



#### **OCCASION**

This publication has been made available to the public on the occasion of the 50<sup>th</sup> anniversary of the United Nations Industrial Development Organisation.



#### **DISCLAIMER**

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

#### FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

#### **CONTACT**

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

# DEMONSTRATION PROJECT: ALTERNATIVES TO THE USE OF METHYL BROMIDE

FINAL REPORT

ON BIOLOGICAL AND CHEMICAL ANALYSES BY CONTRACT NO: 99/197

**SUBMITTED JANUARY, 2001** 

#### TABLE OF CONTENTS

| GENERAL INFORMATION                          | 1  |
|----------------------------------------------|----|
| 1. WATER ANALYSES                            | 2  |
| 2. ANALYSES OF NEMATODES, FUNGI AND BACTERIA | 8  |
| 3. SOIL ANALYSES                             | 12 |
| 4. LEAF QUALITY ANALYSES                     | 14 |

#### **GENERAL INFORMATION**

The main objective of the Demonstration project; Alternatives to the Use of Methyl Bromide in Tobacco and Horticultural Production is to test the following alternative techiques: soilles cultivation, use of low doses chemicals and solarization/biofumigation. In the second phase of the Demonstration project; Alternatives to the Use of Methyl Bromide in Tobacco and Horticultural Production is to adopt the accepted alternatives in the first year i.e. Floating Tray System in the tobacco sector and solarization with biofumigation in the horticultural production. The trials have been placed in production conditions, in the largest companies that are in charge for the production and by out of the tobacco from the individual growers in the region. To illistrate the possible effect of the applied alternative techiques it was neccessary several types of bio-chemical analyses to be performed.

The Faculty of Agriculture along with the laboratories of:

- Institute of Agriculture Skopje
- Tobacco Institute Prilep
- Hydrometeorological Department Skopje

has the performing the required analyses of soil, water and tissue quality, as well as nematodes, fungi and bacteria.

Biological analysis are made as required in TOR, prior to treatment, after treatment and before transplanting. The effectivnes of the treatments was assest with quantitative analisys of the patogens present in the soil and by the appearance of sypthoms on the plants and roots. Counting for nematodes was carried out under dissecting microscope, and for Fungae, Phycomicetes and Bacteriae the quantitative method for 1 g air dry soil was used with dillution of 1:10; 1:100 and 1:500.

The analyses made have been included as integral part to the all reports submitted by the Agency for Agricultural Development of the Republic of Macedonia to UNIDO

#### 1. WATER ANALYSES

# Irrigation water analysis - Prilep:

| Analized parameters                              | Unit  | Values                                |
|--------------------------------------------------|-------|---------------------------------------|
| SiO <sub>2</sub>                                 | ppm   | 1                                     |
| Redox potential                                  | mW    | -111                                  |
| Conductivity                                     | mS/cm | 0.212                                 |
| m-alcalinity                                     |       | 20                                    |
| p-alcalinity                                     |       | 0                                     |
| Free CO <sub>2</sub>                             | ppm   | 1.8                                   |
| Total hardness                                   |       | 6.6                                   |
| Dry residuals on 105°C in                        |       |                                       |
| non filtrated water                              | ppm   | 150                                   |
| filtrated water                                  | ppm   | 140                                   |
| Ash residuals in                                 |       |                                       |
| non filtrated water                              | ppm   | 140                                   |
| filtrated water                                  | ppm   | 143                                   |
| Loss from burning in                             |       |                                       |
| non filtrated water                              | ppm   | 10                                    |
| filtrated water                                  | ppm   | 7                                     |
| Suspended matter                                 |       | 1                                     |
| total                                            | ppm   | 10                                    |
| organic                                          | ppm   | 3                                     |
| inorganic                                        | ppm   | 7                                     |
| Noticable                                        | ppin  | , , , , , , , , , , , , , , , , , , , |
| mechanical residuals                             |       | none                                  |
| color                                            |       | none                                  |
| smell                                            |       | none                                  |
| рН                                               |       | 8.50                                  |
| Anions                                           |       | 0.50                                  |
| Cl                                               | ppm   | 7.3                                   |
| SO <sub>4</sub>                                  | ppm   | 9.1                                   |
| HCO <sub>2</sub>                                 | ppm   | 122.0                                 |
| CO <sub>3</sub>                                  | ppm   | 0                                     |
| OH <sup>-</sup>                                  | ppm   | 0                                     |
| H <sub>2</sub> PO <sub>4</sub>                   | ppm   | 0.036                                 |
| NO <sub>2</sub> -                                | ppm   | 0                                     |
| NO <sub>3</sub>                                  | ppm   | 0.3                                   |
| Kations                                          | - FF  | 0,5                                   |
| NH <sub>4</sub> <sup>+</sup>                     | ppm   | < 0.01                                |
| Na <sup>+</sup>                                  | ppm   | 1.4                                   |
| K <sup>+</sup>                                   | ppm   | 0.5                                   |
| Ca <sup>2+</sup>                                 | ppm   | 39.9                                  |
| K <sup>+</sup> Ca <sup>2+</sup> Mg <sup>2+</sup> | ppm   | 4.5                                   |
| Total Fe                                         | ppm   | 0.026                                 |
| Mn <sup>2+</sup>                                 | -     | 0.012                                 |
| $\frac{Mn^{2+}}{Zn^{2+}}$                        | ppm   | 0.113                                 |
| Cu <sup>2+</sup>                                 | ppm   | 0.113                                 |
| Cu                                               | ppm   | <u> </u>                              |

# Irrigation water analysis - Radovis:

| Analized parameters                    | Unit                              | Values |
|----------------------------------------|-----------------------------------|--------|
| SiO <sub>2</sub>                       | ppm                               | 4      |
| Redox potential                        | mW                                | -53    |
| Conductivity                           | mS/cm                             | 0.298  |
| m-alcalinity                           |                                   | 19     |
| p-alcalinity                           |                                   | 0      |
| Free CO <sub>2</sub>                   | ppm                               | 8.6    |
| Total hardness                         |                                   | 7.3    |
| Dry residuals on 105°C in              |                                   |        |
| non filtrated water                    | ppm                               | 180    |
| filtrated water                        | ppm                               | 165    |
| Ash residuals in                       | ppin                              |        |
| non filtrated water                    | ppm                               | 168    |
| filtrated water                        | ppm                               | 160    |
| Loss from burning in                   | ppin                              | 100    |
| non filtrated water                    | ppm                               | 12     |
| filtrated water                        |                                   | 5      |
| Suspended matter                       | ppm                               | 3      |
|                                        |                                   | 1.6    |
| total                                  | ppm                               | 15     |
| organic                                | ppm                               | 7      |
| inorganic                              | ppm                               | 8      |
| Noticable                              |                                   |        |
| mechanical residuals                   |                                   | none   |
| color                                  |                                   | none   |
| smell                                  |                                   | none   |
| рН                                     |                                   | 7.06   |
| Anions                                 |                                   |        |
| Cl                                     | ppm                               | 12.2   |
| SO <sub>4</sub>                        | ppm                               | 26.9   |
| HCO <sub>2</sub>                       | ppm                               | 116.0  |
| CO <sub>3</sub>                        | ppm                               | 0      |
| OH.                                    | ppm                               | 0      |
| $H_2PO_4$                              | ppm                               | 0.003  |
| $NO_2$                                 | ppm                               | 0      |
| NO <sub>2</sub> -<br>NO <sub>3</sub> - | ppm                               | 2.8    |
| Kations                                | tinang 2200 tina Mesagain sestima | 11000  |
| NH <sub>4</sub> <sup>+</sup>           | ppm                               | < 0.01 |
| Na <sup>+</sup>                        | ppm                               | 4.7    |
| K <sup>+</sup>                         | ppm                               | 0.8    |
| Ca <sup>2+</sup>                       | ppm                               | 33.4   |
| Mg <sup>2+</sup>                       | ppm                               | 11.3   |
| Total Fe                               | ppm                               | 0.139  |
| Mn <sup>2+</sup>                       | ppm                               | 0.011  |
| $Zn^{2+}$                              | ppm                               | 0.075  |
| Cu <sup>2+</sup>                       | ppm                               | 0      |

# Irrigation water analysis - Kumanovo:

| Analized parameters          | Unit                                    | Values |
|------------------------------|-----------------------------------------|--------|
| SiO <sub>2</sub>             | ppm                                     | 3      |
| Redox potential              | mW                                      | -41    |
| Conductivity                 | mS/cm                                   | 0.619  |
| m-alcalinity                 |                                         | 5.5    |
| p-alcalinity                 |                                         | 0      |
| Free CO <sub>2</sub>         | ppm                                     | 26.6   |
| Total hardness               |                                         | 17.5   |
| Dry residuals on 105°C in    |                                         |        |
| non filtrated water          | ppm                                     | 370    |
| filtrated water              | ppm                                     | 358    |
| Ash residuals in             |                                         |        |
| non filtrated water          | ppm                                     | 345    |
| filtrated water              | ppm                                     | 339    |
| Loss from burning in         | • • • • • • • • • • • • • • • • • • • • |        |
| non filtrated water          | ppm                                     | 25     |
| filtrated water              | ppm                                     | 19     |
| Suspended matter             |                                         |        |
| total                        | ppm                                     | 12     |
| organic                      | ppm                                     | 6      |
| inorganic                    | ppm                                     | 6      |
| Noticable                    |                                         |        |
| mechanical residuals         |                                         | none   |
| color                        |                                         | none   |
| smell                        |                                         | none   |
| рН                           |                                         | 6.86   |
| Anions                       |                                         |        |
| Cl                           | ppm                                     | 18.3   |
| SO <sub>4</sub>              | ppm                                     | 24.1   |
| HCO <sub>2</sub> -           | ppm                                     | 335.5  |
| CO <sub>3</sub>              | ppm                                     | 0      |
| OH.                          | ppm                                     | 0      |
| $H_2PO_4$                    | ppm                                     | 0.09   |
| NO <sub>2</sub>              | ppm                                     | 0      |
| NO <sub>3</sub> -            | ppm                                     | 5.9    |
| Kations                      | 071044(50)                              |        |
| NH <sub>4</sub> <sup>+</sup> | ppm                                     | < 0.01 |
| Na <sup>+</sup>              | ppm                                     | 5.4    |
| $K^{\dagger}$                | ppm                                     | 0.3    |
| $Ca^{2+}$                    | ppm                                     | 89.1   |
| $Mg^{2+}$                    | ppm                                     | 22.0   |
| Total Fe                     | ppm                                     | 0.76   |
| $\frac{Mn^{2+}}{Zn^{2+}}$    | ppm                                     | 0.007  |
| $Zn^{2+}$                    | ppm                                     | 0.084  |
| Cu <sup>2+</sup>             | ppm                                     | 0      |

Analysis of weal water in Valandovo

|                              |                        | Macro            | elemen         | its (mmol/l      | ) | 7,4              |                                |  |
|------------------------------|------------------------|------------------|----------------|------------------|---|------------------|--------------------------------|--|
| NH <sub>4</sub> <sup>+</sup> | K <sup>+</sup>         | N                | a <sup>+</sup> | Ca <sup>2+</sup> |   | Mg <sup>2+</sup> | Si <sup>4+</sup>               |  |
| <0.1                         | 0.4                    | 0                | .9             | 1.7              |   | 1.0              | 0.33                           |  |
| NO <sub>3</sub>              | Cl <sup>-</sup>        | -                |                | SO <sub>4</sub>  |   | HCO <sub>3</sub> | H <sub>2</sub> PO <sub>4</sub> |  |
| 0.2                          | 0.5                    |                  |                | 0.4              |   | 5.4              | <0.01                          |  |
| Application of the second    | Microelements (µmol/l) |                  |                |                  |   |                  |                                |  |
| Fe total                     | Mn <sup>2+</sup>       | Zn <sup>2-</sup> | +              | B <sup>3+</sup>  |   | Cu <sup>2+</sup> | Mo <sup>\$+</sup>              |  |
| <0.1                         | 0.3                    | <0.              |                | 34               |   | < 0.1            | <0.1                           |  |

EC - 0.6 mS/cm pH-7.5

Analysis of river water in Valandovo

|                              |                | Section 3        | Macro           | oelements (m     | mol/l)           |                    |                  |                  |
|------------------------------|----------------|------------------|-----------------|------------------|------------------|--------------------|------------------|------------------|
| NO <sub>3</sub>              |                | Cl <sup>-</sup>  |                 | SO <sub>4</sub>  |                  | HCO <sub>3</sub> - | H <sub>2</sub> P | O <sub>4</sub> - |
| 0.2                          |                | 0.6              |                 | 0.5              |                  | 7.2                | <0.0             | 1                |
| NH <sub>4</sub> <sup>+</sup> | K <sup>+</sup> | <u> </u>         | Na <sup>+</sup> |                  | Ca <sup>2+</sup> | Mg <sup>2+</sup>   |                  | Si <sup>4+</sup> |
| <0.1                         | 0.3            |                  | 0.9             |                  | 2.4              | 1,1                |                  | 0.33             |
| Microelements (μmol/l)       |                |                  |                 |                  |                  |                    |                  |                  |
| Fe total                     | N              | In <sup>2+</sup> |                 | Zn <sup>2+</sup> | B <sup>3+</sup>  | Cu <sup>2+</sup>   | Mo <sup>\$</sup> | +                |
| <0.1                         |                | ).1              |                 | <0.1             | 24               | <0.1               | <0.1             |                  |

EC= 0.8 mS/cm pH- 8.0

## Valandovo - irrigation system

|                              |       | Anions (mmol/l)  |                  |                  |                  |                                |  |  |
|------------------------------|-------|------------------|------------------|------------------|------------------|--------------------------------|--|--|
| pН                           | EC    | NO <sub>3</sub>  | Cl               | SO <sub>4</sub>  | HCO <sub>3</sub> | H <sub>2</sub> PO <sub>4</sub> |  |  |
| in water                     | mS/cm |                  |                  |                  |                  |                                |  |  |
| 7.4                          | 4.3   | 16.5             | 7.1              | 15.2             | 0.9              | 0.09                           |  |  |
|                              |       |                  | Kations (mm      | iol/l)           |                  | L                              |  |  |
| NH <sub>4</sub> <sup>+</sup> |       | K <sup>+</sup>   | Na <sup>+</sup>  | Ca <sup>2+</sup> | Mg <sup>2+</sup> | Si <sup>4+</sup>               |  |  |
| <0.1                         |       | 3.4              | 6.8              | 15.5             | 8.8              |                                |  |  |
| -                            |       |                  | Mikroelementi (  | μmol/l)          |                  |                                |  |  |
| Fe total                     | • • • | Mn <sup>2+</sup> | Zn <sup>2+</sup> | B <sup>3+</sup>  | Cu <sup>2+</sup> | Mo <sup>\$+</sup>              |  |  |
| 0.2                          |       | <0.1             | <0.1             | 65               | 0.9              | <0.1                           |  |  |

Valandovo -well water

|                              | Anions (mmol/l) |                  |                  |                  |                  |                                |  |  |  |
|------------------------------|-----------------|------------------|------------------|------------------|------------------|--------------------------------|--|--|--|
| pН                           | EC<br>mS/cm     | NO <sub>3</sub>  | Cl               | SO <sub>4</sub>  | HCO <sub>3</sub> | H <sub>2</sub> PO <sub>4</sub> |  |  |  |
| 7.2                          |                 | 0.5              | 0.4              | 0.7              | 5.8              | <0.01                          |  |  |  |
|                              |                 |                  | Kations (mm      | ol/l)            |                  |                                |  |  |  |
| NH <sub>4</sub> <sup>+</sup> |                 | K <sup>+</sup>   | Na <sup>+</sup>  | Ca <sup>2+</sup> | Mg <sup>2+</sup> | Si <sup>4+</sup>               |  |  |  |
| <0.1                         |                 | 0.6              | 0.8              | 1.6              | 1.1              | 0.23                           |  |  |  |
|                              |                 |                  | Microelements (  | μmol/l)          |                  |                                |  |  |  |
| Fe tota                      | 1               | Mn <sup>2+</sup> | Zn <sup>2+</sup> | B <sup>3+</sup>  | Cu <sup>2+</sup> | Mo <sup>\$+</sup>              |  |  |  |
| <0.1                         |                 | 0.4              | <0.1             | 30               | <0.1             | <0.1                           |  |  |  |

Analysis of irrigation water in Prilep

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Macroelem        | ents (ppm)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| NH <sub>4</sub> <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K <sup>+</sup>   | Na <sup>+</sup>  | Ca <sup>2+</sup> | Mg <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Si <sup>4+</sup>               |
| <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4              | 1                | 40.8             | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.25                           |
| NO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cl               |                  | SO <sub>4</sub>  | HCO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H <sub>2</sub> PO <sub>4</sub> |
| 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.1              |                  | 8.3              | 111.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.01                         |
| 15 and 15 | ***              | Microelem        | ents (ppm)       | The state of the s |                                |
| Fe total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mn <sup>2+</sup> | Zn <sup>2+</sup> | $B^{3+}$         | Cu <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mo <sup>\$+</sup>              |
| <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.011            | <0.122           | 12               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.1                           |

EC - 0.201 mS/cm pH-8.23

Analysis of irrigation water in Kumanovo

|                              |                  | Macr            | oeleme          | nts (ppm)        |  |                  | Lita Nill                      |
|------------------------------|------------------|-----------------|-----------------|------------------|--|------------------|--------------------------------|
| NH <sub>4</sub> <sup>+</sup> | K <sup>+</sup>   | N               | Ja <sup>+</sup> | Ca <sup>2+</sup> |  | Mg <sup>2+</sup> | Si <sup>4+</sup>               |
| <0.1                         | 0.4              | <               | 0.1             | 25.0             |  | 22.0             | 0.12                           |
| NO <sub>3</sub>              | Cli              | Cl <sup>-</sup> |                 | SO <sub>4</sub>  |  | HCO <sub>3</sub> | H <sub>2</sub> PO <sub>4</sub> |
| 4.6                          | 20:              | 2               | 4               | 21.8             |  | 320.3            | <0.01                          |
|                              |                  | Mice            | oeleme          | nts (ppm)        |  | San Carlo        |                                |
| Fe total                     | Mn <sup>2+</sup> | Zn²             | !+              | B <sup>3+</sup>  |  | Cu <sup>2+</sup> | Mo <sup>\$+</sup>              |
| <0.1                         | 0.009            | <0.9            | )2              | 30               |  | <0.1             | <0.1                           |

EC - 0.812 mS/cm pH-6.76 Analysis of irrigation water in Radovis

|                              |                  | Macroe           | lements (ppm)    | The state of the s |                                |  |  |  |
|------------------------------|------------------|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|--|
| NH <sub>4</sub> <sup>+</sup> | K <sup>+</sup>   | Na <sup>+</sup>  | Ca <sup>2+</sup> | Mg <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Si <sup>4+</sup>               |  |  |  |
| <0.01                        | 0.9              | 4.8              | 38.2             | 13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.18                           |  |  |  |
| NO <sub>3</sub>              | Cl               |                  | SO <sub>4</sub>  | HCO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H <sub>2</sub> PO <sub>4</sub> |  |  |  |
| 3.1                          | 10.8             | 3                | 27.8             | 128.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.01                          |  |  |  |
| Microelements (ppm)          |                  |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |  |  |
| Fe total                     | Mn <sup>2+</sup> | Zn <sup>2+</sup> | B <sup>3+</sup>  | Cu <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mo <sup>\$+</sup>              |  |  |  |
| <0.1                         | 0.013            | <0.82            | 31               | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.1                           |  |  |  |

EC - 0.359 mS/cm

## 2. ANALYSES OF NEMATODES, FUNGI AND BACTERIA

Table 2. Number of colonies in 10 g of air dry soil - cucumbers (during vegetation)

| Time of sampling  | Control     | Methyl Bromide | <del>,,,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del> | S&B |
|-------------------|-------------|----------------|--------------------------------------------------|-----|
|                   | F           | Tusarium sp.   |                                                  |     |
| Before treatment  | 19          | 16             | 13                                               | 14  |
| After treatment   | 16          | 6              | 6                                                | 2   |
| During vegetation | 11          | 13             | 6                                                | 32  |
|                   | Tri         | ichoderma sp.  |                                                  |     |
| Before treatment  | 11          | 10             | 10                                               | 12  |
| After treatment   | 10          | 1              | 7                                                | 6   |
| During vegetation | -           | 5              | 6                                                | 6   |
|                   | $P\epsilon$ | enicillium sp. |                                                  |     |
| Before treatment  | -           | -              | -                                                | -   |
| After treatment   |             | •••            | -                                                | 2   |
| During vegetation | 50          | 3              | 60                                               | 10  |
|                   | As          | spergillus sp. |                                                  |     |
| Before treatment  |             | -              | bar                                              | _   |
| After treatment   | <u>-</u>    |                |                                                  | -   |
| During vegetation | 11          | -              | -                                                | 2   |
|                   | A           | Utrnaria sp.   |                                                  |     |
| Before treatment  | -           | -              |                                                  |     |
| After treatment   |             | -              | -                                                | -   |
| During vegetation | 4           | -              | 5                                                | -   |
|                   | P           | hycomicetes    |                                                  |     |
| Before treatment  | -           | -              | -                                                | -   |
| After treatment   | ***<br>***  | -              | -                                                | -   |
| During vegetation | -           |                | 8                                                | -   |

<sup>\*</sup>Saprophytic forms of Bacteria present in all samples

Total nematode density per m<sup>2</sup>- cucumbers (during vegetation)

| Time of sampling  | Control | Methyl Bromide | Dazomet | S&B   |
|-------------------|---------|----------------|---------|-------|
| Before treatment  | 58018   | 31051          | 39490   | 63330 |
| After treatment   | 212314  | 4542           | 28693   | 36943 |
| During vegetation | 57141   | 6066           | 10840   | 22480 |

S&B-Solarization+Biofumigation

Total nematode density per m<sup>2</sup>- tomatoe (during vegetation)

| Time of sampling  | Control | Methyl Bromide | Dazomet | S&B   |
|-------------------|---------|----------------|---------|-------|
| Before treatment  | 78471   | 40366          | 78471   | 43221 |
| After treatment   | 366242  | 2548           | 28693   | 21736 |
| During vegetation | 220392  | 6066           | 3220    | 4646  |

S&B-Solarization+Biofumigation

Number of colonies in 1 g of air dry soil - tomato (during vegetation)

| Time of sampling  | Control          | Methyl Bromide | , · · · · · · · · · · · · · · · · · · · | S&B |
|-------------------|------------------|----------------|-----------------------------------------|-----|
|                   | I                | Tusarium sp.   |                                         |     |
| Before treatment  | 53               | 80             | 49                                      | 75  |
| After treatment   | 13               | -              | 13                                      | 8   |
| During vegetation | 9                | 9              | 1                                       | 7   |
|                   | Tr               | ichoderma sp.  |                                         |     |
| Before treatment  | 10               | 8              | 10                                      | 9   |
| After treatment   | 3                | 4              | . 5                                     | 2   |
| During vegetation | -                | -              | 1                                       | 12  |
|                   | $P_{\epsilon}$   | enicillium sp. |                                         |     |
| Before treatment  | <u>-</u>         | -              | -                                       | _   |
| After treatment   | -                | -              | _                                       | -   |
| During vegetation | 43               | 16             | 63                                      | -   |
|                   | $\overline{A}$ . | spergillus sp. |                                         |     |
| Before treatment  | ::<br>:::        |                | -                                       | -   |
| After treatment   | 11               | -              | -                                       | -   |
| During vegetation | 9                | 3              | -                                       | 7   |
|                   | A                | lternaria sp.  |                                         |     |
| Before treatment  | <u> </u>         |                | 1                                       | -   |
| After treatment   | 11               | -              | -                                       | -   |
| During vegetation | 3                | -              | 6                                       | -   |
|                   | P                | hycomicetes    |                                         |     |
| Before treatment  | 2                | 2              | 2                                       | 2   |
| After treatment   | -                | _              | -                                       | -   |
| During vegetation |                  | -              | -                                       | -   |

<sup>\*</sup>Saprophytic forms of Bacteria present in all samples

Total nematode density per m<sup>2</sup>- cucumbers (year -2000)

| Time of sampling  | Control | Methyl Bromide | Dazomet | S&B   |
|-------------------|---------|----------------|---------|-------|
| Before treatment  | 64212   | 58712          | 61236   | 63520 |
| After treatment   | 8427    | 6595           | 4434    | 3255  |
| During vegetation | 9276    | 7843           | 8721    | 5515  |

S&B-Solarization+Biofumigation

Number of colonies in 10 g of air dry soil - cucumbers (year 2000)

| Time of sampling  | Control  | Methyl Bromide | Dazomet | S&B |
|-------------------|----------|----------------|---------|-----|
|                   | 1        | usarium sp.    |         |     |
| Before treatment  | 35       | 39             | 46      | 35  |
| After treatment   | 13       | 10             | 8       | 7   |
| During vegetation | 14       | 10             | 12      | 18  |
|                   | Tr       | ichoderma sp.  |         |     |
| Before treatment  | 13       | 11             | 12      | 16  |
| After treatment   | 9        | 7              | 4       | 8   |
| During vegetation | 5        | 9              | 8       | 9   |
|                   | Pe       | enicillium sp. | No.     |     |
| Before treatment  | 29       | 28             | 25      | 32  |
| After treatment   | 5        | 20             | 12      | 18  |
| During vegetation | 21       | 15             | 17      | 22  |
|                   | A.       | spergillus sp. |         |     |
| Before treatment  | 9        | 10             | 12      | _   |
| After treatment   | <u>-</u> | 4              | 8       | -   |
| During vegetation | _ 5      | 8              | 7       | -   |
|                   | A        | lternaria sp.  |         |     |
| Before treatment  | <b>-</b> | -              | -       | -   |
| After treatment   | <u>-</u> |                | -       | -   |
| During vegetation | -        |                | -       | -   |
|                   | P        | hycomicetes    |         |     |
| Before treatment  |          | -              | _       | -   |
| After treatment   |          | -              | -       |     |
| During vegetation | -        | -              | -       | _   |

<sup>\*</sup>Saprophytic forms of Bacteria present in all samples

Total nematode density per m<sup>2</sup>- tomato (year 2000)

| Time of sampling  | Control | Methyl Bromide | Dazomet | S&B   |
|-------------------|---------|----------------|---------|-------|
| Before treatment  | 79848   | 55213          | 59824   | 62384 |
| After treatment   | 5487    | 3359           | 6686    | 4900  |
| During vegetation | 5763    | 6422           | 7727    | 9132  |

S&B-Solarization+Biofumigation

Number of colonies in 10 g of air dry soil – tomato (year 2000)

| Time of sampling  | Control        | Methyl Bromide | Dazomet | S&B |
|-------------------|----------------|----------------|---------|-----|
|                   | I              | usarium sp.    |         |     |
| Before treatment  | 29             | 49             | 43      | 33  |
| After treatment   | 15             | 20             | 28      | 17  |
| During vegetation | 17             | 29             | 19      | 12  |
|                   | Tr             | ichoderma sp.  | 100     |     |
| Before treatment  | 23             | 21             | 30      | 26  |
| After treatment   | 12             | 17             | 14      | 14  |
| During vegetation | 15             | 19             | 18      | 15  |
|                   | $P\epsilon$    | enicillium sp. |         |     |
| Before treatment  | -              | -              | -       | -   |
| After treatment   | <u>-</u>       | -              | -       | -   |
| During vegetation | 15             | 36             | 25      | 37  |
|                   | As             | spergillus sp. |         |     |
| Before treatment  | 15             | -              | 10      | 9   |
| After treatment   | 11             | 2              | 5       | 3   |
| During vegetation | 7              | 3              | 4       | 7   |
|                   | $\overline{A}$ | lternaria sp.  |         |     |
| Before treatment  | 7              | 3              |         | _   |
| After treatment   | -              | -              | _       | -   |
| During vegetation | 5              |                | -       | 4   |

<sup>\*</sup>Saprophytic forms of Bacteria present in all samples

## 3. SOIL ANALYSES

## Valandovo - greenhouses

|                              |          | Anions (mmol/l)   |                  |                  |                  |                                |  |  |  |
|------------------------------|----------|-------------------|------------------|------------------|------------------|--------------------------------|--|--|--|
| pН                           | EC mS/cm | NO <sub>3</sub> - | Cl               | SO <sub>4</sub>  | HCO <sub>3</sub> | H <sub>2</sub> PO <sub>4</sub> |  |  |  |
| 7.5                          | 1.7      | 5.2               | 1.2              | 4.7              | 1.0              | 0.05                           |  |  |  |
|                              |          |                   | Kations (1       | nmol/l)          |                  |                                |  |  |  |
| NH <sub>4</sub> <sup>+</sup> |          | K <sup>+</sup>    | Na <sup>+</sup>  | Ca <sup>2+</sup> | $Mg^{2+}$        | Si <sup>4+</sup>               |  |  |  |
| <0.1                         |          | 1.2               | 1.8              | 5.1              | 2.5              |                                |  |  |  |
|                              |          |                   | Microelement     | ts (µmol/l)      |                  |                                |  |  |  |
| Fe total                     | 1        | Mn <sup>2+</sup>  | Zn <sup>2+</sup> | B <sup>3+</sup>  | Cu <sup>2+</sup> | Mo <sup>\$+</sup>              |  |  |  |
| 0.3                          |          | <0.1              | <0.1             | 48               | 0.5              | <0.1                           |  |  |  |

# Jegunovce - peat analysis (Profile 1)

| Depth                      |                               | 0-12  | 12-32 | 32-45 | 45-85 |
|----------------------------|-------------------------------|-------|-------|-------|-------|
| Organic i                  | nater %                       | 78.90 | 81.98 | 65.11 | 5.65  |
| Mineral 1                  | nater%                        | 21.10 | 18.02 | 34.89 | 94.35 |
| pH in wa                   | ter                           | 6.2   | 6.4   | 6.1   | 6.8   |
| pH in KC                   | l                             | 6.0   | 6.2   | 6.0   | 6.4   |
| e Q                        | N                             | 37.97 | 35.47 | 26.93 | 6.20  |
| Available in mg/100 g soil | K <sub>2</sub> O              | 10.0  | 10.0  | 12.0  | 12.0  |
| Av.<br>in r                | P <sub>2</sub> O <sub>5</sub> | 35.20 | 37.00 | 25.40 | 3.60  |
|                            | N                             | 2.88  | 2.47  | 1.38  | 0.11  |
| 1%                         | CaO                           | 4.59  | 2.46  | 0.61  | 4.39  |
| Total in %                 | MgO                           | 3.80  | 2.36  | 1.3   | 3.86  |
|                            | K <sub>2</sub> O              | 0.54  | 1.40  | 0.94  | 0.60  |
|                            | P <sub>2</sub> O <sub>5</sub> | 0.290 | 0.178 | 0.223 | 0.192 |

# Jegunovce - peat analysis (Profile 2)

| Depth                      |                               | 0-20  | 20-40 | 40-60 | 60-100 |
|----------------------------|-------------------------------|-------|-------|-------|--------|
| Organic n                  | nater %                       | 63.87 | 61.35 | 62.23 | 9.72   |
| Mineral n                  | nater%                        | 36.13 | 38.65 | 37.77 | 90.28  |
| pH in wat                  | er                            | 5.0   | 4.1   | 3.0   | 5.1    |
| pH in KC                   | 1                             | 4.9   | 3.8   | 2.8   | 5.0    |
| e Q                        | N                             | 23.63 | 20.60 | 17.30 | 5.13   |
| Available in mg/100 g soil | K <sub>2</sub> O              | 18.0  | 12.0  | 10.8  | 18.8   |
| Ava<br>in n<br>ge se       | P <sub>2</sub> O <sub>5</sub> | 35.40 | 31.80 | 10.60 | 3.72   |
|                            | N                             | 2.31  | 1.64  | 1.48  | 0.25   |
| % !                        | CaO                           | 0.58  | 1.85  | 0.36  | 0.64   |
| Total in %                 | MgO                           | 0.78  | 1.38  | 0.46  | 1.64   |
| Tot                        | K <sub>2</sub> O              | 1.10  | 1.16  | 0.60  | 0.94   |
|                            | P <sub>2</sub> O <sub>5</sub> | 0.131 | 0.197 | 0.172 | 0.296  |

## 4. LEAF QUALITY ANALYSES

Chemical analyses of the leaf - Kumanovo 1999

| Treatments | Nicotine % | Total N % | N in proteins<br>% | Proteins % | Soluble<br>sugars% | Polyphenols % | Total<br>reduction | Ash % | Schmooks<br>number | Polyphenolic<br>number |
|------------|------------|-----------|--------------------|------------|--------------------|---------------|--------------------|-------|--------------------|------------------------|
| C 1        | 1.29       | 2.05      | 0.82               | 5.12       | 7.59               | 2.03          | 9.62               | 13.81 | 1.48               | 21.10                  |
| C 2        | 1.17       | 2.08      | 0.88               | 5.55       | 8.87               | 2.11          | 10.98              | 12.40 | 1.60               | 19.22                  |
| 1          | 0.89       | 1.43      | 1.16               | 7.25       | 14.47              | 4.84          | 19.3               | 10.21 | 2.00               | 25.06                  |
| 2          | 1.20       | 2.58      | 1.02               | 6.39       | 6.23               | 1.64          | 7.87               | 13.62 | 0.97               | 20.84                  |

C1 - Non treated

C 2 - Methyl bromide

1 - Floating tray system

2 - Solarization + Biofumigation

Chemical analyses of the leaf - Prilep 1999

| Treatments | Nicotine % | Total N % | N in proteins | Proteins % | Soluble<br>sugars% | Polyphenois % | Total<br>reduction | Ash % | Schmooks<br>number | Polyphenolic<br>number |
|------------|------------|-----------|---------------|------------|--------------------|---------------|--------------------|-------|--------------------|------------------------|
| C 1        | 1.59       | 2.82      | 1.19          | 7.45       | 15.46              | 3.53          | 18.99              | 10.77 | 2.08               | 18.59                  |
| C 2        | 2.40       | 2.14      | 1.76          | 10.98      | 11.72              | 0.70          | 12.42              | 11.73 | 1.07               | 5.64                   |
| 1          | 1.85       | 2.72      | 1.14          | 7.11       | 19.17              | 2.50          | 21.67              | 9.62  | 2.70               | 11.54                  |
| 2          | 1.22       | 3.54      | 1.03          | 6.48       | 27.69              | 5.67          | 33.36              | 8.99  | 4.27               | 17.00                  |

C1 - Non treated

C 2 - Methyl bromide

1 - Floating tray system

2 - Solarization + Biofumigation

#### Chemical analysis of the leaf - Radovis 1999

| Treatments | Nicotine % | Total N % | N in proteins %% | Proteins % | Soluble<br>sugars% | Polyphenols % | Total<br>reduction | Ash % | Schmooks<br>number | Polyphenolic<br>number |
|------------|------------|-----------|------------------|------------|--------------------|---------------|--------------------|-------|--------------------|------------------------|
| C 1        | 1.59       | 2.82      | 1.19             | 7.45       | 15.46              | 3.53          | 18.99              | 10.77 | 2.08               | 18.59                  |
| C 2        | 2.40       | 2.14      | 1.76             | 10.98      | 11.72              | 0.70          | 12.42              | 11.73 | 1.07               | 5.64                   |
| 1          | 1.85       | 2.72      | 1.14             | 7.11       | 19.17              | 2.50          | 21.67              | 9.62  | 2.70               | 11.54                  |
| 2          | 1.22       | 3.54      | 1.03             | 6.48       | 27.69              | 5.67          | 33.36              | 8.99  | 4.27               | 17.00                  |

Chemical analyses of the leaf - Kumanovo 2000

|           |   | Nicotine % | Total N % | N in proteins<br>% | Proteins % | Soluble<br>sugars% | Polyphenois % | Total<br>reduction | Ash % | Schmooks<br>number | Polyphenolic<br>number |
|-----------|---|------------|-----------|--------------------|------------|--------------------|---------------|--------------------|-------|--------------------|------------------------|
| mixture   | 1 | 1.57       | 2.23      | 1.08               | 7.76       | 13.47              | 3.22          | 16.69              | 15.32 | 1.99               | 19.29                  |
|           | 2 | 1.49       | 2.60      | 1.04               | 7.02       | 13.89              | 3.52          | 17.41              | 14.81 | 1.97               | 20.24                  |
| substrate | 3 | 1.60       | 2.44      | 1.11               | 6.20       | 10.18              | 3.82          | 14.00              | 13.44 | 1.64               | 21.11                  |
| ns        | 4 | 1.52       | 2.18      | 0.98               | 7.11       | 13.69              | 3.94          | 17.69              | 15.48 | 1.92               | 19.81                  |

# Chemical analyses of the leaf - Prilep 2000

| O.                |   | Nicotine % | Total N % | N in proteins | Proteins % | Solubie<br>sugars % | Polyphenols % | Total<br>reduction | Ash % | Schmooks | Polyphenolic<br>number |
|-------------------|---|------------|-----------|---------------|------------|---------------------|---------------|--------------------|-------|----------|------------------------|
| ixt               | 1 | 1.22       | 2.05      | 1.10          | 7.12       | 16.35               | 2.18          | 18.53              | 13.12 | 2.29     | 18.59                  |
| te m              | 2 | 1.17       | 2.07      | 0.89          | 8.14       | 18.19               | 2.02          | 20.21              | 13.58 | 2.23     | 17.02                  |
| substrate mixture | 3 | 1.29       | 2.58      | 1.16          | 7.52       | 15.58               | 2.31          | 17.89              | 14.08 | 2.07     | 19.80                  |
| sub               | 4 | 1.20       | 2.70      | 0.92          | 7.67       | 16.22               | 2.50          | 18.77              | 13.72 | 2.11     | 18.64                  |

## Chemical analyses of the leaf - Radovis 2000

|               | Nicotine % | Total N % | N in proteins | Proteins % | Soluble<br>sugars% | Polyphenols. | Total<br>reduction | Ash % | Schmooks<br>number | Polyphenolic<br>number |
|---------------|------------|-----------|---------------|------------|--------------------|--------------|--------------------|-------|--------------------|------------------------|
| mixture<br>1  | 1.37       | 2.50      | 1.07          | 6.66       | 14.81              | 4.68         | 19.49              | 13.98 | 2.22               | 24.01                  |
|               | 1.25       | 2.58      | 1.01          | 6.42       | 15.15              | 4.52         | 19.67              | 13.21 | 2.35               | 23.80                  |
| substrate 3 4 | 1.42       | 2.20      | 1.01          | 6.51       | 14.82              | 4.53         | 19.35              | 13.80 | 2.27               | 23.17                  |
| 7ns 4         | 1.30       | 2.47      | 1.10          | 6.33       | 14.78              | 4.27         | 19.05              | 13.58 | 2.33               | 22.80                  |