we should be acquainted mith sam facts concerming to the problem namely.

- facts about the oroduct
- facts about the method of distribution
- facts about package economy and marketing

3riefly it is necessary to know manj particular information concerning with the product as; kind, quantity and quality, sensativity, shapes, shelf life, cost and manj others.

It is important to consider the majs in wich the product can be damaged mechanically and climatically; and to consider these in relation to the hazards which the package mill meet during transport storage and distribution. Faving also under consideration the marketing question as sales appel, display aspect, satisfactorj of utilizer as ::ell as economical said of the problem it is mean cost of production, cost ρ shipment, after use of container as mell
as possibility of repeatecily use, recicling and the like. Let's consider some of the facts separately.

Facts about the products
Generallj the physical properties of the product requiring concideration :ill be; Aragility, risidity, surface finishins wreight, size, unit quantitj to be package, as mell as susceptibilitj to sater, water vapour, oxgsen, odours, heat anc could and the ability of the product to deteriorate, by virtue of its om nature, \quad rill alss require concideration. This provide to the details which makes the ansprers to the folloring three sets of questions:

Eow can a precuuct be damaged mechanically
Hom can it be damaged climatically
Are there any compatibility questions which must be concidered
winen the procuct is in contact or in close proximity to a specific packaging medium.

Let's consider briefly sam product for example an apple. Hon can apple be camaged mechanically? This is our first concideration.

It is obvious that an apple can be considerably damaged mechanicallj and that the bruises so produced are like by亡० rake it deteriorate rapialy.

It is also well lmow that apples and similar products are living material and there-iore require to breathe. Fruits in general absorb orjgen and expire carbon dioxide, anc if they are shut in clouser containers, then they are liable to "suffocate"; consquently will have the problem of aeliverrj for this in the packaging.

Further consideration will lead us to enquire in to possible contamination of the apple by packagins materials, not onlj because that toxic projucts Eisht je eaten, out also because s.re time harmiess materials maj affect the ilavor of the products (fruits:.

İacts about the methoc of distribution
It will be convenient to divide the hazaras of anj journey into four main groups:

1. The hazards of loading anci unloading
2. The hazards of movement (while a package is left in vehicles)
3. The hazards of marehousing
4. Whe climatic hazarcis
5. The haza of loading and unloadins

Smo mein hazarajs occur in such operations:

- Croos anc̃
- impact of one packase against another

For this reascn a prefered range of weight should be of between about 15 and 30 kg .

Some average drap height is illustrate below:

$\because e i g h t$ kg	Nature of handing	Iron height m
$1 \div 10$	1 man throving	1,00
$10 \div 20$	1 man carring	0,80
$20 \div 150$	2 man carring	0,50
$150 \div 500$	lizht equiment hanciling	0,40
above 500	hearj equiment handing	0,30

Practically havier jackages $3 \hat{A} 100 \mathrm{~kg}$ weight and above mill generally require mechanical equipcent Ejr their movement and drop hazards mill be considerable reduced.
Export hasaris of loading and unloading are normally uuch Ereater, but ciepends of a cuntry of iestination.
2. Hazard of movement in vehicles

2.1 교ail_transport_

There are three main hazarajs to be considered:

- shunting shocks when trains are assembled in sidings and marshaling jarcis
- snatching which occurs when starting and stopping loosely coupled vagons
- vibrations under stacking loads (limited by the height of the wagons)
2.2 교od_transport

The orinciple hamards during morement in road transport vehicles are:

- vibrations and
- bouncing of the load
2.3 Sea and river transport

Diain hazards are:

- compresion stress and
- vibration

These depend mainly on the method of storage and stacking height of cargo maj be $5 \div 10 \mathrm{~m}$ height and subjected at the same time 1 y frequency vibration from engines and propellers.

Pitching and rolling of the vessel can result stresses in the lower levels of cargo.
2.4 Air transport

Main hasarc are:

- low temperature ana pressure
- high frequency vibrations

Generally handing is ocd, becuse aircraft usually camp loans on pallets, but the usually hazards occur on the isurness to and from the airport, particularly at same overseas destinations in the tropic countries. The vibration hazard is common to all forms of movement and can cause:

- loosening of fastenings and components of items
- abrasion of surfaces of items or print on packages
- fatique of cushoning materials

3. Hazard of warehousing

Normally not provicie any serious damage in the country where Facilities are available and stacking is limited to a safe height.

The stacking hazard are for more significant on package made of paperboard materials and some time plastics package -"creep".
The compresive lac on the bottom package in $\varepsilon^{*} 3 c^{\prime} k$ will be

$$
\because\left(\sum_{h}-h\right) \quad \begin{aligned}
& \because \ddot{m e i g h t ~ o f ~ o n e ~ o a c k a g e, ~ q u a n t i t y ~} \\
& \sum_{h} \text { of all package in stocks }
\end{aligned}
$$

4. Climatic hazards

Climatic hazards mill be relatec to the route and the country of destination of goods.

Climatic hazarcis can be consicier unier three heacings:

1. Exposure to liquid mater(rain, sea spraj, concemation)
2. Exposure to high and low humidity
3. Exposure to high and low temperature and suddenly temperature changes.

The rapid drop in temperature may affect on condensation inside the package and accelerate corrosion and mould growth.
5. Other hazards

It my also be necessary * consider two hazards which are indirectly related to transport:

- pilferage and
- attack by insects and rocients

Botk these occur mainly during storage of cargo in ports or warehousing in tropical countries.

Brief assessement of journey hazards
The hazards of any specific journey may be assessed in broad outline by observation and deduction, and in detail by the use of specific instruments.

It mast be remembered that the size, shape and weight of the container can have a considerable effect on hazard during a journey as well as the different method of transport accentuate particular hazards and give different levels of each of them. Protection against the very rare droy from great height does not usually justify the increased cost of
the package, a small percentage of damage $工 ;$ be =oust prefereole than to increase the cost of package.

Some time the absence of camece to anj consignment mi be indicative of $\cdot v e r p a c k i n g . ~$
Protection is require miJ against the nomai hazaris. The session an the transit packages but particularlidiscussion on journey hasards was suoported oj_{y} the demonstration of 32 slides of the Polish Packaging Research and Development Centre in "arsam.

The slids were concerned with the mechanical and climatical
'hazards which occured during the testing journey in the vessel on the route from Gdansk to Calcutta and Storage in India.

Session 2
Subject : 1 The purpose of testing
In order to obtain the best result and make the best use of packages it is essential to understand the purpose for which they may be employed.
It must always be remembered that the proof of any package lies in it's performance, in the field for which it was designed, over a relatively long period of time.

Therefore two essential question must must be consider the purpose of package and packaging test - and of course how these tests can be made?

2 Why Test? There are three major reason for making tests : 1. To predict performance in practive
2. To control cuality
3. To obtain information to modify and improve design or reduce the cost of "thepackage

3 How to predict performance?
In order to predict performance a measure of correlation is needed between the tests carried out in the laboratory and the behaviour of the package or material in practice.

4 Three main correlation are required

- betreen the field performance of the pacirage. and laboratory transport test. (e.g. - test journey)
- between the laboratory transport test on the filed package and tast on the empty container.
- between the strenght and other properties of the various materials used in making the container and the tests on the empty container (e.g. mullen test for corrugated fibre-board box)

Let's consider the first correlation on a basic of same samples from practice for example two test journey conducted by polish Packaging Research and Development Centre to Japan and South America (Brazil, Argentina)

As we know a cargo during storage,transport and reloading are effected by a complex of physical factors known as mechanical hazards and expressed by means of so called overload factor G. The overload factor G is expressed by the ratio of the value of acceleration given to the mass of the cargo to the value of gravity acceleration.

What it can express in formula:

$$
G=\frac{a}{9,81}
$$

The G factor is also
called the impact load factor

$$
\begin{aligned}
& P=m . a \\
& a=\frac{F}{\dot{n}} \mathrm{~m} / \mathrm{sek}^{2} \\
& m \text { - mass } \\
& \text { a- acceleration } \\
& 9.81 \text { - gravity accelevation }
\end{aligned}
$$

Looking at the problem in another way we realize that since the weight of any articel is simply due to the pull of gravity than if it has G times pull of gravity acting on it, it's Weight will appear to be G times as great as normal.

In each of the considered kinds of transport overload factor of different value are appering.

This is caused by diametrically different conditions appearing in particular kind of means of transport used for shipment of cargoes .

As it has been mentioned before in order to define the size of mechanical hazards affecting the cargoes forewarded by sea, measurments have been carried out during two scientific - testing voyages.

Within the period from the 2nd December 1975 to the 15th March 1976 on the route Gdynia - Japan -Gdynia on the vessel of the tonnage 10.930 BRT (1 BRT = 100 cub.feet)

The total distance of the route amountet to 50.500 km .
The second voyage was undertaken within the period from the 6th February to the 15 th April 1978 an the raute Gaynia- South America - aynia on the vessel of the tonnage 8.680 BRT The total Zenght of the route amounted to 26.000 km . During the a forementioned voyages besides the fundamental tests, observations in the range of methods of reload handling used in particular ports were also carried out, and one has got acquainted with equipment of these ports with reloading and handling devices.

Seasurments of mechanical hazards which were carried out during these both voyages consisted of :
a) measurement and registration of values of accelerations caused by the 10 ngitudinal and transversal sway of vessels.
b) measurement of level of vibrations of vesisel's construction.
c) measurement of angles of longitudinal and transversal tilts of the vessels.

Kore over, collection of additional data having essential influence on the size of measured accelerations was madean every day the following data were registered :

- the real rout of the vessel.
- speed of the vessel.
- direction and wind power
- state of the sea
- mass of the transported cargoes on particular sections of the voyage routes.

5 Beasuring apparatus

For the measurment of the values of acceleratious caused by the longitudinal and transversal sway of the vessel the electronic measuring set of the firm Briel-Kjaer was used, which consisted of:
a) piezoelectric accelerometers transforming accelerations into electric impulses proportionally to their values
b) charge amplifiers enabling the measurement under application of cards of suitable length linking the measuring points with the central registration stand.
c) electronic voltometers and frequency analysers, serving for the control of the reqularity of function of measuring path and for carring out of direct read - out of values of accelerations appearing in particular measuring points.
d) Tape recorder serving for matmetic tape record of the course of changes of sizes of accelerations and vibrations in the time function.
e) portable vibration meter serving for measurment of vibration of vessel's contruction.
f) special constructed devices and chnograph for measurement of longitudinal and transversal angles of tilts of the vessels as well as periods of oscillation.

6. Performance of measurements

Rieasurement of accelerations caused by the longitudinal and transversal svey of the vessel. In both voyages the same method of measurements was used. The value of acceleratious caused by the longitudinal and transversal sway of the vessel were measured by heads (sensors) having pizoelectric accelerometers.

The measuring heads were situated at places where the maximal values of accelerations are appearing.
In Fig-l-Appendix 1 the scheme of distribution of measuring heads and stands for measurment speeds of vibration of vessel's construction has been illustrated.

The scheme of the path of simultaneous measurement of acceleration companents caused by the longitudinal or trensversal sway of the vessel is illustracted in Fig-2-App. 2
The measurment of the angle of transversal (α) tilts as well as of the longitudinal (β) of tha vessels were carried out as illustrated in Fig 3-App. 3

7 Analysis of test results of mechanical hazards The results of tests of acceleration values deriving from transversal and longltudinal sway of vessel were set together in the tables which allowed marshaling receiving data.

TABLE-

From the above table results that during the sea transport by the vessels acceleratinns deriving from transversal sway of the lower value than $0,3 \mathrm{~g}$ represented about 98% of the total number of the registered vertical accelerations and about 92% of the total number of transversal arceleraticn:

In Table-2 was illustrated the relative frequency of appearance of accelerations of components/ax and $a_{y} /-$ in particular ranges of their values-deriving from the longitudinal sway.

TABLE- 2

Veasel	Companent	Value of the component in g				
		a 0,01	,01 a	0,1 a	a 0,3	Maximal
		Frequency of appearance in $\%$				Value
1	2	3	4	5	6	7
⿷匚$\stackrel{\text { ¢ }}{5}$	Iongitudinal a_{x}	51,5	30,5	16,6	1,4	0,400
	$\begin{gathered} \text { Verdical } \\ \mathbf{a} y \\ \hline \end{gathered}$	57,0	30,5	11,1	1,4	0,300
	Iongitudinal $\mathbf{a}_{\mathbf{I}}$	48,2	31,6	14,4	5,8	0,425
	$\begin{gathered} \text { Vertical } \\ a_{y} \end{gathered}$	54,3	29,5	12,8	3,4	0,345

From the table .?... results, that the acceleration of the lower value then $0,3 \mathrm{~g}$ deriving from the longitudinal s:: a_{j} registered on the vessel or voyage to dapan represented ajout 99 名 of the total number of accelerations both measureana of the parallel directions to the longitudinal axis of the vessel and of the vertical direction. But on the otner hand during the voyage by the vessel on the route to the soutin Anerica accelerations of the lower value than 0,3 g represented about 97 of the total number of the resistred vertical accelerations and about 94 ; of the total number of loneitudinal accelerations.
From this analysis results that in botin royares the resisterea values of accelerations are similar.
But the accelerations of higher value were appearine a little more often during the voyage to the Soutin America.
From tha above resulis that under neariy similar weatier conditions the dinensions of the vessel have essential influence on the size of accelerations and the frecuency.
0. Conclusion From tests carried out during both voyefes a) The greatest mechanical hazards arising on accourit o: transversal tilts affect the product and packazes beinc at the vessel side, but the greatest hazards caused by tine longitudinal tilts affect the loads placced in bow or sterm parts of the vessel.

The values of mechenical hazards causea by the tilts on fie vessel increase proportionally to distance from axis $0=$ tie ships.

The absolute values of the measured accelerations in bot: vojages did not exceed $0,7 \mathrm{~g}$. Whe tests have incicatec also that without regard to the type of the vessel and the rout of the voyage the greatest number of accelerations - more tian 90 \%id accur of the value within the ra-je from $0,01-0,3$. Accelerations havini the value of more tiar $0,3 \mathrm{~g}$ dia azpear rather sporagic from $1 \%-10 \%$ of the total number of the measured accelerations.
b) Z.echanical hazaris caused by dymanic loais, arisina as result of vessel's sury anc function of ciriving system zenenc also on many variable factors as : state of the sea, uinc jo:"cir, the ancle beween wind direction and the raute of the ressel, spesd of the vessel place where the load was locateci anc ciecree of utilization of vessel cargo carring capacity.
c) The maximal tilts of the vossel curine the vojane to tapan reachea to 20° and during the voyane to South Anerica reacine: to 18°.

At such tilts of the vessel, packages stowed irregular car ke damaged on accolint of shifting and striking one azainst otizer packases being in the neighborhood of same.

The session on - "The purpose of testing " has hoon supported by the demonstration of 14 th slides of the Polish Packaging Researçh pind Development Center in Harsaw.

The slides was concerned with carry on, some years ago, resarch field testing on the research station in India and the tests journeys on the vessels to South America and Japan.

 and longitudinal sway of the shtp.
(4... (- stande for meseuroment of vibrations of ship construction.

D - testing box
Fige 2 SCFMM OF DISTRIBULION OF MASURINO SMYDS

6

Fis. 2 Sohome of the maguring path of acceleration

> Pis. 3 Scheme showing the angles of transversal and longitudinal tilts of the vessel measured during the voyage

TRANSPORT PACKAGING STATIC STRESS RESISTANCE testing method for stacking test

Principle of method

Package ready to test put on flat horizontal surface should be loaded by predetermined load in required time.

At the beginning of test should be determined:

- value /great/ of load by which the package will be subjected to damage or by which it overcomes allowable value or when damage of packed product in kg appears,
- time during which load exerts on package in hours h,
- deadiine of deformation in horizontal and vertical planes in man.

Test can be conducted as an individual test or as a part of multi-test schedule.

Testing equipment

Should consist of horizontal base, set of weights /loads/ and load platform /plate/ with handles to hang the weights. Surface of the base should be equal and rigid. Difference beiween two points of the surface, the highest and the lowest ones should not overcome 2 mm .

The load platform should be sufficiently rigid and equal.
Difference between two freely chosen points of load platform should not overcome 2 mm.

Edges of the load platform after placing the packages /samples/
for tests should protrude over the edges of these packages /samples/ not less than 100 mm .
The load plaform should have weights on it.fixed in such a way that the stress of compression forces influenced packages /samples is equally disseminated in order to secure the safe work during testing in case of deformation or damage of the packages /samples/.

Equipment for the measurement of deformation of package /sample/ should have accuracy of measurement amounting to +- 1 mm.

Number of packages /samples/ for testing should be taken according to the requirements determined in corresponding standards. If the standard does not determine numbers of samples or if the standard does not exist at all, then minimum 8 packages /samples/ should be taken for tests.

Conditioning

All packages /samples before testing should be conditioned according to 150-2233 /or PN-74/0-79156/.

The packages /samples/ should be filled with proper product or tested empty /in case when proper /real/ product does not effect the rigidity of package/ and should be closed this way as it is used in reality /practically/.

It is allowable to use dummy product, but dummy product must be a real substitution for proper product, e.g. it should have the same propoerties as: weight, density, interaction with walls of package and others.

Performance of the test

Climatic conditions during the test should be the same as during conditioning of the packages /samples/. The packages should be placed in proper attitute on flat horizontal base.

The load platform should be situated on teste packages this way that the center of gravity of the load platform should overlap with geometric centre of the top surface of packages /samples/.

Distribution of supplementary weights on load platform should be implemented very carefully and equally on all these parts of load platform which are in direct contact with packages /samples/.

Deviations in weight of load should not overcome 2 \% of predetermined value of the load.

Distance between the center of gravity of load and lower plane of load platform should be not more than 50% of the height of the package /sample/. Time of test should be in accordance with corresponding standard conc. package or product. If in the standard time is not determined, so not less than 24 h should be applied or up to the damage of the package/sample/.

In the table 1 below there is given tentatively time of storage of transport packages in warehouse and in table 2 time of shipment of cargos in various modes of transport.

Table 1

Type of warehouse	Time of storage /24h/
Warehouse - railwayroad air	7
Warehouse in river port	15
Warehouse in sea port	30
Warehouse in net of trade	120

Table 2

Kind of transport	Time of transportation in days /24h/		
	country	continental	intercontinental
railway	8	16	25
car /road/	2	5	10
river	4	18	-
sea	-	5	60
air	0,1	0,4	1

The results of test

Assessment_of package: Package is resistant to statir stress if after testing it is not damaged, deformation /bigger than predetermined in the standard/ did not take place as well as product in the package is not damaged.

All packages subjected to testing should be resistant to stacking /static stress/.

If even one package does not withstand the test, it should be repeated once again.

If during the repeated test more than one packed /sample/ does not withstand the test, so the package should be assessed that it does not meet the requirements of conditions for transportation and storage.

The test report

The test report should include the following particulars: a/ number of replicate packages /samples/ which have been tested,
b/ full description of the package, including dimensions, structural and material specifications of the package, its fittings, cushioning, blocking, closure or reinforcing
arrangements as well as reference to the standard on a basis of which the test has been conducted.
c/description of contents - if simulated or dumy contents were used, full details shall be given,
d/gross mass of package and net mass of contents in kilograms/kg/,
e/relative humidity, temperature and time of conditioning, temperature and relative humidity of the test area at the time of test as well as whether these values comply with the requirements of standards conc. conditioning,
f/the attitude in which the packages /samples/ were tested, according to the standard concerning identification of parts during testing /ISO-2206/,
g/mass/in kilograms / of total load, including mass of loading platform and the period of time during which the packages were under load,
h/location of deformation measuring points on package and stage of test at which measurement of deformation was made,
i/type of measurement facilities used,
j/record of the results, findings with all observations which may assist in correct interpretation,
$k / d a t e$ of testing.

TRANSFORT PACKAGES TESTING METHOD PCR CGHPRESSION TEST /ZUASISTATIC TEST/

Principle_of_method

The method determines resistance of package to nazards appearing during compression of pacikage by rigid plates of compression tester up to the moment when damage occurs or predetermined value of load or linear deformation are attained.

Test can be conducted as an individual test or as a part of multi-test sciedule to measure the ability of pacisage to witnstand a distribution system which ircluaes a compression hazard. In order to test resistance to compression following data should be determined:

- damage_load in $\mathrm{kg} / \mathrm{N} /$ undez exertion of which package /sample/ is damaged, looses its risity or linear deformation of pacicage overcomes predetermined value or pacied products become darased,
- 를ative damage load in $\mathrm{kg} / \mathrm{m}^{2} / \mathrm{Nom}$ \% whicn is expressed oy the ration of dimage loac to the surface of package /sample/, determi.sed by outside dimensions,
- Linear deformation of packa天e in m / π, wrich is cetermined by magnitude of displacement of corpression te三ter plate from the moment oi applying of the load $20 \mathrm{kc} / 196 \pm /$,
- carabivityof package to witrstand preletermined load Without damage, loosine of rieicity or witnout overcoming predetermined linear defornation.

TESTING EQUIMENT

Compression tester.
Usual testing equipment is compression tester whicil should be suitadie to measure value of force witin deviation not bigger than +- 2% of measurea value and with a percentage of error not exceeding +- 2 \% of load /compression forse/ and aecurancy of plates disolacement +- 1 mm.

Cther tecinnical requirements for compression tester:

1. Compression tester should be suitable to compress load tinrough uniform movement of one or koth plates at a relative speed of $10^{+3} \mathrm{~mm} / \mathrm{min}$. Up to the moment of attaining $20 \mathrm{~kg} / 196 \mathrm{~N} /$ it is possible to apply higher speed of plate movement but it siould be nct more than $80 \mathrm{~mm} / \mathrm{min}$.
2.Compression plates should be horizontal in tine range from 2 to 2000 as well as flat and rigid. In time of testing the deformation of working surface of piates shoula not exceed +- 1 mm from geometrical flatness.
3.Compression tester should be equipped with facilities for measurement of deformations with accuracy not smaller than +-1 mm as well as with recorder plotting diagram during the test implementation /loading deformation/.
4.Dimensions of plates sinould be so extended over tre whole area of the package /sample/ with which tney are in contact that the distance of the every point of the package from the eages of plates snouid be not less than 10 mm .

Samples

The samples of packages for testing should be taken in accordance with requirements determined in pariicular standards. If tie standard does not determine the number of samples or if standard does not exist at all, then minimum 3 samples of packages shoula be taken for testing but it is åvisable to take 5.

Conditioning

All packages /samples/ should be conditioned before testing according to ISO-2233 /or PIM-74/0-79156/.

Performance_of the_test

The packages should be filled witn proper product or tested empty /in case when proper real product does not effect rigidity of package /sample/ and closed in this way as it is used in reality. It is allowable to use dummy product, iut dummy proaiuct must be real substitution of proper product e.g. it should have the same properties as: weight, density, interacticn with walls of package and others.

Climatic conditions during the test should ce the same as during conditioning of packaEes /samples/.

It is permitted to test packages in climatic conditions different from conditioning, but the distance of time between the end of conditioning and the beginning of the test should be not more than 5 min .

The tested package should be situated between plates of compression tester in proper position - see Appendix 1.

In case of fibre board boxes testing /or similar in logic/ the manufacture joint should be always done from rigit side of the package /sample/.

The upper plate should be moving down and up to attain the load value of $20 \mathrm{kE} / 196 \mathrm{~N} /$.

From this moment the deformation of package should be counted and the speed of upper plate movinE down with velocity equal to $10+-3 \mathrm{~mm}$ per minute.

At this moment the recorder of the compression tester should be switched on.

If the recorder is not available, so without stopping the compression tester there should be made an observation of every 2 mm of deformatim and after ending of tests the diagram should be plotted.

The test should be performed in order to obtain predetermined load of linear deformation.

The test should be given up, howevar, if the package is damaged, looses its rigidity or if such damage occurs that can effect the protection of the contents. At this point, value of load should be also determined.

Each package should be tested only onr.e.

The result of test

The_resistance_of package_tc_damage load.
In order to determine damage load and relative damage load as a result of test we should take mathematical mean from all results of tests, but if the standara predicts the determination of character of results dispersion, so the value of "standard deviation" should be defined. This value is calculated according to the formula:

$$
\sigma=\sqrt{\frac{\sum_{i=1}^{n}(x-\bar{x})^{2}}{n-1}}
$$

Where:
X_{1} result for each package
$\overline{\mathrm{X}}$ mathematical mean of tests result
n number of packages tests

The result of testing should be considered as positive if values of mathematical mean. characterizing resistance of tested package to the damage load is not smaller and value of standard deviation is not higher than the value predetermined in appropriate standard for the given package.

The_resistance_of package_to_predetermined_load
The resistance of package to predetermined load should de considered as positive if number of packages which withstand testing is in accordance with the number of packages /samples/ predetermined in appropriate standard for the given package.

The_test_report

The results from the conducted tests should be described in a form of tests report which includes the following particulars:
a/ the number of packages /samples/ tested
b/ full description of the package including dimensions, structural and material specifications of the package, its fittings, cushionings, blocking, closures or reinforcing arrangements as well as reference to
the standards on a basis of which these tests have been conducted,
c/ description of contents - if simulated or dummy contents were used, full details should de given,
d/ gross weight of the package and net weignt of the content in kilograms $/ \mathrm{kg} /$.
e/ relative humidity and temperature of the roon, where tests were carried out,
f/ the position in which the packages /samples/ were tested, described according to the standard concerning identification of parts when tested /ISO-2206 or PN-74/0-79155/.
g/ distribution of measuring points on the package /sample/ and the method of measurement,
h/ type of measurement equipment with description of manner of working,
i/ record of results, findings with any observations which may assist in correct interpretation,
$j /$ date of testing.

Introduction :

Wood was one of the first structural materials used by man in primitive days and it continues to be used till today for various purposes.
The phenomenal expansion of industries after the Forld war II ever since,to result that the demand and consumption of timber rose to such heights that popular species of wood from many forests were almost spent up.due to some time unplannea deforestatlon.

It is obvious, that even proper aforestation alone, would not be able to meet the large and increasing demand of timber required for various purposes.
It must be supplemented by improved utilization to achieve economy of the material without sacrificing the functional aspect of the object made of timber. This is particularly important now, due to the permanent increase in demand, hijher freizht rates. The first type of shipping container to be manufactured was from wood. Although nowadays,use of wood for packaging gurposes has been lessened by the substitution of other more sophisticated materials, (as for example plastics) it still has an important place in industrial packaging for heavy or fragile item which require rigidity and strength.

Packaging consumes upto 20 of the timber in the form of cases, crates, plywood, herdboard, fibreboard, and papers.

How it is proposed to discuss various facts that would govern the cnnstruction of a wooden and wood derived containers for all kinds of commodities, but general guidelines are given which would be helpiul in designing a functional container for a particular requirement.

Some of the Turkish Standard specifications of wooden and derived containers as well as materials are given below :
TS 51 Coniferous saw timber
TS 820 Oak lumber
TS 801 Beech lumber
TS 1249 Lumber of Black Poplar
TS 3635 Fibre Buildingboard- definitions
IS 46 Plywood- Veneer plywood with rotary cut, vereer, for General Use

TS 1465 wood - for packing materials
TS 1891 Mood Packages, terms, definition.
TS 1508 Vocabulary of terms relating to pallets
TS 343 Hood preservation (terms and definition)
TS 344 Basic rules for wood preservation
TS 1351 Wood for producing fibre chip and wood wool
TS 1250 Sliced veneer
TS 305 Wood Wool slabs
TS 1142 Steel stripping for package.

2. Katerials :

Wood is a structural material develcped by nature to support the folisge and fruit of the tree, and it is remarkable strong to compare with its weight. Being a natural material it is not very uniform in its physical characteristics, however and it becomes necessary to select and treat it in a manner that will make it useful as a packaging material. Some types of wood are better than others even the growing conditions of a particular tree will have an effect its own strength and other properties.

Fortmately, by selecting the proper variety sorting it for knots hard and soft rottenness and other defects. Drying it carefully and laminating it to make plywod or chippins with ginysico-cienical treatment to make hardboard we are able to get a fairly uniform material for our purpose. There are hundreds species of trees of which about 100 are commercially useful, but only about 10 are really important, as for example : pine, spruceffir, poplar, alder, willow, birch, cedar, beech, elm, oak, hornbeam. Food varies in density from 0.32 to 1.15 the heavier woods above 0.55 density are stronger and have greater nail-holding pover, but they are harder to work and have greater tendency to split and shrink. It should be remembered that wood is about 5 times as strong with the grain as it is across the grain.

Moisture of 7ood :

The fresh cutting trees contain a large amount of water, the coniferous 40-170 \% and the deciduous 35-130\% in relation to dry mass of wood.

Since the properties of wood depend so much on the amount of moisture it contains. It is necessary to know the exact moisture content of a particular part of the timber before it will be subjected to performance in practice.

There are several ways of determining the moisture content of wood for practical purpose the mest useful are the electrical moisture meters.

With roughly speaking, there are water in wood in three forms.

- as a vater chemically connected
- as a vater physically connected
- as a rater free water. n

When tiaber starts drying, the " free water" evaporates but tine cell walls including those of wood fibres are jet saturated with mater. This point is called "Fibre Saturation Point", and is ir accordance with about $30 \&$ of water.

After further drying natural or artificial wood becomes rcre dry. By 15 to 20 of moisture, wood is so called " Air Dry \%ood", it depends on the climatic conditions.

Food from its structure is hygroscopic. That is, it absorbs moisture from humid or darp atmosphers.It also loses water when the atmoschere.is dry. In other words there is a permanent transfer of water between wood and surrounding air. But in some constant atmositeric condition equilibrium occurs between wood and ambient air, this point is called " hygroscopic equilibrium point" and to attain usually level 15 to 20% moisture of wood.

In this condition the wood has the best nail-holding power. It should be stressed that wooden boxes nailing at hich moisture content for example at 30% of moisture after dried during storaje in atmospheric conditions lose at least 75 of of their resistance to handing. It should be remembered also that the weight of the green wood especially of soft wood like poplar, alder, willow is 40 \% higher than the same dried wood.

It is very important that wood has very good shock and conpression strength resistance and overall toughness. Generally speaking the mood has very good resistant to mechanical hazards occuring during transportation, loading and handing in all distribution system independing practically of climatic conditions.
For this reason wood is especially predestinate for paciaging purpose.

Principle of Designing :

The best timber of which should be manufactured the woocen boxes and crates should have about 15% moisture : it should not have knots larger than one third the width of the board and should not have any knots at all in nailing area and on the edges. There are various methods of constructing a nailed mooden boxes and crates depending upon the type of service required. One of the essential problem in constructing a nailed wooden boxes and crates is proper joint of the particular clats batten or boards in order to form main elements of bozes or cases. Let's consider some of the typical joint (see appendix 1)
a) Eutt joint
b) Ship lap or rabbet joint
c) Tongle and groove joint
d) Iinderman joint (dovetail)
e) $\infty_{m b}$ joint

The main elements of boxes or crates are bottom and heads. Generally people realize essential task of the bottom of the packages and strengthen it by the cross battens or sirids. But proper constructions of heads are often forgotten that we remind.
If we assume that costruction of the frame (see Ei.j. 1) Type 1 will have 100 any unit of strength.

$$
\therefore i=1
$$

Gye 1

-jpe 3

Very important place of any boxes, cases, or crates is joint of head, top and side, because that place is a very often subjected to mechanical hazards during reloading, handling in time \subset transportation.
The best construction system of joint in that place is so-called "three way corner". A typical example of them are shown in $\mathrm{F}_{\mathrm{F}} \mathrm{z}$ - 3 .

ジE. 3

The three way corner joint is very strong because every nail goes into side grain and each member is locked in by the other two members so that the nails are not likely to work loose.

Tooden boxes and cases :

Wooden boxes depend on its destination for packaging products of different weight. (See App 2)
It can be classified in four groups:
I - up to $150 \mathrm{k} \overline{\mathrm{k}}$
II- from 151 kg to 1000 kg
III- from 1001 kg to 20000 kg
IV- above $20,000 \mathrm{k} \bar{\delta}$
The first group consists of five construction forr of mooden boxes. All of them are nailing excluding one which is glueing and nailing this form has got horizantal edges joint by "lirienizar" methods (dovetail joint) or comb joint.
The basic requirement told that minimum thickess of elements of each crate main elements should not be less than 9 mm. But depend of gross weight of the carge and kinds of the product a thickess of the elements for sides, top and bottom should be calculated on basic of formula.

(NO. 1)
where, II - thickness of elementsfor all elements, min
G - gross weight of the box, kg
b - sum of wideness of all elements consist one element,mm
K - coefficient depends on kinds of product to be pecked.
Value of coefficient K :
a) 25 -for a product cooperate with box, is not sensitive to shocks (soap)
b) 35 -for a product do not cooperate with box, sensitive on shocks, simply become damaged,(glass jar)
c) 30 -for a product average between a and b.
e.g. product packed in indiridual fibreboard boxes.

Thickness of elements of sides, top, and bottom can be less than in calculated on a basic of formula if we use steel bands, about 25 \% in case of one band about 40 \% in case of two bands

The bands should be placed on one fifth to one sixih . the length of the box from the ena. Outside elements of the boxes should have smooth surfaces. The thickness of the nails should be wellmatched to the thickness of the elements in order to avoid the cracks of the elements.

Thickness of head elements of the boxes should always be minimum, 1.5 to 2.5 times as thick as thickess of side elements. The second group consists of seven construction forms of wooden cases (see app. 3).
All of them are nailed and strengthened by steel bands, all boards of basic elements together with ship lap. This group of wooden cases fcr seven construction forms are made jependent of kinds and weight of the products. Table 1. Construction $\overline{\text { Ie }}$ ight of package Characteristics of Dackaged Form contents in kg Form I 151-200

Form II	151-250	kany pieces products of regular shapes, is $10 t$ fastened to the elements of the cases.
Form III	250-400	Kany pieces as well as one piece products, not regular shapes fastened to elements of cases.

Construction Form	Teight of package contents in kg	Characteristics of Pacicaged Product
Form IV V	$501-500$	One or many pieces product, fastened to the elements of cases.
Form VI	$501-800$	One or many pieces product, not regular shapes,fastened to the elements of the cases.
Form VII	$501-1000$	One or many pieces product of revie shapes,fastened to the elerents of the cases.

Thickness of sheated boards for sides,top, and bottom of case should be calculated on a basis of formula,

$$
I=N \sqrt{\frac{\hat{G} \cdot L}{H}} \quad \text { (NO. } 2 \text {; }
$$

where, m - thickness of sheated board, mm
G - weight of products, kg
L - internal length of cases, $=$
H - internal height of cases,mr
N - coefficient depend on construction form of case
$N=1$, for the cases form I,II,III, and IV
$N=0.71$, for the cases form $V, V I$, and VII
The width of the sheated board in all elements including board bj edges should not be less than 70 mm , but board by edies should not be less than 100 m.

The width of $\begin{gathered}i=i z \\ \text { should } \\ \text { be calculated on } \\ \text { a basis of formia, }\end{gathered}$

$$
b_{s}=1.25 \frac{G^{\cdot} \cdot I_{\mathrm{s}}}{m_{\mathrm{g}}^{2} \cdot n}
$$

where, b_{s}-width of skid, mm
G - weight of products, kg
I_{s} - length of skia, mm
m_{s}-thickness (height) of skid, mm
n - number of sisies
Thickess of skid should be $0.8+10$ of width of the skid .
The third group of cases for weight of product over 1001 kg up to $20,000 \mathrm{~kg}$ is characterized on a basis of different desigh of each main element.
The most important element for heavy cases is always bottom, because the heavy product must be fixed to the bottom by screws or other durable ways.
The bottom of this type of case should almays have two skids at least. The distance between two neighboured skids should not be more than 1200 mem. Each of skide should has sliding batten and end of a skid should be cut off under 45° angle to the bottom. The width of slidins batten should not be less than 0.5 of skid width, but thickness not less than 38 mm. The skids should be connected by the joints, number of joints depends on the dimension of the case and precicted place and ways of fastenning of the product. Joint of the bottom should be connected with the skids by screws, whose diameters should be selected accordiñ to table 2. Table-2

Fax. weight of case content, kg	Number of joints				
	2	2	$3-4$	$5-6$	6
3,000	12	12	10	10	
5,000	16	12	12	10	
$10, n 90$	20	16	12	12	
15,000	-	20	16	14	
18,000	-	24	20	16	

Calculation of Dimension of Cross-section of Particular Parts of

Construction Zlements of Cases :

General Consideration :

For calculation cross sections of particular parts of elements of cases should be taken allowable stress K_{a} in accordance with table-3. It was determined for pine wood at $15 \&$ moisture and taken into account safety coefficient at value 5,25 .

Table-3

| nype of Stress |
| :--- | :---: | :---: |
| ndication, K_{a} |\quad| By bending across |
| :--- |
| fibres , K_{c} |\quad| 3y comoressine along |
| :--- |
| fibres, K_{c} |

In: cese of usine other kinc ci species than pine as well as depenis on the type of transportation value oí allowaide stress \bar{Y}_{2} should be calculated in bepa in accordance with formula given belo::,

$$
K_{a}^{\prime}=K_{a} \cdot \alpha_{1} \cdot \alpha_{2}
$$

where : α - coefficient depends on kind of specie三
α_{2} - coefficient depends on type of transportation
$\alpha_{2}-1.0$ for surface,rizer and air transportation
人 - 0.85 for sez transportation
$\alpha_{1}-1$ for pine
for cormon $\alpha_{1}-0.6=1.3$ for common use species
The cross-section of sisid :
The width of skid b_{1} should be calculated on a basis of farmile,

$$
\begin{equation*}
b_{1}=0.68 \frac{Q \frac{L}{n K_{b} h_{1}} 2}{2} \tag{No.4}
\end{equation*}
$$

where, Q - weight of content of the case, N
I - internal length of case, mm
n - number of skids
K_{b} - admissible bending stress, Kipa, Table-3
h_{1} - established thickness of skid, mm
The thickness of sheated boards of cases are shown in Table-4.
Table-4

Neight (mass) of contents of cases, $k \tau$	Ein. thickness of sheathed boards depend on transportations in mm	
	Surface	Sea
	18	21
below 5,000	21	24

Ahove illu-trated values .. determined by assumption that product is fized upto joinc of bottom or skids. The thickness of joint ${h_{2}}_{2}$ in mm should be calculated :
a) In case two skids of bottom on formula

$$
h_{2}=\sqrt{\frac{3 P(S-C)}{2 b_{2} K_{b}}} \quad \text { (No.5) }
$$

b) In case three or more skids of bottom on formula

$$
\begin{equation*}
h_{2}=\frac{3}{4} \sqrt{\frac{P S}{2 b_{2} K_{b}}} \tag{No.6}
\end{equation*}
$$

where : P - Parts of force exerts on one joint, N
S - internal width of cases , mm
C - distance between points of iixed up the products to the joint, mm
b_{2} - established width if joint,mm
$K_{b}-a d m i s s i b l e ~ b e n d i n s ~ s t r e s s, ~ L i P a . ~$

In case unequal distribution of load for calculation should be assumed the highest value of force exerts on one joint at the bottor The width of vertical beam of frame of sides of cases b_{3} in mm should be calculated according to the formula.

$$
\mathrm{b}_{3}=\frac{\mathrm{P}_{1}}{\mathrm{~K}_{\mathrm{c}} \mathrm{~h}_{3} \beta} \quad \text { (No. } 7 \text {) }
$$

A value of force P_{1} depends on internal height cf case, F should be determined.
a) for $H<1,000 \operatorname{man}$ according to $P_{1}=\frac{0.04 \mathrm{IS}}{3 n-4}$ (No. 8)
b) for $1,000<\mathrm{H}<1,500 \mathrm{~mm}$ according to $\mathrm{P}_{1}=\frac{0.035 \mathrm{I} \text { i }}{3 n-4}$ (No. 9)
c) for $H>1,500 \mathrm{~mm}$ according to $P_{1}=\frac{0.03 \mathrm{LS}}{3 n-4}$ (No. 10)
where : P_{1} - force exerts on vertical beam of slde,if
K_{c} - admissible compression stress by compressin:s alons fibres, L:Pa
h_{3} - thickness of vertical beam, mm
B - coefficient of lateral bending which fi亏ural value depends on slenderness of beam(§) is Eiven in Eable-5.
H - internal height of cases, 표
I - internal length of cases, m
S - internal width of cases,mm
r - number of vertican beam in one side 0 case.

Slenderness of beam(s) should be calculated accordins to formila

$$
S=\frac{H .2 \cdot \sqrt{3}}{h_{3}} \quad \text { (indication as above) (No. } 11 \text {) }
$$

Table-5

5	B	5	B	s	E	5	B
5	1.00	55	0.75	105	0.281	155	0.129
10	0.99	60	0.712	110	0.256	160	0.121
15	0.98	65	0.662	115	0.234	165	0.114
20	0.97	70	0.608	120	0.215	170	0.107
25	0.95	75	0.550	125	0.198	175	0.101
30	0.93	80	0.484	130	0.183	180	0.096
35	0.90	85	0.429	135	0.170	185	0.091
40	0.87	90	0. $5: 5$	140	0.158	190	0.086
45	0.84	95	0.343	145	0.147	195	0.082
50	0.80	100	0.310	150	0.138	200	0.077

Intermediate value should be linear interpolated.

The cross-section dimensions of horizantal beams of sides as :eil all beari of frame of heads as top of case, should be taken the same as cross-section of vertical beams of frame of sides calcilated according to the formula for b_{3}.
Wooden Crates ficr Product of \%eight up to $1,000 \mathrm{k}_{\bar{E}}$:

The most important thing for designing wosden crates is to be aquanted with basic principles of crate construction as a whole what it was about at the begining.
The wooden crates depend on construction could be classified into nine construction forms as it was illustrated on figure 2-10 (see appendix 4) and Table 6.

Table－6

$\left\lvert\, \begin{gathered} \text { Symbol } \\ \text { of } \\ \text { Constr. } \\ \text { Form } \end{gathered}\right.$	Construction of Crates	Applications	
		Feight of package Con－ tent， k_{3}	Charazteristics o： Packezod products
1	2	3	4
I	Acc．fig． 2 ；set up from indi－ vidual batten；reiation bet－ ween the bizgest and the smallest internal dimension of the crates should be as 1＋1．5．Three way corner．	upto 80	One piece crociucts regular shejes is fastened to the elements $0 ミ$ crates
II	Acc．fig．3；set up from indi－ vidual batten；difference with form I，batten in the middle position are parallel situated to the extreme batten．Three wey corner．	upto 80	as forr I
III	Acc．Eig． 4 ；set up from elements performed in shapes of frame； three way corner．	up to 100	as formi
IV	Acc．fig．5；as form III，but each cne of frame elements is strengthened by one cross batten in the middle，three way corner．	ip tc 150	as form
V	Acc．fig．6；as form III but each of frame elements is strengthened by two cross batten． in the middle，three way corner．	$\begin{gathered} \text { from } \\ 100 \\ \text { upto } \\ 300 \\ \hline \end{gathered}$	as Sorm ：
VI	Acc．fig．7；each one of elements is strengthened by one cross batten on the both sides，bottor and top 0 ：crate ere strengthene 1 by two girthing battens，relatiop between the bizgest and the smallest internal dimension of th crates should be $1+2.5$ ．	upto 200 2	ore or mer－j piece producte，：تith possibiliぞう $\ddagger 0$ fastenins to the botさor of craさa．

1	2	3	！ 4
VII	．hcc．fig．$;$ ；a crate is set up from elements ： heads－performed as in form V ． sides－all stinger batten are situatec from outside of the element joint and cross batten from inside．Gap betreen two joints not rore than 800 mm．top anc bottor－ 211 joint battens are situated from outside ō̈ the crate，stringer from inside；Gap between siringer batten of sides， top and bottom not more than lt 3 of midth of the batten，between joint batton of too axd bottor not more than $2+4$ of width of the batten．	150－530	
IIII	Acc．fig．9；A crate is set up fror elements ： heads－all joint bsttens are situzted frou outside of the crate，stringer and cross batten fror inside．sides anc top－as in form VII． bottom－full sheated b_{j} board in lensth and a basis of three skids in micth，distarce between tro skids not more than 800 mm ．Gap between batten（board）of each elerents not nore than 143 0：width of the batten（boari），outside $0 ;$ the crate anc 2－4 inside $0=$ the crate．	500－ล03	one or many piace эroぶcts fastered to tine bottorl 0 O the ことこちこ
IJ	Acc．シis．10；A crate is set up from elements ： heads－all stringer board are situated from out－ side of the crate joint and cross board from inside of the crate．sides－all joint board situated fror outsicie of the crate，stringer anc cross boara fror inside．top－ 211 strinjer boards are situated Erom outside $\overline{O f}$ the crete joint board from inside． bottom－full sheated by board in width on a basis of tro skids in length，distance between two skids not more than $1,000 \mathrm{~mm}$ ．Gap between board cf each elements not more than ： －1－3 of width of the board outside of the crate （heads，i ides，top），$-2-4$ inside of the crate（top）．	500－1000	one or manj giece sroducts ith lensthen： shapes ＝astened to the bottor o： the cret：

Thickness of the batten（board）of the crate should be the sare（ecual） for all elements of the crate and calculated according to the formia but not less than 16 mm ．

$$
m=\pi \sqrt{\frac{3.0}{5}} \quad \text { (NO.5) }
$$

where, m - thickness $\mathrm{of}^{\circ} \mathrm{batten}$ (board), min.
K - coefficient depencs on construction forr of the crate and kind of transport acc. table-7.

G - weignt (mass) of contents; Kg
p - the bis̃esti dimension of the crate, win.
r - the smallest dimension of the crate, min.
Table-7

Construction form of the crates	Common Transport	Container Transport(home-hone
	Value of coefficient,	
I	2.0	1.7
II	2.0	1.7
III	1.8	1.5
IV	1.5	1.2
VI	1.2	0.9
VI	1.0	0.8
VII	0.6	0.5
VIII	0.5	0.4
III	0.5	0.4

Thickness of the boards of the bottom of the crate shoule not be less than 19 mm . Dimensions of the cross section of the skias should be counted according to the formula on profe 12 . e.

$$
\begin{equation*}
\mathrm{b}_{1}=0.68 \frac{\mathrm{C}}{\mathrm{n} \mathrm{~K}_{\mathrm{b}} \mathrm{~L}_{1}} 2 \tag{HO.4}
\end{equation*}
$$

Performance:

All elements of the crate can have karf surfaces ard shoile be joint by nailine. All joining nails should be bancied and hariered to the wood agrin. (rails-see App.5)

Evaluetion of performance of rooden containers :

Durpose of Testin̄ :

 performance in the field for which it mas designed ove: a relativelj

Finy test ?

There are three rajor reasors for doing tests on paciajョes :
1- To predict performance in practice
2- To control quality
3- To obtain information to modify, improve or reduce the cost of the pacicage.

Eüt the Eirst reason is the nost inportant and afiects tine other tino. In order to precict performarce a measure of cozeietior is neeced bet:reen the tests carried out in the laboratory are the ineiavicr 0 the package in practice.
Three corelations are required.
Eirst, betwean the field performance of the pacizaje are lejeratory trensport test.
Second, between the laboratory transport test on the fillec paciaje and test on the empty packaje.
Third, betireen the strensth and other properties 0 the various materials used in makins the paciage and the tests on tin enptij container.

All these are required in order to obtain information abc：－：the pack＇s strersths and weaknesses when subjected to speci三ic hazarcis． How to test？

On a basis of many years experiences in the field ard lajorz亡ory Polish Packagine Fiesearch and Jevelopment Centre elaboraむed tests（among others）for wooden containers．They tes mocaer． containers according to the basic standards， Ps－70／0－79100 for containers with gross meight upto l50 PiJ－84／0－79101 For containers with gross meigint above 150 25． The first standard Ps－70／0－79100 foreseen indiviçual test schedule as mell as multi test schedule（simulating hazarajs occur ir đistribution syistem of cargoes）on a besis of main vest conceming with mechanical hazaràs as ：
－drop test
－ISO 224E
－drun test－ISO 2876
AST：D 7E2－E2
－inclired plane test－ISO 2244
－compression test－ISO 2872
ISO 2234
－vibration test－ISO 2247
The second standard Pi－84／0－79101 on a basis of practical experiences concentrated on a mechanical hazards occur in cese of ： －drop tests and
－tests on resistance of package against pressure force exeごさこd by strops durinz reloadins．

Fig. Types of ghod joints used in fabricatime "one-piece" parts
a) Butt joint
b) Ship lap or
b) Ship lap or

Metal corrugated fastener

c) Tongue and groove joint
d) Linderman joint

e) Comb joint

Fig．Typical examples of hattew and board construction

Rys. 1

Rys. 2

Rys. 3

Rys. 4

Rys. 3

Rys. 6

ligs. 7

Ris. 2

Rys. 4

Rys. 5

Rys. 7

D.

Rys. 9

LIST OF PARTICIPANTS TO THB
mooden pagzages semithar

Hame of Participont
1- Amet YaVUZ
2- Rifat IIHAK
3- Ramasan KONTAY

4- A. Yalgun ERCAN

5- Şỉkrii GÖkHan
6- Yagar CEYTAN
7- Misak KEDİLERLI
8- Yehmet özBex

9- Luammer ERYIIDIZ

10- Faruk JLAS
11-Gitrsel ÇOLAKOG̈LJ
12- Ismail AŞAK
13- Kamil Kamlandur
14- Abdurrabman PAThZ
15- Aziz EKSII
16- Hasan Tahsin ÇBHREII
17- Atamar BAIDAR
18- Muraffer ATACAOǦLU
19- Asuman SOYU
20- Osman TAŞKI
21- Pamir ERmis

Name of Batablishment

Emek Elektrik Fnduistrisi A.Ş. Hacettepe Üniversitesi
istanbul Üniversitesi Orman Pakialtesi

Matina Kimya Kurumu liakine Sanayi Huiesseseṡi

Ardem A.§̧.
M.S.B. Teknik Himetler

Sevan Vana Sanayi
Emayetaş Fiadeni Esya, Saç ve Emaye Fabrikalarn T.A.Ş•
Emayetes liaceni Eşya, Saç ve Emaye Fabrikalart T.A.Ş. Teba

Dizce Mesiek Y. Okulu
Yazar Pompa
Orta Anadolu Seramik
Orta Aradolu Seramik
Ziraat Fakiltesi
Dizace Meslek Yiiksek Okulu
IGmis
IGERE
IGEMC
Ormancilick Arastirma Ens. Mifd.
Ormancilik Arasturra zus. liid.

22- Zeki USAL	Sanayi Bakanlığ1
23- Servet bağci	Sanayi Bakaniciğ
24- Ali titras	Sanayi Bakanilig
25- Altan HOTCAL	Orids
26- Arslan ÖZKaptar	ORits
27- Ahmet DExirliçakar	Milli Prodiktivite Lierkezi
28- İsmail ÖZCAN	Çanalckale Seramik
29- Mehmet OLGUXPAJIK	Canakkale Seramik
30- A. Hikmet AYHAN	Çanalckale Seramik
31- İsmet PARLAK	Hacettepe Üniversitesi
31- Kemal SERTKAN	Gama Pazarlama
32- Ahmet ŞETKAL	İstanbul Tic. Odasl
33- Çigdem krwahli	İGEME
34- İfan Reis	Orman Genel Hiud.
35- Ramazan ÖZEN	Teknik Exitim Fakiiltesi
36- Mehmet MIEMIŞ	Teknik 7\%itim Fakilltesi
37- Frol özeng	IGmas
38- Yildiz Güber	dSSİTAP

TRANSPORT PACKAGES

PERFORMANCE REQUIREMENTS AND TESTS
OF RESISTANCE TO MECHANICAL DAMAGE
PN-70/0-79100

1. Introduction

1.1. Subject of the standard

Suiject of the Stancard is concerned with performance requirements and tests of the transport jackages resistance উo mechanical damages occuring during handling, transporntation and storage of packaging product.

1.2. Scope

The procedures described in this standard are applicable for transport packages up to 150 kg gross weight, excluding sacks, metal cylindrical containers, glass containers, same kind of the packages for very dangerous good as weel as packages for which are determined othe: requirements in regards with resistance to mechanical camages.

1.3. Terminology

1.3.1. Individual test schedule: The hazard occuring in practice is simulated by a test on only one testing equipment in order to examinatioon of a package resistance against this hazard.
1.3.2. Malti-test schedule : hazards occuring in practice is simulated by suosequently tests applied to the same tests syecimens on a few testing equipments according to the specific test schedule in order to simulate hazards occuring one after the other during the distribution processes.

1.4. Applicable standard

3:1 - 74/0-79155 o: こSO - 2206
ア:: - 74/0 - 79160 or iSO - 2248
2: - 70/0 - 79161 or ISO - 227n or AST: 0-782-82
3:: - 74/0 .. 79162 or ISO - 2244
P!! - 75/0-79163 or ISO - 2872

PN - 70/0-79164
or ISO - 2234
PN - 75/0 - 79166
or ISO - 2247
Height of cirop cepend on package classes is given in Table 2

2. Classification of transport packages

2.1. Groups: In cepend or ways of utilization it is distinguished three groups of packages.

1. For one way utilization in the country.
2. For multitimes utilization in the country.
3. For export products.
2.2. Classes : In depend of kind of packaging procuct it is distingushed three classes of packages:
4. For safety products, don't resistance afainst schocks, excluding powder type procucts.
5. For safety products, con't resistance against schociks (fragile, breakable and sensatively on shake vibration as well as for this products which are packaging in don't resistance on schocks unit package (e.g. bottle and for make of glass)
6. For some kinds of dangereus goods (poisoned, caustic) without any regards on sensitivity on schocks, and powder type products.
2.3. Variants : Depending on basic shapes as well as kinds of metirials it is distinguished three variants of packages:
7. Perpendicular mace of paperboard, fibreboard and moulded 3ulo.
8. Perpendicular made of various kinds of materials, e::cluding pock:\%er mace of paperboard, fioreboarc and moulded pulp.
9. Jith roind and oval bottom made of various kinds of matariais exclucing mezai package.

3. Requirements

3.1. The resistance of transport packages to mechanical damages in case of individual test schedule
3.1.1. Resistance of package against. compression (oy quasistatic loading)

Every single one transport package should je resistance against compression by quasistatic loading (\equiv) expressed in newtons (N) count on formula
$F=k \frac{\dot{i}-\hat{n}}{\hat{n}} \cdot G$
Where :

H, height of stacking, mm.
l.- height of package, mm.

G- gross weight of package, kg.
k - coefficient

Height of stacking H, value of coefficient k anc admissible deformation for particular modification of packages, depends on kincs of transportation is illustrated in table 1.

Table 1

3.1.2 The resistance of transport package against schock resulting from a free fall.

Every single transport package of group 1 should be resistant to one cycle (set) of drops for package of variants 1 ari 2 in accordance wi \because Taile-3 and for packages variant 3 in rable 4 .

Every single one transport package of groups 2 and 3 should be resistant to tivo cycles (sets) of droys for package of variants 1 and 2 in accordance with Taole 3, and for packages variants 3 in table 4.
ieight of drop depend on packages classes is given in Tabie-2

$$
\text { Table - } 2
$$

Height of drop cm	Class of package		
Packaging	1	2	3
Ainimum	$70-G 1$	$50-G l$	$90-G 1$

Table - 3

Successive number of drops in cycle (set)	Position Center of Gravity symmetry center of package

Table - 4

successive number of drop in cycle (set)	place of schock (impact) in accordance with identification of parts of packages! when testing - ISO 2206
1	Point 1
12	Pcint 4 place (face)numier
13	Point 3 according to ISO
14	Point 42206
I	
1 5	generating line (vertical line) in
I	place of joint of side of package
I	($20 n t$ ainer)

3.1.3. The resistance of transport package against impact subjected to test on incline impact

Every single one transport package of groups ${ }^{-}$ should be resistant to one cycle (set) of impacts for packages variant 3 in Table7.

Every single one transport package of groups 2 and 3 should be resistant to two cycle (sets) of impact for packages of variants I and 2 in accordance with Table 6, and for packages variant 3 - in Table 7.

The distance (length) of dolly way in dependence of package class is given in Table 5.

Table - 5

Table - 6

Successive number of impact in cycle (set of test)	Place of impact in accordance identification of parts of pack when testing - iso 2206
1.	Plane 5
2	Plane 6
3	Plane 2
4	Plane 4
5	edge formed by planes 3 and 2
6	edge formed by planes 6 and 4
7	edge formed by olanes 5 and 4
8	edge formed by planes 6 and 2

Table - 7

3.1.4 The resistance of transpo6rt package against vibration

3.1.4.1. The resistance to vibration of packages group 1

Every single one transport package of group 1 should be resistant to vibration of parameters given in Table-8, it should be performed in joint time 35 min , but by the first 30 min vibration should be performed for parameters determined for road (car) transport in accordance with table 8 - row 2 or 4 and for further 5 min at parameters determined for railway (train) transport in accordance with table 8 row 3 or 5.

3.1.4.2. The resistance to vibration of package qroup 2

Every single one package of group 2 should be resistant to vibration of parameters given in Table - 8 , it should be performec in joint time 70 min , but by \because efirst 60 min vibration should be performed at parameters determineu for road (car) transport in ascordance with Table-8 row 2 or 4, by further 10 min. at parameters determined for railway (train) transport in accordance with Taole-3 row 3 or 5

3.1.4.3. The resistance to vibration of package group 3

Every single one package of group 3 which is tansparted on a road up to 2000 km . should be resistant to vibration of parameters determined in point 3.1.4.2. for packages groip 2.

Every single one package of group 3 which is transported on a road $2000-5000 \mathrm{~km}$. should be resistant to vibration of parameters given in Table 8, it should be performed in joint time 180 min, but by the first 150 min . vibration should be periormed at parameters determined for road (car) transport in accordance with Table 8 row 2 cr 4, and by a further 30 min . at parameters determined for railway (train) transport in accordance with Table 8 row 3 or 5.

Table 8

Jver loading, $\mathrm{N} \quad \mathrm{F}=\left(\frac{220}{\mathrm{~h}}-3\right) . \mathrm{G}$ without over lcading
the number of packages
contemporary subjected
to vibration
hi -numeric value correlation with numeric value of
packages height expressed in cm
G-sross weight (mass) of package, kg.
3.1.5. The resistance of transport packages to shakes and horizontal shocks

Every single one package should be resistant to shakes and horizontal shocks performed in accordance with Table 9 in 30 min. time

Table 9

Length of dolly way mm	150
Number of shockes in l min	125
Distance of moving wall of dolly case from package, mm	

3.1.6. The resistance of transport packages to shocks during fall down and rolling

Every single one package of class I should be resistant to shocks during tinree full rotary of drum and package of class 3 during fifth full rotary of drum.
3.2. The resistance of transport packages against mechanical danger in case effect of hazards during distribution "multi test schediule".
3.2.1. The one way use packages foreseen to (for) intercountry turnover (group 1)

Should be resistant to hazards (tests) sinich are sequences and parameters, there are in Takle 10

Taklc 10


```
    4-drov on edge
    of height of
    pacikage
    The packages variant 3
l-drop-on as in classes
point 1 1 and 2 jut
2-crcp on plus
point 4 5-drop on
3-drop on generating
point 3 line in
4-drop on place of
point 2 joint of
        ride of
        package
        (container)
```


ih-height of package, cm
hı-numeric value in accordance with nuneric value of package heigit expressed in cm
G-gross weight (mass) of package in kg .
Gi-Coefficient expressed in centimeters, which numeric value is in accordance with numeric value of (mass) gross weight of testing package experssed in kg .

Table 11

The packages l.drop on point 1
2.drop on point 4 3.drop on point 3 4.drop on point 2
variant
3 as in
classes
1 and 2 but plus 5 th crod on generating line in place of joint or side of package (container)

kinds of , The packages of variants impact 1 and 2

1. impacts-plane 5
2. impacts-plane 5
3. impacts-plane 2
4. impacts-plane 4

The package of varian $\because s$ 3;

1. impact on generating line $1-2$
2. impact-on generaڭins line $3-4$
3. impact-on genera亡ing line 5-6
4. impact on generating line 7-6

5	Drum test aumber turnover of and roliing drum only variants turn- 1 with top over \| covered	2	-	3

h-height of package
hi-numeric value in accordance with numeric value of package expressed in cm.

G-Gross Veight (mass) of package in kg .
G1-Coeffiencient expressed in centiemeters, which numeric value of gross veight (mass) of testing package, expressed
3.2.2- The reusable packages foreseen to (for) intercountry turnover (group \hat{c}. Should be resistant to double cycle (set) of hazards (tests) according to Table 10

Horeover between first and second cycle of hazards (tests) acc. Table 10 empty packages, ready to back ways, according to the practical custom by returnaile tiansportation, should be resistant to turnover and rolling, being subjected to five (5) turnover in drum tester, in dependent of classes and variants of packages.
3.2.3- The packages designed for export products (group 3) Should be resistant to hazards (tests) which sequences and parameters, there are in Table 11.
4. Testing
4.1- Programue of testing
4.1.1- Individual test schedule. In order to examination of packages compatibility with the standard of packages in scope of resistance to mechanical damages in case of individual test schedule (3.1) should be conducted individual tests according to table 12.

The individual iests should be conducted in the Eolowing cases:

- Periodically in case when exist supposition about incompatibility between package and requirement of the standard.
- For campare different packages applying for the some product.
- In case the matter of controversy.

4.1.2- Eultitest schedule

In order to examination compatibility with the standard of packages, in scope of resistance to mechanical damages in case of multi test schedule (3.2) should be concucted multi test, performance on every one package in the sample, the following tests successively:
a) Examining resistance to cieformation by quasi stacking acc. PN.75/0-79153
b) Examining resistance to schock by free fall drop acc. PN-74/079160 (or ISO-2248)
c) Examining resistance to vibration acc. PN-75/079166 (or ISO 2247)
d) Examining resistance to inclined impact plane acc. PN-74/0-79162 (or ISO-2244)
e) Exanining resistance to schocks by turrover and rolling acc. 3:j-70/0-79161

The multi test should be conducted in the following cases:

- By monitoring package, for which as well the country as international ruies do not foresight to apply individual tests.

TABLE - 12

- For compare different packages applying for the same produc亡
- In case the matter of controversy.
4.2- Choose and preparation of samples acc. PN-74/0-79155
4.3-Assesments of the tests results.
4.3.1- The package is resistant to mechanical camage.

The tested package is resistant to mechanical damage, if after individual testing acc. 4.1 .1 or multi testing acc. 4.1.2 is not tecnical destructed and product is not camage.
4.3.2- The package is not resistant to mechanical damage.

The tested package is not resistant to mechanical damage, if after individual testing acc. 4.1 .1 or multi testing acc. 4.1.2 is technical destructed and product is damage.
4.3-Assesment of the group of package.

The group of package subjected to assesment should be recognizing as in accordance with requirement of the standard, if each one of package in the samples subjected to the tests is resistant to the mechanical damage.

Lisc of additional equipment and indispensable resting and calibracion accessories

S1.No.	Name of Equipment	Specifications	Suggested Suppliers
1	2	3	4
1	Electromagnetic drop table with peak-G-meter Auxiliary equipment for p.l /above/ as well as for field study of hazards and calibration of other testing equipment	To study the properties of cushioning materials in dynamic conditions with guide vertical drop dynamic testing mechanism a-Adjustable cross head and release mechanism b-Drop head platen c-Box for lead shot a-Amplifier type 2626 b-Two channel microphone power supply type 2807 c-Two channel Amplifier type 2634; two pieces d-Bumb recorder type 2503 or Tape recorder type 7003 e-Vibration exciters type 4810 f-Vibration transducers /accelerometers/ type 4370-5+2 heads type 4731-5+2 heads type 4321-three pieces type UA-0322; type 8305-S type 8306+type 2R-0024 g-Portable Oscilloscope	1.Tetronix Ine. P.0.80x 500 Baverton Oregon 97005 USA 2. Karl Frank GmbH 694 Neikeum/ Bergester FRG BrUel and Kjuer DK-2850 Naerum Denmark td /02/80-05-00 National Matsushita Japan

1	2	3	4
3	Impactograph or PIRA drop recorder	For field and laboratory surveys of mechanical hazards	1.Impact-0-Graph firm USA 2. PIRA Leatherthead United Kingdom
4	Thermophil with accessories	For quick measures of temp. of air and surfaces of materials samples or packages -type 4444 in carrying case temp. range $60^{\circ} \mathrm{C}$ to $250^{\circ} \mathrm{C}$ with semiconductor probe	UItrakust Gerytebau GMBH HA-375 Ruhmansfelden FRG
5	Hygrophil with accessories	For quick measures of relative humidity Type 4451-3 with sensors and extension cable type 4414/4 and carrying case	
6	Strapping devices	Suitable for metalic straps, non-metalic straps, wire tying -semi automatic; 8mm to 25 mm strap width	Signode Corp. Deptt. 446 PMC 2600 W. Western Av.Chicago Illionois 60647 USA
7	Stitching devices	Stitching machine for paper, fibre board, jute	1.Beckchards Machine Church Road King of Prusta PO 19406 USA
8	Stapling devices	For stapling hardboard, corrugated and solid fibreboard	2.Spotnoils Juc 1100 Hick Road Rolling Meadows Illionois 6000 - USA

Palonging Iiterature References

1- Brome K. Package deaign anginouring, Iew Tork 1959.
2- A complete courue in caming, Baltinore 1959.
3- Der F.T. The packaging of food and berectages, Iondon 1960.
4- Hoare V.E. Tinplate handbook, Greenford Middlesex 1965.
5- Glomeary of pacioging termes, Few Yoriz 1967.
6- Harrey H.G. Subrey of odrurr in packaging of foode, Iondor 1963
7- Iersen S.A. Packaging Research : An inventory. ABA, Hew York 1959.
8- Iock 4. Practical Caming, Iondon 1969.
9- Mc Guire E.P. Packaging and paper converting adhesives, Hew York 1963
10- IC Kie J.W. Tin cans and tinplate, Cambridge (Kassachusetts) 1959.
11- Oswin C.R. Protective Wrappings, Iondon 1954.
12- Pilditch J. The Silent Saleaman. How to develop pacicaging that sells, 1ondon 1961.
13- Selby J. W. Yodern food packaging film technology, Leatherhead 1961.
14- Barail I.C. Paciaging Engineering, New Yoric 1954.
15- Hanlon J. F. Handbook of packaging engineering, Mac Grow-Hill Book Co Hew Yoric, 1971.
16- Brody, A.I., "Food Caming in Pigid and Flezible Packaging" Critical Reviews in Food Technology, July 1! .. U.S.A. (Food Engineering, February 73, Page 112)

17- Ailor, W.H., Handbook on Corrosion Testing and Evaluation, N.Y. Wiley 2971

18- Sacharow, Stanley, "Food Packaging" (Avi, 1970), "Principles of Fackage Development" (Avi 1972), "Basic Guide to Plastics in Packaging " (Cahners 1973) "Principles of Drug+nosmetic Packagine (Hoyes Data Corp. 1974).
19- Sherlock, JC + Britton, SC. "Complex Formation and Corrosion Rate for Tin in Fruit Acids". T.R.I. Publication Fo. 450. Brit. Corr. J., 1972 7, July, 180 - 183.

20- Sutnar, I. Pacicage Design. The force of visual selling. Hew York 1953.

21- Pahje, F. Strength in bottles. Barron's December 2, 1957.
22- Hemman, Jw., Motivation Research and marketing management. Boston 1957.

Visit to: Soyuynce Sircetler Grubu Ankara - Esecijoga

Date:
86.10 .07

Visited by: Kir Zacisław nosim - UirIDO Expert The PackaEing Centre TSE

Ferson seen: Mr Raivan TOSYA - Yead of froauction Department

Modern plant of medical accessories-production on a tasis of licence of American Corp. Jonson and Jonson. Raw materials are imported. Froduction so far is supplied for indegenous market. They faced some problems with liquids wnich are packed firstly in individual polyetrylene container of capacity about 4,51 , then in corrugated fibre boxes.

The cicxes with products are stored in warenouse in seven layers. Customers complain from time to time for leakage of containers ia boxes.

Pindings

Because immeaiate observation did not inaicate any inadequation in performance of package, it was decided to send samples to the Packaging Centre for testing by static test and compression test.

Tne boxes witn products are now under stacking test. २uasi stacking test on compression testernas deen just implemented.

Visit to: Ardex Fisirici ve Isitici
Bolu
Date: 86.10.15
Visited oy: Mr Zdziszaw KCSTRO - UYIDO expert Mr Recep DEVECI Miech.Eng. /Msc/

The PackaEing Centre TSE
Ferson seen:Mr Veysel Sever - Dep.Dir. Pruduction Batiater
Mr Ergin Dericunt - Dep.Dir.Technical
Mr Bilgin Ergun - Head of quality Control Dep.

A very big modern factiory on the area of $30000 \mathrm{~m}^{2}$ and $27000 \mathrm{~m}^{2}$ under production buildings. They manufacture mainly electisical and gas kitcinens and accessories for domestic market and for abroad. One day efficiency adout 12.000 kitchens. They faced with many problems of pacikages out particular concerned with exports to France.

General costs of package are 2.5 of costs of production. They are exporting also to Algeria and Egipt. The kitciens are packed individually in wooden batten and boards, corrugated fibre board and polyuretane foam/styropor/ pads. They use a lot a incividual as well as multi unit pacicages.

Pindings

The visitors found a lot of defectis in packasing materials as well as in packases performance.

The following suggestions were made:

- to apply other ways of fixing bottom of the kitchens to wooden frame
- to eliminate multi unit boxes for gas kitchens and accessories but to apply only externalwrappings and polypropylene straps,
- to change place of applying metal straps to electrical kitcnens package,
- in the big multi unit paciages for export corner joint of crates should be changed for "three way corner" joint and smaller general colume of crates should be made in oraer to save costs of freight,
- some practical advices were made concerned with proper nailing as well as witn selecting of wocien packaging materials.

Visit to: Demantas Demircioglu Entegre Ambalaj San. ve Tic. A.S. Hencex / ADAPAZARI

Date: 86.10 .14

Visited by: Mr Zozisław KOSTRO - UnIDO Expert Mr Recep DEVECI

Feissn seen: Mr Sabri Kalaycioglu - Plant Nanager

Modern plant constructed three years aso in orcier to proauce wireoound boxes and pallets. The plant employs 200 peoples including 6 enëneers. The area of proauction builaing is about $2.500 \mathrm{~m}^{2}$. The equipment of the plant is modern, mostly from \because ?est Germany, some from the U.S.A. and Italy.

Findings

The production process is carried on in proper ways with exception of moisture of wooc a:C nina of nails Lised for nailing pailets. The proper advices in tils matter were rade.

AEG Eti Elektrik Encustiri San. A.S. Geize /Kocaeli

Date: $\quad 86.10 .15$
Visited by: Mr Zdzisław kCSTRC - Ui:ILO Expert Mr Recep DEVECI -Nech.En E_{5} / Misc/ The Eackaging Centre - TSE

Ferson seen:Mr Selami SUBASI - Froduction Manager

A very oig mocern factory of A.E.G. The factory procuces mainly transiormers, electrical switch board and accessories and electrical engines for mechanical vehicles.
They manufacture for domestic demand and for export. Most of products are packed in wooden crates and cases, some of products do not sensative on mechanical and climatic hazaras are shipped to the customer on wooden pallets only.

Findings

The substantial parts of wooden materials are of very low quality and construction. Cases and crates are made not in proper ways, moisture of wood on reasonaile - air dried level.
Some products are overpacked and some crates are too big in comparison with equipment inside. The sugesestions were made to send some technical specifications to the Dackaging Centre in order to re-elaoorate in proper ways. $x /$
$x /$ The technical specifications have arrived ana are now under elaooration. The particular advice oy Expert has veen made.

Visit to: Turkiye Sise ve Cam Sanayi Fabrikalari A.S. Cam Isletme Tesisi
Gebze/KOCAELI
Date:
86.10 .15

Visited by: Mr Zdzisław KOSTRO - UNIDO Expert Mr Recep DEVECI - Mech.EnE. /Msc/ The Fackaging Centre - TSE
Ferson seen:Nir Taner HALECI - Deputy Director

The modern big plant manufacturine aressing flass mainly for industrial purposes as: sun protected winaow glass, mirror glass and windscreen. The plant is equipped with very modern automatic and semiautomatic procuction nachines made in Fiest Cermany.
The production ispacked in traditional for glass sheets triangular racks as well as in wooden crates and cases. The costs of packages do not overcome 5% of costs of the product.

Findings

The plant has good organization of packaging department. The timber is dried and of good quality. The construction of packages is also proper. Some problems with window flasses are occuring eventually by packing window Glasses into partially empiy cases as well as by unprover fixing paciáses on venicle or careless unloadint. Tne problems were aiscussed with plant representatives.

Visit to: Ozeler flastik ve Ambalaj San. A.S. Istanbul

Date: 86.10 .16

Visited by: inr Zãisław KCSTRO - UiNIDO Expert Mr Recep DEVEGI Mech.Eng. /Nisc/ The Paciosging Centre - TSE

Person seen: Mir Okan ESIN - Main Engineer

The plant under extension, manufacturing plastic containers and bottles of high and low density polyethylene, cups made of polystyrene. The containers are manufactured on a basis of blow moulding and cups - injection moulding techniques.

The machines were imported from west Germany /Bakum aru sthers/, some auxiliary equipment was made in Turkey.

Findings

They do not face with problems of packages but they are interested in packaging / main production/ testing and elaboration of packafing standards as soon as possible.
They promised to be in contact with the PackaÉing Centre,in particular with transport testing laboratory.

Visit to:	Tarim ve Orman Bakamligi Orman Urunleri Genel Mudurluta Ahsap Ambala Fabrikasi Antalya
Date:	86.10 .30
Visited by:	Mir Zázisiaw KCSTRO - UNiDC Expert Mr Recep DEVECI - Mech.EnE. /isc/ The Dackaging Centre - TSE

Person seen: Mr Naci Tuysuz - Dep. Director

The big wood production factory owned by government situated on 8 hectars. They manufacture different types of wooden boxes and pallets from own wooden raw materials / logs/, mainly pine. The factory is equipped with west German machinery, the auxiliary equipment is made in Turkey. The raw materials are stored directly on the eround, logs are not protected against solar radiation. a lot of cracks ard otner defects can je observed there. The cuttin edges $_{6}$ and sawing banos are not always sharp. The thiciness of cleats on small boxes seems to de too big in comparison with the purpose - for fruits and vegetables mostly. The costs of raw materials amounted 55% of overall costs.

Findings

The factosy should pay inore attention to loEs yards ayc sharpening of eqges of procuction macnines. The construction of woocen boxes is proper. The factory faces problems connected witn selling wirebound joxes, which are stored in warehouse about two years and any customer wants to ouy these boxes because of the price, but, tnis is more marketing problem than tecnnical. The technical aiscussions with directors were conducted.

From 17-th Septemoer to 28-th November 1986

Sept. 17 Arrival in Ankara about 19:00
Sept. 18-19 Meetings with the UFDP and TSE officials in order to get acquainted with tne scope of work, lajoratory equipment and other facilities.
Sept.22-23 Adjustment of Job Description the real possibility of implementation ana preparation with the Counterpart Director actual work plan.

Sept.24-26 Elaboration of specification of indispensable apparatus and auxiliary facilities in order to enable full working capacity of transport package testing laboratory.

Meetin n_{5} with representatives of supplying firms as: Brllel and Kjuer, Packard, Loyds and others.

Sept. 29-30 Conducting with counterpart trial tests on compression tester with corrugated fibre boxes. Neetings with delegates of UNDP/UNIDO Nr Barucna and Mr F.E. \&adi ana discussions on the suoject of tripartite review of the project.
 of indispensade work to be done in connection with enabling of tests performance on main testinë equipment as incline tester, compression tester and vibration table.
Preparation of specifications and sketch of auxiliary facilities - see Annex 12.

Oct. *-8 Visiting timber market in Arikara in orcer to buy proper wood for laboratory auxiliary facilities.
Visiting medical auxiliary facilities manufacturing in factory at Esenooça 27 km from Ankara.
Discussine in worksnop principles of performance of auxiliary facilities for transport testing laboratory.
Oct.9-10 Elaboration of materials for technical session witn the PackaEing Centre staff. Implementation of tecnnicai session on the suoject: "iransit Fackages - the purpose and conditions of periormance" - see Annex c.

Oct.13-17 Visits to factories in Boliu, Eencek, Geoze, Istanoul - see Annex $\$ 5$
cct.20-21 Elaboration of materials on a pasis of factory visits. Acquaintance with riurkish stariards concernine woncen materials and cerivates. Freparation 0 : materials for the second technical session wita tine staff of the Dackaeine Centre.

Cct. 22-24 Implementation of the technical session on the sibject - n Tne purpose of testing" see Annex 7.

Conducting tecrnical discussions with counterpart staff on pacíaging subject.

Oct. 27-29 Preparation of tecnaical materials for visiting̈ factories.

Discussions with counterpart Director. Sinopsis of the paper for the seminar on the suoject or wooden packages.

Cct. 30-3! Visitine factory at Antalys - see Anuex 15.

Nov. 3 - 5 Elaboration oí findings from visitine factories. Selection of materials for seminar. Discussion with counterpart on preparatory steps for conauctin stacking $_{6}$ tests for Esenboga Riedical Factory.

Nov. 6-7 Elaboration of materials for semiar on the subject: "Designing, jeriormance and testing -f wooden cases".

Nov.10-12 Selection of tecnnical slides /60 pieces/ to support discussion during semiar. Pinisning elaboration of materials for seminar. Eladoration or Euidelines on the subject of stacking tests - see Arnex 8.

Nov.13-14 Elaboration of guidelines on the subject of quasi stacking tests - compression test - see Annex 9. Carryint out stacking tests witn counterpart staff in laboratory conditioning room.

Nov. 17-19 Elaboration of general tecinical Elicelines for transport paciage metiod of testing see Arnex 11.
Preparation to tne seminar.
Yov. 20 Delivery of tre lecture on seminar on tice subject:"Designing, performance and testing of wooden cases".

Hov. 21 Starting preparations of "Tecinical report".
Nov.24-26 Implementation of elaboration of "Tecnnical report". Conductine technical discussions with counterpart concerning assessment of $A E G$ factory technical specifications.

Nov. 27 heetings with the UnDP and ISE oficials and surming up discussions on the subject of the mission.

Nov. 28 Departure fron the Esenbosa Airport.

[^0]: * This document has been reproduced without formal editing.

