

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

9

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

3

Table of Content

Introduction	Page 1
Refrigeration Load Calculation for Naim Dahdal Co.	Page 3
Refrigeration Load Calculation for Al-Amer Workshop	Page 9
Refrigeration Load Calculation for Malak Establishment co.	Page 15
Refrigeration Load Calculation for Burhan Al-Awartani Workshop	Page 21
Refrigeration Load Calculation for Eissa Hedjawi Co.	Page 25
Refrigeration Load Calculation for Golf Workshop	Page 34

		Pe	rfo	<u>orn</u>	nai	nc	<u>e</u> 1	les	t	Sh	eet	I						
Test Type Performance Amblent Temperature	2 1 R	l'est clai	She ive l	et N Hun	ium nidi	ber ly %	B	Pro	/_		ime	6	Da	te // Prod	uct	9 9	17	7
32°C			N	14	1			W	at	eri	lo	ple.	7	Serla	ΩΝ Ξ	umb	er	
Type of Compressor He cometic	C	om Tec	fro	sor l	Mod X	el		Co	npr olin	esso g Ca	or ipac	lty	T	Com Input	pre:	ssot	Po	wei
Refrigerant Type	R	efrij harz	gera je W	nt /eig	ht :			Col and	Le	nser ngth	<u>د</u> ۱۰۰	Тур	•	Evap	ora	tot 1	урх	9
Capillary Tube Length	+ 1 1	hem	<u>nost</u>	0 at T	vpe		\rightarrow	The	m	ostal	Se	ting	+	Test	Run	i Th	ne	
-	10) ge	ho	sł				N	br	ma	1				6	ØŨ	3	
Drier Type	D	rler	Wei	ght								· .						
XH		2	0		Tet	1 12		e		· · · ·	- <u></u> ,-							
Description	1								- 7	Ime								;
	$\lfloor \tau \rfloor$	2	3	5	6	7	8	9	10						1	Ì	Τ	T
Evaporator Surface Temp	32	10	5	-2	-8	-10	-10	-10	-10			\square			T	T	Τ	Τ
Evaporator "M" Package Temperature	-	_	~	-	[_	-	-	-	-			┟╶┤			\uparrow			
Refrigerator Temp.	-		-	-	-	-									Τ		Τ	
Refrigerator Temp. "T2"	-			-		1 1 1 1					 	┟╼╂					╈	\uparrow
Refrigerator Temp. "T3"		-	-	-	-	-	-	-										
Mean Temperature.	-	-	-		~	-	-	<u>⊦</u> .,			÷.,							
Refrigerator Outside Walls Temperature	32	32	32	32	32	32	32	31	32									
Temperature	45	44	4 7	45	48	6	40	38	32	:								
Compressor Discharge Temperature	91	95	94	<i>9</i> 9	9.6	98	17	98 9	96									
temperature	102	105	(14	115	1(2	110	605	108	105									
Condenser Mid Temperature	-	-	-	1	_	-		-	-						T			
Voltana Unitz			1	est	Kes	uit i	Ana	IYSI:	-1-	11/01	Lin			1 154			i	
220 50	>				2	2	3			Cun	ent .//	5 ,		Co Ka	nsu 1/24	mpti hts	lon 	,
Total Time Elapsed for Tes	st Re	sult	5				Con	pre	5501	r Ru Z_ 2	nnii >	ng Ti ⁄	mê	Perc	enti	agé		1
Remarks		· · · · ·	- 1 - 1 	<u>.</u>		L-	·.		7			.					·····	
	. *				•													
Hot Chamber Operator Dat	te an	d Si	gna	iure		1	abo	orato	iry l	Mar	age	r D	ite i	and S	lgn	atur	e	
								-										
									e g	·. ·								

Ambient Temperature	T	telat	lve	Hun	ıldi	ly 9	6	Pro	duc	A Ne	une 4	D. I	P	odu viet	ct Nu:+	<u> </u>	ــــ •	
32°C			5	51				0P	R	gh i	<u> </u>	er:			10	N	K.	
Type or Compressor		.om	nes:	SOF I		iei = 2	/	Cor	npr olin	esso g Ca	эг арас	city		put	CSS		r01	VET
Hermetic		12				- 1		<u></u>	52	10					52	20	1 	
		han.	gera ze W	m /eigl	ht	•		and	Le	nser ngth	1	туре		apo.		г 1у 7 т	be '	
KIJGU		6	7	\mathcal{Q}				71.	N	MA		Hina		VN MD			-	<u><u></u></u>
N/A		De.	losi	at 1 257	2 Z			\mathcal{N}	lei		130 Ul	M		51 R	un FX	20	m	i La
Drier Type	D	rler	We	ght			1											
X.H		5	80	H		- D												
Jacostallan		1	<u> </u>		105			5	- 7	Time				:				
сесприон	17	2	3	4	5	6	7	8			, T	TT		1-	<u> </u>	<u> </u>	Γ.	
Svaporator	20	10	5	0	5	ia	io	is				\square		Τ				Π
Svaporator "M"		+	1-		-	1						┼╌┼		╁─	┼──		<u> </u>	
Package Temperature		-	<u> </u>	1-	F	<u> </u>						$\left \right $		┨			┣	
TI"	32	20	10	8	7	5	5	5		 	<u> </u>							
tefrigerator Temp. T2"	14	.,		4	4	4	e.,	"										
lefrigerator Temp.		.,	6		5		4	4	,							·		
lefrigerator	1_						~	+			┢──	┼┼	+	-				
Acan Temperature. Iefrigerator Outside		<u> </u>	-		ŀ	-	-					┝─┼╸			$\left - \right $			
Valls Temperature	32	32	32	32	32	32	32	32						 				
emperature	15	40	40	45	38	37	35	32		1								
ompressor Discharge	89	88	90	92	95	92	20	82										
ompressor Shell	99	28	100	102	65	102	100	iaz				╞╌╂╴	+	\square				
ondenser Mid	44	45	50	43	42	45	45	50				╏╴╸	╋	 				
					-							┠──┼╴				-		
	.1	L		lest	Res	ult	Ana	lysi				L		L		أستن		
bltage Hertz	2	·		S	tart	Ing	Cut	rent	T	Wol	ikin neni	g	İ	Ric	By		 111	-
220 5	0				4	: E	3					39		Kw/	24h		12	
otal Time Blapsed for To	est Ro	esult	S .	ta. Note			Cot	npre	550	r Ru	nni	ng TI 2 🖵	me P ン	erce	ntay	,e		
emarks		. <u> </u>						· · ·				75					÷	-
							•											
								•••		•								
Chamber Operator D	ate at	2 61	gna	hite	<u>.</u>		ah	orste	hrv	Mar	19.04	er De	le an	त है।	mai	111-0		
KHALED	<u></u>		-Drad	, ui C					/• J	••••	5'							
		-			1				·									
	•										i Li							

¥

Test Type Performer		Test clai	She	et N Hun	lum nldi	ber	fq	<u>ei</u> Pr				04		ite Pri	<u>4</u>	$\frac{17}{ct}$	19	4	
32%		4	45	2	144	• , •	- - 	ch	e5 :	7	Free	220	~	Se	rial	Nu	mby	it .	
Type of Compressor	$\dagger c$	om	pres	sor l	Mod	lel	-	Co	mpi	ress	or		-	Ċo	mp	ress	iot	Po	we
Hametic	$ _{c}$	n So	Id	St	L_{i}	1		Co	olin	ig C	apac	ity		Inç	nut 2	2	~		
Refrigerant Type	R	efH	gera	nt			-+	Co	$\frac{2}{10}$	r nser	, • • •	Ty	ж	Ev	apo	rato	or Ty	vpe	
RIGUA	C	han	se W	/elgl	ht			and	Le	ngtl	h :			τ	• • 6		. .		
Canillary Tube Length	17	2 hert	$-\frac{1}{10}$	2 at T	vne		-+	The		osta	r t Se	Hin	2	Te	u R	un '	Tim	ĕ	<u>a</u> _
NIA		De	lr	25	4				Ne	di	un	••••••••••••••••••••••••••••••••••••••		;	12	Ø	0	-	•
Drier Type	D	rler	We	ght		• • •	Ť						1						
XH		2	o		T	4 10													·
Description	1	· · ·		· · · · .	103		-5ui(न	1							<u> </u>		
Description	17	12	3	4	15	16	17	8	19		s n	12	1(3	14	115	16	17	11X	211
Evaporator	30	10	-	a	Ĺ	-10	1,0		,,	-	-2	-2	-23	-22	-2	5 -	120	5	Ţ
Surface Temp Evaporator "M"	1	۴		F	<u> </u>	1-	1.0	+	1-		<u> </u>			┢──		-4	-	F	19
Package Temperature	E	E	-		-	÷			1-		1-					1-	-	-	1-
Refrigerator Temp. "T1"	28	18	15	5	-2	-8	5	-15	-18	-19	12	18	17	17	19	20	18	18	in
Refrigerator Temp.	6		-			-,-	۲ <u>،</u>		-		-	-	 	ļ,	1.	1.	~	1-	1-
Refrigerator Temp.			<u> '</u>	Ĩ.	-	+			┼──	\vdash				┝─		-	<u> </u>		┢
"T3"	17	1	177 178	<i>"</i>			Ĺ	<u>.</u>	4		. *	<u> ~</u>		ļ."	ļ~	ľ.	ľ_	ľ.	Ľ
Mean Temperature.	"	1	5			٤,	4			-3	3	*	4	7		-			=
Refrigerator Outside	32	32	35	32	32	34	32	32	32	32	32	32	3z	35	32	32	32	32	32
Compressor Suction	4-				-	25	25	8-	20	20	30	3-	32	32	32	35	32	32	133
Temperature Compressor Discharge	R 2	27	40	84	57				14	F			20	0-				a-	
Temperature	8+	89	89	91	72	70	71	92	10	89	08	87	Ъ	85	89	71	72	75	
temperature	97	93	95	96	98	97	97	8	95	94	93	93	94	90	94	96	18	la	19
Condenser Mid	45	47	40	ъ	55	55	55	57	57	50	55	55	52	$\overline{\mathcal{A}}$	D	35	56	3	5
remperante												-		\neg	-				┢─
]		L_	est	Res	ault .	Ane	lysi	L] S		Ļ						L		L
Voltage Hertz			• 	S	tart	ing	Cur	rent		Wo	rkin	g		ŤŦ	inet	gy			
220 50	5				2.	3				Cur	rent	/				5un 24h	iptic mé	n V	
Total Time Elapsed for Tes	t Re	sult	S	<u> </u>	<u> </u>		Con	фre	550	r Rı	inni	ng 1	Im	Pe	rce	ntag	3e	<u> </u>	
1200		• •							6	5	7	·							
Remarks																			
			i. Second	in an a'					1.4 45 2		e ti Get								
					5							•							
Hot Chamber Operator Dat	e an	d S	gna	lure		1	abo	orate	ory	Ma	nage	er D	ale	and	SI	gna	lure		
KHALICO		-		مونینده،	-	1	وليسمع						á an	تعاقبان عن			<u>,</u>	in the set	-
		e Z	•																
	• :	÷., i		r Ar Ar	•		• • •												
				•.	•.•				• •		• .								
				4 a s		• ;													

•

		<u>Pe</u>	rfa	orn	na	nc	e'i	Tes	t.	Sh	eel							:
Test Type Perform	ance	Test	She	et N	lum	ber	Bà	ra/	-1	DFT	7-0	3	D	ate	2,	17	2. 14	<i>?4</i>
Ambient Temperatur	e	Relat	lve	Hun	nidi	ly %	6	Pro	du	ct Na	ime	> _		Pn	oduc	rt.	.	
32°C			4	' 5				UP	' <i>K</i>	igh7	K	₽₽.		Se	nai A	NШ 101	mpe A	Γ
Type of Compressor		Com	pres	sor	Mod	lel		Co	np	resso)r			Co	mpi	ress	or	Po
Hermetic		~ /e	/ 201	fo	lax	<u>.</u>		Coo			apac	hty		Iub	ut 6	2	\sim	
Refrigerant Type		lefti	gera	nt			-+	Cor	Jide	nser		Tyt)e	Ev	BIDO	rato	r Th	10
D DU	Ċ	Char	ge W	/eig	ht			and	Lę	ngtl	۰ ۱					5	7.7	Ē
K134a		6	68	0				nini.		11	4	\mathcal{Q}	ya		111	7 L	-1 	
Capillary Tube Lengt		пеп	nosi		уре			Ine	rm ⊿	051A	i Se	យោទ្	3	Ies	я кі 22 С	いれ に マント	1 IIII	5
Nor Augulad	e l)ef	no:	57	<u> </u>	<u> </u>	-	<u></u>	le	lia	m		-		70		m	
XH		/10	2/		16.00	- ·	-	10 Å	í.									
<u>~!'</u>			<u>ر</u>	- 0	Tes	tRe	esul	ls	 :			·						
Description	<u> </u>						· · · ·			Fime	i							
~ worthing	-	12	3	4	17	17	77	8	1		, T	Ţ	<u>t</u>	1	1	—	<u>,</u>	Т
Evaporator			-1	1-1-		J_1	2-10	-10	1	+	<u> </u>	1	\vdash	\uparrow	†	1-	†	t
Surface Temp			1.	1"	18	1″	1.0	1."	ŀ		 	<u> </u>		 	 	 		Ļ
Evaporator "M" Package Tennerature	-	-			_	_	-			.	-	-		ľ				
Refrigerator Temp.		1							<u> </u>	+	 	†		<u> </u>				+
"T1"	32	20	10	5	7	6	5	5			<u> </u>							L
Refrigerator Temp.	4	4	4	4	4	4	"	W										ſ
Refrigerator Temp.		-	er.	4	4	4	4	4										┢
Refrigerator			-		-		<u> </u>				}				'		<u> </u>	┢
Mean Temperature.	32	20	10	5	+	6	5	5										
Refrigerator Outside	32	37	30	32	32	32	32	32		1	[ſ
Compressor Suction		1	1-		ļ					╂				$\left - \right $				┞
Temperature	38	35	140	39	37	40	15	48										
Compressor Discharge Temperature	• 98	29	105	(0)	102	10)	98	96										Γ
Compressor Shell	103	165	16]	109	111	115	116	120				1						ľ
Condenser Mid				<u> </u>						┟──┘								┝
Temperature	55	56	40	96	48	55	50	50										
							·											
		1	ر. ا	lest	Res	ult .	Ana	lysi	8	L	L							L
Voltage He	ettz			TS	tart	ing	Cur	rent	T	Wo	kin	g		TE	Inct	<u>Ry</u>		<u>`</u>
220	$\overline{\mathbf{s}}$		di se		4	0	سب الم			Cur	rent	- b		0	on	sum	ptlo)Ħ
Total Time Flanced for	Tect D	pent	0	1	1	- 7	7 7	inn		- /.	50	<u>۲</u>	1000		W/.	24h	13	12
$\mathcal{U} = \mathcal{U} = \mathcal{U}$	1091 K	cauli					CUI	uhte.	330 		uuu	ug I		C TC		uut	20	
780 Min Remarks	······			<u></u>	<u>ينت.</u>	·L.		ć	23						·			
IVIIIII BƏ																		
			in the			•												
					. • : •													

•

	4	Pe	rfa	rn	na	nc	e	Tes	Yt.	Sh	eel	1	-				
Test Type Performance	e '	lest	She	et N	ium nai	ber	Ba	»/-	PF	7-0 4 N	22	1	Date	30/	61	99	
Vinnieur teurheisime		CIN	445. (1-		uuu	iy 7	•	.rπ м	kuu(а N (анис /	Car	Se	Hal N	umb	er	
14 L			73		1	1.1		112 1-	ar	2	aw	au		M	ON	/ R-	
Type of Compressor		om	pres	SUL	VIO	let		Co	mpi olin	ess g C	or apac	ity		nipre sul	5501	PO	WĊ
Hermetrc	2	an	b	55					38	0	8,			410	2		-
Refrigerant Type		efii	gera	nt Valo	ha .			Co	nde	nset	- 	Туре	Bv	apora	tor 1	lype	3
R134a		nan) E	5540	7 G	nu VM	•		4	\mathcal{X}	aw aw	11 15		Fi	n X	Tub	e	
Capillary Tube Length	T	hen	nost	lat 7	уре	 		Th	erm	osta	t Se	tting	Te	st Ru	i Th	ne	
Nat Available		Def	no	51				M	ed	in	п			12	2		
Drier Type	D	rier	We	ight				1			_	_					
Х.Н		3	0	H	m Te	a D	Penil	<u>. 2</u> 1 Ic			*	<u></u>					
Description						n 35		10		1							
Description	+	12	12	4	17	16	12	R	0		ह । जित	12		1 - 1	- <u>1</u> -		-
Evaporator	17	+	TT,	F	苣	Ē	12	17	14	† -	广	17	+-	+	+	+	\dagger
Surface Temp	18	01	14	0	12	6	8	2	hC	15	14	15		$\mid \mid \mid$			_
Evaporator "M" Package Temperature	-	-			-	-	-		-	-	- -						
Refrigerator Temp.	30	2-	100	lin	112	2	12	2	2	4	5	4	+-	┼╌┼		+	\uparrow
"TI"	12	cs	10	1	12	10	\downarrow^{τ}	12	Ľ	\downarrow	Ĺ	' -		-		+	
"T2"	4	14	in		1 .	1	14	14	17	12	17	2					
Refrigerator Temp. "T3"	4	4	ei	4	n		4	1	4	"			1		-	-	╋
Reffigerator Mean Temperature.	32	25	20	10	12	8	7	3	5	4	5	4	1			T	T
Refrigerator Outside	27	37	32	39	37	37	37	32	32	37	37	32	\top			Τ	T
Compressor Suction	1~	<u> </u>	-	<u> </u>	<u> </u>	Ē	-	Ē	Ē	<u> </u>				┣──┨-	+	╋	+-
Temperature	28	25	30	3.5	80	45	40	40	45	38	157	52					
Compressor Discharge	98	25	%	22	89	99	28	83	10	98	28	98					
Compressor Shell temperature	105	110	loš	108	 102	63	107	62	115	15	46	167	+			╉╧	\uparrow
Condenser Mid Temperature	52	49	50	52	54	55	55	55	56	57	55	55-			-	1	\uparrow
······································															1	\uparrow	\uparrow
	1		L.,	est	Re	ault	Апя	lvel	<u> </u>							<u> </u>	<u>سا</u> ،
Voltage Hertz			•	15	tari	ing	Ĉiit	rent	1	Wo	rkin	2		Inero		<u></u>	
220 5	0				2		2	• •••••		Cur	rent		l	Consu	, mpt	löfi	• •
	L F			1	2	- Ø	+	1 3 3 		1.	12	, 		<w 24<="" td=""><td>hrs</td><td>18</td><td>2</td></w>	hrs	18	2
	ઝાલ	suit	3				U0I	ιφπ	:850	7 KI 24		ng 111 ∕	nc Pe	acent	age		
<u>+LO</u>										/	<u> </u>	•					
I CHRING			- 			•		1									
	•			2 2 - 2 - 23 					•		• • •						
a								•									

. .

	4	re	rfo	<u>rn</u>	a	nc	<u>e 1</u>	es	<u>t 1</u>	Sh	eet?								
Test Type Performan	le]	l'est	She	et N	um	ber	Bo	Lad	- 7	PFI	2 0	>1	D	ite	28	/	6/9	99	
Ambient Temperature	TR	elat	lvel	Hun	udi	y 9	6	Pro	duc	A N	une			Pπ	duc	7 N	h.		
32°c		45		ан 1 - 1 - 1				UP	R	igh	† K	ef.		28		NU OA	moe /	<u>л</u>	
Type of Compressor	C	om	ores	sor l	Mod	lel		Co	mpi	esso)t			Co	mpr	C 85	or	Po	Wet
Helmetic	Z	on	rfo	55				CO	nın E	80 80	ipac	жу		цф	m 75	0			
Refrigerant Type	R	efti	gera	nt	· · · ·		-†	Cot	ıde	nser		Typ	ю	Ev	apot	ato	r Ty	pe	
R 1342	C	harg Co	se W	elgi	ut :			and 4	Le	ngti 275	l			Fir	. 8	Ϋ́	Fu	be	
Capillary Tube Length	T	hem	nost	at T	ype		+	The	am	osta	i Se	tting		Tes	t Ri	un '	11m	e	
8 mt.	0	efi	os	1				K	led	in	n	-		2	4	h	r5		
Drier Type	D	rler	Wel	ght	·	··· .			1 A .										
25 Grm XH		2	5 G	YW	1 #		1		• • •	<u></u>									
					les	a Ro	esul												
Description	-	17	1-	17.	17	17	10	Te.	1	Ime		1/2	1.0		177	17-	100		100
Evaporator	15	4	片	7 +	-	-	*	<u>+</u>	<u> </u> Z	70	17	12	15	-	-	4	1-	12	17
Surface Temp	118	16	10	1	5	7	9	9	9	19	9	9	9	2	9	19	9	9	9
Evaporator "M" Package Temperature	NA	NA	NA	NA	NA	NA	N A	NA		N A	NA	A	A	NA	A	N A	NA	A	NA
Refrigerator Temp.	+	17	+	+	t	+	-+	+	-+	Ŧ	+	+	+	+	Ŧ	7	7	ÍŦ,	fŦ
"T1"	32	30	24	20	8	7	4	5	6	5	4	6	3	2	5	4	6	15	12
"T2"	4	1	1,	Т •,	- T.	1	7	1	4	- 47	5	Τ η	5	2	7	4	4	1 5	3
Refrigerator Temp.	7	+	+	+	+	+	t	+	+	+	+	+	+	+	+	+	7	7	7
"13" Refrigerator	+	+		17	4	4	14	1 4		4	-		1	"	*	Ľ	1-	ŀ	Ľ
Mean Temperature.	32	36	24	20	8	2	4	4	5	6	5	4	6	3	2	5	4	6	2
Refrigerator Outside	+ 22	1+	32	32	32	32	32	32	~		5							_	37
Compressor Suction	行	 	L-		Ļ.		┣_		-	-	-	 		$\left - \right $		-		1-	F
Temperature	32	32	32	40	42	45	4	40	45	41	45	60	50	4	42	q_l	2	52	12
Compressor Discharge	90	80	28	23	100	<i>w</i>	102	103	90	98	95	9.2	26	95	15	28	15	2	2
Compressor Shell	Ŧ	+							(101	110	5	101	1			110		i.
temperature	110	120	120	10	uo	01	120	108	108	0		- 4	۲ M	чg	.4				["
Condenser Mid	+	54	55	55	53	55	55	55	55	55	55	55	50	56	54	55	55	55	55
	– –	+	-	-															†
				<u> </u>	Res		Ång	lvei											Lin
Voltage Hertz			•	TS	tart	ng	Citr	rent	<u>,</u>	Wo	kin	ø		T F	Inet	øv		í+	<u></u>
220 5	5				4	্র	2			Cur	rent	6		Q	ons	u n	ptic	ń	
Intal Time Flamed for Te	et Re	ent	·	L			Con	inn		r Du	· 2	8	1 mil		(W/)	24h	uts g	<u> </u>	نستما
4500 min			•	•			-vii	4110	6	01	γ γ	··•ō ·					2~		
Remarks			<u></u>	<u></u>	· · · ·				ب		<u> </u>								 -
			1 ÷ 1	•						• •	•								
					•		··· ·		ą.										
	• •															<u> </u>	_		
Hot Chamber Operator Da	te an	d SI	gna	lure	1	Ţ	ab	orate	ory	Mai	uage	er D)ate	and	I SI	gna	hire		

. .

1

Baalbaki Secon Progress Report,

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

Introduction

This Draft Final report has been prepared based on Contract with UNIDO and relevant terms of references prepared by UNIDO. The aim of the contract is to develop and convert six models of currently in production, into Ozone Friendly Refrigerant cooling system.

Based on Montreal and Jordan agreement, R134a refrigerant was selected as suitable Ozone friendly Refrigerant replacement and an alternative for R12 refrigerant and also Cyclopentane as a substitute for R11.

This change to the cooling system requires significant modification and improvement of cooling system. Due to the enhanced physical and chemical properties of the main components of the cooling circuits must be replaced of adjusted as a consequence of substitution of R12 into R134a.

Please find below the calculation of prototypes for determination of cooling capacity of each prototypes and also selecting compatible compressor for substituting R12 compressor with R134a compressor, because this is the first step for making prototype. It is indeed a difficult job to find precise compressor capacity to much the installed R12 compressor in the Jordanian market.

The data which has been collected from each company will help us to calculate required refrigeration load that should be produced by the compressor and evaporators. For making prototypes our policy is to keep the existing size of condenser and evaporator and perform minor changes as required in cooing circuit, we think that minor adjustment will be required in refrigerant weight charge and probably in length of capillary tube.

In this report we will give some detailed technical data in different tables for each prototype model and then we calculate the refrigeration load calculation for each prototype.

The prototypes were tested under designated ambient temperature mostly at + 32 C, the test performance revealed that no significant changes is necessary for refrigeration system circuit, because the original size of evaporator and condensers are much bigger than cooling requirements.

The adjustment were applied to the mainly to the amount of refrigerant charge and length of capillary tube.

Each prototypes under gone performance test at the following test criteria.

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer,

Pull down test at + 32 C

Continuos run Test at = 32 C ambient temperature

Cyclic run test at + 32 C ambient temperature.

The test condition was selected in accordance with appropriate ISO test standards.

All prototypes were tested at existing hot chamber in our facilities in Awajan Amman

the test results sheet will be provided after necessary performance test evaluation and perform necessary modification.

Before making prototypes we conducted a training course to train the six companies to make their own prototypes and also make them familiar with the new technology.

The following topics were thought during the theatrical training course.

An orientation to UNIDO CFC phase out project.

Montreal Protocol

Ozone Layer and CFC side effect to Ozone layer

Familiarization with new R134a Refrigerant, application, safety precaution, use and maintenance.

Familiarization with the new vacuum and charging equipment, vacuum pump and charging board.

Recovery and recycling of R12 refrigerant, and also R134a.

Alternative for R11 and R12.

Some explanation about R141b blowing agent,

Selection of refrigeration components to be replaced with R12 refrigeration system.

Calculation and redesign of prototypes

Performance test

Test results Evaluation.

Refrigeration system adjustment.

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

Model ND1200 Te	chnical Specification
Show Case Upright Refrigerator	Type of Product
2000 x 700 x 1400 mm	Overall Dimension
50 mm	Wall Thickness
P.U. Foam R11	Type of Foam
40 Kg/m	Foam Density
110 ISO, 76 Polyol, 24 R11	Foam Mixing Ratio %
1200 lit.	Net Internal Volume
Hermetic, Air Cooled	Type of Compressor
650 Watts	Compressor Cooling Capacity
750 Watts	Power Input
Fin and Tube	Type of Condenser
Inside Dim. = 4, four rows	Size of Condenser
Fin and Tube	Type of Evaporator
R12	Type of Refrigerant
R12, = 650 Gr.	Refrigerant Charge
25 Gr.	Filter Drier Size
220/50	Power Source
- 10 °C	Designated Inside Evaporator
	Temperature
5 °C	Designated Inside Ref. Temperature
Standard 32 °C	Designated Operating Condition

Naim Dahdal Show Case Model ND1200 Technical Specification

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

<u>Refrigeration Load Calculation</u> <u>Upright Refrigerator Showcase Model ND-1200</u>

a) Transmission load calculation

Refrigerator Compartment	Dimension	Area (sq.mt.)	Insulation Thickness	Temp. Difference
Side Walls	2 x (200x70)	2.8	50mm	27 c
Back Panel	200x140	2.8	50mm	27 c
Top Surface	70x140	0.980	50mm	37 с
Bottom Surface	70x140	0.980	50mm	27 с
Door	200x140	2.8	15mm air	27 с

Insulation Type: Pu Foam with R141b blowing agent.

Thermal Conductivity for Foam = 0.0180 W/ mt. ° C

Thermal Conductivity for Air at -12 at 1 atm. =0.02367 W/mt. ° C

Temperature Difference Refrigerator Compartment: $\Delta T = 32 - (+5) = 27 \circ C$ Ambient Temperature = $32 \circ C$ Refrigerator Air Temperature = $+5 \circ C$

Calculation :

Heat Leak For Refrigerator Compartment.

$$Q_{TL} = Q_{SW} + Q_{Back Panel} + Q_{door} + Q_{Bottom} + Q_{Top}$$
$$Q = U A (T_a - T_r)$$
$$U = \frac{1}{X_1 / K_1}$$

Where :

U = Heat Resistance Coefficient Factor K₁ = Foam Thermal Conductivity

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

Note : Due to the short thickness of cabinet out side panel (0.6 mm) and plastic inner liner (1.5 mm) heat resistance of these materials have been considered negligible.

Therefore:

1-Q SideWalls = [UA(Ta - Tr)]

Ta = Ambient Temperature Tr = refrigerator air Temperature

U = 1 / (0.050/0.0180) = 0.36 W/ sq.m °C

A = 2.8 Sq. Mt., $T_a = 32 \text{ °C}$ $T_f = +5 \text{ °C}$ therefore Q sideWalls = 0.36 x 2.8 x 27 = 27.22 Watts

Q SideWalls = 27.2 Watts

 $2 - Q_{\text{Door}} = [U A (T_a - T_r)]$

U = 1 / (0.015/0.024) = 1.6 W/ sq.m °C Ta - Tr= 27 A = 2.8

 $Q_{door} = 1.6 \times 2.8 \times 27 = 120$ Watts

Q door = 120 Watts

2 - $Q_{\text{Back panel}} = [UA(Ta - Tr)]$

U = 0.36 w/sq. Mt. °C, Ta - Tr= 27 A = 2.8

 $Q_{Back panel} = 0.36 \times 2.8 \times 27 = 27.2 \text{ Watts}$

Q Back panel = 27.2 Watts

 $3 - Q_{Top} = [UA(Ta - Tr)]$

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

U = 0.34 w/sq. Mt. °C,Ta - Tr= 27 A = 0.980

 $Q_{Top} = 0.36 \times 0.98 \times 37 = 13$ Watts

 $3 - Q_{Bottom} = [UA(Ta - Tr)]$

U = 0.34 w/sq. Mt. °C, Ta - Tr= 27 A = 0.980

Q Bottom Surface = $0.36 \times 0.98 \times 27 = 9.5$ Watts

Q Bottom Surface = 9.5 Watts

Total Refrigerator Heat Leak =27.2+120+27.2+13+9.5=196.9 W

Product Load

A product placed in a refrigerator at a temperature higher than the storage temperature will lose heat until it reaches the storage temperature. The quantity of heat to be removed may be calculated from knowledge of the product, including its state upon entering the refrigerator, its final state, its weight, specific heat above and below freezing point, its freezing temperature and latent heat. When a definite weight of product is cooled from one state and temperature to another state and temperature, some or all of the following calculations must be made:

Heat removal from initial temperature to some lower temperature above freezing.

$$Q = mc(T_1 - T_2)$$

Heat removal from initial temperature to freezing point of product.

 $Q = mc(T_i-T_f)$

Heat removal to freeze product.

 $Q = mh_{if}$

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer. Heat removal from freezing point to final temperature below freezing.

$$Q = mc(T_{f}-T_{3})$$

Where

Q = heat removed, Kj

M = weight of product, kg

C = specific heat of product above freezing point, Ki/Kg. K

 $T_1 = initial temp. C$

 T_2 = lower temperature above freezing, C

Tr = freezing temperature of product, C

Hir = latent heat of fusion, ki per kg

Since this product is mainly used for storing fresh Lamb meet and beef above freezing point at +5 C, we consider 500 Kg of meet to be stored in this refrigerator therefore we calculate as follow,

$$Q = mc(T_1 - T_2)$$

M = 500 kg C = 0.67 Btu/(lb)F deg = 0.67 x 4.184 = 2.8 j/g K $T_1 = 25 C$ $T_2 = 5 C$ Q = 500000x2.8x (25-5) =28000000 jul/86400 = 324 Watt

Internal Load

Electric Fan 2x10 = 20 Watt Florescent Lamp = 20 watt

Door Opening Refrigerator Internal Volume 1200 lit. Number of air change as per ASHREA standard = 70 per day Heat removed per cubic meter of air 75000 j

Air Change load = 1.2x70x75000/86400 = 72.9 Watt

 $Q_{Total} = Q$ heat leak +Q product load + Q internal load + Q air change

Q Total = 324 + 196.9 + 20 + 20 + 72.9 = 633.8

Conversion of Prototypes into R134a ozone friendły Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

Considering 10 % of Q total for safety factor

 $Q_{Grand Total} = 633.8 + 10\%(63.4) = 697.2$ watts

With respect to the above calculation we have to select a compressor of R134a with cooling capacity of approximately 697.2 watt at -10 degree centigrade evaporating temperature.

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

	sinnear opecinication
Show Case	Type of Product
1550 x 600 x 1400 mm	Overall Dimension
60 mm	Wall Thickness
P.U. Foam R11	Type of Foam
40 Kg/m	Foam Density
110 ISO, 76 Polyol, 24 R11	Foam Mixing Ratio %
600 lit.	Net Internal Volume
Hermetic, Air Cooled	Type of Compressor
380 Watts	Compressor Cooling Capacity
400Watts	Power Input
Fin and Tube	Type of Condenser
Inside Dim. = 4, four rows	Size of Condenser
Fin and Tube = 15 meter	Type of Evaporator
R12	Type of Refrigerant
R12, = 600 Gr.	Refrigerant Charge
25 Gr.	Filter Drier Size
220/50	Power Source
- 10 °C	Designated Inside Evaporator
	Temperature
5 °C	Designated Inside Ref. Temperature
Standard 32 °C	Designated Operating Condition

Al- Amer Meat Show Case Model A-1.55M Technical Specification

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

Refrigeration Load Calculation Upright Refrigerator Showcase Model A-1.55M

a) Transmission load calculation

Refrigerator Compartment	Dimension Cm.	Area (sq.mt.)	Insulation Thickness	Temp. Difference
Side Walls	2 x (100x75)	1.5	60mm	27 с
Lower Back Panel	155x75	1.16	60	27 c
Upper Back Panel	155x65	1.01	15 mm air	27 C
Display Shield Glass	155x102	1.58	10mm	27 c
Bottom Surface	155x100	1.55	60mm	37 c

Insulation Type: Pu Foam with R141b blowing agent.

Thermal Conductivity for Foam = 0.0180 W/ mt. ° C

Thermal Conductivity for still Air at -12 at1 atm. =0.02367 W/mt.° C

Temperature Difference Refrigerator Compartment: $\Delta T = 32 - (+5) = 27 \circ C$ Ambient Temperature = $32 \circ C$ Refrigerator Air Temperature = $+5 \circ C$

Calculation :

Heat Leak For Refrigerator Compartment.

$$Q_{TL} = Q_{SW} + Q_{Back Panel} + Q_{door} + Q_{Bottom} + Q_{front Shield Glass}$$
$$Q = U A (T_a - T_r)$$
$$U = \frac{1}{X_1 / K_1}$$

Where :

U = Heat Resistance Coefficient Factor

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

K₁ = Foam Thermal Conductivity

Note : Due to the short thickness of cabinet out side panel (0.6 mm) and plastic inner liner (1.5 mm) heat resistance of these materials have been considered negligible.

Therefore:

 $1-Q_{\text{SideWalls}} = [UA(Ta - Tr)]$

Ta = Ambient Temperature 32 Tr = refrigerator air Temperature 5

U = 1 / (0.060/ 0.0180) = 0.3 W/ sq.m °C

A = 1.5 Sq. Mt., Ta = 32 °C Tf = + 5 °C therefore Q sideWalls = $0.3 \times 1.5 \times 27 = 12.2$ Watts

Q sideWalls = 12.2 Watts

2 - Q front shield glass = [UA(Ta - Tr)]

U = 1 / [(0.010/ 0.5)+(0.65/0.02362)] = 0.036 W/ sq.m °C Ta - Tr= 27 A = 1.5

Q front shield glass = $0.036 \times 1.5 \times 27 = 1.5$ Watts

Q front shield glass = 1.5 Watts

 $3 - Q \cup pper Back panel = [UA(Ta - Tr)]$

U = 1/(0.015/0.02362) = 1.57 w/sq. Mt. °C, T_a - T_r = 27 A = 1.01

Q Upper Back panel = 1.57 x 1.01 x 27 = 42.8 Watts

Q upper Back panel = 42.8 Watts

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

4 -Q lower back panel = [UA(Ta - Tr)]

U = 0.3 w/sq. Mt. °C,Ta - Tr= 27 A = 1.16

 $Q_{\text{lower back panel}} = 0.3 \times 1.16 \times 27 = 9.4 \text{ Watts}$

Q lower back panel = 9.4 Watts

 $5 - Q_{Bottom} = [UA(Ta - Tr)]$

U = 0.3 w/sq. Mt. °C, Ta - Tr= 37 A = 1.55

Q Bottom Surface = $0.3x \ 1.55 \ x \ 37 = 17.2$ Watts

Q Bottom Surface = 17.2 Watts

Total Refrigerator Heat Leak =12.2+1.5+9.4+42.8+17.2= 113.7 W

<u>Product Load</u>

A product placed in a refrigerator at a temperature higher than the storage temperature will lose heat until it reaches the storage temperature. The quantity of heat to be removed may be calculated from knowledge of the product, including its state upon entering the refrigerator, its final state, its weight, specific heat above and below freezing point, its freezing temperature and latent heat. When a definite weight of product is cooled from one state and temperature to another state and temperature, some or all of the following calculations must be made:

Heat removal from initial temperature to some lower temperature above freezing.

$$Q = mc(T_1 - T_2)$$

Heat removal from initial temperature to freezing point of product.

 $Q = mc(T_i-T_f)$

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

Heat removal to freeze product.

 $Q = mh_{if}$

Heat removal from freezing point to final temperature below freezing.

$$Q = mc(T_f-T_3)$$

Where

Q = heat removed, Kj

M = weight of product, kg

C = specific heat of product above freezing point, Kj/Kg. K

 $T_1 = initial temp. C$

T₂ = lower temperature above freezing, C

Tr = freezing temperature of product, C

Hir = latent heat of fusion, kj per kg

Since this product is mainly used for storing fresh Lamb meet and beef above freezing point at +5 C, we consider 200 Kg of meet to be stored in this refrigerator therefore we calculate as follow,

 $Q = mc(T_1-T_2)$ M = 200 kg C = 0.67 Btu/(Ib)F deg = 0.67 x 4.184 = 2.8 j/g K T₁ = 25 C T₂ = 5 C Q = 200000x2.8x (25-5) =11200000 jul/86400 = 129.6 Watt

Internal Load Florescent Lamp = 2x12=24 watt

Door Opening Refrigerator Internal Volume 600 lit. Number of air change as per ASHREA standard = 70 per day Heat removed per cubic meter of air 75000 j

Air Change load = 0.6x70x75000/86400 = 36.4 Watt

QTotal = Q heat leak +Q product load + Q internal load + Q air change

4

Baalbaki Secon Progress Report,

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

$$Q$$
 Total = 113.7 + 129.6 + 24 + 36.4 = 303.7

Considering 20 % of Q total for safety factor

$$Q_{\text{Grand Total}} = 303.7 + 20\%(303.7) = 364.5 \text{ watts}$$

With respect to the above calculation we have to select a compressor of R134a with cooling capacity of approximately 364.5 watt at -10 degree centigrade evaporating temperature.

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

Model MA-1600 Te	chnical Specification
Show Case Upright Refrigerator	Type of Product
2000 x 850 x 1600 mm	Overall Dimension
60 mm	Wall Thickness
P.U. Foam R11	Type of Foam
40 Kg/m	Foam Density
110 ISO, 76 Polyol, 24 R11	Foam Mixing Ratio %
1200 lit.	Net Internal Volume
Aspera Model 6220	Type of Compressor
580 Watts	Compressor Cooling Capacity
650 Watts	Power Input
Fin and Tube	Type of Condenser
Inside Dim. = 4, four rows	Size of Condenser
Fin and Tube	Type of Evaporator
R12	Type of Refrigerant
R12, = 750 Gr.	Refrigerant Charge
25 Gr.	Filter Drier Size
220/50	Power Source
- 15 °C	Designated Inside Evaporator
	Temperature
5 °C	Designated Inside Ref. Temperature
Standard 32 °C	Designated Operating Condition

Malak Est. Up Right Refrigerator

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

<u>Refrigeration Load Calculation</u> <u>Upright Refrigerator Showcase Model MA-1600</u>

a) Transmission load calculation

Refrigerator	Dimension	Area	Insulation	Temp.
Compartment	Cm.	(sq.mt.)	Thickness	Difference
Side Walls	2 x (200x85)	3.4	60mm	27 с
Back Panel	200 x160	3.2	60mm	27 c
Top Surface	85 x 160	1.36	60mm	37 c
Bottom Surface	85 x 160	1.36	60mm	27 с
Door	200 x 160	3.2	60mm	27 с

Insulation Type: Pu Foam with R141b blowing agent.

Thermal Conductivity for Foam = 0.0180 W/ mt. ° C

Temperature Difference Refrigerator Compartment: $\Delta T = 32 - (+5) = 27 \circ C$ Ambient Temperature = $32 \circ C$ Refrigerator Air Temperature = $+5 \circ C$

Calculation :

Heat Leak For Refrigerator Compartment.

 $Q_{TL} = Q_{SW} + Q_{Back Panel} + Q_{door} + Q_{Bottom} + Q_{Top}$ $Q = U A (T_a - T_r)$

$$U = \frac{1}{X_1 / K_1}$$

Where :

U = Heat Resistance Coefficient Factor K₁ = Foam Thermal Conductivity

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer. Note : Due to the short thickness of cabinet out side panel (0.6 mm) and plastic

inner liner (1.5 mm) heat resistance of these materials have been considered negligible.

Therefore:

 $1-Q_{\text{SideWalls}} = [UA(Ta - Tr)]$

Ta = Ambient Temperature Tr = refrigerator air Temperature

 $U = 1 / (0.060 / 0.0180) = 0.3 W / sq.m ^{\circ}C$

A = 3.4 Sq. Mt., T_a = $32 \degree C$ T_f = $+5 \degree C$ therefore Q sideWalls = $0.3 \times 3.4 \times 27 = 27.54$ Watts

Q sideWalls = 27.54 Watts

 $2 - Q_{\text{Door}} = [UA(Ta - Tr)]$

U = 1 / (0.015/ 0.018) = 0.3 W/ sq.m °C $T_a \cdot T_{r=27}$ A = 3.2

 $Q_{door} = 0.3 \times 3.2 \times 27 = 25.92$ Watts

Q door = 25.92 Watts

 $2 - Q_{Back panel} = [UA(Ta - Tr)]$

U = 0.3 w/sq. Mt. °C, Ta - Tr= 27 A = 3.2

Q Back panel = $0.3 \times 3.2 \times 27 = 25.92$ Watts

Q Back panel = 25.92 Watts

 $3 - Q_{Top} = [UA(Ta - Tr)]$

U = 0.3 w/sq. Mt. °C,

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

Ta - Tr= 27 A = 1.3

 $Q_{Top} = 0.3x \ 1.3 \ x \ 37 = 14.43$ Watts

$$Q_{Top} = 14.43$$
 Watts

 $3 - Q_{Bottom} = [UA(Ta - Tr)]$

U = 0.3 w/sq. Mt. °C, Ta - Tr= 27 A = 1.3

Q Bottom Surface = $0.3x \ 1.3 \ x \ 27 = 10.53$ Watts

Q Bottom Surface = 10.53 Watts

Total Refrigerator Heat Leak =

27.54+25.92+14.43+10.53+25.92=104.34W

<u>Product Load</u>

A product placed in a refrigerator at a temperature higher than the storage temperature will lose heat until it reaches the storage temperature. The quantity of heat to be removed may be calculated from knowledge of the product, including its state upon entering the refrigerator, its final state, its weight, specific heat above and below freezing point, its freezing temperature and latent heat. When a definite weight of product is cooled from one state and temperature to another state and temperature, some or all of the following calculations must be made:

Heat removal from initial temperature to some lower temperature above freezing.

$$Q = mc(T_1 - T_2)$$

Heat removal from initial temperature to freezing point of product.

 $Q = mc(T_i - T_f)$

Heat removal to freeze product.

May 1999

Baalbaki Secon Progress Report,

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer,

 $Q = mh_{if}$

Heat removal from freezing point to final temperature below freezing.

$$Q = mc(T_f - T_3)$$

Where

Q = heat removed, Kj

M = weight of product, kg

C = specific heat of product above freezing point, Kj/Kg. K

 T_1 = initial temp. C

T₂ = lower temperature above freezing, C

 T_f = freezing temperature of product, C

Hir = latent heat of fusion, kj per kg

Since this product is mainly used for storing fresh Lamb meet and beef above freezing point at +5 C, we consider 500 Kg of meet to be stored in this refrigerator therefore we calculate as follow,

 $Q = mc(T_1-T_2)$

 $\begin{array}{l} \mathsf{M} = 500 \ \mathsf{kg} \\ \mathsf{C} = 0.67 \ \mathsf{Btu}/(\mathsf{lb})\mathsf{F} \ \mathsf{deg} = 0.67 \ \mathsf{x} \ 4.184 = 2.8 \ \mathsf{j/g} \ \mathsf{K} \\ \mathsf{T}_1 = 25 \ \mathsf{C} \\ \mathsf{T}_2 = 5 \ \mathsf{C} \\ \mathsf{Q} = 500000 \mathsf{x} 2.8 \mathsf{x} \ (25\text{-}5) = 28000000 \ \mathsf{jul}/86400 = 324 \ \mathsf{Watt} \end{array}$

Internal Load

Electric Fan 2x10 = 20 Watt Florescent Lamp = 20 watt

Door Opening Refrigerator Internal Volume 1200 lit. Number of air change as per ASHREA standard = 70 per day Heat removed per cubic meter of air 75000 j

Air Change load = 1.2x70x75000/86400 = 72.9 Watt

 $Q_{Total} = Q_{heat leak} + Q_{product load} + Q_{internal load} + Q_{air change}$

Q Total = 104.3 + 324 + 20 + 72.9 = 521.2

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

Considering 10 % of Q total for safety factor $Q_{Grand Total} = 521.2 + 10\%(52) = 573$ watts

With respect to the above calculation we have to select a compressor of R134a with cooling capacity of approximately 573 watt at -10 degree centigrade evaporating temperature.

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

Model BU-500 Technical Specification				
Chest Freezer	Type of Product			
1200 x 600 x 800 mm	Overall Dimension			
50 mm	Wall Thickness			
P.U. Foam R11	Type of Foam			
40 Kg/m	Foam Density			
110 ISO, 76 Polyol, 24 R11	Foam Mixing Ratio %			
500 lit.	Net Internal Volume			
Techomseh Model AE4ZF9	Type of Compressor			
235 Watts	Compressor Cooling Capacity			
250Watts	Power Input			
Fin and Tube	Type of Condenser			
Tube in Body	Type of Evaporator			
R12	Type of Refrigerant			
R12, = 300 Gr.	Refrigerant Charge			
15 Gr.	Filter Drier Size			
220/50	Power Source			
- 18 °C	Designated Inside Evaporator			
	Temperature			
5 °C	Designated Inside Ref. Temperature			
Standard 32 °C	Designated Operating Condition			

Burhan Al-Awartani Chest Freezer Model BU-500 Technical Specification

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

a) Transmission Load Calculation

Dimension

	Dimension Cm.	Area (sq. mt.)	Insulation Thickness mm
Side Walls	2 x (60x80)	0.96	60
Front & Back Panel	2 x (120x80)	1.92	60
Chest Door	120 x 60	0.72	60
Bottom Floor	120 x 60	0.72	60

Insulation Type: Pu Foam R141b expanded blowing PU foam R141b Foam Thermal Conductivity: 0.018 W /mt.C Temperature Difference: $(\Delta T) = 43 - (-18) = 61$ C Ambient Temperature = 43 C Freezer Air Temperature = - 18 C

Calculation :

$$\frac{Q_{TL} = Q_{side Walls} + Q_{Bottom} + Q_{Top}}{Q = U A (T_a - T_f)}$$
$$U = \frac{1}{X_1 / K_1 + X_2 / K_2 + \dots}$$

Where :

U = Heat Resistance Coefficient Factor K₁ = Foam Thermal Conductivity X₁ = Foam Thickness

Note : Due to the short thickness of cabinet out side panel (0.6 mm) and plastic inner liner (1.5 mm) heat resistance of these materials have been considered negligible. Therefore:

Q sideWalls = $[UA(T_a - T_f)]$ Ta = Ambient Temperature Tf = Freezer air Temperature U = 1 / (0.06/0.018) = 0.3 W/ sq.m C A = 0.96 Sq. Mt. Ta = 43 C

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

 $T_{f} = -18 C$

 $Q_{sideWalls} = 0.3 \times 0.96 \times 61 = 19.35$ Watts

Q sideWalls = 17.57 Watts

Q Front & Back Walls = [UA(Ta - Tf)]Ta = Ambient Temperature Tf = Freezer air Temperature U = 1 / (0.060/0.018) = 0.3 W/ sq.m C A = 1.92 Sq. Mt. Ta = 43 C Tf = -18 C Q Front & Back Walls = 0.3 x 1.92 x 61 = 35.14 Watts

Q Front & Back Walls = 35.14 Watts

 $Q_{Top} = [UA(T_a - T_f)]$ Ta = Ambient Temperature Tf = Freezer air Temperature U = 1 / (0.060/0.018) = 0.3 W/ sq.m C A = 1.12 Sq. Mt. Ta = 43 C Tf = - 18 C

 $Q_{Top} = 0.3 \times 0.72 \times 61 = 13.18$ Watts

 $Q_{Top} = 19.13$ Watts

Q Bottom = [UA (Ta - Tf)] Ta = Ambient Temperature Tf = Freezer air Temperature U = 1/(0.060/0.018) = 0.3 W/ sq.m C A = 0.72 Sq. Mt. Ta = 55 C Tf = - 18 C Q Bottom = $0.3 \times 0.72 \times 73 = 15.76$ Watts

Q Bottom = 15.76 Watts

Total Heat Leaks; $Q_{TL} = 17.57 + 35.14 + 13.18 + 15.76 = 81.65$ watts

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

 $Q_{\text{Total Heat Leaks}} = 81.65$ Watts

Ice Making Capacity = $8_{Kg} \times 1 \times (15 - 0) \times 1.163 = 139.56$ Watts

c) Heat gain through infiltration;

We consider 10% safety factor for door opening and infiltration

Heat gain by infiltration = $0.1 \times (\text{total heat leaks})$

Heat gain by infiltration = $0.1 \times (81.65) = 8.2$ Watts

Total Cooling Capacity Required is calculated as follows;

 $Q_{Grand Total} = Q_{Heat Leaks} + Q_{Ice Making} + Q_{Infiltration}$

 $Q_{\text{Grand Total}} = 81.65 + 139.56 + 8.2 = 287.32 \text{ Watts}$

QGrand Total = 287.32 Watts

The suitable R134a compressor should be compatible with cooling capacity of 287 watt.

(

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

Model EH-1500 Technical Specification				
Show Case Upright Refrigerator	Type of Product			
2000 x 700 x 1500 mm	Overall Dimension			
60 mm	Wall Thickness			
P.U. Foam R11	Type of Foam			
40 Kg/m	Foam Density			
110 ISO, 76 Polyol, 24 R11	Foam Mixing Ratio %			
1200 lit.	Net Internal Volume			
Aspera Model 6220	Type of Compressor			
580 Watts	Compressor Cooling Capacity			
650 Watts	Power Input			
Fin and Tube	Type of Condenser			
Inside Dim. = 4, four rows	Size of Condenser			
Fin and Tube	Type of Evaporator			
R12	Type of Refrigerant			
R12, = 750 Gr.	Refrigerant Charge			
25 Gr.	Filter Drier Size			
220/50	Power Source			
- 15 °C	Designated Inside Evaporator			
••••••••••••••••••••••••••••••••••••••	Temperature			
<u>5 °C</u>	Designated Inside Ref. Temperature			
Standard 32 °C	Designated Operating Condition			

Eissa Hedjawi Up Right Refrigerator Nodel EH-1500 Technical Specificatio

.

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

<u>Refrigeration Load Calculation</u> <u>Upright Refrigerator Showcase Model EH-1500</u>

a) Transmission load calculation

Refrigerator	Dimension	Area	Insulation	Temp.
Compartment		(sq.mt.)	Inickness	Difference
Side Walls	2 x (200x70)	2.8	60mm	27 с
Back Panel	200x150	3	60mm	27 с
Top Surface	70x150	1.05	60mm	37 c
Bottom Surface	70x150	1.05	60mm	27 с
Door	200x150	3	60mm	27 с

Insulation Type: Pu Foam with R141b blowing agent.

Thermal Conductivity for Foam = 0.0180 W/ mt. ° C

Temperature Difference Refrigerator Compartment: $\Delta T = 32 - (+5) = 27 \circ C$ Ambient Temperature = $32 \circ C$ Refrigerator Air Temperature = $+5 \circ C$

Calculation :

Heat Leak For Refrigerator Compartment.

 $Q_{TL} = Q_{SW} + Q_{Back Panel} + Q_{door} + Q_{Bottom +} Q_{Top}$ $Q = U A (T_a - T_r)$

$$U = \frac{1}{X_1 / K_1}$$

Where :

U = Heat Resistance Coefficient Factor K₁ = Foam Thermal Conductivity

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer. Note: Due to the short thickness of cabinet out side panel (0.6 mm) and plastic

inner liner (1.5 mm) heat resistance of these materials have been considered negligible.

Therefore:

1-Q SideWalls = [UA(Ta - Tr)]

Ta = Ambient Temperature Tr = refrigerator air Temperature

U = 1 / (0.060 / 0.0180) = 0.3 W / sq.m °C

A = 2.8 Sq. Mt., $T_a = 32 \degree C$ $T_f = +5 \degree C$ therefore $Q_{sideWalls} = 0.3 \times 2.8 \times 27 = 22.68$ Watts

Q sideWalls = 22.68 Watts

 $2 - Q_{\text{Door}} = [UA(T_a - T_r)]$

U = 1 / (0.015/0.018) = 0.3 W/ sq.m °C Ta - Tr = 27 A = 3 Q door = 0.3 x 33 x 27 = 24.3 Watts

Q door = 24.3 Watts

 $2 - Q_{Back panel} = [UA(Ta - Tr)]$

U = 0.3 w/sq. Mt. °C, Ta - Tr= 27 A = 3

Q Back panel = 0.3 x 3x 27 = 24.3 Watts

Q Back panel = 24.3 Watts

 $3-Q_{Top} = [UA(T_a - T_r)]$

U = 0.3 w/sq. Mt. °C,

-2

Baalbaki Secon Progress Report,

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

Ta - Tr= 37 A = 1.05

 $Q_{Top} = 0.3 \times 1.05 \times 37 = 11.65$ Watts

 $Q_{Top} = 11.65$ Watts

 $3 - Q_{Bottom} = [UA(Ta - Tr)]$

U = 0.3 w/sq. Mt. °C, Ta - Tr= 27 A = 1.05

Q Bottom Surface = 0.3x 1.05 x 27 = 8.5 Watts

Q Bottom Surface = 8.5 Watts

Total Refrigerator Heat Leak =

22.68+24.3+11.65+8.5+24.3= 91.43

<u>Product Load</u>

A product placed in a refrigerator at a temperature higher than the storage temperature will lose heat until it reaches the storage temperature. The quantity of heat to be removed may be calculated from knowledge of the product, including its state upon entering the refrigerator, its final state, its weight, specific heat above and below freezing point, its freezing temperature and latent heat. When a definite weight of product is cooled from one state and temperature to another state and temperature, some or all of the following calculations must be made:

Heat removal from initial temperature to some lower temperature above freezing.

$Q = mc(T_1 - T_2)$

Heat removal from initial temperature to freezing point of product.

 $Q = mc(T_i - T_f)$

Heat removal to freeze product.

$$Q = mh_{if}$$

Heat removal from freezing point to final temperature below freezing.

ì

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

$$Q = mc(T_{f}-T_{3})$$

Where

Q = heat removed, Kj

M = weight of product, kg

C = specific heat of product above freezing point, Kj/Kg. K

 $T_1 = initial temp. C$

 T_2 = lower temperature above freezing, C

 T_f = freezing temperature of product, C

Hir = latent heat of fusion, kj per kg

Since this product is mainly used for storing fresh Lamb meet and beef above freezing point at +5 C, we consider 500 Kg of meet to be stored in this refrigerator therefore we calculate as follow,

$$Q = mc(T_1 - T_2)$$

M = 500 kg C = 0.67 Btu/(lb)F deg = 0.67 x 4.184 = 2.8 j/g K $T_1 = 25 C$ $T_2 = 5 C$ Q = 500000x2.8x (25-5) =28000000 jul/86400 = 324 Watt

Internal Load

Electric Fan 2x10 = 20 Watt Florescent Lamp = 20 watt

Door Opening Refrigerator Internal Volume 1200 lit. Number of air change as per ASHREA standard = 70 per day Heat removed per cubic meter of air 75000 j

Air Change load = 1.2x70x75000/86400 = 72.9 Watt

QTotal = Q heat leak +Q product load + Q internal load + Q air change

Q Total = 91.43 + 324 + 20 + 72.9 = 508

Baalbaki Secon Progress Report, Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer. Considering 10 % of Q total for safety factor

 $Q_{Grand Total} = 508 + 10\%(51) = 559$ watts

With respect to the above calculation we have to select a compressor of R134a with cooling capacity of approximately 559 watt at -10 degree centigrade evaporating temperature.

Baalbaki Secon Progress Report, Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

<u>Refrigeration Load Calculation for different type of</u> <u>Water Coolers</u>

Water cooler cabinet usually consist of a sheet metal housing built around a steel framework, inside this sheet housing there is usually a condensing unit, located near the floor, and above this is the water-cooling mechanism. The latter is the only part insulated (foamed plastic) from the room. The insulation is usually specially formed and between one and one half inches and two inches thick. These cabinets are made in such a way that one or more sides may be easily removed to gain access to the interior. The basin of the water cooler is generally made of porcelain-coated cast iron, porcelaicoated - steel, or stainless steel. Heat exchangers are frequently used on water coolers. These make use of the low temperature of waste water and the suction line to pre-cool the fresh water line to the evaporator coil.

Self-cooler are of two types,

Bottle Type. Tap water type

The bottle cooler usually uses a 20 to 25 liter bottle of water inverted on the top of the cabinet. Overflow and drain water are stored in a container built the cabinet. These coolers use air-cooled condensing units exclusively. They are used where water and drains are not available or where available the plumbing insulation may be expensive.

Water cooler using a plumbing supply and drain connection, must be installed according the relevant approved standards. The plumbing should be concealed, a hand shutoff valve should be installed in the fresh water line. Drain pipe at least 1 ? inches in diameter provided, and rubber opening must be above the drain in such a way as to eliminate the chance for accidental siphoning of the drain water back into the fresh water system. The tap water models use variety of evaporator coil wrapped around the water-cooling tank.

Temperatures of the cooling water are variable depending on the persons who are drinking the water. We consider 10 C for the temperature of drinking water, while our inlet temperature is considered 24 C.

In large business establishment, in office buildings, or in factories, multiple water cooler, instead of individual ones, are popular. These

coolers have one large condensing unit supplying many bubbles and these may be of many different types.

Water cooler is a device that usually is used in the public area to supply cold drinking water to the customers and different people. The appliance is mainly used in

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

the Airports, Railways Station, Coach Terminals, Banks, Offices, Parks, and etc. therefore, it is hard to specify an standard for cold water consumption during the day from the water cooler.

We consider three refrigeration load components that should be taken into our consideration.

- Heat gain by heat transmission from, main water storage tank wall insulation.
- 2- Heat removed from water entering to the water tank at the initial refrigeration system operating condition, (water stored in storage tank during the night, with normal ambient temperature) which is divided by 24 hrs.
- 3- Heat removed from Drinking Water flow that are consumed during designated operating hours " \dot{M} "

The problem of determining the refrigeration load of a water-cooled installation is basically a specific heat and heat leakage problem combination. The water is cooled to temperature which vary upward from about 4 degree centigrade, and the amount heat removed from the water to cool it to a predetermined temperature is simple specific heat problem. The water, being maintained at these low temperature, results in a heat leakage from room into the water, and this part involves the heat leakage portion of installation.

$Q_1 = m C \Delta T$, where:

Q₁ Total heat removed from total drinking water tank volume capacity (lit.) during specific period, related to compressor cooling capacity power in Watts, at initial compressor start up, and early in the morning. When the water temperature is 30 C.

m total weight of water in the water cooler storage tank in Kg. Considering that one litter of water at 24 C is equal to approximately one Kg.

C Specific heat factor of water in Kcal/Kg :C

Temperature difference (Ti–Tc), where, Ti is inlet water temperature, and Tc is final cooled water.

$Q_2 = \dot{M} C \Delta T$

 \mathbf{Q}_2 Total heat removed from total drinking water flow (lit.) during specific period, 16 hours. In Kcal.

 \dot{M} total weight of water flow during 16 hours. in Kg.

C Specific heat factor of water in Kcal/Kg (C

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

T Temperature difference (Ti–Tc), where, Ti is inlet water temperature, and Tc is final cooled water temperature.

$$Q_3 = UA \Delta T$$

Where:

C

 Q_3 Total Leak, gained through side wall of drinking water storage tank by conduction in Kcal..

u Heat Resistance Coefficient Factor in Kcal/Sq. mt. C

A Total Area which heat is transmitted by. In Sq. Mt.

Temperature difference (Ta – Tc), where, T is ambient temperature, and Tc is final cooled water temperature.

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

Load Calculation for Golf Workshop Two Front Tap Water Cooler Model G – 80

 $Q_1 = m C \Delta T$, where:

Q1 Total heat removed from total drinking water tank volume capacity (lit.) during specific period, related to compressor cooling capacity power in Watts, at initial compressor start up, and early in the morning. When the water temperature is 24 C.

m total weight of original water in the water cooler storage tank in Kg. Considering that one litter of water at 24 C is equal to approximately one Kg.

$$M = 80$$
 liter = 45 Kg.

C Specific heat factor of water in Kcal/Kg (C = 1

Temperature difference (Ti–Tc), where, Ti is inlet water temperature, and Tc is final cooled water.

Ti = 24 C and Tc = 10 C

Ti – Tc = 24-10 = 14 +C

 $Q_1 = m C \Delta T = 80 \times 1 \times 14 = 630 \text{ Kcal} = 630 \times 1.163 = 1302 \text{ Watts/24 hrs}$

 $Q_1 = 1302/24$ water cooler operating time per day = 54.3 Watts

$$Q_1 = 54.3$$
 Watts

 $Q_2 = \dot{M} C \Delta T$

 Q_2 Total heat removed from total drinking water flow (lit.) during specific period, 16 hours. In Kcal.

 \dot{M} total weight of water flow during 16 hours. in Kg. = H x N x M where: H = Total Water Cooler Usage Time (Hours) = 16 N = Number of Glass of Drinking Water per Hour = 30 M = Kg weight of water in one Glass of Water = 0.2 Kg

 $M = 16 \times 25 \times 0.2 = 96$ lit. + 20% Waste Water = 96

Conversion of Prototypes into R134a ozone friendly Refrigerant at six Jordanian Commercial refrigerator Manufacturer.

C Specific heat factor of water in Kcal/Kg C = 1

Temperature d(Ti - Tc), where, Ti is inlet water temperature, and Tc is final cooled water temperature.

Ti = 24 \cdot C and T= 10 \cdot C

 $Ti - Tc = 24-10 = 14 \ C$

 $Q_2 = m C \Delta T = 96 x 1 x 14 = 1344 \text{ Kcal} = 1344 x 1.163 = 1563 \text{ Watts/16 hrs}$

 $Q_2 = 1563/12.8$ compressor operating time per day = 122 Watts

 $Q_2 = 122$ Watts

 $Q_3 = UA \Delta T$, Where:

Q₃ Total Leak, gained through side wall of drinking water storage tank by conduction in Kcal.

U Heat Resistance Coefficient Factor in Kcal/Sq. mt. C

$$U = \frac{1}{x_{K}^{\prime}} = \frac{1}{0.025_{0.0174}^{\prime}} = 0.696 \frac{Kcal}{m^{2}}.^{\circ}C$$

A Total Area which heat is transmitted by. In Sq. Mt.

$$A = A_1 + A_2 + A_3 + A_4 + A_5 + A_6$$

Where: $A_1 = A_2$ = bottom and top surface area of the storage tank are the same, and side walls are the same size

Storage Tank Width x Length = 40×40 Cm.

Storage Tank Height = 50 Cm

 $A_1 = \tilde{A}_2 = 40 \times 40 = 1600 \text{ Sq. Cm} = 0.1600 \text{ Sq.Mt.}$

 $A_3 = A_4 = A_5 = A_6 = 50 \times 40 = 2000 \text{ Sq. Cm.} = 0.2 \text{ Sq. Mt.}$

 $A = (2 \times 0.1600) + (4 \times 0.2) = 0.96$ Sq. Mt.

Temperature difference (Ta - Tc), where, T is ambient temperature, and Tc is final cooled water temperature.

Ta = 30 : C and Tc = 10 : C

Ta – Tc = 30-10 = 20 +C

 $Q_3 = UA \Delta T = 0.696 \times 0.96 \times 20 = 13.4$ Watts

 $Q_3 = 13.4$ Watts

 $Q_1 = Q_1 + Q_2 + Q_3 = 54.3 + 122 + 13.4 = 189.7$ Watts

Compressor R134a, Model AZ 136 (total cooling capacity 177 watts) manufactured by L'uniteh Hermetic, Tecumseh, is selected as a suitable compressor to replace R12 compressor model 1410.