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1 Introduction

When it comes to data processing and data analysis in a national or international sta-
tistical organization several well established statistical software packages are readily
available: (i) SAS due to its traditional position in these organizations (if the necessary
funds are available), its ability to handle extremely large data sets and its availability
on any platform including mainframes (Lowman, 2009); (ii) SPSS is considered user
friendly because of its point-and-click interface (although still providing the so called
syntax ); (iii) STATA is likely the most cost-effective the most cost-effective among the
three and by design is especially suitable for working with data generated from complex
survey designs (as is the case in many NSOs). However, for flexibility in terms of reading,
manipulating and writing data, availability of the most recent statistical methodology,
versatile presentation capabilities for generating tables and graphics which can readily
be used in word processing systems such as LATEX or or Word as well as an economical
solution, R is the most suitable option.

Although R has powerful statistical analysis features, data manipulation tools and ver-
satile presentation capabilities, it has not yet become an everyday statistical package
at national and international statistical offices. This is mainly mainly attributable to
the widespread to the widespread view that R is difficult to learn and has a very steep
learning curve compared to the other statistical packages such as SAS, SPSS and STATA.
The lack of a true point-and-click interface contributes to this, though several packages
which provide graphical user interfaces for R are available. The technical documenta-
tion accompanying R and most of the add-on packages rarely include syntax examples
related to the analytical methods applied in official statistics. Similarly, the user guides
and other documents for official statistics and descriptions of publicly available data sets
rarely provide appropriate code examples to R users.

A previous working paper published by UNIDO (Todorov, 2010) presents an overview
of R, which focuses on the strengths of this statistical environment for the typical tasks
performed in national and international statistical offices. It outlines some of the ad-
vantages of R using examples from the statistical production process of UNIDO where
certain steps were either migrated or newly developed in R - the areas of data integra-
tion and automatic generation of publication quality graphics for the dissemination of
statistical data. The abilities of R to import and export data from and to different data
formats and different statistical systems are considered as well. These features render
it a very useful tool for facilitating collaboration in statistical offices. The second ex-
ample application considers the graphical excellence of R as applied in the statistical
production process of UNIDO for generating publication quality graphics included in
the International Yearbook of Industrial Statistics. The graphics together with the re-
lated text are typeset in LATEX using the R tool for dynamic reporting Sweave. The
third example illustrates the analytical and modeling functions available in R and the

1



add-on packages. These are used to implement a nowcasting tool for Manufacturing
Value Added (MVA) to generate estimates for UNIDO publications. Functions from the
package for robust statistics robustbase are used for this purpose.

The present work continues along this line and presents three important areas of data
processing and data analysis, typical for the activities of a national or international sta-
tistical office.

The first issue addressed is the possible incompleteness of the collected data and the
treatment of the missing values which is covered in Section 2. Missing data has effect
on the properties of the obtained from the data estimates (e.g., means, percentages,
percentiles, variances, ratios, regression parameters, etc.). Missing data can also have
an effect on inferences, i.e. the properties of tests and confidence intervals. One crucial
criterion of these effects is the way in which the probability of an item to be missing
depends on other observed or non-observed variables as well as on its own value, i.e.
the missingness mechanism. After presenting the types of missing data in Section 2.1,
we continue in Section 2.2 with a detailed discussion of how R handles missing data,
including comparison to other well-known statistical packages. Different methods for
the treatment of missing data (traditional and more advanced) are described and il-
lustrated using R code. Section 4 presents useful tools for visualizing missing values
and exploring the data as well as the structure of the missing values, available in the
R package VIM (Templ and Alfons, 2011). Depending on the structure of the missing
values, these tools may help to identify the mechanism generating the missing values.
In the provided examples the R package VIM is applied to INDSTAT 2 edition 2010,
the UNIDO Industrial Statistics Database.

In the next Section 3 the procedures of statistical data editing and the issue of out-
lier detection are discussed, together with the accompanying problems of missing data
and their treatment. Data collected in surveys generally contain errors for a variety of
reasons. For example, a respondent may give a wrong answer or errors might arise while
processing the data. Statistical data editing, i.e. checks and corrections, are necessary
to increase the quality of the data. First, erroneous values in the data set have to be
localized, preferably in an automated manner. The localized erroneous values have to
be replaced by reasonable values (imputation). It is not necessary to remove all errors
from a data set in order to obtain reliable publication figures since the sampling error
might be higher than that related to minor errors in the data. However, logical rela-
tionships in the data should be preserved. For example, the income components should
sum up to the income or a 14 years old girl cannot be married and have three children.
In addition to that, large non-representative outliers (measurement errors) have to be
localized and replaced by reasonable estimates or by true values which may be obtained
by contacting the corresponding person or enterprise. The detection of outliers, i.e. of
atypical observations which deviate from the usual data variability, is very important
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in statistical analysis as the application of classical statistical models to data including
outliers can lead to misleading results. The multivariate aspect of the data collected in
surveys makes the task of identifying outliers particularly challenging. The outliers can
be completely hidden in one or two dimensional views of the data (Todorov et al, 2011).
This demonstrates that univariate outlier detection methods are useless, although Na-
tional Statistical Offices (NSO) prefer them because of their simplicity. The focus in the
present work is on using robust methods to identify the outliers which can subsequently
be treated using the traditional approach and in particular to present suitable R software
tools.

The third topic discussed in Section 5 is Statistical Disclosure Control (SDC) which
covers techniques that can be defined as a set of methods to reduce the risk of disclosing
information on individuals, businesses or other organizations. Such methods are only
related to the dissemination step and are usually based on restricting the amount of or
modifying the data released. The SDC methods can be categorized according to two dif-
ferent concepts: (i) the anonymization of microdata, and (ii) the anonymization of cells
in tables. The packages sdcMicro and sdcTable provide practitioners with tools that
meet the requirements of statistical disclosure control in these two categories. A brief
overview of the most popular methods for the protection of categorical and continuous
key variables is presented and illustrated with the corresponding software implemen-
tation in the R package sdcMicro. Similarly, the protection of (hierarchical) tables is
illustrated with the R package sdcTable.

An often criticized feature of R is how it handles data storage - all data used in calcula-
tions need to be held in memory. Furthermore, with data sets rapidly growing scalability
should also be considered, i.e. if we can analyse a data set with traditional methods
today, this analysis could fail tomorrow or in a year. One solution is to use modern
hardware with a 64-bit address space and huge amounts of RAM and although such
solutions could be implemented for many applications in official statistics, this issue
continues to pose a challenge. The handling of large data sets in R is is a field that is
actively developing and many packages which cover one or the other aspect of this issue
already exist. A brief overview with some examples is provided in Section 6 and a more
extensive review of methods for dealing with large data sets, and in particular for the
analysis of official statistics data.

Most of the data sets discussed throughout the paper, which have mainly been de-
rived from UNIDO databases as well as selections from other sources, and all the R code
used are provided in an R package called ritso which accompanies the work.

There are a number of interesting topics worth considering with regard to the use of R

in official statistics, but these are not covered by the current paper and will be covered
in future work. A brief overview of these topics is presented in Section 7.
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2 Missing data and imputation methods

Missing data are a common problem of data sets in almost any statistical analysis and
survey data are not an exception. We use the term missing data to define data that are
missing for some (but not all) variables and for some (but not all) cases. When data
are missing for a variable for all cases, that particular variable is referred to as latent
or unobserved. In a survey context this would be a variable which is not present in the
questionnaire. When data are missing for all variables for a given case, we have what
is known as unit non-response. In a survey context this would be an object (sample
establishment) that did not complete and/or return the questionnaire at all. Neither
latent variables nor unit non-response will be considered in this paper. Missing data
(missing values for certain variables for certain cases, i.e. when some of the questions in
the questionnaire are left unanswered) are also referred to as item non-response.

If the missing values are missing completely at random (MCAR) (see Section 2.1), no
bias is introduced when omitting those observations with missing values. However this
naive approach, namely omitting all observations that include at least one missing cell,
is not particularly attractive because a lot of valuable information contained in these
observations is then lost. On the other hand, when the data are missing at random,
where the probability of missingness depends on certain variables, bias estimates result
when deleting rows with zeros. Therefore, the exploration of missing values is crucial
for determining their dependencies to other variables (see Section 4).

Even this case entails further challenges which are very characteristic of data sets from
official statistics:

Mixed type of variables in the data: Data from official statistics typically consist
of variables that have different distributions, i.e. various variables are binary scaled
(yes/no questions), some variables might be (ordered) factors (e.g. employee size
range), and some variables may be determined to be of continuous scale (e.g.
turnover). If missing values are present in all variable types, the challenge is to
estimate the missing values based on the whole multivariate information.

Semi-continuous variables: Another challenge is the presence of variables in the data
set which which partially consist of a continuous scale, but also include a certain
proportion of equal values (typically zeros in official statistics). The distribution
of such variables is often referred to as “semi-continuous” distribution (see, e.g.,
Schafer, 1997). Data consisting of semi-continuous variables occur quite frequently,
for example, tax components in tax data, where one part of the data consists of
structural zeros (they must be zero by definition) or just zeros (a non-zero value
is possible by definition).

Large data sets: Since data collection is a requirement in many fields today, the re-
sulting data sets can become quite “large”, and thus the computation time of
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imputation methods is crucial. One might argue that many such data sets can be
decomposed into subsets referring to sub-populations, which, for instance, are de-
fined by the ISIC-codes in Business Data. Nonetheless, these subsets may contain
a large number of observations, which calls for fast methods for data imputation.

Far from normality: A common assumption for multivariate imputation methods is
that the continuous part of the data originate from a multivariate normal distri-
bution, or that the data can be transformed to approximate multivariate normal
distribution. This is violated in the presence of outlying observations in the data.
In that case, standard methods can result in very biased estimates for the missing
values. It is then more advisable to use robust methods, which are less influenced
by outlying observations (see, e.g., Béguin and Hulliger, 2008; Serneels and Ver-
donck, 2008; Hron et al, 2010; Todorov et al, 2011). Note that a prior exclusion of
outliers before imputation is not straightforward and biased estimates may result.

Sampling weights: Sampling weights are typically related to complex surveys where
each statistical unit may have different probabilities for inclusion in the sample.
How to deal with sampling weights in imputation and outlier detection is not
the main focus of this study but for any estimation or aggregation of data, a
weighted estimation which takes into account the chosen sampling design has to
be considered (for details, see for example Cochran, 1977).

2.1 Types of missing data

The presence of missing data can effect the properties of the estimates obtained from
the data (e.g. means, percentages, percentiles, variances, ratios, regression parameters,
etc.). Missing data can also affect inferences, i.e. the properties of tests and confidence
intervals. A crucial criterion of these effects is the way in which the probability of an
item missing depends on other observed or non-observed variables as well as on its own
value. We call this missingness mechanism (Little and Rubin, 1987). Let’s denote the
collected data by X and partition the data into

X = {Xo,Xm} (1)

where Xo denotes the observed elements of X and Xm represents the missing elements.
The missingness indicator matrix R corresponds X , and each element of R is 1 if the
corresponding element of X is missing, and 0 otherwise. Using this missing value indi-
cator we can define the missingness mechanism as the probability of R conditional on
the values of the observed and missing elements of X :

Pr(R|Xo,Xm) (2)

1. Missing by Design Some survey participants might be excluded from the analy-
sis because they are not part of the population under investigation. An example of
missing values by design in establishment surveys is the cut-off sampling in which
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all units (enterprises or establishments) above a certain size threshold are included
in the survey with certainty and all the units below this size are excluded from
the frame. Since this type of missingness generates unit non-response we will not
consider it further. Another example are valid skips, i.e. when a question is not
answered because it is not applicable to the given unit. In many surveys different
missingnes codes are applied indicating the reason why the respondent did not
provide an answer: (i) refused to answer; (ii) answered don’t know ; (iii) had a
valid skip or (iv) was skipped by an enumerator error. Depending on the code one
can decide whether the corresponding values are to be imputed or not.

2. Missing Completely at Random (MCAR) implies that the pattern of missing
values is totally random and does not depend on any variable, which may or may
not be included in the analysis. We can express the MCAR assumption as follows:

Pr(R|X) = Pr(R) (3)

which means that the probability of missingness in X depends neither on the
observed values in any variable in X nor on the unobserved part. For most data
sets, the MCAR assumption is unlikely to be satisfied, one exception being the
case when data are missing by design.

3. Missing at Random (MAR) A much weaker assumption is that the data are
missing at random (MAR). The MAR assumption can be expressed by:

Pr(R|X) = Pr(R|Xo) (4)

which means that missingness on X may depend on the observed part of X , but
it does not depend on the unobserved part itself. Unfortunately, we can generally
not be sure whether data really are missing at random or whether the missingness
is attributable to unobserved predictors or the missing data themselves. MAR can
never be tested on any given data set because it can be that some unobserved
variables, at least partially, are causing the missing pattern. MCAR is a special
case of MAR, i.e. if the data are MCAR, they are also MAR. The missing-data
mechanism is said to be ignorable if the data are MAR and the parameters gov-
erning the missing-data mechanism are distinct from the parameters in the model
to be estimated. Usually, MAR and “ignorability” are used interchangeably. If the
missing-data mechanism is ignorable, then it is possible to obtain valid, optimal
estimates of parameters without directly modeling the missing-data mechanism
(Allison, 2001).

4. Missing Not at Random (MNAR) If the MAR assumption is violated, the
data are said to be not missing at random (NMAR) which in general means that
an unknown process is generating the missing values. One of the most prominent
examples of the MNAR generating mechanism is the question about income, where
the high rate of missing values (usually in the range of 20%—50%) is related to
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the value of the income itself (very high and very low values will not be answered).
MNAR can appear in one of the two following versions (or a combination thereof):

• Missingness that depends on unobserved predictors

• Missingness that depends on the missing value itself

In the case of MNAR the missing-data mechanism is not ignorable, and a valid
estimation requires the missing-data mechanism to be modeled as part of the
estimation process. The results can be very sensitive to the model choice (Little
and Rubin, 1987).

2.2 Handling missing values in R

Missing data in R are represented as NA and no difference is made between string or
numerical missing values. NA is simply an indicator of missingess and can be treated as
any other value, e.g. we can create a vector and include missing values in it by writing:

> v <- c(10, 20, NA, 30, 40)

NA is the one of the few non-numbers that could be included in v without generating an
error. Please note that R distinguishes between NA and "NA" - the former is a missing
value while the latter is simply a string.

> anum <- c(10, 20, NA, 30, 40)

> astr <- c("Austria", "Australia", NA, NA, "Germany", "NA")

> anum

[1] 10 20 NA 30 40

> astr

[1] "Austria" "Australia" NA NA "Germany" "NA"

We cannot determine which variable has a missing value by comparison, i.e. anum[1]

== NA is not a valid logical expression and will not return FALSE as one would expect
but will return NA. In order to find which values are missing we can use the function
is.na, e.g.

> is.na(anum)

[1] FALSE FALSE TRUE FALSE FALSE

> is.na(astr)

[1] FALSE FALSE TRUE TRUE FALSE FALSE

To find the indexes of the missing values in a vector one could use the function which()

in combination with is.na():
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> which(is.na(anum))

[1] 3

> which(is.na(astr))

[1] 3 4

To assign a NA value to an element of a vector one could either use the assignment
operator or the function is.na() as shown below:

> x <- c(1, 4, 7, 10)

> x[4] <- NA # sets the 4th element to NA

> is.na(x) <- 1 # sets the first element to NA

> x

[1] NA 4 7 NA

Note the difference between NA and NULL which some functions and expressions return.
These codes are not equivalent - while NA represents an element which is “not available”,
NULL denotes something which never existed and cannot exist at all. But these codes
merge when data are read from a database - in that case the NULLs from the database
are represented as NAs in the resulting data frame.

When a vector is used to create a factor by default, the missing value NA will be ex-
cluded from factor levels. In order to create a factor that includes missing values from
a numeric variable, use exclude=NULL. Similarly, the table() function will not create a
factor level for NA which could be achieved by exclude=NULL.

> factor(anum)

[1] 10 20 <NA> 30 40

Levels: 10 20 30 40

> factor(anum, exclude=NULL)

[1] 10 20 <NA> 30 40

Levels: 10 20 30 40 <NA>

> table(anum)

anum

10 20 30 40

1 1 1 1

> table(anum, exclude=NULL)
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anum

10 20 30 40 <NA>

1 1 1 1 1

Most of the summary functions in R can optionally exclude the missing values from
calculations by using an argument specifying how the missing values are treated. This
argument is na.rm and by default is set to FALSE, meaning that the missing values are
not removed. As a result of this the return value will be NA.

> x <- c(1, 4, NA, 10)

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

1.0 2.5 4.0 5.0 7.0 10.0 1.0

> mean(x)

[1] NA

> sd(x)

[1] NA

> mean(x, na.rm=TRUE)

[1] 5

> sd(x, na.rm=TRUE)

[1] 4.582576

Many modeling functions in R like lm(), glm(), gam() have an optional argument that
specifies how to handle missing values which is usually a function for preprocessing the
input data. This function can be one of the following or any other defined by the user:

• na.fail() - issue an error if the object contains missing values

• na.omit() - exclude the missing values and return the rest of the object

• na.exclude() - same as na.omit() but will result in different behavior of some
functions (like napredict() and naresid())

• na.pass() - return also the missing values (the object remains unchanged)

> ## Most of the statistical modeling functions have

> ## an argument na.action (lm, glm, gam)

> ## na.action defaults to na.omit;

> ## can be na.exclude, na.fail, na.pass

> options(error = expression(NULL))

> df <- as.data.frame(matrix(c(1:7, NA), ncol = 2))

> names(df) <- c("Y", "X")

> df
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Y X

1 1 5

2 2 6

3 3 7

4 4 NA

> lm(Y~X, data=df)

Call:

lm(formula = Y ~ X, data = df)

Coefficients:

(Intercept) X

-4 1

> lm(Y~X, data=df, na.action=na.omit)

Call:

lm(formula = Y ~ X, data = df, na.action = na.omit)

Coefficients:

(Intercept) X

-4 1

> lm(Y~X, data=df, na.action=na.fail)

Error in na.fail.default(structure(list(Y = 1:4,

X = c(5L, 6L, 7L, NA)), .Names = c("Y", :

missing values in object

Other special values in R The NA symbol for a missing value is not the only one
special symbol in R. NaN is used to denote a value which is “not a number” which can
arise for example when we try to compute the undeterminate 0/0. To check whether a
value is “not a number” the function is.nan() is used.

> x <- c(1, 0, 10)

> x/x

[1] 1 NaN 1

> is.nan(x/x)

[1] FALSE TRUE FALSE

Another special symbol is infinity Inf which results from computations like 1/0. using
the functions is.finite() and is.infinite() we can determine whether a number is
finite or not.
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> 1/x

[1] 1.0 Inf 0.1

> is.finite(1/x)

[1] TRUE FALSE TRUE

> -10/x

[1] -10 -Inf -1

> is.infinite(-10/x)

[1] FALSE TRUE FALSE

Some calculations involving Inf can be evaluated but others lead to “not a number”
NaNs:

> exp(-Inf)

[1] 0

> 0/Inf

[1] 0

> Inf - Inf

[1] NaN

> Inf/Inf

[1] NaN

Differences to other packages Like R, most of the other software packages feature
options for missing value codes but there are important distinctions which we need to
keep in mind. The default behaviour of most R functions is to return NA whenever
any of the input variables have missing values. Missing values are handled differently
in SAS procedures and data steps, consequently, the manual should be consulted for
specific cases. A brief overview can be found at http://www.ats.ucla.edu/stat/sas/
modules/missing.htm

Numeric and character missing values are coded differently in SAS - a single blank
enclosed in quotes (' ') is used for the character values and a single period(.) for nu-
meric ones. Additionally, there are 27 different codes for special numeric missing values
- a single period followed by a single letter or underscore (for example, .A, .B, .Z, . ).
In SAS a missing value for a numeric variable is smaller than all numbers and if one
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sorts the data set by a numeric variable, observations with missing values for that given
variable appear first in the sorted data set. For numeric variables, one can compare
special missing values with numbers and with each other.

Similarly, STATA distinguishes between numeric and character missing values. The
standard numeric missing value code (or sysmiss) is a single period ('.'), also called
system missing value, and there are additional 26 missing value codes which consist of a
single period and a lower case letter, like .a, .b, .z. These are referred to as extended
missing values. Numeric missing values in STATA are represented by large positive
values. Thus, when sorted, a numerical variable with missing values will include all
observed values first, followed by the missing ones. When reading data (e.g. from Excel)
the missing values need to have been left blank in order to be recognized as missing by
STATA. See help for the functions read.dta() and write.dta() from package foreign

to see how missing data are handled by R when reading or writing a STATA binary file.

R does not distinguish between character and numerical variables and uses the miss-
ingness code NA in both cases. Thus, there is only one missingess code and one cannot
differentiate between different types of numerical missing values as in the case in SAS

and STATA. To test for a missing value in R the function is.na() is used, not the logical
equality operator ==. When importing numeric data in R, blanks will be interpreted as
missing values (except when blanks are delimiters) and the string NA will be interpreted
as missing for both numeric and character variables. While both SAS and STATA would
recognize a single period as a missing value for numeric variables, R will instead read
the entire variable as a character vector. This can be fixed in R

> library(ritso)

Scalable Robust Estimators with High Breakdown Point (version 1.3-01)

Scalable Robust Estimators with High Breakdown Point for

Incomplete Data (version 0.4-02)

R in the Statistical Office (version 0.1-00)

> fname <- system.file("examples", "xmiss.txt", package="ritso")

> ## Period (.) will not be recognized as missing value

> read.table(file=fname, header=TRUE)

ageh agew edu inc kid

1 30 28 15 15000 0

2 43 . . 41260 2

3 34 30 17 55000 1

4 40 . 7 67050 3

5 67 55 . 78000 3

6 41 37 12 . 2
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> ## Now, when using the argument na.strings(),

> ## the period (.) will be recognized as missing value

> read.table(file=fname, header=TRUE, na.strings=c("."))

ageh agew edu inc kid

1 30 28 15 15000 0

2 43 NA NA 41260 2

3 34 30 17 55000 1

4 40 NA 7 67050 3

5 67 55 NA 78000 3

6 41 37 12 NA 2

2.3 Traditional approaches to handling missing data

Standard traditional practices like list-wise (or case-wise) deletion, mean substitution,
pair-wise deletion and regression substitution are the simplest way to deal with missing
values and these are the methods usually implemented in the standard statistical soft-
ware packages. In the following, we will provide simple examples of how these methods
can be applied in R. The limitations of traditional approaches to deal with missing val-
ues have been studied and are well-documented (Allison, 2001; Acock, 2005). Although
often used, none of these methods is an optimal solution for handling missing values
problems except, in specialized cases.

1. List-wise deletion (or case-wise deletion or complete case analysis). With this
method all units with missing data for a variable are removed and the analysis
is performed with the remaining units (complete cases). This is the default ap-
proach in most statistical packages. The use of this method is only justified if the
missing data generation mechanism is MCAR. In R we can either omit all observa-
tions which have missing values using the function na.omit() or extract complete
observations using the function complete.cases().

> library(ritso)

> data(mdata)

> dim(mdata) # we have 25 observations,

[1] 25 5

> # some of them contain missing values

> x1 <- na.omit(mdata)

> dim(x1) # only 14 observations remain

[1] 14 5

> x2 <- mdata[complete.cases(mdata),]

> dim(x2) # similarly, only 14 observations remain
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[1] 14 5

We can use the second function to determine which observations contain missing
values applying the logical NOT, i.e. !:

> mdata[!complete.cases(mdata),]

ageh agew edu inc kid

10 43 NA NA 41260 2

12 40 NA 7 67050 3

13 67 55 NA 78000 3

14 34 30 16 NA 2

15 25 26 12 NA 1

17 36 NA 18 83200 1

18 42 37 NA NA 3

20 38 NA 0 25000 3

21 65 NA 5 70000 4

23 40 35 16 NA NA

25 41 37 12 NA 2

2. Pairwise deletion (or available case analysis). uses all available cases to con-
duct the analysis. If the data are used in multivariate analyses to compute a
covariance matrix, each two cases will be used for which the values of both corre-
sponding variables are available. This method draws on the complete information
but the computed covariance matrix could be non-positive definite. In R we can
use pair-wise deletion, for example, in the build-in function cov for computing
the covariance matrix of a data set, which has a use argument. The default is
use="everything" and the function will thus use all observations. This will result
in a covariance matrix most likely consisting of NAs only due to the propagation
of missing values. If use="all.obs", then the presence of missing observations
will produce an error. If use="complete.obs", then missing values are handled
by list-wise deletion (and if there are no complete cases, an error appears). If
use="pairwise.complete.obs", then the covariance between each pair of vari-
ables is computed using all complete pairs of observations on those variables. This
can result in covariance or correlation matrices which are not positive semi-definite,
as well as NA entries if there are no complete pairs for the given pair of variables.

> cov(mdata)

> cov(mdata, use="all.obs")

> cov(mdata, use="complete.obs")

> cov(mdata, use="na.or.complete")

> cov(mdata, use="pairwise")

3. Non-response weighting (or adjusting for non-response by weighting). Non-
response would not be problematic if the non-respondents were a random sample
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of the total sample, but this is seldom the case. Usually the achieved response rates
follow particular patterns. For example, in household surveys it is well known that
non-respondents are younger than respondents, and that men are more difficult
to persuade to take part in a survey than women. Response rates in cities and
deprived areas also tend to be lower than the average. The result is that such a
survey will typically overrepresent women, and those over the age of 30. Those
living in cities and deprived areas will be often underrepresented. If such patterns
are known for the respective survey one could use weights to to bring the data set
obtained more closely in line with the sampled population. The adjustment of the
weights for non-response will be complicated if more than one variable has missing
values and the standard errors may become erratic. It is not recommended to per-
form weight adjustments for larger establishments (with more than 50 employees)
but rather to impute the missing values. On the other hand, weight adjustments
should not be performed if missing values are imputed.

4. Mean substitution. A very simple but popular approach is to substitute means
for the missing values. The method preserves sample size and thus does not reduce
the statistical power associated with sample size in comparison with list-wise or
pairwise deletion procedures, but it is well-known that this method produces biased
estimates and can severely distort the distribution of the variable in which missing
values are substituted. This results in underestimates of the standard deviations
and distorts relationships between variables (estimates of the correlation are pulled
toward zero). Due to these distributional problems, it is often recommended to
ignore missing values rather than impute values by mean substitution (Little and
Rubin, 1989). The following example shows how to apply mean substitution to a
data set with missing values.

> library(ritso)

> data(mdata)

> tail(mdata)

ageh agew edu inc kid

20 38 NA 0 25000 3

21 65 NA 5 70000 4

22 34 36 12 85000 1

23 40 35 16 NA NA

24 38 38 18 95000 2

25 41 37 12 NA 2

> mean.subst <- function(a) {

+ a[is.na(a)] <- mean(a, na.rm=TRUE)

+ a

+ }
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> ximp <- apply(mdata, 2, mean.subst)

> tail(ximp)

ageh agew edu inc kid

20 38 35.25 0 25000 3.00

21 65 35.25 5 70000 4.00

22 34 36.00 12 85000 1.00

23 40 35.00 16 57738 2.25

24 38 38.00 18 95000 2.00

25 41 37.00 12 57738 2.00

5. Regression substitution. The technique of regression substitution replaces
missing values in an input variable by first treating this input as a target and
using the remaining input variables (and other rejected variables) as predictors in
a regression model. Then the predicted value of the regression model is used to
substitute the missing value. This technique might be more accurate than simply
substituting a measure of central tendency, since the imputed value is based on
other input variables. The problem with this technique is that it underestimates
standard errors by underestimating the variance in x.

6. Last value carried forward. For longitudinal data (repeated measures are
taken per subject) one could apply the Last Value Carried Forward (LVCF or
LOCF) technique. The last observed value is used to fill in missing values in
subsequent observations assuming that the most recent observation is the best
guess for subsequent missing values (i.e. that the response remains constant for
the last observed value). Unfortunately this assumption could be biased. This
technique can be applied in R using the function na.locf() from the package zoo

as shown in the next example.

> library(zoo)

> na.locf(mdata)

7. Using information from related observations. In official Statistics, the
imputation of missing values with a donor from the underlying data (hot-deck im-
putation) or with a donor from external data (cold-deck imputation) is still popular.

Usually the data set is split into domains, and within such a domain the data
are ordered based on a set of pre-defined variables, which are called sorting vari-
ables. Sequential hot/cold-deck imputation then selects the observation which is
at the top of the sorted variables as a donor, while random hot/cold-deck imputa-
tion chooses randomly an observation in the domain. Listing 1 shows an example
of the hot-deck procedure using the function hotdec() from the R package VIM.
A small subset of the Community Information Survey (CIS) 2008 is used (for a
short discussion about this data set, see Section ??). This data set includes some
missing values for turnover (turn08 ) and number of employees (emp08 ). In this
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function the variables which have to be imputed must be specified and within each
(sorted) domain the donor has to be chosen (for more details, see the help option
of this function).

library(VIM)
head(xmiss , 3)

nuts nace emp08 turn08 x$weight
2 AT12 1110 3 2524483 1.250
1 AT13 1110 75 NA 1.250
3 AT31 1412 19 3181055 5.167

x <- hotdeck(xmiss , variable=c("emp08","turn08 "), ord_var=c("nace","
nuts"),domain_var ="nuts")

head(x3, 3)
nuts nace emp08 turn08 x$weight

2 AT12 1110 3 2524483 1.250
1 AT13 1110 75 10083030 1.250
3 AT31 1412 19 3181055 5.167

Listing 1: Hot-deck imputation.

8. Dummy variable adjustment or (indicator variable adjustment). This tech-
nique will set the missing values of a given variable to be equal to some arbitrary
value (usually the mean for non-missing cases) and create a dummy variable indi-
cating missingness which is then included in the regression model. This method
is simply an ad-hoc means to keep observations in the analysis and has no sound
theoretical justification. It leads to biases in the estimated regression parameters
and the standard errors, even if the data are MCAR, thus making it unacceptable
(Jones, 1996).

9. Deterministic imputation. The deterministic imputation identifies cases in
which there is only one possible solution (based on logical rules) and thus allows
the record to satisfy the rules.

2.4 Missing data imputation

Many different methods for imputation have been developed over the last few decades.
The techniques for imputation may be divided into univariate methods such as column-
wise (conditional) mean imputation, and multivariate imputation using the linear de-
pendencies between variables. In the latter case there are generally three approaches: (i)
data-ordering and distance-based imputation methods such as hot-deck methods and k-
nearest neighbour imputation, (ii) covariance-based methods such as the approaches by
Verboven et al (2007) or Serneels and Verdonck (2008), and (iii) model-based methods
approaches such as regression imputation (Raghunathan et al, 2001; Templ et al, 2010)
or depth-based imputation (Béguin and Hulliger, 2004). The assumption of elliptical
distributions is necessary for all covariance-based methods, but not for depth-based ones.
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Because of the unique structure of the data arising in in official statistics, “only” the al-
ready considered nearest neighbour (hot-deck, cold-deck, k-nearest neighbour) methods
and model-based imputation provide good estimates for the missing values.

1. k-nearest neighbour imputation. More sophisticated methods for missing data
imputation are based on a neighbour search. The k-nearest neighbour imputation
searches for the k-nearest observations (respective to the observation which has to
be imputed) and replaces the missing value with the mean of the found k obser-
vations (or with the most frequent value among the k nearest neighbours in case
of a discrete variable). As an estimate of the mean it is recommended to use the
(weighted) median instead of the arithmetic mean. Listing 2 provides an example
of the k-nearest neighbour imputation method which chooses the distance metric
for each variable automatically ((it can, of course, also be specified)). Similarly to
the hot-deck imputation the variables of interest have to be determined, especially
those variables that contribute to the calculation of the distance (see the dist_var

argument of the function).

x <- kNN(xmiss , variable=c("emp08","turn08 "), k=5, dist_var=c("nuts
","nace","emp08","turn08 "), numFun = median)

Listing 2: kNN imputation.

2. Maximum likelihood and multiple imputation. Maximum likelihood (ML)
and multiple imputation (MI) are currently considered the“state of the art”and are
the recommended missing data techniques in the methodological literature. These
methods have a strong theoretical framework and are supported by a large num-
ber of empirical studies in different domains. The popularity of these methods has
risen recently due to the available implementations in a variety of both commer-
cial and free statistical software programs. The Expectation Maximisation (EM)
imputation method (Dempster et al, 1977) assumes that the underlying model
for the observed data is Gaussian. This method is able to deal with MCAR and
MAR missing values mechanism. For Gaussian data the EM algorithm starts with
some initial values for the mean and the covariance matrix and iterates through
imputing missing values (imputation step) and re-estimating the mean and the
covariance matrix from the complete data set (estimation step). The iteration
process ends when the maximum relative difference in all of the estimated means,
variances or covariances between two iterations is less than or equal to a given
value. The parameters thus estimated are used to draw the missing elements of
the data matrix under the multivariate normal model (for further details about
the Gaussian imputation see Schafer, 1997, Sections 5.3 and 5.4). Functions for
treating missing values in normal data are implemented in the R package norm.
Listing 3 presents an example using data from a household survey with missing
values (Schafer, 1997)). The example data are available in the package norm.
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> library(norm)
> data(mdata)
> tail(mdata , 4)

ageh agew edu inc kid
22 34 36 12 85000 1
23 40 35 16 NA NA
24 38 38 18 95000 2
25 41 37 12 NA 2
> s <- prelim.norm(mdata) #do preliminary manipulations
> thetahat <- em.norm(s, showits=FALSE) #find the mle
> rngseed (1234567) #set random number generator seed
> ximp <- imp.norm(s,thetahat ,mdata) #impute missing data under the

MLE
> tail(ximp , 4)

ageh agew edu inc kid
22 34 36 .00000 12 85000 .00 1.000000
23 40 35 .00000 16 79331 .41 2.755392
24 38 38 .00000 18 95000 .00 2.000000
25 41 37 .00000 12 54523 .40 2.000000

Listing 3: Imputation of missing multivariate normal data with imp.norm() from the R

package norm.

There are at least three popular implementations that include iterative model-
based imputation: the software implementation by Raghunathan et al (2001), the
R-package mi (Gelman et al, 2010) and the function irmi() of R-package VIM

(Templ and Filzmoser, 2008). (Templ et al, 2010) have shown the advantages of
the IRMI method (implemented in the function irmi()) which does not assume
that the data follows a multivariate normal distribution and uses robust methods.

All the mentioned software implementations are able to deal with the random-
ness inherent to the data and can be used for multiple imputation generating
more than one candidate for a missing cell (Rubin, 1987). Multiple imputation is
one way to express uncertainty related to missing values and can be used as one
way to estimate the variance of an estimator. However, a valuable inference can
also be obtained by applying bootstrap methods (Little and Rubin, 1987; Alfons
et al, 2009). Note that whenever the focus is not on variance estimation, there is
no need for multiple imputation.

The basic procedure behind most model-based imputation methods is the already
mentioned EM algorithm. For the estimation, regression methods are usually ap-
plied in an iterative manner, which is known as regression switching, chain equa-
tions, sequential regressions or variable-by-variable Gibbs sampling (see, e.g., van
Buuren and Oudshoorn, 2005; Muennich and Rässler, 2004).

Listing 4 shows the application of the function irmi() from the R package VIM.
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A short print output reveals that irmi() automatically recognizes (this can be
specified anyway) the distribution of the variables.

x <- irmi(xmiss , robust=TRUE , robMethod ="MM")

Imputation performed on the following data set:
type #missing

nuts "nominal" "0"
nace "nominal" "0"
emp08 "numeric" "10"
turn08 "numeric" "100"
x$weight "numeric" "0"

head(x, 3)
nuts nace emp08 turn08 x$weight

2 AT12 1110 3 2524483 1.250
1 AT13 1110 75 12084880 1.250
3 AT31 1412 19 3181055 5.167

Listing 4: EM-based regression imputation using function irmi() from package VIM.

3. Other imputation methods. Numerous alternative models and computational
methods exist for multiple imputation. For example, MCMC algorithm can be
used, but applied to models other than the multivariate normal model. For ex-
ample, for data in which all the variables are categorical the R package cat can
be used. It uses the MCMC algorithm under a multinomial model or a restricted
log-linear model.

Another R package, mix, is suitable for data sets and models that include both
categorical and quantitative variables. While the approach implemented in this
package might seem to be ideal for many situations, the model is rather complex
and its implementation requires considerable thought and care (Allison, 2001).

3 Editing and Outlier Detection

Data collected in surveys generally contain errors due to a variety of reasons. For ex-
ample, a respondent may give a wrong answer or errors may arise while processing the
data. Statistical data editing, i.e. checks and corrections, are necessary to increase the
quality of the data. First, erroneous values in the data set have to be localized, prefer-
ably in an automated manner. The localized erroneous values have to be replaced by
reasonable values (imputation). It is not necessary to remove all errors from a data set
in order to obtain reliable publication figures (De Waal, 2008) since the sampling error
might be higher than the error related to minor errors in the data. Conducting auto-
mated micro-editing for minor errors is often too ambitious and leads to over-editing.
However, logical relationships in the data should be preserved. For example, the income
components should amount to the income or a girl who is 14 years old cannot be married
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and have three children. In addition, large non-representative outliers (measurement er-
rors) have to be localized and replaced by reasonable estimates or by true values which
may be obtained by contacting the corresponding person or enterprise. Even a bulk of
errors could be prevented by including validation rules in the data collection phase, for
example, by using an electronic questionnaire.

Selective editing methods are techniques for identifying the most influential errors in
a data set, i.e. the errors that have a substantial impact on pre-defined aggregates or
statistics. Generally speaking, it is an application of the theory of the influence function
in robust statistics. The drawbacks of selective editing are that one observation may
have considerable influence on one statistic but almost no influence on another statistic,
and that the multivariate structure of the data are not considered adequately. This is
solved by outlier detection rules.

Outlier detection: The detection of outliers, i.e. of atypical observations which deviate
from the usual data variability, is very important in statistical analysis since classical
statistical models applied to data including outliers can lead to misleading results. In
addition to that, measurement errors may have high influence on aggregates typically
published in statistical tables. Continuous scaled variables in official statistics, mostly
related to business statistics, come with a high percentage of zeros, resulting in semi-
continuous variables. This leads to a serious limitation of methods used for outlier
detection and in combination with missing values in the data makes an application of
well-known standard outlier detection methods impossible. One approach to deal with
these extra challenges is to simply handle the zeros in the data as missing values, to
impute these “missings” with an appropriate imputation method and, finally, to apply
conventional outlier detection methods on the imputed data. A possible disadvantage
of this approach is the strong dependence on the performance of the imputation method
used. Another approach is to omit observations with zeros. However, this causes a
problem for multivariate methods due to the fact that excluding observations with zeros
might render a data matrix far too small for drawing significant conclusions. Hence, a
pair-wise approach of certain multivariate methods seems rather sensible due to the fact
that it is now possible to make use of a considerable amount of observations from the
actual data without having to resort to imputation.

The multivariate aspect of the data collected in surveys makes the task of outlier iden-
tification particularly challenging. The outliers can be completely hidden in one or two
dimensional views of the data. This underlines that univariate outlier detection methods
are useless, although they are favoured in National Statistical Offices (NSO) because of
their simplicity. For more details on multivariate outlier detection in business survey
data, see Todorov et al (2011) and the references therein. The focus of the present study
is on using robust methods to identify the outliers which can subsequently be treated
in the traditional way and particulary in presenting R software tools to accomplish this
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task.

3.1 General principles

A general approach to multivariate outlier identification in a p-dimensional data set
X = (x1, . . . ,xn) is to compute a given measure for the distance of a particular data point
from the centre of the data and declare those points which are too far from the centre as
outliers. Usually, as a measure of “outlyingness” for a data point xi, i = 1, . . . ,n, a robust
version of the (squared) Mahalanobis distance RD2

i is used, computed relative to high
breakdown point robust estimates of location T and covariance C of the data set X :

RD2
i = (xi−T )tC−1(xi−T ) (5)

The most common estimators of the multivariate location and scatter are the sample
mean x̄ and the sample covariance matrix S, i.e. the corresponding ML estimates (when
the data follow a normal distribution). These estimates are optimal if the data derive
from a multivariate normal distribution but are extremely sensitive to the presence of
even a few outliers in the data. The outlier identification procedure based on x̄ and S

faces the following two problems (Rousseeuw and Leroy, 1987):

1. Masking: multiple outliers can distort the classical estimates of mean x̄ and co-
variance S in such a way (attracting x̄ and inflating S) that they do not necessarily
attain large values for the Mahalanobis distance, and

2. Swamping: multiple outliers can distort the classical estimates of mean x̄ and
covariance S in such a way that observations which are consistent with the majority
of the data attain large values for the Mahalanobis distance.

In the last several decades much effort has been devoted to the development of affine
equivariant estimators with a high breakdown point. The most widely used estima-
tors of this type are the Minimum Covariance Determinant (MCD) estimator and the
Minimum Volume Ellipsoid (MVE) estimator, S-estimators and the Stahel-Donoho esti-
mator. These estimators can be configured in such a way as to achieve the theoretically
maximal possible breakdown point of 50 percent which gives them the ability to detect
outliers even if their number amounts to nearly half of the sample size. If we give up the
requirement for affine equivariance, estimators like the orthogonalized Gnanadesikan-
Kettenring (OGK) estimator are available and the reward is an extreme gain in speed.
For definitions, algorithms and references to the original papers see Maronna et al (2006).
Most of these methods are implemented in the R statistical environment (R Develop-
ment Core Team, 2011) and are available in the object-oriented framework for robust
multivariate analysis (Todorov and Filzmoser, 2009).

After having found reliable estimates for the location and covariance matrix of the data
set, the second issue is determining how large the robust distances should be in order
to declare a point an outlier. The usual cutoff value is a quantile of the χ2 distribution,
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like D0 = χ2
p(0.975). The reason is that if X follows a multivariate normal distribution,

the squared Mahalanobis distances based on the sample mean x̄ and sample covariance
matrix S follow χ2

p distribution (see, for example Johnson and Wichern, 2002, p. 189).
This will no longer be valid if robust estimators are applied and/or if the data have
other than multivariate normal distribution. Maronna and Zamar (2002) propose using
a transformation of the cutoff value which should help the distribution of the squared
robust distances RD2

i to resemble χ2 for non-normal original data:

D0 =
χ2

p(0.975)med(RD2
1, . . . ,RD2

n)
χ2

p(0.5)
. (6)

For other alternatives which may lead to more accurate cutoff value, see Filzmoser et al
(2005); Hardin and Rocke (2005); Cerioli et al (2009); Riani et al (2009).

A drawback of all methods considered so far is that they only work with complete
data, which is not a usual case when dealing with sample surveys. In the next two
subsections we will describe and introduce methods that are able to cope with missing
values.

3.2 Algorithms based on imputation

Robustifying the EM algorithm. Little and Smith (1987) were the first to propose a
robust estimator for incomplete data by replacing the MLE in the M-step of the EM
algorithm (see Dempster et al, 1977) by an estimator belonging to the general class of
M-estimates (Huber, 1981) and called this procedure ER-estimator. They suggested to
use ML estimation as a starting point for the ER algorithm, where the missing values
were replaced by the median of the corresponding observed data. Unfortunately, the
breakdown point of this estimator, as of all general M-estimates, cannot be higher than
1/(p+1) (see for example Maronna et al, 2006, p. 186) which renders it unusable for the
purpose of outlier detection. Copt and Victoria-Feser (2004) constructed a high break-
down point estimator of location and covariance for incomplete multivariate data by
modifying the MCD estimator and using it as a starting point not for an ER algorithm,
but for an S-estimator, adapted to work with incomplete data. They call this estimator
ERTBS. An implementation of this procedure was available by the authors of this study
in the form of a compiled shared library, but it did not perform as well as expected and
was excluded from further investigations in the present work.

Normal imputation followed by high-BP estimation. A straightforward strat-
egy for adapting estimators of location and covariance to work with missing data is to
perform one preliminary step of imputation and then run any of the above described
algorithms, such as, for example MCD, OGK, S and Stahel-Donoho (SDE) on the com-
plete data. Many different methods for imputation have been developed over the last
few decades and we will consider a likelihood-based approach such as the aforementioned
expectation maximization (EM) imputation method (Dempster et al, 1977) here, assum-
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ing the underlying model for the observed data is Gaussian. This method is able to deal
with the MCAR and MAR missing values mechanism. For Gaussian data the EM algo-
rithm starts with some initial values for the mean and the covariance matrix and iterates
through imputing missing values (imputation step) and re-estimating the mean and the
covariance matrix from the complete data set (estimation step). The iteration process
ends when the maximum relative difference in all of the estimated means, variances or
covariances between two iterations is less than or equal to a given value. The parameters
estimated in this way are used to draw the missing elements of the data matrix under
the multivariate normal model (for further details about the Gaussian imputation, see
Schafer, 1997, Sections 5.3 and 5.4). We are tempted to call this class of methods PM-
MCD (poor man’s MCD), etc. but for the sake of simplicity we will simply call them
MCD, S, SDE, etc., meaning the high breakdown method applied to complete data and
at the same time applied to normally (non-robustly) imputed data. Whenever another
method for imputation precedes the high breakdown estimation method, like the robust
sequential imputation described in the next section, the corresponding notation will be
used. Thereby we can also adapt projection based algorithms like SIGN1 (Filzmoser
et al, 2008).

The next step after reliably estimating the location T and covariance matrix C is to
compute the robust distances from the incomplete data. For this purpose we have to
adapt Equation (5) to use only the observed values in each observation xi and then scale
up the obtained distance. We rearrange the variables if necessary and partition the ob-
servation xi into xi = (xoi,xmi) where xoi denotes the observed part and xmi - the missing
part of the observation. Similarly, the location and covariance estimates are partitioned,
so that we have T oi and Coi as those parts of T and C which correspond to the observed
part of xi. Then

RD2
oi = (xoi−T oi)tC−1

oi (xoi−T oi) (7)

is the squared robust distance computed only from the observed part of xi. If xi is un-
contaminated, follow a multivariate normal distribution, and if the missing values are
missing at random, then the squared robust distance given by Equation (7) is asymp-
totically distributed as χ2

pi
where pi is the number of observed variables in xi (see Little

and Smith, 1987).

The MCD estimator is not very efficient in normal models, especially if h is selected
to achieve the maximal breakdown point (BP) (Croux and Haesbroeck, 1999), and the
same is valid for the OGK estimator (Maronna et al, 2006, p. 193, 207). To overcome
the low efficiency of these estimators, a reweighted version can be used (see Lopuhaä and
Rousseeuw, 1991; Lopuhaä, 1999). For this purpose weight wi is assigned to each obser-
vation xi, defined as wi = 1 if RD2

oi ≤ χ2
pi,0.975 and wi = 0 otherwise, relative to the raw

estimates (T ,C) and using Equation (7). Then the reweighted estimates are computed
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as

T R =
1
ν

n

∑
i=1

wixi,

CR =
1

ν−1

n

∑
i=1

wi(xi−T R)(xi−T R)t , (8)

where ν is the sum of the weights, ν = ∑
n
i=1 wi. Since the underlying data matrix is

incomplete, the EM algorithm is used to compute T R and CR. These reweighted estimates
(T R,CR), which have the same breakdown point as the initial (raw) estimates but better
statistical efficiency, are computed and used by default for the methods MCD and OGK.

Robust sequential imputation followed by high-BP estimation. Since we as-
sume that outliers are present in the data we could expect an improvement of the
performance of the previously described methods if the non-robust Gaussian imputa-
tion is substituted by a robust imputation technique that can handle simultaneously
missing and outlying values. One such method was proposed by Vanden Branden and
Verboven (2009) (RSEQ), extending the sequential imputation technique (SEQimpute) of
Verboven et al (2007) by robustifying some of its crucial steps. SEQimpute starts from
a complete subset of the data set Xc and sequentially estimates the missing values in
an incomplete observation, say x∗, by minimizing the determinant of the covariance of
the augmented data matrix X∗ = [Xc;(x∗)t ]. Since SEQimpute uses the sample mean and
covariance matrix it will be vulnerable to the influence of outliers and it is improved
by plugging in robust estimators of location and scatter. One possible solution is to
use the outlyingness measure as proposed by Stahel (1981) and Donoho (1982), which
was successfully used for outlier identification in Hubert et al (2005). We can compute
the outlyingness measure for the complete observations only, but once an incomplete
observation is imputed (sequentially) we can compute the outlyingness measure for it
also and use it to decide whether this observation is an outlier or not. If the outlyingness
measure does not exceed a predefined threshold the observation is included in the further
steps of the algorithm. After obtaining a complete data set we proceed by applying a
high breakdown point estimation method in the same way as described in the previous
section.

3.3 Algorithms based on other strategies

Transformed Rank Correlation (TRC) This is one of the algorithms proposed by
Béguin and Hulliger (2004) and is based, similarly to the OGK algorithm of Maronna
and Zamar (2002), on the proposal of Gnanadesikan and Kettenring for pair-wise con-
struction of the covariance matrix. After all missing items have been imputed (or some
observations with too few observed items have been removed) the complete data matrix
can be used to perform the transformation and compute the final robust location and
covariance matrix as in the case of complete data.
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Epidemic Algorithm (EA) The second algorithm proposed by Béguin and Hulliger
(2004) is based on data depth and is distribution free. It simulates an epidemic which
starts at a multivariate robust centre (sample spatial median) and propagates through
the point cloud. The infection time is used to determine the outlyingness of the points.
The latest infected points or those not infected at all are considered outliers. The
adaption of the algorithm to missing values is straightforward by leaving out missing
values from the calculations of the univariate statistics (medians and median absolute
deviations) as well as from the distance calculations.

BACON-EEM (BEM) The third algorithm (Béguin and Hulliger, 2008) developed
in the framework of the EUREDIT project is based on the algorithm proposed by Billor
et al (2000), which in turn is an improvement over an earlier ”forward search“ based
algorithm by one of the authors.

The last three algorithms - TRC, EA and BEM also take into account the sampling
context in which the data are assumed to be a random sample s of size n from a finite
population U with size N and the sample is drawn with the sample design p(s). The
sample design p(s) defines the inclusion probabilities and the corresponding sampling
weights. With these weights the classical mean and covariance are estimated using
the Hàjek estimators, and the weighted median and MAD are estimated as described in
Béguin and Hulliger (2004) where further details about the adaptation of the algorithms
to sampling weights can be found.

Robust Principal Components for incomplete data Principal component anal-
ysis (PCA) is a widely used technique for dimension reduction achieved by finding a
smaller number k of linear combinations of the originally observed p variables and re-
taining most of the variability of the data. These new variables, referred to as principal
components, are uncorrelated with each other and account for a decreasing amount of
the total variance, i.e. the first principal component explains the maximum variance
in the data and the second principal component explains the maximum variance in the
data that has not been explained by the first principal component and so on. Dimension
reduction by PCA is mainly used for visualization of multivariate data by scatter plots
(in a lower dimensional space) or transformation of highly correlated variables into a
smaller set of uncorrelated variables which can be used by other methods (e.g. multi-
ple or multivariate regression). The classical approach to PCA measures the variability
through empirical variance and is essentially based on the computation of eigenvalues
and eigenvectors of the sample covariance or correlation matrix. Therefore, the results
may be extremely sensitive to the presence of even a few atypical observations in the
data. The outliers could artificially increase the variance in an otherwise uninformative
direction and this direction will be determined as a PC direction. PCA was probably
the first multivariate technique subjected to robustification, either by simply computing
the eigenvalues and eigenvectors of a robust estimate of the covariance matrix or directly
by estimating each principal component in a robust manner. Different approaches to
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robust PCA are presented in Todorov and Filzmoser (2009) and examples are given how
these robust analyses can be carried out in R. Details on the methods and algorithms
can be found in the corresponding references.

Projecting the data into a lower dimensional space, one could obtain an estimate of
the location and covariance matrix and then use them for outlier detection as described
in the beginning of this section or alternatively, one could directly compute the Maha-
lanobis distances of the projected observations to the projection of the centre of the data
(see, for example Filzmoser et al, 2008).

If the data are incomplete as is usual in business surveys, standard classical or robust
PCA cannot be applied. Walczak and Massart (2001) propose using the EM approach
to deal with missing data in PCA, and Serneels and Verdonck (2008) extended it to
robust PCA. Most of the known methods for robust PCA are implemented in the pack-
age rrcov (see Todorov and Filzmoser, 2009), and the corresponding versions for dealing
with incomplete data can be found in the package rrcovNA. More details about the
implementation and examples will be presented in Section 3.6.

Handling of semi-continuous variables. In establishment and other surveys vari-
ables are often used, which have valid values either in a given interval or are zero. These
variables must be treated in the same way as regular variables, except that a value of
zero is also accepted. There could, of course, be a minimum that is bigger than zero
on the variable and the number of zero valued observations could be larger than half of
the total number. Such variables are called semi-continuous variables and it is obvious
that none of the methods discussed so far can handle such types of variables. Recently
Meraner (2010) proposed a modification of the OGK algorithm which can handle semi-
continuous variables. This approach takes advantage of the pair-wise character of the
algorithm which allows “skipping” the zeros in the actual computation of robust location
and covariance matrix estimates, and then use them for outlier detection.

3.4 Software availability

The algorithms discussed in this paper are available in the R package rrcovNA which in
turn uses the packages robustbase, rrcov and mvoutlier. These packages are available
from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org

under the GNU General Public License. The three algorithms from the EUREDIT
project (TRC, EA and BEM) were kindly provided by the authors and will be included in
a later version of rrcovNA.

3.5 Example session

In this section we will introduce the base functionalities provided in the package rrcovNA

to analyse incomplete data by an example session. First, we have to load the package
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rrcovNA which will cause all other necessary packages to be loaded as well. The frame-
work includes example data sets but here we will only load those which will be used
throughout the following examples. For the rest of the paper it will be assumed that
the package has already been loaded.

R> ##

R> ## Load the 'rrcovNA' package and the data sets to be

R> ## used throughout the examples

R> ##

R> library("rrcovNA")

R> data("bush10")

Most of the multivariate statistical methods are based on estimates of multivariate loca-
tion and covariance, therefore these estimates play a central role in the framework. We
will start by computing the robust minimum covariance determinant estimate for the
data set bush10 included in the package rrcovNA. After computing its robust location
and covariance matrix using the MCD method implemented in the function CovNAMcd()

we can print the results by calling the default show() method on the returned object
mcd. Additional summary information can be displayed with the summary() method.
The standard output contains the robust estimates of location and covariance. The
summary output (not shown here) additionally contains the eigenvalues of the covari-
ance matrix and the robust distances of the data items (Mahalanobis type distances
computed with the robust location and covariance instead of the sample ones).

R> ##

R> ## Compute MCD estimates for the modified bushfire data set

R> ## - show() and summary() examples

R> ##

R> mcd <- CovNAMcd(bush10)

R> mcd

Call:

CovNAMcd(x = bush10)

-> Method: Minimum Covariance Determinant Estimator for incomplete data.

Robust Estimate of Location:

V1 V2 V3 V4 V5

109.5 149.5 257.9 215.0 276.9

Robust Estimate of Covariance:

V1 V2 V3 V4 V5

V1 697.6 489.3 -3305.1 -671.4 -550.5

V2 489.3 424.5 -1889.0 -333.5 -289.5

V3 -3305.1 -1889.0 18930.9 4354.2 3456.4
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V4 -671.4 -333.5 4354.2 1100.1 856.0

V5 -550.5 -289.5 3456.4 856.0 671.7

R> summary(mcd)

R> ##

R> ## Example plot of the robust against classical

R> ## distances for the modified bushfire data set

R> ##

R> plot(mcd)

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
5

10
15

20

Mahalanobis distance

R
ob

us
t d

is
ta

nc
e

●

●●●
●

●

●

●
●

●

●

●

●
●

●
●

●
●●

●●

●

●

●●●
●

●

●
●

●

●

●

●

●●
●

●

10

1134

7
31

8
9

3833

373635

32

Distance−Distance Plot

Figure 1: Example plot of the robust against classical distances for the modified
bushfire data set (including missing values).

Now we will show one of the available plots by calling the plot() method—Figure 1
presents the Distance-Distance plot introduced by Rousseeuw and van Zomeren (1990)
which plots the robust distances versus the classical Mahalanobis distances and allows
to classify the observations and identify the potential outliers. The observations con-
taining missing values are shown in a different colour. The description of this plot as
well as examples of more graphical displays based on the covariance structure will be
shown in Section 3.7. Apart from the demonstrated MCD method the package provides
many other robust estimators of multivariate location and covariance for incomplete
data. It is important to note that the format of the output and the graphs will be the
same, regardless of which estimation method was used. For example, the following code
lines will compute the S estimates for the same data set and provide the standard and
extended output (not shown here).
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R> ##

R> ## Compute the S-estimates for the modified bushfire data set

R> ## bush10 and provide the standard and extended output

R> ##

R> est <- CovNASest(bush10, method="bisquare")

R> est

R> summary(est)

Nevertheless, the variety of methods could pose a serious hurdle for the novice and may
even be quite tedious for the experienced user. Therefore, a shortcut is provided—
the function CovNARobust() can be called with a parameter set specifying any of the
available estimation methods, but if this parameter set is omitted the function will select
a method on the basis of the data size. As shown in the example below, the function
selected the Stahel-Donoho estimates in this case. For details and further examples see
Section 3.6.

R> ##

R> ## Automatically select the appropriate estimator according

R> ## to the problem size - in this example the Stahel-Donoho

R> ## estimates will be selected.

R> ##

R> est <- CovNARobust(bush10)

R> est

Call:

CovSde(x = x, control = obj)

-> Method: Stahel-Donoho estimator

Robust Estimate of Location:

V1 V2 V3 V4 V5

102.4 145.6 298.4 224.1 284.0

Robust Estimate of Covariance:

V1 V2 V3 V4 V5

V1 974.1 713.7 -5257.1 -1339.9 -1061.2

V2 713.7 587.8 -3487.3 -870.5 -693.9

V3 -5257.1 -3487.3 31954.6 8408.5 6645.5

V4 -1339.9 -870.5 8408.5 2275.7 1786.1

V5 -1061.2 -693.9 6645.5 1786.1 1412.3

3.6 Object model and implementation details

The object model for the S4 classes and methods implementing the different multi-
variate location and scatter estimators for incomplete data follows the proposed class
hierarchy given in Todorov and Filzmoser (2009). The abstract class CovNA serves as a
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base class for deriving all classes representing classical and robust location and scatter
estimation methods. It defines the common slots and corresponding accessor methods,
provides implementation for the general methods like show(), plot() and summary().
The slots of CovNA hold some input or default parameters as well as the results of the
computations: the location, covariance matrix and the distances. The show() method
presents brief results of the computations and the summary() method returns an object
of class SummaryCovNA which has its own show() method. These slots and methods are
defined and documented only once in this base class and can be used by all derived
classes. Whenever new data (slots) or functionality (methods) are necessary, they can
be defined or redefined in the particular class.

The classical location and scatter estimates for incomplete data are represented by the
class CovNAClassic which inherits directly from CovNA (and uses all slots and methods
defined there). The function CovNAClassic() serves as a constructor (generating func-
tion) of the class. It can be called by providing a data frame or matrix. As already
demonstrated in Section 3.5 the methods show() and summary() present the results of
the computations. The plot() method draws different diagnostic plots which are shown
in one of the next sections. The accessor functions like getCenter(), getCov(), etc. are
used to access the corresponding slots. Another abstract class, CovNARobust is derived
from CovNA, which serves as a base class for all robust location and scatter estimators.
The classes representing robust estimators like CovNAMcd, CovNASest, etc. are derived
from CovNARobust and provide implementation for the corresponding methods. Each of
the constructor functions CovNAMcd(), CovNAOgk() and CovNASest() performs the nec-
essary computations and returns an object of the class containing the results. Similarly
to the CovNAClassic() function, these functions can be called either with a data frame
or a numeric matrix.

3.6.1 Generalized estimation function

The variety of estimation methods available for incomplete data, each of them with
different parameters, as well as the object models described earlier in this section can
be overwhelming for the user, especially for the novice who does not care much about
the technical implementation of the framework. One function is therefore provided
which gives quick access to the robust estimates of the location and covariance matrix
for incomplete data. The class CovNARobust is abstract (defined as VIRTUAL) and
no such objects can be created but any of the classes derived from CovNARobust, such
as CovNAMcd or CovNAOgk, can act as an object of class CovNARobust. The function
CovNARobust(), which technically is not a constructor function, can return an object of
any of the classes derived from CovNARobust according to the user request. This request
can be specified in one of three forms:

• If only a data frame or matrix is provided and the control parameter is omitted,
the function decides which estimate to apply according to the size of the problem
at hand. If there are less than 1000 observations and less than 10 variables or less
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than 5000 observations and less than 5 variables, the Stahel-Donoho estimator
will be used. Otherwise, if there are less than 50000 observations, either bisquare
S estimates (in case of less than 10 variables) or Rocke type S estimates (for 10 to
20 variables) will be used. In both cases the S iteration starts at the initial MVE
estimate. And finally, if there are more than 50000 observations and/or more
than 20 variables the Orthogonalized Quadrant Correlation estimator (function
CovNAOgk() with the corresponding parameters) is used. This is illustrated by the
following example:

R> ##

R> ## Automatically select the appropriate estimator according

R> ## to the problem size.

R> ##

R> genNAData <- function(n, ncol){

+ x<-rnorm(n); x[sample(1:n, size=0.1*n)] <- NA

+ matrix(x, ncol=ncol)

+ }

R> ## 20x2 - SDE

R> getMeth(CovNARobust(genNAData(n=40, ncol=2)))

[1] "Stahel-Donoho estimator"

R> ## 2000x8 - bisquare S

R> getMeth(CovNARobust(genNAData(n=1600, ncol=8)))

[1] "Stahel-Donoho estimator"

R> ## 2000x10 - Rocke S

R> getMeth(CovNARobust(genNAData(n=20000, ncol=10)))

[1] "S-estimates: Rocke type"

R> ## 100000x2 - OGK

R> getMeth(CovNARobust(genNAData(n=200000, ncol=2)))

[1] "Orthogonalized Gnanadesikan-Kettenring Estimator"

• The simplest way to choose an estimator is to provide a character string with the
name of the estimator—one of "mcd", "ogk", "s-fast", "s-rocke", etc.

R> ##

R> ## Rocke-type S-estimates

32



R> ##

R> getMeth(CovNARobust(matrix(rnorm(40), ncol=2),

+ control="rocke"))

[1] "S-estimates: Rocke type"

• If some of the estimation parameters need to be specified, the user can create a
control object (derived from CovControl) and pass it to the function together with
the data. For example, to compute the OGK estimator using the median absolute
deviation (MAD) as a scale estimate and the quadrant correlation (QC) as a pair-
wise correlation estimate we create a control object ctrl passing the parameters
s_mad and s_qc to the constructor function and then calling CovNARobust with
this object.

R> ##

R> ## Specify some estimation parameters through a control

R> ## object.

R> ## The last command line illustrates the accessor method

R> ## for getting the correlation matrix of the estimate

R> ## as well as a nice formatting method for covariance

R> ## matrices.

R> ##

R> data("toxicity")

R> ctrl <- CovControlOgk(smrob = "s_mad", svrob = "qc")

R> est <- CovNARobust(toxicity, ctrl)

R> ## round(getCenter(est),2)

R> ## as.dist(round(getCorr(est), 2))

For more details, see the description of the function CovRobust() for complete data in
Todorov and Filzmoser (2009).

3.6.2 Robust PCA for incomplete data

The object model for the S4 classes and methods implementing the principal component
analysis methods follows the proposed class hierarchy given in Todorov and Filzmoser
(2009), but for simplicity the number of classes is reduced and the different estimation
methods are specified by a parameter. The abstract class PcaNA (derived from Pca in
package rrcov) serves as a base class for deriving all classes representing classical and
robust principal components analysis methods. It defines the common slots and the
corresponding accessor methods and provides implementation for the general methods
like show(), plot(), summary() and predict(). The slots of PcaNA hold some input
or default parameters like the requested number of components as well as the results
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of the computations: the eigenvalues, the loadings and the scores. The show() method
presents brief results of the computations, and the predict() method projects the origi-
nal or new data to the space spanned by the principal components. It can be used either
with new observations or with the scores (if no new data are provided). The summary()

method returns an object of class SummaryPca which has its own show() method. As in
the other sections of the package these slots and methods are defined and documented
only once in this base class and can be used by all derived classes. Whenever new infor-
mation (slots) or functionality (methods) are necessary, they can be defined or redefined
in the particular class.

Classical principal component analysis for incomplete data is represented by the class
PcaNA withe method="class" which inherits directly from Pca (and uses all slots and
methods defined there). The function PcaNA() serves as a constructor (generating func-
tion) of the class. It can be called either by providing a data frame or matrix or a
formula with no response variable, referring only to numeric variables. Let us consider
the following simple example with the data set bush10 containing missing values. The
code line

R> PcaNA(bush10, method="class")

can be rewritten as (and is equivalent to) the following code line using the formula
interface

R> PcaNA(~ ., data = bush10, method="class")

The function PcaNA() with method="class" performs the standard principal compo-
nents analysis and returns an object of the class PcaNA.

R> ##

R> ## Classical PCA

R> ##

R> pca <- PcaNA(~., data=bush10, method="class")

R> pca

Call:

PcaNA(formula = ~., data = bush10, method = "class")

Standard deviations:

[1] 163.679611 27.335832 16.573119 8.417495 1.502502
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Loadings:

PC1 PC2 PC3 PC4 PC5

V1 -0.02659665 0.40918484 0.4023615 0.8184958 -0.005503999

V2 -0.01525114 0.90453802 -0.2930261 -0.3087768 -0.019260616

V3 0.90576986 -0.02651191 -0.3610926 0.2202021 0.001101088

V4 0.32660506 0.07626469 0.6095852 -0.3314624 -0.637221583

V5 0.26827246 0.08865405 0.5002589 -0.2763426 0.770419481

R> summary(pca)

Call:

PcaNA(formula = ~., data = bush10, method = "class")

Importance of components:

PC1 PC2 PC3 PC4 PC5

Standard deviation 163.6796 27.3358 16.57312 8.41749 1.50250

Proportion of Variance 0.9607 0.0268 0.00985 0.00254 0.00008

Cumulative Proportion 0.9607 0.9875 0.99738 0.99992 1.00000

R> plot(pca)

The show() method displays the standard deviations of the resulting principal com-
ponents, the loadings and the original call. The summary() method presents the im-
portance of the calculated components. The plot() draws a PCA diagnostic plot
which is presented and described later. The accessor functions like getLoadings(),
getEigenvalues(), etc. are used to access the corresponding slots, and predict() is
used to rotate the original or new data to the space of the principle components.

The robust PCA methods are performed by supplying the corresponding parameter
to the function PcaNA() and correspond to the complete data methods PcaHubert,
PcaLocantore, etc. derived from PcaRobust in rrcov. The constructor function PcaNA()

with the corresponding parameter method=c("locantore", "hubert", "grid", "proj",

"class", "cov") performs the necessary computations and returns an object of the
class containing the results. In the following example the same data are analysed using
a projection pursuit method.

R> ##

R> ## Robust PCA

R> ##

R> rpca <- PcaNA(~., data=bush10, method="grid", k=3)

R> rpca

Call:

PcaNA(formula = ~., data = bush10, method = "grid", k = 3)
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Standard deviations:

[1] 134.50391 24.94751 4.79467

Loadings:

PC1 PC2 PC3

V1 0.01248127 0.5058076 -0.1470630

V2 0.12643303 0.7822247 -0.3153327

V3 0.87902227 -0.2551691 -0.3964164

V4 0.35099686 0.1952972 0.6683505

V5 0.29661415 0.1703844 0.5244993

R> ##summary(rpca)

3.7 Visualization of the results

The default plot accessed through the method plot() of class CovNARobust is the
Distance-Distance plot introduced by Rousseeuw and van Zomeren (1990). An example
of this graph which plots the robust distances versus the classical Mahalanobis distances
is illustrated in Figure 1. The dashed line represents the points for which the robust
and classical distances are equal. The horizontal and vertical lines are drawn at values
x = y =

√
χ2

p,0.975. Points beyond these lines can be considered outliers and are identified
by their labels. All observations which have at least one missing value are shown in red.

The other available plots are accessible either interactively or through the which param-
eter of the plot() method. Figure 2 shows the pair-wise correlations (which="pairs")
computed classically as the sample correlation coefficients (excluding the pair-wise miss-
ing values) and computed robustly by applying the Minimum Covariance Determinant
(MCD) method for incomplete data. In the upper triangle the corresponding ellipses
represent bivariate normal density contours with zero mean and unit variance together
with a bivariate scatter plot of the data. The observations which have a missing value
in any of the coordinates are projected on the axis and are shown in red. The lower
triangle presents classical and robust correlation coefficients. A large positive or nega-
tive correlation is represented by an elongated ellipse with a major axis oriented along
the ±45 degree direction while near to zero correlation is represented by an almost
circular ellipse. The differences between the classical and robust estimates are easily
distinguishable.

R> mcd <- CovNAMcd(bush10)

R> plot(mcd, which="pairs")

The left panel of Figure 3 exemplifies the distance plot in which robust and classical
Mahalanobis distances are shown in parallel panels. The outliers have large robust
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Figure 2: Classical and robust correlations and scatter plot matrix with tolerance
ellipses.

distances and are identified by their labels. The right panel of Figure 3 shows a Quantile-
Quantile comparison plot of the robust and the classical Mahalanobis distances versus
the square root of the quantiles of the chi-squared distribution.
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Figure 3: Distance plot and chi-square Q-Q plot of the robust and classical distances.

The next plot presented in Figure 4 shows a scatter plot of the data on which the
97.5% robust and classical confidence ellipses are superimposed. The observations with
distances larger than

√
χ2

p,0.975 are identified by their subscript. In the right panel of
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Figure 4 a screeplot of the ces data set is shown, presenting the robust and classical
eigenvalues.

R> ##

R> ## a) scatter plot of the data with robust and classical

R> ## confidence ellipses.

R> ## b) screeplot presenting the robust and classical eigenvalues

R> ##

R> data("bush10")

R> data("ces")

R> X <- bush10[,c(2,3)]

R> usr <- par(mfrow=c(1,2))

R> plot(CovNAMcd(X), which="tolEllipsePlot", classic=TRUE)

R> plot(CovNAMcd(ces), which="screeplot", classic=TRUE)

R> par(usr)
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Figure 4: Robust and classical tolerance ellipse for two selected variables (V2 and V3)
of the modified bushfire data and robust and classical scree plot for the Consumer
Expenditure Survey data (ces data set).

In the context of PCA Hubert et al (2005) defined a diagnostic plot or outlier map which
helps to distinguish between regular observations and different types of outliers. The
diagnostic plot is based on the score distances and orthogonal distances computed for
each observation. The score distance is defined by

SDi =

√√√√ k

∑
j=1

t2
i j

l j
, i = 1, . . . ,n, (9)

where ti j is the element of the score matrix T . It measures the distance of each ob-
servation to the subspace spanned by the first k principal components. The orthogonal
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distance is defined by
ODi = ||xi−m−Pt i||, i = 1, . . . ,n (10)

where t i is the ith row of the score matrix T . This measure corresponds to the distance
of the projection of each observation into the space spanned by the first k principal
components. The diagnostic plot shows the score versus the orthogonal distance, and
indicates the cut-off values with a horizontal and vertical line, which makes it possible
to distinguish regular observations from the two types of outliers (for details, see Hubert
et al, 2005). An example of the classical and robust diagnostic plot for the bush10 data
set is shown in Figure 5.

R> ##

R> ## An example of the classical and robust diagnostic

R> ## plot for the bush10 data set

R> ##

R> usr<-par(mfrow=c(1,2))

R> plot(PcaNA(bush10, k=3, method="class"), main="Classical PCA")

R> plot(PcaNA(bush10, k=3, method="locantore"))

R> par(usr)

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
5

10
15

20

Classical PCA

Score distance

O
rt

ho
go

na
l d

is
ta

nc
e

3
31

29

30

8

9

●

●

●●

●●

●

●
●

●

●

●

●

●
●

●●
●●
●
●
●
●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

0 5 10 15 20 25 30

0
20

40
60

80

Robust PCA

Score distance

O
rt

ho
go

na
l d

is
ta

nc
e

37

2

34

9

34

2

Figure 5: Classical and robust diagnostic plot for the bush10 data with k = 3.

39



4 Visualization of missing values

Statistical graphics are an important component of modern data analysis and as pointed
out by (Tukey, 1962, 1977) data has to be explored using graphics to identify possible
problems even before applying models to the data or producing any statistics. When
data include missing values most visualization tools fail because they are designed to
analyse complete data sets. However, virtually all data sets in official statistics contain
missing values due to measurement errors or non-response.

Useful tools for visualizing missing values and exploring the data as well as the struc-
ture of the missing values are available in the R package VIM (Templ and Alfons, 2011).
Depending on the structure of the missing values, these tools may help to identify the
mechanism generating the missing values. VIM stands for “Visualisation and Imputa-
tion of Missing Values”. The package was written by Matthias Templ, Andreas Alfons
and Alexander Kowarik and is maintained by Matthias Templ. Package VIM allows to
explore and analyse data which contains missing values. It is possible to explore the
structure of missing values, as well as to produce high-quality graphics for publications.

In the following examples the R package VIM is applied to INDSTAT 2 edition 2010,
the UNIDO Industrial Statistics Database. The INDSTAT 2 database contains time
series data from 1963 onwards. Data are available by country, year and ISIC (Interna-
tional Standard Industrial Classification of All Economic Activities) Revision 3 at the
2-digit level. All variables containing monetary value data are originally stored in na-
tional currency at current prices. The system allows for data conversion from national
currency into current US dollars using the average period exchange rates as given in
the IMF/IFS (International Monetary Fund/International Financial Statistics). The
database contains seven principle indicators of industrial statistics:

1. Number of establishments (EST). An“establishment”is ideally a unit that engages
in one or in predominantly one kind of activity at a single location under single
ownership or control, for example, a workshop or factory.

2. Number of employees (EMP). The number of employees includes all persons en-
gaged other than working proprietors, active business partners and unpaid family
workers.

3. Wages and salaries (WS) (at current prices). Wages and salaries include all
payments in cash or in kind paid to “employees” during the reference year in
relation to work performed for the establishment.

4. Gross output (GO) (at current prices). The measure of gross output normally
reported is the census concept, which covers only activities of an industrial nature.
The value of census output in the case of estimates compiled on a production basis
comprises: (a) the value of sale of all products of the establishment; (b) the net
change between the beginning and the end of the reference period in the value
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of work in progress and stocks of goods to be shipped in the same condition as
received; (c) the value of industrial work done or industrial services rendered to
others; (d) the value of goods shipped in the same condition as received less the
amount paid for these goods; and (e) the value of fixed assets produced during
the period by the unit for its own use. In the case of estimates compiled on a
shipment basis, the net change in the value of stocks of finished goods between the
beginning and the end of the reference period is also included.

5. Value added (VA) (at current prices). The measure of value added normally
reported is the census concept, which is defined as the value of census output less
the value of census input, which covers: (a) value of materials and supplies for
production (including cost of all fuel and purchased electricity); and (b) cost of
industrial services received (mainly payments for contract and commission work
and repair and maintenance work).

6. Gross fixed capital formation (GFCF). Gross fixed capital formation refers to
the value of purchases and own account construction of fixed assets during the
reference year less the value of corresponding sales.

7. Number of female employees (EMPF).

8. Index of Industrial Production (IIP). The index of industrial production is de-
signed to show the real (i.e. free of price fluctuation) change of production. Cur-
rently, its base year is 2000.

For the purpose of our examples two auxiliary variables were included in the data set:

1. Consumer Price Index (CPI) (with base year 2000)

2. Index of Manufacturing Value Added (total manufacturing). The manufacturing
value added (MVA) is a measure of the total value of goods and services produced
by the manufacturing sector as defined in ISIC Revision 3. MVA is calculated
as the difference of gross output and intermediate consumption according to the
concepts recommended in the system of national accounts (SNA). MVA represents
the part of GDP originating from manufacturing activities The MVA data are at
constant 2000 prices at the country level and are taken from from the national
accounts data base. It has already been treated for missing values at the end
of the time series using nowcasting methods developed by Boudt et al (2009).
The MVA data from national accounts data can differ from the MVA data in the
INDSTAT database. Missing data in one database can therefore not be replaced
with the corresponding available observation in the other database.

Table 1 presents a brief description and numerical summary of the selected variables
including the arithmetic mean and median of all values of the corresponding variables.
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Figure 6: The VIM GUI and the Data menu.

4.1 The graphical user interface of VIM

The graphical user interface (GUI) of the package VIM has been developed using
the R package tcltk (R Development Core Team, 2011) and allows easy handling of the
functions included in the package VIM. Figure 6 shows a screenshot of the main window,
which pops up automatically after loading the package. The most important menus for
visualization are Data, Visualization and Options.

library(VIM)
vmGUImenu ()

Listing 5: Loading the GUI of VIM.

4.2 Importing data and selection of variables

The menu Data allows selecting a data frame from the R workspace. In addition, a
data set in .RData format can be imported from the file system into the R workspace,
which is then loaded into the GUI directly. After a data set has been chosen, vari-
ables can be selected in the main dialog (see Figure 7). One important feature is that
the variables are used for plotting in the same order as they were selected, which is es-
pecially useful for parallel coordinates plots (Wegman, 1990; Venables and Ripley, 2003).

Variables are selected based on two criteria:

1. In the Select variables menu (see Figure 7). Variables chosen here are plotted on
a graph.

2. In the Highlight variables menu (see Figure 7). Variables chosen here determine
the colour of points (or lines or bars) in the plot, whereby one colour is assigned
to the observations with no missing values in the selected variables and another to
those observations which have one missing value in those variables (or, optionally,
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Figure 7: Variable selection with the VIM GUI.

if all values are missing in those variables). If more than one variable is chosen
for highlighting, it is possible to select whether observations with missing values
in any or in all of these variables should be highlighted (see the lower right frame
in Figure 7).

Transformations of variables can be applied via the menu Data→ Transform Variables.
The transformed variables are thereby appended to the data set in use. Most of the
commonly used transformations in official statistics are available, such as the Box-Cox
transformation (Box and Cox, 1964) and the log-transformation as an important special
case of the Box-Cox transformation. In addition, several other transformations that are
frequently used for compositional data (Aitchison, 1986) are implemented. Variables
can also be scaled. While transformed variables are added to the data set and become
selectable in the variable selection menu, scaling is performed on-the-fly, i.e. the scaled
variables are simply passed to the underlying plot functions (they are not permanently
stored). Background maps and coordinates for spatial data can be selected in the Data
menu as well.

Depending on how many variables are selected for plotting, plotting methods can be
selected from the Visualization menu. Plots that are not applicable with the selected
variables are disabled, e.g. if only one plot variable is selected, multivariate plots are
not available.

4.3 An example session

In order to demonstrate some of the features of the R package VIM we will use data
from INDSTAT 2, the Industrial Statistics Database of UNIDO. Table 1 provides a
brief description and a numerical summary of those variables including the arithmetic
mean and median of all values of the corresponding variables. A sparkline (Tufte, 2010)
in the last column shows the trend of the arithmetic mean of each variable. When
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Table 1: Overview of INDSTAT2 2010 ISIC Revision 3 data set and the auxiliary
variables selected for the example session.

Label Brief Description Mean Median Sparkline & IQR

CountryCode Country Code
Year 1991−−−2008

Employment Number of Employees 1775863 293321.5 ●

●

1588513

2547115

WagesSalaries Wages and Salaries 21149277971 1594202976

●

●

2.8e+10

1.2e+10

Output Gross output: measured by the census
concept, which covers only activities of
an industrial nature

167768482087 16635259487 ●

●

1.2e+11

2.6e+11

ValueAdded Value added: value of census output
less the value of census input

64463768091 6768179752 ●

●

4.3e+10

9.1e+10

IIP Index of Industrial Production 105.20 100 ●

●

85

143

CPI Consumer Price Index 99.29 99.02 ●

●

48

168

IMVA Index of MVA 103.71 99 ●

●

82

142

only one variable is selected, only univariate plots can be applied. Standard univariate
plots, such as bar plots and spine plots (a special case of mosaic plots which can be
considered a generalization of stacked or highlighted bar plots) for categorical variables
and histograms, spinograms (an extension of histograms) and different types of box plots
for continuous variables have been adapted to display information for incomplete data.

Univariate missingness year by year: We can study the missingness of the vari-
ables year by year using the spine plot (see Hummel, 1996) taking the year as a categori-
cal variable and displaying the proportion of missing and observed values in the variables.
Stacked bars are drawn with vertical extent showing the proportion of both missing val-
ues (red) and observed ones (blue). This plot can be created by the menu Visualization

→ Spine Plot with Missings or through the function spineMiss(). The spine plot in
Figure 8 illustrates that the missing rates are almost constant over time from 1991 until
2003. After 2003, the missing rates increase. The bar at the right-hand side provides the
mean proportion of missing values over all years. Figure 9 shows the missing rates for
the auxiliary variables. We observe that variable IIP behaves differently in year 2000,
but this is not surprising since 2000 is the base year and IIP has a value of 100 percent
whenever there was production. The missing rate for CPI is almost constant over time
with the exception of a structural break from 2001 onwards. The missing rate is almost
negligible for variable IMVA (data are only missing for a few countries).

Study of dependence in missingness across variables: How many missing values
are contained in the single variables is often of interest. What is even more interesting is
that there can be certain combinations of variables with a high number of missing values.
We could perform this analysis in cross-sections of the data, for example, for a particular
year. Let us use the year 2006. We select the required variables (see Figure 7) and
create the graph using the menu Visualization → Aggregate Missings. Figure 10
shows the proportions and combinations. 55 observations do not contain any missing
values while 21 observations include missing values in the first four variables, i.e. the
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Figure 8: Spine plots for the main variables of the INDSTAT2 data.
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Figure 9: Spine plots for the auxiliary variables.

corresponding countries did not provide any value for the first four (21 observations) or
first five (10 observations) variables. Only few missing values can be considered as item
non-responses where only one (or few) values are missing while the others are available.
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Figure 10: Simple aggregations of INDSTAT2 data for the year 2006.

Using the matrix plot: The above result is even better visible in the matrix plot
shown in Figure 11. The matrix plot is a powerful multivariate plot. All cells of the data
matrix are represented by (small) rectangles. In the example in Figure 11, red rectangles
correspond to missing values and a grey scale is used for the available data. To determine
the grey level, the variables are first scaled to the interval [0,1]. Small values are assigned
a light grey and high values a dark grey (0 corresponds to white, 1 to black). In addition,
the observations can be sorted by the magnitude of a selected variable, which can also be
done interactively by clicking in the corresponding column of the plot. Using the GUI,
a matrix plot can be produced by selecting Visualization → Matrix Plot. Figure 11
shows a matrix plot of all variables, sorted by the variable Employee (left panel) and by
variable IIP (right panel). It demonstrates again that the missing values occur on the
same rows in the first four variables (monotone missingness). This reflects the structure
of the missing values: the countries either report all their values or all values are missing.
It is also interesting that IIP values contain nearly no missing values for establishments
with a mid-size number of employees.

Parallel box plots: Figure 12 presents an example of parallel box plots for the variable
Wages and Salaries which was log-transformed (base 10). In addition to a standard
boxplot (left), boxplots grouped by observed (blue) and missing (red) values in other
variables are drawn. Furthermore, the frequencies of the missing values are represented
by numbers in the bottom margin. The first line corresponds to the observed values in
Wages and Salaries and their distribution among the different groups, and the second
line represents the missing values. It can be easily seen that the missing values in the
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Figure 11: Matrix plot of the INDSTAT data (2006) ordered by the variable Employ-
ment (left panel) and the value of IIP (right panel).

variable Employment predominantly occur for low values of Wages and Salaries. This
indicates a situation in which the missing values in Employment are dependent on the
values of the variable Wages and Salaries. This situation is referred to as Missing At
Random (MAR). This is also true for the other variables. Special care needs to be taken
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Figure 12: Parallel box plot of Wages and Salaries split by the occurrences of missing
values in other variables.

when imputation of such data is performed.

4.4 Other graphical functions

Various other plots are available in the package which can also be run from within the
GUI. We will illustrate some of these using the examples given in Templ and Filzmoser
(2008), which are based on a subset of the European Survey of Income and Living
Conditions (EU-SILC) from Statistics Austria of 2004. This well known, complex data
set is used to measure poverty and monitor the Lisbon 2010 strategy of the European
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Union - see http://en.wikipedia.org/wiki/Lisbon_Strategy. The data set contains
a large number of missing values which have been imputed with model-based imputation
methods. Since we cannot expect that the generation mechanism of the missing values is
Missing Completely at Random (MCAR), we have to decide which variables to include
for imputation. The considered visualization tools are helpful for this type of decision.

Figure 13: Scatter plot of the variable pek_n (net income) and py130n (unemploya-
bility) with missing data information in the plot margins.

Scatter plots for incomplete data. Information about missing values can be added
to a standard scatter plot which shows the data values for a pair of variables. Figure 13
provides an example from Templ and Filzmoser (2008) using the variables pek_n (net
income) and py130n (unemployability) of the EU-SILC data presented in a scatter plot.
In addition, box plots for missing (red) and available (blue) data are shown in the outer
plot margins. For example, along the horizontal axis the two parallel box plots represent
the variable net income, while the red box plot denotes those values of the net income
where no values for unemployability are available, and the blue box plot represents
the net income values where information for unemployability is available as well. A
comparison of the two box plots can indicate the missing data mechanism. In this
example the net income for persons who provided no information for unemployability
seems to be higher than that where information is available. The plot also shows a
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univariate scatter plot of the values that are missing in the second variable (red points)
and the frequency of these values by a number (lower left). The number in the lower
left corner (here 0) is the number of observations missing in both variables. This kind
of bivariate scatter plot can easily be extended to a scatter plot matrix representing all
combinations of a set of variables.

Parallel coordinates plot. A parallel coordinates plot is a visualization technique
for multivariate data used to plot individual data elements across many dimensions
(Wegman, 1990; Venables and Ripley, 2003). Similarly to the previously described plots,
the information of missingness of another variable can be colour-coded. Figure 14 shows
a parallel coordinates plot of a subset of the EU-SILC data where the colour of the lines
refers to observations which are missing (red) or available (blue) for the variable py050n

(employees’ income). The amount of missing values in py050n is related to several of the
presented variables. In Figure 14 we can see that a high proportion of small values in

Figure 14: Parallel coordinates plot for a subset of the EU-SILC data (source: Templ
and Filzmoser (2008)). The colour indicates missing values in variable py050n (employ-
ees’ income).

P033000 (years of employment) implies missing values in py050n. Additionally, missing
values in py050n only occur for employees who have more than one employment (in this
case the values were set to 0 in variable P029000). Furthermore, Figure 14 shows that
the amount of missing values depends on the actual values for the variables P001000

(different employment situation) and bundesld (province). Finally, for variable pek_g

(gross income) missing values only occur in a certain range.

Presenting missing values on geographical maps. If geographical coordinates
are available for a data set, it can be interesting to check whether missingness of a
variable corresponds to spatial patterns on a map. For example, the observations of
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Figure 15: Presenting missing values on a map (source: Templ and Filzmoser (2008)).
The number of missing values in the variable py050n (employees’ income) for the nine
provinces of Austria are presented. Regions with a higher amount of missing values (see
the numbers in each province) are presented by a brighter shade red.

a variable could be drawn by growing dots on the map, reflecting the magnitude of
the data values, and missingness in a second variable could be colour-coded. This
allows conclusions about the relation of missingness to the values of the variable and to
the spatial location. Figure 15 provides an example from Templ and Filzmoser (2008)
presenting the EU-SILC data for which only the assignment of each observation to the
nine provinces of Austria is available, and not the spatial coordinates. Therefore, we can
only visualize the amount of missing values of a variable in the map. Figure 15 shows
the map of Austria with its nine provinces. The number of missing values of the variable
py050n (employees’ income) is coded according to an rgb colour scheme, resulting in a
brighter shade of red for provinces with a higher number of missing values for the given
variable. Additionally, the numbers of missing values in the provinces are indicated.

4.5 Summary

Most of the graphical tools available in the package VIM described in this section, can be
accessed from the main menu but can at the same time be invoked by the corresponding
functions from the command line or an R script. In addition, many interactive features
are implemented in the plot functions in order to allow easy modification of the generated
plots. The following list presents the main functions of the package:

• aggr() - Aggregations for missing values

• barMiss() - Bar plot with information about missing values

• bubbleMiss(), growdotMiss() - Growing dot map with information about missing
values
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• histMiss() - Histogram with information about missing values

• marginplot() - Scatter plot with additional information in the margins

• matrixplot() - Matrix plot

• mosaicMiss() - Mosaic plot with information about missing values

• pairsVIM() - Scatter plot matrix

• parcoordMiss() - Parallel coordinates plot with information about missing values

• pbox() - Parallel box plots with information about missing values

• rugBA() - Rug representation of missing values

• scattJitt() - Bivariate jitter plot

• scattmatrixMiss() - Scatter plot matrix with information about missing values

• scattMiss() - Scatter plot with information about missing values

• spineNiss() - Spine plot with information about missing values

• Imputation functions

– hotdec() - Hot-Deck Imputation

– kNN() - k-Nearest Neighbour Imputation

– irmi() - Iterative robust model-based imputation (IRMI)

Further examples of the application of the package VIM to official statistics data can
be found in the vignette of the package (see Listing 6) which presents an application of
VIM for analysing a highly complex data set, the European Statistics on Income and
Living Conditions (EU-SILC).

library(VIM)
vignette ("VIM -EU-SILC")

Listing 6: Calling the documentation of the package VIM.

Another example of the application of the package used for determining administrative
data quality can be found in (Daas et al, 2010). For a detailed description of the functions
see Templ and Filzmoser (2008).
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5 Statistical disclosure control

One underlying principle of data providers is that values of statistical units such as en-
terprises or persons are strictly confidential. The United Nations Economic Commission
for Europe (UNECE) adopted the Fundamental Principles for Official Statistics in the
UNECE region. The United Nations Statistical Commission adopted these principles
in 1994 at the global level. With regard to the confidentiality of the collected data the
Fundamental Principles for Official Statistics state that

“Individual data collected by statistical agencies for statistical compilation,
whether they refer to natural or legal persons, are to be strictly confidential
and used exclusively for statistical purposes.”

This is not the only reason why organizations such as national statistical offices or in-
ternational organizations like UNIDO should meet these requirements. National laws
on data privacy must also be respected.

Statistical Disclosure Control (SDC) techniques can be defined as the set of methods
to reduce the risk of disclosing information on individuals, businesses or other organiza-
tions. Such methods are only related to the dissemination step and are usually based on
restricting the amount of or modifying the data released (see EUROSTAT: http://epp.
eurostat.ec.europa.eu/portal/page/portal/research_methodology/methodology/

statistical_disclosure_control SDC consists of methods which can be categorized
as two different concepts: (i) the anonymization of microdata and (ii) the anonymiza-
tion of cells in tables. However, tables generated from source perturbed microdata can
also fulfil confidentiality requirements. Therefore, microdata perturbation can also be
deemed a technique for publishing confidential tables.

Microdata release: The demand for high quality microdata for analytical purposes
has increased rapidly among researchers and the public over the last few years. In
order to respect existing laws on data privacy and to be able to provide microdata to
researchers and the public, statistical institutes, agencies and other institutions may
provide masked data. The aim and in many cases the legal obligation of data holders
who want to disseminate microdata is to provide data for which it may only be possible
to identify statistical units by disproportional costs and time resources. The aim of SDC
is to reduce the risk of disclosing information on statistical units (individuals, enterprises,
organizations) and, on the other hand, to provide as much information as possible by
minimizing the amount of data modification.

# x . . . a data set with a possible large number of variables
x[12876 , c(3,21,6)]

region gender occupation
12867 4321 male Univ. -Prof.

Listing 7: Example: Re-identifying a statistical unit.
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In Example 7 a data set is used with 14365 observations including 300 variables. The
observation with ID 12867 reports the following values on the three variables region,
gender and occupation: a male person living in a region with an ID equal to 4321, who
is employed as a university professor. The region is in fact a small town in the rural
area of Austria and many people might have the knowledge that only one professor
who is male lives in that small town - this person is unique in the sample and can be
re-identified easily. Re-identifying a person means that all information in the data
set about this person is known to the intruder. In Example 7 this means that a data
intruder knows the other 297 values of that person which might include very sensitive
information like information about taxes or cancer.

This example shows that it does not suffice to delete only direct identifiers, i.e. vari-
ables like social security number, IDs, addresses, etc., which allow direct identification
of any statistical unit in the sample. In addition to the deletion of direct identifiers,
the combination of values of some indirect identifiers leads to disclosure problems.
Those indirect identifiers which data intruders might have information to are called key

variables for statistical disclosure control. The anonymization of these key variables is
discussed in Section 5.3.

Publication of tables: Statistical agencies generally do not publish microdata, but
disseminate information in the form of aggregated data. Aggregated data are usually
represented as statistical tables with totals in the margins. Even though statistical
tables present aggregated information of individuals contributing to the table cells, the
risk of identifying single statistical units using tables is present and can, in fact, be high.
Section 5.5 describes methods how to avoid the disclosure of statistical units in tables.

5.1 Package sdcMicro

In this section we will show how statistical disclosure control methods can be applied
to data using the R packages sdcMicro (Templ, 2010, 2008, 2009a; Templ and Meindl,
2010) and sdcTable (Meindl, 2010; Templ and Meindl, 2010). Another popular software
which has implemented methods for masking microdata is µ-Argus (Hundepool et al,
2010). µ-Argus has been developed over the last 15 years in several large European re-
search projects. This software provides a graphical user interface (GUI) which can help
users who have little experience with statistical software produce safe microdata sets.
However, the user has to fully determine specific metadata information which makes the
application of µ-Argus cumbersome. In addition to that, the software is error prone and
the GUI is based on old technology using Visual Basic without including facilities for
reproducibility. Thus, it is not possible to write code via command line interface and
the actions performed in the GUI are not saved.

However, data masking can be easily performed with the recently developed flexible soft-
ware package sdcMicro by minimizing information loss and the risk of re-identification
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in a very flexible manner. This software can be downloaded from the comprehensive R

archive network (CRAN) at http://cran.r-project.org. The package sdcMicro includes
the most popular techniques for microdata protection. It is designed to protect sur-
vey data including sampling weights, but it can also be applied to data without survey
weights (e.g. census data). The package sdcMicro comes with a manual including help
files for all functions. Possible interactions of the functions are described in a package
vignette (see Listing 8).

require(sdcMicro)
help(package=sdcMicro)
vignette('sdcMicroPaper ')

Listing 8: Loading sdcMicro, displaying the help index and the package vignette.

The package is designed to be flexible and to provide reproducibility, which is also true
for the graphical user interface (GUI) of sdcMicro (for a detailed description of the
GUI, see Templ, 2009a). The package gWidgetsRGtk2 (Verzani and Lawrence, 2009)
is used to generate the GUI and must be installed when using it. This package allows
the gWidgets API to use the package RGtk2(Lawrence and Lang, 2008), based on the
powerful Gtk2 libraries within R. The Gtk2 libraries usually come with a standard Linux
installation. When installing the R package gWidgetsRGtk2, a very easy-to-use built-in
install routine pops up (in case that Gtk2 is not yet installed). Following installation, R

has to be restarted once.

The graphical user interface can be loaded by typing the following R command:

sdcGUI ()

Listing 9: Starting the GUI.

Using the GUI, data can easily be loaded, variables selected and different methods easily
applied to these selected variables. The GUI provides for interaction between all possi-
ble objects and updates all views after a user operation was carried out. Each effect of
a mouse click and each operation performed is saved in a script (see Figure 17). This
script can later be easily modified and re-applied to the data and/or run only up to a
specific line. The examples shown in this section could be easily carried out with the
GUI. However, it seems more appropriate to only show the corresponding lines of code
in the following examples instead of presenting a large number of screenshots.

A popular software for tabular data protection is τ-Argus (Hundepool et al, 2008) which
was developed in parallel with µ-Argus and includes most of the well-known meth-
ods. However, it is a proprietary solution and the open-source R package sdcTable

can therefore be recommended. The R package sdcTable is a newly developed pack-
age to protect tabular data. The package was developed as an open-source project
and can be downloaded from the comprehensive R archive network (CRAN, see http:

//cran.r-project.org). The package itself depends on the R package lpSolve (Berke-
laar and others, 2010) which provides an interface for calling the open source linear
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Figure 16: The graphical user interface of sdcMicro. The window shows the relevant
summaries for anonymization of the CIS data set (see below for the description of this
example).

Figure 17: The script generated automatically from the users’ interactions with the
GUI.
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programming solver lpSolve within the R environment. The sdcTable provides online
help for all included functions as well as test data sets and examples which can be
copied by the user and directly pasted and run in the R scripting window. To view the
available help, the user needs to type the following command:

help(package=sdcTable)

Listing 10: Displays the help index of package sdcTable.

5.2 Statistical disclosure control methods for microdata

Today a number of different concepts exist to make confidential data accessible to re-
searchers and users. A brief outline of these concepts is given below, followed by a
detailed discussion on available software for statistical disclosure control in R.

5.2.1 Remote access

The most flexible way to provide microdata is by installing remote access facilities where
researchers can have a look at the data using a secure connection. They can analyse
the data and choose a suitable model, but it is not possible for them to download it.
Unfortunately, in some countries remote access is only be partially available, depending
on the discipline from which the data originates. This is attributable to different legisla-
tions on data for data deriving from different disciplines. In Austrian law, for example,
only microdata masking or remote execution is permissible in official statistics because
of the legal situation which prohibits viewing “original” data.

5.2.2 Remote execution and model servers

Whenever remote access facilities are not available, remote execution may be considered.
The user can send queries to the remote execution system. After the code is applied
to the corresponding data, the output is checked by the data holders’ SDC experts to
detect and to avoid confidentiality disclosure. Since this is a very resource-intensive
task, data holders often send data users structural synthetic data sets so they test their
methodology. Such data sets have the same variables and the same scale of variables
as the original data. However, remote execution has two drawbacks. First, output
checking is a highly sophisticated process and data holders can never be sure whether
certain results will lead to disclosure or not. Furthermore, data holders might never be
able to understand all methods (for example, available in more than 2500 R packages)
that can be applied to the data. Therefore, output checking may not be feasible at all.
The second drawback is that the user could fit models to the data based on the synthetic
values, but the original data might have quite a different multivariate structure. Since it
is not possible to apply exploratory methods on the original data, the existence of data
abnormalities could remain undetected. In particular, outliers which could influence the
models may be very difficult to detect, since outliers are perturbed or suppressed in any
diagnostic of the model due to confidentiality reasons. The same problems are present
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in the so-called confidentiality preserving model servers (Steel and Reznek, 2005) where
users can apply pre-defined methods on a data server by clicking on a user interface.
Moreover, these model servers are limited to only few methods which can be implemented
within a reasonable time because every method must be adapted to avoid the disclosure
of results.

5.2.3 Secure computer lab

In various statistical offices, researchers have access to data in a secure environment
which is placed in a secure room at the corresponding institution. Hence, the researcher
can analyse data and the final results are usually checked for confidentiality by the staff
of the data holder.

5.2.4 Data perturbation

Since remote access is not available in many cases due to legal restrictions and remote
execution is too cost-intensive and time consuming, on the other hand, data source
perturbation is one methodology to make data confidential at a minimum loss of infor-
mation.

5.3 Microdata protection using sdcMicro

Microdata protection/perturbation has proved to be extremely popular and has spread
extensively in the last few years because of the significant rise in the demand for scientific
use files among researchers and institutions.

5.3.1 Example data: The community innovation survey

To demonstrate the available methods for microdata protection we will use a data set
from a business survey - the Community Innovation Survey (CIS). The survey collects
information on the innovative tendency at enterprise level. The 2008 data include 3534
enterprises responding on 121 variables. The most important variables are economic
activity (NACE) in accordance with NACE Revision 1.1, geographic location (NUTS),
number of employees (emp08) and expenditures on innovation and research (rtot). The
survey is based on a stratified simple random sample design with the following strat-
ification variables: economic activities, enterprise size and geographic location. A full
description of the survey can be found in (Eurostat, 2006).

This data set is anonymities step by step using different source perturbation meth-
ods. The tables generated from such source perturbed data can be considered to be
non-disclosive, depending on the method used.

5.3.2 Anonymization of categorical variables

A data intruder may have information of some key variables. Direct identifying variables,
such as IDs, names, addresses, social security numbers, are usually not disseminated.
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Combinations of indirect identifers, such as NUTS classification and NACE, may be used
to link data sources and to identify statistical units. If an observation (statistical unit)
is re-identified, the data intruder will be able to identify all entries of this statistical unit
in the data set whereas some entries may contain sensitive information. The subject
matter specialist responsible for the specific data used can make subjective yet realistic
assumptions about what an intruder might be able to ascertain about respondents and
what information is available in the released data set which might be used by a data
intruder to disclose information on statistical units (see Templ and Alfons, 2010). In
the case of CIS survey data which we consider in our example, Ichim (2008) proposes
selecting the variables economic activity and geographical location as categorical key
variables and number of employees and turnover as continuous scaled key variables.

Frequency counts and disclosure rRisk: Consider a random sample of size n drawn
from a population of size N. Let πi, i = 1, . . . ,N be the (first order) inclusion probabilities,
i.e. the probability that the element ui of a population of the size N is chosen in a sample
of the size n. All possible combinations of categories in the key variables X1, . . . ,Xm can
be calculated by cross tabulation of these categorical variables. Let fk,k = 1, . . . ,n be
the frequency counts obtained by cross tabulation and let Fk be the frequency counts of
the population which belong to the same category. If fk = 1 applies the corresponding
observation is unique in the sample. If Fk = 1 applies then the observation is unique

in the population. However, Fk is usually unknown since in statistics information on
samples is collected and therefore little information on the population is known (e.g.
from registers and/or external sources).

Estimation of Fk: Fk may be estimated by using the sample weights. Whenever an
observation has a sampling weight equal to 100 it can be assumed that 100 observations
have the same characteristics in the population related to the stratification variables of
a (complex) sampling design. The estimates of the frequency counts in the population
are given by the sum of the weights associated with the observations which belong to
the corresponding category. Fk may then be estimated by

F̂k = ∑
i∈{ j|x j.=xk.}

wi (11)

where xi. denotes the i-th row of the matrix with the key variables. The frequency
calculation can be done using the R function freqCalc(), see Listing 11. The print
method reports that 577 enterprises are unique in the sample.
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x <- read.csv2('cis.csv ')
x <- x[,c("nuts","nace","emp08","turn08","weight ")]
ff <- freqCalc(x, keyVars =1:2, w=5)
ff

--------------------------
577 observation with fk=1
432 observation with fk=2
--------------------------

summary(ff$Fk)
Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 8.313 22.670 51.450 59.400 351 .200

Listing 11: Calculating the frequency counts and displaying the results.

In function freqCalc(), x is an object of class data.frame or matrix, keyVars is a
vector specifying the column index of the key variables and w defines the column index
of the weight variable. The resulting output of the function are the frequency counts
of the sample and the estimated frequency counts of the population. The function
is implemented in C and is integrated in R using the R/C interface. Therefore, the
computation is very fast and the function can handle large data sets with many key
variables (for runtime issues, see Templ, 2008). In Figure 16 the frequency counts for
the CIS data are shown.

Global risk measures: A global measure of the re-identification risk is given by the
number of uniqueness which occurs in both the sample and the population. It can be
expressed in the following way:

τ1 =
n

∑
k=1

I(Fk = 1, fk = 1) (12)

where I denotes the indicator function.
Another well-known global risk measure is given by:

τ2 =
n

∑
k=1

I( fk = 1)
1
Fk

(13)

in which the indicator is weighed with the reciprocal value of the population frequency
counts. The higher the population frequency count, the lower the risk of re-identification.
If Fk is particularly high, the data intruder cannot be certain wheather he is able correctly
to assign the observation for which he holds information. Fk must be estimated when
estimating τ1 and/or τ2. τ1 and τ2 are estimated by

τ̂1 =
n

∑
k=1

I( fk = 1)E(P(Fk = 1| fk = 1)) , τ̂2 =
n

∑
k=1

I( fk = 1)E(
1
Fk
| fk = 1) (14)

Unfortunately, it is not reasonable to use Equation 11 to estimate F̂k to estimate the
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global risk. A certain distribution of Fk must be assumed in order to formulate a realistic
measure of global risk (see, e.g., Templ, 2009b). The most popular method for estimating
global risk is the Benedetti-Franconi Model (Benedetti and Franconi, 1998; Franconi and
Polettini, 2004) which is implemented in the R package sdcMicro in function indivRisk().

Superpopulation models: To estimate the frequencies of population Fk, it is as-
sumed that the population is drawn from a superpopulation. This in fact means that
the frequencies in the population will either be generated synthetically by drawing from
a specific distribution of the frequency counts, or quantiles of the assumed distribution of
Fk are used. Using quantiles of the a priori assumed distribution of Fk makes it possible
to estimate the risk of each statistical unit. However, this estimation depends on the way
the frequency counts of the population are modeled and on how well the model assump-
tion are fulfiled. Many suggestions exist in the literature: the use of a Poisson-Gamma
superpopulation model (Bethlehem et al, 1990), the Dirichlet-multinomial model (Take-
mura, 1999), the negative binomial model (Benedetti and Franconi, 1998; Franconi and
Polettini, 2004), a log-linear model (Skinner and Shlomo, 1998, 2006), a multinominal
model (Forster and Webb, 2007), the Poisson-inverse Gaussian model (Carlson, 2002).

Application to the example data set CIS: We use the function indivRisk() from
the R package sdcMicro to estimate the individual risk r̂k (see Listing 13).

rk <- indivRisk(ff)
rk
method=approx , qual=1
---------------------------

820 obs. with much higher risk than the main part
plot(rk)

Listing 12: Estimation and display of individual risks.

Figure 18(a) shows the enterprises’ individual risk. Approximately 700 enterprises
have a rather high risk for re-identification (see Figure 18(b)).

Alternatively, the global risk can be easily determined by using a log-linear model assum-
ing that the population frequencies are Poisson distributed. The probability table of the
categorical key variables is considered, taking the sampling weights into account. The
cell probabilities can be described by a logit link function using the following regression
model:

logitp = logo = log
p

1− p
= β0 + β1x1 + β2x2 + . . .+ βkxk (15)

where k is the amount of cells in the table and o is the short expression for odds. Using
the exponents, Equation 15 can be transformed to

elogit p = o =
p

1− p
= eβ0+β1x1+β2x2+...+βkxk = eβ0eβ1x1eβ2x2 . . .eβkxk

60



(a) Individual risk. (b) Corresponding slider.

Figure 18: Individual risk of enterprises in the CIS data before anonymization.

The inverse of the logit function is called logistic function. If logit (π) = z, then π = ez

1+ez .
Now let us determine the cell probabilities and the global risk for our CIS data set in
Listing 13. The global risk measure reports that 83 enterprises are unique in the sample
and unique in the population.

Fk <- aggregate(x[,'weight '], list(x$nuts ,x$nace), sum) # Fk
x1 <- Fk[,1]
x2 <- Fk[,2]
y <- Fk[,3]/sum(Fk[,3]) # cell probabilities
form = y~x1:x2 # model
mod = glm(form ,family =" poisson ") # estimation
pred <- (predict(mod)) # prediction
pred <- exp(pred)/(1+ exp(pred)) # transf. with logistic fkt.
res <- pred*sum(Fk[,3]) # estimated frequencies in population
sum(res ==1 & aggregate(ff$fk , list(x$nuts ,x$nace),

unique)[,3] ==1) # global risk
[1] 83

Listing 13: Log-linear model for the CIS survey data.

All concepts for risk estimation require a lot of assumptions about the superpopulation,
which may not hold in practice. The best way to model Fk depends on the underly-
ing data, i.e. each data set requires different assumptions. The main drawback of all
these methods is that they are not data driven, but rely on a priori assumptions about
distributions.

k-anonymity: The concept of k-anonymity simplifies the risk estimation because no
estimation of cell frequencies at population level is needed in this case. We have k-
anonymity for a statistical unit whenever at least k statistical units exist in the sample
which have the same combination of values in the categorical key variables. The goal
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is fo every statistical unit to at least have k-anonymity with k ≥ 2. Listing 11 already
revealed that 557 enterprises have a frequency 1 in the sample and are thus unique. The
aim is to achieve k-anonymity by applying global recoding and local suppression.

Global recoding and local suppression: Categories including only few entries lead
to uniqueness and high risk. Thus, recoding into broader categories (e.g. recoding from
NACE 4-digit level to NACE 2-digit level) or combining categories (e.g. combining
two NACE 2-digit levels) may reduce the risk. The original CIS data do not have k-
anonymity and the disclosure risk might therefore be high. The risk is reduced through
the global recoding of a variable. Here the categories of NACE are assigned to broader
categories. As mentioned before, it is very likely that after the recoding, more observa-
tions are equal in the key variables and so F̂k increases, which decreases the individual
risk r̂k. Recoding NACE from the 4-digits level to the 1-digit level reduces the risk
dramatically. This recording can also be done from the GUI of sdcMicro. The result of
the recoding which is saved in the object x2 is shown in Listing 14.

ff2 <- freqCalc(x2 , keyVars =1:2, w=5)
ff2

--------------------------
0 observation with fk=1
2 observation with fk=2
--------------------------

Listing 14: Global recoding of one key variable.

However, some statistical units do not reach 2-anonymity. Suppose that we do not want
to apply further recoding. Another option is to use local suppression. With this method,
certain values in the key variables are suppressed to reduce the risk. This should be done
in an optimal way, i.e. to suppress as few values as possible, on the one hand, and to
guarantee low risk of re-identification, on the other hand. An iterative algorithm for
finding an optimal solution is implemented in the package sdcMicro (Templ, 2010).
The user can also assign weights to the key variables, because some variables often
seem to be less important (such as NUTS in our case) than others (such as NACE,
the economic activity classification). The probability of local suppressions in variables
with high weights is then higher than for variables with minor importance/weights, see
Listing 15. Finally, the function localSupp2Wrapper() suppressed one value in NACE and
one value in NUTS to reach 2-anonymity.

localSupp2Wrapper(x, keyVars =1:2, w=5, kAnon=2, importance=c(0.5 ,1))

[1] 2-anonymity has been reached.

Listing 15: Obtaining k-anonymity (here: k = 2).

The data now has a low risk of re-identification for each observation, see Figure 19.
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Figure 19: Individual risk of enterprises after recoding and local suppression.

Post randomization Method (PRAM): The post randomization Method (PRAM)
is a perturbation disclosure control technique applied to categorical variables in micro-
data (Kooiman et al, 2002). In PRAM the values of categorical variables may change
to different categories according to a pre-defined probability mechanism. The transition
probabilities for any category to any other category are usually saved in a transition
matrix. The key aspect of the PRAM method is that it conserves the original frequency
distributions while minimizing the loss of information. It is easy to see that this concept
is quite different from the perturbation concepts discussed earlier. It is possible that
a statistical unit is not changed even if the disclosure risk is high for that unit. How-
ever, the data intruder will never know whether some values are altered and whether
the match is the correct one. It is important for the transition probabilities to have
been chosen appropriately before PRAM can be applied. The specific choice of the ma-
trix will influence the disclosure risk which leads to an iterative process of choosing the
Markov matrix: the effects on the disclosure risk can be computed with a certain matrix,
and if these effects are not satisfactory, the choice of the matrix should be performed
again, and so on. Also, the effect of PRAM on statistical analyses performed on the per-
turbed microdata file should be considered (for further analysis see Kooiman et al, 2002).

The function pram() provides the invariant PRAM methodology and produces objects
from class pram. The arguments of the function are shown in Listing 16. The argument
pd is the minimum diagonal entries for the generated transition matrix and alpha is the
amount of perturbation used for the invariant pram method.

args(pram)
R> function (x, pd = 0.8 , alpha = 0.5)

Listing 16: Parameters for pram().
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A print method and a summary method are provided for objects of the pram class.
In the following, the variable NUTS from our example data set from the CIS business
survey is perturbed. A lot of information is stored in the resulting object NUTSpram (see
Listing 17) including the invariant transition matrix. Summary and print methods are
provided as well.

nuts <- x[,"nuts"]
NUTSpram <- pram(nuts)
summary(NUTSpram)

----------------------
original frequencies:

AT11 AT12 AT13 AT21 AT22 AT31 AT32 AT33 AT34
100 646 645 193 488 714 273 284 190

----------------------
frequencies after perturbation:

AT11 AT12 AT13 AT21 AT22 AT31 AT32 AT33 AT34
109 637 651 189 486 733 265 276 187

----------------------
transitions:

transition Frequency
1 AT11 --> AT11 83
2 AT11 --> AT12 3
3 AT11 --> AT13 3
4 AT11 --> AT21 2
5 AT11 --> AT22 3
6 AT11 --> AT31 3
7 AT11 --> AT32 1
8 AT11 --> AT33 1
9 AT11 --> AT34 1
10 AT12 --> AT11 7
11 AT12 --> AT12 582
12 AT12 --> AT13 8
13 AT12 --> AT21 7
14 AT12 --> AT22 14
15 AT12 --> AT31 14
16 AT12 --> AT32 7
17 AT12 --> AT33 1
.. ..

Listing 17: An application of PRAM and selected output of the summary method.

5.3.3 Anonymization of continuous scaled variables

The concept of uniqueness used in the previous section no longer works when continuous
scaled variables are observed, because nearly every combination of continuous scaled
variables is unique in the sample. Even the pram methodology cannot be applied since
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the transition matrix becomes almost n× n with n being the number of observations
in the data set. A data intruder may have information about a value of a statistical
unit. If this value matches with the anonymized data then he can be quite certain that
the re-identification was successful. The intruder then knows all the information about
this unit in the data set, i.e. the values of each variable of this unit. Note that this
information can be very sensitive, for example, information about competitors in an
economic branch. Moreover, a data intruder may also use record linkage techniques to
identify already perturbed values. A successful re-identification of a statistical unit like
an enterprise in business data is possible if a value is not sufficiently perturbed.

Adding noise methods. Adding noise to a data matrix X is simply done by

Y = X + ε

where X ∼ (µ,Σ),ε ∼ N(0,Σε), Σε = α · diag(σ2
1 ,σ2

2 , . . . ,σ2
p),α > 0, Cov(εi 6= ε j) for all

i 6= j and p is equal to the dimension of the matrix containing the continuous scaled
variables which are to be perturbed (see e.g. also in Brand, 2004). However, multivariate
characteristics will not be preserved when adding (uncorrelated) noise independently to
each variable. Correlation coefficients could be preserved if correlated noise is added. In
this case, the covariance matrix of the masked data is ΣY = (1 + α)ΣX (for example, see
Brand, 2004). In Listing 18 correlated noise is added to the two continuous scaled key
variables of the CIS survey.

x_corNoise <- addNoise(x[,3:4], method='correlated2 ', noise =50)

Listing 18: Adding correlated noise.

Note that many other methods can be applied using the function addNoise(). The se-
lected method is determined by the function argument method (see Templ, 2010, 2008).

Templ and Meindl (2008a) showed that all these methods are either influenced by out-
liers or they do not preserve outliers sufficiently. It is therefore reasonable to apply
robust methods for any method to apply noise (see Templ and Meindl, 2008a). In addi-
tion, Templ and Meindl (2008b) showed that outliers have to be much more protected
than the rest of the observations because outlying observations have a higher risk for
re-identification than non-outliers. This is especially true for business data sets since the
inclusion probabilities of large companies are 1 or close to 1, and in addition, enterprises
with large turnover are not part of the main body of the data. Also, minor modifications
of the data do not prevent re-identification with statistical matching methods.

Rank swapping. The term rank swapping was introduced by Dalenius and Reiss
(1982) but has evolved and assumed new meanings relating to new statistical method-
ologies over the past 25 years. In this method the entries of one variable are sorted
by their numerical values (ranking). Each ranked value is then swapped with another
ranked value that has been chosen randomly within a restricted range. The rank of two
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swapped values cannot differ by more than p percent of the total number of observa-
tions. Rank swapping must be applied to each variable separately and the multivariate
data structure is therefore not preserved very well (see also Templ and Meindl, 2010).
In sdcMicro rank swapping is applied column-wise as is shown in Listing 19.

x_swapp <- swappNum(x[,3:4, p=15)

Listing 19: Rank swapping using a 15 percent swapping range.

Microaggregation. Microaggregation is defined as follows (see the glossary of statis-
tical disclosure control at http://neon.vb.cbs.nl/casc/Glossary.htm):

Records are grouped based on a proximity measure of variables of interest,
and the same small groups of records are used in calculating aggregates for
those variables. The aggregates are released instead of the individual record
values.

The most challenging part with regard to this technique is the choice of the “proximity”
measure. Note that the multivariate structure of the data is only preserved if similar
observations are aggregated.

Sorting data based on one single variable in ascending or descending order (method
single in sdcMicro), sorting the observations in each cluster (after clustering the data)
by the most influential variable in each cluster (method influence, see Templ (2006))
as well as sorting (and re-ordering the data after aggregation) in each variable (for the
individual ranking method, see Defays and Nanopoulos, 1993) and projection methods
where typically the data are sorted based on the first principal component are not con-
sidered optimal for multivariate data (see Templ, 2007). Projection methods typically
sort the data according to the first principal component (method pca) or its robust coun-
terpart (method pppca, whereas the methods used to obtain the principal components
can differ. Usually, all principal components must be estimated when using standard
approaches for PCA, but the method pppca prevents this and estimates the first several
(robust) principal components by projection pursuit without the need to estimate the
covariance matrix.

The Maximum Distance to Average Vector (MDAV) method often provides better re-
sults. This method is an evolution of the multivariate fixed-size microaggregation (see
Domingo-Ferrer and Mateo-Sanz, 2002, for example). However, this method (mdav in
sdcMicro) is based on Euclidean distances in a multivariate space and replaces sim-
ilar observations based on these distances with their aggregates. The algorithm has
been improved by replacing Euclidean distances with robust Mahalanobis distances. In
Templ (2006), a new algorithm called RMDM (Robust Mahalanobis Distance based
Microaggregation) was proposed for microaggregation where MDAV (Domingo-Ferrer
and Mateo-Sanz, 2002) is adapted in several ways.
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Microaggregation can easily be applied with the package sdcMicro:

microaggregation(x, method='METHOD ', k=3)

Listing 20: General procedure to apply microaggregation.

More than ten options are available for the argument method of this function Templ
(2008). The argument k determines the aggregation level used, i.e. how many statistical
units are joined together.

5.3.4 Information loss

After perturbing the continuous scaled variables, the data utility and the disclosure risk
of the perturbed data have to be evaluated. For data utility, the original values are
compared to the perturbed ones, for example, by aggregated distances from original
data points to corresponding values from the perturbed data divided by the standard
deviation for each variable (Mateo-Sanz et al, 2005, method IL1). However, this measure
is large even if only one outlier is highly perturbed and the rest values are exactly the
same as in the original data set. The data utility can be checked with the function
dUtility() (see Listing 21) whereby different methods can be chosen. Note that x is the
original data set and xm the masked data set in Listing 21.

dUtility(x, xm, method ="IL1")

Listing 21: Calculation of the IL1 data utility measure.

In addition, a summary() method for objects created by addNoise() and microaggregation

() is available, which can calculate many (more than ten) different measures of data
utility.

5.3.5 Disclosure risk

It is assumed that an intruder can link the masked record to its original value (see,
e.g., Mateo-Sanz et al, 2005). Given the value of a masked variable we must check
whether the corresponding original value falls within an interval centred on the masked
value. The width of the intervals are chosen based on the outlyingness of the observation
(Templ and Meindl, 2008a).

dRisk(x, xm)

Listing 22: Estimation of disclosure risk for perturbed continuous scaled variables.

5.4 Generation of synthetic confidential data

Instead of perturbing microdata, the underlying sample can be simulated using the in-
formation of the sample. This is typically done using regression methods. Generating
completely realistic synthetic data seems an impossible task. Nevertheless, being as
close to reality as possible is sufficient for most user needs.
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One approach for generating synthetic data sets is discussed by Rubin (1993). He
addresses the confidentiality problem connected with the release of publicly available
microdata and proposes the generation of fully synthetic microdata sets using multiple
imputation. Raghunathan et al (2003), Drechsler et al (2008) and Reiter (2009) dis-
cuss this approach in further detail. The R package simPopulation provides modeling
facilities to generate synthetic data. When generating synthetic data, the following con-
ditions need to be considered (Münnich et al, 2003; Münnich and Schürle, 2003; Kraft,
2009):

• The actual size of regions and strata.

• Appropriate representation of the marginal distributions and interactions between
variables.

• Allowing heterogeneities between subgroups, especially regional aspects.

• Avoidance of pure replication of units from the underlying sample, as this generally
leads to extremely small variability of units within smaller subgroups.

• Ensuring data confidentiality.

In addition, data from official statistics often contains information about components.
The data simulation method must ensure that a breakdown of a variable into components
is achieved in a realistic manner. In general, the procedure consists of four steps:

1. Set up of the structure

2. Simulation of categorical variables

3. Simulation of continuous variables

4. Splitting continuous variables into components.

The procedure has to consider the stratification of the data to account for heterogeneities
such as regional differences. Furthermore, sample weights have to be considered in
each step to ensure a high similarity of expected and realized values. Concerning data
confidentiality, a detailed analysis of the framework using different worst case scenarios
was carried out in (Templ and Alfons, 2010). The conclusion of this analysis is that
the synthetic population data are confidential and can therefore be distributed to the
public. The key variables of the CIS data set can be easily simulated using the package
simPopulation (Alfons and Kraft, 2010).

5.5 Tabular data protection

Statistical agencies generally do not publish microdata but disseminate information in
the form of statistical tables consisting of aggregated data. If too few statistical units
contribute to a cell in a table, a data intruder would be able to re-identify these statisti-
cal units. For example, if the enterprise voestalpine is the only one which contributes to
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Table 2: Two-dimensional frequency table with margins.

size 1 size 2 size 3 Total

5151 0 6 7 13
5152 5 13 7 25
5153 19 24 8 51
5154 9 17 11 37
5155 4 7 0 11
5156 4 2 5 11
5157 7 6 1 14
515 48 75 39 162

a certain cell of a, say, two-dimensional table by NACE and NUTS, the cell value then
reflects the turnover of this enterprise. Note that the cell value might contain informa-
tion about more confidential information which a competitor of voestalpine should not
have access to.

When generating tables from source perturbed data (discussed in the previous section)
confidential tables might also be obtained.

5.5.1 Frequency and magnitude tables

A statistical table is constructed from microdata. According to the characteristics of
one or more dimensional variables, all statistical units (e.g. persons, enterprises or legal
entities) that possess the same set of characteristics for each of the dimensional variables
are grouped. If the number or units for each combination of the dimensional variables
is listed, the resulting table is referred to as a frequency table. If some aggregated
measure (usually the sum of a continuous scaled variable) is listed, the table is referred
t as magnitude table. However, it should be noted that each statistical table is defined
by a set of linear constraints connecting inner and marginal cells. In order to illustrate
this relation, the following simple, two-dimensional frequency table (2) is considered
(see also in Castro and Baena, 2008). In Table 2 the number of enterprises featuring
a given characteristic correspond to certain NACE codes and employee size ranges. It
is easy to see that in this simple example the linear constraints are just the sum of
the rows and columns. This means that the number of enterprises in NACE 5151 and
the number of enterprises producing products in the other NACE 4-digits level sum up
to the total number of enterprises in the NACE classification code 515. Additionally,
summing up over the employee size classes for any NACE code results in the linear
restrictions which form the totals in each NACE. Table 3 in which the total turnover
in each category is listed for each combination of NACE code and employee size class
(the original values are not reported for the CIS data because of confidentiality reasons).
From the frequency Table 2 it is clear that only one statistical unit contributes to the
cell defined by NACE code 5157 and employee size range 3. Thus, a data intruder learns
that the income of this individual is 194535 Euro. Disclosure would definitely occur if the
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Table 3: Magnitude two-dimensional table (in thousand).

size 1 size 2 size 3

5151 0 332693 2360685 3593378
5152 25946 381443 2049021 1556410
5153 85602 834582 1245262 2165446
5154 53225 509625 2218779 2781629
5155 26314 94256 0 120570
5156 14127 46672 2804788 2955587
5157 44869 118456 194535 357860
515 250083 2407727 10873070 13530880

data intruder manages to identify this enterprise. Since laws on data privacy are strict
in almost all countries, national statistical offices do not only protect microdata but also
aggregated data such as statistical tables in order to avoid the disclosure of sensitive
information. Popular methods for protecting aggregated output to avoid the possible re-
identifications of statistical units or attribute disclosure are cell-suppression, rounding
or table-reorganization by collapsing categories. Generally speaking, this means that
some cells have to be suppressed or modified (see Templ and Meindl, 2010).

5.5.2 Primary sensitive cells

The first step when protecting tabular output is to determine table cells that need to
be protected. These cells are referred to as primary sensitive cells. One popular rule
for identifying primary unsafe table cells is the minimum frequency rule. Using this
rule, any cell of a table for which n or less statistical units contribute is considered to
be primary unsafe. The parameter n is often set to 3 or 4. Other more sophisticated
rules are based on the concept that a cell should also be primary suppressed if one
statistical unit dominates the cell (for details, see Cox, 1981; Willenborg and De Waal,
2000; Merola, 2003).

5.5.3 Secondary cell suppression

It is easy to see that the possible primary cell in Table 2 with a frequency 1 can be
easily re-calculated by subtracting the row values from the row total. Due to such linear
relationships which are typical for statistical tables it does not suffice to protect tables
by identifying primary sensitive cells and suppressing their values. In order to avoid the
re-calculation or the possibility to gain good estimates for sensitive cells, additional cells
need to be suppressed. The problem related to the finding additional cells for suppression
is termed secondary cell suppression problem. To find an optimal solution to suppress
as few cells as possible in a hierarchical table, where margins can again be cell values
of another table, is known to be a NP-hard problem. Optimal solutions exist which are
based on minimizing a pre-defined cost function taking the linear relationships of the
hierarchical tables into account (see, e.g., Fischetti and Salazar-Gonzalez, 1999). The
objective function is often chosen to minimize the total number of additional suppressions

70



or similar criteria. The computational costs to solve the resulting complex combinatorial
optimization problem are tremendous for large hierarchical tables. Therefore, different
heuristic solutions for 2 and 3-dimensional tables have been proposed (Kelly et al, 1990;
Cox, 1995; Castro, 2002; Fischetti and Salazar-González, 2000; Meindl, 2010).

5.6 Package sdcTable

The most challenging part from the user’s point of view is the preliminary data prepa-
ration which is necessary before tabular protection can be applied. In this case, meta
information about the hierarchical variables defining the table must be provided by the
user. First the user has to determine the hierarchical structure of the table excluding any
subtotals (Meindl, 2010). Subsequently, several different cell suppression methods can
be easily applied using the function protectTable(). The manual of sdcTable includes a
practical example of how to use the package to protect tables.

5.7 Summary

Statistical disclosure control has become increasingly important and statistical data col-
lectors should devout a lot of effort to this. Otherwise, the trust of respondents will de-
crease and response rate will drop. In addition, laws on data privacy must be respected.
The SDC methods can be categorized as two different concepts: (i) the anonymization
of microdata and (ii) the anonymization of cells in tables. The packages sdcMicro and
sdcTable provide practitioners with tools to fulfil the requirements of statistical disclo-
sure control in these two categories. A brief description of the most popular methods
for the protection of categorical and continues key variables was presented and illus-
trated with the corresponding software implementation in the R package sdcMicro. The
following list presents the most important functions:

• freqCalc() for frequency calculation

• indivRisk() for individual risk estimation

• globalRecode() for recoding

• localSupp() and localSupp2Wrapper() for local suppression

• pram() for post randomization

• microaggregation(), rankSwapp(), addNoise() for perturbing continuous scaled
key variables

• Various print, summary and plot methods.

All these functions can either be applied by using the command line interface or the
sdcMicro graphical user interface, simply by clicking the corresponding buttons.
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6 Working with large data sets

Generally, R keeps the data in memory and all calculations are performed in the memory.
This means that it is not usual (but possible) to swap data from the hard disk during
calculations. An integer value requires 4 bytes of memory, a value in double precision
has 8 bytes. This means that R needs approximately 38 MB of memory when working
with a data set of size 100000 rows and 50 columns (see Listing 23).

y <- matrix(rnorm (100000*50) , ncol =50) ## generate artificial data
dim(y) ## dimension of the data set.
[1] 100000 50
x <- object.size(y)
print(x, units ="Mb")
38.1 Mb ## size of the data set.

Listing 23: Object size of a data set.

Either loading many such data sets in the R workspace or dealing with much larger
data sets in combination with insufficient memory size could be problematic. However,
solutions to deal with this problem exist which include:

• Storing the data in a database (see Todorov, 2010) and connecting to this database
with one of the available packages

• Using specialized packages as, for example, the package filehash which stores the
data on the hard disk and allows R to access these data seamlessly.

• Buying more RAM for the computer. Be aware that at 32 bit Windows one can
have up to 3GB of memory since 32 Bit systems impose a theoretical maximum
of 4GB and this number is determined as the maximum number of addressable
values a 32 bit number can have, and not all of that RAM will be made available
to the OS.

In addition, computer-intensive calculations may also cause a running out of memory.
For example, calculating a distance matrix from the data used in Listing 23 is not pos-
sible by applying standard methods on a regular personal computer, since the object
which has to be generated would have a size of 100000× 100000 and this requires ap-
proximately 76200 Mb of memory.

Fortunately, the regular applications in official statistics never run out of memory when
the computer has at least 2 Gb RAM which is standard nowadays.

The handling of large data sets in R is an actively developing research area and many
packages are already available which cover one or other aspects of this issue. It is not
possible to discuss here all of them, thus only a brief summary is provided. A more
extensive review of methods for dealing with large data sets, particularly for analysing
of official statistics data, is under preparation.
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The package filehash allows to swapping data to the hard disk as shown in the ex-
ample in Listing 24. It implements a simple key-value style database using character
string keys, associated with data values that are stored on the disk. A simple interface
is provided for the basic data manipulation functions on the database: insert, retrieve
and delete. The filehash databases are treated much like environments and lists which
are already used in R. By using the utilities provided it is possible to perform interactive
and exploratory analyses on large data sets. Three different file formats for representing
the database are currently available and new formats can easily be incorporated by third
parties (Peng, 2006).

library(filehash)
x <- data.frame(matrix(rnorm (100000*50) , ncol =50))
head(colnames(x))
dumpDF(x, dbName =" df1.dump ")
rm(x)
x1 <- db2env(db=" df1.dump ")
with(x1, mean(X1))
[1] -0.002216159
with(x1, lm(X1~X2+X3))

Call:
lm(formula = X1 ~ X2 + X3)

Coefficients:
(Intercept) X2 X3

-0.002234 -0.005787 0.003399

Listing 24: Using the package filehash to deal with large data sets.

Function dumpDF() (see Listing 24) swaps the data onto the hard disk, so R memory does
not keep a copy of it, which saves memory. The data set can be accessed through the
environment x (see Listing 24). To access it, the function with() can be used by naming
the variables of the hashed data set.

Bigmemory is designed to analyse large data sets in R while the internal data man-
agement is done in C++. It is possible to simultaneously apply different procedures on
one data matrix (shared memory).

The biglm package uses incremental computations to offer lm() and glm() functionality
to data sets stored outside of R’s main memory. The ff package offers file-based access to
data sets that are too large to be loaded into the memory, along with a number of high-
level functions (see http://CRAN.R-project.org/view=HighPerformanceComputing).
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7 Summary, conclusions and outlook

There is an increasing demand for statistical tools which combine the ease of use of tra-
ditional software packages with the availability of the latest analytical methods, which
is only possible on account of the flexibility provided by a statistical programming lan-
guage such as R. In this study, continuing and extending the lines started with a previous
UNIDO working paper (Todorov, 2010), we discussed the versatility of the R program-
ming environment and how it is possible to apply this environment in national and
international statistical offices. This was illustrated by examples from the statistical
production process of UNIDO where certain steps were either migrated or newly devel-
oped in R.

There are many more interesting topics which might be worth considering when think-
ing about using R for working in the area of official statistics. A brief overview of such
topics follows, which will be included in a future paper advocating the introduction of
R in national or international statistical offices.

Survey analysis with R Complex survey samples are usually analysed using spe-
cialized software packages (SUDAAN, WesVarPC, etc.). From the most well known gen-
eral purpose statistical packages Stata provides much more comprehensive support for
analysing survey data than SAS and SPSS, and could successfully compete with the
specialized packages. In R functionality for survey analysis is offered by several add-
on packages, the most popular being the survey package. Detailed information can be
found in the manuals of the package as well as from its home page, maintained by the
author, Thomas Lumley, at http://faculty.washington.edu/tlumley/survey/. A
brief overview follows:

1. Designs incorporating stratification, clustering and possibly multistage sampling,
allowing unequal sampling probabilities or weights; multistage stratified random
sampling with or without replacements;

2. Summary statistics: means, totals, ratios, quantiles, contingency tables, regression
models for the whole sample and for domains;

3. Variances by Taylor linearization or by replicate weights (BRR, jack-knife, boot-
strap, or user-supplied);

4. Post-stratification and raking;

5. Graphics: histograms, hexbin scatterplots, smoothers.

Other relevant R packages are pps, sampling, sampfling, all of which focus on design, in
particular, PPS sampling without replacement.
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Graphical user interface for R R is provided with a command line interface (CLI)
which is the preferred user interface for power users because it allows direct control on
calculations and it is very flexible. However, solid knowledge of the language is required
and the learning curve is typically longer than with a graphical user interface (GUI).
The user interface remains the biggest difference between R and S-PLUS or EViews, since
those programmes implement a very sophisticated GUI. Many R users (or potential R

users) are asking for and would probably benefit from a R GUI. Several projects exist
developing or offering the opportunity to develop alternate user interfaces. A Special
Interest Group mailing list (R-SIG-GUI) also exists to freely discuss issues of concern.
The R (GUI) Wiki is also available to exchange information and ideas related to the use
of R GUIs and to start using R. A comprehensive list of R GUI projects can be found
at http://sciviews.org/_rgui/ with the most prominent being RCommander which is
available as a CRAN package Rcmdr written in Tcl/Tk (see Fox, 2005).

Working with large data sets One issue R is often criticized for is the fact that
it loads the complete data to be processed in the memory, which might be a serious
limitation in some cases. In Section 6 we briefly discussed ways to resolve this problem
by storing the data set in a database and using one of the suitable R packages for
database access or by using some of the specialized CRAN packages for working with
large data sets like the package filehash, ff, bigmemory and biglm. A more detailed
analysis of this problem from the viewpoint of the analysis of official data with concrete
examples from this area is still pending.

Programming with R As already mentioned above, if we want to combine the ease
of use of the traditional software packages with the availability of the latest analytical
methods, we need the flexibility provided by a statistical programming language. One of
the main attractions of using the R environment is the ease with which users can extend
the environment by writing their own programmes and functions. The R programming
syntax is easy to learn (although many will not agree with this), even for users with no
previous programming experience. On the other hand, for users with previous experience
with other programming languages like C or Java, R is the statistical package of choice
compared to SAS or SPSS. In the examples used throughout this paper we had to of
course write code but there are specific programming issues which have to be considered:
the object orientation of R, building of R packages, etc.
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Glossary

Inf In R Inf and -Inf are positive and negative
infinity. These apply to numeric values and
real and imaginary parts of complex values
but not to values of integer vectors. See also
NA, NaN and NULL , 10

NA R representation of missing value (stands for
Not Available). See also NaN, 7

NULL R representation of the null object (reserved
word). NULL is often returned by expressions
and functions whose value is undefined. As-
signing NULL to an object deletes it, 8

NaN R representation of impossible values, e.g. di-
vision by 0 (stands for Not a Number). Com-
putations involving NaN will return NaN or per-
haps NA: which of those two is not guaran-
teed and may depend on the R platform (since
compilers may re-order computations). See
also NA, 10

CLI Command Line Interface, 74
Consumer Price Index (CPI) The Consumer Price Index (CPI) mea-

sures changes in the prices of goods and
services that households consume (ILO:
http://www.ilo.org/public/english/
bureau/stat/guides/cpi/index.htm), 41

Gross fixed capital formation (GFCF) Gross fixed capital formation refers to the
value of purchases and own account construc-
tion of fixed assets during the reference year
less the value of corresponding sales, 41
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Gross Output (GO) The measure of gross output normally re-
ported is the census concept, which covers
only activities of an industrial nature. The
value of census output in the case of estimates
compiled on a production basis comprises: (a)
the value of sale of all products of the estab-
lishment; (b) the net change between the be-
ginning and the end of the reference period
in the value of work in progress and stocks
of goods to be shipped in the same condition
as received; (c) the value of industrial work
done or industrial services rendered to others;
(d) the value of goods shipped in the same
condition as received less the amount paid for
these goods; and (e) the value of fixed assets
produced during the period by the unit for its
own use. In the case of estimates compiled
on a shipment basis, the net change in the
value of stocks of finished goods between the
beginning and the end of the reference period
is also included, 40

GUI Graphical User Interface, 41, 74

IMF/IFS International Monetary Fund/International
Financial Statistics, 40

Index of Industrial Production (IIP) The index of industrial production is designed
to show the real (i.e. free of price fluctuation)
change of production. Currently, its base year
is 2000, 41

INDSTAT 2 The UNIDO Industrial Statistics Database
comprises data for more than 175 countries
and territories spanning the period 1963 to
the latest available year. INDSTAT 2 contains
the data reported according to ISIC Revision
3 at the 2-digit level, 40

ISIC International Standard Industrial Classifica-
tion of All Economic Activities, 40

Manufacturing Value Added (MVA) The manufacturing value added (MVA) is a
measure of the total value of goods and ser-
vices produced by the manufacturing sector
as defined in ISIC Revision 3. MVA is calcu-
lated as the difference of gross output and in-
termediate consumption according to the con-
cepts recommended in the system of national
accounts (SNA). MVA represents the part of
GDP originating from manufacturing activi-
ties, 41

MAR Missing at Random - the missing values are at
random, given all the information available in
the data set, 6
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MCAR Missing Completely at Random - implies that
the pattern of missing values is totally ran-
dom, and does not depend on any variable,
which may or may not be included in the anal-
ysis, 6

MNAR Missing Not at Random - means that there is
an unknown process in the data that gener-
ates the missings., 6

NACE Statistical Classification of Economic Activi-
ties in the European Community, commonly
referred to as NACE, is a European industry
standard classification system consisting of a
6-digit code, 57

Number of employees The number of employees includes all per-
sons engaged other than working proprietors,
active business partners and unpaid family
workers, 40

Number of establishments An “establishment” is ideally a unit that en-
gages in one or in predominantly one kind of
activity at a single location under single own-
ership or control, for example, a workshop or
factory., 40

Record Linkage Record linkage refers to a merging that
brings together information from two or more
sources of data with the objective of con-
solidating facts concerning an individual or
an event that are not available in any sep-
arate record (OECD Glossary of Statistical
Terms, http://stats.oecd.org/glossary/
detail.asp?ID=3103), 64

Selective editing Selective editing is a procedure which targets
only some of the micro data items or records
for review by prioritizing the manual work
and establishing appropriate and efficient pro-
cess and edit boundaries (OECD Glossary of
Statistical Terms), 20

Statistical data editing Statistical data editing is the activity aimed
at detecting and correcting errors (log-
ical inconsistencies) in data. Graphi-
cal editing uses graphs to identify anom-
alies in data (OECD Glossary of Statistical
Terms, http://stats.oecd.org/glossary/
detail.asp?ID=3103), 20
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Statistical Disclosure Control (SDC) Statistical Disclosure Control techniques can
be defined as the set of methods for reducing
the risk of disclosing information on individ-
uals, businesses or other organizations. Such
methods are only related to the dissemination
step and are usually based on restricting the
amount of or modifying the data released
(EUROSTAT: http://epp.eurostat.ec.
europa.eu/portal/page/portal/research_
methodology/methodology/statistical_
disclosure_control, 52

UNECE United Nations Economic Commission for Eu-
rope, http://www.unece.org/, 52

Value Added (VA) The measure of value added normally re-
ported is the census concept, which is defined
as the value of census output less the value
of census input, which comprises: (a) value of
materials and supplies for production (includ-
ing cost of all fuel and purchased electricity);
and (b) cost of industrial services received
(mainly payments for contract and commis-
sion work and repair and maintenance work),
41

Wages and salaries (WS) Wages and salaries include all payments in
cash or in kind paid to “employees” during
the reference year in relation to work done for
the establishment, 40
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