



#### **OCCASION**

This publication has been made available to the public on the occasion of the 50<sup>th</sup> anniversary of the United Nations Industrial Development Organisation.



#### **DISCLAIMER**

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

#### FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

#### **CONTACT**

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

### 22296

<UNIDO Project TF/GLO/95/005>

# Workshop on Testing and Evaluation of Mechanical Properties of Ceramics

March 16 ~ 21, 1998

Submitted by Dr. Seong-Jai Cho
Principal Researcher
Materials Performance Group
Materials Evaluation Center
Korea Research Institute of Standards and Science (KRISS)
P.O. Box 102, Yusong, Taejon 305-600, Republic of Korea
Tel. (+82) 42 868 5388, Fax (+82) 42 868 5032, E-mail: sjcho@kriss.re.kr

Korea Research Institute of Standards and Science (KRISS)

#### 1. Introduction

Advanced materials technology is one of the key technologies for a wide range of industrial sectors having a major influence on the economic and industrial competitiveness. In addition, worldwide demand for advanced materials production has been increasing rapidly for the last decades. For example, advanced ceramics in world market is expected to increase 8.5% a year between 1990 and 2000 to reach US\$25 billion market in 2000, up from US\$11 billion in 1990.

Reliable methods of testing and evaluation of advanced ceramics are crucial for their successful development and efficient incorporation into competitive industrial products. However, the development of widely recognized evaluation methods are very slow and dispersed in developing countries. As part of efforts to draw a concerted activity from developing countries in recognized testing and evaluation methods of advanced ceramics, Korea Research Institute of Standards and Science (KRISS) proposed a project of "establishment of testing techniques for flexural strength and fracture toughness of fine ceramics" under the umbrella of the UNIDO program to establish an International Center for Materials Evaluation Technology (ICMET) which was initiated by UNIDO and KRISS. This project aims at establishing testing methods for the flexural strength and fracture toughness of fine ceramics among the participating countries in the ICMET program, including P.R. China, India, Malaysia, Singapore, and Thailand. In the agenda of the project, a workshop and Round Robin Tests (RRTs) among the participating countries was included and in accordance with the agenda, the workshop on testing and evaluation of mechanical properties of ceramics was organized at Materials Evaluation Center, KRISS from March 16 ~ 21, 1998.

#### 2. Participants

Dr. Sutiporn Chewasatn
Director, Production Process Development Laboratory
Thailand Institute of Scientific and Technological Research (TISTR)
196 Phahonyothin Rd, Chatuchak, Bangkok 10900, Thailand
Tel. (+66) 2 579-1121/30 ext. 2014, Fax (+66) 2 579-6538

Ms. Wasana Khonawona
Production Process Development Laboratory
Thailand Institute of Scientific and Technological Research (TISTR)
196 Phahonyothin Rd, Chatuchak, Bangkok 10900, Thailand
Tel. (+66) 2 579-1121/30, Fax (+66) 2 579-6538

Mr. Ling Xiao Senior Engineer Shanghai Research Institute of Materials (SRIM) 99 Handan Road, Shanghai, P.R. China Tel. (+86) 21 65420775, Fax (+86) 21 65420554

#### 3. Trainers

- Dr. Seong-Jai Cho, Principal Researcher, Materials Evaluation Center, KRISS
- Dr. Kyung-Jin Yoon, Senior Researcher, Materials Evaluation Center, KRISS
- Mr. Dong-Jin Kim, Senior Technician, Materials Evaluation Center, KRISS
- Mr. Sang-Jin Park, Senior Technician, Machine Shop, KRISS
- 4. Training Schedule (\* Some photographs taken during the workshop are attached Annex A.)

#### March 16 (Mon.)

- · Introduction to KRISS
- · Introduction to ICMET Project
- Lab Tour (Materials Evaluation Center, KRISS)
  - Materials Performance Lab.
  - Microstructure Science Lab.
  - Crystal Evaluation Lab.
  - Nano Characterization Lab.
  - Surface Analysis Lab.
  - Epitaxial Semiconductor Lab.
- Welcome Party (hosted by Dr. Seong-Jai Cho)

#### March 17 (Tue.)

- Specimen Machining (6 hours)
  - Lecture by Dr. Seong-Jai Cho (3 hours)
  - Practical Session at KRISS Machine Shop by Mr. Sang-Jin Park (3 hours)

#### March 18 (Wed.)

· Historic Site Tour (Kyongju)

#### March 18 (Thu.)

- Flexural Strength (3 hours)
  - Lecture by Dr. Seong-Jai Cho (1.5 hours)
  - Practical Session by Mr. Dong-Jin Kim (1.5 hours)
- · Weibull Analysis of Strength Data (3 hours)
  - Lecture by Dr. Kyung-Jin Yoon (1.5 hours)
  - Practical Session by Dr. Kyung-Jin Yoon (1.5 hours)

#### March 20 (Fri.)

- Fracture Toughness (6 hours)
  - Lecture by Dr. Seong-Jai Cho (3 hours)
  - Practical Session by Mr. Dong-Jin Kim (3 hours)
- Farewell Party (hosted by Dr. Yang-Koo Cho, Director, Materials Evaluation Center, KRISS)

#### March 21 (Sat.)

- Fracture Toughness (3 hours)
  - Practical Session by Dr. Seong-Jai Cho (3 hours)
- Distribution of Fixtures and Alumina Specimens for RRTs (2 flexure fixtures, a bridge loading fixture and 50 bend bar specimens)

#### 5. Summary of Lectures

#### Specimen Machining

A lecture was given on the ceramic grinding mechanisms and their implications in specimen preparation. Special emphasis was put on how to avoid cracking formation during the grinding. Grinding conditions to prevent the cracking were also discussed in the lecture.

#### Flexural Strength Testing Technique

Comparative analysis between tensile strength and flexural strength was made in the lecture, and factors that produce errors in strength testing was discussed. In particular, friction error caused by the fixtures with non-rotating rollers was emphasized. Effects of specimen size, spans, loading rate were also explained in the lecture.

#### Weibull Analysis of Strength Data

Concepts of the weakest link theory and Weibull statistics were discussed. In addition, maximum likelihood estimation technique was explained for the calculation of Weibull parameters from strength data, and effect of specimen volume on the strength data was interpreted.

#### Fracture Toughness Testing Technique

A brief introduction was made on various methods of fracture toughness testing technique such as Indentation Fracture (IF) method, Indentation Strength (IS) method, Chevron Notched Beam (CNB) method, Single Edge V-notched Beam (SEVNB) method, and Surface Crack in Flexure (SCF) method. Details of Single Edge Precracked Beam (SEPB) method was also explained.

#### 6. Summary of Practical Sessions

#### Specimen Machining Process

Demonstration was given to the participants about control of diamond tools such as truing and dressing, machining of flexural specimens, rough grinding, final grinding and chamfering processes.

#### Flexural Strength Testing (\* Strength data are attached in Annex B)

Flexural strength of alumina (Coors AD 995) was measured in the testing. Two 4-point-bend fixtures with different spans of 40/20mm and 30/10mm were used in the flexural strength testing.

Weibull Analysis of the Strength Data (\* Results are illustrated in Annex C)

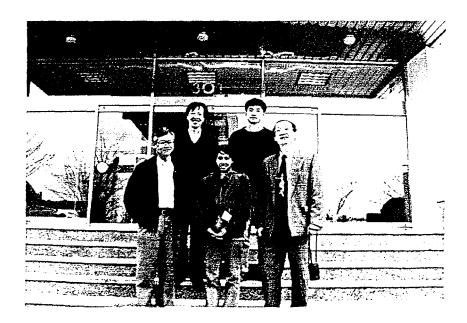
The strength data was analyzed by maximum likelihood estimation.

Weibull modulus of the alumina material shows high according to the data.

#### Fracture Toughness Testing

Fracture toughness of alumina samples were measured by using Single Edge Precracked Beam (SEPB) method. Five validate data obtained from 20 specimens.

#### 7. Evaluation of the Workshop


For evaluation of the workshop, a questionnaire was distributed to each participant. (\* The results are attached in Annex D).

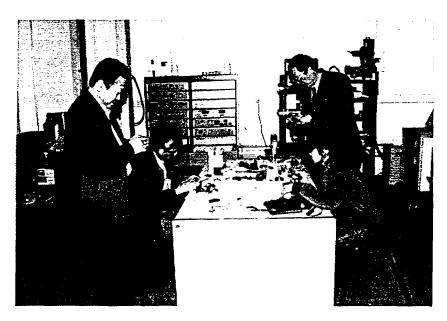
#### 8. Conclusion

Lectures were first given in the workshop to the participants on the testing techniques of flexural strength and fracture toughness of ceramics in order to provide them with theoretical backgrounds prior to the practical sessions. In the practical sessions, they practiced themselves testing on the flexural strength and fracture toughness of reference alumina material with the theoretical backgrounds. The workshop was successfully completed. But less people participated in the workshop than we expected mainly because of the economic difficulty most participating countries in the ICMET project are now facing.

Two flexural fixtures with different span, a bridge loading fixture for SEPB fracture toughness testing, and fifty alumina specimens were distributed to each participant for the purpose of the Round Robin Tests (RRTs). The fixtures and specimens will be distributed to the other ICMET participating countries for the RRTs as well. Silicon carbide specimens are now being machined for distribution to all the ICMET participating countries.

#### Annex A. Some photographs taken during the Workshop/Training




Participants and trainers, Dr. Stiporn, Ms. Wassala and Mr. Ling from left of the front, Dr. Cho and Dr. Yoon, from left of the rear.



At the Hankook Condominium of Kyungju city.



Participants are taking a lecture given by Dr. Cho.



Participants are taking a practical session on fracture toughness testing with the assistance of Mr. Kim.

Annex B. Flexural strength data.

4 point( $\checkmark$ ) or 3 point ( ) Material :  $\iint_{\mathbb{R}^n} f(x) dx$ 

4-0/20

Temperature:

| `emperat | ture :                  | $^{\circ}$ | IV                      | Iaterial: # | t1203                      |                  |            |
|----------|-------------------------|------------|-------------------------|-------------|----------------------------|------------------|------------|
| No       | width,                  | , w (mm)   | thicknes                | s, t (mm)   | Fracture load (kN) or kgf) | Strength(MPa)    | Remarks    |
| 1.       | 4.014<br>4.013<br>4.009 | 4,012      | 3.014<br>3.012<br>3.010 | 3.012       | 0. 4331                    | 367              | just break |
| 2        | A 004<br>A 013<br>A 010 | 4.010      | 3.004<br>3.001<br>2.999 | 3.001       | 0. 3996                    | 332              |            |
| 3        | 4.004<br>4.006<br>4.013 | 4.009      | 3.013<br>3.009<br>3.009 | 3.010       | 0.4158                     | 343              |            |
| 4        | 4.013<br>4.014<br>4.009 | 4.012      | 3.004<br>3.089<br>3.008 | 3.034       | 0.3661                     | 297              |            |
| 5        | 4.00%<br>4.00b<br>4.007 | 4.007      | 3.00b<br>3.003<br>2.999 | 3.003       | 0.4142                     | 304              |            |
| 6        | 1.010<br>1.011<br>1.010 | 4.010      | 3.000<br>3.00b<br>3.005 | 3.004       | 0.4188                     | 347              |            |
| 7        | 4.021<br>4.021<br>4.024 | 4.022      | 3.005<br>3.006<br>3.011 | 3.007       | 0.4263                     | 352              |            |
| 8        | 4.009<br>4.009<br>4.007 | 4, 00%     | 2.998<br>2.997<br>3.000 | 2.998       | 0.4197                     | 350              |            |
| 9        | 4.028<br>1.034<br>4.023 | 4.028      | 3.009<br>3.010<br>3.011 | 3.010       | 0.3999                     | 329<br>328.7363  |            |
| 10       | 4.004<br>3.994<br>4.002 | 4.001      | 9,011<br>2,998<br>2,998 | 3.002       | 0.4168                     | 3 49<br>346.7839 | -          |
| 11       | 4.015<br>4.010<br>4.010 | 4.012      | 3.003<br>3.009<br>3.042 | 3 006       | 0.3828                     | 316<br>316.3564  |            |
| 12       | 4.005<br>4.005<br>4.006 | 4.005      | 3.007<br>3.004<br>3.006 | 3 00b       | 0.3999                     | 332<br>331-5066  |            |
| 13       | 4.005<br>4.005<br>4.003 | 4.004      | 2.998<br>2.997<br>3.001 | 2.999       | 0.4096                     | 34/<br>341, 2197 | · ·        |
| 14       | 4.014<br>4.026<br>4.025 | 4.023      | 3.010<br>3.011<br>3.010 | 3.010       | 0.4193                     | 345,1145         |            |
| 15.      | 4.029<br>4.023<br>4.022 | 4.025      | 3.008<br>3.00b<br>3.008 | 3.007       | 0.4193                     | 346<br>345.6316  |            |

Date:

19/3/98

4 point(✓) or 3 point ( )

4%20

Temperature:

 ${\mathbb C}$ 

Material: Aloga

| 1 CHIPCIA   | temperature: C iviateriai · H <sub>2</sub> U <sub>3</sub> |          |          |            |                              |                    |         |
|-------------|-----------------------------------------------------------|----------|----------|------------|------------------------------|--------------------|---------|
| No          | width                                                     | , w (mm) | thicknes | ss, t (mm) | Fracture load<br>(kN or kgf) | Strength(MPa)      | Remarks |
|             | 4,009                                                     |          | 3.002    |            |                              | 350                |         |
| 16.         | 4.00%                                                     | 4.007    | 2,993    | 2.996      | 0000                         | 349.7383           |         |
|             | 4.008                                                     | 4.007    | 2.992    | 2.496      | 0.4193                       | 97 (1.100)         |         |
|             | 4.003                                                     |          | 3.00%    |            |                              | 348                |         |
| 17          | 4.005                                                     | 4.004    | 3.002    | 3.003      | 0 11120                      | 348,3709           | ••      |
| 17          | 4.005                                                     | 1        | 3.002    | 1 0        | 0.4193                       | 240,9104           |         |
|             | 4.001                                                     |          | 2096     |            |                              | 341                |         |
| 18          | 4.000                                                     | 4.001    | 2.999    | 2.998      | 0.4085                       | 340.7858           |         |
|             | 4.003                                                     |          | 2.998    | 1 2-110    | 0,7003                       | 210, 4076          |         |
|             | 4.002                                                     |          | 2.988    |            |                              | 341                |         |
| 19          | 4.003                                                     | 4.002    | 3 000    | 2.997      | 0.4082                       | 340,677            |         |
| (1)         | 4.002                                                     | 4.002    | 3.003    | 1 2-11     |                              | उपरा, ७१न र        |         |
|             | 4.003                                                     |          | 3, 001   |            | ,                            | 34P                | =4,6    |
| 20          | 4.006                                                     | 4.00b    | 2.999    | 3.000      | o and                        | . , , ,            |         |
| 1 20        | 4.010                                                     |          | 3. CO1   | 7.000      | 0.4196                       | 349.1430           |         |
|             | 4.011                                                     |          | 3.002    |            | <del> </del>                 |                    |         |
| 21          | 4.012                                                     | 4.012    | 3 002    | 3.002      | 0.4149                       | 3/1/1              |         |
| 71          | 4.014                                                     | 4.0.2    | 3.001    |            | 0.4149                       | 344                |         |
|             | 4.012                                                     |          | 3.002    |            |                              |                    |         |
| 22          | 4,020                                                     | 4.01b    | 3.005    | 3.002      | V 3632                       | 901                |         |
| ``          | 4.017                                                     | (        | 2.999    | 7,007      | 0.3570                       | 296                |         |
|             | 4,002                                                     | 4.004    | 2.999    | 3.000      | 0.4319                       | 347360             |         |
| 23          | 4,004                                                     |          | 2.999    |            |                              |                    | •       |
|             | 4.002                                                     | T.VU (   | 3,001    |            |                              |                    |         |
|             | 4.005                                                     |          | 2.994    |            |                              |                    |         |
| 24          | 4,008                                                     | 4.00%    | 2.496    | 2.999      | 0.4161                       | 340341             |         |
|             | 4.010                                                     |          | 3.002    | - (17      |                              | 1 240 24-/         |         |
|             | 4.00%                                                     | 4.009    | 3.002    | 3.002      | 0.4090                       | 391340             |         |
| 25          | 4.009                                                     |          | 3,002    |            |                              |                    |         |
| <i>L</i> )  | 4.009                                                     | ¥        | 3.002    |            |                              |                    |         |
|             | 4.020                                                     |          | 3.011    |            |                              |                    |         |
| 26          | 4.020                                                     | 4.021    | 3.014    | 3.012      | 0.3899                       | 321                |         |
|             | 4.020                                                     |          | 3.011    |            |                              |                    |         |
| 27          | 4.002                                                     | 4.007    | 2.997    | 3.000      | 0.8727                       | <del>962</del> 310 |         |
|             | 4.007                                                     |          | 3,000    |            |                              |                    |         |
|             | 4.011                                                     |          | 2.004    |            |                              | -5000.0            |         |
|             | 4.004                                                     |          | 3.000    |            |                              |                    |         |
| 28          | 4.005                                                     | 4.004    | 3,012    | 3.006      | n (12/1                      | 385 362            |         |
|             | 4.009                                                     |          | 3.005    | 0. 5 -     | 0.4361                       | 50,70              |         |
| 29          | 4.019                                                     | 4.01b    | 3,016    | 3.013      | 0.4069                       |                    |         |
|             | 4.013                                                     |          | 3,012    |            |                              | 335                |         |
|             | 4.017                                                     |          | 3.013    |            | U-700"                       | 7/1                |         |
|             | 4.009                                                     |          | 3.004    |            |                              |                    |         |
| <i>3</i> 0. | 4.006                                                     | 4.007    | 3.031    | 3.012      | 0-4196                       | 346                |         |
|             | 4.005                                                     | 7.001    | 3.002    | 1          | 0-7191                       | 1240               |         |
|             | •                                                         |          |          |            |                              |                    |         |

 Date: 1998.3.19
 4 point( ) or 3 point ( )

 Temperature:
 C
 Material: AL>D;

| No width, w (mm) thickness, t (mm) Fracture load (kN or kgf)  4 0 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | remperau | .u.c •       | · · · · · · · · · · · · · · · · · · · | т.          | iaueriai · | 79-203     | , , , ,       |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|---------------------------------------|-------------|------------|------------|---------------|---------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No       | width,       | , w (mm)                              | thicknes    | s, t (mm)  | 1          | Strength(MPa) | Remarks |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 1.018        |                                       | 3008        |            |            |               |         |
| 2 3.517 3.718 3.014 3.017 0.3897 329  3 40.6 3.017 4.018 3.017 4.018 3.017 4.018 3.017 4.018 3.017 4.018 3.017 4.018 3.017 4.018 3.017 4.018 3.017 4.018 3.017 3.019 3.008 0.397 329  5 3.517 3.515 3.008 3.008 0.397 329  5 3.517 3.515 3.008 3.018 3.018 6.019 3.019 3.019 0.3973 326  6 4.009 4.009 3.017 3.013 0.3973 326  7 3.518 3.018 3.018 3.017 3.013 0.3973 328  8 4.011 4.011 3.011 3.011 0.3873 319  9 4.011 4.015 3.001 3.011 0.3873 308  10 4.024 4.023 3.006 3.006 3.006 0.4204 347  11 4.021 4.028 3.006 3.006 4.024 3.001 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 4.021 4.021 3.006 3.006 3.006 4.021 4.021 3.006 3.006 3.006 3.006 4.021 3.021 4.021 3.021 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.4051 3.021 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |              | 16.016                                |             | 7 5 18     | 0.00.1.0.1 | 2110          |         |
| 2 3.517 3.918 3.016 3.016 3.017 0.3897 329  3 4015 4.018 3.014 3.017 0.3079 329  4 408 4.003 3.006 3.008 0.397 3299  5 3.517 3.515 3.006 3.008 0.3745 318  5 3.517 3.515 3.006 3.008 0.3745 318  6 4009 4.009 3.017 3.013 0.3953 326  6 4001 3.018 3.018 3.018  7 3.518 3.918 3.018 3.001  7 3.518 3.918 3.018 3.001  8 4017 4.015 3.018 3.001  9 4018 4.015 3.018 3.010  9 4018 4.017 3.009 3.018 0.3738 308  9 4018 4.017 3.009 3.008 0.3738 308  10 4011 4.018 3.008 3.008 0.4204 347  11 4.011 4.018 3.009 3.008 3.008 0.4100 338  11 4.011 4.018 3.009 3.008 3.008 0.400 338  12 4.011 4.012 3.009 3.009 0.4010 339  13 4.014 4.012 3.009 3.009 0.4017 332  14 4.015 4.018 3.009 3.009 0.4017 332  15 4.018 4.018 3.009 3.009 0.4017 332  16 4.018 4.018 3.009 3.009 0.4017 332  17 4.018 4.018 3.009 3.009 0.4017 332  18 4.018 4.018 3.009 3.009 0.4017 332  18 4.018 4.018 3.018 3.018 0.4019 332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        |              | 7. "                                  |             | >.0.0      | 10,4/2/    | 340           |         |
| 2 3.917 3.918 3.014 3.011 0.3897 3.99  3 4.017 4.018 3.017 3.014  4 4.017 4.018 3.017 3.014  4 4.017 4.018 3.017 3.008  4 4.013 3.014  5 3.917 3.915 3.006 3.008  6 4.009 4.009 3.017 3.013 0.3973 324  7 3.918 3.918 3.017 3.013 0.3973 324  7 3.918 3.918 3.017 3.013 0.3973 328  8 4.017 4.017 3.019 3.017 3.017  9 4.017 4.017 3.019 3.011 0.3873 308  9 4.017 4.017 3.019 3.010  9 4.017 4.017 3.019 3.010  9 4.017 4.017 3.019 3.010  10 4.014 4.013 3.016 3.008  11 4.014 4.013 3.016 3.009  12 4.011 4.018 3.009 3.007 0.4100 338  14 4.017 4.018 3.009 3.009  12 4.011 4.018 3.009 3.009  13 4.011 4.018 3.009 3.009  14 4.017 4.018 3.009 0.4100 338  15 4.014 4.012 3.009 3.009 3.009  16 4.017 4.018 3.009 0.400 338  17 4.017 4.018 3.009 3.009 0.400 338  18 4.017 4.017 3.009 3.009 0.4017 332  19 4.017 4.017 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |              |                                       |             |            |            |               |         |
| 3.517 3.616 3.621 3.621 4.017 4.018 4.018 3.016 3.016 4.008 4.008 4.008 3.016 3.016 3.017 3.017 3.017 3.017 3.017 3.017 3.017 3.017 3.017 3.017 3.018 3.017 3.018 3.017 3.018 3.017 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 4.018 4.018 3.018 3.008 4.018 4.018 3.008 4.018 4.018 3.008 4.018 4.018 3.008 4.018 4.018 3.008 4.018 4.018 3.008 4.018 4.018 3.008 4.018 4.018 3.008 4.018 4.018 3.008 4.018 4.018 3.008 4.018 4.018 3.008 4.018 4.018 3.008 4.008 4.008 4.008 4.008 4.008 3.008 4.008 4.008 4.008 4.008 4.008 3.008 4.008 4.008 4.008 3.008 4.008 4.008 4.008 3.008 4.008 4.008 4.008 3.008 4.008 4.008 4.008 4.008 3.008 3.008 4.008 4.008 4.008 3.008 3.008 3.008 3.008 4.008 4.008 4.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -        |              | 2918                                  |             | 1 1        |            | 290           |         |
| 3 4016 3 4017 4.018 3.011 3.014 4.028 4.008 4.008 3.006 3.006 3.018 3.017 3.317 3.317 3.317 3.018 3.008 3.008 3.008 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 4.018 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.018 3.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 3.008 4.008 4.008 4.008 4.008 4.008 3.008 4.008 4.008 4.008 3.008 4.008 4.008 4.008 3.008 4.008 4.008 3.008 4.008 4.008 3.008 4.008 4.008 3.008 4.008 4.008 3.008 4.008 4.008 3.008 4.008 3.008 4.008 4.008 3.008 4.008 4.008 3.008 4.008 4.008 3.008 4.008 4.008 3.008 4.008 4.008 3.008 4.008 4.008 3.008 4.008 4.008 3.008 4.008 4.008 3.008 4.008 4.008 3.008 4.008 3.008 4.008 4.008 3.008 4.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 3.008 4.008 3.008 3.008 4.008 3.008 3.008 4.008 3.008 3.008 4.008 3.008 3.008 4.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2        |              | 3.1.0                                 |             | 7.8 11     | 0.3897     | 1 221         |         |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |              |                                       |             |            | <u> </u>   |               |         |
| 4 008 4.003 3.006 3.008 3.008 3.97 3299  5 3.917 3.515 3.006 3.004 0.3745 318  6 4.006 4.007 3.017 3.013 0.3953 324  7 3.918 3.918 3.017 3.013 0.3953 324  7 3.918 3.918 3.007 3.012 0.3973 328  8 4.017 4.017 3.012 3.010 0.3873 319  9 4.017 4.017 3.010 0.3873 319  9 4.017 4.017 3.010 0.3873 319  9 4.017 4.017 3.010 0.3873 319  10 4.024 4.027 3.006 3.006 3.006 0.4204 347  11 4.021 4.018 3.006 3.006 3.006 0.4204 347  11 4.011 4.018 3.006 3.006 3.007 0.3845 318  12 4.010 4.010 3.006 3.006 3.007 0.3845 318  13 4.010 4.010 3.008 3.008 3.007 0.3845 318  14 4.011 4.012 3.008 3.007 0.4017 332  15 4.018 4.012 3.018 3.010 0.4051 333  16 4.024 4.024 4.024 3.018 3.010 0.4051 333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,        |              | h                                     | { * · · · · | 3.017      |            | 9 5 9         |         |
| 4 4008 4003 3.006 3.008 3.008 3.008 3.008 3.008 3.008 3.011 3.013 3.013 3.015 3.016 3.006 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016 3.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,        | 1 / 1        | 4.018                                 | )           |            | 0.3029     | 404           |         |
| 4 (4.01) 3.918 4.003 3.006 3.008 0.397 399  5 3.917 3.915 3.006 3.004 0.3745 318  6 4.006 4.009 3.014 3.015 3.013 0.3953 326  7 3.918 3.918 3.01 3.007 3.013 0.3973 338  8 4.01 4.017 3.017 3.018 3.010 0.3973 338  9 4.017 4.017 3.009 3.011 0.3873 319  9 4.018 4.017 3.009 3.011 0.3873 308  10 4.018 4.013 3.006 3.006 0.4204 347  11 4.011 4.018 3.006 3.006 0.4204 347  11 4.011 4.018 3.006 3.006 0.4204 347  11 4.011 4.019 3.006 3.006 3.006 0.4100 338  12 4.011 4.019 3.006 3.006 3.007 0.3847 318  13 4.018 4.012 3.008 3.007 0.4017 332  14 0.018 4.012 3.008 3.007 0.4017 332  14 0.018 4.012 3.008 3.009 0.4017 332  14 0.018 4.012 3.008 3.009 0.4017 332  14 0.018 4.012 3.008 3.009 0.4017 332  15 4.028 4.024 3.018 3.016 0.4019 332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1            |                                       |             |            |            |               |         |
| 3.917 3.917 3.917 3.917 3.918 3.006 3.011 6 4.006 4.007 4.007 3.918 3.014 3.014 7 3.918 3.918 3.014 3.017 3.918 3.017 3.918 3.017 3.918 3.017 3.018 3.017 3.018 3.017 3.018 3.017 3.018 3.017 3.018 3.017 4.017 4.017 3.007 3.018 3.010 0.3973 398 4.017 4.017 3.007 3.010 0.3973 398 4.017 4.017 3.007 3.008 4.017 4.018 4.017 3.008 4.017 4.018 4.017 4.018 3.008 4.017 4.018 4.017 4.018 3.008 4.017 4.018 3.008 3.008 4.018 4.019 4.019 3.008 12 4.010 4.010 3.008 12 4.010 4.010 3.008 13 4.018 4.017 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,        | 1            | 107                                   |             | 1 2.0      |            | 9 00          |         |
| 5 3.9.17 3.9.15 3.004 3.004 0.3745 318  6 4.006 3.011 3.013 0.3953 326  7 3.9.18 3.9.18 3.007 3.013 0.3973 338  8 4.015 3.010 3.010 0.3873 319  8 4.017 3.010 3.010 0.3873 319  9 4.017 3.010 3.010 0.3873 319  9 4.019 4.017 3.000 3.001 0.3873 308  10 4.024 4.013 3.000 3.006 3.006 0.4204 347  11 4.014 4.013 3.006 3.006 0.4204 347  11 4.014 4.018 3.006 3.006 3.006 3.007 0.3873  11 4.011 4.018 3.003 3.006 3.006 3.007 0.4100 338  12 4.011 4.018 3.003 3.006 3.007 0.3847 316  13 4.014 4.017 3.008 3.008 3.009 0.4017 332  14 4.017 4.018 3.008 3.009 0.4017 332  15 4.018 4.012 3.010 3.010 3.010 0.4051 333  16 4.018 4.012 3.010 3.010 3.010 0.4051 333  17 4.018 4.018 3.010 3.010 3.016 0.4019 332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4        |              | 4.003                                 |             | 3.000      | 0,297      | 1 229         |         |
| 5 3.9.1 3.915 3.006 3.006 3.006 3.006 3.006 3.006 3.006 3.016 6.006 4.009 4.009 3.017 3.013 0.3953 3240  7 3.9.18 3.918 3.918 3.000 3.010 0.3973 338  8 40.15 3.000 3.011 0.3873 319  9 40.15 4.015 3.006 3.001 0.3873 319  9 40.15 4.017 3.008 3.001 0.3873 308  10 40.14 4.017 3.006 3.006 3.006 0.4204 347  11 40.14 4.013 3.006 3.006 0.4204 347  11 40.11 4.018 3.009 3.006 3.006 0.4100 338  12 40.11 4.018 3.009 3.006 3.008 3.008  13 40.11 4.019 3.006 3.008 3.009 0.4100 338  14 40.11 4.009 3.006 3.006 3.009 0.4017 332  14 40.11 4.009 3.008 3.008 3.009 0.4017 332  15 40.15 4.012 3.016 3.016 3.016 0.4051 333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |              |                                       |             |            | 000        |               |         |
| 3.913 4.006 4.007 4.007 4.007 3.017 3.018 3.007 3.318 3.007 3.318 3.007 3.018 3.007 3.018 3.007 3.018 3.007 3.018 3.007 3.018 3.007 3.018 4.017 4.017 4.017 4.017 4.018 3.010 3.008 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 3.008 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 3.008 4.018 4.018 4.018 3.008 4.018 4.018 4.018 3.008 4.018 4.018 4.018 3.008 4.018 4.018 3.008 4.018 4.018 3.008 4.018 3.008 4.018 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.018 3.008 4.019 3.008 3.008 4.019 3.008 3.008 4.019 3.008 3.008 4.019 3.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 3.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008 4.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u></u>  | 1 ' ' 1      | 7 915                                 |             | 2 0 1 4    | A 2011     | 210           |         |
| 6 4.006 4.007 4.007 3.017 3.018 3.318 3.318 3.318 3.318 3.000 3.017 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 4.017 4.017 4.017 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 3.006 3.006 3.006 3.006 4.018 4.018 4.018 3.006 3.006 3.006 0.4204 347  4.018 4.018 4.018 3.006 3.006 0.4204 347  4.018 4.018 4.018 3.006 3.006 0.4100 338 4.018 4.018 4.018 3.006 3.008 4.018 4.018 4.018 3.008 4.018 4.018 3.008 4.018 4.018 3.008 3.008 12 4.018 4.018 3.008 3.008 13 4.018 4.018 3.008 14.018 4.018 3.008 3.008 15 4.018 4.018 3.010 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.018 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3        |              | 1.117                                 |             | ) V f      | 10.3+4)    | 1 218         |         |
| 6 4.009 4.008 3.015 3.013 0.3953 326  7 3.318 3.918 3.007 3.007 3.002 0.3973 338  8 4.015 4.015 3.008 3.011 0.3873 319  9 4.015 4.015 3.008 3.012  9 4.019 4.015 3.002 3.008  10 4.024 4.023 3.006 3.006 0.4204 347  11 4.011 4.018 3.000 3.006  12 4.011 4.018 3.006 3.006 3.008  12 4.011 4.009 3.006 3.008 3.008  13 4.010 4.009 3.006 3.008 3.008  14 0.01 4.009 3.006 3.008 3.008  15 4.018 4.012 3.008 3.008 3.008 3.008  16 4.018 4.012 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 7            |                                       |             |            |            |               |         |
| 7 3.318 3.318 3.318 3.318 3.318 3.308 3.318 3.007 3.018 4.017 4.017 4.017 3.010 3.010 9 4.017 4.018 3.010 3.010 9 4.018 4.018 3.001 3.002 4.018 4.018 3.003 4.018 4.018 4.018 3.003 3.006 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008 3.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,        | 1 1          | 1,008                                 |             | 3011       | A 170      | 201           |         |
| 3.918 3.918 3.918 3.918 3.918 3.918 3.918 3.918 3.000 3.000 8 4.015 4.015 4.015 3.008 3.010 9 4.019 4.019 4.024 4.024 4.024 4.024 4.024 4.021 4.021 4.010 3.006 3.006 12 4.011 4.001 4.001 3.006 12 4.011 4.007 3.006 3.006 12 4.011 4.007 3.006 3.006 12 4.011 4.007 3.006 3.006 12 4.011 4.007 3.006 3.006 12 4.011 4.007 3.006 3.006 12 4.011 4.007 3.006 3.006 12 4.011 4.007 3.006 3.006 13 4.007 4.007 3.008 3.008 14 4.008 3.008 3.009 3.009 3.009 3.007 3.008 3.008 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6        |              | 4.00)                                 |             | 1,517      | 0.3953     | 240           |         |
| 7 3.918 3.918 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.002 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |              | •                                     | 1           |            |            |               |         |
| 8 4015<br>8 4019<br>9 4019<br>9 4019<br>9 4019<br>9 4019<br>9 4019<br>9 4019<br>9 4019<br>9 4019<br>9 4019<br>10 4024<br>10 4024<br>10 4024<br>11 4021<br>11 4021<br>10 4011<br>10 4011<br>10 4011<br>11 4001<br>12 4011<br>13 006<br>14 0019<br>15 4014<br>16 4011<br>17 4011<br>18 4014<br>19 4018<br>19 401                                                                                                                                 | 7        |              | 7 818                                 |             | 7 227      | 207        | 990           |         |
| 8 4.015<br>4.014<br>4.015<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>4.018<br>4.024<br>4.024<br>4.024<br>4.021<br>4.021<br>4.011<br>4.011<br>4.011<br>4.011<br>4.011<br>4.011<br>4.011<br>4.011<br>4.011<br>4.011<br>4.011<br>4.011<br>4.011<br>4.011<br>4.011<br>4.011<br>4.007<br>3.006<br>3.006<br>3.006<br>3.006<br>3.006<br>3.006<br>3.006<br>3.006<br>3.006<br>3.006<br>3.006<br>3.006<br>3.007<br>3.007<br>3.007<br>3.007<br>3.007<br>3.007<br>3.007<br>3.007<br>3.008<br>3.007<br>3.007<br>3.007<br>3.008<br>3.007<br>3.007<br>3.008<br>3.007<br>3.007<br>3.008<br>3.007<br>3.007<br>3.007<br>3.008<br>4.017<br>3.008<br>4.017<br>3.008<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>3.009<br>4.025<br>4.025<br>4.025<br>4.026<br>3.010<br>3.010<br>3.010<br>4.028<br>4.028<br>4.028<br>4.028<br>4.028<br>4.028<br>4.028<br>4.028<br>3.010<br>3.010<br>3.010<br>3.010<br>4.029<br>4.028<br>4.028<br>4.028<br>4.028<br>4.028<br>3.010<br>3.010<br>3.010<br>4.028<br>4.028<br>4.028<br>4.028<br>4.028<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010<br>3.010     | /        | , · .        | 5.718                                 | 1 ' 1       | 3.80 L     | 0. 39+3    | 558           |         |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 1 7 1        |                                       |             |            |            | ***           |         |
| 9 4.015 9 4.019 9 4.019 9 4.019 10 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 4.011 4.011 4.011 4.011 4.011 4.011 4.011 4.011 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×        |              | 11 -1-                                |             | 7 611      | 0 0000     | 910           |         |
| 9 4.019 4.021 3.007 3.008 0. 3735 308  10 4.024 4.023 3.006 3.006 0. 4204 347  11 4.021 4.018 3.009 3.009 0.4100 338  12 4.011 4.009 3.006 3.007 0.3845 318  13 4.014 4.012 3.008 3.009 3.009 0.4017 332  14 4.024 4.024 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010 3.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0        | 1 / 1        | 7.413                                 |             | 3,011      | 0.3873     | 314           |         |
| 9 4.018 4.021 3.007 3.008 0. 3735 308  10 4.024 4.023 3.006 3.006 0. 4264 347  11 4.021 4.018 3.009 3.009 0.4100 338  12 4.010 4.009 3.006 3.007 0.8845 318  13 4.017 4.012 3.009 3.009 0.4017 332  14 4.025 4.012 3.010 3.010 3.010 3.010 0.4017 333  14 4.025 4.024 3.010 3.010 3.010 3.010 0.4017 333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 1 ' 1        |                                       |             |            |            |               |         |
| 10 4024 4023 3.003 3.006 3.006 3.006 3.006 3.006 3.007 3.009 0.4100 338  11 4021 4.018 3.009 3.009 3.009 0.4100 338  12 4011 4.009 3.006 3.007 0.3847 318  13 4014 4.012 3.008 3.009 3.009 0.4017 332  14 4028 4.028 3.010 3.010 3.011 0.4051 333  15 4028 4.028 3.010 3.011 0.4051 333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | q        |              | 11 . 2 1                              |             | 3.008      | 0.3735     | 200           |         |
| 10 4.024 4.023 3.003 3.006 3.006 3.006 3.006 3.008 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.009 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /        | 1 1 1        | T. 0 21                               |             |            |            | 100           | Į       |
| 10 $\frac{4.024}{4.021}$ $\frac{3.006}{3.009}$ $\frac{3.006}{3.009}$ $\frac{3.009}{3.009}$ $\frac{3.009}{3.009}$ $\frac{3.009}{3.009}$ $\frac{3.009}{3.009}$ $\frac{4.010}{3.006}$ $\frac{3.006}{3.009}$ $\frac{3.006}{3.009}$ $\frac{4.011}{4.001}$ $\frac{4.009}{3.009}$ $\frac{3.006}{3.009}$ $\frac{3.009}{3.009}$ $\frac{4.011}{4.009}$ $\frac{3.008}{3.009}$ $\frac{4.011}{3.009}$ $\frac{3.008}{3.009}$ $\frac{4.011}{3.009}$ $\frac{3.008}{3.009}$ $\frac{4.011}{3.009}$ $\frac{3.009}{3.009}$ $3.009$                                                                                                                                       |          | 1            |                                       |             |            |            |               |         |
| 11 $\frac{4.017}{4.017}$ $\frac{3.009}{3.009}$ $3.009$                                                                                                                                       |          |              | 4 4023                                | - 1         | 1 001      | a 100 m    | 2117          |         |
| 11 $\frac{4.011}{4.021}$ $4.018$ $\frac{3.009}{3.009}$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$ $3.009$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (°       |              |                                       |             | 3,006      | 0.4264     | 247           |         |
| 11 $\frac{4.021}{4.017}$ $\frac{4.018}{3.010}$ $\frac{3.009}{3.006}$ $\frac{3.009}{3.006}$ $\frac{3.009}{3.009}$ $\frac{3.009}{3.009}$ $\frac{3.009}{3.009}$ $\frac{3.009}{3.009}$ $\frac{3.009}{3.009}$ $\frac{3.009}{3.009}$ $\frac{4.017}{3.008}$ $\frac{4.017}{3.010}$ $\frac{3.009}{3.010}$ $\frac{4.025}{4.029}$ $\frac{4.025}{4.029}$ $\frac{3.010}{3.010}$ $\frac{3.010}{3.010}$ $\frac{3.010}{3.012}$ $\frac{4.028}{4.029}$ $\frac{3.010}{3.012}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |              |                                       |             |            |            |               |         |
| 12 $\frac{4.010}{4.001}$ $\frac{3.006}{3.006}$ $\frac{3.006}{3.009}$ $\frac{3.007}{3.009}$ $\frac{4.027}{4.019}$ $\frac{3.010}{3.011}$ $\frac{3.010}{3.011}$ $\frac{3.010}{4.028}$ $\frac{3.010}{3.011}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11       | 1 4.021 4018 |                                       | 3009        | alilaa     | 220        |               |         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,        |              | 1, 70                                 | / /         | 7. 1       | 0.4100     |               |         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 1 ' 1        |                                       |             |            |            |               |         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12       | , , ,        | 4.009                                 |             | 3 007      | A 2CU      | 210           |         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 1            | ·                                     |             | /- [       | (T 86.0)   | 710           |         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |              |                                       | . , ,       |            |            |               |         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12       | 1 1          | 4012                                  |             | 3008       | 0 6017     | 339           |         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |              | 1.                                    |             | /. /       | 0.4011     | 274           |         |
| 14 4028 4.024 3.010 3.011 (). 405] 333<br>4.018 3.012<br>15 4.024 4.024 3.018 3.016 () 4019 322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -        | 4.025        |                                       |             |            | 6 /1       |               |         |
| 4.018<br>4.028<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4.024<br>4. | 14       | 4029         | 4.024                                 | 3.010       | 3.011      | 0.4051     | 333           |         |
| 15 4.024 4.024 3.018 3.016 () (10/9 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 4.019        |                                       |             | -          | - ' ' '    |               |         |
| 15 4.024 4.024 3.018 3.016 () (10/9 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 4.028        |                                       | 3,011       |            | <b>A</b>   |               |         |
| 4,020 3,019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15       | 4,024        | 4.024                                 |             | 3.016      | () 4019    | 312           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 4,020        |                                       | 3.019       |            | - 1 10     | 1 200         |         |

Date: 1938.3.18

 $^{\circ}$ 

Temperature:

4 point() or 3 point ()

30/10 Material: A1203

width, w (mm) thickness, t (mm) Fracture load Strength(MPa) No Remarks (kN or kgf) 3.007 4.010 346 4.010 4008 3,006 0.4176 16 3,006 4.005 7.005 4.012 7,010 0.4179 345 3.010 4.010 4,009 3.011 1) 4.003 3.008 4016 3.018 0.3881 319 4.017 4.017 3016 3.014 18 4.018 3.016 4.018 3.005 332 0.4017 4.019 3,006 3.006 4019 19 3.008 4022 3.014 338 0.4037 4.022 210.5 4.021 3.014 20 4.023 2.016 4,008 338 -4.005 3.008 4.005 3,007 0.4082  $\nu$ I 4.001 3.007 4.019 3.005 0.3506 289 3,007 4.019 4017 3.005 22 4021 3.012 4.002 3.014 32b 4.006 4.006 3.013 3.013 0.3948 23 4011 7.012 3.919 2.999 341 7.919 3.918 3.003 3.003 0.4617 24 3.917 4.020 3,016 317 4.020 0.3847 4.021 3.04.0 25 4.023 3.007 4015 339 0.4105 4.015 3009 4015 26 4.016 3.013 4.024 3,010 330 27 4023 3008 0.4603 4.023 3,006 4.021 3.008 4.022 3.013 4023 4.022 0.3974 328 3.005 3.007 28 4.021 3.006 4.019 3.011 4.022 0.4022 332 4.021 3.003 29 3.007 4026 3.917 3.007 320 3.918 0-3773 3.920 3002 3005 30

Annex C. Weibull analysis results of flexural strength data.

Number of data = 30 Weibull modulus = 27.331 Characteristic strength = 344.948 Unbiased Weibull modulus = 26.131

Chibiasca Weibah modulus 20.15:

90% confidence bounds (q\_0.05 q\_0.95) m\_lower m\_upper .8227 1.3283 19.6775 31.7683 S\_o (t\_0.05 t\_0.95) S\_lower S\_upper -.3353 .3306 349.4021 340.6127  $S_o$ m S\_av variance MLE 344.9480 26.1371 337.8127 16.1424 20.4738 337.1112 20.4243 Linear model 346.0866 Best LSE 18.5022 345.6790 22.6983 337.5264 Median rank 345.8523 21.6784 337.3421 19.3362

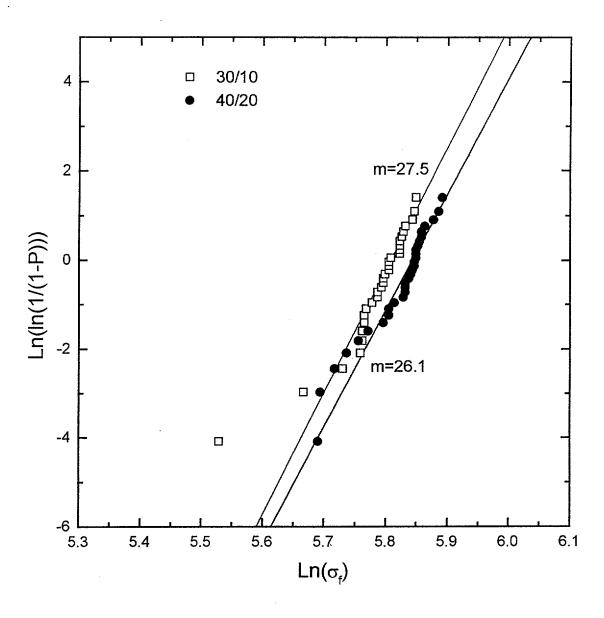
22.5236 337.8056

18.6572

30/10

? model

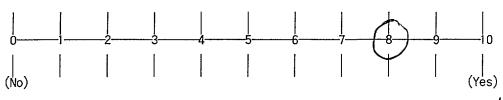
Number of data = 30


Weibull modulus = 28.753

Characteristic strength = 333.204

Unbiased Weibull modulus = 27.497

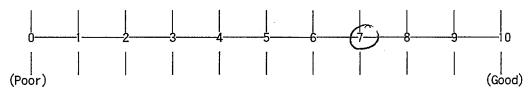
346.0248


90% confidence bounds ( q\_0.05 q\_0.95) m\_lower m\_upper .8227 1.3283 33.4215 20.7016 S\_o (t\_0.05 t\_0.95) S\_upper S\_lower 329,2224 -.3353.3306 337.2925 S\_o m S\_av variance MLE 27.4973 326.6315 14.8545 333.2042 Linear model 336.5234 16.5020 325.9108 24.3180 Best LSE 21.5149 335.7722 18.7621 326.3419 Median rank 17.6968 326.1531 22.7509 336.1062 ? model 336.1677 18.6369 326.6688 21.6762



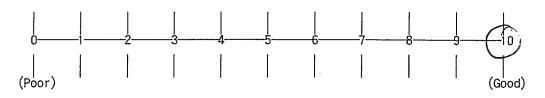
Annex D. Evaluation sheets answered by participants.

### Evaluation sheet for ICMET Workshop/Training on Fine Ceramics


1. Do you think this workshop/training program helpful to you? Please mark below.



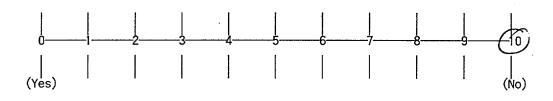
Comments: Advantage of this workshop


Training is to peneralize and standardize Technical skills for conducting material techniq amoung member countries.

2. What do you think of the lectures given in the workshop?

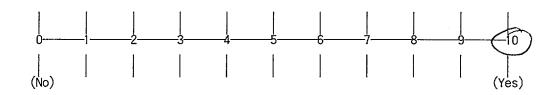


Comments: If theorical aspects was more consentrated in the lecture, it would provide more fransparent view of festing principle


3. What do you think of the practical sessions?



Comments:


excellent facilities and preparation

4. Did you have any difficulties in transportations, eatings, etc, during the workshop/training?



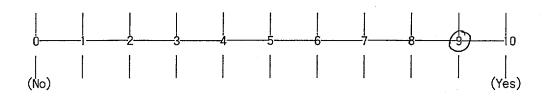
Comments:

5. Do you want the ICMET Project on "Fine Ceramics" to be continued?



If you want, what subjects do you want to be addressed in the project?

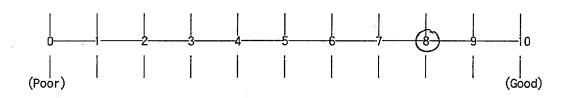
All aspects of mechanical testing should be addressed including internal standard: eq. 150/150 gurde 25, 150 9000 series


6. Other comments on this Workshop/Training or on the other ICMET projects.

Name: SUTIPORN CHEWASATN

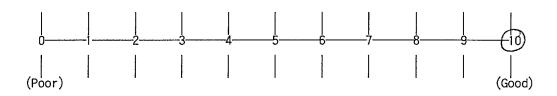
Signiture: S. Chewasahi

## Evaluation sheet for ICMET Workshop/Training on Fine Ceramics


1. Do you think this workshop/training program helpful to you? Please mark below.

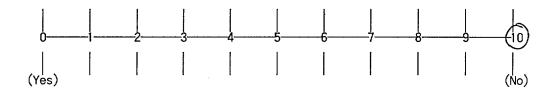


#### Comments:


I think this Workshop/training program makes to understand about Burding test/hardness/tracture toughness/etc.

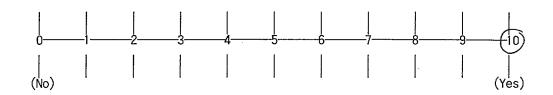
2. What do you think of the lectures given in the workshop?




Comments:

3. What do you think of the practical sessions?




Comments: Excellent facilities and preparation

4. Did you have any difficulties in transportations, eatings, etc, during the workshop/training?



Comments:

5. Do you want the ICMET Project on "Fine Ceramics" to be continued?



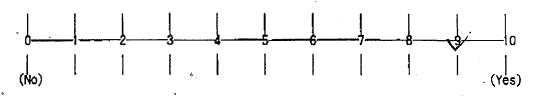
If you want, what subjects do you want to be addressed in the project?

130 9000 series, IEC/Iso quide 25

6. Other comments on this Workshop/Training or on the other ICMET projects.

This Workshop/Training should have many pasticipants because we can exchange knowledge and experience.

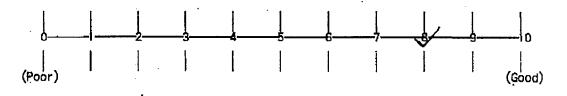
Name: WASANA KHONŒWONŒ Signiture: Marana Khongungo.


Fax to: Dr. Seong-Jai Cho

From: Lin Xiao

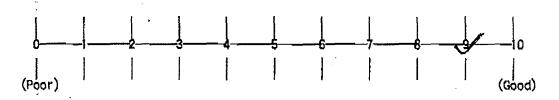
SRIM, China

### Evaluation sheet for ICMET Workshop/Training on Fine Ceramics


1. Do you think this workshop/training program helpful to you? Please mark below.



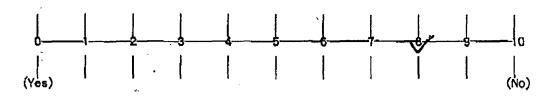
#### Comments:


Through this workshop I exchange my sludy works with other and learn a lots of information about fine ceramics.

2. What do you think of the lectures given in the workshop?



Comments :


3. What do you think of the practical sessions?



#### Comments:

Before this workshops I always do the test work of ceramics myself but don't leave much the specimen. This time I know the abls inclose the machined specimen and precracked specimen.

4. Did you have any difficulties in transportations, eatings, etc., during the workshop/training?



Comments:

a withe

I amn't accustomed to the Konea food.

5. Do you want the ICMET Project on "Fine Ceramics" to be continued?



If you want, what subjects do you want to be addressed in the project?

As the ceramics are used mainly in high temperature circumstance, so I think the subject of propert would be the high temperature property of ceramics.

6. Other comments on this Workshop/Training or on the other ICMET projects.

Name: Ling Xiao

Signiture Big

ac hullogarmuild

#### **Financial Statement of Expenses**

(Unit: US dollar)

| Items                                                                  | Expenses                                                                                                                                                                                                                               |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hotel Accommodation Charges                                            | \$60/night x 7 nights x 3 persons = $$1,260$                                                                                                                                                                                           |
| Boarding                                                               | \$45/day x 7 days x 3 persons = \$945                                                                                                                                                                                                  |
| Remuneration for Lecturers                                             | - \$40/hour x 10.5 hour = \$420<br>- \$35/hour x 10.5 hour = \$367.5                                                                                                                                                                   |
| Reception/Farewell Party                                               | - \$30/person x 10 persons = \$300(Reception)<br>- \$30/person x 10 persons = \$300(Farewell Party)                                                                                                                                    |
| Miscellaneous (including costs for reproduction, communications, etc.) | \$359.25(10% of total costs)                                                                                                                                                                                                           |
| Fixtures and Specimens for Round Robin Test(RRT)                       | RRT for flexural strength: \$7,700  - 4 point bend fixture with rotating rollers(\$3,000)  - Specimens(\$4,700)  RRT for fracture toughness: \$7,300  - Bridge indentation fixture with acoustic sensor(\$6,000)  - Specimens(\$1,300) |
| Total                                                                  | \$18,951. <u>75</u>                                                                                                                                                                                                                    |