

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at <u>www.unido.org</u>

(1 of 2)

Distr. RESTRICTED

UNIDO/IS/R.44 30 July 1986

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION

ENGLISH

A SURVEY OF THE IRON AND STEEL SECTOR IN PTA AND SADCC COUNTRIES*

VOL. I: MAIN STUDY

Prepared by the

Regional and Country Studies Branch

Studies and Research Division

B.U.N.Igwe K.H. Plaetzer A.Trickett

1.1

THE REFERENCE

1.1

THE FEED MONTH OF THE THE THE MALE OF THE FEED AT THE

V.86-58783

^{*} The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Mention of company names and commercial products does not imply the endorsement of the United Nations Industrial Development Organization (UNIDO). This document has been reproduced without formal editing.

TABLE OF CONTENTS

4

•

•

.

Chapt	ter													Page
LIST	OF T <i>i</i>	BLES AND	FIGU	RES	••	••	•••	•••	•••					iii .
PREFI	ACE .	• ••		•••	•••	•••	•••	•••	•••			••	•••	vii
1	INTE	RODUCTION	••	••	••			••	· •				••	1
2	SUM	IARY AND	CONCL	USION	S		••							3
	2.1	Object	ives	••	••	••	••	••	••	••	••	• •		3
	2.2	Defini	tions	, met	hodol	ogy a	nd da	ita		• •			• •	3
	2.3	Presen	t prod	lucti	on an	d con	sumpt	ion				••		4
	2.4	Conclu	sions	for	futur	e sub	-regi	onal	devel	lopmer	it	•••		5
3	THE	IRON AND	STEEI	L SEC	TOR,	DEFIN	ITION	I AND	CHAR	CTER	STICS	5		13
4	THE	IRON AND	STEEI	SEC	TOR I	N THE	PTA/	SADCO	C SUBE	EGION	Ι	••	••	20
	4.1	Geograj owne∵si				tion,	prod	luctio	on cap 	acity	tra t		•••	20
	4.2	Subreg	ional	prod	uctio	n and	capa	city	utili	zatio	n	••	••	21
	4.3	Subreg	ional	trad	e in	steel	••					••		22
	4.4	Condit	ion of	cap	ital	equip	ment		••					24
	4.5	Product	tion o	cost	and p	roduc	t p r i	ces	••			••	••	25
	4.6	Employr	nent,	manp	ower,	trai	ning	••	••	•••	• •		••	27
	4.7	Raw mat	terial	ls fo	r ste	elmak	ing		• •		• •			29
	4.8	The wor competi									ub-re	-		35
	4.9	Indired	et ste	el in	nport	s and	the	engir	neerin	g ind	lustry	• • •		41

. The design of the second of the second of the second second second second second second second second second

TABLE OF CONTENTS

(continued)

.

.

.

.

.

5	FUTURE	DEMAND	•••	• •	••	••	••	•••	52
	5.1	Overview, structure and trends	•••	• •	• •	••	••	• •	52
	5.2	Structural change and opportunit steel and specialization	ies f	for tr	ade i	.n rol	led 		6 3
	5.3	Billet production and trade	•••	••	••	••	••		67
	5.4	Steelmaking capacity	••	•••	. • •	• •	••	••	73
	5.5	Demand/supply balance for steelm	naking	g meta	allic	5	••	••	77
	5.6	Meeting the metallics deficit	••	••	••	••	•••		80
	5.6.1	Optimal DRI process option	••	••			••	••	83
	5.6.2	Optimal project location option	••	• •			••	••	84

ANNEXES

ANNEX	Ι:	PROCESSES AND PRODUCTS OF IRON AND STEELMAKING AND THEIR RELATION TO ENGINEERING INDUSTRIES - WITH SPECIAL REFERENCE TO AFRICA	89
ANNEX	11:	STATUS OF THE STEEL INDUSTRY OF EASTERN AND SOUTHERN AFRICA	114
ANNEX	III:	TRANSPORT INFRASTRUCTURE AND SUPPLY COSTS OF STEEL PRODUCTION	133
ANNEX	11:	IRON AND STEELMAKING RESOURCES OF THE SUBREGION	146
ANNEX	V :	INDIRECT STEEL CONSUMPTION	162
ANNEX	VI:	METHODOLOGY AND ASSUMPTIONS	1/2

- iii -

LIST OF TABLES AND FIGURES

Page

I

Chapter 3		13
Figure 3.1	Possible routes for steel production	18
Map of the subre	egion	19
Chapter 4 .		20
Table 4.1	Sub-regional production of basic (rolled) steel	22
Table 4.2	Regular trade in steel products within PTA and SADCC, 1981-1983	23
Table 4.3	Indicative bar/shape production cost for an EAF based scrap consuming mini-steel mill in the ESA sub region (mid 1985)	26
Table 4.4	1981-83 Steel industry direct employment in the Eastern and Southern Africa Preferential Trade Area	27
Table 4.5	Projected 1990 sub-regional steel industry direct employment (three shift operation)	29
Table 4.6	Iron and steel resources in the Eastern and Southern African sub-region	31
Table 4.7	Resources of the minor steel industry minerals in the Eastern and Southern African sub-region	33
Table 4.8	Estimated indirect steel imports, 1981–1983 and averages	43
Table 4.9	Estimated indirect steel imports, 1981–1983 and averages	44
Table 4.10	Share of the engineering industry in manufacturing value added in selected countries and for selected years	47
Table 4.11	Growth of share of engincering industries in manufacturing value added for selected countries	50

•

.

4

LIST OF TABLES AND FIGURES

(continued)

Page

.

.

.

•

Chapter 5		52
Table 5.1	Apparent steel consumption in PTA and SADCC 1981/83- 1995; Summary of Projections	54
Table 5.2	PIA total, main projection	55
Table 5.3	SADCC total, main projection	56
Table 5.4	Apparent crude steel consumption in selected countries and regions, average 1981-83	60
Table 5.5	Projected development of apparent steel consumption by country	61
Table 5.6	Projected structural change in consumption of rolled steel, PTA base case	64
Table 5.7	Projected structural change in consumption of rolled steel, SADCC base case	64
Table 5.8	Trade opportunities in steel products	66
Table 5.9	Derived demand for billets by country	68
Table 5.10	Zimbabwe's exports of blooms, billets, slabs, sheets, bars in 1981	69
Table 5.11	Sub-regional crude steel requirements	74
Table 5.12	Supply and demand for steelmaking metallic 1981-83	78
Table 5.13	Estimated DRI production costs	82
Figure 5.1	PTA crude steel consumption projections, 1990 and 1995	57
Figure 5.2	SADCC crude steel consumption projections, 1990 and 1995	58
ANNEX I		89
Table A.I.1	Process units in steel production	90
Table A.I.2	ISIC classification of the engineering industry	102
Table A.I.3	Latin America (15 countries): Structure of the manufacturing industries 1950-1977	107
Table A.I.4	Share of metal working industry in the manufacturing industry in Latin America and selected sub-regions, 1950-1977	108
Table A.I.5	Share of the engineering industry sector in manufacturing value added in selected countries and for selected years	110

~

11.1.1

11 III I IIII I

LIST OF TABLES AND FIGURES (continued)

Page

1

Figure A.I.l	Possible routes for steel production	90
Figure A.I.2	Mining and pellet or sinter feed production	91
Figure A.I.3	The making and shaping of steel	93
Figure A.I.4	Direct reduction technology	94
Figure A.I.5	Process options for the production of DRI	95
Figure A.I.6	Rolling of flat products	97
Figure A.I.7	Rolling of shapes	97
Figure A.I.8	Share of engineering industry (ISIC 38) in total manufacturing, value added, 1950-1980	105
Figure A.I.9	Share of non-electrical machinery (ISIC 382) in total manufacturing, value added 1950-1980	106
ANNEX II	· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··	114
Table A.II.1	Steel plants in Eastern and Southern African sub-region	115
Table A.II.2	Estimated foreign exchange outlay for imports of basic steel products - average 1981-83, million US dollars	125
Table A.II.3	Additional steelmaking and rolling capacities, 1985-1990	126
ANNEX III .	· ·· ·· ·· ·· ·· ·· ·· ·· ··	133
Table A.III.1	Main inter-regional/sub-regional transportation links	137
Table A.III.2	Traffic demand and port capacity in 1981, 1985, 1990 and 1995	139
Table A.III.3	Transport costs from Redcliff (ZISCO steel works) to various destinations	140
Table A.III.4	Comparison of total landing costs for steel supply form Belgium and Zimbabwe to Bujumbura	141
Table A.III.5	Transport and port charges for Zimbabwe steel exports through Southern African ports	142
Figure A.III.1	SADCC regional ports and railway network	135
Figure A.III.2	Line capacities and demand in 1996	143

- V -

*

LIST OF TABLES AND FIGURES (continued)

ANNEX IV		146
Table A.IV.1	Iron ore resources of the Eastern and Southern African sub-region	147
Table A.IV.2	Coal resources of the Eastern and Southern African sub region	150
ANNEX V		162
Table A.V.l	Total imports and imports of engineering industry products to PTA member countries	163
Table A.V.2	Breakdown of capital goods imports by country (thousand US dollars)	164
Table A.V.3	Breakdown of capital goods imports by country (per cent)	165
Table A.V.4	Total exports and engineering industry product exports of selected PTA member countries	167
Table A.V.5	Breakdown of capital goods exports, by SITC category, by country (thousand of dollars)	168
Table A.V.6	Breakdown of capital goods exports, by SITC category, by country (per cent)	169
ANNEX VI		172
Table A.VI.1	Multiple correlations by product	175
Table A.VI.2	Estimated coefficients with 95 per cent probability of non-zero values	175
Table A.VI.3	Indirect imports to crude steel conversion coefficients	180
Table A.VI.4	Commodity prices and projections in current dollars	186
Figure A.VI.1	Main programme sequence	181
Figure A.VI.2	Auxiliary programme sequence	182

ш

Page

•

*

.

Preface

This study was carried out by Regional and Country Studies of UNIDO's Department for Programme and Project Development within the framework of the Industrial Development Decade for Africa. It forms part of UNIDO's ongoing activities to support industrial development in the African region.

Extensive work both in the field and at headquarters was undertaken to collect and analyse a large amount of data. UNIDO staff was greatly assisted in this task both by three consultants; B.U.N. Igwe (Nigeria), K.-H. Plaetzer (West Germany) and A. Trickett (U.K.), by the PTA and SADCC Secretariats and by numerous officials in the countries of the sub-region who took time to discuss with study missions and to supply information.

It is hoped that the findings will serve industrial policy-makers as well as organizations involved in financial and technical assistance to countries of the sub- region.

111

1 11

1.1.1

1

1.1.1.

11

11 I.

Ш. т.

1 11 1

111 - CIOCIE II (111)

Chapter 1

INTRODUCTION

- 1. This study deals with the production and consumption of basic steel products in 20 East and Southern African countries: Its major objective is to compile information for the establishment of a factual and analytical framework to be used as a basis for making decisions on sub-regional collaboration and co-ordination in the iron and steel sector.
- 2. The study was requested by two (overlapping) sub-regional groups of countries, the Preferential Trade Area for Eastern and Southern African States $(PTA)^{\frac{1}{2}}$ and the Southern African Development Co-ordination Conference $(SADCC)^{\frac{2}{2}}$ which are both active in a broad range of development activities in the area.
- 3. The study seeks to complement and quantify main aspects of the self-reliance strategies of the PTA and SADCC by projecting possible future trends and exploring options. In the case of PTA, the sectoral strategy contains three main stages:
 - Backward integration, initially making use of billets and blooms from Zimbabwe in the national rolling mills for the manufacture of bars, rods, beams, channels, sections, etc.;
 - ii) The production of sponge iron (DRI) to feed electric arc-furnaces to produce billets for the rolling mills;
 - iii) Integrating rolling/electric arc-furnaces to iron making where demand justifies.
- 4. Several steps have already been taken in the implementation of the strategy. The latest breakthrough has been the conclusion of supply/purchase argreements between Zimbabwe and Kenya/Ethiopia. Examination of concrete technical options for upgrading, rehabilitation and harmonization of rolling mills have been made for some countries and will be continued. Important preparatory work is underway or planned in the fields of manpower development, metallurgical technology, and the production of sponge iron.
- 1/ Members are Burundi, Comoros, Djibouti, Ethiopia, Kenya, Lesotho, Malawi, Mauritius, Rwanda, Somalia, Swaziland, Tanzania, Uganda, Zambia and Zimbabwe. Angola, Botswana, Madagascar, Mozambique and Seychelles are potential members with status as observers.

27 Members are Angola, Botswana, Lesotho. Malawi, Mozambqiue, Swaziland, Tanzania, Zambia and Zimbabwe.

1111 I II

- 1 -

- 5. UNIDO has taken a keen interest in supporting the implementation of the sub-regional strategies and have been or will be involved in most of the activities mentioned above. This will take place within the framework of the Industrial Development Decade for Africa (IDDA). The present study should also be seen in that contex and takes into account the resolution adopted by the Seventh Conference of African Ministers of Industry on the implementation of IDDA. The resolution <u>inter alia</u> called for the preparation of a survey of African demand/supply requirements, especially in the strategic core industries and support areas as an input for the preparation of an Industrial Map of Africa.
- 6. The report is in two volumes. Volume I contains the main report and six annexes which give details and background information in the following fields; a general outline of the iron and steel sector (I); the present status of the industry in the sub-region (II); transport infrastructure and costs (III); iron and steelmaking resources of the sub-region (IV); indirect steel consumption (V) and methodology and assumptions (VI).
- 7. The main report is built up from these annexes and Volume II which contains all the detailed data material by country and a "users guide" to the tables. Chapter 2 of the main report contains a summary and conclusions of the study and Chapter 3 a general description of the sector with special emphasis on its relation to the engineering sector. Chapters 4 and 5 are the main chapters; the former gives a description of the <u>current</u> status of the industry in the sub-region and the latter an analysis of <u>projections</u> made for 1990 and 1995, focussing on the balance between demand and supply, requirements for additional production capacity and intertrade prospects. The analysis covers the basic iron and steel products as well as billets, crude steel and steelmaking metallics. Particular attention is given to the possibility of the sub-region.

I I THE FORT FORTH THE RESIDENCE

THE REPORT OF THE PARTY OF

- 2 -

Chapter 2 SUMMARY AND MAIN CONCLUSIONS

2.1 <u>Objectives</u>

1. The main objective of this study is a systematic compilation of existing information on the supply and demand for basic steel products in PTA and SADCC in order to establish a factual and analytical framework that may be used as a basis for making decisions on sub-regional collaboration and co-ordination in the iron and steel sector. Recommendations were guided by the sectoral strategies outlined in in the Introduction (Chapter 1), involving prominently an emphasis on sub-regional self-sufficiency.

2.2 Definitions, methodology and data

- 2. The study focuses on demand and supply for a range of basic (rolled) steel products (bars, rods, angles, shapes, various types of plate, hoop, strip, rails and rail track material, wire and tubes). For these products, individual <u>demand</u> projections by country were developed for 1990 and 1995 using a linear regression method based on cross section data for the <u>base period</u> 1981-1983. The model assumes that differences between countries and changes over time in the consumption of basic steel products depend on variations in the explanatory variables; GDP, GDP per capita and a third variable $\frac{1}{}$ depending on the type of product under analysis.
- 3. As there is considerable uncertainty regarding future (1990 and 1995) levels of the explanatory variables, three alternative projections ("high growth case", "base case" and "low growth case") were developed for each country. For each of these, two different assumptions were made about the degree of domestic replacement of imported goods with a steel content (and thus increased domestic demand for basic steel products) through an expansion of the domestic engineering industries ("main projection" and "projection with accelerated absorption"). As it would be impracticable to consider the resulting six alternatives throughout, the analysis is mainly built on the <u>main projection base case</u>. It is not implied however, that this alternative <u>a priori</u> is a much more likely one than the others.

11 I I I I I

The second se

^{1/} Gross investment, manufacturing value added or value added in building and construction.

- 4. The reliability of the projections depend on the macro-economic assumptions made as well as the statistical quality of the coefficients estimated. Although indications are that the estimates are statistically acceptable, the large range of equally probable macro assumptions imply a large spread of projections. Technological innovations that are known to cause decreasing steel intensities in developed countries have not explicitly been taken into account.
- 5. An illustrative assumption was made about the structure and level of sub-regional <u>production</u> of basic steel items; It was assumed that the overall capacity utilization of existing rolling plant, being less than 25 per cent in the base Fried, would increase to 70 per cent in 1990 and 80-90 per cent in 1995. Firmly planned new capacity was assumed to operate at similar rates of utilization. On the basis of the demand/supply balance as arrived at above it was possible to consider the need for addtional capacities both at the level of basic steel products and at the various upstream levels (billet making, crude steel, and metallic inputs for steelmaking, e.g. scrap and direct reduced iron (DRI)).
- 6. Data had to be compiled from various sources, the main one being national data obtained through study missions to 17 of the 20 countries in the sub-region. These data were complemented with trade and industry data derived from the UN statistical office and the UNIDO data bank.
- 7. Data storage, preparation of projections and printing of the country tables contained in Volume II have been done through an integrated system of computer data files and programmes. Assuming compatibility with regard to hardware and software, the system could be transferred to the PTA/SADCC secretariats. It would then consitute a framework for continuous monitoring and ad hoc analyses of the state of the iron and steel sector in the sub-region. Particularly, it would lend itself to the analysis of various national plans and policies in a sub-regional perspective.
- 2.3 Present production and consumption

1 1 11

1.1.1.1

1 1 11 1 1

8. In terms of crude steel equivalents, <u>the 1981 83 sub-regional consumption</u> was 1.2 million tpy of which 0.8 tpy had to be imported because of low capacity utilization of existing plant and a production profile ill-

THE FREE PARTY AND A REPORT OF THE PARTY OF

1

111 1 1

0.000

LITT I II II

- 4 -

matched to the profile of consumption. <u>Per capita steel consumption</u>, <u>7.8</u> <u>kg per annum is exceedingly low</u>, e.g. only 10 per cent of Latin American and 20 per cent of Asian consumption. There are however great differences in national per capita consumption levels; Zimbabwe's consumption is presently at the same level as some Latin American countries. On the other hand, Ethiopia, Somalia, Mozambique and Uganda have <u>very</u> low per capita consumption.

- 9. The basic steelmaking materials are all found in the region. Iron ore reserves of which Zimbabwe and Angola have the major share (59 per cent of total) amounts to at least 6,344 million tonnes for the region as a whole. Coal resources amount to 54,600 million tonnes (51 per cent in Zimbabwe). Commercial exploitation is at an infant stage. Only Zimbabwe produces coke but cokable coal occurs also in Mozambique and Swaziland. Careful evaluation would be needed to determine whether and how any particular source would be useable for DRI processes. Alloying minerals are also found in large quantitites; Zimbabwe has 86 per cent of the world's reserves of high chrome ore. Refractory materials of high quality are found in the sub-region. Fluxing minerals are also found in the sub-region.
- 10. Both production and consumption of steel is unevenly spread throughout the region; Kenya and Zimbabwe in 1981-83 stood for 68 per cent of sub-regional steel consumption but only 17 per cent of population. Zimbabwe has 81 per cent of the region's crude steelmaking capacity. The SADCC countries as a whole with some 40 per cent of population and 50 per cent of total GDP has 60 per cent of total steel consumption and nearly 90 per cent of steel production capacity.

2.4 <u>Conclusions for future sub-regional development</u> <u>Projected consumption for basic steel products</u>

The second se

1.1111

THE F DEC.

11. Consumption projections showed wide variations between the different alternatives. For the sub-region as a whole, the 1.2 million tpy consumption in 1981-83 would increase to 3.13 million tpy in the highest alternative and 1.71 million tpy in the lowest. The base case indicates a consumption of 1.7 million tpy in 1990 and 2.2 million tpy in 1995 meaning a growth rate per annum of 4.3 per cent from 1981-83 to 1990 and 5.8 per cent from 1990 to 1995 which is considerably above the forecast

TTO THE

1

1010

1.1.1.1.1.1. i.i.

- 5 -

growth of population and GDP. The <u>projections also strongly indicate a</u> <u>change in the structure of consumption with the emphasis shifting away</u> <u>from bars, rods and angles towards plate and sheet items</u>.

Rolling capacity

- 12. Rolling capacity (existing and planned) for the basic, non flat steel products (bars, rods, light and medium angles and shapes) appear on main base case demand projections to be sufficient up to 1995, even when assuming the same level of extra regional exports as in the base period. <u>The main challenge in this product range is to increase capacity</u> <u>utilization from the current 25 per cent to the region of 70 per cent by</u> <u>1990 and beyond by 1995</u>. If this is done, current national plans for capacity expansion appear very sensible giving a good market balance for the above mentioned products with some sub-regional export to non producers from Zimbabwe, Kenya and Mauritius. The study thus re-confirms the appropriateness of the urgent attention of both individual countries and the sub-regional organizations to capacity utilization and rehabilitation.
- 13. <u>A major reason for low capacity utilization is the generally rundown condition of most steel plant equipment</u>. Studies of mill deficiencies completed indicate a whole range of improvements needed. (Introduction of continuous casting, better process monitoring, reduction of heat losses, improvements in powering of roughing stands, roll calibration and roll cooling). In general, the major process units now in operation are at least ten years old, having been installed in the 1960s or early 1970s. For some mills the cost of rehabilitation to reach a high fraction of design capacity could come close to the price of a new mill. Most of the steel plants in the region are government owned or controlled. Only in Kenya, Mauritius and Madagascar are plants generally privately owned.
- 14. Improvement in capacity utilization may bring net import requirement down from the present two-thirds to around 40 per cent in 1995 but <u>for further</u> <u>increase of sub-regional self-sufficiency in basic steel</u>, the production <u>of plate and sheet in the region is imperative</u>. All these products are presently imported, whereas aggregate demand appears sufficient to justify low capacity techniques for plate production. By 1990, if base case projections hold and it is feasible to produce all plate and sheet

1 111

1.1.11

1.1.1.1.1.1.

items consumed, demand in both Kenya and Zimbabwe would be sufficient for production units based on local plate demand. If in addition sufficient relatively small amounts of heavy angles and rails, wire and tube and special steels could be produced, full sub-regional self-sufficiency could be achieved before 1995.

Billet making

15. The need for new billet making capacity would depend on the capacity utilization of existing and planned rolling mills and billet producing plant. A major factor would also be whether or not the substantial amount of billets presently exported from Zimbabwe would be available for covering sub-regional demand. The recently concluded (PTA promoted) supply/purchase agreements between Zimbabwe and Kenya and Ethiopia indicate that present market conditions are in favour of Zimbabwe increasing its deliveries to the region. Future changes in market prices and profitability for billet production. Zimbabwe's own use of billets for special steel products and its need for foreign exchange earning exports will determine the continuation of the export in the longer run. Base case projections indicate a sub- regional billet deficit at some 100,000 tonnes by 1995 which if 250,000 tpy of billets were exported overseas from Zimbabwe would increase to 360,000 tpy. Even though the low growth projections indicate no need for extra capacity, the probability of higher than base case growth makes it difficult not to conclude that substantial additional billet capacity may be needed between 1990 and 1995.

<u>Crude steel</u>

11 1 1

1 1 1

16. Given the forecast substantial increase in demand for basic steel products, it will be the sub-regional bottlenecks in steel rolling and semis (billets, slabs) production which will determine the demand for crude steel. Two major factors in this regard are the possibility of plate and sheet production and the possibility of overseas exports from the region (most likely from Zimbabwe). If no extra capacity other than what is planned at present is assumed and Zimbabwe does not export billets overseas, there would be no need for extra production capacity in crude steel. If plate production and/or Zimbabwean billet export is assumed the need for additional crude steel capacity would be upwards of 250,000 tpy. If all upstream capacity bottlenecks were removed, the crude steel output needed could by 1995 increase to over 3 million tpy, more than three times the capacity envisaged in that year.

11.1

definition of the transferred to the

THE FILL FILL

- 7 -

Demand for steelmaking metallics

17. The metallics demand can be derived from the required crude steel production. Since Zimbabwe would most likely remain self-sufficient in steelmaking metallics only the metallics demand of the sub-region ex-Zimbabwe was considered. Even when using the lowest demand alternative implying that the crude steel capacity presently planned for 1995 would be underused by more than 30 per cent, an additional requirement for 200,000 tpy of steelmaking metallics would arise.

DRI production

- 18. <u>Coverage of such a deficit by production of DRI in the region is considered feasible</u>. Considering the rather low demand indicated by the lowest growth alternative, the SL/RN production process would appear the most suitable although the method does suffer from technical and operational handicaps that deserve fuller analysis before a decision is taken.
- 19. <u>A consideration of the most suitable location alternatives for DRI plants</u> <u>gave no firm conclusions</u> and further technical investigation is needed. Possible locations in Mozambique and Tanzania were highlighted, both based on a revival of projects formerly considered.

Scrap availability

20. All steel producing units in the sub-region except ZISCO in Zimbabwe use ferrous scrap as their main input. Even if DRI in adequate quantitites can be supplied in future, present electric arc furnances in the region does not allow more than approximately 65 per cent DRI metallic feedstock. The additional 35 per cent would most likely have to be scrap. Even if scrap availability is assumed to increase by 5 per cent per annum, this could only satisfy the lowest forecast for total metallics demand on a 35/65 basis. Estimates of scrap availabibility compared to present and potentially required use strongly confirms the popular opionion that the sub-region is running out of scrap. Therefore the likelihood is that improvements in gathering and processing practices as well as utilization of new sources would be necessary if increased scrap imports was to be avoided. Such improvements could consist in:

THE FORMER THE REPORT OF THE FORMER THE STREET

IT DEFENDED THE FORMER AND A DEFENDENCE AN

- 8 -

- 9 -
- a) Setting up collection and processing systems
- b) Giving various incentives for scrap utilization to local melt shops
- c) Promote inter-regional trade in scrap
- d) Expand the shipbreaking operations now taking place in Mauritius and Kenya.

Availability of other raw materials

- 21. Several <u>intermediate products</u> of critical importance are imported. As capacity underutilization were found in part to be due to the lack of such materials <u>it would be important in the short-term to devise</u> <u>strategies for ensuring a reliable supply of imported intermediates and in the longer term to produce them in the sub-region.</u>
- 22. Refractory materials of high quality are also available in the region. <u>The production of refractories is hampered by small national markets but</u> <u>would represent a good opportunity for production if seen in a subregional context.</u>

<u>Sub-regional trade in steel</u>

THE FLUE DE LET 1

- 23. The scope for sub-regional trade in steel will depend much on whether plate production will take place and the extent to which billets are supplied from Zimbabwe to the rest of the sub-region. If production for sub-regional consumption remain limited to present products, trade patterns will largely be as at present. If plate production covering only half of sub regional demand is started by 1995, intertrade flows in basic steel products would at least increase by a factor of 5. If projected regional demand for <u>billets</u> in 1995 was covered as far as possible by Zimbabwean exports it would mean a 6-7 fold increase in the volume of billet trade.
- 24. Production costs and prices (using official exhcange rates for conversion of local currency amounts) for the scrap based mills appear to vary considerably between the countries of the sub region and is indicative of the prevalence of captive (non competitive) markets. Production costs calculated in a realistic (illustrative) example appear to imply that several producers might be able to cut costs substantially. Also, if domestic production costs are compared with import prices for European/US steel it is indicated that the rationale for local production may be not so much total cost saving but rather the saving of foreign exchange. This is so even though the foreign exchange cost component may be as high as 50 per cent

The second dependence of

THE REPORT OF THE PARTY OF THE

- 25. Zimbabwe steel seems however to be price competitive for most destinations in the region, given that ZISCO can produce at ex-factory costs comparable to those of overseas producers.
- 26. Apart from cutting production costs, the sub-region's competitiveness vis a vis external steel producers can be increased by <u>reducing the price of</u> <u>local (sub-regional) steel delivered to the consumer and exploiting the</u> <u>particular advantages to consumers of having a sub-regional supplier:</u>
 - a) <u>Lead times</u> in delivery can be reduced, also reducing the financial burdens of the credit pipeline;
 - b) <u>Increasing accuracy</u> of deliveries according to speficiation;
 - c) Reducing transport costs by looking into <u>new transport routes</u>, the scope for intermediate <u>warehousing</u>, and negotiation of <u>global</u> <u>transport agreements</u> with overalnd transporters and maritime shipping companies;
 - Building of long term business connections and rendering <u>technical</u> support services;
 - e) Improve product quality.

The role of Zimbabwe

27. Zimbabwe's advanced position in the sub-region, both in steel production and in engineering, should be consciously used for the advancement of the region. Zimbabwe would in turn benefit from growth and development in the surrounding economies. Whereas Zimbabwe's decisions in substantial part must be based on its self-interest, it is of paramount importance that the country plans sectoral investment and production in conjunction with the other countries in the sub-region. In a sub-regional context Zimbabwe would seem the natural potential supplier of special steels, high alloy products and new products like plate and sheet where a relatively high technological level is required.

Planning and co-operation

1.11.11.1

11 11 1

28. Even when combined, the 20 national markets constitute, in terms of GDP, a market only the size of a small European country like Denmark. <u>It is</u> <u>therefore urgently necessary for a start in developing a regional steel</u> <u>industry that all 20 countries co-operate</u>. This study consequently does not aim to present separate conclusions for SADCC and PTA, although the analysis gives separate figures for the two groupings. The good working relations between the two overlapping sub-regional groupings PTA and SADCC in the iron and steel sector must be further strengthened as well

1

CITER IN MERITARIA HEREITAN

TIME THE T

1.1

1 1 111

as consultation and co-ordination mechanisms for sectoral development between all 20 countries. For the purpose of transport and trading systems it may however prove appropriate to divide the region operationally into sub-entities, e g. a northern and a southern area.

29. Demand projections are sensititve to assumptions made about macro economic development and the progress of the engineering sector. The considerable spread between likely alternatives as to future steel consumption leads to a problem of uncertainty. The degree of uncertainty is however affected by the development approach chosen: Firstly, the production of basic steel is one element in a series of linked industries. Upstream industries deal with the production of billets and crude steel, ironmaking and mining processes. Downstream industries are those which further process the basic products and incorporate basic steel into final goods. In the study, considerable emphasis is placed on the fact that the growth of the engineering sector is most important for basic steel demand. It is argued that the pull effect of the engineering industry is required to create demand for rolled products, and that the often assumed push effect on engineering by local steel production has played a minor role. The lower investment cost, higher employment potential and the crucial role of local engineering capacity in the development of the whole manufacturing sector are other reasons why the <u>development of engineering should be seen as a</u> precedent for the development of an iron and steel industry rooted in sub-regional demand. Also, the proven existence of such demand would play a decisive role for international and bilateral financing institutions whose support would most probably be required for establishing new upstream production facilities. Both sub-regional groupings at present have launched studies in this field which should form the basis for an added emphasis on the promotion of engineering in a sub-regional framework.

<u>Secondly</u>, in the steel sector proper <u>an integrated planning approach</u> <u>should be used</u>, taking fully into consideration the interplay between the various links in the production chain (rolling, billet making, crude steel, steelmaking inputs). Most importantly, the planning and development of upstream capacity would seem to be crucially dependent on whether or not plate and sheet capacity is installed, and clarification on this level should be sought at an early stage.

THE FOR THE THE THE THE STATEMENT FOR THE DUTY OF THE

- 11 -

Thirdly, by building up the production system, to the extent technically possible, in smaller rather than larger steps, the probability of waste implied in over-planning can be reduced. Should, on the other hand unexpected sub-regional steel <u>deficits</u> appear over the next decade, the likelihood is that they can be easily made up for by cheap imports from overseas.

30. In seeking external finance for sectoral development both nationally and sub-regionally arguments will be strengthened by considering projects in a sub-regional framework and as part of a well conceived sub-regional investment programme based on the sub-regional strategies. The present study could be considered as an input to such a programme in confirming the correctness of prevailing strategies and pointing out some directions for further investigations.

н т

1000

THE FILM OF A DEFENSION OF A

LD.

THE FORT FORTH AND A FE

CONTRACTOR CONTRACTOR

1 I I I

Chapter 3

THE IRON AND STEEL SECTOR, DEFINITION AND CHARACTERISTICS

- The iron and steel production sector can most appropriately be defined by referring to the International Standard Induction Classification (ISIC) which classifies the sector under the Major Division No.3, Manufacturing, in Division 37, Basic Metal Industries, as major Group 371, Iron and Steel Basic Industries. This sector is defined as follows:
- "The manufacture of primary iron and steel products, consists of all 2. processes from smelting in blast furnaces to the semi-finished stage in rolling mills and foundries, that is, the production of billets, blooms, slabs or bars; hot and cold rolling and drawing into basic forms such as sheets, tin-plate, terne plate and black plate, strips, tubes and pipes, rails, rods, and wire rods and heavy gauze wires, castings and forgings. Establishments primarily engaged in manufacturing of ferrous wire and wire products from purchased rods are classified in group 3819 (Manufacture of fabricated metal products except machinery and equipment n.e.c.). The foundries included here are part of establishments primarily engaged in producing and rolling of iron and steel or are primarily engaged in manufacturing castings and forgings for sale to others. Foundries in establishments primarily engaged in the manufacture, e.g., stamping, pressing, machining, assembling of a given class of goods, are included in the group to which the parent establishment is classified. Also included are coke ovens, which are associated with blast furnaces and which can be separately reported coke ovens which can be separately reported are classified in group 3540 (Manufacture of miscellaneous products of petroleum and coal)."
- 3. This study covers the iron and steel basic industries by concentrating on the supply and demand for basic rolled products and then considering the derived implications for prior stages of the production chain. The foundry sub sector which has different economic and technological characteristics is not included in this study. The forging industry hardly exists in the sub region and should, owing to its scope of production, be treated in an analysis of downstream industries.

11.1.1.1

1 1 1 1

1

111

THE REPORT OF THE

- 4. Being one stage of the production chain, the rolling of basic products is linked to other industries. Upstream industries are iron and steel production, production of 'semis', billets, slabs, mining and preparation of raw materials, additives to iron production such as limestone or, in the case of production of special steels, other metals like vanadium, chromium, nickel, titanium or alumininum, and energy carriers and reducing agents. The production of refractories used in iron and steel making should likewise be mentioned in this context. Downstream industries are the construction and engineering industries. Construction normally uses the steel products as supplied by the steel producer after cutting to appropriate sizes, sometimes bending and joining them adequately. Engineering industries transform the steel products purchased from steel producers into new and mostly complex products such as fabricated metal products, machinery, electrical and transport equipment as well as scientific, measuring and controlling instruments. Steel usually represents the most important raw material for the engineering industries. Exceptions from this are the production of electrical equipment (e.g. electronics, telecommunications equipment) and scientific measuring and controlling instruments.
- Engineering industries produce both capital goods (i.e. machinery and equipment to produce other goods or services) and consumer durables (e.g. motorcars, refrigerators, radios and television sets).
- 6. They are classified under ISIC 38 and are sub-divided into five major groups: $\frac{1}{}$
 - Manufacture of cutlery, hand tools and general hardware (ISIC 381)
 - Manufacture of engines and turbines (ISIC 382)
 - Manufacture of electrical machinery, apparatus, appliances and supplies (ISIC 383)
 - Manufacture of transport equipment (ISIC 384)

1.1

h i

1.1

1.1

 Manufacture of professional and scientific, measuring and controlling equipment not elsewhere classified, and of photographic and optical goods (IS1C 385).

0.1

1 1 11 1 1

1/ Each of these major groups is sub-divided into several sub-groups which are described in Annex I. For more details reference is made to the UN publication, "International Standard Industrial Classification", New York, 1968.

- 7. Engineering industries have played an important role in the economic advancement of all industrialized countries and also of newly industrialized countries such as the Republic of Korea, Singapore and Brazil. The sector's share in manufacturing value added is around 40 to 50 per cent in industrialized countries (on the average) and around 28 to 35 per cent in newly industrialized countries (Singapore: 50 per cent). Engineering industries have played and play a catalytic role in technological innovation. In the past these technological innovations have stimulated the steel sector, both in expansion of its volume and in development of new steel products such as alloy steels for special applications.
- 8. The present wave of technological innovations is, however, combined with a reduction in steel consumption of the engineering industries. This process is quite complex, but in general terms it can be said that present technological innovation within the engineering industries takes place in areas with low links to the steel industry, like microelectronics. Also, innovations appear to promote a process where steel is substituted by new materials glass and carbon fibres and high durable plastics, which for example partially have replaced steel in the production of pumps. Technological innovation has also led to a reduction of specific steel requirements per unit output. Hence, the iron and steel industry gradually loses its predominant supply position for the engineering industries and, overall, new steel products are of less vital importance to technological innovation in the engineering industry. This does not mean, however, that technological innovation in steel production and application as well as development of new steel products will not be of importance in the future. At present, technological innovation in the iron and steel sector is however, economically less important than the one of non-steel related areas of the engineering industries.
- 9. The technological innovation referred to will, however, over the next decade have a less pronounced effect on the sub-region where engineering is generally not highly developed. Looking at the history of more deve oped countries one main driving force for steel demand have been the engineering industries. The demand of increasingly diversified

1

00 1 1 1 1 1

8.1.1.1.1

- 15 -

engineering industries allowed the production of a great variety of steel products. It was mainly the "pull-effect" of this sector which led to the importance of the steel industry. The "push-effect", i.e. the expansion of engineering <u>because of</u> an expanding steel production has played a minor role. Even though both sectors depend heavily on each other it can be said generally that steel consumption is boosted by an active and growing engineering industry. Engineering development, on the other hand, does not necessarily require a national basic iron and steel industry. There are examples of industrialized or newly industrialized countries (e.g. Switzerland, Denmark, Singapore) which have little or no basic iron and steel industry but a highly diversified engineering sector which obtains its steel supplies from other countries.

- Other factors also explain why a strategy of early concentration on the 10. development of a strong engineering sector more and more is being recommended; The iron and steel sector requires high investments both in absolute terms and per employee. In most engineering industries investments are considerably lower, especially in ISIC major group 381, fabricated metal products. Therefore, development planning in many developing countries puts strong emphasis on the development of the engineering industries and similar industries with relatively low investment and a high potential of employment creation and entrepreneurship development, especially by promoting small scale industries. Decisive factors for entering into high investment areas are normally import substitution combined with foreign exchange generation through exports. Local supply aspects alone are considered insufficient by development planners. The massive requirement of skilled manpower at a fixed date, i.e. the start up of major investment project like an iron and steel plant, which hardly can be made available in many developing countries also represents an obstacle to successful implementation of such ventures.
- 11. The sub-regional groupings, PTA and SADCC have recognized the importance of the engineering sector. Studies of the sector are now underway or completed. These should form the basis for an added emphasis on the promotion of this sector is a sub regional framework and with appropriate links to the plans for the iron and steel industry.

1 1

1 III 1 I I I I

- 12. In the iron and steel production itself, distinction is made between different steps of production (for details see Annex I). The steps are:
 - mining and preparation of raw materials
 - iron production

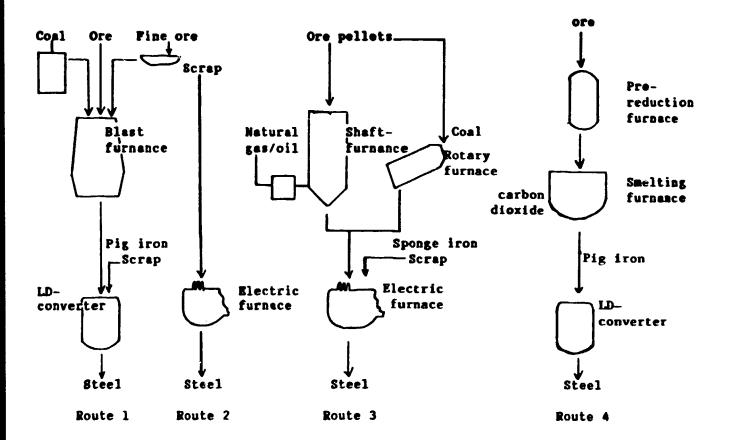
THE THE ENDED FOR THE

- steel production (semis)
- rolling of products
- coating of rolled products
- 13. There are at present four routes for steelmaking (see figure 3.1). Route 1 is the traditional blast furnace oxygen converter (BF-BOF) also known as an integrated steel plant; route 2 is based on scrap and/or direct reduced iron (DRI) for steelmaking in an electric arc furnace (EAF), route 3 is the DRI and electric arc furnace (EAF) process; and route 4, at present at the development stage, the smelting reduction process. Of economic interest are at present routes 1, 2 and 3 of which 1 and 3 are iron and steelmaking processes and 2 is only a steelmaking process. Route 1 requires relatively high investments and has a considerably higher minimum capacity than route 2 or 3. In each case, rolling of steel is the subsequent production step.
- 14. In rolling operations, distinction is made between rolling of flat products and rolling of shapes (cf. figures A.I.6 and A.I.7 of Annex I). Material input for the rolling of flat products are slabs and blooms. Rolling of shapes is subdivided into heavy sections for which the material inputs are blooms, and light shapes which are rolled from billets. Flat products consist of plates for example in ship-building and construction of containers and storage tanks, hot rolled sheets as used for lighter engineering works, and cold rolled sheet.
- 15. The future growth in the iron and steel industry in the sub- region will much depend on the growth of the construction sector and the development of the engineering industries. While the construction sector growth will mainly influence the development prospects of the products already rolled in the region, the engineering industry development will be essential for a diversification of the rolling mills into new products such as rolling of forged shapes and of flat products. The "pull-effect" to steel

1.1

The second second

1 1 1 1 1


I III II I

THE FEE

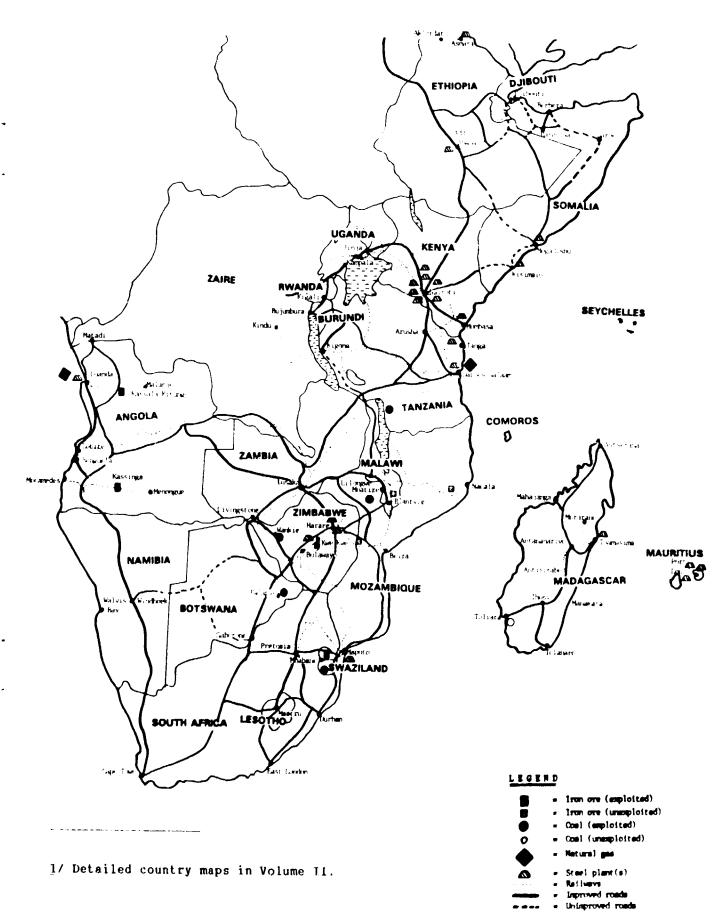
11 1 11

- 17 -

Figure 3.1: Possible routes for steel production

consumption of the engineering industries is required to create the demand for new rolled products. The proven existence of such demand plays a decisive role for international and bilateral financing institutions whose support would most probably be required for establishing new facilities. Hence, future growth of the irca and steel industry, especially as to diversification into new rolled products, will above all depend on the development of the engineering industries.

11 11 1 1 1 h


0.0.0

.....

1100 I I I III

1.1. I. I. I. I. I. I.

1 11 11 10 11

I.

H I MIII

Map of the subregion $\frac{1}{}$

Chapter 4

THE IRON AND STEEL INDUSTRY IN THE PTA/SADCC SUB-REGION

- 4.1 Geographical distribution, production capacity and ownership pattern
- 1. As of the fourth quarter of 1985, there were 23 steel plants in nine countries in the Eastern and Southern African sub-region. $\frac{1}{}$ In numerical terms, Kenya had the highest concentration of steel mills (8, of which 7 were in and around Nairobi), with Mauritius accounting for 4, three in Zimbabwe, and two each in Tanzania and Ethiopia (although the latter's Ethiosider Iron and Steel Foundry in Asmara has been inoperative for the past few years). The remaining steel mills were in Angola, Madagascar, Mozambique and Uganda. (See Annex II, Table A.II.1).
- 2. The sub-region's largest and only integrated steelworks is that of the Zimbabwe Iron and Steel Company, Ltd., (ZISCO), at Redcliff, which is equipped with blast furnaces and oxygen converters, and has a realistic steel production capacity of 850,000 tonnes per year (tpy). Eight other plants in the sub-region would fit the definition of "mini-mills" in the sense that they operate scrap-based meltshops for producing billets and/or ingots as well as rolling mills for producing simple bars, shapes, and sections. The balance of the sub-region's mills are either meltshops producing billets or ingots for their sister-companies or other rolling mills, or pure rolling mills based on local and/or imported billets.
- 3. The sub-region's aggregate (liquid) <u>steelmaking design capacity</u> was in the base period (1981-83) 1.0191 million tpy, $\frac{2}{}$ 850,000 tonnes (81 per cent) of which was contributed by ZISCO. Kenya, the second ranking steel producer, was responsible for 85,100 tpy.
- 4. Because 12 steel plants in the sub-region are only re-rollers and because of the general tendency on the part of mini mills to build rolling capability in excess of what can be fed from their own billet/ingot
- 1/ By definition, a steel plant or mill refers to a facility that performs one or both of the following operations: - (a) melts ferrous metallic raw materials in a furnace for casting into billets, blooms, slabs, or ingots (the so called "semis") for subsequent processing by a rolling mill. Foundries are thus not included: (b) rolls "semis" into finished mill products such as bars, sections, sheets, etc.

THE REPORT OF THE PARTY OF THE

1 11 11

.

11.1.1

2/ Refer to table A.II.1. Rolmil Kenya and Ethiopia's Asmara plant capacities not included.

111

THE I I

1 11 111

capacity, the aggregate sub-regional steel rolling capacity of 1.61 million tonnes exceeds the steelmaking capacity by 57 per cent. In other words, if steel mills and rollers operated at maximum capacities, the sub-region would stand in need of billet/ingot importation to the tune of about 50 per cent of its local production capacity.

- 5. The <u>ownership</u> of the sub-regional steel industry reflects the ideological outlook and philosophies of the various governments in the sub-region regarding how best to harness the claimed catalytic effect of the industry in economic and industrial development. In those countries where the steel industry is perceived to be so critical that it must be under the direct control of the governments, all steel plants are government-owned, operating as parastatals under a supervising ministry. Such is the case in Angola, Ethiopia, Mozambique, Uganda, Tanzania, and Zimbabwe, although in the last two countries, there is minority private participation.
- 6. In contrast, all steel plants in Kenya, Mauritius, and Madagascar are privately-owned. A feature of these privately-held enterprises is that their owners and the top echelons of their management are generally expatriates. Whereas expatriate ownership may not necessarily be incompatible with the policies of the governments to attract foreign investment into the industry, expatriate dominance over technical and managerial issues may not augur well for the indigenization and long-term self-reliance of the industry. What is called for is a sustained effort at attracting indigenous investment and qualified high-level manpower (especially technical) coupled with skills up-grading programmes at all levels.

4.2 Sub-regional production and capacity utilization

1.1

1011

7. Data gathered in the course of country missions show a downward trend in the subregional production of the basic (rolled) steel products included in the study. This is the case for both PTA and SADCC. Non-availability of raw and input materials, political conflicts in the sub-region, and poor equipment rehabilitation and maintenance have contributed towards this decline. For the PTA as a whole, aggregate production of basic products was about 401,000 tonnes in 1981, 372,000 tonnes in 1982, and 361,000 tonnes in 1983. The distribution by country is shown in Table 4.1.

1.1.1

1.1

1.1.1.1.1

.

- 21 -

Table 4.1:	Sub-regional	production of b	asic (rolled) steel ^{1/}
		metric tonnes)	
Country	<u>1981</u>	19	<u>1983</u>
Angola	2,670	1,6	70 2,330
Ethiopia	14,540	16,10	09 17,668
Kenya	54,670	62,10	53,495
Mauritius	8,949	8,8	99 9,000
Mozambique	12,700	8,50	8,000
Tanzania	16,273	13,3	52 12,424
Uganda	5,000	10,00	15,000
Zimbabwe	286,004	251,2	243,360
Total PTA	400,806	371,93	361,277
Total SADCO	317,647	274,8	

- 22 -

Note that Zimbabwe's production of billets is not included 1/

- 8. Given the sub-regional aggregate rolling mill design capacity of 1.61 million tpy, these figures represent an overall sub-regional capacity utilization of 25 per cent in 1982, which declined to 23 per cent in 1983, and to 22 per cent in 1983. Circumstantial information indicate a similar development for following years.
- Zimbabwe's predominance is highlighted by the fact that its shares of the 9. sub-regional output were 71.4 per cent in 1981, 67.5 per cent in 1982, and 67.3 per cent in 1983. The decline in Zimbabwe's production, mostly due to shutdown because of blast furnace relining was the major cause of decline.

4.3 Sub-regional trade in steel

- The steel industry's product mix consists of blooms and billets (for 10. further rolling) as well as "long" products for the construction and engineering industries, in the form of bars (round, square, and flat, plain and twisted), rods (for wire production), and light and medium sections (angles, channels, beams, and light rails). There is no facility for production of "flat" sheets, strips and plates, and the sub-region's demand for this category of steel mill products is supplied through imports.
- 11. With the exception of Zimbabwe and to some extent Kenya, none of the countries of the sub-region participate regularly in the steel export trade, whether within or outside the PTA. Table 4.2 shows intra PTA steel trade flows of some regularity as an average for 1981-83. Zimbabwe's export to both SADCC and non- SADCC countries is bigger than that of Kenya. The greater part of Zimbabwe's inter region exports goes

to SADCC members whereas Kenya's export is largely concentrated on non-SADCC members of the sub-region. The absolute quantity of steel traded within PTA is small both in the context of Zimbabwe's total exports and the sub-region's total imports of steel from all sources. The prospects clearly exist for an exploitation of the sub-regional market by producers in the region, in the near term, particularly Zimbabwe. Zimbabwe exported in addition to the quantities shown in Table 4.2 as an average for 1981-83 about 90,000 tonnes of basic steel products outside the sub-region. The larger part of its steel exports are, however, in the form of low-margin (semi processed) blooms and billets of which 208,000 tonnes were exported, in 1981. Only 10 per cent of this went to countries in the sub-region. High transportation cost for delivering steel to the overseas customers tends to make Zimbabwean product less competitive on the world market, a situation that cuts into potential profit margins. In the medium and long-term, and in the interest of maximizing profits from the export trade, it would be in Zimbabwe's interest (as the leading steel producer in the sub-region) to re-orient its product mix in favour of more sophisticated and higher-margin flat and high-alloy products, for which there are currently no producers in the sub-region.

		Exports from Kenya to			Exports from Zimbabwe to			Total intra PTA exports to		
Product name	SITC	SADCC	Non SADCC	All PTA	SADCC	Non SADCC	A11 PTA	SADCC	Non SADCC	A11 PTA
Bars and rods Angles shp, hm	6732 6734	249	1887	2136	4486 1815	7388 398	11874 2212	4735 1815	9275 398	14010 2212
Angles shp, 1 Plates, heavy	6735 6741	87	865	952	346	76	422	434	941	1375
Plates, medium Plates, light Tinplate	6742 6743 6747									
Other coat, p Hoop and strip	6748 6750	79	867	947				79	867	94)
Rails	6761				614		614	614		614
Other rl track	6762				111		111	111		111
Wire	6770	9	780	789	757	0	757	766	780	1546
Seamless tubes	6782		0	0	655		655	655		655
Welded tubes	6783	8	453	461				8	453	461
Total		433	4852	5285	8785	1862	16646	9217	12714	21931

111

1.1

1.1.0.1.1.1.

11 1

11.11.1.1.1

Table 4.2: Regular trade in steel products within PTA and SADCC, 1981-1983 (tonnes)

4.4 Condition of capital equipment

- 12. The under utilization of installed steelmaking and rolling equipment in the sub region is due, in part to such factors as non availability of raw and input materials, poor maintenance and obsolescence of plant and equipment, and inadequacy of skilled manpower. The high incidence of equipment down time is also attributable to the fact that virtually all plant equipment, as well as spare parts are imported.
- 13. The generally run down condition of most steel plant equipment has prompted studies of possible rehabilitation programmes on a sub regional basis. Several regional and international organizations such as ECA, the Commonwealth Secretariat and UNIDO have been involved, technical expertise having been provided in part by ZISCOSTEEL. Among the more specific technical deficiencies identified so far and which require rectification are the following:
 - the continued production in many plants of largely out-moded "pencil ingots" as opposed to the more modern continuous casting of billets which, in addition to enhancing productivity and metal yield, after results in improved product quality;
 - the general inadequacy of instrumentation for process monitoring and control, particularly in relation to reheating furnace temperature profiles and liquid steel chemical analysis and temperature;
 - thermal inefficiencies and substantial heat losses in the oil-fired reheat furnaces; furnace performances could be significantly improved in most cases by heat recuperation and installation of more efficient burners;
 - under powered roughing stands which severely limit the size of billets that can be handled;
 - improper roll calibration resulting in poor dimensional control of the finished product;
 - inadequate roll cooling facilities. Implementation of these and other corrective measures could result in increased productivity and less equipment down time. As at present, the labour productivity in the sub region, measured in terms of steel tonnage output per man year, is only a small percentage of the internationally accepted norms, and it is important to significantly improve the situation if products from the sub region are to be cost-competitive.
- 14. Following this diagnosis, remedial measures would be taken in the general interest of the sub-region's steel industry. With general improvements in the national economies and therefore in the demand for steel mill products, avenues would be created for export of Zimbabwean billets, pig iron, and wire rods to foundries, re rollers and wire products manufacturers in the sub region, which would, in turn assist ZISCO to reduce the degree of its dependence on the extra regional export market.

10.111

- 4.5 <u>Production cost and product prices</u>
- 15. The production cost of rolled steel products varies between countries in the sub-region, and even between steel plants in the same country, depending on the relative accessibility to and delivered prices of raw materials, the specific unit operations employed, labour productivity, and the level of capacity utilization, among other factors. Accordingly, generalizations must be made with great caution.
- 16. Notwithstanding these variabilities, it is instructive to synthesize an indicative production cost for rolled products of the types manufactured by the mini-mills in the sub-region. It is assumed that the scrap-based EAF process is employed and that crude steel is continuously cast into billets and rolled into bars and simple shapes. The total project capital cost is taken as \$875 per ton of installed capacity, based on a recent quotation for a 25,000 tonnes/year (crude steel) capacity mini-mill in the sub-region.
- 17. Table 4.3 shows an itemization of the various cost elements incurred to produce a tonne of product. This amounts to \$393.50, of which one-third is accounted for by capital-related charges. Other major cost contributors are scrap (20 per cent), electricity (9.5 per cent), electrodes and ferro-alloys 9 per cent), and salaries and wages (8.4 per cent). Estimates have also been made of the foreign exchange proportions of the various cost elements. This shows that up to 46 per cent of the effective production cost could be incurred in foreign currency. This observation is important in that it points out the inadequacy of the popular simplistic assumption that the foreign exchange saving achieved by local manufacturing is merely the foreign exchange equivalent of the same units of imports.
- 18. As with production costs, the prices for rolled products vary widely within the sub-region and often reflect the short-term supply/demand balance of the steel market. Also, because of the large number of small-lot sales, there is an important role for "middle men" retailers who often exploit temporary shortages by escalating prices. For instance, whereas a major importer in Lusaka could offer reinforcing bars at 1,600 Kwacha (\$760) per tonne, it is not unusual to find the same product offered in the local market at a 50 per cent mark up. Outside Lusaka, private retailers often add mark ups well in excess of 100 per cent.

THE EXCLUSION OF THE PARTY OF THE PARTY OF

11 I I I I I I

1.11.1111

1.11

11 1

Table 4.3: Indicative bar/shape production cost for an EAF-basedscrap consuming mini-steel mill in the ESA sub-region(mid-1985)

<u>Assumption</u>: Mini-steel mill rated at 25,000 tpy of bars/angles/ channels, employing continuous casting of billets.

Project (capital) cost = \$875 per ton of installed capacity, amortized over 10 years.

<u>Cost item</u>	Unit consumption per ton of <u>rolled product</u>	Unit price (US \$)	Cost per ton of bar/shape (US \$)	Percentage Forex (%)
Scrap	1.2 tonnes	65.00/tonn	ne 78.00	0
Fluxes	10.0 kg	0.20/kg	2.00	0
Refractories (melting and casting)	15.0 kg	0.75/kg	11.25	80
Refractories (reheating furnaces)	5.0 kg	0.75/kg	3.75	75
Rolling mill consumables			5.50	100
Electricity	750.0 kwh	0.05/kwh	37.50	0
Electrodes and ferro-alloys	s 7.5 kg	4.70/kg	35.25	100
Repair and maintenance			23.30	25
General administration and miscellaneous			32.70	25
Salaries and wages	11.0 man-hrs	3.00/man-	-hr 33.00	25
Amortization (15 per cent of fixed charges)			131.25	80
	ctory production ich foreign curre and local curre	ency component	t = \$179.72	≈ 45.7% = 54.3%

19. As of mid-1985, a Kenyan mini-mill's ex-factory (Nairobi) price (exclusive of 17 per cent sales tax) for hot-rolled round bars (5.5mm-32mm), for minimum orders of one tonne, ranged from Kshs. 5,890-6,810 (i.e. \$368-\$425) per tonne. The same product (10-25mm) in Tanzania was available, ex-factory to major customers, at Tsh. 14,269-15,089 (\$790-\$838) per tonne. This indicates a prevalence of captive (non-competitive) markets and it is not possible to draw any categorical conclusions concerning the level of profitability or

Ш. т

1 1 1 11

h L

INC 1 0 0

otherwise of bar production in the sub-region merely on the basis of comparing these sales prices with the production cost synthesized in Table 4.3. Steel production may or may not be profitable depending on the specific cost structure experienced by a given plant. Comparing however, the market price range of US\$400 to US\$800 per tonne indicated above for bars produced by local small scrap based mills with a landed import price from Europe for bar of US\$360 US\$520^{1/} indicates that the rationale for steel production is not the price calculation per se (at current foreign exchange rates) but possibly rather the saving of foreign exchange.

- · -- --- -- · · · ---- -- ----- -----

 $\underline{1}$ / Based on a fob price from European harbour of US\$240 per tonne and transport handling and duty charges of US\$120-US\$280 per tonne depending on where in the sub-region the purchaser is located.

	Total steel pla	int capacity	Total	industry	employme	nt	
Country	Crude stecl	Rolled products	and	Middle level (technician Low		Total	
Angola	30,000 tonnes/yr	50,000 tonne	5/ yr \2	70	348	450	
Ethiopia	24,000 tonnes/yr	64,000 tonne	s/yr 10	29	515	554	
Kenya	85,100 tonnes/yr	277,500 tonne	s/yr 50	140	1,310	1,500	
Madagasca	r	6,000 ton	s/ yr 6	10	64	80	
Mauritius		80,000 tonne	s/yr 35	75	390	500	
Mozambiqu	e	50,000 tonne	s/ yr 45	100	505	650	
Tanzania	18,000 tonnes/yr	30,000 tonne	s/yr 27	40	536	603	
Uganda	24,000 tonnes/yr	30,000 tonne	s/ yr 10	20	270	300	
Zimbabwe	850,000 tonnes/yr	1,022,000 tonne	s/yr 385	975	5,140	6,500	
Total	1,031,100 tonnes/yr	1,509,500 tonne	s/yr 600	1,459	9,078	11,137	

Table 4.4:1981-83Steel industry direct employment in theEastern and Southern Africa Preferential Trade Area

4.6 Employment, manpower and training

1.110.1

1.1.1

. .

1.1

11 II III

11 11

20. As of mid 1985, the 23 steel plants in the Eastern and Southern African sub-region (consisting of one blast furnace based integrated steelworks in Zimbabwe, ZISCO Ltd., ten (10) electric furnace based meltshops, and twenty (20) rolling mills, furnished direct employment to about 11,100 persons. The distribution by country is shown in Table 4.4. Because of the very low capacity utilization, most steel plants have had to operate on (at best) a two-shift-per-day basis.

- 21. The national totals shown in Table 4.4 represent actual figures from UNIDO missions. The break-down into the three job categories (high, middle and low-levels) represent, in a few cases where actual figures were not available, estimates based on steel industry experiences (i.e. about 7 per cent for high-level, 15 per cent for middle, and the balance low-level). "High-level" would apply to the managerial and engineering cadre in both production and administration, while "middle-level" applies to the supervisory, foreman, and skilled technician categories.
- 22. Because of the current under-utilization of installed capacity, the aggregate employment of 11,137 is considered short of the industry's employment potential. If the steel market were such as to permit normal full capacity (three-shift) operation, employment would be around 15,000, consisting of about 625 high-level, 2,250 medium-level, and 12,125 low-level personnel.
- 23. Currently on-going capacity expansions and committed new projects which are planned to be in operation by 1990 are expected to increase the sub-region's crude steel production capacity to 1.17 million tpy, and the rolling capacity to 1.77 million tpy by 1990. In national terms, 31,000 tonnes of the additional crude steel capacity would come from Kenya, 50,000 tonnes from Mauritius, 25,000 tonnes from Tanzania, 2,500 tonnes from Uganda, and 27,000 tonnes from Zambia. The incremental rolling capacity would be from Ethiopia (30,000 tonnes), Kenya (12,000 tonnes), Madagascar (24,000 tonnes), Tanzania (48,000 tonnes), and Zambia (43,000 tonnes).
- 24. The projected 1990 sub-regional steel industry direct employment would be distributed as shown in Table 4.5, assuming that the various national economies will have recovered sufficiently by then to permit three shift utilization of installed capacities. The total is 16,210, with 46 per cent based in Zimbabwe and 18 per cent in Kenya.

.

.

1. II.I.I.III. I.

11 11 11

1.111.1.

- 28 -

25. It is pertinent to observe that in virtually all countries of the sub-region, the high-level technical category is dominated by expatriates, accounting for about 75 per cent of the numerical totals in many steel plants. There is clearly a need to intensify efforts to train nationals of the sub-region in the engineering disciplines at the university level to eventually replace expatriates. But this objective should not be pursued to the detriment of the middle level skilled cadre which is in short supply in most sub-Saharan African countries. Unfortunately, most government manpower development policies have tended to glamorize tertiary (university) education to such a degree as to discourage intermediate institutions such as polytechnics and technical institutes. As a result, the desirable ratios between engineers, leaving a manpower gap that is often filled only by expatriates.

(<u>three shift operation</u>)									
	Total steel tonnes	plant capacity, /year	Total di	rect in	dustry emplo	yment			
				Middle-					
Country	Crude steel	Rolled products	High-level	level	Low-level	Total			
Angola	30,000	50,000	70	120	510	700			
Ethiopia	12,000	94,000	25	100	825	950			
Kenya	131,000	289,000	100	250	2,500	2,850			
Madagascar	-	30,000	· 5	40	120	175			
Mauritius	50,000	80,000	ی 5	130	700	885			
Mozambique	-	50,000	60	175	850	1,085			
Tanzania	43,000	78,000	55	100	1,000	1,155			
Uganda	26,500	30,000	25	65	400	490			
Zambia	27,000	43,000	15	80	300	395			
Zimbabwe	850,000	1,022,000	0 0	1,025	6,000	7,425			
Total	1,169,500	1,766,500	82	2,185	13,205	16,210			

Table 4.5: Projected 1990 sub-regional steel industry direct employment(three shift operation)

4.7 Raw materials for steelmaking

26. Depending on the production practices and process units at a specific steel plant, the raw materials consumed during iro. and steel production include iron ore (as lump ore, pellets, and sinter feed), metallurgical coal (which is first converted to coke), the alloying elements, scrap, sponge iron (which is currently neither produced nor consumed in the sub-region), fluxes (limestone, dolomite, and fluorspar), refractories, and such other operating materials as graphite electrodes, water, and electricity. a) <u>Iron ore</u>: Large resources of iron ore are known to occur in several countries of the sub-region as shown in Table 4.6. For the 13 countries listed, the geological (i.e. proven, probable, and inferred) reserves amount to at least 6,344 million tonnes. Obviously only a fraction of these reserves would be technically extractable and economically beneficiable for purposes of iron and steel production; nevertheless, their occurrence holds out the promise of becoming the basis of domestic iron and steel industries in the sub-region. By far the largest reserves are in Zimbabwe (with about 59 per cent of the total) and in Angola (which accounts for 19 per cent).

Only the integrated blast furnace based steelworks of Zimbabwe Iron and Steel Company, (ZISCO) currently operates on the basis of iron ore from the sub-region. Its sinter plant at the Redcliff works is fed with a blend consisting of 58-61 per cent Fe ore from the Buchwa mine (200 km south of Redcliff) and friable limonitic ore from Ripple Creek (17 km south-east of Redcliff). Plans have been formulated to extend the remaining life of the Buchwa mine (now estimated to be 8 to 12 years) by reclaiming up to 3.5 million tonnes of fine ores that had been hitherto discarded and stockpiled. By so doing, it is hoped that through programmed exploitation of all Buchwa and Ripple Creek resources, ZISCO's iron ore requirements would be assured for the next 30 to 40 years.

 b) <u>Coal</u>: The coal resources of the sub-region are also shown in Table 4.6. The aggregate resources amount to about 54,604 million tonnes, of which Zimbabwe accounts for 51 per cent. Other major reserves occur in Botswana (with 15,200 million tonnes), Mozambique (8,000 million tonnes), Tanzania (1,500 million tonnes), and Swaziland (967 million tonnes).

In spite of the vast reserves, commercial exploitation of coal is still at a relatively infant stage. Only Botswana, Mozambique, Zambia, Zimbabwe, and (to a small extent) Tanzania now operate coal mines. In all cases except Zimbabwe, coal is produced for power generation and export. Whereas cokable coal occurs also in Mozambique and Swaziland, only that of Zimbabwe is employed for iron and steelmaking. ZISCO's metallurgical coal is supplied from the Hwange Colliery, supplemented also by coke deliveries from the same source.

I II

10.0.1

111 II I

	Iron ore	reserves	Coal r	eserves	Hydro- electric resources
Country	Size, 10 ⁶ tons	Ore type	Size, 10 ⁶ tons	Туре	(in MW)
Angola	1,220	Haematite and quartizitic haematite/ magnetite	-	_	11,000
Botswana		-	15,200	High-ash, medium- volatile bituminous	_
Ethiopia	12.5	Low-grade		-	-
Kenya	42.0	Low-grade			
Madagascar	405	Quartzitic haematite/ magnetite	84	High-ash, medium- volatile bituminous	73,000
Malawi	-	-	810	Bituminous and sub- bituminous	91
Mozambique	250	Banded iron- stones	8,000	Bituminous plus up to 3 billion tons cokeable	12,000
Somalia	180	Low-grade haematite/ magnetite, and titani- ferrous magnetite		-	-
Swaziland	÷	-	967	Cokeable anthracite, low-volatile	_
Tanzania	118	Titaniferrous magnetite with Cr and V impurities		Medium-ash, high-volatile	18,995
Uganda	71	Haematite, magnetite, and pyrite	-	-	16,439
Zambia	301	Haematite and magnetite	90	Low-ash, high sulphur bituminous	4,600
Zimbabwe	3,738	Haematite and limonite	21,953	Bituminous and up to 2,535 million tons coking	4,566

2

Table 4.6: Iron and steel resources in the Eastern and SouthernAfrican sub-region

The sub-region's coal resources could be potentially useful as a reductant in coal-based iron ore direct reduction processes for the production of sponge iron, - a metallic alternative to ferrous scrap. However, the technical compatibility of a particular coal reserve and direct reduction process, as well as the economic viability of a given project, would need to be carefully evaluated prior to embarking on any investment exercise.

c) <u>Minor steel industry minerals</u>: The exploitable alloying minerals that occur in the sub-region are shown in Table 4.8. Zimbabwe has reserves of high chrome ore (for which it accounts for over 86 per cent of the world's known resources), cobalt, and nickel ore. Madagascar's resources are chrome and nickel ores, while Burundi has the largest nickel ore reserves in the sub-region. Other potential sources of alloying minerals are Zambia (for cobalt), Botswana (for nickel ore), and Mozambique and Tanzania (for titanium).

Refractory materials serve multiple chemical, structural/mechanical, and thermal functions in iron and steel production. They usually contain one or more of the following minerals: - silica, aluminosilicate, magnesite, graphite, chromite, dolomite, and zirconia, and the wide range of uses includes fireclay and high-alumina for direct reduction furnaces, tar-bonded basic refractories for oxygen steelmaking converters, magnesite and magnesite chromite for electric arc furnace walls, and zirconium material for nozzles of continuous casting ladles.

Although several countries in the sub-region are endowed with commercial reserves of some of the refractory minerals, only a narrow range of refractories, - the simple fireclays, - are now manufactured in Zimbabwe and Kenya for local consumption. The balance is imported from South Africa, Europe and North America. With the possible exception of Zimbabwe, no individual country's refractories demand is sufficient to justify establishment of a viable plant to manufacture a wide range of refractories for its internal consumption. Accordingly, the refractories area presents an opportunity for sub regional industrial co-operation aimed at supplying the needs of countries in the entire sub-region.

1

1 0001110

THE REPORT OF THE TELESTIC

	Significan		
	source	Resou-ce	
Mineral	countries	size	State of exploitation
High-chrome ore	Zimbabwe	1.12 billion tonnes	Significant production with 1982 mining output of over 396,000 tonnes.
	Madagascar	7.3 million tonnes	Commercial production with 1978 output of 92,000 tonnes
Cobalt	Zambia	0.35 million tonnes	By-product of copper industry; 1983 mine production of 2,407 tonnes.
	Zimbabwe	Not available	1982 production of about 100 tonnes.
Nickel ore	Zimbabwe	6.1 million tonnes	Produced 12,000 tonnes of contained Ni in 1982.
	Burundi	l2.84 million tonnes	Unexploited but being developed under World Bank auspices.
	Madagascar	1.75 million tonnes	Undeveloped.
	Botswana	0.66 million tonnes	By-product of copper extraction.
Titanium	Mozambique	12.6 million tonnes	Ilmenite bearing beach sands of Maganja-Moma have not been exploited.
	Tanzania	3.5 million tonnes	Occurs in association with Fe and V at Liganga.
Fluorspar	Kenya	1.77 million tonnes	Commercially exploited.
	Zimbatwe	0.204 million tonnes	Commercially exploited.

Table 4.7: Resources of the minor steel industry minerals in theEastern and Southern African sub-region

Sources: UNIDO/IO.391/Rev.1, 1981 and various geological surveys departments.

The fluxing minerals in steelmaking are limestone, dolomite, fluorspar and silica. Limestone, dolomite, and silica reserves of suitable metallurigical quality occur widely across the sub-region. Even where a particular country has no local resources, it should be possible to supply its requirements from other sub-regional sources. As for

fluorspar, Table 4.7 indicates that significant exploitation is currently going on in both Kenya and Zimbabwe. Other fluorspar resources may be located in other countries as the need for it in metallurgical applications develops.

- d) Ferrous scrap: Ferrous scrap for the sub-region's eleven electric arc furnaces is supplied in part from local sources, and in part through imports. The local availability (estimated in to be at most 127, 350 tpy) is constrained by the under-developed and currently depressed status of the economies of the sub-region. This, among other things leads to an enforced longevity of automobiles and other household appliances as consumers conserve and rehabilitate rather than dispose of servicable assets. Furthermore, bottlenecks exist in inefficiencies of scrap collection, processing and delivery to steel plants. For these reasons, the differential between the prices of local and imported scrap has been narrowing, making the latter increasingly attractive, although its accessibility is now restricted by the prevailing foreign currency scarcity in the sub-region. In the face of escalating scrap prices, as well as the obvious demand for it in the sub-region, there is a need for establishment of enterprises devoted to the collection and processing of all available scrap resources. Included among these sources are ships and carriers that could be the basis of ship breaking enterprises at such ports as Mombasa, Dar-es-Salaam, Maputo, Luanda, Toamasima, Djibouti, Mogadishu, and Port Louis. In fact, such enteprises already exist in Mombasa and Port Louis and should serve as models for similar establishments in the other parts of the sub-region.
- e) <u>Electricity</u>: The electricity resources (particularly hydro) of the sub-region have hardly been exploited. As shown in Table 4.6, virtually all the countries listed have ample potentials that, if properly exploited, would guarantee ample supplies at reasonable costs for the foreseeable future. In the context of sub-regional co-operation, the collaborative development of hydro-electric resources would undoubtedly be in the interest of the industrial sector in the area.
- f) <u>Imported inputs</u>: Certain input materials which, in terms of quantities consumed and value, may be regarded as secondary are often of critical importance in steel production. Among such inputs are ferroalloys, graphite elect, lubricating oils, water treatment chemicals, certain

refractories, thermocouples, roll grinding wheels, etc. In most cases, these items are imported and instances abound of operations having been halted due to non-availability of ore or more of these materials. It is therefore important for steel producers to devise short-term strategies for ensuring a reliable supply of these critical materials, as well as long-term efforts to produce them (or their acceptable substitutes) locally.

- 4.8 The world market and the scope for increased sub-regional competitiveness
- 27. The region's geography hardly provides any price advantage to local steel producers. Centres of steel consumption are widely dispersed. Intra regional transport links tend to have high operating costs, not least because of low capacity utilization. For many market areas, steel imported from overseas may have lower landed prices than steel produced elsewhere in the region (see Annex III). If all costs were calculated in terms of e.g. US dollars, using official exchange rates, it would be entirely possible that one may show that the region could cut its total outlay on steel products by importing more steel products from third countries. As illustrated above (para 19), however, a foreign exchange cost calculation would be likely to come out in support for local production of basic steel products.
- 28. There are many differing price levels for steel on the international market. Domestic producers' list prices in the United States, the European Community and Japan, supported by formal market regulation or informal agreement, are usually higher than quoted export prices. For example at mid 1985 the United States producers' list price for plate was around \$530 per metric ton, but the U.S. spot, or free market price was only \$375. European and Japanese list prices for plate were around \$375, but with free market prices around \$300, and the European export quote at \$260.
- 29. It would be prudent to take free market, rather than export price levels for comparative purposes. The export quotations are sensitive to the supply/demand balance, and if the current overhang of excess capacity in the industrialized countries disappears, the export price discount which

has been characteristic of the past decade could also shrink. Free market f.o.b. prices are currently around the following levels: billets \$180 per metric ton, re-inforcing bars \$240, structurals, plate and hot-rolled wide coil \$300, cold-rolled coil \$370, and galvanized sheet \$450.

- 30. In the stagnant steel market conditions of the past decade, real steel prices have developed a downward trend, but this is not likely to be prolonged: the closure of high-cost capacity, and other cost-cutting measures by the industry, are reaching levels at which further gains will be relatively small. The industrializing countries including the People's Republic of China will be raising their steel consumption, probably by about 65 million tonnes or almost 40 per cent of their current consumption over the next ten years, but most of this will be met by increased domestic production so that the effect on demand and prices for internationally traded steel will be slight. In the main industrial steel market countries of the United States, Europe and Japan, consumption levels are widely expected to stagnate.
- 31. There is perhaps one area where some degree of caution is necessary. If a bottleneck were to arise, it would probably be at the coke-making stage in the United States, leading to a shortage of pig iron. Even without such a bottleneck, the U.S. is currently importing growing quantitites of semi- finished steel rather than undertaking the prohibitively large investments which would be required to renew its aged and inefficient coke, pig iron and crude steel production facilities. For the present, Brazil with a recently opened semis plant at Tubarao, and several other countries with excess crude steel production facilities, are able to supply semis in adequate quantities, but there is just a possibility that, if the demand continued to grow over the next decade, this currently rather over-supplied area of the market could become one of scarcity, leading to upward pressure on semis prices. However total steel demand in the U.S. is likely to stagnate or decline, and if the share of the U.S. market taken by imported basic steel products continues to increase, there will be relatively little growth in the U.S. steel industry's imports of semi-finished steel products.

- 32. With this area as a possible exception, it is unlikely that there will be pressures on the international steel market sufficient to alter real prices much from current levels over the next decade, although of course any changes in the U.S. dollar parity would be mirrored in the quoted prices. Steel- making raw materials are in abundant supply, and although new integrated capacity can be expensive the stagnant market outlook in the major industrial countries, together with the current surplus of steel-making capacity, suggests that higher prices will not result from the need to finance the building of new capacity. The f.o.b. prices quoted above can therefore be retained as the probable constant-price cost of imports over the next decade. At these prices, and the foreign exchange freight and insurance costs connected with imports there is a chance that new production capacity for crude steel in the region would benefit its overall balance of payments. However, as shown in Table 4.3, a high proportion of the capital cost would be foreign exchange spending, and spare parts, technical assistance, and some raw materials would have to be imported.
- 33. Assuming that the foreign exhange cost comparison for new capacity come out favourable, there is still the issue of total local currency cost. Locally-produced steel must compare favourably if steel-consuming industries are not to be penalised for the sake of the steel producer.
- 34. Sub-regional steel producers have not yet taken full advantage of their competitive position in the PTA member countries. The field work gave the impressions that most producers attach less importance to marketing of their products than to other areas of their operations. This is quite understandable due to the lack of a price advantage vis-a-vis outside producers and to problems encountered in technical areas, maintenance and replacement of equipment, production planning, lack of qualified manpower and training of staff.
- 35. There are, however, areas where sub-regional producers have or more easily could develop a competitive edge. The ex-factory per tonne price of steel is only one (but important) element in competition. A fresh drive for inc. ased competitiveness should concentrate on <u>all</u> areas which are important to steel purchasers of the region for their decision making on order placements:

- terms of delivery
- deliveries according to order specification
- price (including transport costs)
- past business experience and technical support services
- quality products
- terms of payment

Terms of delivery

- 36. Orders from abroad (Europe or Japan) normally have high lead times. For normal orders these lead times are about 3 months or more for coastal countries and up to 9 months for landlocked countries (e.g. Rwanda, Burundi). These high lead times are a heavy burden on steel purchasers, mainly for two reasons: firstly, order planning is extremely difficult, especially for engineering industries and, as regards steel for construction purposes, for special dimensions or types of steel. Secondly, the financial burden is considerable. In some cases the whole order volume has to be paid at the moment of the order, but in any case the letter of credit has to be financed which can cause additional purchasing costs of up to 9 per cent of the fob order value.
- 37. Rwandan steel importers, e.g., tried to avoid these unfavourable conditions by switching to Kenyan suppliers for construction steel. Their experience, however, was unsatisfactory to them as agreed delivery times of one month were not complied with by the supplier (supplies arrived 6 months later) so that they switched again to European suppliers. A Burundese steel importer has recently made his first trial order for shipment from ZISCO Steel via Zambia by truck and from Mpulugu by lake shipping. He expects a reduction of his lead time by 7 months. Mauritian importers prefer purchases from South Africa via Port Elizabeth with lead times of one to two months.

Deliveries according to order specifications

38. Some steel purchasers have had negative experiences with regional steel suppliers in terms of deliveries according to their order specifications. Dimensions (e.g. diameter of bars) were other than ordered or partial shipments were made by the steel producers resulting in increased transport cost for the purchases, delay in execution of works until final shipment was received and additional financing costs. As European companies generally supply from stocks, at least in the case of relatively small order sizes as customary in the region, partial shipments are not experienced. It is proposed that steel producers in the region improve their stocking systems and constantly compare expected market demand, goods in stock and production planning.

Price

- 39. The price of steel products is an important criterion for the purchaser in the region. He is, however, less interested in ex-works or fob prices, but rather in the total price of goods received in his warehouses. Therefore steel producers should rather look at total costs for the purchaser than their ex-factory prices.
- 40. Total costs for the purchases include the ex-works or fob price of the product, transport costs, duties and levies and financing costs of the order. The two cost components, transport costs and order financing costs can be directly influenced by the steel producers of the region and should in the future be of more concern to them.
- 41. Transport costs are extensively referred to in Annex III. It is recommended that the major steel producers, above all ZISCO Steel, increase their efforts in the areas of transport logistics and negotiation of global transport contracts of annual or biannual duration allowing for partial shipments. Transport logistics activities should concentrate in the beginning on planning of rapid delivery systems, opening of new transport routes and analysis of intermediate warehousing of steel products at key trans-shipment points, e.g. in a Mozambican port and, for servicing Zambia, Burundi, Rwanda, west of Tanzania and south and east of Zaire, in a location to be selected in Zambia. The Lake Tanganyika shipping route apparently offers a competitive transport connection for steel supplies to Burundi, Rwanda, west of Tanzania and east of Zaire. It should also be determined in detail whether the railroad connection to Dar-es-Salaam can be a cost and time-saving transport route. Above all, a major transport cost reduction can be expected by negotiating global transport agreements with land and maritime shipping companies. So far, the small order volumes have, besides political factors affecting the Mozambiquean railroads and ports,

caused high shipping rates from Mozambiquean ports to East African and Indian Ocean islands ports. These rates can be considerably reduced by negotiating with selected shipping lines on annual or biannual lump transport volumes to be effected in partial shipments. Frequencies of calls at the ports can likewise be stipulated in the contracts.

42. Improved transport operations will contribute to speed up deliveries to customers and hence reduce their delivery lead times to an extent that it could become a major factor in their order placement decisions. An additional benefit would be the fact that financing of their letters of credit will no longer be required. This could lead to reductions of their landed costs of steel products of up to 9 per cent as an example from Burundi shows (see Annex 111).

Past business experience and technical support services

43. An important factor in decision making on order placements by the steel users is reliability of supplies. In periods of worldwide excess steel capacity even the relatively small quantities ordered by the importers of the region are honoured without delay. Furthermore, the importers can rely on the technical support services of, e.g. European steel producers provided on many occasions without additional charges. Technical support services are of considerable importance in the building, construction and engineering industries when new products are designed. Past business experience has shown the value of reliability and technical support services to the steel purchasers of the region who will also have a demand in this respect in the future, especially for high-priced steel, types or dimensions. It is therefore recommended that the steel producers of the region who intend to diversify into high-priced steel products (as in the case for ZISCO Steel) establish a technical support service system and pay special attention to the reliability requirements of the customers.

Quality of products

0.101

44. Quality of steel products is not a major factor in purchases of steel for general construction purposes (e.g. reinforcing bars, light sections). Correct dimensions of the products can, however, be an important competition factor. Quality plays a more and more decisive role for higher grade steels, either for special applications (e.g. rails) or for special steels as used in advanced engineering industries. Quality

- 40 -

aspects will therefore have to be monitored more carefully when entering into the production of high grade and high priced steel products. In the past there have been a few cases of off-specification carbon contents in billets from ZISCO Steel but these problems have apparently been overcome by the company through improved quality control.

Terms of payment

45. Payment is generally made through letters of credit (60 or 90 days) for all imports of steel regardless of the source of supply. These terms are widely accepted by the steel importers and can therefore be considered of less importance for the improvement of competitiveness of the regional steel producers.

4.9 Indirect steel imports and the engineering industry

Indirect imports

- 46. Indirect steel imports refers to the steel contained in imported manufactured go ds. The steel demand for those basic steel products which are manufacured in the region is part of the <u>direct</u> demand. The determination of <u>indirect</u> steel imports is difficult due to the scarcity of data on imports from the countries of the sub-region.
- 47. Table 4.8 summarizes an estimate made of the more important indirect steel imports ¹/₂ by country for 1981 to 1983. Total indirect steel imports amounted to an average of 490,000 tpy and an import cost of US \$1.74 billion per year. The decline from approximately 540,000 tonnes in 1981 to approximately 450,000 tonnes in 1983 indicates the continued economic and foreign exchange difficulties of the countries. The decline is very pronounced in Angola, Kenya, Tanzania and Zambia. The countries with the highest share in indirect steel imports are Angola (12 per cent), Ethiopia (11 per cent), Kenya (10 per cent), Somalia (10 per cent), and Mozambique (8 per cent), Zimbabwe (7 per cent), Tanzania (6 per cent) and Zambia (6 per cent).
- 48. Table 4.9 shows the indirect steel imports of the three digit SITC-product groups included. For the region as a whole, road vehicles are by far the most important single product group with 52 per cent of indirect steel imports (approximately 260,000 tpy for the three year

FILE FILE FILE FLE HER MELLE

1.1

1/ For estimation method, see Annex VI, paras 25-27.

- 41 -

average), metal structures are in second place with 18 per cent (approximately 86,000 tpy), followed by agricultural machinery with 6 per cent (approximately 28,000 tpy) and wire products, tanks and vessels as well as bicycles with 4 per cent.

- 49. The present indirect steel imports represent a major potential for import substitution as is demonstrated in Chapter 5 below. It is therefore important to consider the main factors behind the demand for such products and how it may be satisfied from local sources.
- 50. As the main producer of products containing steel, the engineering sector transforms demand for downstream products into a demand for basic steel (direct demand). However, if engineering industries have only a small share in manufacturing value added other users of steel products, like repair shops of mining companies or sugar factories, might have high share in indirect steel consumption.
- 51. Although one may, with limited confidence make estimates of indirect steel imports, the determination of input demands by the engineering industries on a statistical basis is hardly possible. First, production and trade statistics are incomplete, for some countries figures are not available, particularly for recent years. Likewise, production figures of the engineering industries in the PTA member countries are only available for six countries. Furthermore, their sources of supply (domestic, regional and international) are not known. Without detailed data on their sources of supply a double counting of their steel demand under direct and indirect supply cannot be avoided. More extensive field work than permitted by the present study would be required to overcome the data shortage. Because of the importance of the engineering industry as a driving force in the replacement of indirect imports, its structure and possible expansion is considered below in some detail.

The engineering industry

52. Even though statistical data for the engineering industry are insufficient it is quite clear that in general terms, the sub-regional engineering sector is as yet poorly developed compared to industrialized or even other developing countries.

- 42 -

		YEAR							AVERAGE
	198	31	19	82	198	33			TONNES
	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	QUANTITY	AVE RAGE VALUE	AVERAGE TONNES	IN PCT OF TOTAL
COUNTRY									
ANGOLA	319311	92668	164275	48047	110963	36617	198183	59111	12
BOTSWANA	108712	20546	119760	28293	120000	22680	116157	23840	5
BURUND I	24064	6046	34949	12916	26351	9749	28455	9570	2
COMOROS	12167	3605	5940	2508	8380	4240	8829	3451	- 1
ETHIOPIA	145146	46208	131201	46806	169434	66292	148594	53102	11
DJIBOUTI	30797	8981	31943	10556	34833	13220	32524	10919	2
KENYA	207134	64187	152554	45344	109664	29036	156451	46189	- 9
LESOTHO	89534	21151	106845	20193	110000	20671	102126	20672	4
MADAGSCAR	64957	22307	43451	11024	58348	14131	55585	15821	3
MALAWI	38396	10841	32883	980∠	27908	6435	33062	9026	2
MAURITIUS	37765	10892	19768	6319	24001	9457	27178	8889	2
MOZAMBIQUE	122064	43741	119945	38947	105310	33634	115773	38774	- 8
RWANDA	27852	8361	39490	12891	41517	13422	36286	11558	2
SEYCHELLES	10203	3155	95 38	3074	6666	2089	8802	2773	1
SOMALIA	132467	31426	164372	45596	191187	63841	162675	46954	10
ZIMBABWE	137882	35041	145762	32850	135833	31181	139826	33024	7
SWAZILAND	69836	20531	67693	19671	66430	15072	67986	18425	4
UGANDA	80419	16495	49279	11759	47000	13974	58899	14076	3
TANZANIA	144799	35923	113839	32148	88489	25388	115709	31153	6
ZAMBIA	128171	36227	149188	35540	93061	22352	123473	31373	6
TOTAL	1931676	538332	1702675	474284	1575375	453481	1736575	488699	100

Table 4.8: Estimated indirect steel imports, 1981-1983 and averages (values in thousand US\$, quantities in tonnes)

1

.

.

÷ ...

_

_

_

٠

Table 4.9: Estimated steel imports, 1981-1983 and averages (values in thousand US\$, quantities in tonnes)

_

Ξ

	YEAR								AVE RAGE TONNES
	1981		1982 1		198	1983		AVERAGE	IN PCT
	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	QUANTITY	AVE RAGE VALUE	TONNES	OF TOTAL
SITC									
MET. STRUCTURES	105160	94234	113190	86601	91727	76428	103359	85754	18
TANKS, VESSELS, ETC	31898	23377	27898	15145	31338	26866	30378	21796	4
WIRE PRODUCTS	52307	29644	23052	15516	16287	13472	30549	19544	4
NAILS. NUTS, BOLTS	17940	9829	13790	8687	9002	6534	13577	8350	2
HAND TOOLS	64847	13294	51815	13056	43051	11667	53238	12672	3
CUTLERY	7402	690	4318	309	4447	635	5389	545	0
DOM. UTENSILS	15989	3355	11124	2563	10782	2747	12632	2888	1
AGR.MACH., TRACTORS	126037	30891	116484	30138	92431	22543	111651	27857	6
DOM. EL. EQUIPMENT	24879	4967	18716	3444	15816	3173	19804	3861	1
RAIL, LOCOS ETC.	97990	14976	78888	11158	80989	15426	85956	13853	3
ROAD VEHICLES	1280689	276330	1160578	256134	1092835	236720	1178034	256395	52
BICYCLES ETC.	47324	18740	39636	14436	40511	19254	42490	17477	4
HEATING, SANITARY	25096	8224	16853	7167	17357	7182	19769	7524	2
FURNITURE	34118	9781	26333	99 30	28802	10834	29751	10182	2
TOTAL	1931676	538332	1702675	474284	1575375	453481	1736575	488699	100

.

.

.

.

- 53. Some of the countries however already have an engineering industry of relatively considerable size namely Kenya, Zambia and Zimbabwe. In Zambia and Zimbabwe, engineering industries contribute respectively 20.2 (1981) and 19.1 (1980) per cent to manufacturing value added (MVA). This is almost at the same level as for the Latin American countries. Kenya's engineering industries also have a relatively strong position contributing a share of 18.8 per cent to MVA. In Mauritius and Tanzania, the sector has shares of respectively 12.4 and 11.5 per cent. Although smaller than for the three other countries it compares favourably with Central American countries (less than 10 per cent) which are about the same size. Madagascar (7.5 per cent) and Malawi (8 per cent) lie in the same range of importance, while in other countries for which data are available the engineering industries contribute 5 per cent (Swaziland) or less (Angola, Ethiopia, Lesotho) to manufacturing value added.
- 54. Data on other countries were not available. Field work showed that Angola and Mozambique had considerable potential in the engineering industries which in 1975 contributed 32.5 per cent to the manufacturing value added, the highest share reported in the region. The production units are, however, partly out of operation mainly due to lack of skilled personnel and lack of foreign exchange for the purchase of raw materials and spare parts. Zambia's engineering industry is especially strong in the fields of production and repair of mining equipment and their components. The downward development of mineral prices has affected Zambia's engineering industries whose share in manufacturing value added dropped from 30.8 per cent in 1973 to 20.2 per cent in 1981. Zimbabwe's engineering industries are relatively diversified. The engineering industries in Tanzania suffer from the shortage of foreign exchange for the purchase of production inputs and spare parts leading to under-utilization of capacities. Even small countries like Burundi and Rwanda, where the growth rate of metalworking industries in the last ten years was in the order of 9 per cent and is expected to continue growing at a rate of 7 per cent until 1990, are establishing engineering industries. It is estimated that for all PTA countries, the share of engineering industries in manufacturing value added is in the order of 12.5 per cent.
- 55. A fundamental characteristic of the engineer. Austry of the region is that it mainly service domestic markets and that engurts are relatively scarce. This is in contrast to this sector in industrialized countries

LI U II IN LI

or Asian developing countries where in specific cases engineering industries export 50 per cent or more of their production. It is also a fact that participation in foreign markets increases the competitiveness of the engineering industries and leads to a stronger specialization of particular enterprises. Banning competition, e.g. through import prohibition, has had by and large negative effects on the growth and technological advancement of the engineering industries. Measures of this type have only proven appropriate for a determined length of time to allow for initial growth and strengthening of the industries.

- 56. Experience in industrialized and developing countries show that the growth of the engineering industries does not require a basic iron and steel industry (e.g. Switzerland, Denmark and Singapore). The linkage between these two sectors is rather the other way around: basic iron and steel industry needs for its growth and expansion in product ranges a strong and growing engineering industry to cause a "pull-effect" as far as steel consumption is concerned. This effect can also be expected in the region once economic recovery allows high growth rates of the engineering industries.
- 57. The overall growth rate of engineeri , industries in the region is, due to incompleteness of statistical data, hard to determine. Macro economic constraints have caused a reduction of the share of engineering industries in the manufactuirng value added in some countries (e.g. Kenya, Mozambique, Zambia and Zimbabwe) in the past years. Judging by the imports of relatively simple products however, (see Table 4.9) the sector has a considerable growth potential. For its development, national industrial policy measures and human resource development efforts are required. Within the framework of PTA and SADCC, measures should be geared towards regional co-operation to increase market sizes and specialization of the industry. In this context, the promotion of inter-industrial linkages, such as subcontracting and product complementation, are of fundamental importance. Linkage support measures will be a prime mover to penetrate new technological areas.
- 58. It is also characteristic of engineering industries that minimum capacities vary from small production units to large installations (e.g. motor or vehicle production). In general, engineering industries are more labour intensive than capital intensive, even though new production methods (e.g. computer aided manufacturing) make the sector more capital

10.000

- 46 -

intensive than before, but these do not necessarily have a negative effect on minimum capacities. On the contrary, these new production technologies may increase the flexibility of the industry and reduce the minimum capacity per single product.

59. In most countries, of the sub-region, fabricated metal products (ISIC group No. 381) have the highest share of production (see Table 4.10). Exceptions are Angola, Kenya and Tanzania where transport equipment (ISIC No. 384) has a higher share and Mauritius which only gives data for ISIC No. 382 to 384. The production of non-electrical machinery (ISIC No. 382) is only significant in Mauritius, Zambia and Zimbabwe. Electrical

Table 4.10:Share of the engineering industry in manufacturing value addedin selected countries and for selected years(in per cent)

		Total		ISIC #	group nut	nber	
Country	Years	ISIC 38	381	382	383	384	385
Angola	1970	3.5	1.7	0.3	0.5	1.0	-
Botswana	1975	2.7	1.9	-	0.1	_	-
Ethiopia	1973 1979	2.0 2.6	1.9 2.5	-	0.1 0.1	-	
Kenya	1973 1980	22.5 18.8	7.3 7.2	0.5 0.7	5.8 5.2	8.9 5.7	
Lesotho	1975	0.1				**	-
Madagascar	1973 1979	9.8 7.5	6.2 5.0	-	2.2 1.5	1.4 1.0	-
Malawi	1980	8.0	6.2	0.7	0.7	0.4	
Mauritius	1981	12.4	-	5.1	4.1	3.2	-
Mozambique	1975	32.5	13.7	3.3	5.4	10.1	-
Swaziland	1980	5.2	4.5	0.2	0.5	-	-
Tanzania	1973 1979	11.1 11.5	2.9 2.8	0.7 1.0	2.4 3.1	5.1 4.6	-
Zambia	1973 1981	30.8 20.2	14.2 9.2	5.0 3.3	6.2 4.1	5.3 3.5	0.1 0.1
Zimbabwe	1973 1980	22.5 19.1	11.3 10.5	3.3 3.1	3.5 3.6	3.9 2.9	0.1 0.1

- 47 -

machinery (ISIC No. 383) already have significance in several countries, namely, Kenya, Madagascar, Mauritius, Tanzania, Zambia and Zimbabwe. Transport equipment is of importance in all countries except Lesotho, Mauritius, Malawi and Swaziland.

- 60. Fabricated metal products represent in general the technologically less complex products compared to machinery and transport equipment. Hence the high share of ISIC 381 in most countries and the comparatively lower share of the other product groups indicate that the engineering industries in these countries are still an early stage of development. It can be assumed that future increase in the contribution of engineering industries will mainly come from strengthening the production capacities of ISIC groups No. 382 to 384, even though ISIC group 381 will also grow albeit at a lower rate (compare figures for Latin America as a whole, 1950 to 1977, Table A.I.4).
- 61. The future development of the engineering industry can be expected to be a main engine for growth and diversification of the iron and steel industry in the region. Its growth will, above all, increase the regional demand of plate and sheet, pig iron for foundry products, and hot and cold rolled bars. To which extent this "pull-effect" on iron and steel consumption will take place, will heavily depend on industrial policy measures to foster growth of the engineering industries.
- 62. Brazil gives an example of the influence of development policies on the growth of the engineering industries. Due to incentives especially for the promotion of joint ventures and tax rebates, the country was able to double the share of engineering industries to manufacturing value added in approximately 15 years (from 1950 to 1965), Latin America as a whole in approximately 20 years (from 1950 to 1979). Indonesia, whose engineering industry was relatively insignificant until 1972, was able to triple its importance in only 8 years (from 1972 to 1980), mainly due to the establishment of a local automotive industry and a general local content regulation to all important products of the engineering industry sector. Here incentives combined with regulatory measures were even more strongly pronounced and more strictly applied than in Latin America. It is noteworthy that both in Brazil and Indonesia, the basic iron and steel

- 48 -

industry was in infant stages when the rapid growth of the engineering industries started. Their additional demand for steel products contributed to the strengthening of the steel industry which found developed markets to absorb their additional output. Some other countries which first developed their basic iron and steel industry and then the user industries have experienced sales difficulties in their early years of operation which negatively affected cash flow and profitability of the steel mills.

- 63. If PTA member countries decide to give high priority to the development of the engineering industries and to introduce additional incentives and promotional efforts it can be assumed that the share of engineering industries in MVA could be raised considerably in the next 10 to 15 years. However, a thorough analysis of the present stage of development of the engineering industry sector, its constraints and potential and, in relation to the present study, its present and future steel demand seems of great importance as a basis for an industrial development strategy for this sector. Priority should also be given to this sector due to its relatively labour-intensive (yet skill-intensive) production operations (annual production output per employee is in the order of US\$15,000 to US\$20,000 in the engineering industries in East African countries).
- 64. The share of engineering industries in manufacturing value added generally grows with the degree of industrialization of a country. Hence, the growth rate of the engineering industries in industrializing countries normally is higher than the manufacturing growth rate as a whole. For example, the share of engineering industries in 19 Latin American countries which in 1955 had a share in manufacturing value added (12.2 per cent) similar to the one for the sub-region grew in 10 years to 19.9 per cent. Other countries (e.g. Egypt, Thailand), achieved an even higher growth rate in only 7 years (see Table 4.11). The growth of the engineering industries in countries with high growth rates are the result of active promotion and support measures by the governments directed towards foreign and domestic potential investors as well as to training of skilled personnel on all levels. It can also be seen that some

countries were able to increase their engineering industry share in manufacturing value added in spite of adverse external factors (e.g. oil price increases) while in the sub-region only Ethiopia and Tanzania were able to increase this share slightly. The absence of promotional measures has certainly contributed to the sluggish development of the engineering industries.

	<u>Share in 1973</u>	<u>Most recent year</u>
Ecuador	10.8	17.5 (1979)
Egypt	13.2	21.7 (1980)
Republic of Korea	20.3	25.3 (1980)
Singapore	5 0.2	62.6 (1981)
Hong Kong	23.4	33.8 (1980)
Thailand	10.9	19.9 (1980)
Ethiopia	2.0	2.6 (1979)
Kenya	22.5	18.8 (1980)
Madagascar	9.8	7.5 (1979)
Tanzania	11.1	11.5 (1979)
Zambia	30.8	20.2 (1981)
Zimbabwe	22.5	19.1 (1980)

Table 4.11: Growth of share of engineering industries in manufacturingvalue added for selected countries(in per cent)

- 65. As the MVA has been used as a proxy for engineering value added in the projections dealt with in Chapter 5, it is important to consider what might happen to engineering's share of MVA in the future. The two most likely developments are:
- a) Continuation of the engineering industries' share in manufacturing value added at roughly the present level: in this case the growth rates of the manufacturing sector and the engineering industries will nearly be the same. This type of development is illustrated by the so-called main projection.

- 51 -

b) Rise of the share of the engineering industries in manufacturing value added from the present 12.5 per cent to, say, 20 per cent in 1995: experience of other countries in Asia and Latin America show that such an increase is quite possible, especially at the present stage of engineering industries where a sound basis for stronger growth has been established, where external factors are favourable and policies and support measures properly implemented (promotion, regional co-operation, specialization leading to sub- contracting arrangements, technological innovation, entrepreneurs ship and labour skill development). The strong past growth of the metalworking industries in small countries like Rwanda and Burundi (approximately 9 and 7 per cent per annum, respectively) and the fact that in 1975 the engineering industries in Mozambique contributed 32.5 per cent to manufacturing value also indicate that the likelihood for such a scenario is substantial. This case is illustrated by the projections with "accelerated absorption of indirect imports" (for assumptions under this alternative see Annex VI).

Chapter 5

FUTURE DEVELOPMENTS IN STEEL CONSUMPTION PRODUCTION AND IMPORTS

- 1. This chapter outlines projections made for sub regional demand and supply of steel over the next decade, and draws conclusions on the background of strategies for the iron and steel sector adopted by the sub-regional groupings, PTA and SADCC. After an overview of structures and trends (5.1) the market situation for basic steel products is assessed. indicating structural change and sub-regional trade opportunities (5.2). The conclusions from this assessment forms the basis for analysis and recommendations in the fields of billet production and trade (5.3), steelmaking capacity (5.4), and the demand/supply balance for steelmaking metallics (5.5). The final section 5.6 discusses the magnitude of a foreseen sub regional metallics deficit and considers ways of closing it. The focus in particularly on the possibility of producing Direct Reduced Iron (DRI). Process options and project locations are considered. Main data and projections are given separately for SADCC and PTA.
- 2. The two overlapping sub-regional organisations covered by this study are different in structure and levels of steel consumption. The obvious explanation for this is that Zimbabwe, which belongs to both groupings and is the major steel producer and consumer weighs more heavily in relation to the smaller sub-group of SADCC. SADCC has at present some 40 per cent of the population of the whole PTA area, but over 50 per cent of total GDP, 60 per cent of total steel consumption and nearly 90 per cent of steel production capacity. Steel consumption per head, low by international standards, differs considerably between the two sub-regional groupings and will not (according to the base case projections) be evened out over the coming decade. The future of the steel sector in PTA and SADCC does however, hold problems which are both similar and require co-operation between a broad group of countries.

5.1 Overview, structures and trends

3. Tables 5.2 and 5.3 and figures 5.1 and 5.2 show summary results of the projection exercise, country projections are given in Volume II of this study. The reliability of forecast levels of steel consumption are dependent on several factors; firstly, the choice of projection model, secondly, the reliability of the method used for estimating the coefficients of the model and thirdly, on the alternative growth

assumptions made with respect to the explanatory variables. These variables are: Gross Domestic Product (GDP), GDP per capita, and depending on the steel item analysed, either gross investment value added in manufacturing or value added in building and construction.^{\pm'} (On methodology, see Annex VI). Overall, the multiple correlation rates (R's) for the linear regression analysis applied to estimate coefficients were very high, indicating that a large part of the variation in steel consumption is explained by the model chosen. Exceptions were the projected consumption of rails (SITC 6760) and tubes (SITC 6780) which tend to be highly dependent on major investment projects. Because of the depressed state of most of the economies in the base period leading to a low level of investment, the consumption of these products may well be under-estimated. The considerable variation between the countries of the sub-region with respect to steel consumption and explanatory variables, made a cross sectional analysis possible. A certain degree of multi collinearity has however made it difficult to judge the reliability of projection with standard statistical methods (see Annex V1).

Three alternative sets of assumptions were made with respect to GDP, 4. gross investment and sectoral value added, each connected with different scenarios for the countries' external environment. The base case was built on World Bank projections of commodity prices and international economic growth; the low growth case, based on the same external environment is meant to illustrate the effect of adverse developments with regard to South Africa's destabilization and rainfall in the region. The high growth case assumes favourable external circumstances and a relatively favourable scenario with regard to weather and political/military turbulence. An additional three scenarios was created by the overall assumption that an extra 60 per cent of selected items of present indirect steel imports was replaced by local production by 1995 through an accelerated growth of the engineering sector (30 per cent by 1990) thus creating a greater consumption of the basic steel products included in the survey. The latter alternatives are referred to as the accelerated import replacement projection, wherewas the former is called the main projection.

 $[\]underline{1}/$ The latter is generally referred to below as the "special explanatory variable".

5. Generally, the growth rates forecast for steel consumption are well over the projected rates of growth in population and GDP. For some items, consumption growth however lie below or only slightly above the growth rate of the special explanatory variable, (see Annex VI) indicating a decline or slow increase in the steel intensity of the sector. The alternatives show that there is a wide range of possibilities with regard to total consumption in 1990 and 1995. For PTA as a whole with a consumption of about 1.19 million tpy in 1981-83 the highest projection points at over 3 million tpy in 1995 and the lowest case gives 1.71 million tpy. In the case of SADCC with an initial consumption of 0.72 million tpy the outer points for the projections in 1995 lie at 1.71 and 0.97 million tpy.

		Million tonnes crude steel equivalent per annum			Annual compound growth rates		
		1981 83		1995	1981-83 to 1990		
Base case	РТА	1.19		2.21	4.3	5.8	
	SADCC	0.72	0.98	1.30	4.0	5.7	
High growth	PTA	1.19	1.92	2.74	6.2	7.4	
	SADCC	0.72	1.10	1.58	5.5	7.6	
Low growth	PTA	1.19	1.44	1.71	2.4	3.5	
U	SADCC	0.72	0.84	0. 9 7	2.0	2.9	
Accelerated	import re	placement					
Base case	PTA	1.19	1.86	2.59	5.8	6.9	
	SADCC	0.72	1.09	1.51	5.3	6.8	
High growth	PTA	1.19	2.11	3.13	7.5	8.2	
	SADCC	0.12	1.20	1.79	6.7	8.3	
Low growth	PTA	1.19	1.64	2.10	4.1	5.1	
5	SADCC	0.72	0.95	1.18	3.5	4.5	

Table 5.1: Apparent steel consumption in PTA and SADCC 1981-831995;Summary of Projections

6. Tables 5.2 and 5.3 presents an overview of the main projections: In the base period, (1981-83) total sub regional consumption of basic steel products stood at a total (crude equivalent)^{1/} of 1.2 million tpy. This was covered by local production of around 0.5 million tpy and import of 0.8 million tpy leaving some 0.1 million tpy for experts cut of the

1/ For method of calculation refer to Annex VI.

Table 5.2: PTA total, main projection

.

.

- 55 -

A) MACRO VARIABLES, DATA AND BASE CASE PROJECTIONS

.

.

AVERAGE 1981 - 1983	PROJECTION 1990	FROJECTION 1995	GROWTH RATES PCT. P.A.
GÖF – POPU- GÖP FER	GDF POPU- GDP PER	GDP POPU- GDP PER	GDP POP GDP/POP
Mill. Lation Capita	MILL. LATION CAFITA	MILL. LATION CAPITA	TO 1990- TO 1990- TO 1990-
US\$ -75 Mill. US\$ -75	US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	19901995 19901995 1990 1995
34895 153 228	43765 1 99 220	53470 235 228	2.9 4.1 3.3 3.4 -0.5 0.7

B) BASE CASE PROJECTIONS 1990 AND 1995 .TONNES

	AVERAG	1981 - 1983	199	90	1995	GROWTH CONSUMPTION	RATES PA. EXPL.VARIABLE
PRODUCT NAME SITC	CONS PR	D IMP EXF	CONS PROD	NĒT IMPORT CONS	NËT PROD IMPORT	TO 1990- 1990 1995	10 1990- 1990 1995
BARS AND RODS 6730 ANGLES SHP. H 6734 ANGLES SHP.,L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743 TIN.& COAT.PL 6749 HOOP AND STRP 6750 RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	245977 2390 79728 686 86529 569 70981 127517 123152 60 19039 26196 38 59794 359 55449 44	57 20219 10155 32 32498 2901 0 70881 0 0 127517 0 00 123564 1411 0 12039 0 32 24123 1809 19 27156 3311	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6031 88294	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.8 3.9 3.1 3.8 3.8 5.4 3.8 5.4 3.8 5.4 3.8 5.4 3.8 5.4 3.8 5.4 3.8 5.4 3.8 5.4 3.8 5.4 3.8 5.4
TOTALS	898263 4149	51 597023 113710	1256681 737400	519281 16639081	018000 645908	4.3 5.8	3.5 4.8
CRUDE EQUIVALENT BILLET EQUVIVALENT	1189597 5306 1014158 4527	59 803048 145109 79 685193 123812			307177 901690 115336 769358	4.3 5.8 4.3 5.8	

C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995

AVERAGE 11	981 - 1983	1990	1995	CONSUMPTION GROWTH RATE PA.
CONS PROD	IMP EXF	Cons Prod Impórt	Cons Prod Import	BASE PERIOD-1990 1990-95
CRUDE EQUIV. TONNES1188597 530659	803048 145109	1920173 946556 973616	274282213071771435645	6.2 7.4
FERCENT GROWTH IN MACRO VARIABLES	GDP	FOPULATION	GDP/CAPITA	
AVERAGE 31-83 TO 1990	4.3	3.3	0.9	
1990 TO 1995	5.5	3.4	2.1	

	D) LOW-GR	OWTH CASE PROJECTIONS 199	0 AND 1995	
AVERAGE 1	981 - 1983	1990	1995	CONSUMPTION GROWTH RATE PA,
CONS PROD	IMP EXP	CONS PROD IMPORT	CONS PROD IMPORT	BASE PERIOD - 1990 1990-95
CRUDE EQUVIV. TONNE1188597 530659	803048 145109	1441242 946556 494685	17129311307177 405754	2.4 3.5
PERCENT GROWTH IN MACRO VARIABLES	GDP	POPULATION	GDP/CAPITA	
AVERAGE 81-83 TO 1990	1.3	3.3	-2.0	
1990 TO 1995	2.3	3.4	-1.0	

Table 5.3: SADCC total, main projection

A) MACRO VARIABLES, DATA AND BASE CASE PROJECTIONS

AVERAGE 1981 - 19 GOP POPU- MILL LATION VS\$ -75 MILL.	983 GDP PER GDP CAFITA MIL US\$ -75 US\$		PROJECTION GDF POPU- MILL LATION US\$ 75 MILL.	GÓP PER CAPITA	GROWTH RATES PCT. P.A. GDP POP GDP/POP TO 1990- TO 1990- TO 1990- 19901995 19901995 1990 1995
•7926 61.5	291 2	1690 79.3 274	26410 92.8	285	2.4 4.0 3.2 3.2 -0.8 0.8

B) BASE CASE PROJECTIONS 1990 AND 1995 , TUNNES

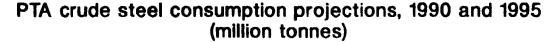
	AVERAGE 1981 - 198	33 1990	1995	GROWIH RATES PA. CONSUMPTION EXPL.VARIABLE
PRODUCT NAME SITC	CONS PROD IMP	NÈÌ EXP CONS PROD IMPORT	NĒT CONS PROD IMPORT	TU 1990- TO 1990- 1990 1995 1990 1995
BARS AND RODS 6730 ANGLES SHP. H 6734 ANGLES SHP. L 6735 FLATES. H.+ M 6740 FLATES. LIGHT 6743 TIN.3 COAT.FL 6749 HOOP AND STRP 6750 FAILS+ MATER. 6760 AIPE 6770 TUBES 6780	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
TOTALS	542491 314859 335009 10	7376 741824 466400 275424	978166 580000 398166	4.0 5.7 3.2 4.7
CRUDE EQUIVALENT BILLET EQUVIVALENT		16780 981663 596421 385242 16706 837594 508890 328704	1296669 742200 554469 1106370 633275 473095	4.0 5.7 4.0 5.7

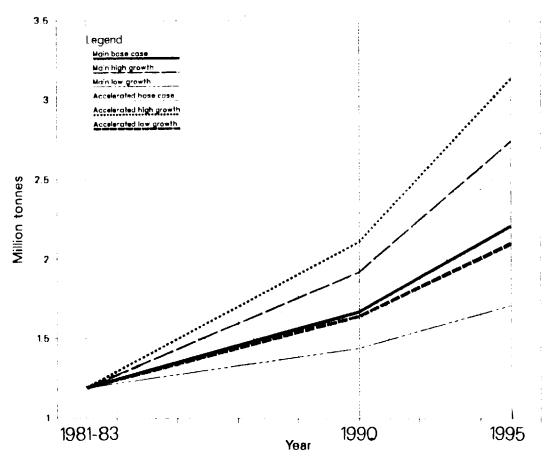
C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995

AVERAGE 19	981 - 1983	1990	1995	CONSUMPTION GROWTH RATE PA.
CONS PROD	IMP EXP	CONS PROD IMPORT	CONS PROD IMPORT	BASE PERIOD-1990 1990-95
CRUDE EQUIV. TONNES 716751 402364 4	51166 136780	1098890 596421 502469	1583351 742200 841151	5.5 7.6
REPOENT GROWTH IN MACRO VARIABLES	GDP	POPULATION	GDP/CAPITA	
A.ERAGE 81-83 TO 1990	3.7	3.2	0.5	
1990 TO 1995	5.4	3.2	2.2	

D) LOW-GROWTH CASE PROJECTIONS 1990 AND 1995

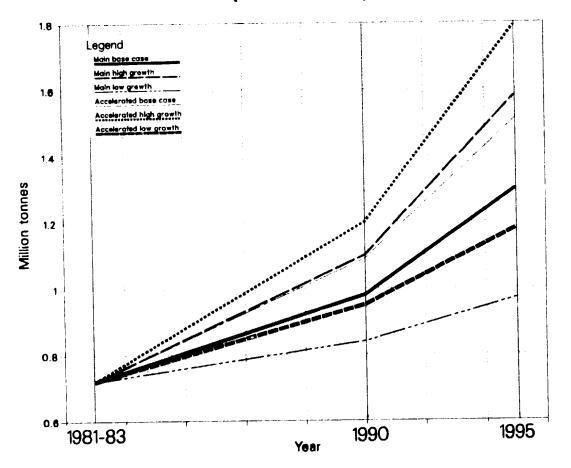
.


.


AVERAGE 1981 -	1983	1990	1995	CONSUMPTION GROWTH RATE PA.
CONS PROD IN	P EXP	CONS PROD IMPORT	CONS PROD IMPORT	BASE PERIOD - 1990 1990-95
CRUDE EQUVIV. TONNE 716751 402364 45116		841904 596421 245483	969161 742200 226961	2.0 2.9
PERCENT GROWTH IN MACRO VARIABLES	GDP	POPULATION	GDP / CAPITA	
Average 81-83 to 1990	0.8	3.2	-2.4	
1990 to 1995	2.1	3.2	-1.1	

٠

•


region. This gives a net import requirement of about 55 per cent. Average consumption per capita was 7.8 kg per year which is very low by international standards, see Table 5.4

7. The sub-region has possibly the lowest per capita consumption of steel in the world, SADCC average consumption being higher than the overall average mainly because of the stronger influence in this sub-group of the higher per capita consumption of Zimbabwe. For the PTA as a whole, consumption per capita is 5 per cent of the world average and only 2 per cent of the average for developed countries. Latin America uses nearly 10 times as much steel per capita and Asia uses nearly five times as much. Also compared to the average for Africa, the PTA per head consumption is low, about one third (SADCC one half) of the average. The main reasons for this are the higher incomes and higher per capita consumption of some populous African countries outside the sub region,

particularly Algeria (approximately 100 kg per capita) and Egypt (approximately 45 kg per capita). The low consumption rates are not entirely surprising on the background of income data; GDP per capita in 1981 was US \$317 in PTA (US \$420 in SADCC) compared to an overall African average of US \$694.

SADCC crude steel consumption projections, 1990 and 1995 (million tonnes)

There is, however, a great deal of variation between countries of the sub-region as shown in Table 5.5. Zimbabwe has reached higher levels than e.g. Egypt, Colombia and China. Some of the small, relatively rich economies; Botswana, Seychelles and Mauritius are approaching Asian levels. On the other hand, consumption per head in countries like Ethiopia, Madagascar, Mozambique, Somalia and Uganda are exceedingly low.

- 8. By 1995, the end year of the projection, it is estimated that (in the main projection base case) consumption will have roughly doubled (up from 1.2 million tpy to 2.2 million tpy), giving a per capita consumption of 9.4 kg and a drop in net import requirement from 55 per cent to 41 per cent.¹/ A further downward climb of import dependence is is prevented by the regional supply/demand imbalance in rolled products, which based on present firm plans will remain to the mid 1990s.
- 9. For the SADCC group of countries, SADCC (see Table 5.3) consumption (in the main base case) would increase from 0.7 million tpy in 1981-83 to 1.3 million tpy in 1995, implying a rise in per head consumption from 11.7 kg to 14.0 kg and a drop in net import requirement from 44 per cent to 42 per cent. The reason for the latter nearly insignificant drop is that consumption of the types of rolled steel products that the SADCC countries can produce today is well covered by local production and the scope for improvement, therefore, limited without expansion of production into other types of products.
- 10. The range of projection alternatives may also be illustrated in terms of per capita consumption. For PTA the upper and lower bounds (respectively accelerated replacement high growth and main projection low growth) in 1995 would be 13.3, and 7.2 kg/capita, the former representing a 70 per cent increase from 1981-83 and the latter a <u>decline</u> from 1981-83. The range for SADCC would be 19.3 kg/capita to 10.4 kg/capita, the former representing a 65 per cent increase and the latter a fall from the 1981-83 level of 11.7 kg/capita.
- 11. In terms of net import requirement the difference between upper and lower projections are influenced by the mentioned structural imbalance. In the high alternatives, import requirements in 1995 would <u>increase</u> to 58.2 per cent and 58.6 per cent for PTA and SADCC respectively. Only in the undesirable case of the low scenario would the import dependency decline to 23.7 per cent and 23.4 per cent respectively. It should be stressed that the assumption leading to this is an illustration rather than a forecast. Indeed, a main recommendation from this study is that the structural imbalance, which mainly is due to the fact that plate and

^{1/} The latter assuming no other expansion in production capacity than those already firmly planned, Table A.II.3.

sheet is not produced in the sub-region should be corrected. This aspect is dealt with in 5.2 below. The foreign exchange leakage as a result of underused capacity and structural imbalance could be considerable. It is estimated that the aggregate sub-regional import cost of basic steel products in 1981-83 amounted to about US\$270 million, of which the SADCC countries accounted for US\$150 million. (See Table A.II.2).

	Population million	Total thousand tpy	Kg per capita/ year
World	4,586	719,665	156.9
Total industrialized countries $1/$	795	317,823	399.8
Total developing countries $1'$	2,358	103,393	43.8
Total Latin America	382	28,079	73.5
Total Asia	1,624	64,739	39.8
Total Africa	499	10,575	21.2
Total PTA	1.53	1,189	7.8
Total SADCC	61.5	717	11.6
India	768.7	13,836	18
China	1,041.0	44,754	43
Brazil	117.2	10,200	87
Colombia	33.7	1,146	34
Egypt	43.8	1,970	45

<u>Table 5.4: Apparent crude steel consumption in selected</u> <u>countries and regions, average 1981-83</u>

Source: Steel Statistical Yearbook 1985. International Iron and Steel Institute, Brussels 1985. Exclusive of indirect consumption. Population figures from UN Statistical yearbook and UNCTAD Handbook of International Trade.

1/ Excluding centrally planned economies.

12. It is hard, with any degree of confidence, to select one most likely projection alternative or discard upper or lower limits: If the low growth scenario materializes, which does not seem wholly unlikely on the basis of developments over the latest years, there will be less of a chance that the countries can mobilize the resources necessary to accelerate the replacement of indirect imports by developing their engineering industries. On the other hand, if the (relatively modest) high growth scenario is realised, the probability of additional development resources and hence the probability for the highest alternative will increase. 13. Two sets of external factors are crucially important for development in the medium term and will also influence what happens in the longer term; world market prices and the degree of economic disruption in the region generated by South Africa. Whereas developments in South Africa are still very unclear, the world market situation, particularly the decline of oil prices, gives reason for believing in an alternative higher than the base case. With the oil price trend continuing and an early end to unrest in the sub-region, steel consumption may turn out to equal high case levels.

				1/
<u>Table 5.5: Proje</u>	ected development of	apparent steel	consumption by	country

	1981 - 83			1995			
Country	Popula tion million	Steel consump- tion thousand	Sceel consump- tion per capita kg/year	Popula tion million	Steel consump- tion thousand tpy	Steel consump- tion per capita kg/year	Annual per cent increase of consumption 1981-83 to 1995
Angola	7.5	56.9	8	10.6	80.8	8	2.7
Botswana	0.8	25.3	32	1.4	38.9	28	3.4
Burundi	4.5	12.4	3	6.6	37.0	6	8.7
Comoros	0.4	3.3	8	0.5	5.7	11	4.3
Ethiopia	33.3	70.7	2	51.2	152.9	3	6.6
Djibouti	0.3	5	17	0.4	7.5	18	2.9
Kenya	17.9	258.	14	31.3	369.8	12	2.8
Lesotho	1.4	13.0	9	2.1	21.9	10	4.1
Madagascar	9.3	32.4	3	13.4	79.3	6	7.1
Malawi	6.6	25.1	4	10.2	51.1	5	5.6
Mauritius	1.0	34.8	35	1.2	71.6	60	5.7
Mozambique	11.1	26.9	2	15.9	100.2	6	10.6
Rwanda	5.2	24.7	5	8.3	43.4	5	4.4
Seychelles	0.1	2.5	25	0.1	3.5	29	2.6
Somalia	5.0	7.9	2	6.5	15.8	2	5.5
Swaziland	0.6	9.7	16	0.9	18.3	20	5.0
Tanzania	19.2	84.1	4	29.1	122.9	4	3.0
Uganda	14.1	19.7	1	22.4	115.6	5	14.5
Zambia	6.2	96.4	15	9.8	156.9	16	3.8
Zimbabwe	8.0	379.3	47	12.8	705.6	55	4.9
Total PTA	152.5	1,188.5	7.8	234.7	2,208.7	9.4	4.8
Total SADCC	61.5	716.8	11.7	92.8	1,296.7	14.0	4.7

1/ Main projection, base case, totals do not always coincide with those of tables 5.2 and 5.3 because of rounding.

- 14. Table 5.5 shows a summary of country data and projections. In general, it illustrates the great variation in the sub-region with respect to population and steel consumption. Kenya and Zimbabwe, the major centres of steel consumption in 1981-83 stood for 68 per cent of total sub-regional consumption but only 17 per cent of the population. This is a reflection of the variation in present development levels and economic structures among the countries of the sub-region. Foreseen variations in development prospects lead to differing projections of future consumption.
- 15. There appears to be a tendency for <u>convergence</u> over time of per capita consumption levels. One noteable feature however is the relatively high per capita consumption in some very small countries: Botswana (32), Djibouti (17), Mauritius (35), Seychelles (25), Swaziland (16). This may partly be a problem of statisti al sources, partly a coincidence caused by heavily steel consuming projects in these small economies in the base period. For example, the generally high degree of industrialization in Mauritius and mining sector development in Botswana explain the high consumption levels in those two countries. Because, in the regression analysis, a low population becomes positively associated with a high per capita consumption. For Mauritius, where economic prospects are considered good and the population growth rate is low, a very steep increase in per capita consumption from high initial levels result.
- 16. Six countries have very low per capita consumption (ander 4 kgs per year). Four of them: Burundi, Madagascar, Mozambique and Uganda are projected to reac! more "normal" consumption levels by 1995. In the case of Burundi, this is based or the expectation of a quite rapid development with emphasis on the manufacturing sector. For the three others the rapid growth represents more predominantly a return to normal from the depressed consumption levels of the base period.
- 17. Kenya and Zimbabwe seem to have somewhat different developments in per capita steel consumption. For Kenya, a tendency for declining steel intensity is forecast. Together with rather low growth up to 1990 and a very high increase in population this results in a slight decline in steel consumption per head up to 1995. In Zimbabwe, high forecast growth rates, particularly for manufacturing value added in the period 1990-1995 balances off a tendency for declining steel intensity.

18. The remaining seven countries show more "normal" par capita consumption levels, growth of total consumption in the 3-6 per cent range and therefore levelling or slightly increasing per capita consumption levels.

5.2 Structural change and opportunities for trade and specialization

- 19. Projections indicate that considerable structural change will take place as steel consumption grows over the next decade. Tables 5.6 and 5.7 show projected changes in consumption patterns for PTA and SADCC. Several tendencies are involved. Firstly, consumption patterns of the countries included have a tendency to converge. This may be seen from a comparison of the tables (1) in Volume II of the study and is largely due to the underlying assumption that industrially less developed countries become more diversified during a growth and development process (see Annex VI). Secondly, there is a general tendency for a change in consumption profiles away from bars and rods, angles and shapes, towards other items, particularly light plate. This is connected to the assumption of a strong growth of the manufacturing sector relative to building and construction. The more sophisticated products produced by the manufacturing sector tend to require more plate. For PTA as a whole, it is estimated that bars, rods and angles which constituted 45.8 per cent of total consumption in 1981-83 will decline to 37.8 per cent in 1995, whereas light, tinned and coated plate will increase from 28.5 per cent of the total to 37.0 per cent over the same period. Thirdly, items like heavy plate, rail track and line material as well as tube, show a receding trend. These items are notoriously difficult to forecast because of the large fluctuations in their consumption which are often experienced in connection with the beginning or phasing out of large investment projects. In view of the depressed economic situation in the base period permitting few large projects, the growth potential for these items may well be underestimated.
- 20. The extent to which demand for the various steel products can be satisfied by sub-regional producers depends on overall capacities for steelmaking and rolling, and on how well the product range is matched with the structure of demand. It was not possible to deal with all types of steel qualities and shapes needed by, e.g. the engineering sector, but the demand projections give a basis for judging where bottlenecks in the supply of the main rolled products may occur. Tables 5.2 and 5.3 indicates problems and opportunities.

Table 5.6: Projected structural change in consumption of rolled steel,PTA base case

	Per cent of total			
	1981-83	1990	1995	
Bars and rods	27.4	25.4	23.9	
Angles and shapes, heavy and medium	8.8	6.6	5.3	
Angles and shapes, light	9.6	10.2	10.6	
Plates, heavy and medium	7.9	8.5	8.1	
Plates, light	14.2	17.1	19.5	
Tinned and coate plate	14.3	16.2	17.8	
Hoop and strip	2.1	1.7	1.4	
Rails and railtrack materials	2.9	2.2	1.9	
Wire	6.7	7.1	7.3	
Tubes	6.2	4.9	4.0	
Total	100.0	100.0	100.0	

Table 5.7: Projected structural change in consumption of rolled steel, SADCC base case

	Per cent of total		
	1981-83	1990	1995
Bars and rods	24.7	24.1	22.6
Angles and shapes, heavy and medium	13.6	10.1	7.9
Angles and shapes, light	10.2	10.4	10.8
Plates, heavy and medium	8.6	8.9	8.3
Plates, light	12.3	16.1	19.3
Tinned and coate plate	9.8	13.1	15.6
Hoop and strip	2.8	2.1	1.7
Rails and railtrack materials	3.6	2.7	2.2
Wire	6.9	7.5	7.7
Tubes	7.4	5.0	3.9
Total	100.0	100.0	100.0

Percentages may not add up to 100 due to rounding.

21. In the base period, virtually all producers in the region had installed capacities for production of bars and rods, light angles and shapes. Zimbabwe in addition produced heavy angles, light rails and tubes. Wire was produced in Ethiopia, Kenya and Zimbabwe. There was no production of plate, sheet or strip in the sub-region. (Data from Kenya shows that some coating or tinning of plate took place there in 1981-83).

-

- 22. Looking at PTA <u>net_imports</u> by basic product (Table 5.2) in 1981-83 it appears clear that there is scope for import substitution for all items. Given the present poor capacity utilization, the <u>first</u> step to be considered should be a better match of production to current and prospective demand by better utilization of the already installed capacity. The scope for this is illustrated by assuming an increase from the low levels of 1981-83 to a utilization of 70 per cent in 1990 and in the region of 90 per cent in 1995. In addition, firmly planned new capacities as at mid-1985 have been included in the production forecast. In the base case, this would, as mentioned above, bring the <u>net</u> import requirement of the region down from 55 per cent in 1981-83 to 42 per cent in 1995.
- Table 5.8 illustrates the sub-regional market balance and the scope for 23. trade in basic steel products under the above assumptions. Trade appears in future as at present, mainly to be centred on rods, bars and light angles and on exportable surpluses in Kenya, Zimbabwe and in future, Mauritius. In most other countries that plan to roll steel by 1995 there would appear to be a quite well balanced market situation for rods, bars and light angles. Assuming that surpluses and deficits (e.g., positive and negative projections of net imports in 1995) below 2,000 tpy are well within margins of error, five of the ten expected steel producers will have a need for international trade in bars, rods and light sections; Kenya, Zimbabwe, Mauritius and to some extent Mozambique would have exportable surpluses of these products and Uganda would need to import a significant amount of rods and bars. The total exportable quantities of the four would be 173,500 tpy of bars and rods and 73.7 tpy of light angles. The consumption in Uganda and the non-producers would be 34.2 tpy and 24.7 tpy respectively, indicating some capacity for exports outside the PTA. As existing and planned capacities for bars, rods and light angles appears to be sufficient up to 1995, it may be concluded that it is indeed appropriate to attach the highest priority to improving capacity utilization. The sum total of present individual national plans for additional capacities in these products appear appropriate when seen in a sub-regional context.

	Net import 1995, <u>thousand tonnes</u> Light,			
Country	Bars, rods	angles and shapes		
Angola	-0.8	-0.4		
Botswana	9.9	4.3		
Burundi	1.9	3.4		
Comoros	1.3	0.3		
Ethiopia	1.1	1.7		
Djibouti	2.8	0.1		
Kenya	- 35.3	-40.1		
Lesotho	1.8	1.2		
Madagascar	0.2	0.0		
Malawi	7.6	4.2		
Mauritius	-16.5	-17.2		
Mozambique	- 9.0	- 2.7		
Rwanda	5.2	3.6		
Seychelles	1.0	0.3		
Somalia	1.7	0.8		
Swaziland	1.2	4.7		
Tanzania	0.0	1.2		
Uganda	11.0	1.8		
Zambia	-0.3	0.2		
Zimbabwe	- <u>112.8</u>	<u>-13.7</u>		
Total PTA <u>l</u> /	~127.9	-46.3		
Total SADCC $1/$	- 102.4	-1.1		

Table 5.8: Trade opportunities in steel products

 $\frac{1}{}$ Totals do not always coincide with those of tables 5.2 and 5.3 because of rounding.

24. The main bottleneck appears in plate and sheet, where the sub-region for the time being has no producer. Furthermore, as shown above, the plate products will increase their share of total consumption quite rapidly over the next decade. The PTA sub-region consumed nearly 350,000 tpy of the different items of plate in 1981-83 (including hoop and strip). This is, in the base case, projected to increase to nearly 550,000 tpy in 1990 and 780,000 tpy in 1995. These projections may be an overestimate because of the strong influence on the regression analysis by heavier users of plate like Kenya. However, even if one accounts for this and for the special qualities which cannot readily be produced within the sub-region, total demand would be high enough to support sub-regional production of plate. This runs contrary to opinions heard during mission. It was often stated that the higher economic minimum capacities and the higher investment costs were main obstacles to starting plate production in the region. There are, however, traditional technical solutions (e.g. steckel rolling mill) which will reduce minimum capacity for flat rolled products to the region of 100,000-200,000 tpy.

- 25. At such a level of production even the 1981-83 demand could have justified at least one plate producer in the sub-region. If base case projections hold, it appears a realistic proposition to have two plate mills in the region by 1990. Demand oriented locations would be Kenya (plate demand of 120,000 tonnes in 1990) and Zimbabwe (140,000 tpy). Choosing these locations would enable investors to start from a national demand base. Zimbabwe would be near the centre of a "southern" group of countries (Angola, Botswana, Lesotho, Madagascar, Malawi, Mauritius, Mozambique, Swaziland, Zimbabwe) representing about 60 per cent of total sub-regional plate demand. Kenya would be the centre of the "northern" group (Burundi, Comoros, Ehtiopia, Djibouti, Rwanda, Seychelles, Somalia, Uganda, Tanzania) with about 40 per cent of the demand.
- 26. A substantial coverage of plate demand by sub-regional producers nearly eliminate sub-regional import requirements for basic steel products. If three-quarters of plate and sheet demand in 1995 was satisfied sub-regionally, it would bring total net import requirements (crude equivalents) down from the 41 per cent mentioned in para 7 above to 8 per cent. The implications for crude steel demand of various alternatives for production of basic products are discussed under 5.4 below.

5.3 Billet production and trade

- 27. As plate is not produced in the sub-region, inputs for rolling are mainly billets (pencil ingots are treated as billets for current purposes). The billet equivalent of consumption, production and imports in the base case has been calculated for all countries by assuming a fixed relation between crude steel and billets (see Annex VI) the results are shown by country in volume II and summarized in Table 5.2. and 5.3 above. The actual demand for billets from existing sub-regional rolling mills would be smaller than indicated by such a calculation since plate items, heavy angles, heavy rails, hoop, strip and tubes are generally not produced from billets. The derived billet demand is given in Table 5.9.
- 28. For the PTA as a whole, billet producing capacity stood at some //0,000 tpy in 1981-83, 600,000 tonnes¹ of which was located in Zimbabwe, 85,000 tonnes in Kenya and smaller amounts in Angola, Ethiopia, Uganda and Tanzania. No other country in the region produced billets but there was a demand for billets also from re rollers in Mauritius and

		1981	- 83		Projection 1995			
		•		Net				Net
Country	Capacity	Demand	Production	import	Capacity	Demand	Production	import
Angola	30.0	2.4	2.2	0.2	30.0	29.8	27.0	2.8
Ethiopia	12.0	17.8	10.1	7.7	12.0	58.7	10.8	47.9
Kenya	85.1	62.9	51.4	11.5	131.1	211.2	118.0	93.2
Madagascar	-	-	-	-	-	27.8	-	27.8
Mauritius	-	9.5	-	9.5	50.0	78.6	45.0	33.6
Mozambique	-	10.5	-	10.5	-	47.7	-	47.7
Tanzania	18.0	15.2	12.0	3.2	43.0	46.6	38.7	7.9
Uganda ^{2/}	24.0	10.8	10.8	-	26.5	29.3	23.9	5.4
Zambia	-	-	-	-	27.0	38.5	24.3	14.2
Zimbabwe	600.0	236.3	480.5	-244.2	600.0	368.8	540.0	-171.2
Total PTA	769.1	365.4	567.0	-201.6	919.6	937.0	827.7	109.3
Total SADCO	648.0	264.4	494.7	-203.3	700.0	531.4	630.0	-98.6

<u>Table 5.9:</u>	Derived demand	for bi	llets	by	country1/
	(thousand				

1/ Assuming billet demand for all items except plate, tubes and heavy angles. Assuming a capacity utilization in the region of 90 per cent in 1995 and demand as in the main projection base case.

2/ Import of billets may have taken place into Uganda. Trade statistics for the country for the relevant period are deficient or non-existent.

Mozambique. Overall capacity utilization was as high as 73 per cent, heavily influenced by the capacity utilization of 80 per cent for Zimbabwe, which exported over half of the billets produced. Capacity utilization for other billet producers were lower, averaging about 50 per cent. The substantial billet export from Zimbabwe led to a net export for the region as a whole. The region <u>excluding</u> Zimbabwe, however, imported one-third of its billet requirement of some 42,600 tonnes.^{1/} Zimbabwe's export in 1981 (see Table 5.10) indicate that nearly half of this would have been supplied by Zimbabwe, the rest from overseas. About 10 per cent of Zimbabwe's billet export for that year went to the three PTA countries which had the greatest import requirement; Zimbabwe's steel covered some 40 per cent of Kenya's requirements, all of Mauritius' and 60 per cent of Mozambique's.

1/ The quoted capacity, strictly speaking, also include heavy sections.

	thousand tonnes	per cent of total
Kenya	4.8	2.3
Mauritius	9.9	4.7
Mozambique	6.0	2.9
Republic of South Africa	10.5	5.1
Other Africa	17.5	8.4
Other developing counries	150.9	72.6
Industrialized countries	8.4	4.0
Total	208.0	100.0

<u>Table 5.10: Zimbabwe's exports of blooms, billets, slabs,</u> <u>sheets, bars in 1981</u>

- 29. In line with its sectoral strategy, PTA has actively promoted supply/ purchase agreements between Zimbabwe and billet deficit countries of the sub-region. ZISCO teams have examined the technical state of rolling mills in Ethiopia and Mozambique and their billet requirements. The Commonwealth Secretariat has completed a similar exercise for Kenya, and it is toped, with assistance from ZISCOSTEEL to do the same for Tanzania and Madagascar. A first breakthrough was achieved in March 1986 when MMCZ/ZISCO agreed on a supply contract with Ethiopian authorities involving an annual 4,000 tpy billet and 2,000 tpy wire rod. Later, in May 1986, MMCZ/ZISCO and various Kenyan rollers confirmed orders for a total of 45,000 tonnes of steel, mostly billets.
- 30. Projections show considerable scope for expansion of the trade in billets: On present plans, billet making capacity would expand from the 1981-83 levels of 769,100 tpy to 919,600 tpy in 1990 and remain at this level up to 1995. Assuming a 90 per cent capacity utilization and derived demand as in the base case, this would give a surplus at some 160,000 tpy for the sub-region in 1990.
- 31. By 1995 the demand/supply balance assuming base case demand would have changed into one of sub-regional billet <u>deficit</u> in the region of 110,000 tonnes (see Table 5.9). Zimbabwe would still be able to produce a considerable surplus of 170,000 tpy but the combined demand from other countries of the sub-region would be about 280,000 tpy. Ethiopia, Kenya, Mauritius and Mozambique would stand for roughly 80 per cent of the total. This would mean a potential 6-7 fold increase in the volume of sub-regional billet trade (from 42,400 tpy in 1981-83 to 280,000 tpy in 1995). To release this potential and maintain overall self-sufficiency, there would be a need for expansion in sub-regional billet producing

capacity between 1990 and 1995. Several factors would have to be taken into account to determine the best location. Using concentration of demand as the only factor, would make a northern location, e.g. Kenya appear advantageous.

- 32. Whether such capacity expansion and trade will actually take place are dependent on numerous factors, the most important of which are the price competitiveness and profitability for Zimbabwean billets, general demand assumptions and the possibility of a demand for other primary steel products than billets. These points are considered briefly below.
- 33. The following list of comparative transport costs in US\$ gives some indication of ZISCO's transport advantage for sub-regional supply of billets to major importers.

<u>To</u>	From ZISCO (Redcliff)	From Europe (Anvers)
Ethiopia Landed Djibouti1/	105	60
Kenya Landed Mombasal/	76	78
Madagascar Cif Antanarivo	150	196
Mauritius Landed Port Louis	92	89
Mozambique Landed Maputo	30	701/

1/ Does not include port charges in respectively Djibouti, Mombasa and Maputc.

Data is drawn from Annex III and must be regarded as approximate only (sea freights Maputo-Djibouti, Anvers-Maputo and Maputo-Port Louis are informed guesses).

34. The transport cost differences between supplies from ZISCO and from Europe vary considerably. Only in one case, Ethiopia do European producers seem to have a transport cost advantage. The US\$60 quoted as sea freight costs from Europe relates to earlier billet supplies from Poland. The billet supply/purchase agreement between Zimbabwe and Ethiopia is said to be based on prices somewhat above those of deliveries from the most competitive European producers.

- 35. Apart from the case of Ethiopia it seems clear that ZISCO supply will have a transport cost advantage for all the main points of supply listed. For Kenya and Mauritius however, margins appear to be small, meaning that ZISCO only by charging an ex-works price of around US\$180 (the approximate free market fob Europe cost for billet:) can compete effectively at all locations. The several ways of reducing transport costs as suggested in Chapter 4 and Annex III could further improve ZISCO's competitive position.
- 36. A further argument favouring ZISCO supplies is the fact that a proportion of the various countries' billet imports could be paid for in the currencies of the sub-region through the the PTA clearing arrangement. This is a strong argument in favour of ZISCO at a time of severe hard currency shortages in virtually all the countries of the sub-region. If the billet deficiency of 110,000 tonnes projected for 1995 is to be supplied from outside the sub-region, the foreign exchange (C & F) outlay would be about US \$35 million based on the Lusaka C & F price stipulated above. The extent to which the potential of the clearing arrangement can be used is however dependent on the size and inter country balance of sub-regional trade.
- 37. While recognising the advantages, in terms of sub regional integration and self sufficiency, of obtaining "semi" steel products from Zimbabwe in preference to external sources, it is worth observing that this strategy must be seen as a short term expedient. In the long term, the sub-region would have to install additional steelmaking capacity to satisfy its future needs. What is more, in the interest of effective decentralization of the industry, future steel capacity increases should be implemented outside Zimbabwe which, as previously stated, in the base period accounted for 83 per cent of the sub-region's crude steel capacity. In fact, it is in Zimbabwe's long term interest not to be saddled with the obligation of being the billet supplier to the sub-region. It is a well-known fact that billet production for sale as such is, at best, a low margin venture. In fact, given its present profit squeeze, engendered in part by Zimbabwe's high dependence on the highly competitive export market for a large fraction of its output, ZISCO's medium and long term strategy should involve progressive diversification into higher-valued products such as flat steel, high alloy and stainless steels, and forging billets.

- 38. The above calculation of the demand for billets is based on the input needs for the rolling of a certain range of basic steel products. As the forecast for level and structure of basic steel production is given in one variant only (based on 70 per cent capacity utilization in 1990 and 90 per cent in 1995, and in addition, new capacity) the various alternatives for consumption of basic steel products will have only an indirect effect on billet demand.
- 3 The conclusion that considerable new billet making capacity would be needed between 1990 and 1995 would depend on the market balance in basic steel products for this period. In the base case, our production assumptions result in a certain net export of bars, rods and light angles in 1995. If such exports could not be realized and production had to be tailored to PTA demand only, billet demand would be reduced by some 196,000 tonnes, swinging the overall 1995 balance from a sub-regional deficit of 110,000 tpy to a <u>surplus</u> of 80,000 tonnes, meaning that new capacity would <u>not</u> be needed. The low growth cases (both main projection and accelerated replacement) would also tend to support such a conclusion, while the high growth case and accelerated base case would point to a definite need for capacity extension.
- 40. The assumptions made about Zimbabwe's propensity to export outside the PTA and the possibility of sub-regional plate production would strongly effect the conclusions made about the need for additional billet making capacity. Zimbabwe has traditionally exported between 200,000 tpy and 300,000 tpy of biliets, only a minor part to PTA markets. If this is assumed to continue and ZISCO's billet making capacity is not expanded, Zimbabwe would have a net import requirement of some 80,000 tpy (250,000 - 170,000) by 1995, meaning that the sub-region would have a billet deficit of 360,000 tpy (110,000 + 250,000). Alternatively, assuming that Zimbabwe would balance its market and export residual amounts of billet the deficit would amount to 280,000 tpy. Both alternatives would indicate a need for an additional substantial billet producer in the region between 1990 and 1995. To what degree Zimbabwe would prefer to export to world markets or not would depend inter alia on world market prices and arrangements within PTA to secure the foreign exchange on which Zimbabwe depends for certain industrial inputs.

41. Above, it is pointed out that a main constraint to the increase of steel self-sufficiency in the sub-region is the absence of sub-regional plate and sheet production. It is also illustrated, using base case projections that a market sufficient to warrant economic production already exists. Installation of plate production facilities in the region would require input of slabs, the quantities depending on what portion of present and projected imports of plate and sheet products could be replaced by local production. Requirements could be substantial; if only 50 per cent of projected base case demand in 1990 was to be covered by sub-regional producers, additional input needs in terms of crude steel would be in the region of 350,000 tonnes. If Zimbabwe was supposed to supply this, on top of local sub-regional requirements for the product ranges presently produced, it would lead to a deficit in the production of crude steel (billets, slabs). In 1995, the combined consumption of plate items having grown to 750,000 tonnes, the demand/supply gap would have widened considerably. Given subregional production of plate and sheet and given substantial exports of billets from ZISCO outside the sub-region a sizeable under-capacity in crude steel could develop. This is dealt with in more detail below.

5.4 Steelmaking capacity

42. Crude steel makers in the sub-region except Zimbabwe cast the whole of their production into billets.^{1/} Crude steel capacities for these producers are therefore roughly equal to their billet producing capacities listed in Table 5.9 above. For Zimbabwe, total steelmaking capacity is 850,000 tpy^{2/} giving a total sub-regional capacity of 1.0191 million tpy in 1981-83.^{3/} By 1990 capacity expansions in Kenya (46,000 tpy), Uganda (2,500 tpy) and Tanzania (25,000 tpy) together with the establishment of new furnaces in Mauritius (50,000 tpy) and Zambia (27,000 tpy) would overall increase capacity by slightly over 150,000 tpy to 1.1696 million tpy (see Table A.II.3). Based on current plans, capacity would remain at this level up to 1995.

- 2/ Based on assessment as at mid 1985. A capacity of 1 million tpy may be achieved by removing certain bottlenecks in oxygen and hot metal supplies.
- 3/ Figures refer to Annex Table AIL.1. The Asmara EAF is not included. The Rolmil Kenya 7 ton EAF is not included in 1981-83.

^{1/} In Kenya, mostly pencil ingots which for current purposes are considered as billets.

43. The demand for steelmaking or crude steel capacity originates in the demand for basic steel products. However, supply bottlenecks in processing (rolling) of basic steel products as well as in billet/ bloom/slab making mayl pose limitations on the crude steel requirement. The demand projection alternatives worked out and the various possible assumptions on bottleneck removal could produce a large number of alternatives. Below, a selection of them have been examined and crude steel requirement derived. Table 5.11 gives the results.

Acc	umptions	Cr		l product d tonnes	tion	
External				output	Additional production required	
Demand	exports	bottlenecks	1990	1995	1990	1995
L. High accelerated	250	All	2,230	3,190	+1,180	+2,140
2. Base accelerated	None	Plate production	1,450	1,650	+400	+600
3. Base main	250	Plate production	1,660	1,820	+610	+770
4. Base main	250	None	1,300	1,300	+250	+250
5. Base main	None	None	1,050	1,050		-
5. Low main	None	None	800	800	-250	-250

Table 5.11: Sub-regional crude steel requirements

44. The table is based on the following assumptions: Total capacity in 1990 and 1995 is 1,169,600 tpy, equivalent to Zimbabwe's capacity of 850,000 tpy + billet making capacity of 319,600 tpy for the other countries. Capacity utilization of 90 per cent gives a forecast output of 1,050,000 tpy. The demand side elternatives (not included in Table 5.11) are based on "crude equivalents" of summary tables 5.2 and 5.3, adjusted to account for the fact that crude and billet weight would coincide for certain products and producers. The demand originating from projected consumption of besic products will however only have an indirect effect on total crude output, namely by indicating the need for an expansion of capacity. The capacities of billet/slab making facilities would be the actual capacity constraint for crude (liquid) steel. If no expansion took place at the former level, no additional production of crude steel would be needed. This is examplified in alternative 5 where no bottlenecks are removed. Therefore, no additional production is needed and the output required stays the same in 1990 and 1995, since all planned capacity expansions are assumed to take place before 1990.

- 45. In terms of supply domand balance for basic products alternative 5 relates to the main projection base case. Note that this case involves a small amount of outside sub-region net exports of steel products in 1990 and 1995. This illustrates a situation with a balanced sub-regional market and exports cutside the region roughly at the levels of 1981-83, an assumption which is also contained in all other alternatives except No.1.
- 46. Alternatives 1 and 6 represent extremes.

<u>Alternative 1</u> assumes that all demand for basic products are reflected in the demand for crude steel. In other words, all bottlenecks in rolling <u>and billet/slab making are assumed to be removed to make a complete</u> matching of sub-regional production with sub-regional demand for basic steel products and to provide for 250,000 tpy billet exports for Zimbabwe.

- 47. <u>Alternative 6</u> is based on such a low demand for basic products in the region that in order to prevent excessive stockpiling in a situation where exports out of the sub-region cannot be stepped up above its 1981-83 level, production has to be cut by approximately 250,000 tpy from its level of 1,050,000 tpy.
- 48. <u>Alternative 2</u> conservatively assumes that 50 per cent of sub-regional demand for plate and s eet can be produced in the region and the required slab input produced. It is also asssumes that Zimbabwe's present export of billets outside PTA will be made available for purchase by the countries in the sub-region as and when needed. The basic steel demand projection for this alternative includes the assumption that considerable replacement of indirect imports by local production will take place.
- 49. In <u>alternative 3</u>, the assumption demand for basic steel products is that of the main base case projection. The assumption on production of plate and slabs are the same as in alternative 2. In addition, this alternative however assumes that Zimbabwe will continue its exports of billets at a level of some 250,000 tpy thus excluding these tonnage from the PTA market and increasing the need for additional production to achieve balance within the PTA.
- 50. <u>Alternative 4</u>, also Juilt on the main base case demand assumption, does not assume plate production, but includes Zimbabwean extra PTA exports of 250,000 tpy.

1 1

The Field Field

ANTE TENERE IN THE STREET FOR THE AND A DECK

- 75 -

- 51. The alternatives considered largely support the view that substantial additional crude steelmaking capacity could be required even by 1990. In the case that all bottlenecks could be removed, requiring substantial investment in both rolling, billet and slab making, plate and sheet production a tripling of present production and capacity would be needed by 1995.
- 52. Conclusions as to new capacity requirements are very sensitive to the assumption made regarding the production of plate. Deficit tonnages in alternatives 2 and 3 may be doubled if a 100 per cent coverage of plate demand is assumed instead of 50 per cent. On the other hand, if production of plate was <u>not</u> started in the sub-region there would hardly be a need for extra crude steel capacity. There is in other words little need for contemplating expansion of crude capacity before plans for slab/plate/sheet production are firmly in place. Zimbabwe's interest in exporting billets is also a crucial factor. If market conditions are so that an export above 250,000 tpy becomes attractive, the projected needs for additional production may be increased by the additional tonnages.
- 53. The chance that demand may be satisfied by making existing plant more efficient and utilize capacities better is slight. Even if overall crude steel capacity utilization could be increased to 95 per cent and Zimbabwean capacity increased to 1 million tpy, this would mean an increase of approximately 200,000 tpy. Substantial new capacity would still be needed under alternatives 2 and 3. Again, for a decision about the location of such capacity, several factors would be weighed. From the demand point of view, assuming as indicated above major expansion of billet production and perhaps slabs in a northern location, this would naturally have to be linked with additional crude steel capacity.
- 54. Two major points emerge from the above discussion:

1.1.1

1

- a) Steelmaking capacity in the PTA sub-region estimated at 1.019 million tpy in 1985 and 1.1696 million tpy in 1990 would most probably need an extension by 1990 if sub-regional self-sufficiency was to be achieved;
- b) The size of new capacity needed is, however, highly uncertain. Assuming 90 per cent capacity utilization, the highest projected addition to the 1.1696 million tpy assumed in 1990 would be 1.3 million tpy. In 1995 the maximum projected need for additional capacity would be nearly 2.4 million tpy, the minimum no extension at all.

11 111 1

1.11

- 55. At the present time, none of the alternatives examined above may be said to be much more likely than the others. Since feasibility studies, design and construction of steel plants require considerable time, the commissioning of new plant in 1990 would require decisions at an early stage. The uncertainty involved leads to a planning problem which may be ameliorated in two ways:
 - a) Since the demand for crude steel is highly dependent on what happens to rolling capacity and billet/slab making capacity, a considerable part of the uncertainty can be eliminated by integrated planning of all three production stages. Decision on crude steel capacity should only be taken on the basis of firm plans on the rolling and billet/slab making stages.
 - b) There is some degree of choice between different size of plant and technologies. The basic choice seems to be between a large plant which, in case the higher consumption alternatives fail to materialize, would be such a cheap producer that profitable extra PTA exports would be assured, and several smaller plants which could be built in step with increasing consumption. Such plants would be likely to have higher capacity production costs but there would be advantages in reducing the chance of excess capacity, minimizing transport costs and an opportunity for a degree of specialization. Given the advantages of the small-plants option in terms of a regionally balanced development of the steel industry, smaller scale production units should be given particular attention.

5.5 <u>Demand/supply balance for steelmaking metallics</u>

11 111

- 56. The demand for metallic inputs for the steelmaking process is derived from the demand for crude steel. This means that the uncertainty with regard to crude steel demand apply to the steelmaking inputs and that integrated planning is necessary.
- 57. ZISCOSTEEL in Zimbabwe is the only integrated steel mill in the region, producing basic steel products from local ore and coal. Although purchased scrap does not constitute a major input to ZISCO, the majority of scrap used being clean mill scrap, the mill is still the country's major scrap consumer. The estimated 50,000 tpy of scrap generated appears to be fully utilized by ZISCO and the local foundry industry

TELEVICE THE THE PARTY AND A DESCRIPTION OF THE PARTY AND A DESCRIPTION OF

which is well developed. Since Zimbabwe is thus self-sufficient in metallic input for steelmaking, is likely to remain so and since exports of steelmaking inputs is not very likely, the country has not been included in the analysis below.

58. Table 5.12 shows the situation in 1981-83. The five countries shown were the only PTA countries which demanded metallics import for their scrap based steelmaking. The column "scrap from local sources" is calculated as the difference between the "required metallics input" and imported scrap. Although imports may possibly be underestimated, and thus result in an overestimation of local scrap consumed in mills, and the estimates of scrap generation are somewhat tentative, the regions annual use of scrap was certainly well above the amounts generated annually. This conclusion is strengthened by the fact that part of the scrap also would be used by foundries in the sub-region. The study mission which took place in mid-1985 clearly confirmed that scrap generated did not level with demand and that any stocks of scrap which had esisted now were about to be depleted in the countries where smelting takes place.

		Estimated $\frac{2}{}$			
	Billet production	Required ^{1/} metallics input	Imported scrap	Scrap from local sources	scrap generation
Angola	2.2	2.4	1.3	1.1	6.0
Ethiopia	10.1	11.1	1.1	10.0	5.0
Kenya	51.3	56.5	2.0	54.5	25.0
Uganda	10.8	11.9		11.9	3.5
Tanzania	12.0	13.2	1.1	12.1	10.0
Other countries	-	-		-	28.0
Total	86.4	95.1	5.5	89.6	77.5

Table 5.12:	Supply	and	demand	for	steelmaking	metallics	<u>1981-83</u>
			(thou:	sand	tpy)		

1/ Conversion factor of 1.1 from billets.

2/ Does not include mill scrap.

59. This general impression does not mean that scrap utilization will be unimportant for the sub-region as a whole. Improvements in gathering and processing practises as well as utilization of new sources of scrap may well give substantial economic gains;

- Angola, which is the one country where annual utilization seems to be lower than generation has taken steps, supported by UNIDO, to improve collection procedures with good results.
- According to information obtained in Tanzania, the operation of the system for allocation of foreign exchange had represented an incentive for scrap imports rather than collection of local scrap;
 It had been possible to obtain foreign exchange for importation of scrap but not for spares for vehicles which would have enabled the mill to collect local scrap.
- In Kenya (Mombasa) and Mauritius, shipbrecking activities supply considerable scrap: Mauritius has plans for an extension of the present operation which would provide suitable furnace inputs and also produce material which could be used directly as an input in cold rolling of plate.
- Countries in the sub-region which do not have smelting capacities in total probably generate 30,000 tonnes scrap annually. Although part of this would be used by foundries, there are indications, for example in Malawi, of considerable accumulated stocks of scrap and even exports out of the sub-region. An opportunity thus exists for some intratrade in scrap at least for a medium term period.
- Scrap generation in 1981-83 was depressed by the economic contraction in most of the economies in the sub-region. If a substantial economic upturn occurs, availability will egain increase and make a concerted effort on scrap utilization increasingly interesting.
- The existing electric arc furnances in the sub-region require a certain minimum input of scrap in addition to possible future input of DRI. Generally a scrap percentage much below 35 per cent could cause technical difficulties with smelters (for the very smallest capacities an even higher scrap fraction would be required).
- 60. The various alternatives for additional crude steel demand shown in Table 5.11 may be converted into demand for metallics by assuming that 1.1 tpy input is required to make 1 tonne of steel. Using alternative 6 which is

1 IIII I I I

 1.11.11.1

the lowest alternative with only firm plans for expansion built in, projected demand for metallics (ex-Zimbabwe) would still increase from 95,000 tpy in 1981-83 to 315,000 tpy in 1990. Assuming that the availability of scrap increases by 5 per cent annually (roughly the growth of overall consumption of basic steel products) to 115,000 tonnes in 1990 and no opportunity for the use of accumulated stocks exist the metallics deficit in that year would be 200,000 tpy. Main ways of covering this deficit is discussed below. Coverage of the entire deficit with DRI would give no difficulty with respect to the scrap/DRI mix which would be very near the 35/65 distribution referred to in para 51 above. If however tonnages exceeding 200,000 per year was needed, for which there is a considerable chance, the production of DRI could only cover 65 per cent of this and one would have to acquire 35 per cent as scrap if technologies employing larger fractions of DRI could not be used.

5.6 Meeting the metallics deficit

1 I INC CONTRACTOR

- 61. If the projected 1990 metallics deficit is made up with imported scrap delivered to a port location (e.g. Mombasa, Dar-es-Salaam, Beira or Maputo), the foreign exchange outlay for 200,000 tonnes, at a CIF price of US \$110 per tonne, would amount to \$22 million in constant 1985 dollars. On the other hand, if sponge iron were to be imported, the corresponding foreign exchange outlay, assuming a DRI price (CIF) of \$135 per tonne, would be \$27 million. These figures must be taken with some caution. In the first place, imported scrap prices generally fluctuate widely depending on the supply demand balance at source. Secondly, although the per tonne cost of DRI has traditionally been higher than that of scrap, this differential could conceivably be erased in future as more DR1 enters into international trade, and as DRI production and handling costs decline with process improvements and maturity.
- 62. It is useful to compare these estimates with the foreign exchange implications of locally producing DRI. If a DRI project is to be commissioned by 1990, iron ore importation would have to be adopted as a short-term expedient, pending the development and/or rehabilitation of local iron ore mines. Sub-bituminous coal is considered to be readily available from active mines within the sub-region.
- 63. For purposes of this illustration, a project employing the coal-based SL/RN 2 kiln process is envisaged, with a production capacity of 220,000 tpy of sponge iron per year. For a similarly sized plant on a US

IL L. I

11111 1

T T T T T

1 1

1.0.1.1.1.

1.1. I. I. I. I. I.

1 1 1 1

East-Coast location, a battery-limits budget estimate of US \$154 per tonne of installed capacity had been made in 1981. In recognition of probable capital cost escalations since then, as well as the cost differentials due to locational factors, an upward adjustment of 25 per cent may be applied for a location on the East coast of Africa (e.g. Dar-es-Salaam Beira, Nacala, Maputo), resulting in a mid-1985 budget cost estimate of about US \$192.50 per tonne of annual installed capacity.

- 64. Table 5.13 summarises the various production cost elements, along with an indication of their respective foreign exchange components. $\frac{1}{}^{\prime}$ The estimated production cost of DRI is US\$163 per ton, of which US\$111 (68 per cent) is in the form of foreign exchange.
- 65. Table 5.13 illustrates certain general peculiarities of local manufacturing in the developing countries of Africa in particular:
 - (i) The production cost of DRI (US\$163 per tonne) is apparently higher than the CIF cost of imported material (US\$135), tending to support the view in some quarters that it might be better to import DRI than to produce it locally;
 - (ii) Each of the cost elements is shown to contain a foreign exchange component. In other words, there is no cost item that is totally defrayed in local currency. This reflects the fact that even though at the enterprise level, a specific cost may be incurred in local currency, from the national viewpoint, there are foreign exchange components in the form of imported equipment, know-how, and expertise. For instance, the 10 per cent foreign exchange content of locally-produced coal represents the proportion ascribeable to imported mining, beneficiation and transportation machinery, expatriate personnel costs, spare parts and consumables, etc.
- 66. The foreign exchange costs of importing or locally producing 200,000 tpy of metallic inputs in 1990 are projected from the above analysis to be as follows:

Imported scrap	@ \$110/tonne	= \$22 million
Imported DRI	@ \$135/tonne	= \$27 million
Locally produced DRI	@ \$111/tonne	= \$22.2 million

1/ It should be emphasized that data for forex components are very weak and may largely be described as a guesstimate.

THE TELEVISION AND A DESCRIPTION OF THE PROPERTY OF THE PROPER

1 1.0

The second se

Cost - Item	Unit consumption per tonne DRI	-	Cost per ton DRI, dollars	Currency
Raw materials:				
Iron ore pellets	1.43 tonnes	42.00	59.64	Forex
Coal	0.94 tonnes	30.00	28.20	10% Forex
Dolomite	0.07 tonnes	8.00	0.56	10% Forex
Electricity	100 Kwh	0.06	6.00	20% Forex
Water	1.5 cubic metres	1.00	1.50	10% Forex
Consumables + utilities			1.00	50% Forex
Spares, incl. refractories			12.00	Forex
Labour and supervision Overheads @ 100% of	2.6 man-hrs.	3.00	7.80	10% Forex
labour and super- vision			7.80	20% Forex
Fixed charges (20% of investment)			<u>38.50</u>	85% Forex
Total production cos	st		163.00	

Table 5.13: Estimated DRI production costs^{2/}

<u>a</u>/ Basis: East African coastal location, employing the SL/RN coal-based process; plant capacity of 220,000 tpy.

The choice in terms of minimizing foreign exchange expenditure would appear to lie between scrap importation and local DRI production. In the long term interest of the sub-region, however, the local production option would be preferred since, notwithstanding the apparent lack of any obvious foreign exchange advantage in local production, other accrued socio-economic benefits whose values cannot be so readily quantifiable nor casually dismissed (such as local employment creation, technology acquisition, manpower training, possible linkage effects, etc.) must be factored into the decision.

67. A note of caution needs to be sounded, however, concerning the fragility of the so-called "foreign exchange savings". For instance, in the analysis above, it would appear that there is little to choose, in terms of foreign exchange outlays, between scrap importation and local DRI production. However, the market for scrap (which is controlled in large measure by the developed countries) could move in such a manner as to severely depress its CIF price, to such an extent that substantial savings in foreign exchange could be realized by scrap importation vis-à-vis local production of DRI. If decisions are to be made only on the basis of foreign exchange savings it is therefore subject to considerable uncertainty.

1 1 11

5.6.1 Optimal DRI process option

- 68. It is recognized that in terms of both age and proven commercial success, the SL/RN process lags behind the gas-based HyL-process (which has been in commercial operation since 1957) and the Midrex-process. In fact, as of the end of 1984, HyL-based installations in operation world-wide represented a cumulative production capacity of about 6.9 million tpy of DRI, with another 3 million tpy of capacity under construction. For the Midrex-process, the total operating capacity amounted to 6.7 million tons, with additional 7.6 million tpy reportedly under construction. The SL/RN (Stelco-Lurgi-Republic Steel National Lead) process, on the other hand, had a global installed operating capacity of only about 1.5 million tonnes, with another 800,000 tpy under construction.
- 69. Nevertheless, the following factors argue in favour of the SL/RN process for the PTA sub-region:
 - there is the overriding objective of making the sub-regional DRI project as intensively resource based as possible, even in the short term. Given the apparent short term inevitability of importing iron ore pellets (if a project is to be implemented by 1990), it would be desirable to tie this to a process based on locally available coal;
 - the gas based processes would entail the consumption of a hydrocarbon resource that should best be applied to the production of other higher-valued commodities such as fertilizers and petrochemicals;
 - several of the countries in the sub-region have in the recent past, articulated plans for DRI production based on coal. There are advantages, in terms of faster project mobilization and perhaps lower costs, in associating and aligning any proposed sub regional DRI project plans with one or more of these already identified and defined national projects or modified variants of them;
 - there is a certain flexibility in the SL/RN process in terms of project sizing. For instance, whereas the HyL and Midrex process modules range from 250,000 to 1 million tpy per year and 400,000 to 800,000 tpy per year respectively, the SL/RN process can operate

Ш

- economically in modules as low as 50,000 tpy per year. With the projected minimum potential DRI consumption in the sub-region at about 200,000 tpy in 1990, the more modest SL/RN process would appear to be more compatible with the needs of the sub-region;
- although the specific economics of a particular DRI project must be determined in detail as part of the project planning phase, indications are that the cost of production of DRI via the SL/RN process is, on a per tonne basis, generally lower than those of the HyL and Midrex processes.
- 70. On the negative side, the SL/RN and other coal-based processes suffer from a number of technical and operational handicaps that deserve fuller analysis prior to any decision as to an optimal process for sub-regional DRI projects. The various process vendors are well aware of these and are working to resolve them. In the first place, they are characterized by relatively high levels of energy consumption and low energy efficiencies. Secondly, there is a great propensity for the pellet burden to stick to the furnace walls during the reduction process. Thirdly, the pellet reduction is highly variable and sensitive to the specific chemical composition of the reductant coal. And finally, heat transfer limitations are encountered during scale-up to higher capacities.

5.6.2 Optimal project location option

11.011.01

1 III

.

1 1 1

71. Following are preliminary appraisals of the primary candidate-locations for coal-based DRI projects in the sub-region: <u>Angola</u>: In spite of plans to reactivate the Kassinga iron ore mine by the end of 1985, it is reasoned that the non-availability of coal from local sources weighs against Angola as a preferred location for a DRI project at this time. A gas-based project could ostensibly be sited in the Luanda area, but this would depend on the country's priorities for using its gas resources and, as suggested above, those priorities should preferably go to fertilizers and petrochemicals. Furthermore, Angola is located at a considerable distance from the potential sponge iron consumers of the sub-region. Given the present poorly-developed transportation and communications infrastructures, delivery of DRI to these steelworks from Angola is likely to introduce a high transportation penalty.

A F F F F F F F F F H H H H H

1

т ттт т

- 84 -

- 72. <u>Madagascar</u>: Neither Madagascar's iron ore nor its coal resources are developed, although there are plans to do so in the medium-term. Even such medium-term plans are focused on the production of sinter feed in the first instance, with DRI production to follow. Accordingly, it is unlikely that the latter project would materialize by 1990.
- 73. Uganda: Uganda would have to depend on imported coal and iron ore in the short term, as there are no known local coal resources and the high-quality Muku iron ore reserves are undeveloped. Delivery of both coal and ore from the world or other sub-regional market could be logistically difficult and expensive, since it would have to depend so heavily on a rather under-developed, unintegrated, and expensive transportation network.
- 74. <u>Mozambique</u>: The areas around the port cities of Beira and Nacala appear to offer good prospects for siting DRI projects in the near term. Both prospective locations could readily receive iron ore from international commerce. What is more, Mozambique has sizable coal resources and, in fact, currently produces coal from the Moatize coal field in Tete Province. From here, coal could be conveniently transported by road and rail to both Beira and Nacala. Additionally, the local existence of an alternative reductant, - natural gas, - offers a measure of flexibility in process selection. As for transportation connections, both Beira and Nacala are well placed for shipping DRI to Dar-es-Salaam, Tanga, and Mombasa by sea, and onwards by rail to Nairobi and Jinja in Uganda. Similarly, DRI could readily be shipped to Ethiopia's steelworks near Addis Ababa (via Djibouti and onwards by rail) and at Asmara (by sea and rail).
- 75. <u>Tanzania</u>: The Dar-es-Salaam area presents another good locational prospect. As a port city, it is accessible to ocean going carriers for the purpose of iron ore delivery from sources in Europe, North America, and Australia. Tanzania also has large coal reserves and there is active production from the Songwe colliery, although it may require rehabilitation and expansion in order to supply the requirements of a commercial-scale DRI plant.
- 76. Tanzania also has large proven reserves of natural gas in Sango-Sango island and, in the event that a gas-based DRI process is found to be preferable, the gas offers an alternative process route. Dar-es-Salaam is

THEFT IN THE THE

1 I I I

T TE E ETTELLE E ETTELLE

The Letter House Head

- 85 -

an acknowledged transportation hub, with relatively good access by sea and/or rail to the major steelmaking centres of the sub-region in Kenya, Uganda, and Ethiopia.

- 77. Although a detailed feasibility study may show the Dar-es-Salam (or some other area in Tanzania) geographically suitable for locating a DRI project in the short term on the basis of imported pellets, there are serious technical questions regarding long-term supplies of iron cte from Tanzanian sources. Admittedly, the Liganga ore deposit could be large enough to supply the requirements of a moderately-sized plant; however, several beneficiation tests have shown that the best concentrate obtained from Liganga would still contain up to 4% TiO, and 0.4% Vanadium. Because of the non-metallization of TiO₂ during direct reduction, the resulting DR1 contains only about 82% Fe, which is considered unsuitable due to large slag volumes generated in electric arc furnace smelting. Moreover, TiO, bearing slags are highly corrosive to furnace refractories. Also, the vanadium and chromium in the metallized pellets wind up in the liquid metal, necessitating an additional steel-making step (preferably in a converter-type vessel) to produce steel conforming to international specifications. These technical problems must be satisfactorily resolved as a part of the long-term viability analysis for a resource based DRI project in Tanzania.
- 78. As indicated in Annex II, both Mozambique and Tanzania have recently considered the implementation of DRI projects. The Mozambican project, under joint sponsorship with Angola, would be rated at 150,000 tpy DRI, while the idea had been recently floated for a Tanzanian project rated at 60,000 tpy.
- 79. It is suggested that both these projects be now re-evaluated, with a view towards sizing one or both to supply the 1990 DRI consumption of the entire sub-region. An aggregate production capacity of 220,000 tpy has been suggested above. This could be achieved by scaling-up either the above mentioned Dar-es-Salaam project or the Mozambican project by retaining both at their originally planned capacities, giving an aggregate sub-regional DRI capacity of 210,000 tonnes.

11 I II II

THE REPORT

1 I.I.I. IC

Ш.Т.

1 1 1 11

111 111

1.0

80. In either case, the technology adopted should be that of the SL/RN process. In addition to the reasons adduced previously in favour of this process, UNIDO/UNDP had assisted in setting up an SL/RN demonstration plant (in collaboration with Sponge Iron India Ltd.) at Paloncha, near Kothagudem in Khammam District of Andra Pradesh in India. The plant offers pilot-scale facilities (30,000 tpy per year) for testing various iron ores and coals to establish their techno economic feasibility for producing sponge iron. Thus, as a first step in project implementation and in line with TCDC objectives, the iron ore and coal resources of Mozambique and Tanzania could be tested at this plant to provide design and operating data for commercial scale sub-regional DRI projects.

ANWEX I

<u>Processes and products of iron and steel making and their relation to</u> <u>Engineering Industries - with special reference to Africa</u>

Introduction

- The technology of steel production can be subdivided into the following steps:
 - mining and preparation of raw material
 - iron production
 - steel production
 - rolling of products
 - coating of products
- Iron ore is mined and concentrated to an Fe-content of 64 to 68 per cent (some ores with such a high Fe-content do not require concentration) in the form of fines, pellets or sinter feed.
- 3. There are at present four routes to liquid steelmaking (see Figure A.I.1): Route 1 is the traditional blast furnace - Oxygen converter (BF-BOF); route 2 is based on scrap and/or direct reduced iron for steel making in an electric arc furnace (EAF), route 3 is the direct reduced iron (DRI) and EAF process; and route 4, at present at the development stage, the smelting reduction process. Of economic interest at present are routes 1, 2 and 3. Route 2 is only a steelmaking process and also forms part of route 3. In each case, rolling of steel is the final process operation.
- 4. The entities involved in iron and steel making and shaping can be divided into three groups: commodities which are transformed from inputs to outputs; this is done in the productive units which operate by distinctive processes requiring specific commodities inputs. Table A.I.1 gives an overview on commodities, productive units and processes in iron and steelmaking and shaping.

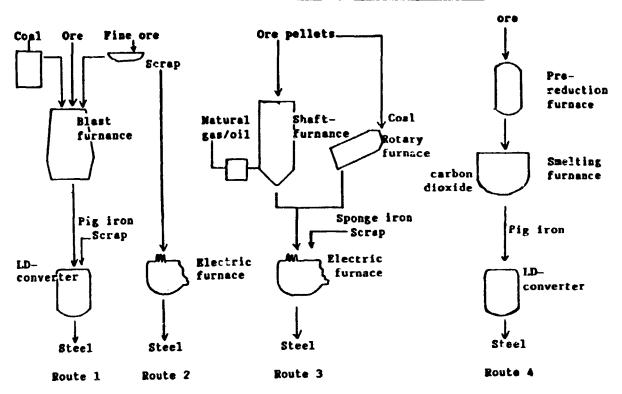
1 1111

111

П. Т.

1 11 111

11


1 1 1

1.1

at an ta ta

1 11 11

.

.

•

.

.

н п

Figure A.I.1. Possible routes for steel production

Table A.I.1: Process units in steel production

Commodities	Productive units	Processes
Iron ore	Sinter plant	Sinter production
Coal	Pellet plant	Pellet production
Pellets	Coking plant	Coke production
Coke	Blast furnace	Molten pig iron production
Mineral additives	Electric arc furnance	
Molten pig iron	Basic oxygen furnuce	Steel production
Sponge iron	Direct reduction unit	Continuous casting
Water	Continuous casting unit	Rolling of shapes
Oxygen	Rolling mills for shapes	Rolling of flat products
Electricity	Rolling mills for flat products	
Fuel oil		
Natural gas		
Steel		
Billets		
Slabs		
Shapes		
Flat products		

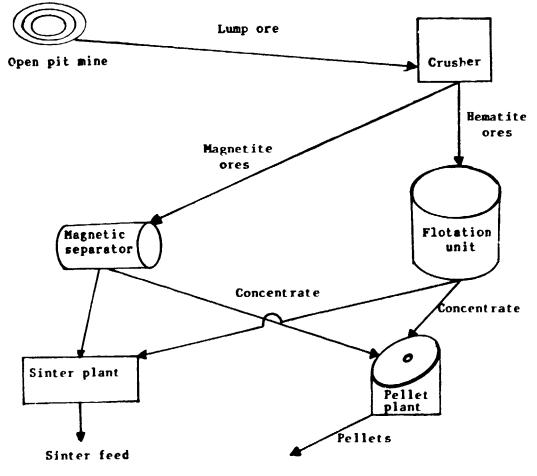
<u>Source</u>: World Bank, The Planning of Investment Programmes in the Steel Industry.

I I I I

10 I I I I I I I

THEFT I THEFT

HEALT FREE HEALTHE FREE FREE FREE


.

11.1

- 90 -

Mining and preparation of raw material

5. For economic reasons, only iron ore of at least 45 per cent Fe-content is mined. The ore is crushed and sized and then treated in a concentrator (see Figure A.I.2). Magnetite ores can be concentrated by magnetic means. The ore is passed near large magnetic drums where the ore is separated from impurities. Hematite ores cannot be separated magnetically, they require a more expensive flotation process. Both concentration processes deliver a slurry of rich ores suspended in water which is piped either to a sinter feed plant for the production of sinter feed or to a pellet plant where, after removal of water, the ore is agglomarated into small balls of approximately 7 to 15 mm diameter. These pellets are baked and can be charged to blast furnaces and DR1 processes using natural gas or coal as :eductant.

where the second s

Figure A.1.2. Mining and pellet or sinter feed production

Source: World Bank, op.cit.

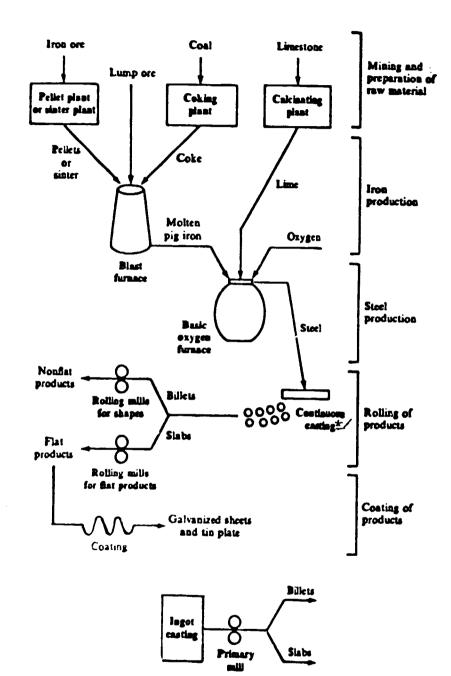
.

1.1.1

- 91 -

Blast furnace- Oxygen converter process

- 6. The BF-BOF option (see Figure A.I.3) involves the reduction of iron ore in the form of lump ore, sinter or pellets in a shaft furnace, with coke (produced from metallurgical coal) as the conventional reductant. In the process, solid ore is converted into liquid pig iron which is subsequently transformed into steel by oxygen injection in a converter. In place of coke, charcoal can be employed as a reductant, and several furnaces based on charcoal are currently in operation in a number of developing countries including Brazil, Argentina, and Malaysia. In fact, some countries in the Eastern and Southern African sub-region (Kenya and Uganda) had recently considered integrated steel projects based on charcoal blast furnaces as a way of overcoming the non-availability of coking coal and utilizing locally available steelmaking resources.
- 7. In general, however, it is not likely that the BF BOF option will prove viable for the sub-region. Among the reasons are:
 - the economics of modern blast furnace iron-making dictate units of large working hearth volumes, with hot metal production capacities often in excess of 10,000 tonnes per day. In fact, only when a proposed integrated steel project has an annual cape ity of at least 2 million tonnes would the BF-BOF option be seriously considered. Thus, given the rather modest steel production potential in the sub-region over the next decade, this approach would hardly appear feasible even in the highest steel consumption alternatives (see Chapter 5).
 - the BF-BOF route requires high capital investments and long gestation periods. Because of the extensive ancillary facilities associated with it (e.g. coke ovens, sinter plant, gas recovery and processing, ore blending, and extensive materials handling facilities), initial investment would generally range from \$2,000 to \$3,000 per tonne of installed annual capacity. The figures for the developing countries would be expected to be even higher, given the necessity of absorbing a disproportionate amount of infrastructural and peripheral amenities burdens.


TELEVIE TO THE

1.0

1 11 1 11 11

1 111 1.1

1 1 11 1 1

The second second

Figure A.I.3. The making and shaping of steel Conventional technology: Blast furnace-Oxygen converter process

*/ Process alternative for casting.
 <u>Source</u>: World Bank, op.cit.

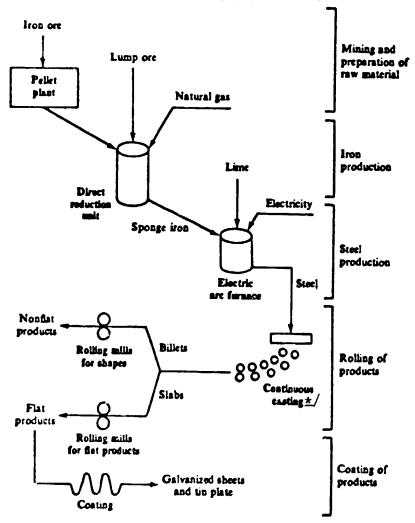
TABLE IN THE FRANK IN THE

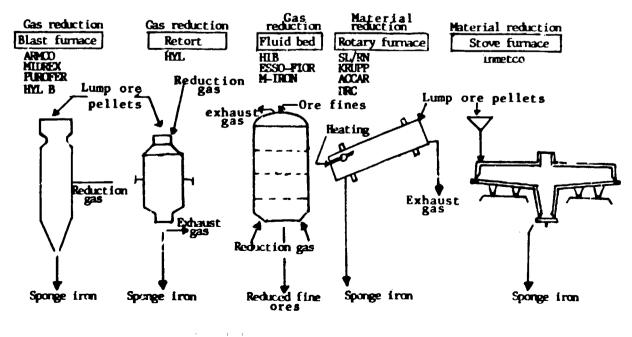
TTT DE L'HETTHE

- The relative non-availability of metallurgical coal restricts the BF-BOF approach to only those countries with local resources of or ready access to coking coal. In the context of the sub-region, only Zimbabwe, Mozambique and Swaziland can boast of substantial reserves of cokeable coal. All other coal reserves are either bituminous, sub-bituminous, or lignite.

Direct reduced iron - electric arc furnace (DRI-EAF) route

8. In contrast to the BF-BOF approach, the DR-EAF route (see Figure A.I.4) is generally more modest in scale and better suited to the production capacities of the developing countries. Direct reduction units are usually designed and installed in modules (of up to one million tonnes




Figure A.I.4. Direct reduction technology

*/ Process alternative for casting: see Figure 3. Source: World Bank, op.cit.

The second se

per annum capacity). Their capital costs are relatively low and they afford a certain flexibility of operation as well as ready adaptability to local raw materials endowments. Since the commissioning of the first commercial DRI unit in 1957, the world wide installed capacity has grown steadily to a level of about 19 million tonnes per annum in 1984, with the developing countries (particularly oil producers) accounting for a substantial fraction of this capacity, - Venezuela (4.5 million tonnes), Indonesia (2.3 million tonnes), Mexico (2 million tonnes), Nigeria (1.2 million tonnes), and Argentina (0.9 million tonnes).

- 9. The DR1-EAF option offers a wide choice of sponge iron production processes, with local resource endowments often determining the technology selected in a given situation. For instance, those oil producers that have traditionally flared their associated gas have tended to promote gas based direct reduction as a means of recovering a wasted asset and exporting energy. And where coal is abundant, it could serve as a sutiable reductant in processes that are solid fuel-based.
- 10. Several DRI processes have been developed, with differences in reactor design (fixed-bed, snaft, fluid bed, or rotary kiln), reductant (reformed natural gas, oil, coal, coal gas), feed form (lump ore, pellets, fine ore), and process scheme (continuous versus batch) (see Figure A.1.5). Although new process schemes are being continously devised, only a few have been commercialized and established any performance credibility. As of the end of 1984, about 90 per cent of all installed DRI capacity was gas-based; in fact,

П

1.11.1.

11 11

1 I. I. I.

1 I.

Figure A.I.5. Process options for the production of DRI

T F F F F F F F F F F F F

1 I I I

11.1

TELL FULLE F

1 1 1

- 95 -

two particular processes - the HYL and Midrex - alone accounted for 81 per cent of the total capcity. Their dominance has been accounted for by their superior energy efficiencies and the availability of cheas natural gas in those countries where they have been installed.

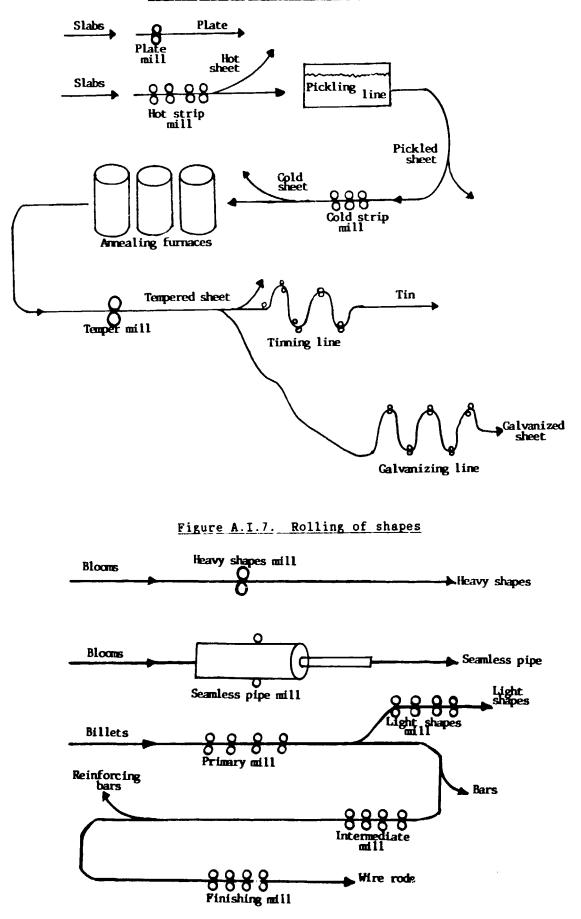
- 11. Among the solid reductant-based schemes the SL/RN process has proved most popular and several facilities are in commercial production around the world. A facility based on the KRUPP-CODIR process is also in industrial operation.
- 12. For the Eastern and Southern African sub-region, either a gas based or coal-based process would be conceptually suitable, depending on the relative accessibility to either of these energy resources. However, since most of the iron ore and coal resources of the area have not been evaluated for their compatibility with any of the commercialized DRI processes, a detailed physico-chemical assessment, coupled with pilot scale trials and detailed techno-economic feasibility studies, must precede any decision to implement a project based on indigenous natural resources.

Rolling of products

- 13. In rolling operations distinction is normally made between rolling of flat products (see Figure A.I.6) and rolling of shapes (see Figure A.1.7). Slabs, blooms or billets are produced before the rolling operations. Material inputs for the rolling of flat products are slabs (usually 20 to 120 cm in cross section and up to 10 meter long) which are either rolled into plates (usually approximately 3 to 20 mm thick and 3 or 6 meter long and wide) as used in ship building or storage tank construction, or into hot rolled sheet. Hot strip mills have usually four or five stands and can be approximately 500 meter long. The sheet, usually less than 3 mm thick, 1 to 1.5 meter wide and 100 meter or more long, is rolled in coils. They can be either used as steel sheet, mainly in the engineering industries, or rolled to cold rolled sheet which after annealing and passing through a temper mill, can be either tinned or galvanized to give tinned or galvanized sheet.
- 14. Shapes, heavy shapes (e.g. rails) and seamless pipes are rolled from blooms, while light shapes, reinforcing bars and wire rods are made from billets. Blooms are either round or square with a diameter of

1 1 1 1

il lu


1. 111.1.1

.

0.1.001

The second se

- 96 -

MI IIIII IIIII IIII

1 II I II II I

Figure A.I.5. Rolling of flat products

approximately 30 to 60 cm; billets are square in cross section and usually range from 5 to 16 cm on a side. Light section mills are normally quite versatile and allow, through changing of rolls, production of a great variety of products (e.g. strips).

15. The minimum capacity of sheet mills is generally very high. The production process in modern mills is continuous and minimum capacity ranges around one million tonnes of sheet per annum. The highly automated production process is extremely capital intensive.

Technical and process options for the region as regards mini steel plants and rolling mills

(a) Mini steel plants

- 16. Eight plants in the sub-region fall within the conventional definition of mini steel plants incorporating scrap-based electric are furnace steelmaking coupled to a rolling mill for converting billets or ingots into long products for the construction and engineering industries.
- 17. When based on local scrap, the mini steel plant represents a higher local resource content than the mere re-rolling of imported billets. The practice in the sub-region has been to employ local scrap to the extent possible (in terms of both quantity and quality) and to make up any deficiencies with imported scrap. Typical of countries with low levels of industrialization, the local scrap supply in virtually all countries in the sub-region is considered insufficient to meet the full-capacity demand of the steel industry, and there are indications that the shortages can only worsen in the future. As such, unless alternative sources of iron input become available, the level of dependence on imported scrap (characterized by wide price fluctuations in response to home demand in the developed countries from which it is imported) is apt to increase.
- 18. A potentially viable alternative source of iron input is direct reduced (or sponge) iron (DRI). With no current local production of DRI, any demand would have to be met in the short-term through imports. DRI is now commercially marketed in international commerce and has been found to possess certain advantages vis-à-vis scrap, such as:

a tablat in t

101 0 1 1 1 1 1

111

TELEVILLE

1 1 11 1 1

11

1 1 11

- ease of transport and handling, as well as its amenability to continuous furnance charging
- a uniform chemical composition and low levels of tramp elements, resulting in higher steel product qualities, and
- a more stable price structure.
- 19. On the other hand, the open market price per tonne of DRI has traditionally been significantly higher than that of a tonne of good quality scrap. It is expected, however, that as the projected global scrap deficiency materializes in the future, the price gap would narrow substantially, offering an incentive for the increased usage of DRI in electric furnace steelmaking.
- 20. Even with such a development, there are practical limits to the proportion of DRI that could be charged into an electric furnance. Technically, it is possible to produce heats on the basis of 100 per cent DRI and meltshop practices involving 80 per cent DRI have been developed and commercialized. But operational and furnace productivity considerations may impose a 65 per cent DRI/35 per cent scrap limit in most practices.

(b) <u>Rolling mills</u>

Ô

II II

0.0

1.11

- 21. As detailed in Annex II, 12 of the 23 basic iron and steel plants in the sub-region are pure rolling mills, with no captive crude steel production capability, although Steel Rolling Mills Ltd, Kikuyu (Kenya), Steel Rolling Mills, Tanga (Tanzania), Lancashire Steel Ltd and TOR Steel Ltd (both in Zimbabwe) are affiliated to companies that supply them with locally produced billets. The other rolling mills traditionally import billets from the most economical sources, usually from outside the sub-region. These re rollers have a combined capacity of 328,000 tons per annum of rolled products.
- 22. Given the prevailing economic depression affecting the sub-region, with the resultant restrictions in foreign exchange availability for billet importation, most of these re rollers have been forced to operate at levels well below their capacities.
- 23. To expedite the rehabilitation of these plants while fostering intra regional trade, the Preferential Trade Area (PTA) has devised a three pronged strategy, involving as the first phase, the importation of billets and blooms from ZISCO (Zimbabwe).

11 1

11.1

- 99 -

- 24. There are also plants in the sub region that produce flat cold-rolled products on the basis of imported hot-rolled sheets or strips. Such cold-rolled products find applications in the construction (e.g. window sections, door frames), food packaging, and engineering industries. In spite of the relatively low level of industrial and engineering development of the sub-region, such flat products could constitute a substantial portion of total steel demand in the future.
- 25. As there is currently no producer of primary hot rolled sheet in the sub-region, its importation represents a sizable drainage of foreign exchange and underlines the need to diversify the sub-region's steel product mix to include some flat steel production. Any thought of such a project in the past had been thwarted by the large investments required to implement a large economically viable flat products plant. Recent developments, however, have led to the commercialization of mini-mills for flat products (plate and sheet) at annual capacity levels as lew as 50,000 tons, and including direct reduction, electric arc furnace melting, continuous slab casting, and reversing plate and hot-strip mills. The promotion of such a project would assist in enhancing sub-regional steel self-sufficiency.
- 26. Similar gaps in product mix exist with respect to alloy and stainless steels, as well as heavy sections for which there are presently no local producers. Given the sub-region's abundant supply of the alloying minerals, - chrome, nickel, and cobalt ores, there are good prospects for alloy steel plants based on these. And in view of the obvious need to develop the sub-region's transportation and other infrastructures, local sources of heavy structural steels, rails, and beams would be very desirable.

The engineering industry sector

1 11 1 1

LID L

27. Engineering industry is the common expression for all industries belonging within the manufacturing division of ISIC¹ major division No.3, to the division No. 38, called "Manufacture of Fabricated Metal Products, Machinery and Equipment". This division consists of five major

The the contract of the second s

1 I II II

1/ International Standard Industrial Classification of all Economic Activities, established by U.N. in 1958 and revised in 1968.

groups which are again subdivided into groups (4 digits) as represented in Table A.I.2. Engineering industries produce capital goods (i.e. goods used to produce other goods or services) and consumer goods. Their main production inputs are steel products which are transformed by machining operations and by assemblying into engineering industry products. Important characteristics of the engineering industries are the high level specialization of single companies, the high degree of inter-industry co-operation in the form of sub-contracting or complementation which is a sign of advanced production, the important role of small and medium sized companies and, in many cases, the low minimum capacity (exceptions are, for example, motor vehicle engines or television sets).

28. The fact that steel products represent the most important production input for engineering industries does, however, not mean that an engineering industry requires a national iron and steel making facility for its growth. There are many examples of countries (e.g. Singapore, Denmark, Swizerland) with a strong and growing engineering industrial sector which have little or no basic iron and steel industry. In fact, experience in industrial development shows that the existence of an iron and steel industry in a developing country can negatively influence the growth of the engineering industry. This is the case when imports of steel products are prohibited yet the local engineering industry needs, for a specific application special types of steel not produced locally. The linkage between iron and steel and engineering industries works rather in reverse: the iron and steel industry needs a strong engineering industry demanding steel products and permitting the increase in volume and product range of steel production. Whenever growth of iron and steel production is envisaged, major attention should be given to promotion and strengthening of the engineering industry, both through incentive schemes (e.g. technical assistance, finance schemes, government purchases geared towards the domestic industry, regional co-operation and complementation) and through marketing efforts of the iron and steel industry (e.g. technical advice to steel users, short delivery lead times, quality control of steel). Customer services play an important role in the iron and steel industry in industrialized countries and extend to holding workshops and to giving construction advice to steel user industries, besides the publication of steel user manuals.

1 i ii ii i

11 H H H

11.00

The fifte of the first f

11 1 0 1

THE FIRE FILL FILL

- 101 -

Major group	Group	
number	number	Description
381		Manufacture of fabricated metal products, except machinery and equipment.
	3811	Manufacture of cutlery, hand tools and general hardware.
	3812	Manufacture of furniture and fixtures primarily of metal.
	3813	Manufacture of structural metal products.
	3819	Manufacture of fabricated metal products except machinery and equipment not elsewhere classified.
382		Manufacture of machinery except electrical.
	3821	Manufacture of engines and turbines.
	3822	Manufacture of agricultural machinery and equipment.
	3823	Manufacture of metal and wood working machinery.
	3824	Manufacture of special industrial machinery and equipment except metal and word working machinery.
	3825	Manufacture of office, computing and accounting machinery.
	3829	Machinery and equipment except electrical not elsewhere classified.
383		Manufacture of electrical machinery, apparatus, appliances and supplies.
	3831	Manufacture of electrical industrial machinery and apparatus.
	3832	Manufacture of radio, television and communication equipment and apparatus.
	3833	Manufacture of electrical appliances and housewares.
	3839	Manufacture of electrical apparatus and supplies not elsewhere classified.

IL I

Table A.1.2: ISIC classification of the engineeing industry

. . / . . .

.

•

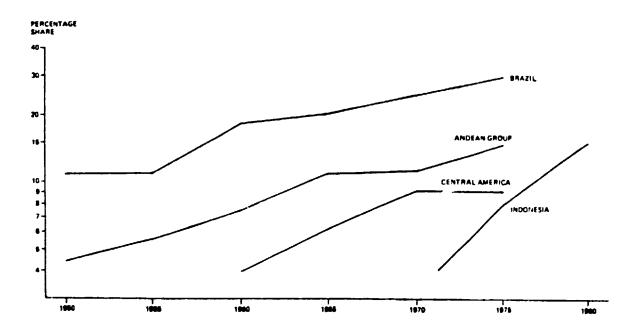
•

- 102 -

Major group number	Group number Description	r
384		Manufacture of transport equipment.
	3841	Ship building and repairing.
	3842	Manufacture of railrod equipment.
	3843	Manufacture of motor vehicles.
	3844	Manufacture of motocycles and bicycles.
	3845	Manufacture of aircraft.
	3849	Manufacture of transport equipment not elsewhere classified.
385		Manufacture of professional and scientific, and measuring and controlling equipment, not elsewhere classified, and of photographic and optical goods.
	3851	Manufacture of professional and and scientific, and measuring and controlling equipment, not elsewhere classified.
	3852	Manufacture of photographic and optical goods.
	3853	Manufacture of watches and clocks.

<u>Table A.I.2: ISIC classification of the engineeing industry</u> (continued)

29. In the course of industrial development all countries experience a shift in the structure of their manufacturing sector. In the early development stages, the production of non-durable consumer goods is predominant but will lose importance in subsequent stages of industrial development. Table A.I.3 gives an illustrative example of the structural changes of the manufacturing sector of Latin American countries between 1950 and 1977. During this period growth of total industrial production averaged 6.3 per cent per year. Table A.I.3 shows that, while in 1950, production of non-durable consumer goods accounted for almost two thirds of industrial value added (food and beverages alone accounting for one-third), by 1977 their share had fallen to little more than one-third. The share of engineering industry (ISIC branch 38) had risen from 11 to 25 per cent, the value added of the chemical (other than petrochemical industry) from 5 to 15 per cent, and basic metals (iron and steel and non-ferrous) from 4 to 9 per cent. Within the engineering branch, the largest increases in relative shares were recorded by the electrical machinery (from 1 to 6 per cent) and transport equipment (2 to 8 per cent) sub sectors. Data are not available to indicate what proportions of output consisted of consumer durables and capital goods.


- 30. Table A.I.4 and Figures A.I.8 and A.I.9 give a further breakdown of the engineering industries of three sub regions, Brazil, the Andean Group countries and Central America. All three groups show a gradual increase in the relative importance of the engineering industry, with Brazil being the most and Central America the least advanced. Whereas in Brazil the share of the engineering industry had already passed 15 per cent by 1960, it did not reach this figure in the Andean Group until 1977; similarly, the share in the Andean Group had passed 10 per cent by 1965, a figure not yet reached in Central America in 1975. Among sub sectors, transport equipment moved ahead of others in Brazil in the 1970s, followed by non electrical machinery (the sub sector containing most capital goods). In the other two sub regions, fabricated metal products still recorded the largest share in 1977.
- 31. These figures reflect the fact that Brazil's dynamic growth in the engineering industry has relied heavily on development of its automotive sub sector. The Andean Group has also sought to develop automotive production beyond mere assembly of passenger cars but as yet with indifferent results.
- 32. Latin American governments have all given a high priority to industrial development of one kind or another and have sought to pursue this objective with a variety of industrial policies, including various forms of promotion such as, protection and support activities, including investment in infrastructure, technical education, development finance and, to varying degrees in different countries, also more direct intervention by the state acting as entrepreneur or as buyer of industrial products. Direct state ownership has been important in steel production (accounting for 60 100 per cent in Argentina, Mexico, Brazil, Chile, Venezuela and Peru) and in petroleum refining and petrochemicals in most of these countries. But governments have generally refrained

.

- 104

from competing with the private sector in most other branches of manufacturing, except in instances where governments have taken over weak companies to maintain employment. The role of foreign investment by multinationals has been contentious, but most countries have seen the need for their participation in industrial development requiring high technology. large investment and efficient management.

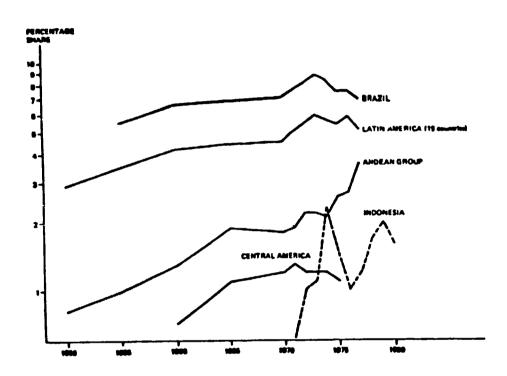
Figure A.I.8: Share of engineering industry (ISIC 38) in total manufacturing, value added, 1950-1980

Source: UNIDO/IS/479/Add.2 (based on Table 2).

10 1 1

11.1.1.1.1.10

11 I.I.I.I.


THE REPORT

1.1

The term of the terms of terms

1 I II I I I I

d L d

Figure A.I.9: Share of non-electrical machinery (ISIC 382) in total manufacturing, value added 1950-1980

Source: UNIDO/IS/479/Add.2 (based on Table 2).

1 i ii iil lill

.

ISIC	Industry	1950 <u>b</u> /	′ ₁₉₅₅ り	1960 [©]	1965	1970	1975	1976 <u>4</u> /	/ <u>المراح</u>
311-312)	Food, beverage	31.0	28.6	26.7	24.4	23.0	20.7	19.8	18.9
313-314)	and Tobacco								
321	Textiles	15.9	14.7	11.9	10.2	8.6	8.2	7.9	7.8
322-324	Wearing apparel and foctwear	8.1	7.1	5.5	4.5	3.6	3.5	3.2	3.0
323	Leather	1.0	0.9	0.7	0.6	0.8	0.4	0.4	0.3
332	Furniture	2.2	1.9	1.7	1.5	1.3	1.3	1.3	1.5
342	Printing and publishing	4.2	4.0	3.5	3.3	3.2	2.6	2.7	2.8
390	Other manufactures	1.0	0.9	0.9	0.9	ī.1	C.9	0.9	0.9
	Subtotal Group A	63.4	58.1	50.9	45.5	41.8	37.6	36.2	35.1
331	Wood and cork products	2.9	2.4	2.3	2.1	1.8	1.7	1.3	ž.1
341	Paper and paper products	2.2	2.4	2.1	2.5	2.6	2.3	2.4	2.4
351-352)	Industrial chemicals, other	5.4	7.3	8.8	10.0	11.3	12.6	13.5	14.7
356 J	chemicals and plantic products	•				-			
353-354	Fetroleum refineries and misc.	4.8	5.6	6.0	6.6	6.3	5.6	5.8	4.3
	products of petroleum and coal								
355	Rubber products	1.5	1.8	1.8	1.9	2.0	2.2	2.3	2.3
361-361	Manufacture of non-metallic	5.3	5.6	4.9	4.6	5.1	5.4	5.4	6.1
369 J	mineral products								
371-372	Iron and steel and non-ferrous	3.6	4.6	5.7	7.0	7.3	7.6	7.4	8.,
	metals						•	•	
	Subtotal Group B	25.7	29.7 1.6	$\frac{31.7}{4.6}$	34.6	<u>36.4</u> 5.8	37.4	38.6	40.4
381	Hetal products	4.3	74.6	4.6	5.6	5.8	5.6	5.4	5.0
382	Non-electrical machinery	2.9	3.5	4.2	4.4	ū.5	5.4	5.8	5.1
383	Electrical machinery	0.9	1.1	3.0	3.8	4.3	4.7	5.0	5.7
384	Transport equipment	2.4	2.6	5.1	5.5	6.7	8.7	8.3	7-9
385	Professional equipment	0.4	0.4	0.5	0.6	0.4	0.6	0.6	0.8
	Subtotal Group C	<u>10.9</u>	<u>12.2</u>	17.4	<u>12.2</u>	21.8	25.0	25.3	24.5
	Total	<u>100.0</u>	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Table A.I.3: Latin America (15 countries):/ Structure of themanufacturing industries1950-1977(percentage of value added)

Source: ECLA, based on official statistics.

- a/ Argentina, Bolívia, Brazil, Colombia, Costa Rica, Chile, Ecuador, Quatemala, Honduras, Mexico, Nicaragua, Paraguay, Peru and Venezuela.
- b/ Excluding Bolivia, Chile, Paraguay and member countries of the Central American Common Market (Costa Rice, El Salvador, Quatemala, Honduras and Nicaragua).

THEFT IN THE PERIOD INTERPERIOD INTERPER

- c/ Excluding Paraguay.
- d/ Excluding member countries of the Central American Common Market.
- e/ Excluding Argent ina.

1 I I I I I I

1

	(percentage of value added)												
Product Group	1950	1955	1960	1965	1970	1971	1972	1973	1974	1975	1976	1977	
erica													
Fabricated metal products	4.3	4.6	4.6	5.6	5.8	5.7	5.8	5.7	5.4	5.6	5.4	5.0	
Non-electrical machinery	2.9	3.5	4.2	4.4	4.5	5.0	5.4	5.9	5.6	5.4	5.8	5.1	
Electrical machinery	0.9	1.1	3.0	3.8	4.3	4.4	4.6	4.9	4.5	4.7	5.0	5.7	
Transport machinery	2.4	2.6	5.1	5.5	6.7	7.2	7.5	8.2	8.9	8.7	8.3	7.9	
Professional equipment	0.4	0.4	0.5	0.6	0.4	0.6	0.7	0.7	0.6	0.6	0.6	0.8	
Subtotal	<u>10.9</u>	<u>12.2</u>	<u>17.4</u>	<u> 19.9</u>	<u>21.8</u>	23.0	24.0	25.4	25.0	25.0	25.2	24.5	
Fabricated metal products	-	2.9	3.4	3.9	4.3	4.7	5.0	5.4	5.2	5.2	5.2	5.0	
Machinery except electrical		5.5	б.4	6.8	7.0	7.6	8.1	8.8	8.4	7.4	7.5	6.9	
Electrical machinery	10.9	1.2	3.2	4.3	5.3	5.7	6.0	6.5	5.4	5.6	5.9	5.9	
Transport equipment		1.2	5.2	5.1	8.0	8.9	9.6	10.3	11.7	11.5	10.9	10.4	
Professional equipment		0.2	0.4	0.5	0.6	0.7	0.7	0.7	0.7	0.7	0.7	0.7	
Subtotal Group C	10.9	11.1	18.6	20.6	25.2	27.6	29.4	31.7	31.3	30.5	30.2	28.9	
	1.2	1.6	2.8	3.5	3.7	3.8	3.8	3.8	3.6	4.4	4.1	4.8	
	0.8					_	-		-				
	1.0	-	-	-							•	-	
	1.4	2.0	2.0										
		0.1	0.1						-		-		
Subtotal	4.4	5.6	7.5	10.9	11.3	11.7	12.4	12.6	12.2	15.0	14.3	-	
America ^{b/}													
Fabricated metal products			1.2	3.1	4.8	4.8	4.9	5.0	5.0	4.6			
Non-electrical machinery			0.7	1.1	1.2	1.3	1.2	1.2	1.2	1.1			
Electrical machinery			0.3	0.7	1.7	1.7	1.7	1.8	1.9	1.8			
Transport equipment			1.8	1.5	1.6	1.7	1.6	1.5	1.6	1.7			
Subtotal			4.0	6.3	9.3	9.5	9.4	•					
	erica Fabricated metal products Non-electrical machinery Electrical machinery Transport machinery Professional equipment <u>Subtotal</u> Fabricated metal products Machinery except electrical Electrical machinery Transport equipment Professional equipment <u>Subtotal Group C</u> a/ roup Fabricated metal products Machinery except electrical Electrical machinery Transport equipment Professional equipment Professional equipment Professional equipment Professional equipment Subtotal America America Machinery except electrical Electrical machinery Transport equipment Professional equipment Professional equipment Subtotal America Manerica b/ Fabricated metal products Non-electrical machinery Electrical machinery Transport equipment	ericaFabricated metal products4.3Non-electrical machinery2.9Electrical machinery0.9Transport machinery2.4Professional equipment0.4Subtotal10.9Fabricated metal products-Machinery except electrical10.9Electrical machinery10.9Transport equipment10.9Transport equipment10.9Professional equipment10.9Fabricated metal products1.2Machinery except electrical0.8Electrical machinery1.0Transport equipment1.4Professional equipment1.4Professional equipment1.4Professional equipment4.4Subtotal4.4America4.4Fabricated metal productsNon-electrical machineryFabricated metal productsNon-e	ericaFabricated metal products4.34.6Non-electrical machinery2.93.5Electrical machinery0.91.1Transport machinery2.42.6Professional equipment0.40.4Subtotal10.912.2Fabricated metal products-2.9Machinery except electrical5.5Electrical machinery10.91.2Transport equipment1.2Professional equipment0.2Subtotal Group C10.911.1roup-Fabricated metal products1.2I.01.0Professional equipment0.80.9Electrical machinery1.0I.01.0Transport equipment1.42.0Professional equipmentSubtotal4.45.6America-Fabricated metal productsNon-electrical machineryElectrical machineryFabricated metal productsNon-electrical machineryFabricated metal productsNon-electrical machineryElectrical machineryElectrical machineryFabricated metal productsNon-electrical machineryFabricated metal productsNon-electrical machineryElectrical machineryFabricated metal productsNon-electrical machineryFabricated metal productsNon-electrical machineryFabricated metal productsNon-electrical machinery <tr< td=""><td>ericaFabricated metal products4.34.64.6Non-electrical machinery2.93.54.2Electrical machinery0.91.13.0Transport machinery2.42.65.1Professional equipment0.40.40.5Subtotal10.912.217.4Fabricated metal products-2.93.4Fabricated metal products-2.93.4Fabricated metal products-2.93.4Fabricated metal products-2.93.4Subtotal10.91.23.2Transport equipment0.20.4Subtotal Group C10.911.118.6-2.8Machinery except electrical0.80.91.11.81.01.3Electrical machinery1.01.01.3Transport equipment1.42.02.0Professional equipment0.10.10.1Subtotal4.45.67.5America1.20.71.2Fabricated metal products1.20.7Fabricated metal products1.20.7Fabricated metal products1.20.7Fabricated metal products1.20.7Fabricated metal products1.2Non-electrical machinery0.3Transport equipment0.3Transport equipment0.3Transport equipment1.8</td><td>erica Fabricated metal products 4.3 4.6 4.6 5.6 Non-electrical machinery 2.9 3.5 4.2 4.4 Electrical machinery 0.9 1.1 3.0 3.8 Transport machinery 2.4 2.6 5.1 5.5 Professional equipment 0.4 0.4 0.5 0.6 Subtotal 10.9 12.2 17.4 19.9 Fabricated metal products - 2.9 3.4 3.9 Machinery except electrical 5.5 6.4 6.8 Electrical machinery 10.9 1.2 3.2 4.3 Transport equipment 0.2 0.4 0.5 Subtotal Group C 10.9 11.1 18.6 20.6 roup - 10.9 11.1 18.6 20.6 roup - - 10.9 11.1 18.6 20.6 roup - - 10.9 11.1 18.6 20.6 roup - - 10.9 11.1 18.6 20.6</td><td>erica Fabricated metal products 4.3 4.6 4.6 5.6 5.8 Non-electrical machinery 2.9 3.5 4.2 4.4 4.5 Electrical machinery 0.9 1.1 3.0 3.8 4.3 Transport machinery 2.4 2.6 5.1 5.5 6.7 Professional equipment 0.4 0.4 0.5 0.6 0.4 Subtotal 10.9 12.2 17.4 19.9 21.8 Fabricated metal products - 2.9 3.4 3.9 4.3 Machinery except electrical 5.5 6.4 6.8 7.0 Electrical machinery 10.9 1.2 3.2 4.3 5.3 Transport equipment 0.2 0.4 0.5 0.6 Subtotal Group C 10.9 1.1 18.6 20.6 25.2 roup Fabricated metal products 1.2 1.6 2.8 3.5 3.7 Machinery except electrical 0.8 0.9 1.3 1.9 1.8 Electrical machine</td><td>erica Fabricated metal products 4.3 4.6 5.6 5.8 5.7 Non-electrical machinery 2.9 3.5 4.2 4.4 4.5 5.0 Electrical machinery 0.9 1.1 3.0 3.8 4.3 4.4 Transport machinery 2.4 2.6 5.1 5.5 6.7 7.2 Professional equipment 0.4 0.4 0.5 0.6 0.4 0.6 Subtotal 10.9 12.2 17.4 19.9 21.8 23.0 Fabricated metal products - 2.9 3.4 3.9 4.3 4.7 Machinery except electrical 5.5 6.4 6.8 7.0 7.6 Subtotal 10.9 1.2 5.2 5.1 8.0 8.9 Professional equipment 1.2 5.2 5.1 8.0 8.9 Fabricated metal products 1.2 1.6 2.8 3.5 3.7 3.8 Machinery except electrical 0.8 0.9 1.3 1.9 1.8 1.9 <t< td=""><td>erica Fabricated metal products 4.3 4.6 4.6 5.6 5.8 5.7 5.8 Non-electrical machinery 2.9 3.5 4.2 4.4 4.5 5.0 5.4 Electrical machinery 0.9 1.1 3.0 3.8 4.3 4.4 4.6 Transport machinery 2.4 2.6 5.1 5.5 6.7 7.2 7.5 Professional equipment 0.4 0.4 0.5 0.6 0.4 0.6 0.7 Subtotal 10.9 12.2 17.4 19.9 21.8 23.0 24.0 Fabricated metal products - 2.9 3.4 3.9 4.3 4.7 5.0 Machinery except electrical 5.5 6.4 6.8 7.0 7.6 8.1 Electrical machinery 10.9 1.2 3.2 4.3 5.3 5.7 6.0 Transport equipment 1.2 5.2 5.1 6.0 7.7 7.6 Subtotal Group C 10.9 11.1 18.6 20.6</td><td>erica Fabricated metal products 4.3 4.6 4.6 5.6 5.8 5.7 5.8 5.7 Non-electrical machinery 2.9 3.5 4.2 4.4 4.5 5.0 5.4 5.9 Electrical machinery 0.9 1.1 3.0 3.8 4.3 4.4 4.6 4.9 Transport machinery 2.4 2.6 5.1 5.5 6.7 7.2 7.5 8.2 Professional equipment 0.4 0.4 0.5 0.6 0.4 0.6 0.7 0.7 Subtotal 10.9 12.2 17.4 19.9 21.8 23.0 24.0 25.4 Fabricated metal products - 2.9 3.4 3.9 4.3 4.7 5.0 5.4 Machinery except electrical 5.5 6.4 6.8 7.0 7.6 8.1 8.8 Electrical machinery 10.9 1.2 3.2 4.3 5.7 5.4 Subtotal Group C 10.9 11.1 18.6 20.6 25.2 27.6<</td><td>Prica Fabricated metal products 4.3 4.6 4.6 5.6 5.8 5.7 5.8 5.7 5.4 Non-electrical machinery 2.9 3.5 4.2 4.4 4.5 5.0 5.4 5.9 5.6 Electrical machinery 0.9 1.1 3.0 3.8 4.3 4.4 4.6 4.9 4.5 Transport machinery 2.4 2.6 5.1 5.5 6.7 7.2 7.5 8.2 8.9 Professional equipment 0.4 0.4 0.5 0.6 0.4 0.6 0.7 0.7 0.6 Subtotal 10.9 12.2 17.4 19.9 21.8 23.0 24.0 25.4 25.0 Fabricated metal products - 2.9 3.4 3.9 4.3 5.3 5.7 6.0 6.5 5.4 Transport equipment 1.2 2.2 5.1 8.0 8.9 9.6 10.3 11.7 Professional equipment 0.2 0.5 0.6 0.7 0.7 0.7 0.7<</td><td>Prica Fabricated metal products 4.3 4.6 5.6 5.8 5.7 5.8 5.7 5.4 5.6 Non-electrical machinery 2.9 3.5 4.2 4.4 4.5 5.0 5.4 5.9 5.6 5.4 Electrical machinery 0.9 1.1 3.0 3.8 4.3 4.4 4.6 4.9 4.5 4.7 Transport machinery 2.4 2.6 5.1 5.5 6.7 7.2 7.5 8.2 8.9 8.7 Professional equipment 0.4 0.4 0.5 0.6 0.4 0.6 0.7 0.7 0.6 0.6 Subtotal 10.9 12.2 17.4 19.9 21.8 23.0 24.0 25.4 25.0 25.0 Fabricated metal products - 2.9 3.4 3.9 4.3 4.7 5.0 5.4 5.2 5.2 5.7 Subtotal 10.9 1.2 3.2 4.3 5.3 5.7 6.0 6.5 5.4 5.6 Transport equip</td><td>erica Fabricated metal products 4.3 4.6 5.6 5.8 5.7 5.8 5.7 5.4 5.6 5.4 Non-electrical machinery 0.9 1.1 3.0 3.8 4.3 4.4 4.6 4.9 4.5 5.0 5.4 5.9 5.6 5.4 5.8 Electrical machinery 0.9 1.1 3.0 3.8 4.3 4.4 4.6 4.9 4.5 5.0 5.4 5.8 5.8 5.8 Professional equipment 0.4 0.4 0.5 0.6 0.4 0.6 0.7 0.7 0.6 0.6 0.6 Subtotal 10.9 12.2 17.4 10.9 21.8 23.0 24.0 25.4 25.0 25.0 25.2 25.2 Fabricated metal products - 2.9 3.4 3.9 4.3 4.7 5.0 5.4 5.6 5.6 Machinery except electrical 0.9 1.2 5.2 5.1 8.0 8.9 9.6 10.3 11.7 11.5 10.9 <tr< td=""><td>erica Fabricated metal products 4.3 4.6 5.6 5.8 5.7 5.8 5.7 5.4 5.6 5.4 5.0 Non-electrical machinery 2.9 3.5 4.2 4.4 4.5 5.0 5.4 5.9 5.6 5.4 5.8 5.7 5.4 5.6 5.4 5.0 5.7 5.4 5.6 5.4 5.6 5.7 5.8 5.7 5.4 5.6 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.8 5.7 5.4 5.6 5.7 5.8 5.7 5.4 5.6 5.7 5.8 5.7 5.8 5.7 5.4 5.6 5.8 5.7 5.8 5.7 5.6 5.6 5.6 5.6 5.6 5.6</td></tr<></td></t<></td></tr<>	ericaFabricated metal products4.34.64.6Non-electrical machinery2.93.54.2Electrical machinery0.91.13.0Transport machinery2.42.65.1Professional equipment0.40.40.5Subtotal10.912.217.4Fabricated metal products-2.93.4Fabricated metal products-2.93.4Fabricated metal products-2.93.4Fabricated metal products-2.93.4Subtotal10.91.23.2Transport equipment0.20.4Subtotal Group C10.911.118.6-2.8Machinery except electrical0.80.91.11.81.01.3Electrical machinery1.01.01.3Transport equipment1.42.02.0Professional equipment0.10.10.1Subtotal4.45.67.5America1.20.71.2Fabricated metal products1.20.7Fabricated metal products1.20.7Fabricated metal products1.20.7Fabricated metal products1.20.7Fabricated metal products1.2Non-electrical machinery0.3Transport equipment0.3Transport equipment0.3Transport equipment1.8	erica Fabricated metal products 4.3 4.6 4.6 5.6 Non-electrical machinery 2.9 3.5 4.2 4.4 Electrical machinery 0.9 1.1 3.0 3.8 Transport machinery 2.4 2.6 5.1 5.5 Professional equipment 0.4 0.4 0.5 0.6 Subtotal 10.9 12.2 17.4 19.9 Fabricated metal products - 2.9 3.4 3.9 Machinery except electrical 5.5 6.4 6.8 Electrical machinery 10.9 1.2 3.2 4.3 Transport equipment 0.2 0.4 0.5 Subtotal Group C 10.9 11.1 18.6 20.6 roup - 10.9 11.1 18.6 20.6 roup - - 10.9 11.1 18.6 20.6 roup - - 10.9 11.1 18.6 20.6 roup - - 10.9 11.1 18.6 20.6	erica Fabricated metal products 4.3 4.6 4.6 5.6 5.8 Non-electrical machinery 2.9 3.5 4.2 4.4 4.5 Electrical machinery 0.9 1.1 3.0 3.8 4.3 Transport machinery 2.4 2.6 5.1 5.5 6.7 Professional equipment 0.4 0.4 0.5 0.6 0.4 Subtotal 10.9 12.2 17.4 19.9 21.8 Fabricated metal products - 2.9 3.4 3.9 4.3 Machinery except electrical 5.5 6.4 6.8 7.0 Electrical machinery 10.9 1.2 3.2 4.3 5.3 Transport equipment 0.2 0.4 0.5 0.6 Subtotal Group C 10.9 1.1 18.6 20.6 25.2 roup Fabricated metal products 1.2 1.6 2.8 3.5 3.7 Machinery except electrical 0.8 0.9 1.3 1.9 1.8 Electrical machine	erica Fabricated metal products 4.3 4.6 5.6 5.8 5.7 Non-electrical machinery 2.9 3.5 4.2 4.4 4.5 5.0 Electrical machinery 0.9 1.1 3.0 3.8 4.3 4.4 Transport machinery 2.4 2.6 5.1 5.5 6.7 7.2 Professional equipment 0.4 0.4 0.5 0.6 0.4 0.6 Subtotal 10.9 12.2 17.4 19.9 21.8 23.0 Fabricated metal products - 2.9 3.4 3.9 4.3 4.7 Machinery except electrical 5.5 6.4 6.8 7.0 7.6 Subtotal 10.9 1.2 5.2 5.1 8.0 8.9 Professional equipment 1.2 5.2 5.1 8.0 8.9 Fabricated metal products 1.2 1.6 2.8 3.5 3.7 3.8 Machinery except electrical 0.8 0.9 1.3 1.9 1.8 1.9 <t< td=""><td>erica Fabricated metal products 4.3 4.6 4.6 5.6 5.8 5.7 5.8 Non-electrical machinery 2.9 3.5 4.2 4.4 4.5 5.0 5.4 Electrical machinery 0.9 1.1 3.0 3.8 4.3 4.4 4.6 Transport machinery 2.4 2.6 5.1 5.5 6.7 7.2 7.5 Professional equipment 0.4 0.4 0.5 0.6 0.4 0.6 0.7 Subtotal 10.9 12.2 17.4 19.9 21.8 23.0 24.0 Fabricated metal products - 2.9 3.4 3.9 4.3 4.7 5.0 Machinery except electrical 5.5 6.4 6.8 7.0 7.6 8.1 Electrical machinery 10.9 1.2 3.2 4.3 5.3 5.7 6.0 Transport equipment 1.2 5.2 5.1 6.0 7.7 7.6 Subtotal Group C 10.9 11.1 18.6 20.6</td><td>erica Fabricated metal products 4.3 4.6 4.6 5.6 5.8 5.7 5.8 5.7 Non-electrical machinery 2.9 3.5 4.2 4.4 4.5 5.0 5.4 5.9 Electrical machinery 0.9 1.1 3.0 3.8 4.3 4.4 4.6 4.9 Transport machinery 2.4 2.6 5.1 5.5 6.7 7.2 7.5 8.2 Professional equipment 0.4 0.4 0.5 0.6 0.4 0.6 0.7 0.7 Subtotal 10.9 12.2 17.4 19.9 21.8 23.0 24.0 25.4 Fabricated metal products - 2.9 3.4 3.9 4.3 4.7 5.0 5.4 Machinery except electrical 5.5 6.4 6.8 7.0 7.6 8.1 8.8 Electrical machinery 10.9 1.2 3.2 4.3 5.7 5.4 Subtotal Group C 10.9 11.1 18.6 20.6 25.2 27.6<</td><td>Prica Fabricated metal products 4.3 4.6 4.6 5.6 5.8 5.7 5.8 5.7 5.4 Non-electrical machinery 2.9 3.5 4.2 4.4 4.5 5.0 5.4 5.9 5.6 Electrical machinery 0.9 1.1 3.0 3.8 4.3 4.4 4.6 4.9 4.5 Transport machinery 2.4 2.6 5.1 5.5 6.7 7.2 7.5 8.2 8.9 Professional equipment 0.4 0.4 0.5 0.6 0.4 0.6 0.7 0.7 0.6 Subtotal 10.9 12.2 17.4 19.9 21.8 23.0 24.0 25.4 25.0 Fabricated metal products - 2.9 3.4 3.9 4.3 5.3 5.7 6.0 6.5 5.4 Transport equipment 1.2 2.2 5.1 8.0 8.9 9.6 10.3 11.7 Professional equipment 0.2 0.5 0.6 0.7 0.7 0.7 0.7<</td><td>Prica Fabricated metal products 4.3 4.6 5.6 5.8 5.7 5.8 5.7 5.4 5.6 Non-electrical machinery 2.9 3.5 4.2 4.4 4.5 5.0 5.4 5.9 5.6 5.4 Electrical machinery 0.9 1.1 3.0 3.8 4.3 4.4 4.6 4.9 4.5 4.7 Transport machinery 2.4 2.6 5.1 5.5 6.7 7.2 7.5 8.2 8.9 8.7 Professional equipment 0.4 0.4 0.5 0.6 0.4 0.6 0.7 0.7 0.6 0.6 Subtotal 10.9 12.2 17.4 19.9 21.8 23.0 24.0 25.4 25.0 25.0 Fabricated metal products - 2.9 3.4 3.9 4.3 4.7 5.0 5.4 5.2 5.2 5.7 Subtotal 10.9 1.2 3.2 4.3 5.3 5.7 6.0 6.5 5.4 5.6 Transport equip</td><td>erica Fabricated metal products 4.3 4.6 5.6 5.8 5.7 5.8 5.7 5.4 5.6 5.4 Non-electrical machinery 0.9 1.1 3.0 3.8 4.3 4.4 4.6 4.9 4.5 5.0 5.4 5.9 5.6 5.4 5.8 Electrical machinery 0.9 1.1 3.0 3.8 4.3 4.4 4.6 4.9 4.5 5.0 5.4 5.8 5.8 5.8 Professional equipment 0.4 0.4 0.5 0.6 0.4 0.6 0.7 0.7 0.6 0.6 0.6 Subtotal 10.9 12.2 17.4 10.9 21.8 23.0 24.0 25.4 25.0 25.0 25.2 25.2 Fabricated metal products - 2.9 3.4 3.9 4.3 4.7 5.0 5.4 5.6 5.6 Machinery except electrical 0.9 1.2 5.2 5.1 8.0 8.9 9.6 10.3 11.7 11.5 10.9 <tr< td=""><td>erica Fabricated metal products 4.3 4.6 5.6 5.8 5.7 5.8 5.7 5.4 5.6 5.4 5.0 Non-electrical machinery 2.9 3.5 4.2 4.4 4.5 5.0 5.4 5.9 5.6 5.4 5.8 5.7 5.4 5.6 5.4 5.0 5.7 5.4 5.6 5.4 5.6 5.7 5.8 5.7 5.4 5.6 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.8 5.7 5.4 5.6 5.7 5.8 5.7 5.4 5.6 5.7 5.8 5.7 5.8 5.7 5.4 5.6 5.8 5.7 5.8 5.7 5.6 5.6 5.6 5.6 5.6 5.6</td></tr<></td></t<>	erica Fabricated metal products 4.3 4.6 4.6 5.6 5.8 5.7 5.8 Non-electrical machinery 2.9 3.5 4.2 4.4 4.5 5.0 5.4 Electrical machinery 0.9 1.1 3.0 3.8 4.3 4.4 4.6 Transport machinery 2.4 2.6 5.1 5.5 6.7 7.2 7.5 Professional equipment 0.4 0.4 0.5 0.6 0.4 0.6 0.7 Subtotal 10.9 12.2 17.4 19.9 21.8 23.0 24.0 Fabricated metal products - 2.9 3.4 3.9 4.3 4.7 5.0 Machinery except electrical 5.5 6.4 6.8 7.0 7.6 8.1 Electrical machinery 10.9 1.2 3.2 4.3 5.3 5.7 6.0 Transport equipment 1.2 5.2 5.1 6.0 7.7 7.6 Subtotal Group C 10.9 11.1 18.6 20.6	erica Fabricated metal products 4.3 4.6 4.6 5.6 5.8 5.7 5.8 5.7 Non-electrical machinery 2.9 3.5 4.2 4.4 4.5 5.0 5.4 5.9 Electrical machinery 0.9 1.1 3.0 3.8 4.3 4.4 4.6 4.9 Transport machinery 2.4 2.6 5.1 5.5 6.7 7.2 7.5 8.2 Professional equipment 0.4 0.4 0.5 0.6 0.4 0.6 0.7 0.7 Subtotal 10.9 12.2 17.4 19.9 21.8 23.0 24.0 25.4 Fabricated metal products - 2.9 3.4 3.9 4.3 4.7 5.0 5.4 Machinery except electrical 5.5 6.4 6.8 7.0 7.6 8.1 8.8 Electrical machinery 10.9 1.2 3.2 4.3 5.7 5.4 Subtotal Group C 10.9 11.1 18.6 20.6 25.2 27.6<	Prica Fabricated metal products 4.3 4.6 4.6 5.6 5.8 5.7 5.8 5.7 5.4 Non-electrical machinery 2.9 3.5 4.2 4.4 4.5 5.0 5.4 5.9 5.6 Electrical machinery 0.9 1.1 3.0 3.8 4.3 4.4 4.6 4.9 4.5 Transport machinery 2.4 2.6 5.1 5.5 6.7 7.2 7.5 8.2 8.9 Professional equipment 0.4 0.4 0.5 0.6 0.4 0.6 0.7 0.7 0.6 Subtotal 10.9 12.2 17.4 19.9 21.8 23.0 24.0 25.4 25.0 Fabricated metal products - 2.9 3.4 3.9 4.3 5.3 5.7 6.0 6.5 5.4 Transport equipment 1.2 2.2 5.1 8.0 8.9 9.6 10.3 11.7 Professional equipment 0.2 0.5 0.6 0.7 0.7 0.7 0.7<	Prica Fabricated metal products 4.3 4.6 5.6 5.8 5.7 5.8 5.7 5.4 5.6 Non-electrical machinery 2.9 3.5 4.2 4.4 4.5 5.0 5.4 5.9 5.6 5.4 Electrical machinery 0.9 1.1 3.0 3.8 4.3 4.4 4.6 4.9 4.5 4.7 Transport machinery 2.4 2.6 5.1 5.5 6.7 7.2 7.5 8.2 8.9 8.7 Professional equipment 0.4 0.4 0.5 0.6 0.4 0.6 0.7 0.7 0.6 0.6 Subtotal 10.9 12.2 17.4 19.9 21.8 23.0 24.0 25.4 25.0 25.0 Fabricated metal products - 2.9 3.4 3.9 4.3 4.7 5.0 5.4 5.2 5.2 5.7 Subtotal 10.9 1.2 3.2 4.3 5.3 5.7 6.0 6.5 5.4 5.6 Transport equip	erica Fabricated metal products 4.3 4.6 5.6 5.8 5.7 5.8 5.7 5.4 5.6 5.4 Non-electrical machinery 0.9 1.1 3.0 3.8 4.3 4.4 4.6 4.9 4.5 5.0 5.4 5.9 5.6 5.4 5.8 Electrical machinery 0.9 1.1 3.0 3.8 4.3 4.4 4.6 4.9 4.5 5.0 5.4 5.8 5.8 5.8 Professional equipment 0.4 0.4 0.5 0.6 0.4 0.6 0.7 0.7 0.6 0.6 0.6 Subtotal 10.9 12.2 17.4 10.9 21.8 23.0 24.0 25.4 25.0 25.0 25.2 25.2 Fabricated metal products - 2.9 3.4 3.9 4.3 4.7 5.0 5.4 5.6 5.6 Machinery except electrical 0.9 1.2 5.2 5.1 8.0 8.9 9.6 10.3 11.7 11.5 10.9 <tr< td=""><td>erica Fabricated metal products 4.3 4.6 5.6 5.8 5.7 5.8 5.7 5.4 5.6 5.4 5.0 Non-electrical machinery 2.9 3.5 4.2 4.4 4.5 5.0 5.4 5.9 5.6 5.4 5.8 5.7 5.4 5.6 5.4 5.0 5.7 5.4 5.6 5.4 5.6 5.7 5.8 5.7 5.4 5.6 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.8 5.7 5.4 5.6 5.7 5.8 5.7 5.4 5.6 5.7 5.8 5.7 5.8 5.7 5.4 5.6 5.8 5.7 5.8 5.7 5.6 5.6 5.6 5.6 5.6 5.6</td></tr<>	erica Fabricated metal products 4.3 4.6 5.6 5.8 5.7 5.8 5.7 5.4 5.6 5.4 5.0 Non-electrical machinery 2.9 3.5 4.2 4.4 4.5 5.0 5.4 5.9 5.6 5.4 5.8 5.7 5.4 5.6 5.4 5.0 5.7 5.4 5.6 5.4 5.6 5.7 5.8 5.7 5.4 5.6 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.4 5.6 5.7 5.8 5.7 5.4 5.6 5.7 5.8 5.7 5.4 5.6 5.7 5.8 5.7 5.8 5.7 5.4 5.6 5.8 5.7 5.8 5.7 5.6 5.6 5.6 5.6 5.6 5.6

Table A.I.4: Share of metal working industry in the manufacturing industry in Latin America and selected sub-regions 1950-1977

Source: UNIDO: The Capital Goods Industry in Latin America: present situation and prospects (draft dated 15 November 1983 UNIDO/IS)

a/ Bolivia, Colombia, Ecuador, Peru and Venezuela.

1

Ξ

_

=

Ξ

=

-

-

Ξ

b/ Costa Rica, El Salvador, Guatemala, Honduras and Nicaragua.

.

- 108 -

٠

The situation of the engineering industry sector in the FTA member countries

- 33. A statistical analysis of the engineering industry sector of the PTA member countries is hampered by the incomplete data base. Hopefully studies presently being carried out will correct this. Table A.I.5 summarizes the available data on the shale of the engineering industries in the manufacturing value added (MVA). The highest share of engineering industries in HVA is registered for Mozambique in 1975 which gives an indication of this country's potential in this sector. The three countries with a relatively high share, Kenya, Zambia and Zimbabwe, all experienced a decline in the contribution of engineering industries to MVA from 1973 to 1980 or 1981, respectively. This decline can be explained by reduced investments in the overall economy and additionally, in the size of Zambia, by reduced prices for its mineral exports which limited investments in the mining sector, including replacement of equipment. In a second group of countries the share of engineering industries in MVA is around the per cent range, with Mauritius (12.4 per cent in 1980) and Tanzania (11.5 per cent in 1979) lying above, Malawi (8 per cent in 1980) and Madagascar (7.5 per cent in 1979) lying below this mark. In the third group of countries, the engineering industries are by far less important.
- 34. If countries for which statistical data are not reailable (most probably be in the range of of the third group of countries) are included with a share of 5 per cent, the calculation of the combined PTA engineering industry share in total MVA results in approximately 12.5 per cent for all PTA member countries. Even though this general conclusion is affected by the availability and accuracy of data it gives at least an indication of the order of magnitude of the engineering industry sector in the region. This figure furthermore compares well with the data on Latin America (Table A.I.4) placing the PTA region between the Andean group and Central American countries.
- 35. In most countries, fabricated metal products (ISIC group No. 381) have the highest share. Exceptions are Angola, Kenya and Tanzania where transport equipment (ISIC No. 384) has a higher share and Mauritius which only gives data for ISIC No. 382 to 384. The production of non-electrical machinery (ISIC No. 382) is only significant in Mauritius, Zambia and Zimbabwe. Electrical machinery (ISIC No. 383) already have

TELEVISION OF A DECEMPENDE OF A DECEMPENDE OF A

THE FOULT FOR THE THE THE TAXAGE

11110

HUD THE T

1.11.1

at at to a

significance in several countries, ramely, Kenya, Madegascar, Mauritius, Tanzania, Zambia and Zimbabwe. Transport equipment is of importance in all countries except Lesotho, Mauritius, Malawi and Swaziland.

		Total		ISIC (group nur	nber	
Country	Years	ISIC 38	381	382	383	384	385
Angola	1970	3.5	1.7	0.3	0.5	1.0	_
Botswana	1975	2.7	1.9	. .	0.1	-	
Ethiopia	1973	2.0	1.9	-	0.1	-	
	1979	2.6	2.5	-	0.1	-	
Kenya	1973	22.5	7.3	0.5	5.8	8.9	
	1980	18.8	7.2	0.7	5.2	5.7	-
Lesotho	1975	0.1	-		-		-
Madagascar	1973	9.8	6.2	-	2.2	1.4	-
	1979	7.5	5.0	-	1.5	1.0	-
Malawi	1980	8.0	6.2	0.7	0.7	0.4	-
Mauritius	1981	12.4	-	5.1	4.1	3.2	-
Mozambique	1975	32.5	13.7	3.3	5.4	10.1	-
Swaziland	1980	5.2	4.5	0.2	0.5	-	-
Tanzania	1973	11.1	2.9	0.7	2.4	5.1	-
	1979	11.5	2.8	1.0	3.1	4.6	-
Zambia	1973	30.8	14.2	5.0	6.2	5.3	0.1
	1981	20.2	9.2	3.3	4.1	3.5	0.1
Zimbabwe	1973	22.5	11.3	3.3	3.5	3.9	0.1
	1980	19.1	10.5	3.1	3.6	2.9	0.1

Table A.I.5:	Share of	the engineeri	ng industry	sector in	manufacturing
value	added in	selected count	ries and for	<u>selected</u>	years
(in per cent)					

36. Fabricated metal products represent in general the technologically less complex products compared to machinery and transport equipment. Hence the high share of ISIC 381 in most countries and the comparatively lower share of the other product groups indicate that the engineering industries in these countries are still an early stage of development. It can be assumed that future increase in the contribution of engineering industries will mainly come from strengthening the production capacities of ISIC groups No. 382 to 384, even though ISIC group 381 will also grow albeit at a lower rate (compare figures for Latin America as a whole, 1950 to 1977, Table A.I.4).

- 37. The future development of the engineering industry sector in the PTA member countries will heavily depend upon whether strategic priority is given to it by both regional and national authorities. Figure A.I.8 gives an example of the influence of development policies on the growth of the engineering industries: Brazil, with incentives especially for the promotion of joint ventures and tax rebates, was able to double the share of engineering industries to manufacturing value added in approximately 15 years (from 1950 to 1965), Latin America as a whole in approximately 20 years (from 1950 to 1979). Indonesia, whose engineering industry was relatively insignificant until 1972, was able to triple its importance in only 8 years (from 1972 to 1980), mainly due to the establishment of a local automotive industry and a general local content regulation to all important products of the engineering industry sector. Here incentives combined with regulatory measures were even more strongly pronounced and more strictly applied than in Latin America. It is noteworthy that both in Brazil and Indonesia, the basic iron and steel industry was in infant stages when the rapid growth of the engineering industries started. Their additional demand for steel products contributed to the strengthening of the steel industry which found developed markets to absorb their additional output. (Some other countries which first developed their basic iron and steel industry and then the user industries have experienced sales difficulties in their early years of operation which negatively affected cash flow and profitability of the steel mills).
- 38. If PTA member countries decide to give high priority to the development of the engineering industries and to introduce additional incentives and promotional efforts it can be assumed that the share of engineering industries in MVA could be raised considerably in the next 10 to 15 years. However, a thorough analysis of the present stage of development of the engineering industry sector, its constraints and potential and, in relation to the present study, its present and future steel demand seems of urgent importance as a basis for an industrial development strategy

.....

10 1 I II I

......

1.1

THE REPORT

1.1.1.1.1

....

THE F F FULLER F

111.111.111

THE DEPENDENCE

for this sector. Priority should also be given to this sector due to its relatively labour intensive (yet skill-intensive) production operations (annual production output per employee is in the order of US\$15,000 to US\$20,000 in the engineering industries in East African countries).

Constraints to the development of the engineering industry sector

- 39. A constraint to the development of appropriate promotional policies for the engineering industry sector lies in the weakness of statistical information. Unclarity as to the industry's present stage of development makes it difficult to acknowledge its importance for the economy by government planning institutions. Only a few countries (e.g. Mauritius, Tanzania and Kenya) pay special attention to the engineering industries in their development plans.
- 40. The small size of the market in African countries has frequently been quoted as a major constraint to the development of engineering industries. The relatively low level of national income in some countries also contributes to reduce market perspectives. On the other hand, development assistance granted to African countries is often coupled with the obligation to purchase supplies from the donor country which, once again, reduces the market perspectives for local producers. A coherent strategy to increase the participation of local manufacturers in development projects and in government purchases should be developed to overcome these shortcomings.
- 41. Economies of scale are less important in the engineering industries than in other manufacturing sub-sectors. This is evidenced by the large proportion of small and medium engineering enterprises in industrialized countries co operating under linkage schemes (sub-contracting, product complementation). These linkage schemes have contributed to high degrees of specialization and productivity in the engineering industries of industrialized countries. However, linkages of this nature are hardly developed in African countries and often encounter fiscal barriers to their strengthening (e.g. ex-factory sales tax instead of value added tax). The virtual non existence of sub contractors and component suppliers in African countries forces the industry into vertical integration. Hence the economies of scale and specialization that would be derived by component producers supplying a number of different firms are negatively affected.

100 I II II IIII

THE REPORT OF THE PARTY OF THE PARTY.

42. The engineering industries are relatively labour-intensive, yet extremely skill-intensive. Most African countries have an abundant labour force but it lacks the qualification required in the engineering industries. While in Africa the ratio of technicians per 10,000 population is only 8.3, it is 23.4 in Asia, 72.2 in Latin America and 142.3 in developed market economies. A priority requirement is therefore the implementation and/or strengthening of manpower development schemes, especially for the engineering industries.

111 1 1

1 1 1

1

1 I I

1 10 11 1 1

1 I II.

1.1.1

1.0.0.0.0

1.1.10.10

т т.

- 114 -

ANNEX II

Status of the steel industry of Eastern and Southern Africa

- 1. This annex presents an up-to-date (as of July 1985) characterization of the steel industry of the Eastern and Southern African sub-region.
- 2. Only those plants that are equipped with steel making facilities (i.e. furnaces) and/or are rollers of cast primary products (billets, ingots, slabs, and blooms) are included in the roster of steel plants. Foundries devoted to production of iron and/or steel castings, cold rolling mills that rely on imported hot rolled coils, galvanising and/or corrugating plants, and fabricators of wire products (rails, etc.) are excluded.
- 3. Table A.II.1 lists the 23 steel plants in the sub-region as of the last quarter of 1985, showing their steelmaking units, crude steel production and rolling capacities, product mix, and ownership. In quantitative terms, Kenya has the largest concentration of steelworks (8), seven of which are in the Nairobi area.
- 4. The sub-region's aggregate (liquid) steelmaking capacity was 1.0191 million tonnes per annum in 1981-83, $\frac{1}{}$ of which 83 per cent (or 850,000 tonnes) comes from Zimbabwe Iron and Steel Company's (ZISCO) steelworks at Redcliff. ZISCO is the only integrated steelworks in the sub-region, producing pig iron from two blast furnaces with a combined capacity of 3,000 tonnes per day, and steel from two 55-ton basic oxygen furnaces (BOFs). ZISCO is also the only producer of blooms in the sub-region.
- 5. All other crude steel producers, except City Engineering Works in Kenya which uses in a 1-ton induction furnace, employ the electric arc furnace route to steelmaking or the basis of scrap, i.e. these are the classical mini-steel mills. The furnace sizes range from 4 tonnes of liquid steel per heat to 20 tonnes per heat. In all but three cases, the molten steel is cast into "pencil ingots" for rolling. The other plants employ the continuous casting technique to generate billets which are particularly desired by producers of wire rod. In fact, Steel Billet Castings Ltd.(in

1/ Rolmil Kenya and Ethiopia's Asmara plant not included.

TTELE FOR THE THE TELEVILLE FOR THE THE TELEVILLE AND AND THE TELEVILLE AT THE DEFENDENCE AND AND AND AND AND A

Country		Plant and location	P Steelmaking units	Crude steel roduction capacity tonnes/year ^{&/}	Rolling capacity tonnes/year ^{&/}		Product mix
Angola		rurgia Nacional Iworks, Luanda	One 20-ton EAF	30,000	50,000	6-25 mm reinforcing bars and rods; merchant profiles	Government enterprise
Phbiania	i)	Ethiopian Iron and Steel Foundry, Akaki	One 5-tou EAF	12,000	30,000	Reinforcing bars and wire products	Government enterpri se
Ethiopia		Ethiosider Iron and Steel Foundry, Asmara ^b /	One (uninstalled) 5-ton EAF	12,000 (potential) 34,000	Reinforcing bars and wire products	Government enterprise
	i)	EMCO Steel Works, Dandora	One 12-ton EAF	25,000	60,000	8-40 mm plain rounds, squares, and twisted squares	Private
	ii)	Kenya United Steel Company, (KUSCO), Mombasa	Two 4-ton EAFs (one operational) plus (uninstalled) single strand continuous caster	26,500	30,000	Reinforcing bars; rounds; squares; twisted squares; and wire products	Private
Kenya	iii)	Steel Billet Castings Ltd., Dandora	One 12-ton EAF plus 2-strand continuous caster	25,000	-	Billets for rerolling	Private
	iv)	City Engineering Works Ltd., Dandore	One 1-ton medium frequency induction furnace	8,600	12.000	Round and flat bars; angles	Private
	V)	Raimil Kenya Ltd., Nairobi	One 7-ton EAF	15,000	13,500	Reinforcing bars; flats, angles; squares	Private

Table A.II.1: Steel plants in Eastern and Southern African sub-region

- , T

.

.

`3

٠

•

=

-

_

= Ξ

a/ Based on 3-shift operation per day \underline{b} / Not in operation as of mid-1985

Country		Plant and location	Steelmaking units	Crude steel production capacity tonnes/year	Rolling capacity tonnes/year	Product mix	Ownership
	vi)	Morris and Co. Ltd., Nairobi	-	-	30,000	Reinforcing bars; angles, channels; squares; flats	Private
Kenya (cont.)	vii)	Special Steel Mills Ltd., Ruiru	-	-	60,000	5.5-11.5 mm wire rods; bars; squares; structurals	Private
	viii)	Steel Rolling Mills Ltd., Kikuyu	-	-	72,000	Flats; angles; squares; reinforcing bars; channels	Private
Madagascar	At To	amasima <u>c</u> /	_	_	6,000	Reinforcing bars; rods; light sections	Private
		Debro International Ltd.	1 –	-	40,000	Rebars; light sections	Private
Mauritius		Iron and Steel Industries Ltd. <u>d</u> /	-	-	15,000	Round and twisted square bars	Private
		Shipbreaking and Industries Ltd.	-	-	21,000	Rebars and flat bars	Private
	iv)	R.M. Industries Lto	i.	-	4,000	Rebars	Private

../...

٠

.

c/ Scheduled for start-up end-1985. <u>d</u>/ Closed in 1983 but due for resuscitation August 1985

.

•

Table A.II.1:Steel plants in Eastern and Southern African sub-region
(continued)

=

-=

Ξ

=

--=

_

--

= -

_

_

-			(continued)			
Country	Plant and location	Steelmaking units	Crude steel production capacity tonnes/year	Rolling capacity tonnes/year	Product mix	Ownership
Mozambique	Cia Industrial de Fundicao e Laminagem (CIFEL), Maputo	_	-	50,000	6-50mm reinforcing bars and rods; flats; angles	Government enterprise
	i) Aluminium Africa (Ltd.), Steelcast Division, Dar-es- Salaam	One ll-ton EAF plus continuous caster	18,000	_	Billets for rerolling	60 per cent Government 40 per cent Private
Tanzania	ii) Steel Rolling Mills Ltd., Tanga	-	-	30,000	Plain and deformed bars (10-25 mm); light sections	Government majority (with 4 per cent Danielli)
Uganda	East African Steel Company, Jinja	One 10-ton EAF	24,000	30,000	Reinforcing bar; wire rod; light sections	Government enterprise
Zimbabwe	i) ZISCO Ltd., Redcliff	Two blast furnaces; Two 55-ton BOFs; continuous caster fo blooms	850,000 r	600,000 tonnes heavy sections and billets	Billets; blooms; slabs	86.8 per cent Government Balance – others
				70-110,000 medium sections	Rounds; flats; angles; beams; rails; channels	
· · · · · · · · · · · · · · · · · · ·			ngan dan general dan series dan dari dan dari dari dari dari dari dari dari dari			/

Table A.II.1: Steel plants in Eastern and Southern African sub-region

•

.

•

=

-

•

Country		Plant and location	Steelmaking units	Crude steel production capacity tonnes/year	Rolling capacity tonnes/year	Product mix	Ownership
				aut a <u></u> a <u>ut</u> a <u>ut</u> <u></u>	24-48,000 light sections	Flats and angles	
Zimbabwe (cont.)					100-200,000 bar and wire	Rebar and rods (plain and deformed); squares	1
	ii)	Lancashire Steel Ltd., Kwe-Kwe	-	-	52,000	Wire rod (5.5-12 mm); 5-8 mm squares	Wholly-owned subsidiary of ZISCO
	iii)	Tor Steel, Ltd.	-	-	12,000	15-65 mm seamless tubes	Wholly-owned subsidiary of ZISCO

Table A.II.1: Steel plants in Eastern and Southern African sub-region (continued)

.

.

•

_ _ _

-

--

=

= Ē _

Ξ

_ = -

-

-Ξ

-

Ξ

•

.

Kenya) and Aluminium Africa Ltd. (in Tanzania) do not have in-house rolling capability, but rather produce billets for their sistercompanies, - Steel Rolling Mills, Ltd., Kikuyu, and Steel Rolling Mills, Ltd., Tanga, respectively.

- 6. It is to be noted paranthetically that the meltshop of Ethiosider Iron and Steel Foundry, Asmara (Ethiopia) is not presently functioning due to several operational and technical problems. Furthermore, the new 1 ton arc furnace of Rolmil Kenya Ltd. was scheduled to be commissioned in August 1985. The capacity of these two plants are not included in capacity figures for 1981-83 which forms the base period for projections made and which is referred to for the calculation of growth rates up to 1990.
- 7. The mini mills generally obtain their scrap from local sources. However, progressive depletion of the easily retrievable local scrap sources has forced some steelmakers to import scrap when the necessary import licences could be secured. Other avenues for obtaining scrap are also being investigated. For instance, Angola (with UNIDO assistance) has set up a scrap collection/processing enterprise to ensure a steady supply to Siderurgia Nacional Steelworks, with prospects for eventually exporting the surplus to other countries in the sub-region. Ship breaking is another attractive supply option which is currently being exploited by Mauritius and (to a lesser extent) Kenya, and which holds promise for such other maritime countries as Mozambique, Tanzania, Madagascar, Somalia, and Djibouti.
- 8. ZISCO's raw materials (iron ore concentrate and metallurgical coal) come from its captive mines in Zimbabwe. They are converted at the Redcliff steelworks into sinter and coke (capacity of 600,000 tonnes per year) respectively for use in the blast furnaces.
- 9. The rolling mills that do not have in-house steel melting facilities have generally depended on imported billets from South Africa, India, South Korea, Japan, and the EEC, although recent foreign exchange limitations have compelled most rerollers to increasingly seek local billet suppliers, as well as other sources within the sub-region, e.g. ZISCO. In fact, ZISCO's billet production capacity (in excess of its internal requirements) is more than adequate to supply the present demand of the re-rollers in the sub-region.

111 11

11 II I I

The shall be shall be the second state

In Lin

11

- The rolling capacity, of the sub-region is up to 1,609,500 tonnes per year, although 1,022,000 tonnes of this capacity (63 per cent) is attributable to ZISCO Ltd. and its subsidiaries.
- 11. Partly due to the present depression of the economies of the various countries of the sub-region, which has been in effect since about 1981/82, all the steel plants are grossly under-utilized. In fact, as of mid-1985, most of the plants were operating at capacity utilization levels of under 30 per cent.
- 12. The product mix of all the steel mills in the sub-region consists only of "long" finished products - reinforcing bars, (plain, deformed, ribbed, and twisted), rods (for wire and wire products), and light and medium sections (angles, shapes, and channels). There is no local production of hot-rolled "flat" mill products (sheets and strips). Accordingly, producers of cold-rolled products, corrugated and galvanized sheets, and the engineering industries must depend on imported flat products.
- 13. A little over half of the sub-region's steelworks are totally or majority- government-owned and controlled. These are in Angola, Ethiopia, Mozambique, Tanzania, Uganda and Zimbabwe (where the Government owns 86.8 per cent of the shares in ZISCO). In contrast, all steel enterprises in Kenya, Madagascar and Mauritius are privately-owned and controlled.
- 14. There are prospects for increased trade in primary and finished steel mill products within the sub-region. In this regard, Zimbabwe's domestic consumption of finished steel products of the types produced locally was in 1981-83 around 200,000 tpy, whereas its production capacity for the same products is 750,000 tpy, creating an export potential of about 550,000 tpy. Thusfar, the export targets for Zimbabwe have been the Far and Middle East. Kenya, the region's other steel exporter markets its products in Uganda, Tanzania, Rwanda and Burundi.
- 15. A major constraint militating against increased sub-regional trade in steel products are the poor logistics and high costs of transportation between states. The following are illustrative of the specific problems of transportation:

- nine of the countries in the sub-region are land-locked, Botswana, Burundi, Lesotho, Malawi, Rwanda, Swaziland, Uganda, Zambia, and Zimbabwe, - and must therefore depend on other countries for sea port facilities;
- exclusive of the island states, Madagascar, Mauritius, Seychelles and Comoros, - there are only eleven commercial seaports to serve the entire sub-region; these are Luanda, Benguela and Mocamedes in Angola, Nacala, Beira and Maputo in Mozambique, Dar-es-Salaam and Tanga in Tanzania, Mombasa in Kenya, Mogadishu in Somalia, and Djibouti. Furthermore, virtually all these ports have limited cargo handlng capacities coupled with inadequate inland evacuation outlets;
- the railway system in the sub-region is largely unintegrated, with non-uniform gauges, and deteriorating tracks. For instance, (i) there was at the time of the missions no direct cross-border rail traffic between Kenya and Uganda (each of which operates its railway system), necessitating trans shipment of goods moving from Mombasa Nairobi to Kampala; (ii) the Tanzara railway from Dar-es-Salaam to Kepiri Mposhi in Zambia is of a different gauge from the Zambian national rail system, leading to unavoidable trans shipment at the junction of the two lines; and (iii) the Benguela railway in Angola has been disrupted by the civil war, and rail access from Angola to the other countries in the sub-region is not now possible. Another complication arises from the severe congestion at the port of Luanda as a result of its large general cargo throughput.
- 16. These constraints result in relatively high inter-state transportation costs. For instance, the cost of transportation of steel from Redcliff to Mombasa (by rail and sea) is about US \$45 per tonne, about the same as (or even higher than) the ocean freight from Antwerp to Mombasa. What is more, because of terminal handling and transportation scheduling delays, it is not unusual for shipments from Antwerp to be faster and more reliable.
- 17. In general, the major process units now in operation in the steelworks are at least ten years old, having been installed in the 1960s and early 1970s. The following is indicative of the ages (and therefore mechanical conditions and relative degrees of obsolescence) of the meltshop and rolling mill equipment in some of the sub region's steelworks:

Year of Installation

		Electric Arc Furnace	Rolling Mill
Angola	Siderurgia Nacional	1969	1969
Ethiopia	Ethiopian Iron and Steel Foundr	y 1951	1951
	Ethiosider Iron and Steel Found	ry -	1961
Kenya	Emco Steel Works Ltd.	1972	1972/73
	KUSCO Ltd.	1974 & 1980	1968
	Steel Billet Castings Ltd.	1974	1974/75
	Rolmil Kenya Ltd.	1985	1979
	Morris & Co. Ltd.	~	1983
	Special Steel Mills Ltd.	-	1983
	Steel Rolling Mills Ltd.	-	1976/1980
Mozambique	CIFEL	-	1967
Tanzania	Aluminium Africa Ltd.	1976	-
	Steel Rolling Mills Ltd.	-	1968/1972
Zimbabwe	7ISCO Ltd. 1975 and 1961-Bl 1970	- Steel plant 1969-E	led. Sec. mill Billet mill Heavy Sec. mill

18. Total direct employment in the sub-region's steel industry is about 11,100. Senior management and technical personnel would generally constitute 5-8 per cent of the total, and of these, well over half would be expatriates. This underlines the importance of indigenous manpower training and development (particularly in the technical areas) if the long-term self-reliance of the industry is to be guaranteed.

19. The production cost for a tonne of a specific steel product is variable depending on, among other factors, the specific production processes employed, the efficiency (and age) of the process equipment, the capacity utilization, and the costs of such items as raw and consumable materials, energy and labour. These factors vary from one country to the other within the sub-region, and also between plants in the same country. Accordingly, very few generalizations can be made and any figures cited must be regarded as merely indicative.

With these qualifications in mind, it is instructive to compare the delivered price of locally-produced mild steel continuous-cast billets to a steelworks in Nairobi with the costs of similar billets imported from outside the PTA sub-region, and from within the PTA (Zimbabwe). The

.

1 1

1

. .

generally prevailing ex-meltshop (Nairobi) price for locally produced billets as of July 1985 was KSh. 5,300 per tonne (i.e. US \$327). On the other hand, imported billets from Zimbabwe could arrive C & F Mombasa at about \$229 per tonne. Inclusive of customs tariff (25 per cent) and clearing/inland transport charges (KSh. 500 per tonne), the delivered price (Nairobi) would be about \$317 per tonne, - a figure that is roughly identical to the delivered price of billets imported from outside the sub-region.

There are indications that the local production costs of billets in the other countries in the sub-region (except Zimbabwe), are even higher than those for Kenya, making it very tempting for non-PTA countries to "dump" steel at prices that are well below their economic costs, especially during periods of slack demand on their home markets.

Given the plan of the sub-region to become more self-sufficient in steel products, and to preferentially purchase (where necessary) from other member-states within the sub-region, there arises the need for evolving a modality for encouraging such intra-regional trade in preference to extra regional importation. Among the steps that are being taken is the removal of internal tariff barriers on steel products within the framework of PTA which has now put teel products e.g. billets on their 'common list'. Also, preferential issuance of import licences to imports from the sub-region is a possibility. The most important breakthrough so far has been the conclusion of contracts between Zimbabwe, Kenya and Ethiopia r garding purchase of billets by the two latter from ZISCOSTEEL. Improvements in transportation and communications would also go a long way towards stimulating intra regional trade. At the same time, steps must be taken to minimize injury to exporting countries by permitting them to charge equitable prices for their products, even when these are apparently higher than extra regional import prices. In the long run, it is the sub-region's steel industry that would benefit. Furthermore, with these transactions in currencies of the sub-region, the problems now associated with a general scarcity of hard currency would be significantly ameliorated.

20. A number of economic, technical, manpower, infrastructural, and bureaucratic constraints are currently inhibiting the steel industry's full utilization of its installed capacity. Among the most important of these are:

1.11

11 1

1 11 1

1.1.00

111 111

1.1

11 1 11 1

DEDETHE I

- the depressed world-wide economy which has, in turn, adversely affected the highly dependent economies of the developing countries in general, resulting in enforced idling of capacities and associated production diseconomies;
- a worsening shortage of scrap as a consequence of depressed industrial activities and the absence of well organized systems of scrap collection, processing, and delivery;
- a high dependence on imports for such essential inputs as electrodes, ferroalloys, some refractories, as well as spare parts. This problem has been exacerbated by the foreign exhcange squeeze which is affecting all countries in the sub-region;
- technical and operational problems arising from obsolete equipment,
 poor plant layout, and inadequate maintenance;
- Unpredictable product quality, often resulting from poor quality control and non-compliance with international product specifications;
- a general shortage of skilled manpower. This is most apparent in respect of technical manpower which is in such short supply that, in most steelworks, well over 75 per cent of the high-level technical experts are expatriates;
- transportation and communication bottlenecks inhibiting intra-country and international trade relations;
- lacklustre product marketing strategies, including the non-availability of strategic warehousing facilities;
- the administrative bureaucracy in the government establishment which can cause unnecessary delays in obtaining necessary approvals and licences;
- retrogressive tariff structures which inadvertently discourage local industry to the advantage of imports. For instance, the customs duty on steel billets could be such as to encourage local re-rolling mills to by-pass local meltshops in favour of billet imports; and

the imposition of price controls on steel products, thus restricting profit margins and, in the long run, preventing new investments in the industry.

US\$ million

<u>Table A.II.2: Estimated foreign exchange outlay for imports of basic steel</u> products - average 1981-83, million US dollars

Angola	17.6
Botswana	7.5
Burundi	5.7
Comoros	1.1
Ethiopia	17.1
Djibouti	1.6
Kenya	63.5
Lesotho	3.6
Madagascar	11.3
Malawi	8.4
Mauritius	8.0
Mozambique	5.1
Rwanda	7.6
Seychelles	0.8
Somalia	2.7
Swaziland	3.1
Tanzania	22.4
Uganda	2.5
Zambia	33.4
Zimbabwe	<u>51.5</u>
Total PTA	274.5
Total SADCC	152.6

Undersupply from national sources has been covered by imports with a resultant of flow of foreign exchange. Table A.II.2 shows an estimate of average annual foreign exchange costs of total costs) of the supply of basic steel products to the sub-region. The estimate is based on import quantitites as shown in country tables, T lume II and fob prices Europe of US\$270 for bars and rods and US\$410 an average for other items. Only the cost of overseas freight is included (for Botswana, Lesotho, Swaziland a small amount of freight through South Africa paid for in foreign exchange). This estimate therefore represents the very minimum foreign exchange requirement for basic steel.

The fill a constant of the constant of the fill of the fill of the second s

1.11

Country	P	lant and location	Project description	Additional crude steel capacity, tonnes per year	Additional rolling capacity, tonnes/year	Probable commissioning
Ethiopia	Ethiopian Iron and Steel Foundry, Akaki		Rolling mill modernization and up-grading of capacity to 60,000 tonnes per year	-	30,000	1990
	i)	Eldoret Rolling Mill, Eldoret	Installation of a (previously purchased) rolling mill	-	12,000	1986
Kenya	ii)	Steel Billet Castings Ltd., Dandora	Installation of a ladle refining unit or a second electric arc furnace	At least 11,000	-	1988-90
	iii)	Morris and Co. Ltd., Nairobi	Backward integration to produce liquid steel for own consumption	20,000	-	1988 00
Madagascar	Madagascar Rolling Mill, Toamasima		Expansion of rolling capacity to 30,000 tonnes per year	-	24,000	Post-1988
Mauritius	Desb	ro International Ltd.	Installation of arc furnaces plus continuous casters	50,000	-	1988-90
		Aluminium Africa Ltd., Dar-es-Salaam	Installation of a 15-17 tonne arc furnace and a light sections rolling mill	25,000	At least 30,000	1986
Tanzania		Steel Rolling Mills Ltd., Tanga	Reactivation of wire rod mill		18,000	1989

Table A.II.3: Additional steelmaking and rolling capacities, 1985-1990

= -

-

_

- - -

-

-

_

-

• •

.....

• •

Country	Plant and location	Project description	Additional crude steel capacity, tonnes per year	Additional rolling capacity, tonnes/year	Probable commissioning
Uganda	East African Steel Co. Ltd., Jinja	Rehabilitation of arc furnace and installation of 2-strand continuous caster	2,500	-	1988
Zambia	Zambia Steel and Building Supplies Ltd., Lusaka	Installation of a 15-20 tonne electric arc furnace, single- strand continuous caster, and rolling mill for bars and light sections	27,000	43,000	1988

Table A.II.3: Additional steelmaking and rolling capacities, 1985-1990 (continued)

.

.

.

.

-

-

Ξ

.

The total requirement of US\$270 million may be compared to total sub-regional import of US\$7.7 billion in 1982 or an estimated foreign exchange cost of US\$1.7 billion for products representing <u>indirect</u> steel imports - major importers are Kenya, Zimtabwe, Tanzania and Zambia representing over 60 per cent of the total.

1990 Steel supply prospects

- 21. Table A.II.3 shows the new projects that are expected to contribute to the 1990 steelmaking and rolling capacities. Of particular significance is the entry of Zambia into the roster of steelmakers with the planned implementation of a mini-mill under the auspices of Zambia Steel and Building Supplies Ltd. The plant, which would be located in Lusaka, would be equipped with a 15 to 20-ton electric arc furnace, a single strand continuous caster, and rolling mills for reinforcing bars and light sections. It is planned for commissioning in 1988/89.
- 22. With these projects on stream, the additional crude steel production and rolling capacities would be 135,000 tonnes per year and .57,000 tonnes per year respectively, bringing the sub-region's aggregate capacities to 1.166.160 tonnes of crude steel and 1,766,500 tonnes of rolled products per year. Zimbabwe's shares of the totals would decline to 73 per cent and 58 per cent respectively.
- 23. The additional capacities would not qualitatively alter the aggregate product mix which would still consist primarily of "long"products. At the time of the mission +here was no definite plan to produce flat products in the sub-region.

Long-term (post-1990) proposed projects

I had to be a set of the

1 11 11

- 24. The long-term development of the sub-region's steel industry has the twin objectives of maximum utilization of indigenous mineral and energy resources, coupled with essential sub-regional self-sufficiency in most steel products. In pursuit of these objectives, six countries have evolved project plans that are currently under consideration for purposes of possible implementation during the decade of the 1990s.
- 25. <u>Angola</u>: In a 1981 feasibility report, Austromineral had recommended a project that was then thought to have a marginal economic advantage over other options considered, and which, in its first phase, would involve

.

0.1.1011

1

 the development of the Kassala/Kitungo iron ore deposits to provide 2.1 million tonnes per year of super-pellets, initially for the export market. In the second phase, two direct reduced (sponge) iron production modules, with a total capacity of 1.3 million tonnes per year, would be installed at Luanda, based on natural gas. The estimate (1981) of the required capital investment was put at US \$567 million.

In view of the high investment requirements and the current economic and political problems in Angola, it is doubtful whether this project can be realistically considered for implementation earlier than 1995.

26. <u>Burundi</u>: A prefeasibility study funded by the African Development Bank has been conducted on the commercial exploitation, for steel production, of the Mukanda vanadium ore deposit which contains a proven reserve of 6.5 million tonnes (0.65 per cent V, 16.3 per cent Fe), with additional probable and possible reserves of 7.3 million and 5 million tonnes respectively. The minerals, which are of the titanomagnetite and ilmenite types, have been beneficiated on a laboratory scale to yield a concentrate with 48-49 per cent Fe and 2-2.5 per cent V.

The proposed steel production scheme involves smelting the concentrate to yield vanadium containing pig iron which would be converted to steel by oxygen blowing, with the vanadium bearing slag subsequently processed to yield ferro-vanadium for export. A steel production capacity of 51,500 tpy is proposed, along with 3,500 tpy ferro-vanadium. The initial investment estimate is \$153 million.

A number of issues in respect of the project need, however, to be resolved before it can receive a formal go ahead:

- a detailed geological mapping of the deposit is necessary in order to establish its possible life span;
- hydrocarbon for smelting is proposed to be in the form of charcoal from a planned eucalyptus planatation, rather than peat coke from peat deposits in Northern Burundi. The merits of such a sheme in the face of land scarcities, especially for agriculture, need to be carefully evaluated;

the smelting practice for the relatively low-Fe concentrate has yet to be worked out;

 the finanical returns of the project as determined by the pre-feasibility study (IRR = 8.8 per cent; pay-back period = 8 years) are thought to be only marginal at best.

For these reasons, if this project is implemented, it is not expected to be earlier than about 1995.

27. <u>Kenya</u>: Austroplan had, in a 1982 study, proposed the stage-wise implementation of a charcoal blast furnace based steel project, with the final phase to be commissioned in 2000. With an ultimate crude steel capacity of 896,000 tonnes per year, the plant would then consume 550,000 tonnes of charcoal and would require the afforestation of 257,000 hectares in the Lamu District. The steelworks would be located at Mihongani, south of Port Reitz in the Mombasa area. The total investment was projected in 1982 to be US \$887 million (excluding \$231 million investment in afforestation, charcoal production and storage, shipping, and forest roads).

Although the project is still under active government review, there are several major problems that must be resolved before it could be embarked upon:

- the very high capital investment, particularly the foreign exchange component, at a time of a severe foreign earnings squeeze;
- the production and silvicultural management problems associated with a gigantic afforestation project, as well as the agricultural, environmental, and human settlement implications;
- the project's high dependence on imported inputs, especially iron ore;
- issues of manpower availability in the quantities and qualities demanded by such a large project;
- the opportunity costs of implementing this project in preference to other industrial, social and infrastructural projects calling for the government's lean financial resources.
- 28. <u>Madagascar</u>: There is currently a feasibility study in progress (by Italsider) for the development of a steel project based on th Soalala iron ore deposit and the Sakoa coal deposit. The latter is being investigated by BP Coal Ltd. Although the short-term objective is to develop the iron ore mine for the production of concentrates for the export market, it is hoped that in the medium term, a steelmaking project

- 130 -

would follow. At that stage, the iron ore operations would produce 1.7 million tonnes of pellets or sinter feed for export and 300,000 tonnes for a direct reduced iron-based steelworks. A rotary-kiln reduction process is envisaged. The steelworks, rated at 210,000 tonnes of billets and blooms per year would produce rods, bars, light sections, and flat products (sheets, strips and plates) partly for export.

29. <u>Mozambique</u>: In the spirit of sub-regional industrial co-operation, UNIDO had, in 1983, commissioned a preliminary techno-economic assessment of a sponge iron project based on Angolan iron ore and Mozambican coal. With a capacity of 150,000 tonnes per yar, the sponge plant would export a portion of its output (50,000 tonnes) while the balance would be jointly consumed by steel plants in the two co-operating countries. Among the project location options considered were Mocamedes (in Angola) using Kassinga iron ore and Moatize (Mozambique) coal, and the Tete area of Mozambique on the basis of Moatize coal and Muande iron ore.

In either case, the heavy burden of infrastructural investments and the high land and sea trasportation costs associated with the project are likely to pose problems in its eventual implemention.

Tanzania: The centre piece of Tanzania's steel development plans is the 30. Liganga-Mchuchuma project which was recommended by LURGI in a 1984 study sponsored by UNIDO. The project would involve the development of the Liganga iron ore deposit and the production of pellets which would be employed in an SL/RN direct reduction unit to produce 663,000 tonnes per year of sponge iron, using coal from the Mchuchuma coal fields. A steel plant located at Mahanje would convert the sponge iron into steel by means of the submerged electric arc smelting process (necessitated by the TiO_2 , V_2O_5 and Cr_2O_3 contaminants). The steel plant's product mix would be 400,000 tonnes per year of hot rolled strip and 100,000 tonnes per year of heavy plate. The estimated total investment in this phase of the project was US \$716 million. In addition, a further investment of US \$1,102 million would be required for infrastructures and amenities, including a road from Madaba to Manda, via Ruhuhu, Liganga and Mchuchuma; a rail line from Mlimba through Madaba, Ruhuhu, Liganga, and Mchuchuma to Manda; a coal-fired power plant (300 Mw); and townships at Liganga, Mchuchuma and Ruhuhu.

In the face of the high investments entailed in the Liganga project, the idea had been recently floated for a scaled-down alternative which would serve as a lead-in to the larger project. This would be located at Dar-es Salaam, at the site of the works of the Steelcast Division of Aluminium Africa Ltd., primarily to take advantage of the existing infrastructural facilities. In addition to the on-going expasion (involving the installation of an electric arc furnace), a 60,000 tonne per year sponge iron project would be implemented, based on imported pellets and coal from Songwe colliery, and employing the SL/RN process. The sponge iron excess to the internal requirements (i.e. 19,500 tonnes per year) would be exported. The total investment in the project was preliminarily put at US \$26 million.

The project is under detailed review, particularly its foreign exchange savings implications, depending so heavily as it does on imported iron ore.

31. <u>Uganda</u>: An integrated project idea had been formulated, involving the development of the high-quality Muku iron ore deposit in Kigezi district which contains at least 30 million tonnes of proven reserve. A direct reduction project utilising charcoal, - the only deductant potentially available in Uganda, - was formulated, to be coupled with an electric arc furnace steel plant, taking advantage of Uganda's abundant power resources.

It is thought that the project would call for large infrastructural investments since the iron ore is located in a very remote area without adequate rail and road access.

- 133 -

ANNEX III

Transport infrastructure and supply costs of steel products

Transport infrastructure

- Transport infrastructure deficiencies and their repercussions on timely and cost efficient delivery of goods have been analyzed for several major industrial projects (e.g. fertilizer production). The constraints of the transport sector in the PTA and SADCC member countries can be summarized as follows:
 - inadequate and low standard infrastructure and facilities;
 - inadequate and obsolete equipment;
 - poor, inadequate and occasionally neglected maintenance;
 - lack of standardization;
 - unharmonized and unco-ordinated infrastructure and services;
 - scarcity or lack of spare parts;
 - scarcity of trained and experienced personnel at all levels of construction, management and operations;
 - inadequacy of training institutions;
 - lack of transport planning;
 - absence of harmonized transport/communications policies and legislation at the subregional/regional levels;
 - absence of transport/communications industries in Africa;
 - scarcity of foreign exchange due to low export earnings and tight international lending;
 - inadequate budgetary allocations for maintenance and rehabilitation;
 - general inefficiency in infrastructure/facilities construction and in the management/operations of services; and
 - low transport volume per shipment.
- 2. These constraints have been identified by governmental and regional institutions, e.g. in the Lagos Plan of Action in 1980, by the PTA Secretariat, by the ECA Conferences of Ministers responsible for transport and communication, and by the Southern Africa Transport and Communica ions Commission (SATCC). Major programmes are at present planned or being implemented by the institutions involved, and special mention should be made of the programmes under the UN Transport and Communication Decade for Africa and the SATCC programmes, as well as PTA

- 3. activities whose main objectives are to enable the physical integration of the continent through a collective regional effort, with emphasis on improving, harmonizing, co-ordinating and integrating existing and future transport infrastructures and services. According to SATCC planning, this will contribute, by 1990, to solving the numerous probelms listed above and will facilitate economic and social co-operation, intra-African trade and internal collective self-reliance.
- 4. There might remein, however, constraints resulting from political conflicts and internal disorder which at present negatively influence intra-regional trade or make it even impossible. This is at present the case for rail and/or road connections in Mozambique and Angola. The Benguela rail road system connecting the Angolan port of Lobito, via southern Zaire, with Lusaka and the southeast African railway system (see Figure A.III.1) has not been operational since 1975, but is expected to reopen, political conditions permitting, by 1987. The disruption of rail connections in Mozambique has negatively influenced steel exports by ZISCO Steel, especially through the port of Maputo. Additional to the transport security problem, the congestion at the port of Maputo delayed loading of waiting ships, causing unnecessary increases in transport costs.
- 5. According to SATCC, measures are under way to improve port handling procedures in all major ports of its member countries. $\frac{1}{}$ SATCC assumes that present bottlenecks at ports would be overcome shortly so that no transport constraints would arise in this area. If also solutions to the rail security problems could be found, one can assume that the steel transport problems can be treated on merely economic grounds. Ethiopia encounters similar problems with its port, Massawa on the Red Sea, and the connection to Addis Ababa. The port of Djibouti and the railway connection to the Ethiopian capital, however, have traditionally been the most frequented transport route and is even cheaper than any other connection.

^{1/} Member countries of SATCC are the SADCC countries Angola, Botswana, Lesotho, Malawi, Mozambique, Swaziland, Tanzania, Zambia and Zimbabwe.

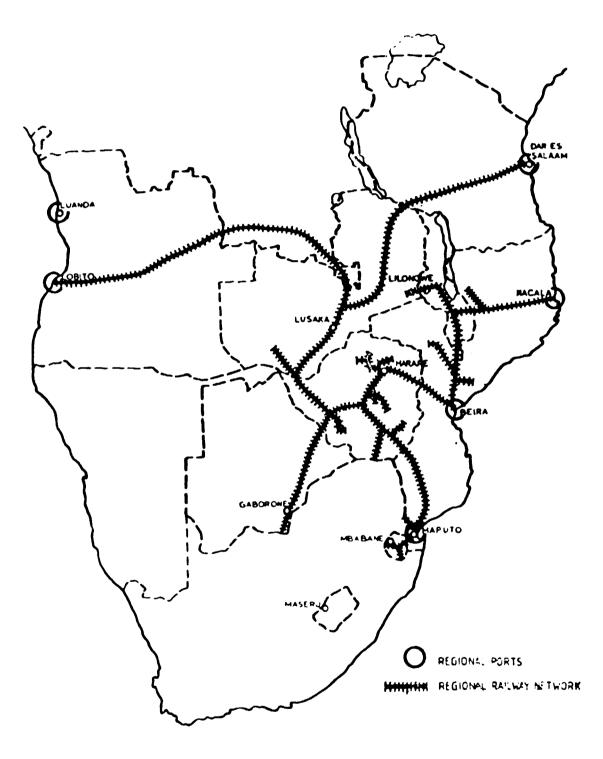


Figure A.III.1. SADCC regional ports and railway network

Source: SATCC, Docuemnt for the southern African Development Co-ordination Conference in Mbabane, 31 January - 31 February 1985.

LE LE LE LE LE LE

10.00

L 0 - L

1 111 11

 $I_{i}=I_{i} \cdot I_{i}$

(1, -1)

6. Infrastructure and cost-wise the countries of the sub-region may be divided into three main groups; island countries, coastal countries and landlocked countries. In the following a brief overview will be given of the transport situation of the various groups. The situation of Zimbabwe as the main steel producer and exporter will finally be dealt with in some detail.

Island countries

- 7. Island countries of the PTA region are Comoros, Madagascar, Mauritius and Seychelles. Their port facilities are in general adequate for handling their imports and exports. Their major constraint are generally the low frequency of ship calls and the low freight volumes per shipment which raises transport costs. Madagascar and Mauritius have their own shipping lines. The Mauritian shipping line has actively contributed to reducing freight rates, e.g. for the import of corn from US \$70 to US \$45 per tonne, and for imports of steel billets from Port Elizabeth from US \$45 to US \$36, that is a reduction of 20 per cent. The shipping line, however, is not inclined at present to call at Mozambiquean ports due to delays experienced at the port.
- 8. Madagascar traditionally imports steel from France. The major importers are affiliated to French companies, and Madagascar has a special financing scheme for imports from France. The maritime transport costs are 850 FF, which is equivalent to US\$91 per tonne. Port charges in Toamasima amount to approximately US\$40 per tonne of steel. They are composed as follows:

-	Handling charges at port:	\$ 4.40 per tonne
-	Equipment utilization at port:	\$17.50 per tonne
-	Port charges:	\$18.00 per tonne
	Total:	\$39.90 per tonne

9. Rail transport to Antananarivo amounts to \$65.50 per tonne, hence giving a total transport cost from France to Antananarivo of \$196.40 per tonne of steel. Furthermore, due to lack of foreign exchange, maintenance of the railway had been neglected in recent years. The government currently puts considerable emphasis on the rehabilitation of the railways.

Port	Areas served	Mode of transportation involved
Massawa	Ethiopia	Rail
Mogadishu	Djibouti	Local transport
	Ethiopia	Rail
Mombasa	Kenya	Rail/road
	Uganda	Rail/road (involves transshipment)
	(Rwanda)	Road via Uganda
	(Burundi)	Road via Uganda and Rwanda
Tanga	N. Tanzania	Rail/road
Dar-es-Salaam	Tanzania	Rail/road
	N. Malawi	Rail and road
	Zambia	Rail and rail/road (involves
		transshipment)
	Rwanda	Rail/road (involves transshipment)
	Burundi	Rail/ship (involves transshipment)
Nacala	N. Mozambique	Rail/road
	Malawi	Rail
	Zambia	Rail
Beira	Central Mozambique	Rail/road
	Malawi	Rail
	N. Zimbabwe	Rail
Maputo	S. Mozambique	Rail/road
	Swaziland	Rail
	S. Zimbabwe	Rail
Luanda	N. Angola	Rail/road
Benguela	Central Angola	Rail/road
Mocamedes	S. Angola	Rail/road

Table A.III.1: Main inter-regional/sub-regional transportation links

 Total landing costs in Mauritius are approximately \$11.20 per tonne of steel, consitsting of:

- landing charges:	\$8.80 per tonne
- marine services:	\$9.90 per tonne
- handling, carriages, weighing	
and bill formalities	\$1.50 per tonne.

Coastal countries

11. Seven countries in the sub-region have ocean port facilities, one on the Atlantic Ocean, the others on the Indian Ocean or Red Sea. There is a total of twelve major ports in these countries, of which six are also of importance for transshipments to and from landlocked countries in the sub region. Table A.III.1 summarizes the main links of the ports with the landlocked PTA member countries.

- 12. The port of Mombasa has traditionally served as a transshipment point for Uganda, Rwanda and Burundi. Congestion at the port and difficulties experienced in land transport through Uganda, as well as improvements in port operations in Dar es Salaam, are at present leading to a shift in routing steel imports to Rwanda and Burundi through Tanzania.
- 13. Port charges at Mombasa, according to information obtained from a steel importer in Rwanda, amount to the following:
 - terminal charges:
 wharfage and surveillance at dock:
 freight forwarders:
 Mombasa transit costs:
 \$ 0.70 per tonne
 \$ 9.00 per tonne
 \$ 6.40 per tonne
 - Handling and truck loading charges: \$10.10 per tonne

\$39.90 per tonne

- Total:

Together with \$77.50 per tonne maritime transport costs from Europe (Auvers, Belgium) this gives a total landing cost (including loading of truck for dispatching) of \$117.40 per tonne.

- 14. A similar cost breakdown for Dar-es-Salaam is not available. The total landing cost at this port amounts to \$114.80 per tonne of steel imported from Europe. In both cases the costs at the port of unloading appear very high.
- 15. Beira and Maputo are more important as export harbours than as import harbours as far as steel is concerned. The port charges for steel exports are \$15.60 per tonne of steel compared to \$9.00 per tonne at Port Elizabeth. It is expected that planned handling capacities of the ports (see Table A.III.2) would eliminate unfair competition situations at ports.

Landlocked countries

added to the second to the

16. The steel transport problems of the northern landlocked countries: Uganda, Rwanda and Burundi, differ from those of the southern ones: Swaziland, Lesotho, Botswana, Zambia and Zimbabwe insofar as the former group are very distant from basic iron and steel production. The southern landlocked countries are in the neighbourhood of ZISCO or, in the case of Lesotho and Swaziland, even closer to South African steel producers. The fact that Botswana, Lesotho and Swaziland form part of the Southern African Customs Union represents a sales parrier to steel products from Zimbabwe.

			(million p	ort tonnes	;)			••••••
	19	81	1985		199	0	200	0
	Present demand	Present capacity	Estimated damand	Planned capacity	Estimated demand	Planned capacity	Estimated demand	Planned capacity
Maputo/Matola								
Container (TEU)	6,100	15,000	30,000	42,000	90,000	120,000	170,000	170,000
General cargoa/	2.6	4.6	3.0	5.6	4.0	6.6	4.8	7.2
Dry bulk	2.0	3.1	2.5	4.5	6.2	8.5	16.9	
Liquid bulk	1.8	1.9	2.2	2.4	2.5	3.6	2.5	3.6
Beira							. <u>.</u>	
Containers (TEU) General cargo	4,450	8,000	13,600	15,000	48,000	50,000	100,000	120,000
RO/RO	1.1	1.6	1.8	2.0	2.6	3.0	2.9	3.5
Dry bulk	0.2	0.4	0.7	1.2	3.2	3.5	10.5	14.0
Liquid bulk	0.4	1.0	0.9	1.0	1.6	4.5	1.7	4.5
Nacala								· · · · ·
Containers (TEU)	14,300	18,000	20,000	36,000	36,000	50,000	60,000	67,500
General cargo <u>b</u> /	0.7	1.3	0.8	1.9	1.1	2.3	1.6	2.8
Dry bulk					0.2		0.2	
Liquid bulk	0.1	0.5	0.1	0.5	0.2	0.5	0.2	0.5
Dar-es-Salaam	<u> </u>	······································					. <u> </u>	·
Containers (TEU)	19,780		23,000	33,000	60,000	90,000	120,000	
General cargo <u>b</u> /	1.1	1.3	2.1	3.3	2.6	8.7	3.6	
Dry bulk	2.1		0.6		0.5		0.5	
Liquid bulk	n.a.		0.8		0.9		1.3	
Lobito	· · · · · ·							
Container (TEU)			2,600		19,200		60,000	
General cargo	0.4	1.5	0.3		0.4		0.8	
Dry bulk		0.4			0.4		0.5	
Liquid bulk	0.2	0.4	0.2		0.3		0.4	

Table A.III.2: Traffic demand and port capacity in 1981, 1985, 1990 and 2000

 \underline{a} / General cargo includes the tonnnage over container and steel wharfs.

 \underline{b} / General cargo includes the tonnnage in containers.

Source: SATCC, op.cit.

.

٠

.

- 17. Transport of steel products to the southern landlocked countries from Redcliff are, compared to the transport costs to the island and coastal (other than Mozambique) countries acceptable. Table A.III.3 gives trensport costs per tonne of steel from Redcliff to various destinations.
- 18. For Rwanda, road transport costs from Mombasa to Kigali amount to a total of \$185.70 per tonne of steel, and combined rail and road transport from Dar-es-Salaam amounts to \$122.50. This brings total landing costs of steel for imports from Europe through Mombasa to \$302.50 per tonne (\$117.40 and \$185.70) and for imports from Europe through Dar-es-Salaam to \$237.30.

	Transport costs			
	by rails	by road		
From Redcliff to	(US \$)	(US \$)		
Lusaka/Zambia	31.40	48.10		
Kabwe/Zambia	51.80			
Ndola/Zambia	57.70			
Mpulugu/Zambia		106.40		
Francistown/Botswana	9.80	38.50		
Matsapa/Swaziland	57.80			
Maseru/Lesotho	53.50			
Tanzanian railway start/Zambia	38.90	43.60		
Malawi Border	28.90			
Blantyre/Malawi		54.50		
Lilongwe/Malawi		83.30		

Table A.III.3: Transport costs from Redcliff (ZISCO steel works)to various distinations(in US \$)

Source: UNIDO team field work.

.....

19. Table A.III.4 gives a cost comparison of steel imports to Bujumbura between imports from Europe (via Dar-es-Salaam, by train to Kigoma and from Kigoma to Bujumbura by lake shipping) and imports from ZISCO steel (by truck to Mpulugu and by ship to Bujumbura). In both cases, the f.o.b. price of steel is \$255 per tonne. In the case of purchase from Belgium, the order size was around 300 tonnes of steel; in the case of purchase from ZISCO, it was a trial order of 1 truck load (31.4 tonnes).

Cost item	Supply from ZISCO	Anvers (Belgium)
Road transport Harare Mpulugu (including all charges)	132.80	
Lake shipment Mpulugu - Bujumbura	37.30	
Maritime transport Anvers - Dar-es Salaam (including port charges)		114.80
Loading/unloading of rail wagon and rail transport, Dar-es-Salaam - Kigoma		62.30
Lake shipment Kigoma - Bujumbura		10.70
Import licence, opening and financing of L/C	10.20 <u>1</u> /	33.20 ² /
Insurance (4.5 per cent)	11.50	11.50
Port charges in Bujumbura	8.20	8.20
Customs clearance	4.90	4.90
Customs duty	35.70	35.70
Tran sport from port to warehouse	8.20	8.20
Total landing costs		279.50

Table A.III.4:Comparison of total landing costs for steel supply fromBelgium and Zimbabwe to Bujumbura(in US \$ per tonne)

1/4 per cent of f.o.b. value

2/ 13 per cent of f.o.b. value due to long lead times

- 20. The comparison shows that even for only a small order and not including any duty reduction within the framework of PTA, the combined road and Lake Tanganyika ship transport is approximately \$31 cheaper than imports from Europe via Dar-es-Salaam, that is approximately 11 per cent. Additional reductions on transport costs should be achievable through:
 - economies of scale for bigger orders from ZISCO steel, both on road and on lake transport
 - combined rail/road transport from Redcliff to Mpulugu

1 11

- general contractual agreement with freight companies covering annual shipments.
- rapid deliveries of steel supplies so the customers have no need of financing their L/C (potential value: area imately 9 per cent of f.o.b. price).

11.0

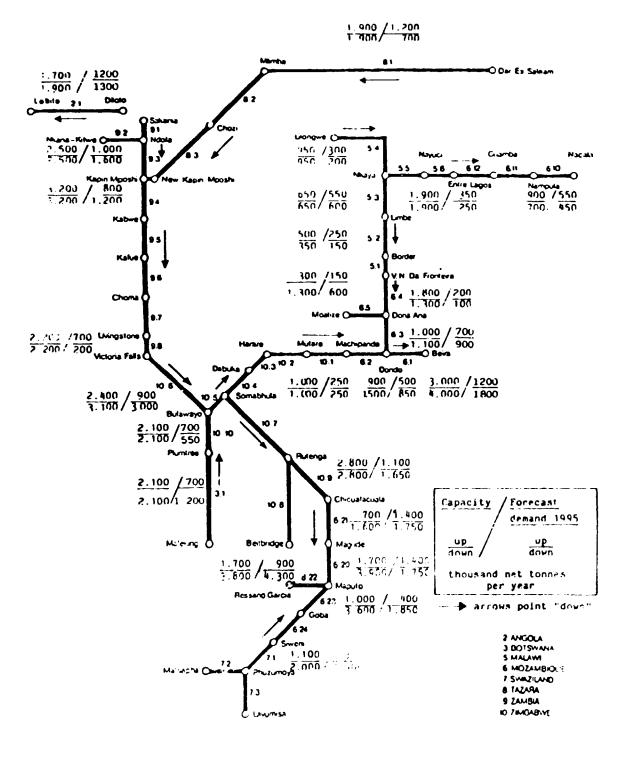
11.11.1

21. It can be expected that the Lake Tanganyika route will, under these conditions, be increasingly used for shipments to Burundi, northeastern Zaire, and possibly Rwanda and Kigoma. The planned extensions of the rail road system leads to the expectation that there will be no transport limitations caused by lack of transport capacity (see Figure A.III.2).

Zimbabwe

22. The transport costs and port charges for steel from the ZISCO steelworks in Redcliff are shown in Table A.III.5 for Beira, Maputo and Port Elizabeth. As can be seen, total f.o.b. costs are lowest for shipments through Beira but can, for certain types of steel be lower in Port Elizabeth than in Maputo. The insecurity at present existing with shipments through Mozambique unfortunately add another factor militating against the selection of a Mozambican port.

Table A.III.5: Transport and port charges for Zimbabwe steelexports through Southern African ports(US \$ per tonne of steel)


Transport from Redcliff to:	Transport costs	Port charges	Total f.o.b. costs
Beira	18.60 - 25.0 <u>ª</u> /	15.60	34.20-40.60
Maputo	28.20 - 38.10 <u>8</u> /	15.60	43.80 - 53.70
Port Elizabeth	38.80	9.0	47.80

Source: ZISCO and MANICA Freight Co. Ltd.

a/ Variations according to type of steel.

From the economic point of view, ZISCO should promote strongly the Beira route for its overseas exports.

- 23. Assuming that the ex-factory price of ZISCO steel is in the order of the f.o.b. price for European or South African steel and that the overall transport costs from Redcliff via Beira (\$34.20 to 40.60 per tonne) to the port of destination would have to be competitive, one arrives at the following conclusions:
 - total transport costs to Mauritius would be too nigh to compete with South African imports
 - the maximum allowable maritime transport costs from Beira to Mombasa or Dar-es-Salaam (maritime transport costs from Europe: \$77.50 per tonne) are \$36.90 to \$43.30 per tonne

Figure A.III.2: Line capacities and demand in 1996

(1000 tonnes)

Source: SATCC, op.cit.

- the maximum allowable maritime transport cost for supplies to Madagascar (maritime transport cost from Europe \$91 per tonne of steel) are \$50.40 to \$56.80 per tonne
- these maximum allowable transport cost could be increased if deliveries are so quick that customers have no need for financing their L/C (maximum additional allowance: 9 per cent of f.o.b. price of steel).
- 24. At present, transport costs from Maputo to Mombasa stand at \$45 per tonne. This is mainly due to low quantities per order imposed by restrictions in foreign exchange allocations in Kenya.
- 25. As for Madagascar, the transport cost margin should not represent an obstacle to exports. However, the foreign exchange situation of the country and the special financing arrangements with France might pose obstacles to increased exports.
- 26. The overall situation for ZISCO steel exports to Zambia, Malawi, Burundi, Tanzania, Rwanda and southern and eastern Zaire is seen to be positive as far as the transport and cost situation is concerned.
- 27. Unlike steel companies in industrialized countries, ZISCO has hardly any warehousing of steel products close to its customers outside of Zimbabwe. It is recommended that the possibility and the usefulness of establishing steel depots which allow a quicker response to customer orders be analyzed. The costs of warehousing generally can be recovered through higher sales prices for immediate deliveries. Establishing at least two depots, one in Beira and one in Zambia for the landlocked countries, and possibly for rail road exports to Tanzania, is recommended.
- 28. The customer services of ZISCO could be extended in two directions: first, in the area of transport logistics and secondly, in the area of technical customer services.
- 29. Most importers in the PTA member countries hardly have any substantial negotiating power for their relatively small imports of steel, both in terms of size of order and annual demand. As has been shown, transport costs are a major cost item limiting the competitiveness of steel products compared to other materials and limiting the competitiveness of ZISCO steel products in the region. The market potential, as well as the potential to increase ex works steel prices by ZISCO, would increase

considerably if rapid deliveries and reductions in transport costs could be achieved. ZISCO could probably make substantial gains by increasing its efforts in improving transport logistics coupled with negotiations with major transport enterprises to arrive at global annual or bi annual transport agreements for the total expected tonnage which would be shipped in several (monthly or bi-monthly) orders. This would also allow the transport companies to improve their planning of transport volume and reduce their operating costs. In the field of maritime transport, negotiations with existing sub-regional shipping lines could give substantial results. For example, Mauritian private and Malgache state owned shipping company, CMN indicated a strong interest for entering into such negotiations. CMN, for example, quoted to the UNIDO mission transport costs of \$39.50 per tonne of steel for shipments between Toamasina and the destinations on the coastline between Mombasa and Maputo.

- 30. Furthermore, ZISCO could strengthen the technical customer assistance service to better compete with those operated by steel companies in industrialized countries. This service should mainly be geared towards the emerging engineering industries in the region which would receive additional impetus for steel product applications, thus increasing the sales potential for ZISCO steel products. It would at the same time lead to an improved feed back to the production units at ZISCO hence fostering the company's market response.
- 31. The activities in both areas, i.e. transport logistics and technical customer services, are recommended to be undertaken by ZISCO and co-ordinated with the Minerals Marketing Corporation of Zimbabwe (MMCZ) responsible for the sales of ZISCO steel products in export markets. These activities are however of a technical nature requiring direct contact between ZISCO and customers.

ANNEX IV

Iron and steelmaking resources of the subregion

- This annex presents the iron and steelmaking resource situation in the Southern and Eastern African sub-region. It aims to serve as one of the inputs in any decision regarding the optimal locations of iron and steel projects in the sub-region.
- 2. The major resources discussed in terms of their availability and technical characteristics are:
 - Iron ore
 - Coal
 - Natural gas
 - The slag-forming and refractory minerals such as limestone, dolomite, silica and alumina bearing minerals, and the alloying minerals such as chrome, maganese, nickel and vanadium ores
 - Electricity (particularly hydro-electricity)
 - Ferrous scrap

The information and data contained herein were obtained during UNIDO missions to the countries of the sub-region, supplemented by other in-house data in UNIDO, s well as generally available published materials.

<u>Iron ore</u>

3. Table A.IV.1 shows, for the Eastern and Southern African sub-region, the national distribution of the major known iron ore resources (proven plus estimated). As per the geological reserve size criterion, the following are the most important potential sources:

Zimbabwe		3,738	million	tonnes
Angola	-	1,030	million	tonnes
Swaziland	-	707	million	tonnes
Madagascar		405	million	tonnes
Zambia		307	million	tonnes
Mozambique		250	million	tonnes

Country	Known deposits	Total estimated size of reserves	Technical characteristics of reserve
<u>, i i i i i i i i i i i i i i i i i i i</u>	i) Kassinga North deposit	420 million tons	Haematite; Fe=35.5-40.11%; SiO ₂ =48-42.3%; P=0.039-0.048%
Angola	ii) Kassinga South deposit	400 million tons	Haematite; Fe=39.2-41.95%; SiO ₂ =39.2- 41.6%; P=0.02-0.11%
	iii) Dongo deposit	200 million tons	Haematite/martite/magnetite
	iv) Kassala/Kitungo deposits	200 million tons	Quartzitic magnetite/haematite; Fe=32.3-35.3%; SiO ₂ =40.3-44.1%
Several small deposits in Ethiopia Northern, Western, and South-Western Ethiopia		Total of about 12.5 million tons	Low-grade ores not yet accurately characterized.
	i) Soalala deposit	385 million tons	Quartzite (with haematite/magnetite ratio of 2:1; Fe(total)=39.1%; SiO ₂ =42.9%
Madagascar	ii) Ambatovy-Analamay deposit	About 20 million tons	Fe=50%; SiO ₂ =9.75%; S=0.23%; Al ₂ O ₃ =7.2%; P ₂ O ₅ =0.10%
Mozambigue	Tete-Honde-Nampula deposits	Over 250 million tons	Fe = 30-60 per cent; Banded ironstones and injection-type igneous ores, very low in phosphorus and sulphur
Kenya	Small deposits at Mrima, Bukura, McCalder Mine, and Uyoma	About 42 million tons	Very low-grade ores (goethite; pyrites; and titaniferrous magnetite
Somalia	Bur and Kisimaio areas	170 million and 10 tons respectively	Very low-grade haematite/magnetite in the Bur area (38% Fe) and titaniferrous magnetite around Kisimaos

Table A-IV-1: Iron ore resources of the Eastern and Southern African sub-region

1 4

ч **н**

(continued)					
Country	Known deposits	Total estimated size of reserves	Technical characteristics of reserve		
Swaziland	 Northwestern Swaziland (Ngwenya Mine, Nottingham Peak, Iron Hill, Jaspilite, etc.) 	At least 62 million tons high-grade haematite (64.56% Fe) plus about 230 million tons of lower-grade ore	Low-grade ore analysis: Fe=34.57%; SiO ₂ =42.86%; Al ₂ O ₃ =1.93%		
	<pre>ii) Southwestern Swaziland (Maloma, Gege, Mkhondo, etc.)</pre>	Up to 415 million tons of low-grade magnetite-bearing ores	Fe=35.31%; SiO ₂ =44%; A1 ₂ O ₃ =1.26%		
Uganda	Muku, Sukulu and Kilembe deposits	About 30 million tons (Muku); 40 million tons (Sukulu); 1 million tons (Kilembe)	High-grade haematite (68% Fe) at Muku, magnetite at Sukulu (grading 62% Fe, 1.1% SiO ₂ , 2.6%P), and pyrite (from dumps) at Kilembe		
Tanzania	i) Liganga deposit	78 million tons at 48 per cent Fe	Titaniferrous magnetite, with chrome and vanadium contaminants; TiO ₂ =13%, V ₂ O ₅ =0.7%, Fe=50%; SiO ₂ =1.3%		
	ii) Chunya deposit	40 million tons	Fe=48.4%, TiO ₂ =12.8%; V ₂ OS=0.67%		
Zambia	Nambula, Pamba, Sanje, Namantombwa, and Changwe deposits	307 million tons	Haematite at Nambula and Sanje (Fe=57-67%); haematite/ magnetite at Pamba and Namantombwa (44-60% Fe); and magnetite at Changwe (62% Fe)		
Zimbabwe	The Beacon Tor and Kwe Kwe areas	3,738 million tons	Secondary high-grade concentrations of haematite and limonite, with average ore grade of 45-65% Fe and about 5% SiO ₂		

.

.

а **т**

Table A-IV-1: Iron ore resources of the Eastern and Southern African sub-region

4. Whereas it is important to know the absolute quantities of the above resources, any decision as to their exploitation for purposes of iron and steel production would be predicated on such considerations as the proportions that are economically extractable, the technical characteristics of each ore deposit (including the presence or otherwise of deleterious contaminants), and the physico chemical performance of the ore under pilot or commercial- scale operating conditions.

<u>Coal</u>

- 5. The importance of coal in commercial iron and steel production derives from its triple role as an ore reductant, process energy source, and alloying element (carbon donor). However, the well established blast furnace ironmaking process makes more stringent quality demands on coal, requiring only the metallurgical-grade (or coking) coals which are relatively less abundant world-wide. The newer (and perhaps more relevant to the Eastern and Southern African sub-region) direct reduction processes based on coal are capable of utilizing bituminous and sub bituminous coals which occur in greater quantitites in the sub-region.
- 6. Table A.IV.2 shows the distribution of the known coal resources of the sub-region. The largest occurrences are in Zimbabwe with an endowment of up to 27.6 billion tonnes of which at least 2.5 billion tonnes are proven and recoverable, Botswana (15.2 billion tonnes), Mozambique (8 billion tonnes), Tanzania (up to 1.5 billion tonnes), Swaziland (977 million tonnes), and Malawi (810 million tonnes).
- 7. About 90 per cent of these resources occur in the form of bituminous and sub-bituminous coals, generally unsuitable for direct conversion into coke of the quality consumed in blast furnace ironmaking. In fact, only Zimbabwe and Mozambique are endowed with sizable reserves of metallurgical coal, - as much as 2.5 billion and 3 billion tonnes respectively. At least 345 million tonnes of low volatile cokable anthracite is also known to occur in Swaziland.
- 8. While the decision as to the eventual use of any coal reserve for iron and steelmaking must depend on detailed geological, mining, physico- chemical, and pilot-scale performance considerations, it can be preliminarily stated that each of the following countries of the sub-region: Zimbabwe, Botswana, Mozambique, Tanzania, Swaziland, and Malawi, has adequate reserves to supply, for the long term, the requirements of a coal-based iron and steel project.

		Total estimated	
Country	Known deposits	size of reserves	Technical characteristics of reserve
	i) Morupule coal field	6.5 billion tons	High-ash medium-volatile bituminous steam coal. Typica
	ii) Southwest Moijabana	1.3 billion tons	run-of-mine analysis: Ash=25%; Volatiles=30%; Fixed
Botswana	iii) Mmamabula	3.0 billion tons	carbon=39-53%; sulphur=1-1.5%
	iv) Letlhakeng coal field	2.4 billion tons	
	v) Dutlwe coal field	2.0 billion tons	
Madagascar	Sakos coal field	At least 84 million tons recoverable in ore seam	Fixed carbon = 50%; Volatiles = 26.0%; Ash = 17.0%; Sulphur = 0.6%; Calorific value-6,500-6,900 Kcals/Kg
	i) Nyika-Chiweka Basin	130 million tons	Sub-bituminous and bituminous steam coals, with 15-30%
	ii) North Karonga Basin	400 million tons	ash and 1.4-2.4% sulphur
lelew i	iii) Chikwawa Basin	15 million tons	
	iv) Rukuru Basin	265 million tons	
	i) Lower zone	345 million tons proved, plus 500 million tons probable reserves	Moderate to good quality low-volatile to anthracite (cokable) coal, washable to 11% ash, 75% fixed carbon, 0.5% sulphur
Swaziland	ii) Upper zone (Both zones in Eastern Swaziland)	82 million tons proved, plus 50 million tons probable reserves	Inferior anthracite, washable to 21.7% ash, 69.8% fixed carbon, 1.54% sulphur
Mozam bique	i) Moatize basin	Up to 2 billion tons	Contains up to 70 million tons coking coal; ash content = 22.3%; fixed carbon=58.3%; sulphur=0.92%; calorific value=11,880 Btu/lb.
	ii) Mucanha-Vusi basin	3 billion tons	Cokeable coal with 80-90% fixed carbon; 0.78-1.58% sulphur; 8.40-15.61% ash.
	iii) Minjova area	Up to 3 billion tons	

•

٠

.... d Caubbana aub menion - 4

٠

4

Country	Known deposits	Total estimated size of reserves	Technical characteristics of reserve		
Tenzenia	Mchuchuma reserves	Proven reserves of 324 million tons (total reserves of 1.5 billion tons)	Steam coal; 20.8% ash; 25% volatiles; 54.2% fixed carbon 0.48% sulphur		
ambia Maamba reserves		90 million tons (proved plus speculative)	Steam coal; 16-20% ash; 1.2-2.0% sulphur		
Zimbabwe	i) Hwange reserves ii) Lubimbi coal field iii) Iusulu reserves	1,380 million tons 21,473 million tons 3,000 million tons	390 million tons of reserve is coking quality Contains 2,108 million tons of coking coal -		
	iv) Other reserves	2.100 million tons	Contains 37 million tons of coking coal		

Table A-IV-2: Coal resources of the Eastern and Southern African sub-region (continued)

4 •

•

•

- 9. Natural gas is an alternative hydrocarbon reductant for iron ore, particularly in terms of direct reduction processes. Although virtually all the countries of Eastern and Southern Africa have, at one time or the other, issued gas exploration and exploitation concessions to the multinational energy firms, only three countries, - Angola, Mozambique, and Tanzania, - have been shown to be endowed with commercially exploitable natural gas resources.
- 10. Angola's resources come from off-shore fields in Northern Angola both in the associated and non-associated forms, and the recoverable reserves occur as follows:

	<u>Associated</u> (in milli	<u>Non-associated</u> ion cu. m.)
Proved-developed reserves	1,330	0
Proved-undeveloped reserves	230	1,130
Probable/possible undeveloped reserves	5,890	54,930
	7,450	54,930

Total recoverable reserves amount to 62,380 million cubic metres, of which 88 per cent is non-associated.

- 11. In Mozambique, considerable exploration has been carried out on the Pande field in the Govuro District of Inhambane Province, about 30 km inland from the coast. The confirmed reserves in this field amount to 60 billion cubic metres.
- 12. In Tanzania, confirmed gas deposits occur off shore in Songo Songo island, about 240 km south of Dar-es Salaam. The proven reserves are estimated to be about 41 billion cubic metres, and are considered adequate to justify the implementation of a proposed 1,350 metric tonnes per day ammonia-urea fertilizer project, for which 17 billion cubic metres has been earmarked. Tanzania Petroleum Development Corporation (TPDC) owns and operates the field and plans to offer the gas at agreed prices to the KILAMCO fertilizer project.

13. Mention should also be made of the methane accumulation in the bottom strata of Lake Kivu on the Rwanda Zaire border. Unfortunately, the early exploitation of this reserve, which may hold a great potential for the industrial development of Rwanda, is beclouded by technical problems pertaining to the optimal extraction rate and technique which would not jeopardize the environment. There are also problems of reaching an agreement with Zaire on the best exploitation and marketing strategies for large scale methane production.

Other mineral resources

14. In addition to iron ore, coal, and natural gas, the other mineral resources consumed in iron and steelmaking are the slag formers, - limestone (CaCO₃), dolomite (CaCO₃.MgCO₃), fluorspar (CaF₂), and refractory clays containing silica and or alumina, - and the alloying minerals such as nickel, vanadium, chromium, cobalt, and manganese ores. The slag-formers are generally available in vast quantities and are, in fact, extensively exploited in most of the countries of Eastern and Southern Africa. As for the alloying minerals, large deposits of chrome ore occur in Zimbabwe, which alone accounts for more than 85 per cent of the world's reserves of high chrome ores. Zambia's cobalt reserves have been estimated to be about 350,000 tonnes, and significant reserves of nickel ore occur in Burundi (1.5 million tonnes), Zimbabwe (1.6 million tonnes), Botswana (600,000 tonnes) and Madagascar (330,000 tonnes).

Current and near-term exploitation of resources

15. <u>Angola</u>: Whereas Angola had been a significant iron ore producer and exporter until the mid 1970s (exports amounting to 6 million tonnes in 1974), production ceased in 1975, and efforts are now being made to reactivate and rehabilitate the Kassinga mine before the end of 1985, with a view to achieving an export target of 1.5 million tonnes per year of iron concentrate. It is planned that, coincident with the resumption of production, the rail line to Mocamedes would be re-opened.

Also, plans are being made to exploit the Kassala Kitungo deposit in Province Cuanza Norte. A three phase development programme has been mapped out (although without specific time horizons involving: 1) start up of mine exploitation to produce 69 70 per cent Fe super concentrate which would be slurry pumped to a 2.1 million tonnes per year pelletizing plant in Luanda; 2) installation of two direct reduced (sponge) iron units at Luanda, with a total capacity of 1.3 million tonnes per year, mainly for the export market; the options for a reductant would be between heavy fuel oil from the refinery at Luanda and natural gas piped to Luanda. The proposed plant site is near deep water and could provide a berth for up to 150,000 dwt vessels; 3) increasing the national steelmaking capacity to 150,000 tonnes per year on the basis of sponge iron and scrap.

- 16. Angola's natural gas resources are largely unexploited. As such, any gasdependent project proposed for Angola must consider the cost implications of a gas gathering network from the gas fields to the project site.
- 17. Botswana: The Morupule reserve is currently the only source of coal in Botswana. The colliery, near Palapye, is owned and operated by Morupule Colliery (Pty) Ltd., a 93 per cent-subsidiary of Anglo-American Corporation. It has a production capacity of 480,000 tonnes per year, and supplies coal to the Botswana Power Company, and also to BCL Ltd., a copper-nickel producer. It is planned to eventually increase the colliery's output capacity to 600,000 tonnes per year.

The other reserve that has attracted attention recently is the Kgaswe deposit. For its development, the Government of Botswana and Shell Coal Botswana Ltd. have recently signed a joint venture agreement, with the aim of producing, for the export market, up to 10 million tonnes of coal per year. However, a recent feasibility study has raised doubts as to the economics of international marketing of Botswanan coal. The cost of transportation to a deep-water port at Walvis Bay (Namibia), via a proposed 1,200 km Trans-Kalahari railway, would place the coal at a severe competitive disadvantage on the world market vis-a-vis coal from such other sources as Colombia.

18. <u>Madagascar</u>: A feasibility study is currently in progress in connection with the development of the Soalala iron ore deposits in northwestern Madagascar, about 80 km inland from the sea. But laboratory tests have already shown that the ores could be readily concentrated by gravimetric and magnetic techniques to produce a good sinter feed of 64 per cent Fe for export. The on-going study, however, is focused on the relative viabilities of ore concentration projects rated at 2 million and 1 million tonnes per year respectively. Some consideration is also being given to an integrated project that would, in addition to sinter feed, also produce pellets for a sponge iron plant, and incorporate direct reduction, steelmaking and steel rolling aspects.

Concurrent with the iron ore project, there are also plans to develop the Sakoa high-quality coal deposit located in southwestern Madagascar. One development scenario calls for the coal to be land-and-sea-transported (about 800 km maritime distance) to the port site of the Soalala project on Baie de Bally.

- 19. <u>Malawi</u>: There are no current plans to develop and exploit the Mindale iron ore deposit north of Blantyre. However, consideration is being given to small-scale mining of the coal deposits at Livingstonia for household and industrial use. As for the Chikawawa deposit, exploratory mapping (with French assistance) is expected to commence in late 1985. This deposit has the advantage of being as near as 20 km to a rail link, coupled with close proximity to the Blantyre industrial centre.
- 20. <u>Mozambique</u>: Beneficiation tests on iron ore samples taken from the Tete Honde Nampula deposits have yielded positive results, although the economic viability of any exploitation project would still have to be established by a formal feasibility study. Furthermore, an integral aspect of that study would relate to provision of now lacking but essential infrastructures and also to transportation logistics.

As for coal, there is only one active mine at Moatize in Tete province. It has a production capacity of 800,000 tonnes (run-of-mine) per year, although the 1981 output was 535,000 tonnes. Because of severe transportation problems which have adversely affected coal evacuation for export, the Moatize mine has recently stopped production. Nevertheless, active plans have been drawn up for a two-phased export oriented project based on Moatize coal, with an ultimate production capacity target of 6 million tonnes per year. The necessary study and financing arrangements for the 3 million tonnes/year first phase have been completed, and prospective partners for the second phase, involving an additional 3 million tonnes per year, have reportedly been identified. The project would involve not only mine development but also substantial investment in transportation infrastructures, including the rehabilitation of the Tete Beira railway and the installation of appropriate coal handling facilities at the port of Beira.

The Pande gas field which was discovered by a consortium of Gulf Oil Corporation and AMOCO in the 1960s was abandoned in 1971. However, the Mozambican government has recently revived its interest in developing the field and, to this end, a feasibility study has been commissioned for a large ammonia based fertilizer project. Other project ideas include a direct-reduction based steel plant, and a gas gathering and pipeline system to supply the power generation, household, and industrial gas demands of the Maputo area.

21. <u>Swaziland</u>: Production of iron ore ended in 1979. However, recent interest has been centred on developing some of the high-grade reserves such as Ngwenya. Experimental testing on the low-grade resources (eg. Mhlatane and Gege) indicates that some of the ores could be economically beneficiated to yield 65-68 per cent Fe concentrates.

Coal production in 1984 was estimated to be about 200,000 tonnes, all of which came from the lower-zone deposits of Eastern Swaziland. Plans have been drawn up to increase coal output, and a technical assistance agreement has been signed with the International Co-operation Agency of Japan, with a view to raising production by 500,000 tonnes per year for 25 years.

- 22. <u>Tanzania</u>: The current annual production of coal is relatively small (not more than 20,000 tonnes per year), and is confined to the Songwe Kiwira coal fields. Future development of Tanzania's coal resources is tied to the concurrent development of the Liganga iron ore deposits and the implementation of an integrated iron and steel project at Ruhuhu. As conceived, (following a feasibility study by LURGI), the project, estimated to cost \$US1,807.4 million (1982), would include:
 - . Development of the Liganga iron ore mine to produce 1.56 million tonnes per year of ore.
 - . Ore beneficiation plant rated at 900,000 tonnes per year of concentrate
 - . A pelletization plant with a capacity of 900,000 tonnes per year.
 - . Development of the Mchuchuma coal mine to produce 2.4 million tonnes per year run of mine coal.

- . An SL/RN direct reduction plant to produce 663,000 tonnes per year of sponge iron.
- Submerged arc furnace smelting to eleminate oxides of vanadium, titanium and chromium, followed by ladle refining to produce 554,000 tonnes per year of liquid steel which would be cast into slabs and/or blooms and rolled into sheets, strips and plates.
- Infrastructural facilities such as a 160 km road from Madaba through Ruhuhu, Liganga, and Mchuchuma, to Manda; a 320 km rail link between Mlimba and Manda via Madaba, Ruhuhu, Liganga and Mchuchuma; a 300 Mw coal-fired thermal power station; and townships at Liganga, Mchuchuma and Ruhuhu.

It had been proposed to site the DRI and steel complex at Ruhuhu. Although the initial capacity is put at 500,000 tonnes per year of steel products, commencing in 1990, the ultimate capacity rating is 1 million tonnes, expected to be a hieved after 2000.

Concelling natural gas, definite plans have been made for implementation of the Kilwa ammonia urea fertilizer project which, barring financing obstacles, could come on stream by 1987. There is no present intention to utilize Tanzania natural gas for sponge iron production.

23. Zambia: Although Zambia's iron ore reserves in the northwestern and central provinces me be as much as 307 million tonnes (Table A.IV.1), there are no presented as to utilize them, although the <u>Guideline for ...</u> the Fourth National Development Plan suggests the setting up of an indigenous resource based iron and steel industry during the Plan period. It is more likely, however, that the financial resources available would be devoted to a more modest scrap based mini steel mill.

Maamba Collieries Ltd. is the main coal producer with an output of about 490,000 tonnes in 1984. Although the proven and estimated reserves are put at up to 90 million tonnes, it is believed that the remaining recoverable reserve is in the region of 20 to 30 million tonnes. Furthermore, the collieries are not thought to have been operating economically over the last few years, in part because of the increasing stripping ratios now encountered, as well as problems associated with obtaining spare parts for machinery and equipment. There are plans afoot to rehabilitate the collieries, towards which the African Development Bank is to contribute US \$26 million. The World Bank has also extended a loan of US \$2.4 million for the procurement of spares. 24. <u>Zimbabwe</u>: Zimbabwe is endowed with large supplies of both iron ore and metallurgical coal. The present coal requirements of ZISCO Ltd. at Redcliff come by rail from the Hwange collieries in northwestern Zimbabwe. Its iron ore demand is met from company-owned facilities at Ripple Creek, and in Buchwa, 200 km to the south. Because Ripple Creek ore is of the friable limonitic variety, it is necessary to blend it with Buchwa ore, in the ratio of 25 per cent Buchwa:75 per cent Ripple Creek, prior to sintering in order to produce a good blast furnace feed.

ZISCO Ltd. is planning a comprehensive rehabilitation programme which would, in part, involve its ore supply operations. Specifically, it is planned to stop mining operations at Buchwa for a period of eight years in order to permit reclamatica of 3.5 million tonnes of accummulated ore fines. Ripple Creek will, in the meantime, continue its mining and ore processing operations at the rate of 105,000 tonnes per month.

Electricity resources

- 25. <u>Angola</u>: Angola is endowed with extensive hydro-electric resources, estimated to be over 11,000 Mw. However, as of 1980, the total installed electric generating capacity was only 523 Mw, of which 368 Mw was hydro-based. It can be seen therefore that a great potential exists for tapping Angola's power generation resources in support of future industrial development.
- 26. <u>Botswana</u>: As of 1981, Botswana's total installed electricity generation capacity was 79 Mw, with 60 Mw derived from the coal-fired plant at Selebi-Pitwe and 19 Mw from the coal-and-oil-fired plant at Gaborone. Botswana Power Corporation is responsible for generating and distributing electricity and (as of 1982), plans were afoot to build a 60 Mw or 90 Mw coal-fired station at Morupule. This was scheduled for a 1986 commissioning.
- 27. <u>Madagascar</u>: Madagascar possesses some hydroelectric potentials that need to be developed to serve any major development project. Total resources are estimated to be about 73,000 Mw. For the proposed iron and steel complex at Soalala, two sites have been identified at Ambodiroka and Mahavola respectively.

- in fact, Mozambique was an exporter of electricity to South Africa; however, recent disablement of the transmission line has cut off this valuable source of foreign exchange earnings.
- 29. <u>Swaziland</u>: Swaziland imports up to 70 per cent of its electricity demand from South Africa. Its internal generating capacity is only 20 Mw, although plans (whose implementation has been delayed due to escalating costs) had been drawn up for construction of a hydro station.
- 30. <u>Tanzania</u>: Tanzania has considerable hydro-electricity resources on the order of about 18,995 Mw, with partially exploited Rufiji River accounting for about 2,100 Mw. Current installed capacity is 369 Mw, of which about 280 Mw is hydro-based. The future orientation is towards increased exploitation of hydro-resources and, to this end, the Mtera hydro-scheme is now under construction, financed by the World Bank and the Kuwait Fund, among others. However, for the purpose of the proposed Ruhuhu steel complex, a 300 Mw coal-fired station is planned in an effort to make maximum use of indigenous coal resources.
- 31. <u>Zambia</u>: A net exporter of electricity since 1974, Zambia is considered self-sufficient. Generation and distribution are under the control of the Zambia Electricity Supply Corporation whose main hydro-stations are at Kafue Gorge, Kariba North Bank, and Victoria Falls. During the next plan period, it is proposed to expand rural electrification, extend the national transmission and distribution network, and embark on feasibility studies for new hydro-schemes. Potential hydro-electric resources are estimated at about 4,600 Mw.
- 32. <u>Zimbabwe</u>: By the end of 1986, Zimbabwe's installed generating capacity will be 2,145 Mw, consisting of the 1,266 Mw Kariba hydro complex (operated by the Central African Power Corporation which is jointly owned by Zimbabwe and Zambia), the Electricity Supply Commission's thermal stations at Hwange (480 Mw), Munyati (113 Mw), Zvishavane (27.5 Mw), and Mutare (16.5 Mw), and the Municipal Electricity Departments of Harare (128 Mw) and Bulawayo (114 Mw).

Additional vast hydro-resources are yet to be tapped, amounting to at least 4,566 Mw, including 2,500 Mw at Mupata Gorge, Devil's Gorge, Batoka, and Kariba South.

Ferrous scrap

- 33. Although scrap is not a "natural" resource per se, its importance derives from the fact that it is an important source of iron units, substituting for sponge iron and vice versa. In fact, the growth of the electric furnace process for steelmaking was dictated, in part, by the ready availability of ferrous scrap from industrial manufacturing processes, obsolescent equipment and appliances, and from other steelmaking and fabrication operations. Moreover, the need for process flexibility requires the availability of scrap in addition to sponge iron in arc furnace operations.
- 34. An accurate scrap inventory of the Eastern and Southern African sub-region has not yet been carried out, although there is a general concensus among steel producers that scrap supply deficiencies are already a fact of life, with no relief in sight. In fact, only in Angola has a scrap planning study been conducted, with the assistance of UNIDO.

In this case, a company, - SUCANOR, - has been established to collect, classify and press both ferrous and non ferrous scrap for use by local industries. SUCANOR commenced operations in February 1985, and by May was producing ferrous scrap at the rate of 1,000 tonnes per month. Total production in 1985 is projected to be 6,000 tonnes, rising to 10-12,000 tonnes in 1986, 20,000 tonnes in 1987, and 25,000 tonnes per year from 1988-94. After 1995, an annual production of 50,000 tonnes per year is envisaged.

- 35. Mention should also be made of the ship breaking activities carried out in Mauritius for the purpose of generating scrap for the export market. In spite of constraints imposed by available berthing and processing facilities, annual scrap production is now running at about 4,000 tonnes. It is planned to increase capacity substantially with a view to attaining 100,000 tonnes per year in the not too distant future.
- 36. Concerning the sub-region's scrap generation capability, it is to be noted that the rate is determined, in part, by the economic health of the sub-region (or a particular country) in general, and of the engineering

and metalworking sub-sector in particular. Accordingly, insofar as the engineering industries are under-developed in the sub-region, coupled with the fact that the economies of the various countries have been depressed since about 1982, it stands to reason that the aggreagte scrap generation rate has remained low.

In the absence of objective studies of the scrap sources in the various countries of the sub-region, the following are indicative and educated guesstimates of the annual scrap generation rates for some of the countries in the sub-region, exclusive of "home" scrap generated and consumed by operating steel plants:

Angola	-	6,000 tonnes (1985 target)
Botswana		1,500 tonnes
Burundi	-	1,000 tonnes
Ethiopia	-	5,000 tonnes
Kenya	-	25,000 tonnes
Lesotho		700 tonnes
Madagascar	_	1,500 tonnes
Malawi	-	750 tonnes
Mauritius		4,000 tonnes
Mozambique		3,000 tcnnes
Rwanda		1,000 tonnes
Somalia		2,500 tonnes
Swaziland		2,500 tonnes
Tanzania	-	10,000 tonnes
Uganda	-	3,500 tonnes
Zambia	-	10,000 tonnes
Zimbabwe	-	50,000 tonnes (Est.)
	Total	127,950 tonnes

ANNEX V

Indirect steel consumption

Introduction

- Indirect steel consumption refers to the the consumption of steel contained in final composite products as distinct from consumption of the basic steel products dealt with in this study. Clearly, there is an input/output relationship between the two forms of consumption; Basic steel products are needed to produce products involving indirect consumption of steel.
- 2. One major factor increasing the demand for basic steel in the sub region is the replacement of <u>imported</u> products containing steel by local production. The process whereby this takes place is a complex one, involving prominently the growth and development of the engineering sector, for which detailed data from the region is scarce.
- 3. This annex represents an attempt to shed some light on the process by focussing on the import and export of engineering sector products. Finally the estimate of steel contained in a selected range of imported products is commented upon.

Imports of engineering industry goods

4. Table A.V.1 contains the imports of engineering industry products to those PTA member countries for which data were available. The latest year for which data existed is indicated. The figures represent the imports to the countries as classified under SITC categories 69 (metal manufactures NES) and 7 (machinery and transport equipment). From the table it can be seen that engineering industry products constitute a significant proportion of total imports ranging from 22.2 per cent (Mauritius) to 40 per cent (Zambia). The relatively low figure for Mauritius can be explained by the fact that it also has to import the major portion of its food requirements, while the high proportion of Zambia finds its explanation in this country's capital goods and spare parts requirements for the mining industry.

.

5. Further details on the composition of imports of engineering industry products are given in tables A.V.2 (value) and A.V.3 (percentage breakdown). Comparability of the figures is, however, limited due to the fact that the individual countries use for their import statistics non-comparable formats, namely revision 1 (breakdown into 4 categoreis) and revision 2 (breakdown into 9 categories) of SITC. Accordingly, only countries with the same format can be compared directly.

	(thousand US \$)										
Country	Latest year for which data were available	Imports of engineering industry products	Total imports	hare of engineer industry produc in total impor (percentage							
Burundi	1980	46,806	167,2	24 28.0							
Ethiopia	1980	227,008	721,3	67 31.5							
Kenya	1979	948,554	2,390,0	95 39.7							
Madagascar	1980	783,926	2,589,93	39 30.3							
Malawi	1980	264,907	676,4	77 39.2							
Mauritius	1977	110,507	498,3	72 22.2							
Rwanda	1977	35,746	113,9	53 31.4							
Tanzania	1980	467,833	1,211,3	86 38.6							
Zambia	1978	251,396	628,3	11 40.0							
Zimbabwe	1979	234,459	939,8								

<u>Table A.V.1: Total imports and imports of engineering industry</u> products to PTA member countries

<u>Source</u>: 1981 Yearbook of International Trade Statistics, United Nations, 1983. 1/ Selected countries according to availability of data.

- 6. In the case of countries using revision 1 of SITC the most important category is non-electrical machinery (No. 71) with the exception of Burundi and Rwanda where metal manufactures NES (No. 69) and transport equipment (No. 73), respectively, has a higher share. The shares of category No. 71 lie in the 40 to 50 per cent range except for Burundi (28 per cent) and Rwanda (20 per cent). Transport equipment follows in second place (except in the cases of Burundi, Mauritius and Rwanda) with shares around the 30 per cent range (Rwanada: 40 per cent; Mauritius: 15 per cent). Electrical machinery (No.72) generally is in third place.
- 7. As to countries using revision 2 of SITC which allows a more detailed breakdown the most important item is road vehicles (No. 78) in most cases (exception: Madagascar where it is second placed). Of importance are also No. 72, machines for special industry; No. 69, metal manufactures

		Total import of capital										
Country	Year	gooda	69	71	72	73	74	75	76	77	78	79
Burundi ⁺	(1980)	46,806	13,420	12,911	7,791	12,684						
Ithiopia ^a	(1980)	227,908	25,738	7,452	65,546	2,954	14,969	2,327	8,551	18,377	73,568	3,527
Kenya ⁺	(1980)	783,926	58,573	333,785	110,140	281,439						
ledegescer*	(1980)	264,907	35,901	14,760	63,516	3,880	37,524	3,560	11,520	22,083	56,624	15,540
tal ewi *	(1980)	167,987	19,701	7,618	18,228	1,022	17,881	1,471	11,242	26,761	44,081	19,984
twanda ⁺	(1977)	35,746	8,960	6,983	5,838	13,964						
Jganda ⁺	(1976)	50,249	7,927	20,208	8,398	13,671						
Canzania ⁺	(1980)	467,833	38,552	224,267	64,642	140,372						
Cambia [*]	(1978)	251,396	25,590	105,997	49,465	70,345						
Limbabwe	(1979)	234,459	17,265	110,126	43,959	63,011						

Table A.V.2: Breakdown of capital goods imports by country (thousand US dollars)

Key to SITC categories

SITC (Rev 2)

SITC (Rev 1)

- 69 Metal manufactures NES
 70 Power generating equipment
- + 69 Metal menufactures NES
 - 71 Machinery non-electric
 - 72 Electrical machinery 73 - Transport equipment
- 73 Netalworking machinery 73
- 74 General industrial machinery NES
- 75 Office machines ADP equipment

72 - Machines for special industry

76 - Telecommunications, sound equipment

٠

•

- 77 Electrical machinery NES etc.
- 78 Road vehicles
- 79 Other transport equipment

Source: 1981 Yearbook of International Trade Statistics (UN 1983).

•

٠

(per cent)												
	SITC											
Country	Year	69 %	71 %	72 %	73 %	74 %	75 %	76 %	77 %	78 %	79 %	
Burundi ⁺	(1980)	28.7	27.6	16.6	27.1							
Ethiopia*	(1980)	11.3	3.28	28.9	1.3	6.59	1.02	3.76	8.09	32.4	1.55	
Kenya ⁺	(1980)	7.47	42.6	14.0	35.9							
Madagascar*	(1980)	13.5	5.51	23.9	1.46	14.2	1.34	4.35	8.34	20.9	5.87	
Malawi*	(1980)	11.7	4.53	10.8	0.6	10.6	0.87	6.69	15.9	26.2	11.9	
Mauritius ⁺	(1978)	15.6	44.9	24.9	14.5							
Rwanda ⁺	(1977)	25.1	19.5	16.3	39.1							
Tanza nia ⁺	(1980)	8.24	47.9	13.8	30.0							
Zambia ⁺	(1978)	10.2	42.2	19.7	27.9							
Zimbabwe ⁺	(1979)	7.36	46.9	18.7	26.9							

+

Table A.V.3: Breakdown of capital goods imports by country

Key to SITC categories

SITC (Rev 2)

.

- * 69 Metal manufactures NES
 - 70 Power generating equipment
 - 72 Machines for special industry
 - 73 Metalworking machinery
 - 74 General industrial machinery NES
 - 75 Office machines ADP equipment
 - 76 Telecommunications, sound equipment
 - 77 Electrical machinery NES etc.
 - 78 Road vehicles
 - 79 Other transport equipment

SITC (Rev 1)

- 69 Metal manufactures NES
- 71 Machinery non-electric

.

.

- 72 Electrical machinery
- 73 Transport equipment

Source: 1981 Yearbook of International Trade Statistics (UN 1983).

NES; No. 74, general industrial machinery NES; No. 27, electrical machinery; and No. 73, metal-working machinery. Of little important are power generating equipment (No. 7), office machines (No. 75), telecommunication equipment (No. 76) and transport equipment (No. 78) with the exception of Malawi.

8. A major item of imports of engineering industry products are spare parts and components. It is estimated that the annual demand of spare parts and components of the PTA member countries is at least in the order of magnitude of US \$1 billion based on an overall annual demand of sub-Saharan African countries of US \$5 billion. The lack of availability of these items due to foreign exchange constraints has been identified as a major cause of reduced capacity utilization in many PTA member countries. An improved availability of spare parts through their local/regional production and the reduction of foreign exchange requirements for purchases outside the region as well as the fact that parts and components generally can be produced in relatively small lot sizes should enhance their production within the region. Furthermore, the entry of small and medium scale industries within the region into the field of engineering industries would receive additional scope.

Exports of engineering industry goods

9. Most of the imports of engineering industry products goes into domestic consumption as exports of these products are marginal, as shown in tables A.V.4 (total exports and engineering industry product exports), A.V.5 (value of engineering industry product by SITC category industry product exports) and A.V.6 (percentage breakdown of engineering industry product exports by SITC category). Exports of engineering industry products achieved in no country a level above 0.1 per cent (except Zimbabwe with 0.3 per cent) of imports of the same goods in any of the countries considered (those countries mentioned in tables A.V.1, A.V.2 and A.V.3 but not mentioned in tables A.V.4, A.V.5 and A.V.6 did not have exports. Furthermore, the statistics give no indication whether exports consisted of locally manufactured or transit or remexported goods. The highest share of engineering industry product exports of total exports registers Zimbabwe with 4.0 per cent, followed by Kenya (3.8 per cent), Malawi (3.6 per cent) and Mauritius (3.4 per cent). These insignificant export figures reflect the lack of comparative advantage of African countries in the production of engineering industry products and the low degree of specialization of the engineering industries.

10. Exports of Kenya consisted mainly of transport equipment (40 per cent) followed by metal manufactures (25 per cent), non-electric machinery (23 per cent) and electric machinery (12 per cent). Mauritius exports mainly electrical machinery (88 per cent), Malawi - machines for special industry (41 per cent and road vehicles (35 per cent), Madagascar - transport equipment (88 per cent). Zimbabwe shows, like Kenya, relatively diversified exports of engineering industry products with a share of metal manufactures of 37 per cent, electrical machinery (25 per cent) non-electrical machinery (23 per cent) and transport equipment (14 per cent).

	Latest year for which data were available	exports of engineering industry	Total	Share of engineering industry products in total exports		
Country		products	exports			
Kenya	1980	52,805	1,389,000	3.8		
Madagascar	1980	8,608	386,517	2.2		
Malawi	1980	10,256	285,148	3.6		
Mauritius	1978	110,507	325,759	3.4		
Rwanda	1977	210	91,665	0.2		
Tanzania	1980	4,128	527,666	0.8		
Zambia	1978	2,510	869,217	0.3		
Zimbabwe	1979	45,483	1,128,835	4.0		

Table A.V.4: Total exports and engineering industry product exports ofselected PTA member countries(in thousand US \$)

Source: 1981 Yearbook of International Trade Statistics.

11. Many questions, however, remain to be answered regarding the export data recorded in these tables. In particular, more research is needed in order to establish the reasons behind capital goods exports where these are relatively substantial. In many cases presumably foreign capital and foreign technology have provided the basis for production and trade in capital goods, but even here it would be desirable to examine the extent of indigenous capabilities. Similarly, it would be of great interest to identify any locally-owned firms that are imitating, modifying and adapting foreign machinery for local markets and for exports, as has occurred in other developing count-ies. Furthermore, it is important to analyse the impact of government trade and incentive policies on the activities of the local capital goods sector. Such information would facilitate a more enlightening interpretation of the trade data that has been summarized here.

		Total export		Division							
Country	Latest Year	of capital goods	69	7	71	72	73	74	76	78	79
Kenya ⁺	(1980)	52,805	13,128	39,677	12,254	6,143	21,279				
Madagascar*	(1980)	8,606		8,606							7,570
Malawi*	(1980)	10,256		10,256	79	4,174		860		3,589	825
Mauritius ⁺	(1978)	11,209		11,209	1,009	9,843					
Rwanda ⁺	(1977)	210		210			210				
Tanzania ⁺	(1980)	4,128	1,207	2,921		2,698					
Zambia ⁺	(1978)	2,510		2,510							
Zimbabwe	(1979)	45,483	16,788	28,695	10,589	11,539	6,376				

Table A.V.5: Breakdown of capital goods exports, by SITC category, by country

(thousand US \$)

Key to SITC categories

SITC (Rev 2)

- 69 Motal manufactures NES
 - 7 Machines and transport equipment
 - 70 Power generating equipment
 - 72 Machines for special industry
 - 73 Metalworking machinery
 - 74 General industrial machinery NES
 - 75 Office machines ADP equipment
 - 76 Telecommunications, sound equipment

...

- 77 Electrical machinery NES etc.
- 78 Road vehicles
- 79 Other transport equipment

SITC (Rev 1)

- + 69 Metal manufactures NES
 - 7 Machines and transport equipment

٠

.

168

71 - Machinery non-electric

3

- 72 Electrical machinery
- 73 Transport equipment

Source: 1981 Yearbook of International Trade Statistics (UN 1983).

٠

Country		Total cap ex	ital goods ports	•						
	Latest		Division		72	73	74	76	78	79
	Year	69	7	71		73	/ 4			
Kenya ⁺	(1980)	24.86	75.14	23.21	11.63	40.29				
Madagascar*	(1980)		100.00							87.94
Malawi*	(1980)		100.00	0.77	40.69		8.39		34.99	8.04
Mauritius ⁺	(1978)		100.00	9.00	87.81					
Rwanda	(1977)		100.00			100.00				
Tazania ⁺	(1980)	29.24	70.76		65.36					
Zambia ⁺	(1978)		100.00							
Zimbabwe ⁺	(1979)	36.91	63.09	23.28	25.37	14.02				

+

Table A.V.6: Breakdown of capital goods exports, by SITC category, by country (per cent)

Key to SITC categories

SITC (Rev 2)

- * 69 Metal manufactures NES
 - 7 Machines and transport equipment
 - 70 Power generating equipment
 - 72 Machines for special industry
 - 73 Metalworking machinery
 - 74 General industrial machinery NES
 - 75 Office machines ADP equipment
 - 76 Telecommunications, sound equipment
 - 77 Electrical machinery NES etc.
 - 78 Road vehicles
 - 79 Other transport equipment

SITC (Rev 1)

- 69 Metal manufactures NES
- 7 Machines and transport equipment

.

- 71 Machinery non-electric
- 72 Electrical machinery
- 73 Transport equipment

- 169

Source: 1981 Yearbook of International Trade Statistics (UN 1983).

- 12. The engineering industry products have different contents of steel. The European Economic Commission has established coversion figures allowing to determine the quantity and value of steel content of different SITC product groups (see Annex VI). The accuracy of figures is such that it permits overall economic and industrial planning as well as the determination of the importance of certain process routes (e.g. milling of flat products) in the pre feasibility stage. The overall accuracy of this calculatory process, however, depends also on the quality of trade statistics. In the case of many PTA member countries these statistics are insufficiently detailed or incomplete.
- 13. To arrive at figures on indirect steel imports to the PTA member countries the available import statistics were compared with and partly amended by export statistics of major suoply countries of engineering industry products. A range of products were chosen by the criterion that it would be within reach for most of the countries to produce them locally over the next decade. The results of this statistical analysis and subsequent application of the conversion factor for steel content of the various product groups are presented by country in Volume II of this study (tables 5) and tables 4.8 and 4.9 in Chapter 4, Volume I.
- 14. The annual steel imports did decline from approximately 540,000 tonnes in 1981 to approximately 450,000 tonnes in 1983, apparently as a result of poor overall economic performance of the countries of the region and serious constraints on foreign exchange. Countries with the sharpest decline in indirect steel imports were Angola, Kenya and Tanzania, while some countries increased their indirect steel imports in these 3 years (e.g. Ethiopia, Burundi, Rwanda, Somalia). Over the three years 1981-83, the sub-region imported an average annual 490,000 tonnes of steel worth US\$1.7 billion. The SADCC countries' average indirect steel imports amounted to approximately 270,000 tonnes per annum valued of approximately US\$1 billion.
- 15. The most important single product group for indirect steel imports were road vehicles with a share of 52 per cent (1.e. approximately 260,000 tonnes per year in average), metal structures are in second place with 18 per cent (approximately 86,000 tonnes per annum), followed by agricultural machinery with 6 per cent (approximately 28,000 tonnes per

annum), tanks, vessels, bicycles with 4 per cent (approximately 22.000, 20,000 and 17,000 tonnes per annum respectively). These groups also represent the major portion of potential for import substitution through local or regional production. The accelerated import replacement case (see Annex VI and Chapter 5) assumes that approximately 300,000 tonnes steel contained in these imports can be replaced by local production by 1995.

As regards the share of countries in indirect steel .mports (Table 4.8) 16. it is noteworthy that Angola has the highest share (12 per cent), followed by Ehtiopia (11 per cent), Kenya and Somalia (10 per cent), Kenya (9 per cent), Mozambique (8 per cent), Zimbabwe (7 per cent), Tanzania and Zambia (6 per cent). It is noteworthy that the two most important countries for indirect steeel imports, Angola and Ethiopia, have a very small own engineering industry basis (cf. Table 4 of Annex I) contributing 3.5 or 2.0 per cent, respectively, to their manufacturing value added. Kenya, Zimbabwe and Zambia have on the other hand, a comparatively well advanced engineering industry sector. The fact that Kenya and Zimbabwe also export engineering industry products (see Table 6) permits the conclusion that these 2 countries come among the PTA member countries the closest to the engineering industry pattern of industrialized countries which is characterized by high imports and exports, besides production, of these goods.

THE FREE PROPERTY OF THE FEED ALL PROPERTY.

The second se

1 I I I

1 II II I

1.11.10

111

1 1

11

ANNEX VI

METHODOLOGY AND ASSUMPTIONS

Demand model

- 1. Steel consumption forecasting models have normally attempted to relate total crude steel consumption to general economic aggregates such as Gross Domestic Product (GDP). Although such models appear to provide a satisfactory statistical relationship, their prediction value has been poor: their apparently statisfactory performance during the 1960s, when both explained and explanatory variable were growing constantly, now appears to have been somewhat fortitous.
- 2. For the present study, it was seen as important to develop consumption projections by product group in order for market projections to be relevant to specific projects for re-rolling or finishing plants in various parts of the sub-region. Aggregation of the individual products was finally carried out to provide projections of crude steel requirements, billet requirements and the derived demand for ferrous inputs. The core of the projection methodology however deals with consumption of the individual products (listed e.g. in Table 5.2, Chapter 5). They are generally referred to in the study as "products", "rolled products" or "basic products".
- 3. Experience and observation suggest that GDP, and GDP per capita are not sufficiently specific explanatory variables to provide useful projections of steel consumption; As measures of total economic activity, these aggregates change in response to factors whose relevance to steel consumption may be peripheral. It was therefore decided to include as an additional explanatory variable, an aggregate which was more directly related to the consumption of specific types of steel; gross capital formation (GCF), for heavy angles, heavy plate, rail track and rail materials; value added in building and construction (ISIC 5) for bars and rods, and value added in the manufacturing sector (ISIC 3) for light angles, light plate, tinned and coateo plate, hoop and strip, wire and tubes. This variable is generally referred to as "special explanatory variable".
- As time series long enough to support such a methodology were not available it was decided to use a <u>cross sectional</u> linear regression analysis. The analysis assumed a link between the explained variable;

apparent steel consumption $(ASC)^{\frac{1}{2}}$ and the explanatory variables according to the formula ASC = a + b GDP + c GDP per capita + dx, where x is GCF, ISIC 5, or ISIC 3 depending on the steel item analyzed. To arrive at consumption forecasts, the estimated coefficients a, b, c and d were applied to the alternative forecasts for the explanatory variables (explained below).

- 5. The underlying idea for the methodology chosen is that the steel consumption of the various sectors will grow and change in response to changes in explanatory variables. Initially, at low development levels, the consumption may be heavily concentrated around reinforcement bars, etc. As the proportion of reinforced concrete structures grows, the fabrication of reinforcing mesh, and structural components in general, will increase. Local assembly of machinery and transport equipment will provide the opportunity for the local metalworking sector to provide components as original equipment, not merely for repair and maintenance.
- 6. At a certain level, as the metal using industries become more mature, steel intensity will begin to decline. Simple metalworking will be joined by the production of more sophisticated components with higher value added and thus lower steel intensity; eventually the domestic production of electric and electronic components for machinery and transport equipment will further depress the relationship between steel used and value added.
- 7. The cross sectional analysis chosen assumes that to a particular combination of explanatory variables belongs one and only one level and structure of steel consumption. In other words if, e.g. Malawi by 1995 had grown and developed to have exactly the same combination of explanatory variables as Zimbabwe had in 1981-83, its steel consumption in 1995 would be exactly equal to that of Zimbabwe in 1981-83. The justification for this is that structural differences decrease with economic growth and increasing industrialisation; As the industrial
- 1/ Defined as domestic production + imports exports. The difference between ASC and "real" consumption is movement in stocks. As steel is relatively easy to stock and as large purchases (imports) carry advantages in terms of discounts and transport costs, considerable movements in stocks and hence in ASC may occur in a single year. This is compensated for in the analysis by using three year averages.

.

1.10.11.1

The second se

111

The test of the second se

- 1/3 -

sector grows, economic structures usually become more uniform, the initial diverse emphasis on primary products tends to be obscured by a growing interindustry demand which is normally more similar from country to country. It is clear however, that two countries with equal levels of GDP, population and manufacturing value added may be quite different in economic structure and therefore have different levels and composition of steel consumption. A straightforward application of the projection method above would give an instantaneous change in demand and its composition from the initial one to a "standard" one given the projected levels of explanatory variables. Technically this is reflected in "residuals" or differences between actual steel consumption and the one that can be calculated from the projection equation above, using initial values of explanatory variables. The fact that changes do not take place instantaneously and that countries may over substantial time have consumption structures deviating from a "standard" one have both been catered for in the projections. Firstly, the use of . special regression technique $\frac{1}{}$ allowed for lasting differences in steel consumption structure for countries showing a substantial deviation from standard patterns at the outset. Secondly, for other countries, the residuals referred to above are assumed to be absorbed into the forecast over time, illustrating a gradual adjustment to "standard" consumption patterns. $\frac{2}{}$

- 8. It is hoped that this type of steel intensity model, 'inking individual steel products to specific user sectors, however crude, should provide a more sensitive predictive mechanism than the more general models, which are normally employed.
- 1/ An identifying "dummy variable" was used for the countries Zimbabwe (with an exceptionally well developed economy), Comoros, Djibouti, Seychelles, Swaziland (very small countries with special structure or level of steel consumption), Ethiopia and Tanzania (large countries with special consumption structure).

2/ It was assumed that residuals were phased out asymptotically by the formulae: $y_t = R1.17^{1-t}$ where yt is the remaining residual in year t, R is the residual initally, t is number of years since base period (year 1 = 1982). The coefficient 1.17 is chosen by the criteria that the remaining residual should be aliminated (under 1 per cent of the initial) after 30 years. This would give approximately 33 per cent of the residual remaining in 1990 and approximately 15 per cent in 1995.

The second se

1.1.1.1.1.

1

1.1.11

The quality of regression results

9. A standard measure for the extent to which the choice of explanatory variables and functional forms are supported by actual data is the multiple correlation coefficient or R^2 . A reasonable common sense explanation of R^2 is that it expresses the per cent of variation in the dependent variable (ASC) which may be explained by the explanatory variables (e.g. 1.00 = 100 per cent and 0.50 = 50 per cent). Table A.VI.1 lists the R^2 s by product.

Table A.VI.1: Multiple correlations by product

	<u>R</u> Z
Bars and rods	0.84
Angles, shapes, heavy + medium	0.99
Angles, shapes, light	0.98
Plates, heavy + medium	0.84
Plates, light	0.88
Tinned and coated plate	0.89
Hoop and strip	0.97
Rails and track material	0.88
Wire	0.92
Tubes	0.23
Weighted average $1/$	0.85

10. Overall, multiple correlation was high. With the exception of tube consumption which is notoriously hard to predict, the regression equations estimated explain 84 per cent to 99 per cent of the variation in steel consumption. As an illustration of overall explanation a weighted coefficient of 0.85 was arrived at by using the per cent distribution of steel products for the whole sub-region as weights. The reliability of the individual estimated coefficients may be gauged in terms of the probability of non-zero values for the estimates. An

Table A.VI.2:Estimated coefficients with 95 per centprobability of non-zero values

~			~	~	•		٠			
"	\sim	~	•	+	•	~	•	^ 1	+	
ັ	U	c	r	L		L		eı	ъ.	

Bars and rods	b
Angles, shapes, heavy	b
Angles, shapes, light/medium	b, d
Plates, heavy and medium	d
Plates, light	d
Tin and coated plate	d
Hoop and strip	-
Rails and track material	-
Wire	đ
Tubes	

<u>1</u>/ Weights equal to the percentage distribution of consumption in 1981-83 (see Table 5.2, Vol. I).

1.111.11

1.1.11

1 10 1 1

1

1 I I I I I I

and the second sec

1 11

n 1 i 1

arbitrary but fairly conventional method is to say that estimates are accepted if the probability for a non-zero value exceeds 95 per cent. The use of this criterion (see Table A.VI.2) gives an impression which at first sight appears to deviate from the uniformly high R^2 s as only one of two variables in each equation seem to meet this criterion.

11. This lack of significance for individual coefficients, together with relatively high R²s however means that although it is difficult to point out the <u>separate</u> effect on ASC of one single explanatory variable, the group of variables taken together quite successfully explains the variation in apparent steel consumption between countries. As this study aims at projecting ASC and not the influence of individual explanatory variables, the weakness of individual coefficient is therefore less crucial.

Alternative growth forecasts of explanatory variables

at the many states of

- 12. Considerable attention was paid to the development of forecasts for the explanatory variables GCF, ISIC 5 and ISIC 3, GDP and population. For population, projections by ECA were used. For the other variables the following overall framework was used:
- 13. A major constraint to economic growth in most of the countries of the sub-region in the short and medium term lies in the balance of payments. The PTA and SADCC are composed of countries at a stage of development where restrictions on import of capital goods and industrial inputs will have a direct negative effect on growth. Although alleviation of import dependence ranks highly among the economic objectives of the countries in the sub-region, balance of payments constraints are likely to affect the rate of economic growth all through the projection period.
- 14. The model framework used in the analysis takes the balance of payment constraint into consideration by calculating each individual country's capacity to import and by linking the increase in import capacity to real GDP growth. The starting point for macro projections were the most recent government view on economic growth prospects that was obtainable by country missions. In the absence of official plans or forecasts, predictions from other sources (mainly the World Bank) and mission

1 HI 1 I

10 1

10.1.1

assessments were used. If the balance of payments projections indicated an import capacity far below or above the forecasted GDP growth, adjustments in the macro variables were made.

15. Prices of main export commodities, the economic situation in main donor countries and the state of international financial markets will have a strong effect on the balance of payments of the countries in the subregion. This relation between external and domestic development was used to form three alternative sets of macro projections. The <u>base case</u> builds on World Bank commodity price forecasts¹ and the macro-economic assumptions which that forecast is based on.

The main assumptions for the 1985-95 period are:

- A real terms GDP growth of 3.3 per cent per annum in industrialized countries and 5.1 per cent per annum for developing countries;
- The relatively high growth rate would tend to reduce protectionism and lead to higher import by industrialized countries from the developing world;
- A concommittant increase in the developing countries abilities to repay their external debts;
- Towards the end of the decade, petroleum prices would again start increasing slowly;
- The rate of population growth in developing countries would decrease only slightly.
- 16. Over the last decade, two non-economic factors have had a dramatic effect on economic growth in most of the countries of the PTA sub-region: drought conditions and political and military unrest. The latter has in particular been a problem for the SADCC countries, all of which have suffered from South African destabilization measures.
- 17. For the coming decade the base case assumes some improvement in the situation, both with regard to drought and unrest. It was not, however, considered realistic to assume a complete end to unrest early in the coming decade. Although the drought period seems to have come to an end in most countries of the region, it is hardly likely that favourable climatic conditions will prevail in all countries throughout the decade.
- 1/ World Bank Report No. 814/84: Price Prospects for Major Primary Commodities, Sept. 1984. A list of price assumptions used may be found in Table A.V.4 at the back of this Annex.

11

--- ---

- 18. <u>The high growth case</u> differs from the base case in two ways: Firstly, the development of terms of trade for the countries in the sub-region is assumed to be more favourable than in the base case. Commodity export prices in current terms are assumed 10 per cent higher in 1990 and 20 per cent higher in 1995, whereas the increase in prices of manufactured goods imported into developing countries are kept at roughly the same level as in the base case. Also, the high growth case assumes that higher growth rates in the industrialized countries leads to an increased flow of ODA to African countries.
- 19. In the low growth case it is attempted against the same external economic background as in the base case, to illustrate the continuation and deepening of political and military unrest in the sub-region, unfavourable climatic conditions, leading to a virtual stagnation of economic growth in the sub- region and for some countries resulting in a decline in per capita GDP.

Additional information on macro-economic assumptions by country can be found under the country sections of Volume II.

Production forecasts

11110

- 20. The all important determinant for the future development of basic steel production in the region is government policy. In particular, what priority do the various governments attach to increasing steel production and what are the financial and human resources made available to expand production by solving the economic and technical problems of the sector?
- 21. The importance of policy factors in determining future production means that standard economic projection techniques are difficult to use. The method applied was to assess policies, plans and their implementation to arrive at the two key factors; capacity utilization of <u>existing</u> equipment and installation and utilization of <u>new</u> capacity.
- 22. On capacity utilization of existing equipment largely a normative approach was used; the overall rolling capacity figures in Table A.II.1 were taken as a starting point. For 1990 a 70 per cent capacity utilization was assumed on the grounds that increase in utilization is a major aim of all governments and that it technically ought to be possible

to reach this level. The distribution between products was assumed to be determined by local demand. Only Zimbabwe and Kenya were assumed to produce other items than bars and light/medium angles. In the case of under supply, it was assumed that the demand for bars and rods would be covered as far as possible and that the demand for angles would be covered by imports. In the case of over supply, some net exports was assumed for each of the two items. For 1995, a 80-90 per cent capacity utilization was assumed.

- 23. Missions to the various countries took stock of existing plans for <u>capacity expansion</u> (as at mid-85). The results appear in Table A.II.3. The assumed capacity utilizations depend on the starting year as compared to the projection year. High capacity utilization is only assumed to be reached 1-2 years after commissioning of new plant.
- 24. The gaps emerging between demand projections and the constrained of sub-regional supply of basic steel products were taken as indicators of the need to expand sub-regional production and trade of products as well as crude steel, a main objective being sub-regional self-sufficiency.

Indirect imports

- 25. As markets and industrial capabilities expand, a structural change in national steel demand is likely to take place. Countries will tend to start local production of the steel-based products formerly imported, in turn giving rise to greater demand for basic steel products. This effect is included in our cross sectional analysis to the extent that such inter-country differences in structure were present in our base period data.
- 26. To illustrate the point that such structural change is dependent on policies, an alternative projection was prepared, assuming that the initial (1981-83) indirect imports of certain goods would be built down by 30 per cent in 1990 and another 30 per cent in 1995. (See Table 2 in Vol. II). The resulting additional basic steel demand was assumed to be distributed on products according to the key given on page v, Vol. II.
- 27. Initial indirect imports were estimated using data from UN trade files.
 Missing country data were filled in by using data from trade partners.
 As only value figures existed for most countries, quantitites in terms of

ш т.

total import weight was estimated by using import unit values from countries where trade data permitted the calculation of such values. Finally, crude steel content was estimated by using the following coefficients developed by the ECA.

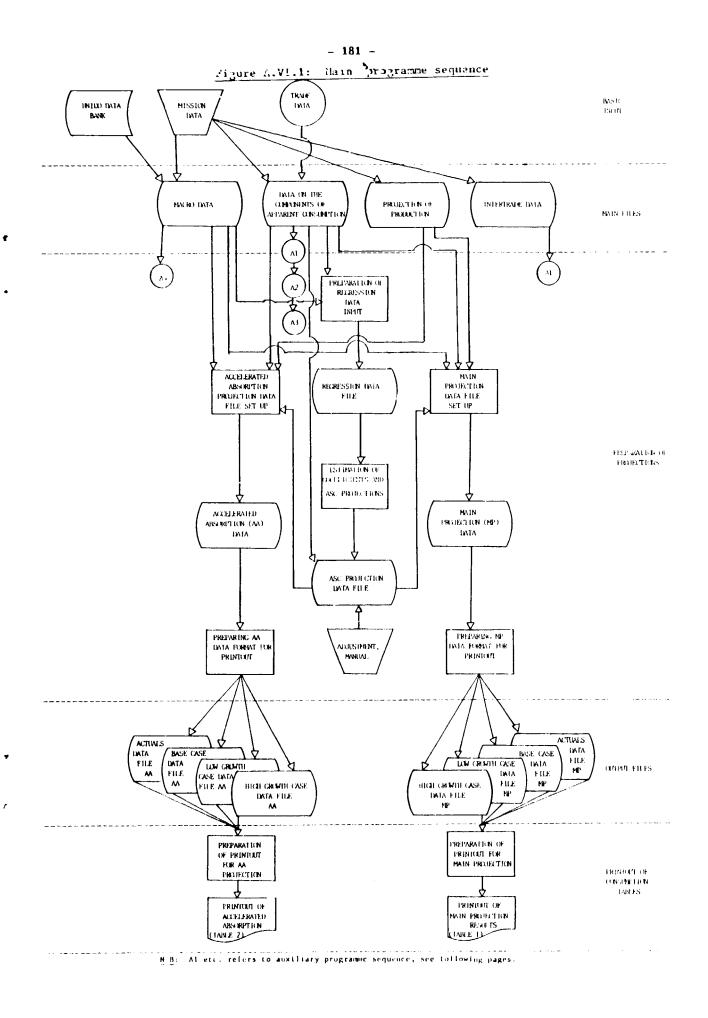
Table A.VI.3: Indirect imports to crude steelconversion coefficients

SITC <u>code</u>	SITC description	Crude steel requirements per tonne of products
691	Metal structures	1.48
692	Tanks, vessels, etc.	1.59
693	Wire products	1.33
694	Nails, nuts, bolts	1.41
695	Hand tools	1.69
696	Cutlery	1.40
697	Domestic utensils	1.08
712	Agricultural machinery, tr	actors 1.23
725	Domestic electrical equipm	<u>nent 1,00</u>
731	Rail, locomotives, etc.	1.00
732	Road vehicles	1.40
733	Bicycles, etc.	1.20
812	Heating, sanitary	1.50
821	Furniture	1.50

Computational framework

1 I I I

11.111


1.10.1.1

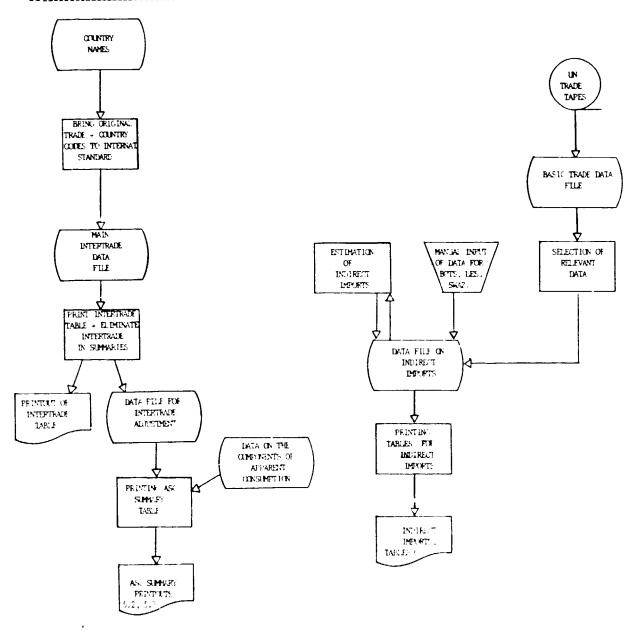
1 I II.

at a total a

11.1

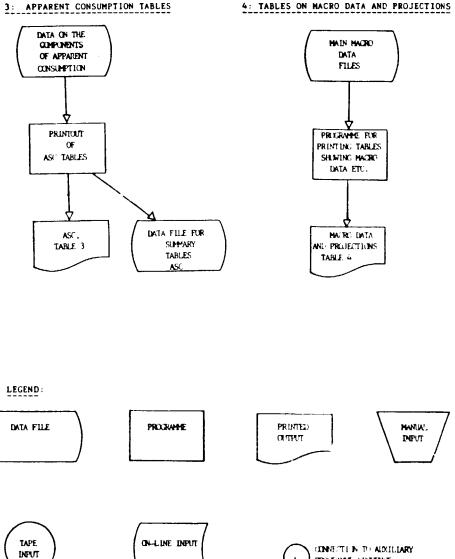
28. When dealing with 20 individual countries and a considerable amount of data for each, attention to data management problems and standardized data handling methods are required. Therefore, data storage and calculations were done on a mainframe computer. The main data files, providing the starting point of analysis, contain about 7,000 data entries originating partly from existing data systems and partly from data collected during missions. Figures A.VI.1 and A.VI.2 illustrate the most important steps involved in arriving at projection results and displaying detailed results and inputs. Input data are displayed in great detail so that it will be possible to check the correctness of input and the plausibility of macro projections. Projection results in direct printout tables are usually given to the nearest tonne. This is however not meant to indicate a corresponding level of accuracy. Analysis and conclusions are "rounded off" to take account of this spurious accuracy. A programming package called Statistical Analysis System (SAS) has been used throughout.

111 I I I I III


Figure A.VI.2: Auxiliary programme sequence

1 : CONSUMPTION SUMMARY, INTERTRADE

2: ESTIMATION OF INDIRECT STEEL IMPORTS


,

N

THE TELEVISION IN THE STATE STATE AND A DRAFT AND A

Figure A.VI.2: (continued)

CONTECTION TO ADDILLARY 1 PRO BAMME: SEQUENCE

1.11.1.1

29. The system is set up in such a way that it is easy to adjust inputs, to update and to change various assumptions. If it is considered desirable and feasible in terms of hardware compatibility, the whole system could be transferred to the PTA/SADCC secretariats. It would then constitute a framework for continuous monitoring and <u>ad hoc</u> analysis of the state of the iron and steel sector in the sub-region. Particularly, it would lend itself to the analysis of various national plans and policies in a sub-regional perspective.

Factors affecting the reliability of projections

- 30. The outcome of any projection will be affected by the choice of method, the statistical basis, assumptions made with regard to explanatory variables, and pure statistical uncertainty.
- 31. Firstly, the <u>choice of method</u> have been restricted by data availability and by the fact that 20 countries were involved. A careful sector by sector, product by product assessment could not be undertaken. As the consumption of steel in the relatively small economies of the sub-region tends to fluctuate rapidly in response to steel requirements for major development projects, a method taking the requirements of such projects into account would be preferred if the objective was to forecast steel consumption accurately country by country in the short term. This study, however, is occupied with longer term structural changes in the sector and although developed on a country by country basis, the main occupation is with sub-regional demand and its satisfaction.
- 32. The cross section analysis employed was to some extent dictated by availability of data. The method could be used because there was, in the sub-region, a sufficiently great variation between countries with respect to the variables involved. It is often held that demand projections based on cross section data better reflect structural changes in demand and thus are preferable in long term analysis.
- 33. Secondly, <u>the statistical basis</u> is affected by the time period for which data were available. 1981 to 1983 is by no means an ideal period, the economies of several countries being severely depressed. However, relatively normal economic circumstances did prevail in some countries of the sub-region (Botswana, Malawi, to a certain extent Zimbabwe). This

would make the underestimation of steel consumption in relation to explanatory variable less severe than would otherwise be the case. If it did occur, this underestimation would give rather low predictions for a period where explanatory variables rose rapidly. As such a rapid rise is not forecast, the downward bias of the projection would be limited.

- 34. Thirdly, whether the projected levels of <u>explanatory variables</u> will in fact occur, is a separate question. At the time when the general overall assumptions had to be made (late 1985), the present slump in oil prices was not foreseen. A continuation of a depressed oil market would substantially benefit net oil importers which constitute all countries in the sub-region except for Angola. How this would affect steel consumption over our projection period depends mainly on the sectoral pattern of growth and for what period the oil market remains depressed.
- 35. Experience indicates that a considerable improvement in the external balance will quickly be reflected as an improvement in the balance of government budgets. Plans for major building and construction projects (improvement of physical infrastructure etc.) having been shelved for lack of finance, can be revived and frequently leads to a boom in the construction industry. This would boost the consumption of several steel items but in particular, bars, rods and angles.
- 36. At present most comments on the oil markets go in the direction that the current extremely low price levels will not last in the longer run. Accepting this argument and given the experience outlined in para 35 above, one may expect a tendency to underestimation of the consumption of bars, rods and angles in the projection for 1990.
- 37. Fourthly, <u>statistical</u> measures of the reliability of estimated coefficients have been discussed above. Similar remarks apply to the projections based on the coefficients. The use of standard statistical techniques to measure reliability of estimates is made difficult by a certain degree of correlation between explanatory variables, technically referred to as multicollinearity.

1 III III I

DOE 10 T. T. T.

11 11

I I I II II II

at a fit there

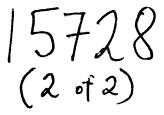
1.1.10.10

1 11

- 185 -

Table A.VI.4:	Commodity	prices an	d projections	in curre <u>nt</u>	dollars ^a /
				PRO IRCE LONG	

Commodity <u>ENERCY</u> Petroleum Coal	1981 34.3	1982	1983	A	1990 B-C		995 B-C
ENERGY Petroleum		1982	1983	•	B-C	; A	B-C
Petroleum	34.3						
Petroleum	34.3						
		33.2	29.1	53.6	48.7	95.6	79.1
	57	52	45	77.0	70	120.0	100
	-						
FOOD							
Coffee	282	309	290	528	480	826	689
Coros	208	174	212	306	279	517	431
Tes	202	193	233	390	355	618	515
Sugar	374	186	187	570	519 406	835 678	696 565
Beef	248	239	244	446	400	0/0	101
Bassage	401	374	429	535	487	728	607
Bananas Oranges	401	385	373	699	583	908	757
oranges	405	505					
Rice	483	293	277	616	560	867	723
Wheat	196	167	170	277	252	394	329
Maize	131	109	136	205	187	298	249
Grain sorghum	126	109	129	198	180	286	239
FATS AND OILS							1 101
Palm oil	571	445	501	99B	908	1,417	1,181
Coconut oil	570	464	730	1,147	1,043	1,624	1,354
Groundnut oil	1,043	585	711	1,243	1,130	1,774	1,479
Soyabean oil	507	447	527	1,025	932	1,470	1,225
C	288	245	282	468	426	678	565
Soyabeans Copra	379	314	496	743	676	1.053	878
Palm kernels	317	270	362	558	508	792	660
		-					
Groundnut meal	238	189	200	332	302	482	402
Soyabean meal	253	219	238	388	353	561	468
•							
NON-FOOD							
Cotton	185	160	185	313	285	463	386
Jute	279	285	300	484	440	715 378	596 315
Rubber	125	100	124	249	227 3,600	5,724	4,770
Tobacco	2,350	2,410	2,242	3,960	3,000	3,724	-,,,,,
TIMBER							
Logs (Lausa)	145	145	133	264	240	396	330
Logs (Sapelli)	213	176	161	326	297	490	409
Sawnwood	314	302	304	526	479	794	627
METALS AND MINERALS							
Copper	1,742	1,480	1,592	2,862	2,602	4,550	3,792
Tin	1,416	1,283	1,299	2,145	1,950	3,180	2,650
Nickel ^{b/}	7,560	7,055	7,055	9,918	9,017	•	12,307 11,350
Nickel ^{2/}	6,736	5,132	4,802	8,582	7,802	13,620	11,330
47d/	1 474	1 676	1,712	2,946	2,679	4,477	3,731
Aluminium ^{d/} Aluminiume/	1,676 1,338	1,676 1,061	1,/12	2,701	2,679	4,316	3,597
winmining.	1,320	1,001	A, 47J	-,/01	• • • • • • •	.,	
Lead	727	546	425	962	875	1,449	1,208
Zinc	846	745	764	1,621	1,474	2,385	1,988
Iron ore	24.3	25.9	23.8		36.3		
Bauzite	40.0	35.0	34.7		55.		11.1
Magenese ore	168	164	152	60.7	229	368	307
FERTILIZERS				A 2		110	99
Phosphate rock	50	42	37	81	74	118	574
Ures	216	159	135	454	413	688	375
TSP	161	138	135	309 526	281 479	450 778	375 649
DAP Potassium Chloride <u>f</u>	195 / 112	183 82	184 75	181	165	265	221
POTESSIUM Chiorides	111	01		101	101	207	


Manufacturing unit value (MVV) index, 1983 = 100 104.9 103.1 100.0 165.0 165.0 220.8 220.8

Source: World Bank, Economic Analysis and Projections Department, Commodity Studies and Projections Division: "A" projections are arrived at using 10 per cent higher price in 1990 and 20 per cent in 1995 except in the case of Manufacturing unit value index.

a/ Computed from unrounded data. b/ Canadian producer price

c/ Herchant morket price (dealer price as published by Metals Week).

- d/ US Producers' list price.
- g/ Transactions price: US shipment to Europe (Representative of free market prices) f/ Also known ar Muriate of Ectas)

Distr. RESTRICTED

UNIDO/IS/R.44/Add.1 30 July 1986

ENGLISH

A SURVEY OF THE IRON AND STEEL SECTOR IN PTA AND SADCC COUNTRIES*

VOL. II: COUNTRY DATA AND PROJECTIONS

Prepared by the

Regional and Country Studies Branch

Studies and Research Division

the state of the s

1 10 1

1 111 1

V.86-58784

1.1.1.1.1

1.10

1

1.1.1.1.10

at to too

UNITED NATIONS

INDUSTRIAL DEVELOPMENT ORGANIZATION

^{*} The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Mention of company names and commercial products does not imply the endorsement of the United Nations Industrial Development Organization (UNIDO). This document has been reproduced without formal editing.

TABLE OF CONTENTS

.

۶

<u>Country</u>						Page
	EXPLANATION	OF CONCEPTS	AND TABLES			ii
ANGOLA .	• •• ••					1
BOTSWANA .	• •• ••					9
BURUNDI .						17
COMOROS .		• • • •			•••••	25
DJIBOUTI .	• •• ••	••••••		•• ••	••••••	33
ETHIOPIA .		•••		••••••		41
KENYA .				•••••	••••••	49
LESOTHO .				•• ••	••••••	57
MADAGASCAR				•••	••••••	65
MALAWI .		•••••				73
MAURITIUS					•••••	81
MOZAMBIQUE			··· ·· ··	•• ••	•• ••	89
RWANDA .		••••••		••••••		98
SEYCHELLES	••••••			•• ••	••••••	106
SOMALIA .				•• ••	··· ··	114
SWAZILAND						122
TANZANIA .						130
UGANDA .				••••••		138
ZAMBIA .			··· ·· ·	·· ··	··· ··	146
ZIMBABWE .						155

Explanation of concepts and tables

Each country section in this volume contains: a map of the country, a short note on macro economic projections and the result of the projection exercise and tables 1 to 5. The purpose of this note is to explain the layout of the tables and the concepts used. It should be read in conjunction with Annex VI of Volume I. Some difference between data presented in tables 1, 2 and 3 are explained at the end of the note.

Table 1: Main projection

The table is divided into four main sections: A - D

Section A: "Macro variables data and base case projections", shows a summary of data (averages 1981-1983) and projections for the development of three macro variables from 1981-83 to 1990 and from 1990 to 1995. For example, for Angola the average GDP over 1981-1983 was US \$2,706 million at 1975 prices. In the <u>base case</u>, this was assumed to increase to US \$3.000 million in 1990 and US \$3,650 million in 1995. The population average for 1981-83 was 7.5 million, expected to increase to 9.2 million in 1990 and to 10.6 million in 1995. GDP per capita was US \$361 (at 1975 prices) as average for 1981-83, expected to decline to US \$326 in 1990 and increase to US \$344 in 1995.

The columns headed "Growth rates pct. p.a." gives per annum compound rates of growth for all macro variables in the two periods, 1981-83 to 1990 and 1990 to 1995. For the first period (with the heading "to 1990"), 1982 is taken as the starting year in percentage calculation. Using the example of Angola, the increase in GDP from US \$2,706 million in 1982 to US \$3,000 million in 1990 is calculated by $\sqrt[8]{3,000/2,706} = 1.01298$ 1.3 per cent per annum.

Section B shows the "Base case projections 1990-1995". For the product groups included in the survey, this section gives apparent consumption (CONS), production (PROD), imports (IMP) and exports (EXP) in the period 1981-83 and mr n base case projections for the years 1990 and 1995. In the example of Angola apparent consumption of bars and rods (including wire rods) was 9,068 tonnes (metric) as an average for 1981-1983. Consumption is, under the base

case, projected to increase to 16,657 tonnes in 1990 and 23,241 tonnes in 1995. The projection columns (1990, 1995) do not include exports, instead a "net import" column (equal to import minus export) is given. This column is the residual of independent projections of apparent consumption and production. A negative number under "net import"indicates an export potential.

The four rightmost columns give annual compound growth rates. The first two columns give growth rates for the consumption of individual steel items. The two next columns give growth rates of the special explanatory variable used in the demand projection for the product on that line. (See paragraph 3, Annex VI in Volume I). Again, using the table for Angola as an example, the consumption of bars and rods (including wire rods) is projected to increase 7.9 per cent per annum, from 1990 to 1995. (For all percentage calculations over the first period <u>1982</u>, being the middle point of 1981-83, is taken as the starting year). The special explanatory variable, which in the case of this item was value added in the building and construction sector is projected to grow by 3.0 per cent per annum in the first period and by 4.1 per cent per annum from 1990 to 1995.

The two last lines in section B are entitled "Crude equivalent steel" and "Billet equivalent". To arrive at the former, the need for crude steel (ingot) in order to produce the quantity given to each individual steel item in the column above was calculated. The following conversion coefficients, developed by the ECE were used:

<u>Item_name</u> Bars and rods	<u>SITC</u> 6730	Tonnes of crude steel required <u>to produce one tonne of the item</u> 1,271
Angles, shapes, heavy and medium	6734	1,271
Angles and shapes, light	6735	1,271
Plates, heavy and medium	6740	1,420
Plates, light	6743	1,359
Tinned and coated plate	6749	1,359
Hoop and strip	6750	1,228
Rails and railtrack materials	6760	1,300
Wire	6770	1,319
Tubes	6780	1,470

1.11.1.1.1

- iii -

Billet equivalent was calculated by using a conversion factor of 1.172 between billets and crude steel.

Using the Angola tables as an example, the calculated 1981-1983 crude steel production equivalent of 2825 is arrived at by taking production of bars and rods in that column and multiplying by the relevant coefficient. 2223 x 1,271 = 2825. Similarly the crude requirement for local production in 1990 is (17000 x 1,271) + (2000 x 1,271) = 24149. The corresponding Billet equivalents are arrived at by dividing the crude tonnages by 1.172. For 1981-83, 2825 x 1.172 = 2411 for 1990, 24149 x 1.17: = 23605.

Because of projected changes in the composition of consumption, growth rates of "Totals" which is the simple adding up of individual items and "Crude" or "Billets" equivalents come out slightly different. In the case of Angola, growth rates of the equivalents are slightly lower because of the relatively high proportion in total consumption and rapid growth of items 6730, 6734, 6735 which require relatively less crude steel (billets) per tonne of product.

It should be noted that "equivalents" are calculated for illustrative purposes only. The actual demands for billets and crude steel are constrained by rolling capacity and billet making capacity and are dealt with in Chapter 5 of Volume I.

Section C gives summary results of the projections based on higher growth of GDP and the "special" variable. The line of "Crude equivalents" is based on the same concept and arrived at in the same way as the similar line under Section B.

The other lines in this section give the macro assumptions used under this alternative in terms of annual compound growth rates which may be compared to the base case growth rates given under "Growth rates pct.p.c." under section A and the "Per cent growth in macro variables under section D.

For section D: "Low-growth case projections 1990 and 1995" the layout and concepts used are exactly the same as for section C.

THE FERRE

1 1 1

10 II I

IL LL I

1 I I

- iv -

Table 2: Projection with accelerated replacement of indirect steel imports

The tables and concepts in this table are largely the same as for Table 1 explained above. The difference lies in the assumption made about the extent to which the countries manage to produce locally (downstream) products with an iron and steel content which were imported in the base period. In the projections given in Table 1, the method applied implicitly assumes that the gradual replacement of indirect import takes place as indicated by the experience represented in the sample of countries. To examplify: the result of the regression analysis will take account of the replacement of indirect imports which data indicate, would result if a country grew from an initial size and structure resembling Lesotho's to one more like Zimbabwe's.

The "accelerated replacement case" is meant to illustrate a development with special measures taken to promote the local production of presently imported products containing steel. A crude assumption has been made: in 1990 an additional 30 per cent of the indirect imports (of the products listed in Table 4.10, Volume I) is assumed to materialize as direct steel consumption and in 1995 another 30 per cent. By 1995 then, it is assumed that 60 per cent of what was imported in 1981-83 of these steel-containing products will be produced locally. Again, using Angola as an example, the 1981-83 average indirect imports was 59,111 tonnes. Thirty per cent of this, or 17,733 tonnes is the difference between the 1990 total consumption under "accelerated replacement" (Table 2) and the 1990 total <u>without</u> "accelerated replacement" (Table 1).

The total additional demand for steel products resulting from accelerated replacement is broken down by product according to the following key, derived from the composition of consumption projected in 1990.

<u>SITC item</u>	Per cent of total additional direct consumption
6730	26.6
6734	6.6
6735	10.7
6740	6.5
6743	19.1
6749	16.2
6750	1.8
6760	2.6
6770	5.6
6780	4.3
Tot al	100.0

11.11.11.1

1.1

1 I I II I

1.1.1

all a set to be a set of the term of the set of the set

H I H I

- V --

In Angola, e.g., bars and rods consumption was projected at 16657 at 1990. The difference between this and the counterpart figure under "accelerated development" 21374 is 4717 which is 26.6 per cent of the total of 17733 as calculated above.

<u>Table 3</u> is divided in two sections. The upper section entitled A) "Components of apparent steel consumption by product (tonnes)" gives the complete base data used for the calculation of apparent consumption averages (the column APP CONS, AV 81-83). In Angola, e.g., the imñorts of Bars and rods (SITC 6732) in 1981 was 2,199 tonnes; in 1982, 2,515 tonnes and in 1983, 7,909 tonnes and the average for the period (2,199 + 7,909)/3 = 4,208.

The average <u>imports</u> of Bars and rods together with the $1981-8^3$ average for <u>production</u> make up average apparent steel consumption (ASC) (4,208 + 2,223 = 6,431). Exports of which Angola had none would have been deducted from the total.

Section B entitled "Demand/Supply balances for rolled products and ferrous metals" gives in <u>sub-section A</u> the calculation of ASC for each of the years 1981, 1982 and 1983 and the average for the three years. Note that the fourth line of that sub-section gives <u>net</u> imports (imports - exports).

In sub-section B, an attempt is made to look at a more complete picture of the origin of ferrous materials (metallics) consumed in the country by year and as an average for 1981-1983. The common denominator is crude steel weight. The conversion factors listed under the explanation of Table 2 above were applied to basic product tonnages. Using the example of Angola 1981, the table should be interpreted as follows:

The total crude equivalent of ferrous materials consumption for the year 1981 was 168,334 tonnes of which 166,031 was <u>net</u> imported and 2,302 came from local sources. (In all other cases than Zimbabwe raw materials from local sources would be scrap). Net import can be further broken down into ferrous materials for smelting (874). Net imports of billets (9), Net imports of rolled products (65292) and Indirect imports (99856). Supplies from "local sources" is calculated as the total of products rolled from billets, re-

0.111.1

L L II.

ALL FOR THE FORMER FORM

.....

the owner of the test.

- vi -

calculated to crude equivalents <u>minus</u> imported materials for smelting and <u>minus</u> imported billets. This figure may be compared with estimated annual local scrap generation (sub-section C) to give an impression of how much of the locally generated scrap is used. A negative figure for "C" may be due to imports of scrap or billets thich were not used for steelmaking or may be the result of inaccuracies in conversion coefficients, trade data or production data. Supply from local sources greatly exceeding estimated scrap generation may be due to similar statistical deficiencies and/or to the rundown of stocks of scrap.

<u>Table 4 contains "Macro data and projections</u>" used in the steel demand forecasting exercise. The table has three sections: the first (GDP and population) section contains national accounts aggregates and population.

The middle section of the table gives balance of payment figures, mostly in current national currency terms (exchange rates as in 1983). Balance of payments projections are used as a check on the reasonableness of the national accounts projections in the upper part of the table. A key variable is the capacity to imports. This is calculated as exports + other current items + net inflows of official development assistance + long term capital inflows accumulation of reserves (the latter includes errors and omissions).

Lesotho and Swaziland which have currencies circulating parallel with the South African Rand and being backed by that currency do not have a balance of payments problem in the traditional sense and the projections for these countries have therefore been dropped.

The lower section of the table gives annual compound growth rates for GDP and population for 1982, 1983 and for the base case projections between the base period and 1990, and between 1990 and 1995.

Table 5: Estimated indirect steel imports, 1981-1983 and averages

L L L L L

1 I I

1.01.01.0

This table contains estimates of values and quantities of the most important indirect steel imports where there could be a relatively high degree of replacement by local production over the next decade. Values reflect total cif import values for the product groups included, <u>not</u> only the value of steel content. Quantities (tonnes) reflect the estimated content of crude steel,

The second second

not the total weight of imports. For Angola, e.g., the import of metal structures in 1981 had a total value of about US\$36.3 million, (current prices) and the calculated crude steel content was 21,234 tonnes. The average import of metal structures for the three years 1981-1983 had a value of US \$26.1 million and a crude steel content of 16,057 tonnes constituting 27 per cent of total indirect steel imports to Angola over the period.

Estimates were based on UN trade data giving values of imports. The import value of several countries which had not reported their trade for one or more of the years in question were estimated by using the reported <u>export</u> figures for countries which <u>had</u> reported.

To arrive at total import <u>tonnages</u>, overall import unit values for each product group was estimated by using import statistics from those countries of the sub-region which had reported values <u>and</u> quantities. Total import weights calculated by applying these unit values were converted to crude steel content by using coefficients developed from a similar exercise by the ECA. For the countries Botswana, Lesotho and Swaziland, whose trade is reported together with that of South Africa in international statistics, it was impossible to use the method described above. Independent estimates have, therefore, been made. It was not possible however to break the total estimate down by product group. Totals for these countries are therefore shown under road vehicles, leading to a certain over- estimation of that item in subregional tables.

A note on differences between data in tables 1, 2 and 3

1. Differences in classification

THE CONTRACTOR

Differences in classification of steel items between the various sources of statistics (trade data and production data) and between countries made it necessary to add up certain items for the purpose of projections where a uniform classification was needed. The following aggregations were made:

111 1

- viii -

From		<u>To</u>	
Original item	<u>SITC</u>	Aggregate item	SITC
Wire rods Bars and rods	6731 6732	Bars and rods	6730
Plates, Heavy Plates, Medium	6741 6742	Plates Heavy and Medium	6740
Tinplate Other coated plate	6747 6748	Tin and Coated plate	6749
Rails Other railway tracks	6761 6762	Rails and materials	6750
Seamless tube Welded tubes	6782 6783	Tubes	6780

Note that the SITC codes in the right-hand column above do not tally with the standard SITC classification. For completeness and to allow checking by individual countries, the base data is nevertheless presented in the most disaggregated way in the tables of "Apparent steel consumption".

2. Adjustment for double counting in totals

Some of the products included in the study can be produced from other (also included) products. Light, coated and tinned plate may be produced from heavier plate, welded tubes from plate and wire from wire rod. If both <u>inputs</u> (e.g. wire rod), either produced in the country or imported, <u>and final products</u> (e.g. wire) are included in the total for the production columns, double counting will result. As it was considered important to show production totals which in terms of steel weight did not exaggerate total apparent consumption, but at the same time produce a correct apparent consumption figure by item, the following approach was taken: Production of light plate in the sub-region is negligible and therefore presents no problem; all items consumed are imported. Production columns, but included for the calculation of apparent consumption of these items (the right hand column). In Table 3, the

1 11

individual items in the columns for "production" and for "apparent consumption" will therefore not always add up to the totals shown. As it was found that the effect of such double counting was small with regard to total production and consumption, similar adjustments were not made in the tables showing projection results.

11 I.

The term of the terms of ter

1 III **1** I

1.1.1

1.1.1.0

111-1

٠

.

.

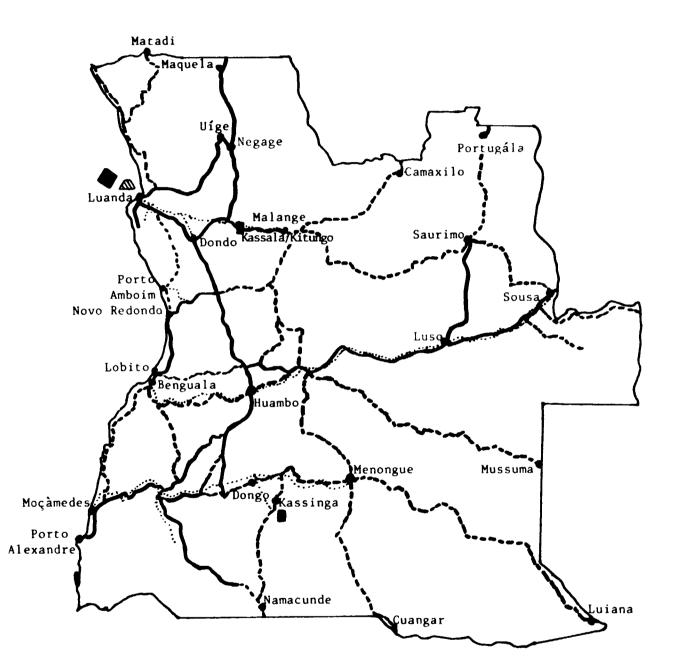
I IC CONTRACTOR

ANGOLA

4

•

٠


٠

Page

.

Map of	the country	•• ••	••	••	••	••	••	••	••	••	••	2
Country	notes	•• ••	••	••	••	••	••	••	••	••	••	3
Table 1	: Main proj	jection	••	••	••	••	••	••	••	••	••	4
	: Projectio										••	5
	: Section /										••	6
	: Section materials											7
Table 5	: Estimate	d indirec	t stee	1 imp	ports	, 1981	L-83	and av	verage	es	••	8

ANGOLA

LE LE MELLE

LEGER	D	
	 iron ore (emploited) iron ore (unemploite 	
•	<pre>- Ocel (emploited) - Ocel (unemploited)</pre>	
	 Netural ges Stael plant(s) 	
	 Bailways Improved reads Unimproved reads 	

ANGOLA

Macro economic projections for Angola are extremely difficult to make. The basic statistics are hard to obtain, there are major uncertainties regarding the price of oil, which constitutes 80-90 per cent of the country's exports, and military action going on in the country may have damaging effects on production.

Considering an annual 2.7 per cent <u>fall</u> in GDP from 1980 to 1983 and the decline in oil prices taking place early 1968 the GDP growth forecast at 1.3 per cent must be said to be optimistic. It is based on a healthy growth in the manufacturing sector. The faster growth in GDP of 4 per cent from 1990 to 1995 will require an improvement in oil prices.

The forecast for steel consumption growth shows an annual increase somewhat in excess of GDP for both periods, with generally higher increases for those types of steel most heavily used for manufacturing/engineering purposes. The decline in consumption of tubes and pipes is caused by the high recorded importation in 1981-1983 of piping for the oil industry. It is assumed that consumption reverts to a more normal level in the following years. The decline in hoop and strip consumption is due to a comparatively high initial (1981-83) level which will normalize over the years.

1 I I I I I

11 11 11

1 II I

1 1

1.1.1.1.1

1 I I I I

1 1 1 1 1

THE REPORT OF THE PARTY

ANGOLA TABLE 1, MAIN PROJECTION

. . .

-

-

-

Ξ

_

_

_

-

=

=

-

-

-

	A)	MACRO VARIABLES, DATA A	ND BASE CASE PROJ	ECTIONS	
MILL. LATION CAP	MILL.	ROJECTION 1990 POPU- GDP PER LATION CAPITA MILL. US\$ -75	PROJECTION GDP POPU- MILL. LATION US\$ -75 MILL.	1995 GDP PER CAPITA US\$ -75	<u>GROWTH RATES PCT. P.A.</u> GDP POP GDP/POP TO 1990- TO 1990- TO 1990- 19901995 19901995 1990 1995
2706 7.5 3	3000	9.2 326	3650 10.6	344	1.3 4.0 2.6 2.9 -1.3 1.1

B) BASE CASE PROJECTIONS 1990 AND 1995 , TONNES

AVERAGE 1981 -					983	1990				1995			GROWTH CONSUMPTION		H RATES PA. EXPL.VARIABLE	
PRODUCT NAME	SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	TO 1990	1990- 1995	1990	1990- 1995	
BARS AND RODS ANGLES SHP. H ANGLES SHP.,L PLATES, LIGHT TIN.& COAT.PL HOOP AND STRP RAILS+ MATER. WIRE TUBES	6734 6735 6740 6743 6749	9068 307 1301 3354 3137 1335 1641 836 393 19628	2223 0 0 0 0 0 0 0 0 0 0	6844 307 1301 3354 3137 1335 1641 836 393 19628	0 0	16657 911 1998 3564 5429 3794 998 1378 1690 10325	17000 2000 0 0 0 0 0 0 0 0 0	-343 911 -2 3564 5429 3794 998 1378 1690 10325	23241 1262 3109 4098 8698 6392 925 1795 2856 8277	24000 0 3500 0 0 0 0 0 0 0 0 0 0 0 0	-759 1262 -391 4098 8698 6392 925 1795 2856 8277	7.9 14.6 5.5 0.8 7.1 13.9 -6.4 20.0 -7.7	6.9 9.2 9.9 11.5 11.5 11.3	3252.44 552.54 552.55 555.555.55 5555	4363666366	
TUTALS		41000	2223	38777	0	46743	19000	27743	60653	27500	33153	1.7	5.3			
CRUDE EQUIVALE BILLET EQUVIVA		56883 48535	2825 2411	54056 46123	0	62887 53658	24149 20605	38738 33053	80825 68963	34952 29823	45872 39140	1.3 1.3	5.1 5.1			

-L

4

1

• •

	C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995												
	AVERAGE 1981 - 1983 1990 1990 CONS PROD IMP EXP CONS PROD IMPORT CONS PROD IMPORT												
CRUDE EQUIV. TONNES	56883	2825	54056	0	71603	24149	47454	100686	34952	65734	2.9	7.1	
PERCENT GROWTH IN MA AVERAGE 81-83 TO 1990 TO 1995		POPULATION GDP/CAP 2.6 0 2.9 2											

-			D)	LOW-GRO	WTH CASE	PROJEC	TIONS 1990	AND 199	5			
		RAGE 1	981 - 1 IMP	983 E XP	CONS	199 PROD	0 IMPORT	ĊŎNŜ	199 PROD	5 IMPORT	CONSUMPTION GROU BASE PERIOD - 19	WTH RATE PA. 990 1990-95
CRUDE EQUVIV. TONNE	56883	2825	54056	0	52109	24149	27960	56844	34952	21892	-1.1	1.8
PERCENI GROWTH IN MA AVERAGE 81-83 TO 1990 TO 1995	CRO VARI 1990	ABLES	-	GDP 0.5 2.2			ATION 2.6 2.9		-	CAPITA 3.0 0.6		

ANGOLA TABLE 2, PROJECTION WITH ACCELLERATED REPLACEMENT OF INDIRECT STEEL IMPORTS A) MACRO VARIABLES: DATA AND BASE CASE PROJECTIONS

.

- -

-

_

-

_

-

•

AVERAGE 1981 - 1983	PROJECTION 1990	PROJECTION 1995	GROWTH RATES PCT, P.A.
GDP POPU- GDP PER	GDP POPU- GDP PËR	GDP POPU- GDP PER	GDP POP GDP/POP
MILL. LATION CAPITA	MILL, LATION CAPITA	MILL. LATION CAPITA	TO 1990 TO 1990-TO 1990-
US\$ -75 MILL. US\$ -75	US\$ -75 MILL, US\$ -75	US\$ 75 MILL. US\$ 75	19901995 19901995 1990 1995
2706 7.5 361	3000 9.2 326	3650 10.6 344	1.3 4.0 2.6 2.9 -1.3 1.1

B) BASE CASE PROJECTIONS 1990 AND 1995, TUNNES

•

•

	AVERAGE 1981 - 1983					199	0		199	5		GROWT			
- PRODUCT_NAME \$11			IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1990	MPTION 1990- 1995	το 1990	VARIABLE 1990- 1995	
BARS AND RODS 673 ANGLES SHP. H 673 ANGLES SHP. L 673 PLATES, H.+ M 674 TIN.& COAT.PL 674 HOOP AND STRP 676 RAILS+ MATER. 676 WIRE 677 TUBES 678	34 30 35 130 40 3354 43 313 49 1335 40 1335 50 164 50 164 50 164 50 393 70 393	7 0 7 0 5 0 6 0 6 0	6844 307 1301 3354 3137 1335 1641 836 393 19628	0 • • • • • •	21374 2081 3895 4717 8816 6667 1317 1839 2683 11087	17000 2000 0 0 0 0 0 0 0 0 0	4374 2081 1895 4717 8816 6667 1317 1839 2683 11087	32675 3603 6940 15472 12137 1563 2717 4842 9802	24000 3500 0 0 0 0 0 0 0	8675 3603 3404 6403 15472 12137 1563 2717 4842 9802	11.3 27.00 14.7 13.8 22.3 -2.7 10.4 27.1 -6.9	8.9 12.1 12.39 12.5 12.5 12.5 12.5 12.5 12.5 12.5	325.14 55.15	43636 66366	- 0 -
TUTALS	4100	2223	38777	0	64476	19000	45476	96119	27500	68619	5.8	8.3			
CRUDE EQUIVALENT Billet Equvivalen	56883 IT 48539		54056 46123	0	86346 73674	24149 20605	62197 53069	127744 108996	34952 29823	92792 79174	5.4 5.4	8.1 8.1			

C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995												
		981 - 19 IMP	183 ÊXP	CONS	199 PROD	1990 <u>1995</u> CONSUMPTION GRO ROD IMPORT CONS PROD IMPORT BASE PERIOD-199					RATE PA 1990-95	
- CRUDE EQUIV. TONNES	56883	2825	54056	0	95064	24149	70915	147607	34952	112654	6.6	9.2
PERCENT GROWTH IN MACRO VARIABLES GDP AVERAGE 81-83 TO 1990 2.7 1990 TO 1995 5.1							ATION 2.6 2.9			PITA 0.1 2.2		

			LOV	-GROWTH	CASE PR	OJECTIC	NS 1990 A	ND 1995				
	AV CONS	ERAGE 1 PROD	981 - 19 IMP	983 EXP	CONS	199 PROD	90 IMPORT	CONS	199 PROD	15 IMPORT	CONSUMPTION GROW BASE PERIOD - 19	TH RATE PA, 90 1990-95
CRUDE EQUVIV. TONNE	56883	2825	54056	O	75570	24149	51421	103763	34952	68811	3.6	6.5
PERCENT GROWTH IN MA AVERAGE 81-83 TO 1990 TO 1995		IABLES	- (SDP 0.5 2.2			ATION 2.6 2.9		GDP	CAPITA 3.0 0.6		

5

RODUCT NAME SITC		IMPC	DRTS	AVER	1981	PRODUCT: 1982	ION 1983		1981	EXPORT 1982 1	S 983	AVER	APP, (AV 81-	
	1981	1982	1983	2637	1901	1902	1900							26
ARE RODS 6731 BARS AND RODS 6732	3170 2199	2042 2515	2698 7909	4208	2670	1670	2330	2223	3				l	64 3
NGLES SHP.HM 6734 NGLES SHPL 6735	200 982	200 800	520 2122	307 1301										13
LATES, HEAVY 6741 LATES, MED. 6742	4645 119	558 749	2735 1255	2646 708									:	з.
INPLATES, LIGHT 6743	1359 19	278	7773 218	3137 79										1:
THER COAT P 6748	939 2221	2210 1954	620 748	1256 1641										10
AILS 6761	453	1622 57	8 365	545 292										
IKE 6770		592 17327	227 5514	393 16903										6
EAMLESS TUBE 6782 WELDED TUBES 6783		2814	3805	2725										2
OTALS	46096	33718	36517	38777	2670	1670	2330	222	3 0	0	0	() 4	1
	B)	DEMAND	SUPPLY	BALANCES	FOR ROLL	ED PRODU	CTS AN	D FERROUS				·		
	D PRODUCTS					1	CTS_AN 981	1982	1983	AVERA	GE			
APP	D PRODUCTS ARENT CONSUMP					1					GE			1
APP OF WHI	D PRODUCTS ARENT CONSUMP	TION OF I	ROLLED PR	ODUCTS		1	981 8766 6	1982	1983	AVERA	GE			. –
APP OF WHI B FERROU TOT	D PRODUCTS ARENT CONSUMP CH: NET IMPORTS O LOCAL PRODUCT S MATERIALS C AL	TION OF I F ROLLED ION	ROLLED PR PRODUCTS	ODUCTS		4609 267	981 8766 6	1982 35388 33718	1983 38847 36517	AVERA 41000 38777	GE			
APP OF WHI B FERROU TOT SU	D PRODUCTS ARENT CONSUMP CH; NET IMPORTS O LOCAL PRODUCT S MATERIALS C AL PPLIED FROM; ET IMPORTS	TION OF I F ROLLED ION	ROLLED PR PRODUCTS	ODUCTS		4609 267 16	981 8766 6 0	1982 35388 33718 1670	1983 38847 36517 2330	AVERA 41000 38777 2223	GE			
APP OF WHI B FERROU TOT SU	D PRODUCTS ARENT CONSUMP CH; NET IMPORTS O LOCAL PRODUCT S MATERIALS C AL PPLIED FROM; ET IMPORTS OF WHICH; FERROUS MA	TION OF P F ROLLED ION ONSUMPTIO	ROLLED PR PRODUCTS ON (CRUDE FOR SMELT	ODUCTS EQUIVAL	ENTS) 1)	4609 267 16 16 87	981 8766 6 0 8334 6031 4	1982 35388 33718 1670 101432 101869 1697	1983 38847 365:7 2330 91265 89968 1465	AVE RA 41000 38777 2223 120344 119290 1345	GE			
APP OF WHI B FERROU TOT SU	D PRODUCTS ARENT CONSUMP CH; NET IMPORTS O LOCAL PRODUCT S MATERIALS C AL PPLIED FROM; ET IMPORTS OF WHICH; FERROUS MA NET IMPORT	TION OF I F ROLLED ION ONSUMPTIO	ROLLED PR PRODUCTS ON (CRUDE FOR SMELT LETS ETC LED PRODU	EQUIVAL	ENTS) 1) . SCRAP	1' 4609 267 16 16 87 6529	981 8766 6 0 8334 6031 4 9 2	1982 35388 33718 1670 101432 101869 1697 733 47270	1983 38847 36517 2330 91265 89968 1465 18 49609	AVERA 41000 38777 2223 120344 119290 1345 253 54057	GE			
APP OF WHI B FERROU TOT SU	D PRODUCTS ARENT CONSUMP CH; NET IMPORTS O LOCAL PRODUCT S MATERIALS C AL PPLIED FROM; ET IMPORTS OF WHICH; FERROUS MA	TION OF I F ROLLED ION ONSUMPTIO	ROLLED PR PRODUCTS ON (CRUDE FOR SMELT LETS ETC LED PRODU	EQUIVAL	ENTS) 1) . SCRAP	1) 4609 267 16 16 87 6529 9985	981 8766 6 0 8334 6031 4 9 2 6	1982 35388 33718 1670 101432 101869 1697 733 47270 52169	1983 38847 36517 2330 91265 89968 1465 18 49609 38876	AVERA 41000 38777 2223 120344 119290 1345 253 54057 63634	GE			
APP OF WHI B FERROU TOT SU 1 N	D PRODUCTS ARENT CONSUMP CH; NET IMPORTS O LOCAL PRODUCT S MATERIALS C AL PPLIED FROM; ET IMPORTS OF WHICH; FERROUS MA NET IMPORT	TION OF F ROLLED ION ONSUMPTIO TERIALS S OF BIL S OF BIL RODUCTS	ROLLED PR PRODUCTS ON (CRUDE FOR SMELT LETS ETC LED PRODU (INDIRECT	EQUIVAL	ENTS) 1) . SCRAP	1) 4609 267 16 16 87 6529 9985	981 8766 6 0 8334 6031 4 9 2	1982 35388 33718 1670 101432 101869 1697 733 47270	1983 38847 36517 2330 91265 89968 1465 18 49609 38876 1297	AVERA 41000 38777 2223 120344 119290 1345 253 54057 63634 1054	GE			

-_

4

.

INFURI, EXPORT AND PRODUCTION FIGURES ARE CONVERTED TO CRUDE STEEL EQUIVALENTS (INGUIS) BISING COLFICIENTED ROLLED ROLLED PRODUCTS, ECE. "FERROUS MATERIALS FROM LOCAL SOURCES" ARE CALCULATED BY APPLYING THESE COEFFICIENTS TO LOCALLY PRODUCED ROLLED PRODUCTS, ARRIVING AT BILLET EQUVIVALENTS, AND THEN DEDUCTING NET IMPORTS OF BILLETS AND "FERROUS MATERIALS FOR SMELTING". DIFFERENCES BETWEEN THIS AND THE FIGURE GIVEN FOR SCRAP GENERATION MAY BE DUE TO INACCURACIES IN CONVERSION FACTORS, STOCKS OF SCRAP OR DEFICIENCIES IN THE EXTERNAL TRADE STATISTICS USED

0

+

٠

ł

Ξ

-

-

-

=

-

=

-

=

-

•

.

MACRO DATA AND PROJECTIONS

• •

YEAR	ACTUALS, ESTIMATES 1981 1982 1983	PROJECTIONS 1990 1990 1990 1995 1995 1995 HIGH BASE LOW HIGH BASE LOW
GDP. AND POPULATION POPULATION (MILL) GDP PER CAPITA US\$ (1975) GDP MILL US\$ (1975) GROSS CAP FORM MILL US\$ (1975) BLDG AND CONSTR V.A MILL US\$ (1975) MANUFACTURING V.A. MILL US\$ (1975)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.2 9.2 9.2 10.6 10.6 10.6 364.1 326.1 282.6 405.7 344.3 273.6 3350.0 3000.0 2600.0 4300.0 3650.0 2900 0 330.0 290.0 270.0 420.0 340.0 300.0 100.0 90.0 270.0 420.0 340.0 300.0 190.0 170.0 140.0 280.0 230.0 160.0
BALANCE OF PAYMENTS BILLION KZ. EXPORTS OTHER CURRENT ITEMS ODA, NET INFLOWS LONG TERM CAPITAL,NET RESERVES ERRORS AND OMISSIONS IMPORTS, IMPORT CAPACITY	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
GROWTH RATES PER CENT P.A. POPULATION GDP. CONSTANT US\$ (1975)	<u>1981-82</u> 1 <u>982-83</u> 2.5 2.5 -4.3 -1.4	<u>1981-1983 TO BASE 1990</u> <u>BASE 1990-1995</u> 2.6 1.9 4.0

- 7 -

-										
-										
-										
_										
-										
- =										
- - TABLE 5.	ESTIMATED INDIRECT STEEL IMPORTS	. 1981 -	1983 AND	AVE	RAGES	VALUE	S IN 1000	US \$. QU/	ANTITIES	IN TONNES.
	COUNTRY ANGOLA	•								
-				YE	AR					AVERAGE TONNES
-		198	81	19	82	19	83	AVERAGE	AVERAGE	IN PCT
		VALUE	QUANTITY	VALUE	QUANTITY	VALUE	QUANTITY		TONNES	OF TOTAL
	SITC									
Ē	MET. STRUCTURES	36313	21234	23804	12650	18132	14287	26083	16057	
-	TANKS, VESSELS, ETC	7825	6455	3016		3113	2057	4651	3383	
-	WIRE PRODUCTS	3040	2077	1847	1398	938	806	1942	1427	
-	NAILS, NUTS, BOLTS	1732	1022	1520		932		1395	598	
-	HAND TOOLS	18614	2098	53 59		5081	526	9685		
l	CUTLERY	22 50		679		1298		1409	97	
l	DOM. UTENSILS	4113		721	115	1385		2073	524	
-	AGR.MACH., TRACTORS	18765		11191	2396	4343		11433	2840 587	
-	DOM. EL. EQUIPMENT	6730		933		462		2708 7939		
=	RAIL. LOCOS ETC.	4280		11934		7302		109893		
-	ROAD VEHICLES	178823		93331		57524				
-	BICYCLES ETC.	12582		3955		3952 2178		3337		
	HEATING, SANITARY	6156		1678		4023		8806		
	FURNITURE	18088		4307		110963		198183		
-	τοται	319311	92668	164275	40047	110903	30017			

•

•

1 8

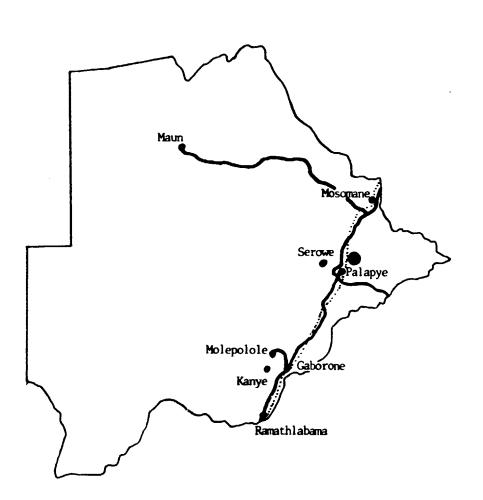
Т

• •

BOTSWANA

Page

Map of	the	country	•••	••	••	••	••	••	••	••	••	••	••	10
Country	y no	tes	••	•••	••	••	•••	••	••	••	••	••	••	11
Table	1: 1	Main pro	oject	tion	••	••	••	••	••	••	••	••	••	12
		Projecti											••	13
		Section											••	14
		Section terials												15
Table	5:	Estimate	ed in	ndirec	t ste	el imp	orts	, 198	1-83	and av	verage	es	••	16


(

٠

•

•

)

LECEPD Iron ore (exploited) Coal (exploited)

٠

.

.

BOTSWANA

~

.

BOTSWANA

1.11.1

11

THE F

Botswana is a very small economy. The major sectors mining, and cattle farming are very large in relation to the rest of the economy. Therefore changes in investment and production in these sectors will have a major effect on the total economy and lead to apparent dramatic chang 3 in growth rates.

Economic projects are based on the Sixth National Development Plan (NDP6) 1985-1991. The projection rate of 4.8 per cent annually for the period 1985-91, together with the strong increases registered over 1983 and 1984 (15-20 per cent) gives the overall of 6.8 used in the base case. The fall of the population growth rate from the rather high rate of 4.2 per cent per annum to a more normal level of 3.4 per cent per 1990-1995 is as projected by the ECA.

After a rather high level of mining based investment and construction activities in the base period, NDP6 envisages a period where the manufacturing sector becomes increasingly important as a growth factor. This is reflected in steel forecasts by declines in plate demand in the period to 1990 and then increase as the manufacturing sector grows much faster than GDP.

Under the high growth scenario, steel consumption could grow by 4.8 and 7.6 in the periods up to 1990 and 1990-1995 respectively. Under low growth, consumption may actually decline up to 1990 and only increase by 1 per cent to 1995.

11.1.1

1.1.1.1

111 11 11

1 1 11

11 11 1

11 111

- 11 -

BOTSWANA TABLE 1, MAIN PROJECTION

•

•

=

_

-

Ξ

=

-. Ξ

l

=

=

= -

Ξ Ξ.

Ξ

	A) MACRU VARIABLES, DATA	A AND BASE CASE PROJECTIONS	
AVERAGE 1981 - 1983 GDP - FOPU GDP PER Mill LATION CAPITA US\$ -75 MILL US\$ -75	PROJECTION 1990 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1995 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	GROWTH RATES PCT. P.A. GDP POP GDP/POP TO 1990- TO 1990- TO 1990- 19901995 19901995 1990 1995
709 0.8 844	1200 1.2 1026	1400 1.4 1014	6.8 3.1 4.2 3.4 2.5 -0.2

B) BASE CASE PROJECTIONS 1990 AND 1995 , TONNES

AVERAGE 1981 - 19				83		0		1995			GROWTH RATES PA. CONSUMPTION EXPL.VARIABLE				
PRODUCT NAME SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	TO 1990	1990- 1995	<u>то</u> 1 9 90	1990- 1995	
BARS AND RUDS 6730 ANGLES SHP. H 6734 ANGLES SHP.,L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743 TIN.& COAT.PL 6749 HOUP AND STRP 6750 RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	2743 633 2644 2967 3217 2788 152 861 259 2492		2743 633 2644 2967 3217 2788 152 861 259 2492		8122 1182 3576 2571 916 911 507 944 380 4498		8122 1182 3576 2571 916 911 507 944 380 4498	9856 1341 4281 2051 1870 600 967 480 4706	00000000000000000000000000000000000000	9856 1341 4281 3094 2051 1870 600 967 480 4706	14.5 8.1 3.8 -1.8 -13 16.3 1.2 4.9 7.7	3.6 2.7 3.5 17.5 4.5 9 0.8 0 4.9	-0.6 -0.7 6.1 -0.7 6.1 6.1 -0.7 6.1 -0.7 6.1	4.6 1.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	- 12 -
TOTALS	18755		18755		23608	0	23608	29246	0	29246	2.9	4.4			
CRUDE EQUIVALENT Biglet Equivivalent	25336 21618	•	25336 21618	:	31467 26849	0 0	31467 26849	38939 33225	0 0	38939 33225	2.7 2.7	4.4 4.4			

C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995

AVERAGE 1	981 - 1983	1990	1995	CONSUMPTION GROWTH RATE PA.			
CONS PROD	IMP EXP	CONS PROD IMPORT	CONS PROD IMPORT	BASE PERIOD-1990 1990-95			
CRUDE EQUIV. TONNES 25336 .	25336 .	36858 0 36858	53237 0 53237	4.8 7.6			
PERCENT GROWTH IN MACRO VARIABLES	GDP	POPULATION	GDP/CAPITA				
AVERAGE 81-83 TO 1990	7.9	4.2	3.5				
1990 TO 1995	4.2	3.4	0.9				

D) LOW-GROWTH CASE PROJECTIONS 1990 AND 1995

<u>AVERAGE 1</u>	981 <u>-1983</u>	1990	1995	<u>CONSUMPTION GROWTH RATE PA.</u>			
CONS PROD	IMP EXP	CONS PROD IMPORT	CONS PROD IMPORT	BASE PERIOD - 1990 1990-95			
CRUDE EQUVIV. TONNE 25336 .	25336 .	24609 0 24609	25892 0 25892	-0.4 1.0			
PERCENT GROWTH IN MACRO VARIABLES	GDP	POPULATION	GDP/CAPITA				
AVERAGE 81-83 TO 1990	4.4	4.2	0.2				
1990 TO 1995	1.0	3.4	-2.3				

.

TABLE 2, PROJECTION WITH ACCELLERATED REPLACEMENT OF INDIRECT STEEL IMPORTS A) MACRO VARIABLES: DATA AND BASE CASE PROJECTIONS BOTSWANA

.

Ξ Ξ =

Ξ

Ξ Ē

_

= -

_

Ξ

Ξ

_

_

Ξ

-

	A) MACAG VARIABLES OF		
AVERAGE 1981 - 1983 GÖP FOPU- GÖP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1990 GDF POFU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1995 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	GROWTH RATES PCT. P.A. GDP PCP GDP/POP TO 1990- TO 1990- TO 1990- 19901995 19901995 1990 1995
709 0.8 844	1200 1.2 1026	1400 1.4 1014	6.8 3.1 4.2 3.4 2.5 -0.2

١

B) BASE CASE PROJECTIONS 1990 AND 1995, TONNES

.

.

AVERAGE 1981 - 1983				1990			1995			GROWTH RATES P.A. CONSUMPTION <u>EXPL.VARIABLE</u>			=			
PRODUCT NAME	SITÇ	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1990	1990- 1995	1990	1990- 1995	-
BARS AND RODS & ANGLES SHP. H & PLATES. H.+ M & PLATES. LIGHT & TIN.& COAT.PL & HOOP AND STRP & RAILS+ MATER. & WIRE	6730 6734	2743 633 2644 2967 3217 2788 152 861 259 2492	•	2743 633 2644 2967 3217 2788 152 861 259 2492		10041 1658 4348 3040 2294 2080 637 1132 784 4808		10041 1658 4348 3040 2294 2080 637 1132 784 4808	13694 2293 58252 4032 4207 4207 8642 1288 5327	0000000000 00000000000000000000000000	13694 2293 5825 4032 4807 4207 860 1342 1288 5327	17.6 12.8 0.3 -4.1 -3.66 19.65 14.8 8.6	6.7 6.08 15.25 15.25 10.3 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.110.1 10.1 10.1 10.1 10.11111111111111	-0.6 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7	4.66 66 1.66 4.66 4.66 1.66 4.66 4.66	- 13 -
TOTALS		18755		18755		30823	0	30823	43676	0	43676	6.4	7.2			
CRUDE EQUIVALEN BILLET EQUVIVAL		25336 21618	•	25336 21618	•	41012 34994	0	41012 34994	58029 49512	0	58029 49512	6.2 6.2	7.2 7.2			

C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995											
AVERAGE 11 CONS PROD	98 <u>1 - 1983</u> IMP EXP	199 CONS PROD	IMFORT CON	1995 NS PROD IMPORT	<u>CONSUMPTION GROWTH RATE PA.</u> BASE PERIOD-1990 1990-95						
CRUDE EQUIV. TONNES 25336 .	25336 .	46402 0	46402 7233	27 0 72327	7.9	9.3					
PERCENT GROWTH IN MACRO VARIABLES AVERAGE 81-83 TO 1990 1990 TO 1995	GDP 7.9 4.2	POPUL	ATION 4.2 3.4	GDP/CAPITA 3.5 0.9							

LOW-GROWTH CASE PROJECTIONS 1990 AND 1995											
AVERAGE 1 CONS PROD	981 - 1983 IMP EXP	1990 PROD ÍMPORT	CONŜ	1995 PROD IMPORT	CONSUMPTION GROWIH BASE PERIOD - 1990	RATE PA. 1990-95					
CRUDE EQUVIV, TONNE 25336	25336 .	34154	0 34154	44982	0 44982	3.8	5.7				
PERCENT GROWTH IN MACRO VARIABLES A.ERAGE 81-83 TO 1990 1990 TO 1995	GDP 4.4 1.0		POPULATION 4.2 3.4		GDP/CAPITA 0.2 -2.3						

											EXPOR	TS		APP. CON
RODUCT NAME S	ITC 1	981	IMPO 1982	1983	AVER	1981	PRODUCTION 1982 19	983 AV	/ER	1981	1982		AVER	AV 81-83
	731			0.455	0740									274
ARS AND RODS 6		136 800	2639 500	2455 600	2743 633									63
NGLES SHP.HM 6 NGLES SHPL.6		356	2056	2519	2644									264 296
LATES, HEAVY 6	741 3	600	2800	2500	2967									230
LATES. MED. 6			2070	2690	3217									321
LATES, LIGHT 6 INPLATE 6		890 940	3070 1530	1350	1607									160
THER COAT.P 6		431	1131	982	1181									118 15
OOP AND STRP 6		118	211	127	152									
AILS 6	761 1	490	489	603	861									
THER RL TRCK 6	762	244	353	180	259									25
IRE 6 EAMLESS TUBE 6		428	2096	1952	2492									249
ELDED TUBES 6		-20												
TALS	23	433	16875	15958	18755	0	0	0	0	0	0	0	C) 1875
										DIALC	(TONINES	`		
			DEMAND /	SUPPLY	BALANCES	FOR ROLL	ED PRODUCTS	1982		983	AVER			
	LLED PRODUCT								_		1075	c		
	APPARENT CON	ISUMPT	ION OF F	OLLED PR	RODUCTS		2343	3 168	75 1	5958	1875	5		
OF	WHICH; NET IMPOF LOCAL PRO	TS OF	ROLLED	PRODUCTS	5		23433 0	16875 0	1595	8 0	18755 0			
	ROUS MATERIA	LS CO	NSUMPTIC	N (CRUDE	EQUIVAL	ENTS) 1)	5788	9 5481	85 4	7200	5332	5		
	SUPPLIED FF						5788	9 548	85 4	7200	5332	5		
										0	0			
	1 NET IMPORT	4.												
	1 NET IMPORT OF WHICH FERROL	IS MAT	ERIALS F	OR SMELT	TING, INCL	SCRAP	0	0						
	1 NET IMPORT OF WHICH FERROU NET IM	I: JS MAT	; OF BILL	ETS ETC		SCRAP	0 0 31691	Ó		ō	0 25335			
	1 NET IMPORI OF WHICH FERROU NET IN	H: MORTS	OF BILL	ETS ETC ED PRODU	JCTS		0 0 31691 26198			0 6	Ō			
	1 NET IMPORT OF WHICH FERROU NET IM NET IM FINISH	IS MAT IPORTS IPORTS IED PR	OF BILL OF ROLL RODUCTS (ETS ETC ED PRODU INDIRECT			31691 26198	0 22809	2150	0 6	0 25335 27989	0		
	1 NET IMPORT OF WHICH FERROL NET IN NET IN FINISH 2 LOCAL S	H: MPORTS MPORTS MPORTS HED PR	S OF BILL S OF ROLL RODUCTS (ES (INCL.	ETS ETC ED PRODU INDIRECT SCRAP)	JCTS IMPORTS)		31691 26198	0 22809 32076 0	2150 2569 0	0 6 3 0	0 25335 27989			
	1 NET IMPORT OF WHICH FERROU NET IM NET IM FINISH	H: MPORTS MPORTS MPORTS HED PR	S OF BILL S OF ROLL RODUCTS (ES (INCL.	ETS ETC ED PRODU INDIRECT SCRAP)	JCTS IMPORTS)		31691 26198	0 22809 32076 0	2150 2569 0	0 6 3	0 25335 27989			

=

Ē

_

Ξ

1) IMPORT, EXPORT AND PRODUCTION FIGURES ARE CONVERTED TO CRUDE STEEL EQUIVALENTS (INGOTS) BY USING COEFFICIENTS DEVELOPED BY THE ECE. "FERROUS MATERIALS FROM LOCAL SOURCES" ARE CALCULATED BY APPLYING THESE COEFFICIENTS TO LOCALLY PRODUCED ROLLED PRODUCTS, ARRIVING AT BILLET EQUVIVALENTS, AND THEN DEDUCTING NET IMPORTS OF BILLETS AND "FERROUS MATERIALS FOR SMELTING". DIFFERENCES BETWEEN THIS AND THE FIGURE GIVEN FOR SCRAP GENERATION MAY BE DUE TO INACCURACIES IN CONVERSION FACTORS, STOCKS OF SCRAP OR DEFICIENCIES IN THE EXTERNAL TRADE STATISTICS USED -

=

=

-

_

-

_

Ξ

=

•

.

MACRO DATA AND PROJECTIONS

.

•

.

	ACTUALS, ESTIMATES	PROJECTIC	INS
YEAR	1981 1982 1983	1990 1990 1990 19	195 1995 1995
		HIGH BASE LOW HI	GH BASE LOW
GDP, AND POPULATION	0.8 0.8 0.9	1.2 1.2 1.2 1	.4 1.4 1.4
.POPULATION (MILL) GDP PER CAPITA US\$ (1975)	0.8 0.8 0.9 739.0 866.3 905.6	1083.3 1000.0 833.3 1142	
GDP MILL US\$ (1975)	617.5 693.0 815.0	1300.0 1200.0 1000.0 1600	0 1400.0 1050.0
GROSS CAP FORM MILL US\$ (1975)	300.7 249.2 210.0	250.0 240.0 220.0 280	
BLDG AND CONSTR V.A MILL US\$ (1975)	24.4 21.5 17.8		0.0 25.0 20.0
MANUFACTURING V.A. MILL US\$ (1975)	73.1 77.4 75.4	140.0 120.0 100.0 200	0.0 150.0 110.0
DALANCE OF DAVAMENTS MATLE TON RD			
BALANCE OF PAYMENTS MILLION BP EXPORTS	360.0 620.0 774.7	1980.0 1860.0 1290.0 3350	0.0 3150.0 1540.0
OTHER CURRENT ITEMS	-9.3 -75.5 -151.4	-400.0 -380.0 -350.0 -640).0 -600.0 -550.0
ODA. NET INFLOWS	151.5 144.1 162.3	270.0 250.0 250.0 380	
LONG TERM CAPITAL, NET	110.9 45.6 71.7	120.0 100.0 80.0 170	
RESERVES ERRORS AND OMISSIONS	7.5 -46.9 -104.7	-100.0 - 100.0 - 100.0 - 150	0.0 - 150.0 - 150.0
IMPORTS, IMPORT CAPACITY	620.6 687.3 752.6	1970.0 1730.0 1170.0 3110).0 2870.0 1270.0
GROWTH RATES PER CENT P.A.	<u> 1981-82 1982-83</u>	1981-1983 TO BASE 1990	BASE 1990-1995
POPULATION	4.5 4.5	4.2	3.4
GDP. CONSTANT US\$ (1975)	12.3 17.6	5.7	3.1

TABLE 5; ESTIMATED INDIRECT STEEL IMP	ORTS, 1981 -	1983 AND	AVE	RAGES	VALUES	5 IN 1000	US \$. QU/	ANTITIES	IN TONNES.
COUNTRY BOTSWANA									
			YE	AR					AVERAGE TONNES
	19	B1	198	32	198	33	AVERAGE	AVERAGE	IN PCT
	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	TONNES	OF TOTAL
SITC									
ROAD VEHICLES	108712	20546	119760	28293	120000	22680	116157	23840	100
TOTAL	108712	20546	119760	28293	120000	22680	116157	23840	100

-

=

-

Ξ

=

-

۰ ۱

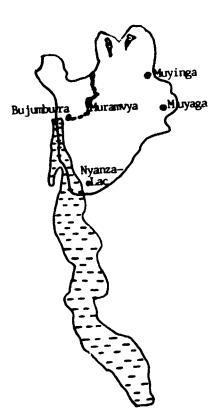
- 16 -

•

BURUNDI

.

٠


•

٠

- 17 -

Page

Map of the	country	••	••	••	••	••	••	••	••	••	••	••	18
Country not	tes	••	••	••	••	••	••	••	••	••	••	••	19
Table 1: 1	Main pro	jectio	n	••	••	••	• •	••	••	••	••	••	20
Table 2: 1 imports	Projecti	on wit	th aco	celera	ated a	bsorp	otion	of in	ndirec	t ste	eel	•••	21
Table 3: ; product .	Section .	A) Con 	npone 	nts of 	f apps 	rent	stee] 		sumpti 	ion b <u>y</u> 	y 		22
Table 4: ferrous ma	Section terials	B) Dei 	mand/: 	supply	y bala	nces 	for n	colled	d proc	lucts 	and 		23
Table 5:	Estimate	d ind	ir ect	steel	l impo	orts,	1981-	-83 a1	nd ave	erage	5	••	24

BURUNDI

Iron ere (ampleited)
Iron ere (ammpleited) - Obel (amploited) Ocal (unexploited) 0 - Netweel ges Steel plant(s) . - Bailways - Improved reads - Unimproved reads

•

•

.

....

- 18 -

BURUNDI

Economic projections for Burundi are based on information from Burundi authorities. The low (2.1 per cent) rate of growth up to 1990 is mainly a result of the GDP decline registered from 1983 to 1984. The 1985-1990 GDP growth rates are projected at over 4 per cent. From 1990 to 1995 GDP is expected to increase at about the rate of population increase.

Projections assume a rapid development of the manufacturing sector and investment, leading to a growth in steel consumption which is considerably higher than the growth of GDP. The high rates of increase in the consumption of plate in steel demand projections is based on the assumption that the presently very low plate consumption will increase to "normal" (compared to other countries) levels. The high average consumption levels reached by 1995 depends partly on the realization of two major projects related to the iron and steel industry.

- development of the Buhinda nickle deposit
- development of the Mukanda ferrousradium deposit.

The low growth projections where GDP per capita falls still give rapidly increasing steel consumption, again caused by the assumption of relatively high investment level and a structural change with emphasis on the modern sectors of the economy. The effect on steel consumption by assuming both overall high growth and structural change is illustrated in the high growth scenario with average consumption growth of over 10 per cent up to 1995.

TABLE 1, MAIN PROJECTION

•

٠

A) MACRO VARIABLES, DATA AND BASE CASE PROJECTIONS

AVERAGE 1981 - 1983	PROJECTION 1990	PROJECTION 1995	GROWTH RATES PCT. P.A.
GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POP GDP/POP
MILL. LATION CAPITA	MILL. LATION CAPITA	MILL. LATION CAPITA	TO 1990- TO 1990- TO 1990-
US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	19901995 19901995 1990 1995
560 4.5 124	660 5.7 116	760 6.6 115	2.1 2.9 2.9 3.0 -0.8 -0.1

B) BASE CASE PROJECTIONS 1990 AND 1995 , TONNES

			RAGE 1	981 - 19	83		199	0		199	95	CONCU	GROWT		RATES PA. EXPL.VARIABLE		
PRODUCT NAME	<u>\$11C</u>	CONS	PROD	IMP	ЕХР	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	TO 1990	MPTION 1990- 1995	1990	1990- 1995		
ANGLES SHP. H ANGLES SHP.,L PLATES, H.+ M PLATES, LIGHT TIN.& COAT.PL HOOP AND STRP	6734 6735	2219 153 619 166 576 3742 423 0 178 1157		2219 153 619 166 576 3742 423 0 178 1157	0 0 0	1402 295 2253 1341 4753 5641 322 314 1227 1187		1402 295 2253 1341 4753 5641 322 314 1227 1187	1915 419 3430 2538 7669 7625 330 403 1974 1200	000000000000000000000000000000000000000	1915 419 3430 2538 7669 7625 330 403 1974 1200	-5.6 8.6 17.5 29.8 30.2 5.3 -3.4 27.3 0.3	6.4 7.8 13.6 10.2 5.0 5.0 10.2 5.0 0.2	3898999899 	9767666766 	- 20 -	
TOTALS		9233	0	9233	0	18733	0	18733	27502	0	27502	9.2	8.0				
CRUDE EQUIVALE BILLET EQUVIV		12360 10546	0	12360 10546	0 0	25217 21516	0 0	25217 21516	37011 31580	0 0	37011 31580	9.3 9.3	8.0 8.0				

C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995

AVERAG	E 1981 - 1983	1990	1995	CONSUMPTION GROWTH RATE PA.
CONS PR	OD IMP EXP	CONS PROD IMPORT	CONS PROD IMPORT	BASE PERIOD-1990 1990-95
CRUDE EQUIV. TONNES 12360	0 12360 0	29480 0 2 9 480	45813 0 45813	11.5 9.2
PERCENT GROWTH IN MACRO VARIABL	ES GDP	POPULATION	GDP/CAPITA	
AVERAGE 81-83 TO 1990	2.8	2.9	-0.1	
1990 TO 1995	5.2	3.0	2.1	

D) LOW-GROWTH CASE PROJECTIONS 1990 AND 1995

	<u>AVERAGE 1981 - 1983</u> CONS PROD IMP EXP				CONS	199 PROD	0IMPORT	CONS	199 PROD	1 IMPORT	<u>CONSUMPTION GROWIH RAIE PA</u> BASE PERIOD - 1990 1990-99			
CRUDE EQUVIV. TONNE	12360	0	12360	0	19393	0	19393	25953	0	25953	5.8	6.0		
PERCENT GROWTH IN MA AVERAGE 81-83 TO 1990 TO 1995		IABLES		DP).7 .0		POPUL	ATION 2.9 3.0		-	CAPITA 2.2 1.9				

.

.

BURUNDI

Ξ

= -

Ξ

-

Ξ

=

Ξ

=

Ξ

BURUNDI TABLE 2, PROJECTION WITH ACCELLERATED REPLACEMENT OF INDIRECT STEEL IMPORTS A) MACRO VARIABLES: DATA AND BASE CASE PROJECTIONS

•

•

_

-

-

=

-

AVERAGE 1981 - 1983 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1990 GDP POPU- GDF PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1995 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	GROWTH RATES PCT, P,A, GDP POP GDP/POP TO 1990 TO 1990 TO 1990 19901995 19901995 1990 1995
560 4.5 124	660 57 11G	760 6.6 115	2.1 2.9 2.9 3.0 -0.8 -0.1

.

.

B) BASE CASE PROJECTIONS 1990 AND 1995, TONNES

	AV	ERAGE 1	981 - 19	983		199	0		199	5	GROWTH CONSUMPTION				_
PRODUCT NAME SIT	CONS	PROD	IMP	EXP	CONS	- P RO D	NË T IMPORT	CONS	PROD	NET IMPORT	<u>CONSU</u> TO 1990	1990- 1995	1990	YARIABL 1990- 1995	- G .
BARS AND RODS 673 ANGLES SHP. H 673 ANGLES SHP.,L 673 ANGLES SHP.,L 673 PLATES, H.+ M 674 PLATES, LIGHT 674 TIN.& COAT.PL 674 HOUP AND STRP 675 RAILS+ MATER. 676 WIRE 677	153 6 619 9 166 9 3742 9 423 9 423 9 0 178		2219 153 619 166 576 3742 423 0 178 1157	0	2165 485 2560 1528 5301 6106 373 388 1388 1310	000000000000000000000000000000000000000	2165 485 2560 1528 5301 6106 373 388 1388 1310	3443 798 4044 8766 8555 433 2295 1447		3443 798 4044 2911 8766 8555 433 552 2295 1447	-0.3 15.5 19.4 32.0 32.0 -1.6 29.3 1.6	9.7 10.5 13.6 13.6 10.6 7.0 3.0 7.0 70.6 2.0	389 8099894 	9767 666766	
OTALS	9233	D	923 3	0	21604	0	21604	33245	0	33245	11.2	9.0			
RUDE EQUIVALENT	12360 10546	0	12360 10546	0	29013 24755	0	29013 24755	44607 38060	0	44607 38060	11.3 11.3	9.0 9.0			

C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995												
		RAGE 1 PROD	981 - 19 IMP	983 EXF	ĊŌŇŜ	199 PROD	0 IMPOR†	CONS	199 PROD	IMPORT	CONSUMPTION GROWTH BASE PERIOD-1990	RATE PA. 1990-95
CRUDE EQUIV. TONNES	12360	0	12360	0	33275	0	33275	53411	0	53411	13.2	9.9
PERCENT GROWTH IN MACRO VARIABLES GDP AVERAGE 81-83 TO 1990 2.8 1990 TO 1995 5.2							ATION 2.9 3.0		GDP/CA	PITA 0.1 2.1		

LOW-GROWTH CASE PROJECTIONS 1990 AND 1995											
	AVERAGE CONS PROD	1981 - 1983 IMP EXP	ĊŎŇŜ	1990 PROD IMPORT	1995 CONS PROD IMPORT	CONSUMPTION GROWTH RATE PA. BASE PERIOD - 1990 1990-95					
CRUDE EQUVIV. TONNE 1	12360 0	12360 0	23191	0 23191	33549 0 33549	8.2 7.7					
PERCENT GROWTH IN MACR AVERAGE 81-83 TO 19 1990 TO 1995		GDP 0.7 1.0		POPULATION 2.9 3.0	GDF CAFIIA -2.2 1.9						

RODUCT NAME			IMPO	RTS			PRODUCTION		AVER	1981	EXPOR	TS 1983	AVER		APP. CON AV 81-83
100001 114444		1981	1982	1983	AVER	1981	1982 1	983	AVER	1901	1902	1900	H V C		
RE RODS ARS AND RODS IGLES SHP HM IGLES SHPL ATES, HEAVY ATES, MED.	6734 6735 6741	14 1839 100 428 113 26	1 2102 180 770 147 86	2700 180 660 83 44	5 2214 153 619 114 5°										221 15 61 11 57
ATES, LIGHT NPLATE HER COAT.P OP AND STRP	6743 6747 6748	398 77 716 114	765 82 4500 487	564 5850 668	570 53 3689 423										368
ILS HER RL TRCK RE AMLESS TUBE LDED TUBES	6761 6762 6770 6782	266 850	198 1712	70 910	178 1157										17 115
TALS	0703	4941	11030	11729	9233	0	0	0	C) 0	0	0		0	923
		BI	DEMAND /	SUPPLY 6	BALANCES	FOR ROLL	D PRODUCTS	AND FE	RROUS	MATERIALS	(TONNES)			
			DEMAND 7	SUPPLY 6	BALANCES	FOR ROLL	D PRODUCTS		RROUS 982	MATERIALS	(TONNES		, .		
A	ROLLED PR	DUCTS				FOR ROLLI		1				AGE			
	APPAREN DF WHICH; NET		TION OF F	ROLLED PR		FOR ROLLI	1981	1 1 1 103	982 1030	1983	AVER	AGE			
0	APPAREN DF WHICH; NET LOCA	DUCTS IF CONSUMP IMPORTS OF	TION OF F = ROLLED ION	ROLLED PRO PRODUCTS	DUCTS		1981 494 4941	1 1 1 1103	982 1030	1983 11729 11 729	AVER 923 9233	AGE 33			
0	APPAREN DF WHICH; NET LOCA EERROUS MA TOTAL SUPPLI 1 NET I	ADDUCTS AMPORTS OF AMPORTS OF ATERIALS CO ATERIALS CO	TION OF F = ROLLED ION	ROLLED PRO PRODUCTS	DUCTS		1981 494 4941 0	1 1 1 1 1103 1 2	982 1030 0	1983 11729 11 729 0	AVER 923 9233 0	RAGE 33			
0	APPAREN DF WHICH; NET LOCA EERROUS MA TOTAL SUPPLI 1 NET I OF F	IMPORTS INPORTS OF AL PRODUCT: ATERIALS CO GED FROM;	TION OF F ROLLED ION DNSUMPTIC TERIALS F S OF BILL S OF BILL	OLLED PRODUCTS PRODUCTS ON (CRUDE COR SMELT ETS ETC ED PRODU	EQUIVAL ING, INCL	ENTS) 1}	1981 494 4941 0 1278	1 1 1 1 1103 1 2	982 1030 0 27887 27887 0 0	1983 11729 11729 0 25769	AVER 923 9233 0 2214	RAGE 33			
0	APPAREN DF WHICH; NET LOCA EERROUS MA TOTAL SUPPLI 1 NET I OF N F	ATERIALS CO ATERIALS CO ATERIALS CO ATERIALS CO ED FROM: MHICH; ERROUS MA ET IMPORTS AFT IMPORTS	TION OF F ROLLED ION DNSUMPTIC TERIALS F S OF BILL S OF ROLL RODUCTS 1	OLLED PRO PRODUCTS ON (CRUDE COR SMELT ETS ETC ED PRODU (INDIRECT	EQUIVAL ING, INCL	ENTS) 1}	1981 494 4941 0 1278 1278 0 6583	1 1 1 103 1 2 1 2 1485	982 1030 0 27887 27887 0 0	1983 11729 11729 0 25769 25769 0 15647	AVER 923 9233 0 2214 2214 0 12361	RAGE 33			

Ξ

Ξ _

Ξ Ξ _ _ Ξ

_ Ξ

Ξ

_

-

Ξ

=

_

1) IMPORT EXPORT AND PRODUCTION FIGURES ARE CONVERTED TO CRUDE STEEL EQUIVALENTS (INGOTS) BY USING COEFFICIENTS DEVELOPED BY THE ECE. HERRODS MATERIALS FROM LOCAL SOURCES" ARE CALCULATED BY APPLYING THESE COEFFICIENTS TO LOCALLY PRODUCED ROLLED PRODUCTS, ARRIVING AT BILLET EQUVIVALENTS, AND THEN DEDUCTING NET IMPORTS OF BILLETS AND "FERROUS MATERIALS FOR SMELTING". DIFFERENCES BETWEEN THIS AND THE FIGURE GIVEN FOR SCRAP GENERATION MAY BE DUE TO INACCURACIES IN CONVERSION FACTORS, STOCKS OF SCRAP OR DEFICIENCIES IN THE EXTERNAL TRADE STATISTICS USED

.

•

.

.

•

Ē

_

=

_

-

-

=

Ξ

MACRO DATA AND PROJECTIONS

.

YEAR	ACIUALS 1981 - 1982	IMATES 1983	1990	1990	1990	CTIONS 1995	1995	1995
GDP. AND POPULATION POPULATION (MILL) GDP PER CAPITA US\$ (1975) GDP MILL US\$ (1975) GROSS CAP FORM MILL US\$ (1975) BLDG AND CONSTR V.A MILL US\$ (1975) MANUFACTURING V.A. MILL US\$ (1975)	4.4 4.5 131.0 121.0 575.2 544.9 84.9 94.2 32.3 34.2 66.4 67.0	4.7 119.0 559.4 131.8 34.8 69.2	HIGH 5.7 122.8 700.0 160.0 46.6 128.7	BASE 5.7 115.8 660.0 140.0 43.8 116.4	LOW 5.7 103.5 590.0 130.0 38.4 97.4	HIGH 6.6 136.4 900.0 210.0 62.4 180.5	BASE 6.6 115.2 760.0 185.0 56.2 152.3	LOW 6.6 93.9 620.0 140.0 40.4 122.3
BALANCE OF PAYMENTS MILLION US\$ EXPORTS OTHER CURRENT ITEMS ODA, NET INFLOWS LONG TERM CAPITAL,NET RESERVES ERRORS AND OMISSIONS IMPORTS, IMPORT CAPACITY	74.9 87.8 18.9 0.2 57.3 88.8 1.2 1.5 8.9 35.9 161.2 214.2	83.2 -31.8 155.4 7.1 -24.2 189.7	200.0 -80.0 180.0 -40.0 266.0	175.0 -85.7 173.8 4.0 -42.3 225.0	150.0 -80.0 170.0 2.0 -40.0 202.0	260.0 -70.0 250.0 7.0 -90.0 357.0	216.4 -69.9 219.2 7.0 -93.2 279.5	170.0 -70.0 180.0 -85.0 202.0
GROWTH RATES PER CENT P.A. POPULATION GDP. CONSTANT US\$ (1975)	2.3 4	82-83 . 4 . 7	<u> 1981–198</u>	3 <u>TO BAS</u> 2.8 2.4	<u>SE 199</u> 0	BA	SE 1990 3.0 2.9	-1995

TABLE 5; ESTIMATED INDIRECT STEEL IMPC)RTS, 1981 -	1983 AND	AVE	RAGES	VALUE	S IN 1000	US \$. QU/	ANTITES	114 10141201
COUNTRY BURUNDI			YE	AR					AVE RAGE TONNES
	19	81	19	82	19	83	AVERAGE	AVERAGE	IN PCT
	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	TONNES	OF TOTAL
SITC						0510	2589	2621	27
MET. STRUCTURES	954	801	3377	3545	3437				
TANKS, VESSELS, ETC	281	93	111	134	502	728		318	
WIRE PRODUCTS	272	2 249	350	388	141	178	254	272	
NAILS, NUTS, BOLTS	236	3 170	346	254	124	75	235	166	2
HAND TOOLS	990	189	1023	221	1216	438	1076	283	3
CUTLERY	31	1 2	58	0	57	6	49	3	0
DOM. UTENSILS	202	2 29	169	29	120	17	164	25	0
AGR.MACH., TRACTORS	1041		1222	260	2222	148	1495	203	2
DOM. EL. EQUIPMENT	470		515	; 90	497	96	494	96	1
	14	- 	ε	19	43	31	22	24	0
RAIL. LOCOS ETC.	1768		24013	6510	16147	3651	19282	4557	48
ROAD VEHICLES	718		1854		550	203	1041	449) 5
BICYCLES ETC.		-	638		632			292	2 3
HEATING, SANITARY	56				663		-) 3
FURNITURE	60	7 107	1265				_		-
TOTAL	2406	4 6046	34949	9 2916	6351	9749	28455	9571	, ,00

=

-

=

Ξ

-

-

-

-

_

-

-

=

-

=

•

٠

- 24

•

٠

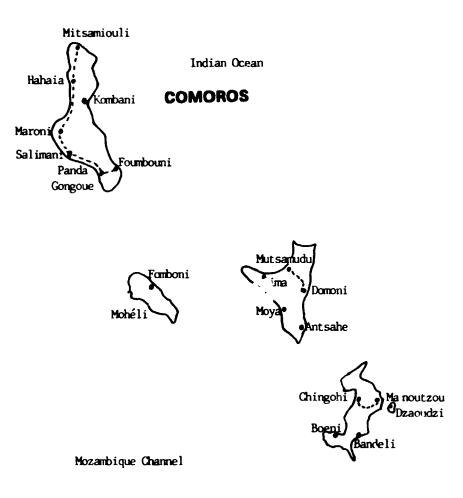
24 -

COMOROS

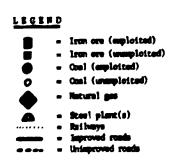
.

•

.


.

1.11.11.1


Page

-

Map of the	e country	1	••	••	••	••	••	••	••	••	••	••	26
Country no	otes	••	••	••	••	••	••	•••	••	••	••	••	21
Table 1:	Main pro	ject	ion	••	••	••	••	••	••	••	••	• •	28
Table 2: imports				ccele:	rated 	absoi 	rption	n of 	indire 	ect si	teel	••	29
Table 3: product	Section	A) C(ompon 	ents (of app 	parent	t ste	el com 	nsump [†]	tion 1	b y 	••	30
Table 4: ferrous ma	Section aterials	B) D	emand	/supp 	ly ba	lance: 	s for 	roll	ed pro	oduct	s and 	••	31
Table 5:	Estimate	ed in	direc	t ste	el im	ports	, 198	1-83	and a	verag	es	••	32

н н.

The second secon

ILD I I

.

.

COMOROS

Comoros is a mini-economy where individual development projects may have dramatic effects on the overall situation. Without detailed information on such projects, steel demand is very hard to forecast.

The economic proejctions up to 1990 are based on a GDP growth rate of 46 per cent which the World Bank in the beginning of the 80s considered feasible. The availability of concessionary foreign assistance would be of major importance. In the period after 1990, GDP growth is assumed to come down to 3.4 per cent per annum as prospects of rise in export prices of vanilla and cloves and increased flows of development assistance are very modest. Major reasons for this are the assumptions of a relatively strong growth in agriculture (especially food for local consumption), limitations in finance for infrastructural projects and very limited scope for industrial development whereas it increases more rapidly in most other countries. Steel consumption in Comoros is projected to increase at about the same rate as GDP. TABLE 1, MAIN PROJECTION

. .

A) MACRO VARIABLES, DATA AND BASE CASE PROJECTIONS

AVERAGE 1981 - 1983	PROJECTION 1990	PROJECTION 1995	<u>GROWTH BATES PCT, P.A.</u>
GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POP GDP/POP
MILL. LATION CAPITA	MILL. LATION CAPITA	MILL. LATION CAPITA	TO 1990- TO 1990- TO 1990-
US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	10901995 19901995 1990 1995
77 0.4 188	110 0.5 234	130 0.5 255	4.6 3.4 1.7 1.6 2.8 1.7

B) BASE CASE PROJECTIONS 1990 AND 1995 .TONNES

	AVI	ERAGE 19	981 - 19	83		199	0		199		CONSU	GROWT MPTION	H RATES	VARIABLE	
PRODUCT NAME SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1990	1990- 1995	T0 1990	1990- 1995	
BARS AND RODS 6730 ANGLES SHP. H 6734 ANGLES SHP. L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743 TIN.& COAT.PL 6749 HOOP AND STRP 6750 RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	550 45 182 76 44 1383 2 0 17		550 45 182 76 44 1383 2 0 17 155	0 - - 0 0 - - - - -	1075 99 259 144 47 1582 21 0 25 339	0 0 0 0 0 0 0 0 0 0 0	1075 99 259 144 47 1582 21 0 25 339	1347 125 308 187 49 1787 31 0 32 422		1347 125 308 187 49 1787 31 0 32 422	8.7 10.4 4.5 8.3 0.8 1.7 34.2 4.9 10.3	4.6 4.54 5.48 0.85 1.5 5.1 5.5	2.888888888888888888888888888888888888	1.9 2.3 3.7 2.3 3.7 3.7 3.7 3.7 3.7 3.7 3.7	- 28 -
TOTALS	2454	0	2454	0	3591	0	3591	4289	0	4289	4.9	3.6			
CRUDE EQUIVALENT BILLET EQUVIVALENT	3288 2805	0 0	3288 2805	0 0	4797 4093	0 0	4797 4093	5724 4884	0 0	5724 4884	4.8 4.8	3.6 3.6			

C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995

		ERAGE 19 PROD	981 - 19 IMP	83 EXP	CONS	1991 PROD	D IMPORT	CONS	199! PROD	5 IMPORT	CONSUMPTION GROWTH BASE PERIOD-1990	RATE PA. 1990-95
CRUDE EQUIV. TONNES	3288	0	3288	0	4371	0	4371	5355	0	5355	3.6	4.1
PERCENT GROWTH IN MAG AVERAGE 81-83 TO 1990 TO 1995		IABLES	2	iDP 5.7 1.9		POPUL	ATION 1.7 1.6			PITA 3.9 2.2		

			D)	LOW-GROW	TH CASE	PROJEC	TIONS 1990	AND 1995	5			
	AVE	RAGE 11 PROD	9 <u>81 - 19</u> IMP	83 EXP	CONS	1990 PROD	D IMPORT	CONS	<u>19</u> 99 PROD	5 IMPORT	CONSUMPTION GROWTH BASE PERIOD - 1990	<u> RATE PA.</u>) 1990-95
CRUDE EQUVIV. TONNE	3288	0	3288	0	3522	0	3522	3723	0	3723	0.9	1.1
PERCENT GROWTH IN MA AVERAGE 81-83 TO 1990 TO 1995		IABLES	2	DP . 0 . 1		POPUL	ATION 1.7 1.6			CAPITA 0.2 0.5		

•

٠

COMOROS

Ξ

COMOROS TABLE 2, PROJECTION WITH ACCELLERATED REPLACEMENT OF INDIRECT STEEL IMPORTS A) MACRO VARIABLES: DATA AND BASE CASE PROJECTIONS

.

.

AVERAGE 1981 - 1983 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1990 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1995 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	GROWTH RATES PCI, P.A. GDP POP GDP/POP TO 1990- TO 1990- TO 1990- 19901995 19901995 1990 1995
77 0.4 188	110 0.5 234	130 0.5 255	4.6 3.4 1.7 1.6 2.8 1.7

.

٠

.

B) BASE CASE PROJECTIONS 1990 AND 1995, TONNES

		AVE	ERAGE 19	981 - 19	83		199	0		199	5	CONSU	GROWTH MPTION		P.A.	c
PRODUCT NAME	SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1990	1990- 1995	1990	1990- 1995	*
ANGLES SHP. H ANGLES SHPL PLATES, H.+ M PLATES, LIGHT TIN.& COAT.PL	6734 6735 6740 6743	550 45 182 76 44 1383 2 0 17 155	00000000	550 182 76 44 1383 0 17 155	0 • • • • •	1350 167 370 211 245 1750 40 27 83 384	000000000 000000000000000000000000000	1350 167 370 211 245 1750 40 27 83 384	1898 262 322 445 2123 68 54 148 511	000000000000000000000000000000000000000	1898 262 530 322 445 2123 68 54 148 511	11.9 17.8 9.3 13.6 23.9 45.4 21.9 12.0	7.1 9.5 8.7 3.9 11.9 12.3 14.9 5.9	88888888888888888888888888888888888888	1.9 37 23.7 3.7 3.7 3.7 7 3.7 7 3.7 7	- 29
TOTALS		2454	0	2454	0	4626	0	4626	6359	0	6359	8.2	6.6			1
CRUDE EQUIVALE BILLET EQUVIVA		3288 2805	0	3288 2805	0	6167 5262	0	6167 5262	8466 7224	0	8466 7224	8.2 8.2	6.5			

C)	HIGH-GROWTH	CASE	PROJECTIONS	1990	AND	1995

		RAGE 19	81 - 19 IMP	83 E XP	ČÕNŠ	1990 PROD	IMPORT	CONS	1999 PROD	IMPORT	CONSUMPTION GROWTH BASE PERIOD-1990	RATE PA 1990-95
CRUDE EQUIV. TONNES	3288	0	3288	0	5740	0	5740	8096	0	8096	7.2	7.1
PERCENT GROWTH IN MAI AVERAGE 81-83 TO 1990 TO 1995		IABLES		iDP .7 .9		POPUL	ATION 1.7 1.6		GDP/CA	911A 3.9 2.2		

			LOV	-GROWTH	CASE PR	DJECTIO	15 1990 AN	D 1 995				
		ERAGE 1 PROD	981 - 19 IMP	983 EXP	CONS	1990 PROD	0 IMPORT	CONS	1995 FROD	IMPORT	CONSUMPTION GRO BASE PERIOD -	DWTH RATE PA. 1990 1990-95
CRUDE EQUV /. TONNE	3288	0	3288	0	4890	0	4890	6462	n	6462	5.1	5.7
PERCENT OROWTH IN MAR AVERAGE 81-83 TO 1990 TO 1995		IABLES	0 2 2	SDP 2.0 2.1		POPULI	ATION 1.7 1.6		(CAPITA).2).5		

RODUCT NAME SITC		IMPO	RTS			PRODUCT	ION			EXPORTS			APP. Av 8	
	1981	1982	1983	AVER	1981	1982	1983	AVER	1981	1982 198	83	AVER	AV O	
IRE RODS 6731 ARS AND RODS 6732 NGLES SHP.HM 6734 NGLES SHP.LL 6735 LATES. HEAVY 6741 LATES. MED. 6742 LATES, LIGHT 6743 INPLATE 6747 THER COAT.P 6748 OOP AND STRP 6750 AILS 6761	64 754 70 276 28 118 100 7 1959	356 40 158 45 11 16 10 570 1	476 25 112 26 15 13 1591 4	21 529 45 182 24 52 44 10 1373 2										18
THER RL TRCK 6762 IRE 6770 EAMLESS TUBE 6782 ELDED TUBES 6783	2 125 113	7 2 108	41 83 35	17 70 85										
OTALS	3616	1324	2421	2454	0	0	0	() 0	0	0		0	245
	3)	DEMAND /	SUPPLY E	BALANCES	FOR ROLLE	D PRODU	CTS AND	FERROUS	MATERIALS	(TONNES)				
APPARE OF WHICH	PRODUCTS ENT CONSUMPT	ION OF R	OLLED PR		FOR ROLLE	1	981 3616	1982 1324	1983 2421	AVERAG 2454	 E			
APPARE OF WHICH NE	PRODUCTS ENT CONSUMPT	ION OF R	OLLED PR		FOR ROLLE	11 361	981 3616	1982	1983	AVERAG	 E			
APPAR OF WHICH NE LOU B FERROUS TOTAL	PRODUCTS ENT CONSUMPT	ION OF R ROLLED ON	OLLED PRO	DUCTS		361 [,]	981 3616 6 0 8715	1982 1324 1324 0 4409	1983 2421 2421 0 7968	AVERAG 2454 2454 0 7031	 E			
APPAR OF WHICH NE LOO B FERROUS M TOTAL SUPPI 1 NET	PRODUCTS ENT CONSUMPT T IMPORTS OF CAL PRODUCTI MATERIALS CO LIED FROM; IMPORTS F WHICH:	ION OF R ROLLED ON NSUMPTIO	OLLED PRODUCTS	DDUCTS EQUIVAL	ENTS) 1)	361 [°]	981 3616 6 8715 8715	1982 1324 1324 0 4409 4409	1983 2421 2421 0 7968 7968	AVERAG 2454 2454 0 7031 7031	 E			
APPAR OF WHICH NE LOO B FERROUS M TOTAL SUPPI 1 NET	PRODUCTS ENT CONSUMPT T IMPORTS OF CAL PRODUCTI MATERIALS CO LIED FROM;	ION OF R ROLLED ON NSUMPTIO ERIALS F OF BILL OF ROLL	OLLED PRO PRODUCTS N (CRUDE OR SMELT ETS ETC ED PRODUC	DDUCTS EQUIVAL ING, INCL	ENTS) 1) SCRAP	361	981 3616 6 8715 8715 8715 0 7	1982 1324 1324 0 4409	1983 2421 2421 0 7968	AVERAG 2454 2454 0 7031	E			
APPAR OF WHICH NE LOC B FERROUS N TOTAL SUPPI 1 NET OF	PRODUCTS ENT CONSUMPT T IMPORTS OF CAL PRODUCTI MATERIALS CO LIED FROM; IMPORTS F WHICH; FERROUS MAT NET IMPORTS NET IMPORTS	ION OF R ROLLED ON NSUMPTIO ERIALS F OF BILL OF ROLL ODUCTS (OLLED PRO PRODUCTS N (CRUDE OR SMELT ETS ETC ED PRODUC INDIRECT	DDUCTS EQUIVAL ING, INCL	ENTS) 1) SCRAP	36 1 36 1	981 3616 6 8715 8715 8715 0 7	1982 1324 1324 0 4409 4409 0 1766	1983 2421 2421 0 7968 7968 0 3249	AVERAG 2454 2454 0 7031 7031 0 3287	Е			

1) IMPORT, EXPORT AND PRODUCTION FIGURES ARE CONVERTED TO CRUDE STEEL EQUIVALENTS (INGOTS) BY USING COEFFICIENTS DEVELOPED BY THE ECE. "FERROUS MATERIALS FROM LOCAL SOURCES" ARE CALCULATED BY APPLYING THESE COEFFICIENTS TO LOCALLY PRODUCED ROLLED PRODUCTS, ARRIVING AT BILLE' EQUVIVALENTS, AND THEN DEDUCTING NET IMPORTS OF BILLETS AND "FERROUS MATERIALS FOR SMELTING". DIFFERENCES BETWEEN THIS AND THE FIGURE GIVEN FOR SCRAP GENERATION MAY BE DUE TO INACCURACIES IN CONVERSION FACTORS, STOCKS OF SCRAP OR DEFICIENCIES IN THE EXTERNAL TRADE STATISTICS USED

.

٠

Ē

.

.

- 30

Ŧ

.

•

Ξ

_

-

-

_

-

Ξ

MACRO DATA AND PROJECTIONS

• •

	ACTUALS.	EST	IMATES			PROJE	CTIONS 1995		
YEAR		982	1983	1990 HIGH	1990 BASE	1990 LOW	1995 HIGH	1995 BASE	1995 LOW
GDP. AND POPULATION POPULATION (MILL) GDP PER CAPITA US\$ (1975)		0.4	0.4 199.8	0.5	0.5	0.5	0.5	0.5	0.5
GDP MILL US\$ (1975) GROSS CAP FORM MILL US\$ (1975) BLDG AND CONSTR V.A MILL US\$ (1975)	73.3 7 18.9 1 7.3	7.3 9.2 7.9	79.7 21.4 8.5	120.0 32.0 14.0	110.0 25.0 10.0	90.0 21.0 9.0	145.0 40.0 19.0	130.0 28.0 11.0	100.0 22.0 9.0
MANUFACTURING V.A. MILL US\$ (1975) BALANCE OF LAYMENTS MILLION CFR.		4.1	4.3	6.0	5.0	4.5	8.0	6.0	5.0
EXPORTS OTHER CURRENT ITEMS ODA, NET INFLOWS	0.0 -85 0.0 130	7.6	0.0 0.0 0.0	-1600.0- 2500.0	1600.0- 2250.0	-1600.0- 2250.0	2100.0-	2300.0 2100.0- 3000.0 70.0	2100.0
LONG TERM CAPITAL,NET RESERVES ERRORS AND OMISSIONS IMPORTS, IMPORT CAPACITY	0.0 36	7.3 4.5 0.7	0.0 0.0 0.0			40.0 -300.0 1510.0	-400.0		-400.0
GROWTH RATES PER CENT P.A. POPULATION GDP. CONSTANT US\$ (1975)	<u>1981-82</u> 1.8 5.5	1	8 <u>2-83</u> .8 .1	<u> 1981–198</u>	<u>3 TO BA</u> 1.8 4.7	<u>SE 1990</u>) <u>BA</u>	<u>SE 1990</u> 1.8 3.4	- 1995

OUNTRY COMOROS			YE	AR					AVE RAGE TONNES
	19	81	19	82	19	83	AVERAGE	AVERAGE	IN PCT
	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	TONNES	OF TOTA
SITC									
MET. STRUCTURES	851	929	529	838	950	1837	777	1201	3
TANKS, VESSELS, ETC	121	37	39	21	84	81	81	46	
WIRE PRODUCTS	205	177	53	56	42	34	100	89	
NAILS, NUTS, BOLTS	155	104	142	109	153	144	150	119	
HAND TOOLS	287	67	218	67	359	112	288	82	
CUTLERY	74	10	84	15	45	7	68	11	
DOM. UTENSILS	111	24	143	36	108	25	121	28	
AGR.MACH., TRACTORS	432	131	158	39	155	35	248	68	
DOM. EL. EQUIPMENT	288	65	228	51	143	35	220	50	
RAIL, LOCOS ETC.	2154	0	21	0	16	6	730	2	
ROAD VEHICLES	6578	1715	3468	860	5083	1527	5043	1367	4
BICYCLES ETC.	130	41	61	34	121	88	104	54	
HEATING, SANITARY	316	134	219	108	330	143	288	128	
FURNITURE	465	171	577	274	791	166	611	204	
TOTAL	12167	3605	5940	2508	8380	4240	8829	3451	10

TABLE 5

٠

.

-Ξ

_

-_

=

=

-

-

_ =

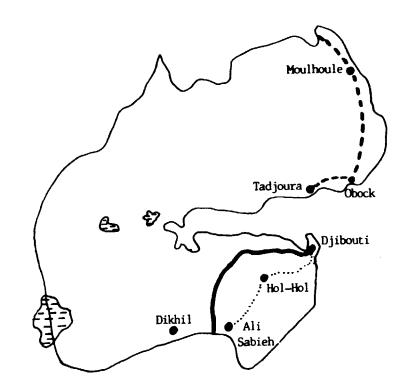
_

Ξ

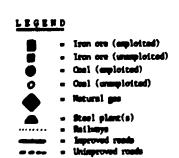
Т 32 1

.

<u>DJ IBOUTI</u>


٠

.


٠

.

Map of th	e count ry	•••	••	••	••	••	••	••	••	••	••	••	34
Country n	otes	••	••	••	••	••	••	••	••	••	••	••	35
Table 1:	Main pro	jecti	on		••	••	••	••	••	••	••	••	36
Table 2: imports	Projecti 	on wi	th ac	celer 	ated	absor 	ption	of i 	ndire 	ect st	eel 	••	37
Table 3: product	Section	A) Co 	mpone	nts c	of app 	oarent	stee 	el con 	nsumpt 	tion b	• y 	••	38
Table 4: ferrous m	Section materials	B) De 	emand/	supp] 	ly bal 	Lances	for	roll(ed pro	oducts 	and	••	39
Table 5:	Estimate	ed inc	direct	stee	el imp	ports,	1981	L-83 a	and a	verage	es	••	40

LL.

1111

•

٠

-

it 11

DJBOUTI

DJIBOUTI

Djibouti is a small economy and "jumps" in economic series caused by individual projects make forecasting difficult. The GDP growth projections are only slightly above the projected growth of population. The levels of increase of overall steel consumption does not deviate much from what is suggested by growth in population and GDP. The apparent dramatic increases in the consumption of plate and rails and other rail line material is mainly a results of the relatively low consumption in the base period 1981-83 and an adjustment, particulary in the period up to 1990 to levels closer to what is normal for the PTA/SADCC group of countries. DJIBOUTI TABLE 1. MAIN PROJECTION

τ •

-

=

Ξ

Ξ Ξ

_

Ξ

-

.....

_ - 1 Ξ

A) MACRO VARIABLES, DATA AND BASE CASE PROJECTIONS

	A) MACRO VARIABLES, DA	TA AND BASE CASE PROJECTIONS	
AVERAGE 1981 - 1983 GDP POPU- GDP PER MILL. LATION CAPITA	PROJECTION 1990 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1995 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	<u>GROWTH RATES PCT. P.A.</u> GDP POP GDP/POP TO 1990- TO 1990- TO 1990- 19901995 19901995 1990 1995
US\$ -75 MILL. US\$ -75 162 0.3 523	200 0.4 526	230 0.4 535	2.7 2.8 2.6 2.5 0.1 0.3

B) BASE CASE PROJECTIONS 1990 AND 1995 , TONNES

	AVE	ERAGE 19	981 - 19	183		199	0		1995	5	CONSU	MPTION		VARIABLE	
		PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1990	1990- 1995	1990	1990- 1995	
PRODUCT NAME SITC BARS AND RODS 6730 ANGLES SHP. H 6734 ANGLES SHP. L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743 TIN.& COAT.PL 6749 HOOP AND STRP 6750 RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	CONS 2163 151 25 48 18 1291 10 7 37 239		2163 151 25 48 18 1291 10 7 37 239		2487 178 53 260 111 1349 17 18 71 288		2487 178 53 260 111 1349 17 18 71 288	2766 200 139 359 264 1461 25 31 114 322	000000000000000000000000000000000000000	2766 200 139 359 264 1461 25 31 114 322	1.8 2.8 23.5 25.66 2.5 6.9 12.5 2.4	2.1 2.4 21.3 6.7 18.9 1.6 8.0 11.5 9.9 2.3	2.8 2.8 1.3 2.8 1.3 1.3 1.3 2.8 1.3 1.3	1.9 2.1 2.8 2.1 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	- 56 -
TOTALS	3989	0	3989	0	4830	0	4830	5680	0	5680	2.4	3.3			
CRUDE EQUIVALENT BILLET EQUVIVALENT	5241 4472	0 0	5241 4472	0 0	6369 5434	0 0	6369 5434	7495 6395	0 0	7495 6395	2.5	3.3 3.3			

			C)	HIGH-GRC	WTH CAS	E PROJE	CTIONS 199	0 AND 19	95			
	AVI	ERAGE 1	981 - 19 IMP	83_75		1990 PROD	0 IMPORT	CONS	199! PROD	5 IMPORT	CONSUMPTION GROWTH BASE PERIOD-1990	1990-95
				EAP	7782	0	7782	9593	0	9593	5.1	4.3
CRUDE EQUIV. TONNES PERCENT GROWTH IN MA AVERAGE 81-83 TO	CRO VAR	0 IABLES	5241 3	U SDP 3.9	1102	POPUL	ATION 2.6		GDP/CA	PITA 1.3 1.6		
1990 TO 1995			4	1.2		:	2.5			1.0		

			D)	LOW-GRO	NTH CASE	PROJEC	TIONS 1990	AND 199	5			
		RAGE 19	981 - 1 TMP	983 EXP	CONS	199 PROD	0 IMPORT	CONS	1995 PROD	IMPORT	CONSUMPTION GROWTH BASE PERIOD - 1990	<u>RATE PA.</u> 1990-95
CRUDE EQUVIV. TONNE	••••	PR0D 0	5241	0	5997	0	5997	6550	0	6550	1.7	1.8
PERCENT GROWTH IN MAI AVERAGE 81-83 TO 1990 TO 1995	CRO VAR	IABLES		GDP 1.3 1.1		POPUL	ATION 2.6 2.5			CAPITA 1.2 1.4		

.

4

36

1

DJIBOUTI TABLE 2, PROJECTION WITH ACCELLERATED REPLACEMENT OF INDIRECT STEEL IMPORTS A) MACRO VARIABLES: DATA AND BASE CASE PROJECTIONS

۰.

=

_

Ξ

Ξ

Ξ

_

-

-

_

Ξ

-

_

Ē

AVERAGE 1981 - 1983	PROJECTION 1990	PROJECTION 1995	GROWTH RATES PCT. P.A.
GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POPU- GDP PER	GDP PCP GDP/POP
MILL. LATION CAPITA	MILL. LATION CAPITA	MILL. LATION CAPITA	TO 1990- TO 1990- TO 1990-
US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	19901995 19901995 1990 1995
162 0.3 523	200 0.4 526	230 0.4 535	2.7 2.8 2.6 2.5 0.1 0.3

B) BASE CASE PROJECTIONS IN AND 1095, TONNES

• •

	AVE	ERAGE 19	981 - 19	83		199	0		199	5		GROWT		P.A. VARIABLE	-
PRODUCT NAME SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1990	1990- 1995	1990	1990- 1995	2
BARS AND RODS 6730 ANGLES SHP. H 6734 ANGLES SHP.,L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743 TIN.& COAT.PL 6749 HOOP AND STRP 6750 RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	2163 151 25 48 1291 10 7 37 239	 	2163 151 25 48 18 1291 10 7 37 239	00.000000000000000000000000000000000000	3358 394 403 473 736 1880 76 104 254 428		3358 394 403 736 1880 76 104 254 428	4509 632 840 785 1515 2522 143 201 481 604		4509 632 840 785 1515 2522 143 201 481 604	5.7 12.7 41.6 33.1 59.0 4.8 28.9 40.1 27.2 7.6	6.1 9.9 15.8 10.7 15.5 13.5 14.1 13.6 7.1	2.88 1.38 1.33 1.33 1.33 1.33 1.33 1.33	1.9 2.8 2.1 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	- 37 -
TOTALS	3989	0	3989	0	8105	0	8105	12231	0	12231	9.3	8.6			
CRUDE EQUIVALENT BILLET EQUVIVALENT	5241 4472	0 0	5241 4472	0 0	10701 9130	0 0	10701 9130	16162 13790	0 0	16162 13790	9.3 9.3	8.6 8.6			

			C)	HIGH-GR	OWTH CASE	E PROJE	CTIONS 199	0 AND 19	95			
	CONÉ	ERAGE_1	98 <u>1 - 1</u> 9 IMP	983 EXP	CONS	199 PROD	0 IMPORT	CONS	199 PROD	IMPORT	<u>CONSUMPTION GROWTH</u> BASE PERIOD-1990	<u>RATE PA.</u> 1990-95
CRUDE EQUIV. TONNES	5241	0	5241	0	12116	0	12116	18258	0	18258	11.0	8.5
PERCENT GROWTH IN MAG AVERAGE 81-83 TO 1990 TO 1995		IABLES	(GDP 3.9 4.2			ATION 2.6 2.5		GDP/CA	PITA 1.3 1.6		

			LOW	/~GROWTH	CASE PRO	DJECTIO	NS 1990 AN	ID 1995				
	AVE F	RAGE_19 PROD	981 - 19 IMP	183 ĒXP	ĊŌŀJŜ	199 PROD	0 IMPORT	CÕNS	199 PROD	1MPORT	CONSUMPTION GROW BASE PERIOD - 19	<u>TH RATE PA.</u> 90 1990-95
CRUDE EQUVIV. TONNE	5241	0	5241	0	10330	0	10330	15217	0	15217	8.9	8.1
PERCENT GROWTH IN MAG AVERAGE 81-83 TO 1990 TO 1995		ABLES		iDP .3 .1			ATION 2.6 2.5		-	CAPITA 1.2 1.4		

RODUCT NAME	SITC	1981	IMP0 1982	RTS 1983	AVER	1981	PRODUCT 1982	1983	AVER	1981	EXPORTS 1982 19	83	AVER	APP. CON AV 81-83
IRE RODS ARS AND RODS NGLES SHP.HA NGLES SHPL ATES, HEAVY	M 6734 L 6735	1500 127 48 42	122 2267 150 11 48	2600 176 15 34	41 2122 151 25 41									21 1
ATES, MED. ATES, LIGHI NPLATE HER COAT.P OP AND STRF ILS	6742 1 6743 6747 6748	4 5 42 30 1 7	13 11 1235 905 23 7	4 38 959 702 7 7	7 18 745 546 10 7									7
THER RL TRCH TRE AMLESS TUBE LDED TUBES	6770 E 6782	61 269 128	36 30 96	15 40 153	37 113 126									1
OTALS		2264	4954	4750	3989	0	0	C)	0 0	0	0	() 39
		2204	4004		0000	-								
								ICTS AN		MATERIALS	(TONNES)			
	BOLLED PR	в)						JCTS AN	D FERROUS	MATERIALS 1983	(TONNES)	GE		
Δ	ROLLED PR	B) ODUCTS	DEMAND /	SUPPLY E	BALANCES		1					 3E		
Α	APPAREN OF WHICH; NET	в)	DEMAND /	SUPPLY E	BALANCES		1	1981 2264	1982	1983	AVERAC	GE		
Α	APPAREN OF WHICH; NET LOCA	B) ODUCTS IT CONSUMPT IMPORTS OF L PRODUCTI	DEMAND / ION OF R ROLLED	SUPPLY E OLLED PRODUCTS	BALANCES	FOR ROLL	226	2264 54	1982 4954 4954	1983 4750 4750	AVERA0 3989 3989	GE		
Α	APPAREN OF WHICH; NET LOCA FERROUS MA TOTAL SUPPLI	B) ODUCTS IT CONSUMPT IMPORTS OF IL PRODUCTI ITERIALS CO ED FROM;	DEMAND / ION OF R ROLLED	SUPPLY E OLLED PRODUCTS	BALANCES	FOR ROLL	226	981 2264 54 0	1982 4954 4954 0	1983 4750 4750 0	AVERA(3989 3989 0	GE		
Α	APPAREN OF WHICH; NET LOCA FERROUS MA TOTAL SUPPLI 1 NET I OF F	B) CODUCTS IT CONSUMPT IMPORTS OF A PRODUCTI ATERIALS CO ED FROM; MPORTS WHICH; ERROUS MAT ET IMPORTS IET IMPORTS	DEMAND / ION OF R ROLLED ON DNSUMPTIC	SUPPLY E OLLED PR(PRODUCTS IN (CRUDE OR SMELT ETS ETC ED PRODU	BALANCES ODUCTS EQUIVAL ING, INCL	FOR ROLL ENTS) 1	226	1981 2264 54 0 12007 12007 0 0 73	1982 4954 4954 0 17161	1983 4750 4750 0 19565	AVERA 3989 3989 0 16244	GE		
Α	APPAREN OF WHICH; NET LOCA FERROUS MA TOTAL SUPPLI 1 NET I OF N N N	B) ODUCTS IT CONSUMPT IMPORTS OF INPORTS OF INPORTS WHICH; ERROUS MAT ERT UNPORTS	DEMAND / ION OF R ROLLED ON DNSUMPTIC ERIALS F OF BILL OF ROLL RODUCTS (SUPPLY E OLLED PRO PRODUCTS N (CRUDE OR SMELT ETS ETC ED PRODU INDIRECT	BALANCES ODUCTS EQUIVAL ING, INCL	FOR ROLL ENTS) 1	226	1981 2264 54 0 12007 12007 0 0 73	1982 4954 4954 0 17161 17161 0 6521	1983 4750 4750 0 19565 19565 0 6231	AVERAC 3989 0 16244 16244 0 5242	GE		

-

-

-

1 -- -

_

-

=

Ξ

Ξ

•

.

1) IMPORT, EXPORT AND PRODUCTION FIGURES ARE CONVERTED TO CRUDE STEEL EQUIVALENTS (INGOTS) BY USING COEFFICIENTS DEVELOPED BY THE ECE. "FERROUS MATERIALS FROM LOCAL SOURCES" ARE CALCULATED BY APPLYING THESE COEFFICIENTS TO LOCALLY PRODUCED ROLLED PRODUCTS, ARRIVING AT BILLET EQUVIVALENTS, AND THEN DEDUCTING NET IMPORTS OF BILLETS AND "FERROUS MATERIALS FOR SMELTING". DIFFERENCES BETWEEN THIS AND THE FIGURE GIVEN FOR SCRAP GENERATION MAY BE DUE TO INACCURACIES IN CONVERSION FACTORS, STOCKS OF SCRAP OR DEFICIENCIES IN THE EXTERNAL TRADE STATISTICS USED

. 38

.

DJIBOUTI TABLE 4

= = -

-

_

=

-

-

_

ь ь

MACRO DATA AND PROJECTIONS

•

•

	ACTUALS, ESTI	IMATES			PROJE	CTIONS		
YE	1981 1982	1983	1990 HIGH	1990 BASE	1990 LOW	1995 HIGH	1995 BASE	1995 LOW
GI AND POPULATION PULATION (MILL) DP PER CAPITA US\$ (1975) GDP MILL US\$ (1975) GROSS CAP FORM MILL US\$ (1975) BLDG AND CONSTR V.A MILL US\$ (1975) MANUFACTURING V.A. MILL US\$ (1975)	0.3 0.3 530.7 538.7 159.2 161.6 28.7 39.2 7.7 8.0 18.1 17.8	0.3 554.7 166.4 39.5 8.3 18.0	0.4 550.0 220.0 50.0 11.0 25.0	0.4 500.0 200.0 45.0 10.0 20.0	0.4 450.0 180.0 40.0 9.0 19.0	0.4 540.0 270.0 60.0 13.0 30.0	0.4 460.0 230.0 50.0 11.0 23.0	0.4 380.0 190.0 42.0 10.0 20.0
BALANCE OF PAYMENTS BILLION DF EXPORTS OTHER CURRENT ITEMS ODA, NET INFLOWS LONG TERM CAPITAL,NET RESERVES ERRORS AND OMISSIONS IMPORTS, IMPORT CAPACITY	20.8 18.0 -1.4 -5.1 18.0 16.1 1.9 6.2 -1.5 6.1 37.8 41.4	0.0 0.0 0.0 0.0 0.0 0.0	45.0 7.0 33.0 15.0 100.0	40.0 5.0 28.0 12.0 85.0	30.0 5.0 28.0 12.0 75.0	80.0 12.0 46.0 22.0 160.0	65.0 9.0 37.0 19.0	50.0 9.0 37.0 19.0
GROWTH RATES PER CENT P.A. POPULATION GDP. CONSTANT US\$ (1975)	<u>1981-82 198</u> 2.6 2. 1.2 3.	3 <u>2-83</u> 6 0	1981–198	3 <u>TO BA</u> 2.6 2.5	<u>SE 199</u> 0	BA	<u>5E 1990</u> 2.5 2.5	- 1995

OUNTRY DUIBOUTI									AVERAGE
			E	AR					TONNES
	191	81	19	82	19	83	AVERAGE	AVERAGE	IN PCT
	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	TONNES	OF TOTAL
SITC									
MET. STRUCTURES	2136	1725	3136	2486	7419	4875	4230		28
TANKS, VESSELS, ETC	372	195	296	194	252	216	307	202	2
WIRE PRODUCTS	414	318	253	301	214	284	294	301	3
NAILS, NUTS, BOLTS	164	82	125	145	204	343	164	190	
HAND TOOLS	593	164	600	159	1035	312	743	212	2
CUTLERY	157	14	115	5	197	8	156	9	0
DOM. UTENSILS	676	168	449	128	468	145	531	147	1
AGR.MACH., TRACTORS	184	46	602	203	2261	237	1016	162	
DOM. EL. EQUIPMENT	1051	218	1097	235	857	243	1002	232	2
RAIL. LOCOS ETC.	70	41	64	7	221	96	118	48	0
ROAD VEHICLES	19791	3854	21018	4338	17569	4175	19459	4122	38
BICYCLES ETC.	512	148	433	178	470	198	472	175	2
HEATING, SANITARY	1330	503	805	508	786	354	975	455	4
	3347	1505	2946	1669	2880	1734	3058	1636	15
FURNITURE	30797		31943		34833	13220	32524	10919	100

TABLE 5; ESTIMATED INDIRECT STEEL IMPORTS, 1981 - 1983 AND AVERAGES VALUES IN 1000 US \$. QUANIIILES IN TONNES.

.

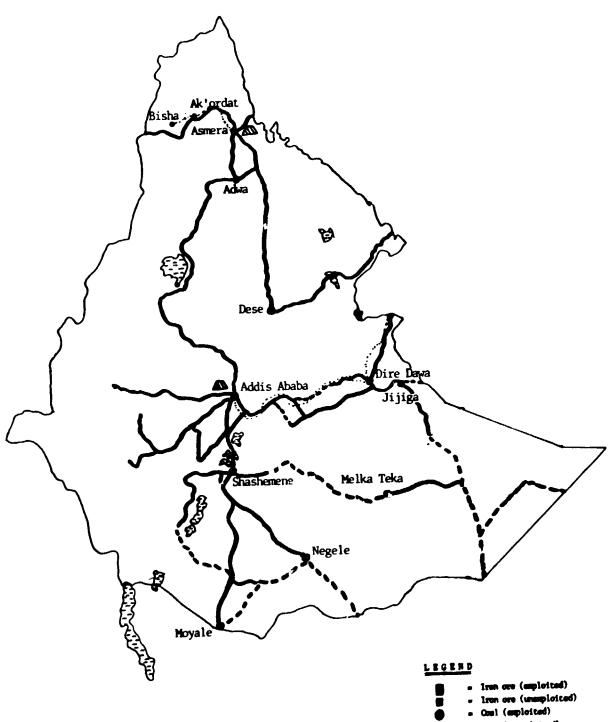
•

ð 1

•

•

<u>ETHIOPIA</u>


٠

.

.

Map of the	e country	,	••	••	••	••	••	••	••	••	••	••	42
Country no	otes	••	••	••	••	•••	••		••	••	••	••	43
Table 1:	Main pro	ojecti	on	••	••	••	••	•••	••	••	••	••	44
Table 2: imports	Projecti 											••	45
Table 3: product												••	46
Table 4: ferrous ma													47
Table 5:	Estimate	ed ind	lirec	t ste	el imp	or's	1981	L-83	and av	verage	es	••	48

٠

Cosl (unsuploited) .

•

.

.

Natural gas

ō

- Steel plant(s)
 Railways
 Improved roads
 Unimproved roads

ETHIOPIA

The three alternative macro economic projections for Ethiopia cover a range of possibilities, from those indicated by Government plans to the less optimistic assessment of the World Bank. The base case up to 1990 is near to the more optimistic scenario supplied by the World Bank for the period 1984-89 (Country Economic Memorandum of May 1984). This is based on a less favourable coffee price than the present price levels seem to indicate. For the period 1990-1995 a somewhat more rapid growth is projected.

The overall average growth rates assumed for the manufacturing sector imply a development pattern where those industries which are main consumers of iron and steel gradually increase thin share of GDP. This in addition to the fact that consumption of various products like wire, rails and plate were very depressed in the base period, makes for a development where steel consumption increases more rapidly than GDP and becomes gradually diversified. Whereas bars, rods tin plate and coated plate constituted arround 70 per cent of consumption in 1981-83 the same ites stood for around 60 per cent in 1995.

The high growth scenario indicates steel consumption growth just below 10 per cent annually from 1981-83 to 1995. In case of the low growth scenario it appears that even if GDP per capita declines, structural changes will hold steel consumption growth up to a level not far below that of the base case.

ETHIOPIA TABLE 1, MAIN PROJECTION

A) MACRO VARIABLES, DATA AND BASE CASE PROJECTIONS

AVERAGE 1981 - 1983	PROJECTION 1990	PROJECTION 1995	GROWTH RATES PCT, P.A.
GDP POPU- GDP PER	GDP FOPU- GDP PER	GDP POPU- GDP PER	GDP POP GDP/POP
MILL. LATION CAPITA	MILL. LATION CAPITA	MILL. LATION CAPITA	TO 1990- TO 1990- TO 1990-
US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	19901995 19901995 1990 1995
3779 33.3 113	5080 43.2 118	6200 51.2 121	3.8 4.1 3.3 3.5 0.4 0.6

B) BASE CASE PROJECTIONS 1990 AND 1995 , TONNES

	AV	ERAGE 1	981 - 19	983		199	0		199	95		GROWTH MPIION	RATES	PA. VARIABLI	-
PRODUCT NAME SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	TO 1990	1990- 1995	1990	1990- 1995	.
BARS AND RODS 6730 ANGLES SHP. H 6734 ANGLES SHP.,L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743 TIN.& COAT.PL 6749 HOOP AND STRP 6750 RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	20710 547 3521 1784 3567 17722 1243 49 1034 3241	14757 1349 0 0 0 282 0	5954 547 2172 1784 3567 17722 1243 49 752 3241	0 - - - - - - - - - - -	31847 1107 8066 5283 7650 27424 1483 566 4461 3500	19000 0 1500 0 0 500 500	12847 1107 6566 5283 7650 27424 1483 566 3961 3500	41135 1527 11715 7488 12500 35261 1688 1041 7260 3590	40000 0 10000 0 0 4000 0	1135 1527 1715 7488 12500 35261 1688 1041 3260 3590	5.5 10.9 14.5 10.6 2.8 35.8 20.1 1.0	5.3 6.7 7.2 10.2 13.2 13.2 10.5	434544 343444544 44344 44344	3.7 3.1 4.4 3.1 4.4 4.4 3.1 4.4 4.4	- 44 -
TOTALS	53418	16388	37030	0	91387	21000	70387	123205	54000	69205	6.9	6.2			I
CRUDE EQUIVALENT BILLET EQUVIVALENT	70676 60304	20843 17784	49835 42521	0 0	120890 103148	26715 22794	94175 80354	162933 139021	68826 58725	94107 80296	6.9 6.9	6.2 6.2			

C)	HIGH-GROWTH	CASE	PROJECTIONS	1990 AND	1995

AVERAGE	1981 - 1983	1990	1995	CONSUMPTION GROWTH RATE PA.
CONS PROD	IMP EXP	CONS PROD IMPORT	CONS PROD IMPORT	BASE PERIOD-1990 1990-95
CRUDE EQUIV. TONNES 70676 20843	49835 0	158275 26715 131560	234677 68826 165851	10.6 8.2
PERCENT GROWTH IN MACRO VARIABLES	GDP	POPULATION	GDP/CAPITA	
AVERAGE 81-83 TO 1990	5.5	3.3	2.1	
1990 TO 1995	6.0	3.5	2.4	

		D) LOW-GR	OWTH CASE	PROJEC	TIONS 199	0 AND 199	95			
CŌ	AVERAGE NS PROD	1981 - 1983 IMP EXP	CONS	199 PROD	0 IMPORT	CONS	199 PROD	IMPORT	CONSUMPTION GROWT BASE PERIOD - 199	H RATE PA. 0 1990-95
CRUDE EQUVIV. TONNE 706	76 20843	49835 0	111156	26715	84441	140307	68826	71481	5.8	4.8
PERCENT GROWTH IN MACRO AVERAGE 81-83 TO 1990 1990 TO 1995		GDP 2.5 2.9		POPUL	ATION 3.3 3.5		_	CAPITA 0.8 0.6		

TABLE 2, PROJECTION WITH ACCELLERATED REPLACEMENT OF INDIRECT STEEL IMPORTS A) MACRO VARIABLES: DATA AND BASE CASE PROJECTIONS ETHIOPIA

• •

	A) MACKO VANIALLOI DA		
AVERAGE 1981 - 1983 GDP FÖFU- GDP FER Mill. Lation Capita US\$ -75 Mill. US\$ -75	PROJECTION 1990 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1995 GDF FOPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	GROWTH RATES PCT. P.A. GDP POP GDP/POP TO 1990- TO 1990- TO 1990- 19901995 19901995 1990 1995
3779 33.3 113	5080 43.2 118	6200 51.2 121	3.8 4.1 3.3 3.5 0.4 0.6

B) BASE CASE PROJECTIONS 1990 AND 1995, TONNES

	AV	ERAGE 1	981 - 19	983		199	0		199	95	CONSU	GROWTH		P.A. VARIABLE	-
PRODUCT NAME SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1990	1990- 1995	1990	1990- 1995	-
BARS AND RODS 6730 ANGLES SHP. H 6734 ANGLES SHP.,L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743 TIN.& COAT.PL 6749 HOOP AND STRP 6750 RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	20710 547 3521 1784 3567 17722 1243 49 1034 3241	14757 1349 0 0 0 282 0	5954 547 2172 1784 3567 17722 1243 49 752 3241	0 - - - - - - - - - - - - -	36085 2158 9771 6319 10693 30004 1770 981 5353 4185	19000 0 1500 0 0 0 500 0	17085 2158 8271 6319 10693 30004 1770 981 4853 4185	49610 3630 15124 9559 18586 40423 2261 1870 9044 4960	40000 0 10000 0 0 4000 0	9610 3630 5124 9559 18586 40423 2261 1370 5044 4960	7.2 18.7 13.6 17.1 14.7 4.5 45.4 22.8 3.2	6.6 11.0 9.1 8.6 11.7 6.1 5.0 13.8 11.1 3.5	434544 343444544 3444344	3.7 3.1 4.4 3.1 4.4 3.1 4.4 3.1 4.4 4.4	- 45 -
TOTALS	53418	16388	37030	0	107318	21000	86318	155066	54000	101066	9.1	7.6			
CRUDE EQUIVALENT BILLET EQUVIVALENT	70676 60304	20843 17784	49835 42521	0 0	141967 121132	26715 22794	115252 98338	205085 174987	68826 58725	136259 116262	9.1 9.1	7.6 7.6			

	C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995								
ÖÖ	AVERAGE NS PROD	1981 - 1983 IMP EXP	ĊŐŃŚ	1990 PROD IMPORT	CONS	1995 PROD IMPORT	CONSUMPTION GROWTH BASE PERIOD-1990	RATE PA, 1990-95	
CRUDE EQUIV. TONNES 706	76 20843	49835 0	179349	26715 152634	276831 6	68826 208005	12.3	9.1	
PERCENT GROWTH IN MACRO AVERAGE 81-83 TO 1990 1990 TO 1995		GDP 5.5 6.0		POPULATION 3.3 3.5	ſ	GDP/CAPITA 2.1 2.4			

LOW-GROWTH CASE PROJECTIONS 1990 AND 1995									
AVERAGE 1	981 - 1983	1990	1995	CONSUMPTION GROWTH RATE PA,					
CONS PROD	IMP EXP	CONS PROD IMPORT	CONS PROD IMPORT	BASE PERIOD - 1990 1990-95					
CRUDE EQUVIV. TONNE 70676 20843	49835 0	132231 26715 105516	182458 68826 113632	8.1 6.7					
PERCENT GROWTH IN MACRO VARIABLES	GDP	POPULATION	GDF CAPITA						
A.ERAGE 81 83 10 1990	2.5	3.3	0.8						
1990 10 1995	2.9	3.5	0.6						

• •

ETHIOPIA TABLE 3		۵	A) COMPON	ENTS OF A	APPARENT	STEEL C	DISUMPT	10N BY PR	DUCT (TON	4ES)			
PRODUCT NAME SITC	1981	IMPC 1982)RTS 1983	AVER	1981	PRODUC 1982	TION 1983	A∨ER	1981	EXPORTS 1982 19	83 A	VER	APP. CONS AV 81-83
WIRE RODS 6731 BARS AND RODS 6732 ANGLES SHP.HM 6734	4789 87 480	4745 365 360	7686 189 800	5740 214 547	13700	14802	15768						5740 14970 547
ANGLES SHPL 6735 PLATES, HEAVY 6741	1897 2160	1441 840	3179 2351	2172 1784	840	1307	1900) 1349	9				3521 1784 0
PLATES, MED. 6742 PLATES, LIGHT 6743 TINPLATE 6747 OTHER COAT.P 6748 HOOP AND SIRP 6750 RAILS 6761	4319 3332 3538 661 2	1678 4745 10150 306 4	4703 13569 17833 2761 141	3567 7215 10507 1243 49									3567 7215 10507 1243 49 0
OTHER RL TRCK 6762 WIRE 6770 SEAMLESS TUBE 6782 WELDED TUBES 6783	704 1849	874 3508	678 4366	752 3241	160	285	402	2 28	2				1034 3241 0
TOTALS	23818	29016	58256	37030	14540	16109	17668	3 1610	6 0	0	0	0	53136 . 1
	8)	DEMAND	SUPPLY	BALANCES	FOR ROL	LED PROD	UCTS AN	ND FERROUS	MATERIALS				
A ROLLED PRI	ODUCTS						1981	1982	1983	AVERAG	E		
	T CONSUMP	TION OF P	ROLLED PR	RODUCTS			38358	45125	75924	53136			
OF WHICH; NET LOCA	IMPORTS O	F ROLLED	PRODUCTS	5		238 145		29016 16109	58256 17668	37030 16106			
B FERROUS MA	TERIALS C	ONSUMPTI	DN (CRUDE	E EQUIVA	LENTS) 1) 1	02711	113169	174487	130122			
ŠUPPLI 1 NET I	ED FROM; MPORTS						91817	109649	159923	120463			
	WHICH; ERROUS MA ET IMPORT ET IMPORT INISHED P	S OF BILI	LETS ETC	JCTS		8 56 319 534	28 53	1206 14490 39190 54762	1300 5213 78358 75053	1110 8444 49833 61076			
	CAL SOURC						10893	3520	14564	9659			
C ESTIMATED	ANNUAL LO	CAL SCRA	P GENERA	TION			5000	5000	5000	5000			

•

•

•

IMPORT, EXPORT AND PRODUCTION FIGURES ARE CONVERTED TO CRUDE STEEL EQUIVALENTS (INGOTS) BY USING COEFFICIENTS DEVELOPED BY THE ECE. "FERROUS MATERIALS FROM LOCAL SOURCES" ARE CALCULATED BY APPLYING THESE COEFFICIENTS TO LOCALLY PRODUCED ROLLED PRODUCTS, ARRIVING AT BILLET EQUVIVALENTS, AND THEN DEDUCTING NET IMPORTS OF BILLETS AND "FERROUS MATERIALS FOR SMELTING". DIFFERENCES BETWEEN THIS AND THE FIGURE GIVEN FOR SCRAP GENERATION MAY BE DUE TO INACCURACIES IN CONVERSION FACTORS, STOCKS OF SCRAP OR DEFICIENCIES IN THE EXTERNAL TRADE STATISTICS USED 1)

۰ ۰

MACRO DATA AND PROJECTIONS

• •

	ACTUALS, ESTIMATES	PROJECTIONS
YEAR	1981 1982 1983	1990 1990 1990 1995 1995 1995
		HÌGH BÀSE LOW HIGH BASE LOW
<u>GDP, AND POPULATION</u> POPULATION (MILL)	32.3 33.3 34.3	43.2 43.2 43.2 51.2 51.2 51.2
GDP PER CAPITA US\$ (1975)	114.0 113.1 112.6	134.3 117.5 106.5 151.4 121.1 103.5
GDP MILL US\$ (1975)	3706.4 3767.0 3863.1	5800.0 5080.0 4000.0 7750.0 6200.0 5300.0
GROSS CAP FORM MILL US\$ (1975)	522.6 548.6 596.1	840.0 730.0 540.0 1000.0 850.0 670.0
BLDG AND CONSTR V.A MILL US\$ (1975)	195.0 216.7 231.1 398.1 421.9 436.9	325.0 300.0 260.0 420.0 360.0 290.0 660.0 590.0 540.0 880.0 730.0 630.0
MANUFACTURING V.A. MILL US\$ (1975)	398.1 421.9 436.9	000.0 590.0 540.0 680.0 130.0 630.0
BALANCE OF PAYMENTS MILLION BIRR		
EXPORTS	852.7 795.4 810.5	2450.0 2100.0 1800.0 4980.0 3980.0 2980.0
OTHER CURRENT ITEMS	171.2 167.2 285.6	500.0 500.0 500.0 670.0 670.0 670.0
ODA, NET INFLOWS	352.5 647.9 614.9	1200.0 1000.0 1000.0 1700.0 1300.0 1300.0 150.0 100.0 900.0 300.0 200.0 200.0
LONG TERM CAPITAL,NET Reserves errors and omissions	104.9 11.1 62.0	
IMPORTS, IMPORT CAPACITY	1481.3 1621.7 1772.9	4400.0 3800.0 3500.0 7800.0 6300.0 5300.0
GROWTH RATES PER CENT P.A.	<u>1981-82 1982-83</u>	<u> 1981-1983 TO BASE 1990 BASE 1990-1995</u>
POPULATION	3.1 3.1	3.4 3.4 4.0 4.1
GDP. CONSTANT US\$ (1975)	1.6 2.6	4.0 4.1

JUNTRY ETHIOPIA			YE	AR					AVERAGE TONNES
	19	81	19	1982		1983		AVERAGE	IN PCT
	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	QUANTITY	AVERAGE VALUE	TONNES	OF TOTAL
SITC									
MET. STRUCTURES	2442	2803	11532	13683	12244	12887	8739	9791	18
TANKS, VESSELS, ETC	11912	10259	8904	6942	11803	11686	10873	9629	18
VIRE PRODUCTS	1477	1042	1471	863	3143	1087	2030	997	2
AILS, NUTS, BOLTS	854	272	1104	353	1011	570	990	398	
HAND TOOLS	3676	805	3330	638	3083	919	3363	787	
CUTLERY	525	85	610	30	169	12	435	42	
DOM. UTENSILS	2006	491	1499	293	1723	456	1743	413	
GR.MACH., TRACTORS	12173	3090	6443	1787	10225	2403	9614	2427	!
DOM. EL. EQUIPMENT	1261	254	2710	257	610	120	1527	210	
RAIL. LOCOS ETC.	419	53	1056	154	5110	881	2195	363	
ROAD VEHICLES	97704	22411	84675	18838	102725	26931	95035	22727	4:
BICYCLES ETC.	8817	4008	6600	2414	12650	6481	9356	4301	-
HEATING, SANITARY	1585	556	762	328	2212	1042	1520	642	
FURNITURE	295	79	505	226	2726	817	1175	374	
TOTAL	145146	46208	131261	46806	169434	66292	148594	53102	10

TABLE 5; ESTIMATED INDIRECT STEEL IMPORTS, 1981 - 1983 AND AVERAGES VALUES IN 1000 US \$. QUANTITIES IN TONNES.

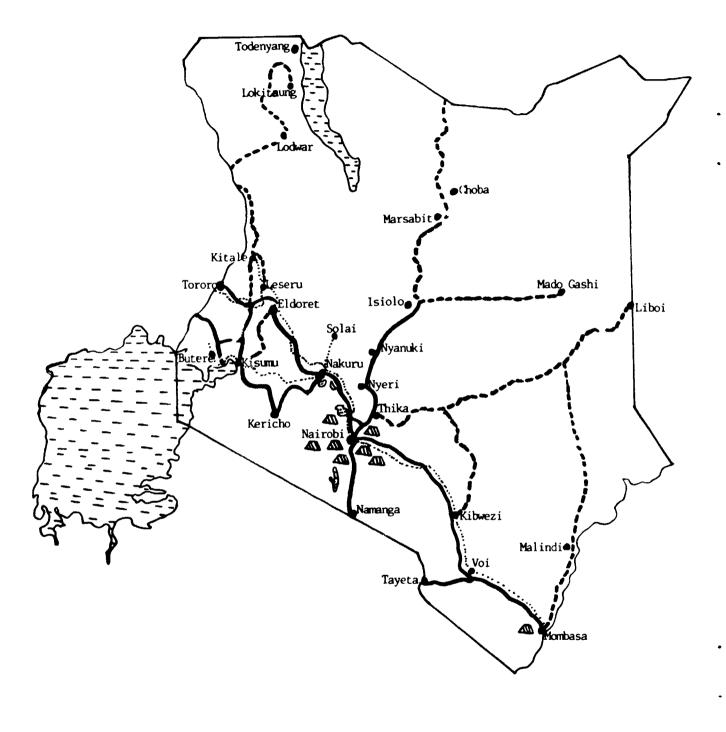
· •

. .

I 48 1

<u>KENYA</u>

.


,

4

-

Map of the	country	••	••	••	••	••	••	••	••	••	••	••	
Country not	tes	••	••	••	••	••	••	••	••	••	••	••	
Table 1: 1	Main pro	jecti	on	••	••	••	••	••	••		••	••	
Table 2: 1 imports	Projecti 	on wi 	th ac	celer 	ated 		ption 		indir 	ect si	teel	••	
Table 3: : product .			-				stee 	l con	-	tion l	-	••	
Table 4: ferrous ma					-		for 	rolle 	ed pro	oduct: 	s and		
Table 5:	Estimate	d ind	irect	stee	l imp	orts,	1981	-83 (and a	verage	es		

KENYA

.

LIGEND

	= iron ore (asploited)	
Ē	- Iron ore (unamploited)	
Ö	= Osel (exploited)	
ŏ	- Coul (unamploited)	
A	- Natural gas	
	= Steel plant(s)	
	- Anilwaya	
	· Improved roads	

-- - Unimproved read

KENYA

Kenyas Development Plan for the period 1983-1988 aimed at a growth rate of GDP at 4.9 per cent per annum. Balance-of-payments constraints which has long troubled the economy and drought were major factors behind the bad outturn for 1984 when GDP increased less than 1 per cent . Despite the brighter outlook for the balance-of-payments in terms of coffee and oil prices, growth is assumed to average only 2.8 per cent per annum up to 1990. The Kenyan debt service ratio is still high and there is a need for structural changes in the economy before neew growth momentum can gather.

The projection for 1990-1995 is more optimistic, assuming less severe debt can balance-of-payments constraints. Investment is supposed to increase relative to GDP. Considerable restructuring efforts giving rise to a rapid growth of the manufacturing sector.

In spite of the need for restructuring, Kenya's economy is further developed than most other PTA countries. This means that the tendency for a decline in steel intensity^{1/} long experienced in industrialized economies, should be relatively stronger than in other PTA countries.

This is clearly revealed in the steel demand projections for Kenya; during the period of moderate growth up to 1990 consumption increases by only about one-third of the increase in GDP. A small drop in the consumption of bars and rods up to 1990 is associated with mainly the assumed near stagnation of the building and construction industry in that period.

The more vigorous growth period forecasted from 1990 to 1995 counterbalances the tendency for steel intensity to decline, as the sectors of building and construction, manufacturing and gross capital formation grows at a faster rate than the rest of the economy.

1/ Measured e.g. as weight of steel per US \$ of value added

- 51 -

TABLE 1, MAIN PROJECTION

. .

KENYA

A) MACRO VARIABLES, DATA AND BASE CASE PROJECTIONS

AVERAGE 1981 - 1983	PROJECTION 1990	PROJECTION 1995	<u>GROWTH RATES PCT, P.A.</u>
GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POP GDP/POP
MILL. LATION CAPITA	MILL. LATION CAPITA	MILL. LATION CAPITA	TO 1990- TO 1990- TO 1990-
US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	19901995 19901995 1990 1995
4522 17.9 252	5650 25.2 224	7350 31.3 235	2.8 5.4 4.3 4.4 -1.5 0.9

B) BASE CASE PROJECTIONS 1990 AND 1995 , TONNES

	AV	ERAGE 1	1981 - 1	983		199			199	95	CONSU	GROWT	RATES	PA. VARIABLE
PRODUCT NAME SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1990	1990- 1995	1990	1990- 1995
BARS AND RODS 6730 ANGLES SHP. H 6734 ANGLES SHP., L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743 TIN.& COAT.PL 6749 HOOP AND STRP 6750 RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	53192 2547 16763 17073 46742 37693 992 2532 14717 2145	33227 17528 0 6000 0 7000 1000	22511 2547 199 17073 46742 33104 992 2532 8557 1718	2546 964 0 1411 0 840 573	45871 2656 21528 18000 56718 45938 1218 2656 16193 2200	2500	-28129 156 -18472 18000 56718 5938 1218 156 -8807 200	54747 3371 29917 20411 77586 62796 1565 3211 21495 2500	90000 3500 70000 60000 3500 30000 2500	-35253 -129 -40083 20411 27586 2796 1565 -289 -8505 0	-1.8 3.2 0.7 2.4 2.5 0.6 1.2 0.3	3462665352 	0.1 1.7 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8	5565666666 556566666666666666666666666
TOTALS	194396	64755	135975	6334	212977	186000	26977	277599	259500	18099	1.1	5.4		
CRUDE EQUIVALENT BILLET EQUVIVALENT	258216 220320	83367 71132	183178 156295	8329 7107	283650 242022		42054 35882	369778 315510		32635 27845	1.2 1.2	5.4 5.4		

C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995

AVERAGE	1981 - 1983	1990	1995	CONSUMPTION GROWTH RATE PA.
CONS PROD	IMP EXP	CONS PROD IMPORT	CONS PROD IMPORT	BASE PERIOD-1990 1990-95
CRUDE EQUIV. TONNES 258216 83367	183178 8329	318754 241596 77157	427671 337143 90528	2.7 6.1
FERCENT GROWTH IN MACRO VARIABLES	GDP	POPULATION	GDP/CAPITA	
Average 81-83 to 1990	4.3	4.3	-0.0	
1990 to 1995	6.5	4.4	2.0	

D)	LOW-GROWTH	CASE	PROJECTIONS	1990	AND	1995
----	------------	------	-------------	------	-----	------

<u>AVERAGE 1</u>	<u>981 - 1983</u>	1990	1995	CONSUMPTION GROWTH RATE PA,
CONS PROD	IMP EXP	CONS PROD IMPORT	CONS PROD IMPORT	BASE PERIOD - 1990 1990-95
CRUDE EQUVIV. TONNE 258216 83367	183178 8329	261609 241596 20012	331110 337143 -6033	0.2 4.8
PERCENT GROWTH IN MACRO VARIABLES	GDP	POPULATION	GDP/CAPITA	
Average 81-83 to 1990	2.0	4.3	-2.2	
1990 to 1995	5.0	4.4	0.5	

• •

- 52 -

KENYA TABLE 2, PROJECTION WITH ACCELLERATED REPLACEMENT OF INDIRECT STEEL IMPORTS A) MACRO VARIABLES: DATA AND BASE CASE PROJECTIONS

۰ ·

AVERAGE 1981 - 1983	PROJECTION 1990	PROJECTION 1995	GROWTH RATES PCT, P.A.
GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POP GDP/POP
MILL. LATION CAPITA	MILL. LATION CAPITA	MILL. LATION CAPITA	TO 1990- TO 1990- TO 1990-
US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	19901995 19901995 1990 1995
4522 17.9 252	5650 25.2 224	7350 31.3 235	2.8 5.4 4.3 4.4 -1.5 0.9

• •

B) BASE CASE PROJECTIONS 1990 AND 1995, TONNES

	AV	ERAGE 1	981 - 19	983		199	90		199	95		GROWTH MPTION	ATES	P.A. VARIABL	- F
PRODUCT NAME SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	TO 1990	1990- 1995	1990	1990- 1995	- <u>9</u>
BARS AND RODS 6730 ANGLES SHP. H 6734 ANGLES SHP.,L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743 TIN.& COAT.PL 6749 HOOP AND STRP 6750 RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	53192 2547 16763 17073 46742 37693 992 2532 14717 2145	33227 17528 6000 0 7000 1000	22511 2547 199 17073 46742 33104 992 2532 8557 1718	2546 964 0 1411 0 840 573	49557 3570 23011 18901 59364 48183 1467 3016 16969 2796	74000 2500 40000 40000 2500 25000 2000	-24443 1070 -16989 18901 59364 8183 1467 516 -8031 796	62119 5200 32882 22212 82879 67285 2064 3931 23047 3692	90000 3500 70000 60000 3500 30000 2500	-27881 1700 -37118 22212 82879 7285 2064 431 -6953 1192	-0.9 4.3 1.3 3.0 3.1 5.0 2.2 1.8 3.4	4.68 77.399 75.67 56.7 56.7	0.1 3.8 1.7 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8	90000000000 	- 53 -
TOTALS	194396	64755	135975	6334	226834	186000	40834	305312	259500	45812	1.9	6.1			
CRUDE EQUIVALENT BILLET EQUVIVALENT	258216 220320	83367 71132	183178 156295	8329 7107		241596 206140	60385 51523	406441 346791	337143 287664	69297 59127	2.0 2.0	6.1 6.1			

C) HIGH-GROWTH CASE PROJECTIONS	1990 AND	1995
---------------------------------	----------	------

AVERAGE 1	<u>981 - 1983</u>	1990	1995	CONSUMPTION GROWTH RATE PA,
CONS PROD	IMP EXP	CONS PROD IMPORT	CONS PROD IMPORT	BASE PERIOD-1990 1990-95
CRUDE EQUIV. TONNES 258216 83367	183178 8329	337086 241596 95490	464336 337143 127192	3.4 6.6
PERCENT GROWTH IN MACRO VARIABLES	GDP	POPULATION	GDP/CAPITA	
AVERAGE 81-83 TO 1990	4.3	4.3	-0.0	
1990 TO 1995	6.5	4.4	2.0	

LOW-GROWTH CASE PROJECTIONS 1990 AND 1995								
AVERAGE 1	981 - 1983	1990	1995	CONSUMPTION GROWTH RATE PA.				
CONS PROD	IMP EXP	CONS PROD IMPORT	CONS PROD IMPORT	BASE PERIOD - 1990 1990-95				
CRUDE EQUVIV. TONNE 258216 83367	183178 8329	279943 241596 38346	367774 337143 30631	1.0 5.6				
PERCENT GROWTH IN MACRO VARIABLES	GDP	POPULATION	GDP/CAPITA					
AVERAGE 81-83 TO 1990	2.0	4.3	-2.2					
1990 TO 1995	5.0	4.4	0.5					

RODUCT NAME SITC		IMPO				PRODUCI			1981	EXPO	RTS 1983	AVER	APP. CON AV 81-83
	1981	1982	1983	AVER	1981	1982	1983	3 AVER	1981	1902	1903	AVEN	
IRE RODS 6731 ARS AND RODS 6732	21934 1164	21785 2504	18890 1256	20870 1641	31940	36495	3124	5 33227	2432	3092	2113	2546	2087 3232 254
NGLES SHP.HM 6734 NGLES SHPL 6735	5188 322	1973 274	479	2547 199	16730	19605	1625	0 17528	891	1481	520	964	1676 720
LÁTES, HEAVY 6741 LATES, MED. 6742 LATES, LIGHT 6743 INPLATE 6747 DTHER COAT.P 6748 HODP AND STRP 6750 AALS 6761	6839 12455 49523 47952 3549 757 470	9371 12435 55805 23300 3069 1075 190	5414 4706 34899 18974 2468 1145 12	7208 9865 46742 30075 3029 992 224	6000	6000	600	0 6000	2055	1329	850	1411	986 4674 3007 761 99 22 230
THER RL TRCK 6762	4 15978	137 6815	6783 2877	2308 8557	7000	7000	700	0 7000	508	1193	819	840	1471 140
EAMLESS TUBE 6782 VELDED TUBES 6783	2145 267	351 321	1704 366	1400 318	1000	1000	100	0 1000	573	759	387	573	74
OTALS	168547	139405	9997 3	135975	54670	62100	5349	5 56755	6459	7854	4689	6334	18639
A ROLLED PF		DEMAND /	SUPPLY	BALANCES	FOR ROLI			ND FERROUS					
APPARE	NT CONSUMP	TION OF F	ROLLED P	RODUCTS		2	16758	193651	148779	1863	96		
		F ROLLED	PRODUCTS	5		16208 5463	<u>88</u>	131551 62100	95284 53495	129641 56755			
OF WHICH; NET	AL PRODUCT	ION				540	, 0						
OF WHICH; NET LOCA B FERROUS MA	AL PRODUCT ATERIALS C	ION	ON (CRUDI	E EQUIVA	LENTS) 1)	44954	296021	232872	2912	82		
OF WHICH; NET LOCA B FERROUS MA TOTAL SUPPLI 1 NET	AL PRODUCT ATERIALS C IED FROM; IMPORTS	ION	ON (CRUDE	E EQUIVA	LENTS) 1) 34		296021 248248	232872 188553	2912 2454			
OF WHICH; NET LOCA B FERROUS MA TOTAL SUPPLI 1 NET	AL PRODUCT ATERIALS C IED FROM; IMPORTS	TON) 34 29	44954 99683	248248 3595 15555 177781	188553 1793 10546				
OF WHICH; NET LOCA B FERROUS MA TOTAL SUPPLI 1 NET OF	AL PRODUCT ATERIALS C IED FROM; IMPORTS	TERIALS F S OF BILL PRODUCTS (OR SMEL LETS ETC LED PRODU (INDIREC) 34 25 1200 21865 6821	44954 99683	248248 3595 15555 177781 1 51318	188553 1793 10546 28079	2454 2037 12722 174849 55887	95		

54

1) IMPORT, EXPORT AND PRODUCTION FIGURES ARE CONVERTED TO CRUDE STEEL EQUIVALENTS (INGOTS) BY USING COEFFICIENTS DEVELOPED BY THE ECE. "FERROUS MATERIALS FROM LOCAL SOURCES" ARE CALCULATED BY APPLYING THESE COEFFICIENTS TO LOCALLY PRODUCED ROLLED PRODUCTS, ARRIVING AT BILLET EQUVIVALENTS, AND THEN DEDUCTING NET IMPORTS OF BILLETS AND "FERROUS MATERIALS FOR SMELTING". DIFFERENCES BETWEEN THIS AND THE FICURE GIVEN FOR SCRAP GENERATION MAY BE DUE TO INACCURACIES IN CONVERSION FACTORS, STOCKS OF SCRAP OR DEFICIENCIES IN THE EXTERNAL TRADE STATISTICS USED

•

.

.

.

٠

•

MACRO DATA AND PROJECTIONS

6

.

٠

4

4

	ACTUALS, ESTIMATES	PROJECTIONS
YEAR	1981 1982 1983	1990 1990 1990 1995 1995 1995
GDP. AND POPULATION POPULATION (MILL) GDP PER CAPITA US\$ (1975) GDP_MILL US\$ (1975)	17.2 17.9 18.7 253.0 252.1 250.7 4364.1 4512.5 4688.5	HIGH BASE LOW HIGH BASE LOW 25.2 25.2 25.2 31.3 31.3 31.3 251.9 224.2 210.3 277.9 234.8 215.7 6350.0 5650.0 5300.0 8700.0 7350.0 6750.0
ĞROSS CAP FÖRM MILL US\$ (1975) BLDG AND CONSTR V.A MILL US\$ (1975) Manufacturing V.A. Mill US\$ (1975)	799.4 638.8 655.6 130.4 115.1 110.3 582.4 583.0 609.2	1050.0 800.0 750.0 1450.0 1050.0 950.0 150.0 120.0 120.0 210.0 160.0 150.0 900.0 800.0 750.0 1250.0 1100.0 1000.0
BALANCE OF PAYMENTS MILLION KL EXPORTS OTHER CURRENT ITEMS ODA, NET INFLOWS LONG TERM CAPITAL,NET RESERVES ERRORS AND OMISSIONS IMPORTS, IMPORT CAPACITY	474.8 509.9 615.8 125.9 128.7 144.1 141.4 98.4 137.6 87.5 79.5 73.3 142.2 123.9 -41.7 971.8 940.3 929.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
GROWTH RATES PER CENT P.A. POPULATION GDP. CONSTANT US\$ (1975)	<u>1981-82 1982-83</u> 4.2 4.3 3.4 3.9	<u>1981-1983 TO BASE 1990 BASE 1990-1995</u> 4.4 2.7 5.5

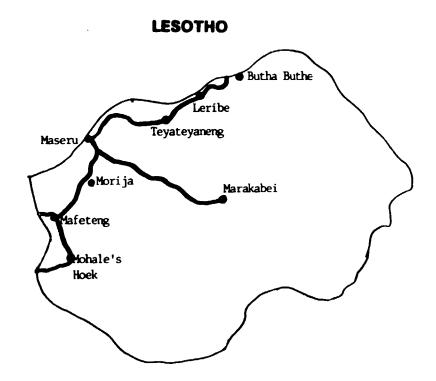
•

TABLE 5; ESTIMATED INDIRECT STEEL	MPORTS, 1981 -	1983 AND	AVE	RAGES	VALUES	5 IN 1000	US \$. QU/	ANTITIES	IN TONNES.
COUNTRY KENYA									
			YE	AR					AVERAGE TONNES
	19	1981 1982 19				83	AVERAGE	AVERAGE	IN PCT
	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	TONNES	OF TOTAL
SITC									
MET. STRUCTURES	11328	14910	7096	6501	3054	2481	7159	7964	17
TANKS, VESSELS, ETC	1513	301	852	551	1257	1055	1207	636	1
WIRE PRODUCTS	7988	4537	1427	1047	438	255	3284	1946	4
NAILS, NUTS, BOLTS	3634	1545	2727	1746	532	342	2298	1211	3

ı •

- -

NAILS, NUTS, BOLTS	3634	1545	2727	1746	532	342	2298	1211	3
HAND TOOLS	9686	3645	7609	3065	4791	3250	7362	3320	7
CUTLERY	1297	63	445	27	356	22	699	37	0
DOM. UTENSILS	2554	372	1512	326	851	29 5	1639	331	1
AGR.MACH., TRACTORS	25916	7022	19708	5200	10657	2886	18760	5036	11
DOM. EL. EQUIPMENT	4347	732	2825	505	2949	499	3374	579	1
RAIL. LOCOS ETC.	2277	268	10734	2644	8772	461	7261	1124	2
ROAD VEHICLES	126005	26775	86818	18616	71021	15382	94615	20258	44
BICYCLES ETC.	5197	1988	5916	2573	1557	631	4223	1731	4
HEATING, SANITARY	3919	1688	3633	2007	2190	1068	3247	1588	3
FURNITURE	1473	341	1252	536	1239	409	1321	429	1
TOTAL	207134	64187	152554	45344	109664	29036	156451	46189	100


- F

. .

LESOTHO

Map of the	e country	·	••	••	••	••	• •	••	••	••	••	••	58
Country no	otes	••	••	••	••	••	••	••	••	••	••	•••	59
Table 1:	Main pro	jecti	on	••	••	••	••	••	• •	••	••	• •	60
Table 2: imports	Projecti 					ebsori •••						••	61
Table 3: product .			-						-		-		62
Table 4: ferrous ma													63
Table 5:	Estimate	ed ind	lirect	stee	l imp	orts,	1981-	-83 a	nd av	erage	S	••	64

.

LIGEND Iron ore (apploited) Iron ore (unapploited) = Ocal (exploited) - Cosl (unseploited) . Natural gas Steel plant(s) Bailways Improved roads Unimproved roads Å

_

-

•

.

LESOTHO

Lesotho's economy is exceptionally strongly linked with the economy of South Africa. Economic growth in Lesotho therefore will depend crucially on when and how the present severe social and economic problems of South Africa can be solved.

The base case takes what could seem like a pessimistic view of the medium-term with a projected GDP growth rate at 1.6 per cent per annum (i.e. declining GDP per cent). Compared, however, with the experience of the last few years this is still optimistic.

For the longer term, the forecast is still conservative, assuming growth in GDP to be rarely 0.7 per cent per annum over projected population growth. This is based on the view that a very favourable economic situation will hardly materialize. Implementation of a large-scale project like the Highland Water Scheme would improve this situation and also give rise to a vast temporary expansion of steel demand. This is not included in the projections presented.

Steel demand projections for Lesotho by the methodology used for the other countries of the subregion came out with some nonsensical results. Revisions were carried out under the assumption that the present structure of demand would change only slightly but that overall growth of steel demand would tend to be well above that of GDP growth. LESOTHO TABLE 1, MAIN PROJECTION

A) MACRO VARIABLES, DATA AND BASE CASE PROJECTIONS

AVERAGE 1981 - 1983 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1990 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1995 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	<u>GROWTH RATES PCT. P.A.</u> GDP POP GDP/POP TO 1990- TO 1990- TO 1990- 19901995 19901995 1990 1995
237 1.4 165	270 1.8 150	320 2.1 155	1.6 3.5 2.8 2.7 -1.2 0.7

B) BASE CASE PROJECTIONS 1990 AND 1995 , TONNES

	AVE	ERAGE 1	981 - 19	83		199	0		199	5	CONSU	GROWT MPTION		PA. VARIABLE
PRODUCT NAME SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1990	1 990 - 1995	TO 1990	1990- 1995
BARS AND RODS 6730 ANGLES SHP. H 6734 ANGLES SHP.,L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743 TIN.& COAT.PL 6749 HOOP AND STRP 6750 RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	989 180 759 1860 1857 1608 256 520 1468		989 180 759 1860 1857 1608 256 520 1468		1300 260 890 2300 2200 2400 320 660 2169	000000000000000000000000000000000000000	1300 260 890 2300 2200 2400 320 660 2169	1800 360 1150 3100 3200 450 880 2430	000000000000000000000000000000000000000	1800 360 1150 3100 2700 3200 450 880 2430	3.5 4.0 2.7 2.1 5.1 3.0 5.0	6.77 5.32 4.29 7.91 5.3	1.92 1.82 1.88 1.88 1.88 1.88 1.88	4.6 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7
TOTALS	9497		9497		12499	0	12499	16070	0	16070	3.5	5.2		
CRUDE EQUIVALENT BILLET EQUVIVALENT	12959 11057	•	12959 11057	:	17083 14576	0 0	17083 14576	21913 18697	0 0	21913 18697	3.5 3.5	5.1 5.1		

C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995

AVERAGE		1990	1995	CONSUMPTION GROWTH RATE PA.
CONS PR		CONS PROD IMPORT	CONS PROD IMPORT	BASE PERIOD-1990 1990-95
CRUDE EQUIV. TONNES 12959	. 12959 .	19085 0 19085	27358 0 27358	5.0 7.5
PEFCENT GROWTH IN MACRO VARIABLE	S GDP	POPULATION	GDP/CAPITA	
AVERAGE 81-83 TO 1990	4.2	2.8	1.4	
1990 TO 1995	4.9	2.7	2.1	

D) LOW-GROWTH CASE PROJECTIONS 1990 AND 1995												
		ERAGE 1 PROD	981 - 19 IMP	983 EXP	CONS	<u>199</u> PROD	0 IMPORT		1999 PROD	5 IMPORT	CONSUMPTION GROWTH BASE PERIOD - 1990	<u>1 RATE PA.</u> 1990-95
CRUDE EQUVIV. TONNE	12959	-	12959		12484	0	12484	7160	0	7160	-0.5	-11
PERCENT GROWTH IN MA AVERAGE 81-83 TO 1990 TO 1995		IABLES		GDP 0.4 0.9			ATION 2.8 2.7		GDP/(

60 -

LESOTHO TABLE 2, PROJECTION WITH ACCELLERATED REPLACEMENT OF INDIRECT STEEL IMPORTS A) MACRO VARIABLES: DATA AND BASE CASE PROJECTIONS

• •

AVERAGE 1981 - 1983 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1990 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1995 GDP PUPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	GROWTH RATES PCT, P.A. GDP POP GDP/POP TO 1990- TO 1990- TO 1990- 19901995 19901995 1990 1995
237 1.4 165	270 1.8 150	320 2.1 155	1.6 3.5 2.8 2.7 -1.2 0.7

B) BASE CASE PROJECTIONS 1990 AND 1995, TONNES

	AVERAGE 1981 - 1983				1990			1995			GROWTH RATES P.A. CONSUMPTION EXPL.VARIAB			LE	
PRODUCT NAME SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1990	1990- 1995	TO 1990	1990- 1995	
BARS AND RODS 6730 ANGLES SHP. H 6734 ANGLES SHP.,L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743 TIN.& COAT.PL 6749 HOOP AND STRP 6750 RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	989 180 759 1860 1857 1608 256 520 1468		989 180 759 1860 1857 1608 256 520 1468		2950 669 1554 2703 3385 3405 432 1007 2436	00000000000000000000000000000000000000	2950 669 1554 2703 3385 3405 432 161 1007 2436	5099 1179 2477 3906 5209 5209 673 323 1575 2963		5099 1179 2477 3906 5069 5209 673 323 1575 2963	14.6 17.8 9.4 7.8 9.8 6.8 8.6 6.5	11.6 12.0 9.8 7.6 8.9 14.9 14.9 9.4 9.4	1.92 1.82 1.88 1.88 1.88 1.88 1.88	4.6 3.4 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	TO -
TOTALS	9497	•	9497	•	18701	0	18701	28473	0	28473	8.8	8.8			I
CRUDE EQUIVALENT BILLET EQUVIVALENT	12959 11057		12959 11057	•	25290 21578	0 0	25290 21578	38321 32697	0	38321 32697	8.7 8.7	8.7 8.7			

C) HIGH-GROWTH CASE	PROJECTIONS 1990 AND	1995

AVERA CONS F	AVERAGE 1981 - 1983 CONS PROD IMP EXP		1995 CONS PROD IMPORT	<u>CONSUMPTION GROWTH RATE PA.</u> BASE PERIOD-1990 1990-95							
CRUDE EQUIV. TONNES 12959	. 12959 .	27287 0 27287	43770 0 43770	9.8 9.9							
PERCENT GROWTH IN MACRO VARIABLES GDP AVERAGE 81-83 TO 1990 4.2 1990 TO 1995 4.9		POPULATION 2.8 2.7									

LOW-GROWTH (CASE PROJECTIONS 1990 AND	1995	
<u>AVERAGE 1981 - 1983</u>	1990	CONS PROD IMPORT	CONSUMPTION GROWTH RAIE PA.
CONS PROD IMP EXP	CONS PROD IMPORT		BASE PERIOD - 1990 1990-95

CRUDE EQUVIV. TONNE 12959 .	12959 .	20690 0 20690 235	569 0 23569		
PERCENT GROWTH IN MACRO VARIABLES AVERAGE 81-83 TO 1990	GDP -0,4	POPULATION 2.8	GDP/CAPITA ~3.1		
1990 TO 1995	0.9	- 1.8			

2.6

6.0

• •

	1981	1000				PRODUCT	IUN			EXPC	IRIS		APP. CONS
		1982	1983	AVER	1981	1982	1983	AVER	1981	1982	1983	AVER	AV 81-83
IRE RODS 6731													c
ARS AND RODS 6732	898	984	1086	989									989 180
VALES SHP. HM 6734	160	180	200	180									180
WGLES SHP. L 6735 ATES, HEAVY 6741	702	733	842	759									759
ATES, MED. 6742	1641	1915	2024	1860									1860
ATES, LIGHT 6743	1640	1910	2020	1857									1857
INPLATE 6747	820	955	1010	928									928
HER COAT P 6748	600	700	740	680									928 680 256
DP AND STRP 6750	223	265	28ŏ	256									250
AILS 6761													
HER RL TRCK 6762													(
LRE 6770	450	530	580	520									520
LAMLESS TUBE 6782	1200	1416	1787	1468									146

B) DEMAND / SUPPLY BALANCES FOR ROLLED PRODUCTS AND FERROUS MATERIALS (TONNES)

1

62

A ROLLED PRODUCTS	1981	1982	1983	AVERAGE
APPARENT CONSUMPTION OF ROLLED PRODUCTS	8334	9588	10569	9497
OF WHICH; NET IMPORTS OF ROLLED PRODUCTS LOCAL PRODUCTION	8334 0	9588 0	1056 9 0	9497 0
B FERROUS MATERIALS CONSUMPTION (CRUDE EQUIVALENTS) 1) TOTAL SUPPLIED FROM:	32511	33274	35109	33631
1 NET IMPORTS OF WHICH:	32511	33274	35109	33631
FERROUS MATERIALS FOR SMELTING, INCL SCRAP NET IMPORTS OF BILLETS ETC NET IMPORTS OF ROLLED PRODUCTS FINISHED PRODUCTS (INDIRECT IMPORTS)	0 0 11357 21154	0 0 13081 20193	0 0 14438 20671	0 0 12959 20673
2 LOCAL SOURCES (INCL. SCRAP)	0	0	0	0
,C ESTIMATED ANNUAL LOCAL SCRAP GENERATION	700	700	700	700

1) IMPORT, EXPORT AND PRODUCTION FIGURES ARE CONVERTED TO CRUDE STEEL EQUIVALENTS (INGOTS) BY USING COEFFICIENTS DEVELOPED BY THE ECE. "FERROUS MATERIALS FROM LOCAL SOURCES" ARE CALCULATED BY APPLYING THESE COEFFICIENTS TO LOCALLY PRODUCED ROLLED PRODUCTS, ARRIVING AT BILLET EQUVIVALENTS, AND THEN DEDUCTING NET IMPORTS OF BILLETS AND "FERROUS MATERIALS FOR SMELTING". DIFFERENCES BETWEEN THIS AND THE FIGURE GIVEN FOR SCRAP GENERATION MAY BE DUE TO INACCURACIES IN CONVERSION FACTORS, STOCKS OF SCRAP OR DEFICIENCIES IN THE EXTERNAL TRADE STATISTICS USED

• •

. . . .

LESOTHO TABLE 4

• •

MACRO DATA AND PROJECTIONS

• •

	ACIUA	IMATES 1983	PROJECTIONS						
YEAR	1981	1982	1983	1990 HIGH	1990 BASE	1990 LOW		1995 BASE	1995 LOW
GDP. AND POPULATION POPULATION (MILL) GDP PER CAPITA US\$ (1975) GDP MILL US\$ (1975) GROSS CAP FORM MILL US\$ (1975) BLDG AND CONSTR V.A MILL US\$ (1975) MANUFACTURING V.A. MILL US\$ (1975)	1.4 174.0 239.5 51.3 23.8 12.2	1.4 170.7 239.1 49.6 23.2 12.4	1.5 155.6 233.4 48.5 24.5 13.0	1.8 183.3 330.0 95.0 48.0 20.0	1.8 150.0 270.0 55.0 28.0 15.0	1.8 127.8 230.0 50.0 25.0 13.0	2.1 200.0 420.0 120.0 60.0 27.0	2.1 152.4 320.0 65.0 35.0 18.0	2.1 114.3 240.0 53.0 26.0 14.0
BALANCE OF PAYMENTS EXPORTS OTHER CURRENT ITEMS ODA, NET INFLOWS LONG TERM CAPITAL,NET RESERVES ERRORS AND OMISSIONS IMPORTS, IMPORT CAPACITY									
GROWTH RATES PER CENT P.A. POPULATION GDP. CONSTANT US\$ (1975)	<u>1981</u> 2 -0	.8 2	82-83 . 8 . 4	<u> 1981–198</u>	<u>3 TO BA</u> 2.8 2.1	SE 1990	BA	<u>SE 1990</u> 2.8 3.5	-1995

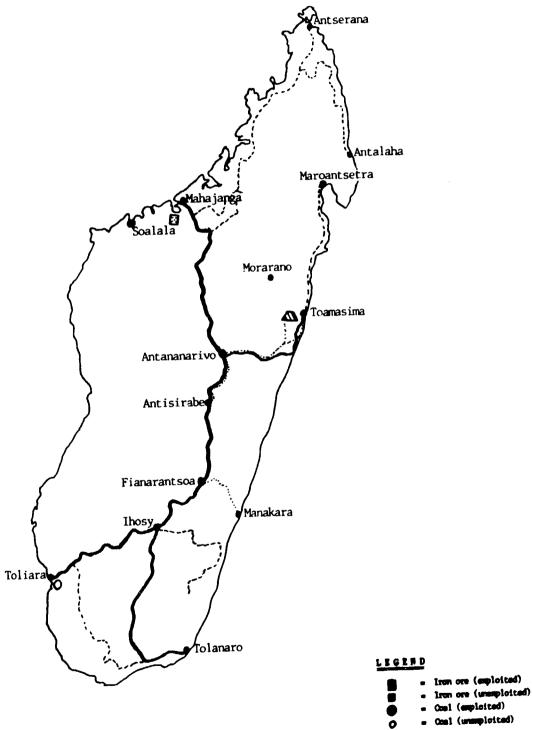
TABLE 5; ESTIMATED INDIRECT STEEL IMPO	DRTS, 1981 -	1983 AND	AVE	RAGES	VALUES	5 IN 1000	US \$. QUA	NT11165	IN TUNNES.
COUNTRY LESUTHO	198 VALUE	31 QUANTITY	YE 198 VALUE		198 VALUE	33 QUANTITY		AVE RAGE TONNE S	AVERAGE TONNES IN PCT OF TOTAL
SITC ROAD VEHICLES TOTAL	89534 89534	21151	106845 106845	20193 20193	110000 110000	20671 20671	102126 102126	20672 20672	100 100

. .

•

MADAGASCAR

٠


•

٠

.

Map of the	e country	r	••	••	••	••	••	••	••	••	••	••	66
Country n	otes	••	••	••	••	••	••		••	••	••	••	67
Table 1:	Main pro	ojecti	on	••	••	••	••	••	••	••	••	••	68
Table 2: imports												••	69
Table 3: product			•			•			-		-		70
Table 4: ferrous ma												•••	71
Table 5:	Estimate	ed ind	lirec	t stee	el imp	ports,	, 1981	L-83 a	and av	verage	es	••	72

MADAGASCAR

1.1. i . 1.00

Natural gas

Steel plant(s) -

.

.

. . . .

Railways Isproved roads Unisproved roads •

MADAGASCAR

Considering the sluggish development of GDP during the first half of the 80s, with several years of decline, the assumption of a 2.7 per cent per annual growth up to 1990 may be rather optimistic even though it means a decline in GDP per capita. For the period 1990-1995 a somewhat higher growth rate is projected assuming that policy reforms started in 1983 are successful. The manufacturing sector is assumed to increase its share of GDP in both periods.

The consumption of steel in the base period appears very low, compared with the average for the countries in the subregion. Therefore, in the first projection period there is rapid growth in overall steel consumption compared to the rate of growth of GDP. Whether this will in fact materialize depends to a great extent on the severity of balance-of-payments constraints. With the present favourable developments in oil and coffee prices, development towards a less stringent foreign exchange situation may well take place.

The catch-up effect in overall steel consumption assumed to take place before 1990 is the major reason for the apparent paradox in the period 1990-1995 when the overall rate of increase in steel consumption falls despite an acceleration of growth in GDP. Imports of rail and rail material was relatively high in the base period 1981-83. The registered decline represents a reversion to "normal" levels. The methodology used may understate the speed of such a reversal. Also since the existence and extent of railway networks is not used as an explanatory variable, the consumption levels for this item may easily be overstated in the countries without railways and understated in others.

MADAGASCAR TABLE 1, MAIN PROJECTION

• •

.

A) MACRO VARIABLES, DATA AND BASE CASE PROJECTIONS

AVERAGE 1981 - 1983	PROJECTION 1990	PROJECTION 1995	GROWTH RATES PCT. P.A.
GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POP GDP/POP
MILL. LATION CAPITA	MILL. LATION CAPITA	MILL. LATION CAPITA	TO 1990- TO 1990- TO 1990-
US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	19901995 19901995 1990 1995
1944 9.3 210	2400 11.6 207	2800 13.4 209	2.7 3.1 2.8 2.9 -0.2 0.2

B) BASE CASE PROJECTIONS 1990 AND 1995 , TONNES

	AVE	RAGE 1	981 - 19	83		199	0		199	5	CONSU	GROWT		PA. VARIABLE	
PRODUCT NAME GITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1990	1990- 1995	1990	1990- 1995	
BARS AND RODS 6730 ANGLES SHP. H 6731 ANGLES SHP.,L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743 TIN.& COAT.PL 6749 HOOP AND STRP 6750 RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	6970 223 2511 1328 1738 4579 177 3833 1888 1303		6970 223 2511 1328 1738 4579 177 3833 1888 1303	0 0 .0 .0 .0 0	12545 638 4127 1492 9170 8635 458 2245 3152 2691	7000 4000 0 0 0 0 0 0 0 0 0 0	5545 638 127 1492 9170 8635 458 2245 3152 2691	16215 842 5515 1895 13742 11749 586 1938 4208 3032	16000 5500 0 0 4000	215 842 15 1895 13742 11749 586 1938 208 3032	7.6 14.0 6.4 1.5 23.1 8.3 12.6 6.5 9.5	5.37 5.09 48.41 -2.99 5.2	1.7 1.83 1.83 3.33 3.33 1.83 3.3 3.3 3.3 3.3	3.4 2.8 4.0 2.8 4.0 4.0 2.8 4.0 2.8 4.0 2.0 4.0	- 68 -
TOTALS	24550	0	24550	0	45153	11000	34153	59720	25500	34220	7.9	5.8			
CRUDE EQUIVALENT BILLET EQUVIVALENT	32410 27654	0 0	32410 27654	0 0	59911 51118	13981 11929	45930 39189	79269 67635	32602 27818	46666 39817	8.0 8.0	5.8 5.8			

C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995

		SE 1981 - TOD IMP	1 <u>983</u> EXP	CONS	199 PROD	0 IMPORT	CONS	199 PROD	5 IMPORT	CONSUMPTION GROWTH BASE PERIOD-1990	RATE PA, 1990-95
CRUDE EQUIV. TONNES	32410	32410	0	68487	13981	54506	96776	32602	64173	9.8	7.2
PERCENT GROWTH <u>IN</u> MA Average 81-83 to 1990 to 1995		.ES	GDP 3.7 4.9			ATION 2.8 2.9		GDP/CA	PITA 0.8 1.9		

		D) LOW-CRO	WTH CASE PROJECTION	IS 1990 AND 1995			
	AVERAGE CONS PROD	<u>1981 - 1983</u> IMP EXP	1990 CONS PROD IM	APORT CONS PROD	95 IMPORT	CONSUMPTION GROWTH BASE PERIOD - 1990	RATE PA. 1990-95
CRUDE EQUVIV. TONNE 3	32410 0	32410 0	49850 13931 358	369 56160 32602	23557	5.5	2.4
PERCENT GROWTH IN MACR Average 81-83 to 19 1990 to 1995		GDP 1.1 0.6	POPULATI(2.8 2.9		/CAPITA -1.6 -2.2		

· •

.

68

MADAGASCAR TABLE 2. PROJECTION WITH ACCELLERATED REPLACEMENT OF INDIRECT STEEL IMPORTS A) MACRO VARIABLES: DATA AND BASE CASE PROJECTIONS

•

.

-

-

-

=

_

-

-

Ξ

===

.

.

AVERAGE 1981 - 1983	PROJECTION 1990	PROJECTION 1995	GROWTH RATES PCT. P.A.
GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POP GDP/POP
MILL. LATION CAPITA	MILL. LATION CAPITA	MILL. LATION CAPITA	TO 1990- TO 1990- TO 1990-
US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	19901995 19901995 1990 1995
1944 9.3 210	2400 11.6 207	2800 13.4 209	2.7 3.1 2.8 2.9 -0.2 0.2

B) BASE CASE PROJECTIONS 1990 AND 1995, TONNES

	AVE	ERAGE 1	981 - 19	83		199	0		199	5	CONSU	GROWTH MPTION	H RATES	P.A. VARIABLE	:
PRODUCT NAME SITC	CONS	PROD	IMP	EXP	CONS	PROD	NËT IMPORT	CONS	PROD	NET IMPORT	1990	1990- 1995	TO 1990	1990- 1995	
BARS AND RODS 6730 ANGLES 3HP. H 6734 ANGLES SHP., L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743 TIN.& COAT.PL 6749 HOOP AND STRP 6750 RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	6970 223 2511 1328 1738 4579 177 3833 1888 1303		6970 223 2511 1328 1738 4579 177 3833 1888 1303	0 0 0 0 0	13807 951 4635 1800 10077 9404 544 2368 3418 2895	7000 4000 0 0 0 0 0 0 0 0 0 0	6807 951 635 1800 10077 9404 544 2368 3418 2895	18740 1468 6531 2512 15555 13286 757 2184 4739 3440	16000 5500 0 0 0 4000 0	2740 1468 1031 15555 13286 757 2184 739 3440	8.9 19.9 8.0 24.6 9.4 15.1 -5.8 7.7 10.5	6.3 9.1 7.9 9.1 7.8 6.8 6.8 3.5	1.7 1.8 3.3 3.3 3.3 3.3 1.8 3.3 3.3 3.3	3.4 2.8 4.0 4.0 4.0 2.8 4.0 4.0 4.0	- 69 -
TOTALS	24550	0	24550	0	49899	11000	38899	69212	25500	43712	9.3	6.8			
CRUDE EQUIVALENT BILLET EQUVIVALENT	32410 27654	0 0	32410 27654	0 0	66190 56476	13981 11929	52209 44546	91824 73348	32602 27818	59221 50530	9.3 9.3	6.8 6.8			

()	HIGH-GROWTH	CASE	PROJECTIONS	199n	1995
U)	HILDIN UNDERING	CHOL	1100000110140	1000	

		ERAGE 1 PROD	981 <u>-</u> 1 IMP	983 EXP	CONS	199 PROD	O IMPORT	CONS	199 PROD	5 IMPORT	CONSUMPTION GROWTH BASE PERIOD-1990	<u>RATE PA.</u> 1990-95
CRUDE EQUIV. TONNES	32410	0	32410	0	74766	13981	60785	109334	32602	76731	11.0	7.9
PERCENT GROWTH IN MA AVERAGE 81-83 TO 1990 TO 1995		IABLES		GDP 3.7 4.9			ATION 2.8 2.9		GDP/CA	PITA 0.8 1.9		

			LOW	I-GROWTH	CASE PR	OJECTIC	NG 1990 AM	ID 1995				
		ERAGE 1 PROD	981 - 19 IMP	83 EXP	CONS	PROD	.MPORT	CONS	199 PROD	IS IMPORT	CONSUMPTION GROWT BASE PERIOD - 199	H RATE PA. 0 1990-95
CRUDE EQUVIV. TONNE	32410	0	32410	0	56129	13981	42148	68719	32602	36116	7.1	4.1
PERCENT GROWTH IN MA AVERAGE 81-83 TO 1990 TO 1995		IABLES	1	iDP .1 .6		_	ATION 2.8 2.9		-	CAPITA 1.6 2.2		

DUCT NAME SITC		 TMPC	RTS					RODUCT (TON	EXPORTS		AVER	APP. CON AV 81-83
JUUCI NAME SIIC	1981	1982	1983	AVER	1981	1982 1	983 AVE	R 1981	1982 19	83	AVER	AV 01-03
RE RODS 6731 RS AND RODS 6732 GLES SHP.HM 6734 GLES SHP.LL 6735 ATES, HEAVY 6741	6888 351 3567 840	6163 95 941 573	7859 222 3026 2570	6970 223 2511 1328								69 22 25 13
ATES, MED. 6742 ATES, LIGHT 6743 IPLATE 6747 HER COAT.P 6748 OP AND STRP 6750 ILS 6761 HER RL TRCK 6762 RE 6770 AMLESS TUBE 6783	2123 864 3568 179 100 50 1593 1740	1944 1001 3121 222 1811 187 1607 929	1147 510 4674 129 8034 1318 2464 1240	1738 792 3788 177 3315 518 1888 1303								17 7 37 33 5 18 18
TALS	21863	18594	33193	24550	0	0	0	o 0	0	0	C) 245
	B)				-	-	AND FERROL	S MATERIALS	(TONNES)			
	D PRODUCIS		/ SUPPLY	BALANCES	FOR ROLL	ED PRODUCTS	1982	1983 33193	AVERAG	 ЭЕ		
OF WHI	D PRODUCIS	TION OF I	/ SUPPLY	BALANCES	FOR ROLL	ED PRODUCTS	1982 3 18594	1983 33193	AVERAG	 ЭЕ		
APP OF WHI B FERROU TOT SU	D PRODUCIS ARENT CONSUMP CH; NET IMPORTS D LOCAL PRODUCT S MATERIALS C AL PPLIED FROM;	TION OF I F ROLLED	/ SUPPLY ROLLED PR	BALANCES PODUCTS	FOR ROLL	ED PRODUCTS 1981 2186 21863 0	1982 13 18594 18594 0 39 35693	1983 33193 33193 0 2 59679	AVERAG 24550 24550	 ЭЕ		
APP OF WHI B FERROU TOT SU	D PRODUCIS ARENT CONSUMP CH; NET IMPORTS O LOCAL PRODUCT S MATERIALS C AL PPLIED FROM; ET IMPORTS OF WHICH; FERROUS MA NET IMPORT	TION OF I F ROLLED ION ONSUMPTIO	/ SUPPLY ROLLED PR PRODUCTS ON (CRUDE FOR SMELT LETS ETC LETS ETC	EALANCES	FOR ROLL ENTS) 1)	ED PRODUCTS 1981 21863 0 5576 5584 80 28909	1982 13 18594 18594 0 18594 0	1983 33193 33193 0 2 59679	AVERAG 24550 24550 0 50380	 ЭЕ		
B FERROU UF WHIG B FERROU TOT SU	D PRODUCIS ARENT CONSUMP CH; NET IMPORTS O LOCAL PRODUCT S MATERIALS C AL PPLIED FROM; ET IMPORTS OF WHICH; FERROUS MA NET IMPORT	TION OF I F ROLLED ION ONSUMPTIO TERIALS I S OF BIL S OF ROL RODUCTS	/ SUPPLY ROLLED PR PRODUCTS ON (CRUDE FOR SMELT LETS ETC LED PRODU (INDIRECT	EALANCES	FOR ROLL ENTS) 1)	ED PRODUCTS 1981 21863 0 5576 5584 80 28909	1982 19594 18594 0 18594 0 18594 0 18594 0 35693 104 0 24563 11130	1983 33193 33193 0 2 59679 5 59779 100 0 43759 15920	AVERAG 24550 24550 0 50380 50475 95 0 32410 17970			

20

IMPORT, EXPORT AND PRODUCTION FIGURES ARE CONVERTED TO CRUDE STEEL EQUIVALENTS (INGOTS) BY USING COEFFICIENTS DEVELOPED BY THE ECE, "FERROUS MATERIALS FROM LOCAL SOURCES" ARE CALCULATED BY APPLYING THESE COEFFICIENTS TO LOCALLY PRODUCED ROLLED PRODUCTS, ARRIVING AT BILLET EQUVIVALENTS, AND THEN DEDUCTING NET IMPORTS OF BILLETS AND "FERROUS MATERIALS FOR SMELTING". DIFFERENCES BETWEEN THIS AND THE FIGURE GIVEN FOR SCRAP GENERATION MAY BE DUE TO INACCURACIES IN CONVERSION FACTORS, STOCKS OF SCRAP OR DEFICIENCIES IN THE EXTERNAL TRADE STATISTICS USED 1)

=

Ξ =

MADAGASCAR TABLE 4

-

Ξ

_

_

-

Ξ

=

_

= = = . .

MACRO DATA AND PROJECTIONS

• •

	ACTUALS, ESTIMATES	PROJECTIONS	
YEAR	1981 1982 1983	1990 1990 1990 1995 1995 High base Low High base	1995 LOW
GDP. AND POPULATION POPULATION (MILL) GDP PER CAPITA US\$ (1975) GDP MILL US\$ (1975) GROSS CAP FORM MILL US\$ (1975) BLDG AND CCNSTR V.A MILL US\$ (1975) MANUFACTURING V.A. MILL US\$ (1975)	9.0 9.3 9.5 213.0 206.4 209.5 1920.7 1919.7 1990.0 200.4 153.5 166.4 55.4 44.6 44.8 193.0 165.8 173.9	11.6 11.6 11.6 13.4 13.4 274.1 206.9 183.6 246.3 208.9	13.4 164.2 2200.0 190.0 53.0 210.0
BALANCE OF PAYMENTS BILLION MG. FR. EXPORTS Other Current Items Oda, Net Inflows Long Term Capital,Net Reserves Errors and Omissions Imports, Import Capacity	85.7 108.3 133.2 -50.8 -71.4 -88.8 130.4 105.2 167.1 -17.4 6.5 -9.2 147.9 148.6 202.3	280.0 240.0 220.0 470.0 380.0 -150.0 -150.0 -150.0 -170.0 -170.0 250.0 225.0 225.0 320.0 300.0 -30.0 -30.0 -30.0 -50.0 -50.0 350.0 285.0 265.0 570.0 460.0	230.0 -170.0 300.0 -50.0 310.0
GROWTH RATES PER CENT P.A. POPULATION GDP. CONSTANT US\$ (1975)	<u>1981-82 1982-83</u> 2.8 2.8 -0.1 3.7	<u>1981–1983 TO BASE 1990 BASE 1990</u> 2.9 2.7 3.1	- 1995

TABLE 5; ESTIMATED INDIRECT STEEL IMPORTS, 1981 - 1983 AND AVERAGES VALUES IN 1000 US \$. QUANTITIES IN TONNES.

Ξ

=

Ξ

Ξ

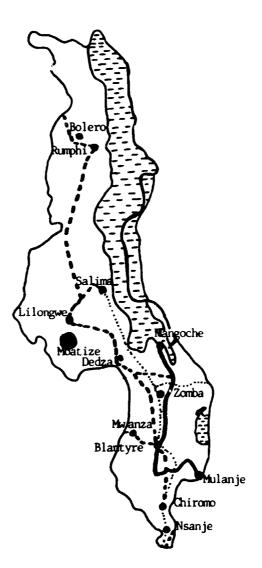
-

Ξ

-

			YE	AR					AVERAGE TONNES
	19	81	19	82	198	33	AVERAGE	AVERAGE	IN PCT
	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	TONNES	OF TOTAL
SITC									
MET. STRUCTURES	9480	8468	3902	2515	1816	2866	5066	4616	29
TANKS, VESSELS, ETC	1561	1988	416	91	3100	1159	1692	1079	7
WIRE PRODUCTS	930	882	443	262	645	661	673	602	4
NAILS, NUTS, BOLTS	2050	[.] 16	1055	630	858	549	1321	632	4
HAND TOOLS	3370	516	1909	319	2551	321	2610	385	2
CUTLERY	454	0	22	0	363	24	280	8	0
DOM. UTENSILS	220	119	796	427	388	59	468	202	1
AGR.MACH., TRACTORS	2516	454	2736	525	6267	1647	3840	875	6
DOM. EL. EQUIPMENT	514	121	415	78	684	136	538	112	1
RAIL, LOCOS ETC.	4406	886	6391	713	1788	222	4195	607	4
ROAD VEHICLES	34095	6540	22940	4698	35740	5096	30925	5445	34
BICYCLES ETC.	3784	1116	1660	513	2067	663	2504	764	5
HEATING, SANITARY	1202	423	388	163	754	543	781	376	2
FURNITURE	375	78	378	90	1327	185	693	118	1
TOTAL	64957	22307	43451	11024	58348	14131	55585	15821	100

- 72


.

-

MALAWI

Page

Map of th	e country	••	••	••	••	••	••	••	••	••	••	••	74
Country n	otes	••	••	••	••	••	••	••	••	••	••	••	75
Table 1:	Main pro	jecti	on	••	••	••	••	••	••	••	••	••	76
	Projecti 											••	77
	Section												78
	Section materials											••	79
Table 5:	Estimate	d ind	lirec	t ste	el i m g	orts,	, 1983	L-83 a	and av	rerage	e s		80

.

11.1.1.1

LEGEND

		Iron ore (exploited)
ē		Iron ore (unseploited)
Ō	-	Coal (amploited)
ō		Cosl (unexploited)
	-	Natural gas
	_	Sterl plant(s)
••••••••		Bailways
		Isproved roads
	-	Unimproved roads

MALAWI

THE FORME

1.1.1

1 I II

The base case projections of GDP and its components up to 1990 are very close to those presented in Economic Report 1985 (Malawi Government). For the period 1990-1995 a similar trend has been continued.

For the period up to 1990 it is, as in the economic report assumed that the small holder agriculture will develop rapidly without substantial investment. This explains the apparent inconsistency between a relatively high overall growth rate and very low rates of growth in investment and building and construction for the first period.

For the period 1990 to 1995 investment and construction growth is slightly higher, reflecting a less stringent balance-of-payments situation. It is also for that period assumed that value added of the manufacturing sector increases faster than GDP, reflecting investment in the sector and an improvement in the transport conditions which now interrupts a steady supply of raw materials.

Development of steel consumption in the first period is for some items characterized by a strong growth from the relatively low levels of the base period. The decline in consumption of tubes and pipe can be ascribed to an initially high consumption which is gradually adjusted. In the 1990-1995 period, growth rates for the various items and more similar, indicating less charge in the structure of consumption.

TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE T

1 011

1.1.1.1.1.1

TABLE 1, MAIN PROJECTION

3 **•**

A) MACRO VARIABLES, DATA AND BASE CASE PROJECTIONS

	A) WHORE FARTABLES, BA		
AVERAGE 1981 - 1983 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1990 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1995 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	GROWTH RATES PCT. P.A. GDP POP GDP/POP TO 1990- TO 1990- TO 1990- 19901995 19901995 1990 1995
944 6.6 143	1300 8.6 151	1600 10.2 157	4.1 4.2 3.4 3.5 0.7 0.7

B) BASE CASE PROJECTIONS 1990 AND 1995 , TONNES

		AVI	ERAGE 1	981 - 19	983		199	0		199	15		GROWT		PA. VARIABLE	
PRODUCT NAME	SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPCRT	CONS	PROD	NET IMPORT	1990	1990- 1995	1990	1990- 1995	
TIN.& COAT.PL	6734 6735 6740 6743 6749	3133 343 1372 1907 3814 982 94 444 1750 4575	000000000000000000000000000000000	3133 343 1372 1907 3814 982 94 444 1750 4575	0 0 0 0 0	5374 692 2889 4454 7144 2105 299 627 2217 2974	00000000000000000000000000000000000000	5374 692 2889 4454 2105 299 627 2217 2974	7553 864 4246 5521 10482 2900 396 764 3005 2406	000000000000000000000000000000000000000	7553 864 4246 5521 10482 2900 396 764 3005 2406	7.0 9.28 9.22 10.06 15.4 3.0 -5.2	7.0504 48.068 65.03 46.2 -4.2	0.0 1.4 4.1 4.1 4.1 4.1 1.4 4.1 4.1		- 76 -
TOTALS		18413	0	18413	0	28776	0	28776	38136	0	38136	5. 7	5.8			
CRUDE EQUIVALE BILLET EQUVIV		25114 21428	0	25114 21428	0 0	38754 33067	0 0	38754 33067	51101 43601	0 0	51101 43601	5.6 5.6	5.7 5.7			

C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995

	AVERA CONS P	<u>GE 19</u> ROD	19 - 19 IMP	83_ EXP	CONS	199 PROD	0 IMPORT	CONS	199 PROD	5IMPORT	CONSUMPTION GROWTH BASE PERIOD-1990	RATE PA. 1990-95
CRUDE EQUIV. TONNES 2	25114	0	25114	0	52186	0	52186	75631	0	75631	9.6	7.7
PERCENT GROWTH IN MACE AVERAGE 81-83 TO 19 1990 TO 1995		LES	5	DP . U . 2			ATION 3.4 3.5		GDP/CA	PITA 1.6 1.6		

D) LOW-GROWTH CASE PROJECTIONS 1990 AND 1995

	AVE CONS	RAGE 1 PROD	981 - 19 IMP	983 EXP	CONS	199 PROD	0 IMPORT	CONS	199 PROD	5 IMPORT	CONSUMPTION GROWTH BASE PERIOD - 1990	RATE PA. 1990-95
CRUDE EQUVIV. TONNE	25114	0	25114	0	39455	0	39455	47077	0	47077	5.8	3.6
PERCENT GROWTH IN MA AVERAGE 81-83 TO 1990 TO 1995		IABLES	0	GDP 1.9 1.8			ATION 3.4 3.5		-	CAPITA 1.4 1.7		

· •

MALAWI

_

Ξ

=

Ξ

MALAWI TABLE 2, PROJECTION WITH ACCELLERATED REPLACEMENT OF INDIRECT STEEL IMPORTS A) MACRO VARIABLES: DATA AND BASE CASE PROJECTIONS

,

Ξ

Ē

-

- 14 - 1

-

_

Ξ

Ξ

Ē

Ξ

•

AVERAGE 1981 - 1983	PROJECTION 1990	PROJECTION 1995	GROWTH RATES PCT. P.A.
GDP POPU- GDP PER	GDP POPU- GDP PER	GOP POPU- GDP PER	GDP POP GDP/POP
MILL. LATION CAPITA	MILL. LATION CAPITA	MILL. LATION CAPITA	TO 1990- TO 1990- TO 1990-
US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	19901995 19901995 1990 1995
944 6.6 143	1300 8.6 151	1600 10.2 157	4.1 4.2 3.4 3.5 0.7 0.7

B) BASE CASE PROJECTIONS 1990 AND 1995, TONNES

.

٠

		AV	ERAGE 1	981 - 19	983		199	-		199		CONSU	GROWT		P.A. VARIABLE	
PRODUCT NAME	SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1990	1990- 1995	1990	1990- 1995	
TIN.& COAT.PL HOOP AND STRP	6734 6735 6740 6743	3133 343 1372 1907 3814 982 94 444 1750 4575		3133 343 1372 1907 3814 982 94 444 1750 4575	0 0 0 0 0 0	6095 871 3178 4630 7662 2544 348 697 2369 3091	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6095 871 3178 4630 7662 2544 348 697 2369 3091	8994 1221 4825 5873 11516 3777 494 905 3309 2639	000000000000000000000000000000000000000	8994 1221 4825 5873 11516 3777 494 905 3309 2639	8.7 12.4 11.1 11.7 12.6 17.8 3.8 -4.8	8784887563 	0.0 1.4 4.1 4.1 4.1 1.4 4.1 4.1 4.1	2.9 1.9 5.9 5.1 5.1 5.1 5.1 5.1 5.1 5.1	- 77 -
TOTALS		18413	0	18413	0	31484	0	31484	43552	0	43552	6.9	6.7			
CRUDE EQUIVALE BILLET EQUVIVA		25114 21428	0	25114 21428	0	42340 36126	0	42340 36126	58266 49715	0	58266 49715	6.7 6.7	6.6 6.6			

C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995

		ERAGE 1 PROD	981 - 1 IMP	983 EXP	CONS	199 PROD	0 IMPORT	CONS-	199 PROD	5 IMPORT	CONSUMPTION GROWTH BASE PERIOD-1990	RATE PA. 1990-95
CRUDE EQUIV. TONNES	25114	0	25114	0	55767	0	55767	82796	0	82796	10.5	8.2
PERCENT GROWTH IN MA AVERAGE 81-83 TO 1990 TO 1995		IABLES		GDP 5.0 5.2		POPUL	ATION 3.4 3.5		GDP/CA	PITA 1.6 1.6		

		LOW-GROWTH	CASE PROJECTIONS 1	990 AND 1995			
	AVERAGE CONS PROD	19 <u>81 -</u> 1983 IMP EXP	1990 CONS PROD IM	PORT CONS F	1995 PROD IMPORT	CONSUMPTION GROWTH RA BASE PERIOD - 1990 1	<u>TE PA.</u> 1990-95
CRUDE EQUVIV. TONNE	25114 0	25114 0	43033 0 430	33 5 424 3	0 5 42 43	7.0	4.7
PERCENT GROWTH IN MAC AVERAGE 81-83 TO 19 1990 TO 1995		GDP 1.9 1.8	POPULATIO 3.4 3.5	Ν	GDP/CAPITA -1.4 -1.7		

MALAWI TABLE 3

Ξ

_

=

=

_

-

=

Ξ

=

•

.

A) COMPONENTS OF APPARENT STEEL CONSUMPTION BY PRODUCT (TONNES)

	SITC		IMPO	ORTS			PRODUCTION			EXPORT	S		APP. CON
		1981	1982	1983	AVER	1981	1982 19	B3 AVER	1981	1982 1	983	AVER	AV 81-83
BARS AND RODS ANGLES SHP.HM ANGLES SHP.L PLATES, HEAVY	6734 6735 6741	3537 382 1529 1068	3511 386 1547 2578	2351 260 1041 2074	3133 343 1372 1907								310 34 137 190
LATES, LIGHT INPLATE THER COAT P HOOP AND STRP	6743 6747 6748 6750 6761	2137 241 1415 97 650	5155 295 393 99 678	4149 475 127 85 4	3814 337 645 94 444								38 33 64 44
	6770 6782	1 740 5658	1740 5733	1769 2335	1750 4575								175 457
TOTALS		18454	22115	14670	18413	0	0	0	0 0	0	0	0	1841
		в)	DEMAND /	SUPPLY				AND FERRINS					
A R	ROLLED PRO						1981	1982	1983	AVERA	GE		
	APPARENT WHICH; NET I	DUCTS CONSUMPT MPORTS OF PRODUCTI	ROLLED	ROLLED PR	ODUCTS						 GE		
OF	APPARENT WHICH; NET I LOCAL ERROUS MAT TOTAL SUPPLIE	CONSUMPT MPORTS OF PRODUCTI ERIALS CC D FROM:	ROLLED	ROLLED PR	ODUCTS		1981 18454 18454 0 36729	1982 22115 22115 0 40680	1983 14670 14670 0 27209	AVERA 18413 18413 0 34873	GE		
OF	APPARENT WHICH; NET I LOCAL ERROUS MAT TOTAL SUPPLIE 1 NET IM OF W FF NE NE	CONSUMPT MPORTS OF PRODUCTI ERIALS CO D FROM; PORTS HICH; RROUS MAT T IMPORTS T IMPORTS	ROLLED ON DNSUMPTIC ERIALS F OF BILL OF BILL	ROLLED PR PRODUCTS DN (CRUDE OR SMELT ETS ETC ED PRODU	ODUCTS EQUIVALI ING, INCL	ENTS) I) SCRAP	1981 18454 18454 0	1982 22115 22115 0	1983 14670 14670 0	AVERA 18413 18413 0	GE		
OF	APPARENT WHICH; NET I LOCAL ERROUS MAT TOTAL SUPPLIE 1 NET IM OF W FF NE NE FI	CONSUMPT MPORTS OF PRODUCTI ERIALS CO D FROM; PORTS HICH; RROUS MAT T IMPORTS T IMPORTS	ERIALS F OF BILL OF ROLL	ROLLED PR PRODUCTS ON (CRUDE OR SMELT ETS ETC ED PRODU INDIRECT	DUCTS EQUIVAL ING, INCL CTS	ENTS) I) SCRAP	1981 18454 18454 0 36729 36729 0 25172	1982 22115 22115 0 40680 40690 10 0 30246	1983 14670 14670 27209 27232 23 19919	AVERA 18413 18413 0 34873 34884 11 0 25112	GE		

1) IMPORT, EXFORT AND PRODUCTION FIGURES ARE CONVERTED TO CRUDE STEEL EQUIVALENTS (INGOTS) BY USING COEFFICIENTS DEVELOPED BY THE ECE. "FERROUS MATERIALS FROM LOCAL SOURCES" ARE CALCULATED BY APPLYING THESE COEFFICIENTS TO LOCALLY PRODUCED ROLLED PRODUCTS, ARRIVING AT BILLET EQUVIVALENTS, AND THEN DEDUCTING NET IMPORTS OF BILLETS AND "FERROUS MATERIALS FOR SMELTING". DIFFERENCES BETWEEN THIS AND THE FIGURE GIVEN FOR SCRAP GENERATION MAY BE DUE "O INACCURACIES IN CONVERSION FACTORS, STOCKS OF SCRAP OR DEFICIENCIES IN THE EXTERNAL TRADE STATISTICS USED

•

- 78

• •

_

_ = =

Ξ

Ξ

Ē

-

-

Ξ

=

-

MACRO DATA AND PROJECTIONS

.

.

	ACTUALS, ESTIM	IATES	PROJECTIO	
YEAR	1981 1982	1983 1990		95 1995 1995
		HIGH	BASE LOW HI	GH BASE LOW
GDP. AND POPULATION POPULATION (MILL)	6.4 6.6	6.8 8.6	8.6 8.6 10	.2 10.2 10.2
GDP PER CAPITA US\$ (1975)		44.1 162.8	151.6 127.9 176	
GDP MILL US\$ (1975)		1400.0	1300.0 1100.0 1800	
GROSS CAP FORM MILL US\$ (1975)		84.2 380.0	310.0 300.0 490	
BLDG AND CONSTR V.A MILL US\$ (1975)		37.8 50.0		.0 45.0 40.0
MANUFACTURING V.A. MILL US\$ (1975)	114.7 112.4 1	20.4 180.0	160.0 150.0 240	.0 205.0 170.0
BALANCE OF PAYMENTS MILLION MK				
EXPORTS		70.6 1050.0		.0 1690.0 1300.0
OTHER CURRENT ITEMS				
ODA, NET INFLOWS		65.8 180.0	150.0 150.0 300	
LONG TERM CAPITAL,NET RESERVES ERRORS AND OMISSIONS		-4.7 40.0		.0 40.0 40.0
IMPORTS, IMPORT CAPACITY		08.3 -50.0 32.8 810.0	-50.0 -50.0 -100 620.0 520.0 1850	
	230.9 209.0 2	52.0 0.0	020.0 520.0 1050	
GROWTH RATES PER CENT P.A.	1981-82 1982		<u>3 TO BASE 1990</u>	BASE 1990-1995
POPULATION	3.1 3.1		3.4	3.5
GDP. CONSTANT US\$ (1975)	2.6 4.5	i de la constante de	4.1	4.2

TABLE 5; ESTIMATED	INDIRECT	STEEL	IMPORTS,	1981	-	1983 /	AND
--------------------	----------	-------	----------	------	---	--------	-----

.

•

AVERAGES

VALUES IN 1000 US \$. QUANTITIES IN TUNNES.

• •

COUNTRY MALAWI

=

Ξ

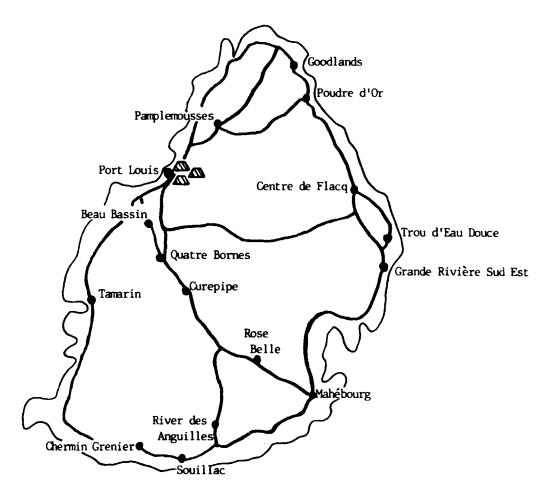
= _

-

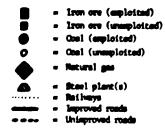
Ξ =

=

-


COUNTRY MALAWI			YE	٨R					AVERAGE
	19	81		82	19	83			TONNES IN PCT
	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	QUANTITY	AVE RAGE VALUE	AVERAGE TONNES	OF TOTAL
SITC									16
MET. STRUCTURES	852	1715	1080	2015	346	460		1397	
TANKS, VESSELS, ETC	1009	625	73	7	39	25	374	219	
WIRE PRODUCTS	754	358	250	138	193	143	399	213	2
NAILS, NUTS, BOLTS	1963	886	250	178	136	136	783	400	4
HAND TOOLS	1922	400	1536	490	624	250	1361	380	4
CUTLERY	445	i 126	428	31	198	21	357	59) 1
DOM. UTENSILS	593	8 82	128	15	48	2	256	33	0
AGR.MACH. TRACTORS	4220	702	3295	943	1101	276	2872	640) 7
DOM. EL. EQUIPMENT	1802	276	40€	62	358	61	855	133	µ 1
RAIL. LOCOS ETC.	1111	43	628	67	470	72	736	61	1
	17859	3072	23273	5342	23863	4799	21665	j 4404	49
ROAD VEHICLES	3768		670	257	229	88	1556	827	9
BICYCLES ETC.	1287	-	465	145	198	3 71	650) 175	5 2
HEATING, SANITARY		-	401		105	; 31	439) 84	i 1
FURNITURE	81		32883		27908		33062	9026	5 100
TOTAL	38396	5 10841	32003	5 900z	21500				

I 80 1


MAURITIUS

Map of the	e country	r	••	••	••	••	••	••	••	••	••	••	82
Country n	otes	••	••	••	••	••	••		•••	••	••	••	83
Table 1:	Main pro	ojecti	on	•••	••	••	••	••	••	••	••	••	84
Table 2: imports	Projecti 	ion wi 	th a	ccele:	rated	absor 	ption	n of 	indire 	ect si	teel 		85
Table 3: product	Section	A) Co	mpon 	ents (of app 	parent	t stee	el co 	nsump 	tion l	b y 	••	86
Table 4: ferrous m												••	87
Table 5:	Estimate	ed ind	lirec	t st.	ш	ports	, 198	1-83	and a	verage	es	••	88

MAURITIUS

LEGEND

.

.

MAURITIUS

Mauritius has a very small population, relatively high GDP per capita and a relatively well diversified economy. The economic projections are based on the World Bank projections for the period 1986-1990. These imply an overall rate of growth of 3.8 per cent per annum when actual development from the base period of 1981-83 up to 1985 has been taken into account. A trend of 4.6 per cent per annum which is similar to the one forecasted for the period 1986-90 has been assumed for the period 1990-1995. In both periods the manufacturing sector is assumed to increase its share of GDP providing growth impetus to the overall economy. Investment would increase at roughly the same rate as GDP. Given the low rate of population increase projected, GDP per capita will increase much faster than for the PTA/SADCC subregion as a whole.

The tendency for steel intensity to decline in the countries with relatively developed economies does not hold good generally for Mauritius. The major exception to this is the consumption of bars and rods which actually declines slightly in the first period and increases less than both projected value added of the building and construction industry and overall GDP in the period 1990-1995. Hoop and strip and tubes also register slow growth reative to their explorating variables. All the other items grow relatively fast. The high level and high rate of increase in GDP per capita is indicative of expanding demand. Particularly at Mauritius' high level of GDP per capita there would be a strong demand for consumer durables. Demand for rolled products will, however, be affected only to the extent these durables are produced in Mauritius. The scale of operation needed for efficient production of some durables may cast some doubt on the feasibility of production in a country of 1.2 million people and does therefore indicate the possibility for overestimation.

1.1.11

III I

1 11

1 11

11 I I I

1 11

11 11 1

II II II

Ън

TABLE 1, MAIN PROJECTION MAURITIUS

879

888 1.0

_

Ξ

≡ =

A) MACRO VARIABLES, DATA AND BASE CASE PROJECTIONS _____ GROWTH RATES PCT. P.A. GDP POP GDP/POP TO 1990- TO 1990- TO 1990-19901995 19901995 1990 1995 ____ _____ PROJECTION 1995 GDP POPU- GDP PER MILL. LATION CAPITA PROJECTION 1990 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75 AVERAGE 1981 - 1983 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75 US\$ -75 MILL. US\$ -75

1200 1.1 1043

٠

B) BASE CASE PROJECTIONS	1990 AND	1995	. TONNES
--------------------------	----------	------	----------

1500 1.2

1220

_		AV	ERAGE 1	981 - 19	83		199	0		199	5	GROWTH RATES PA. CONSUMPTION EXPL.VARIABL			
	PRODUCT NAME SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	T0 1990	1990- 1995	TO 1990	1990- 1995
Ξ	BARS AND RODS 6730 ANGLES SHP. H 6734	11084 739	6440	4644 739	0	11029 1267	20000	-8971 1267	13488 1639	ŏ	-16512 1639	-0.1 7.0	4.1	3.2 4.0 5.6	5.4 4.6 6.3
-	ANGLES SHP., L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743	5466 1153 1258	2509 0 0	2957 1153 1258	ò	9168 2720 3200	2000 0 0	7168 2720 3200	12810 3970 5400	30000 0 0	-17190 3970 5400	6.7 11.3 12.4	7.9 11.0	4.0 5.6	4.6 6.3
Ξ	TIN.& COAT.PL 6749 HOOP AND STRP 6750	2241 620	ő	2241 620	0 0	4800 706	0	4800 706 100	7385 829 140	0	7385 829 140	10.0 1.6 9.6	9.0 3.3 7.0	5.6 5.6 4.0	6.3 6.3 4.6
-	RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	48 1640 2344	000	48 1640 2344	o	100 3038 3200	10000	-6962 3200	4679 3900	12000	-7321 3900	8.0 4.0	9.0 4.0	5.6 5.6	6.3 6.3
-	TOTALS	26594	8949	17644	0	39228	32000	7228	54239	72000	-17761	5.0	6.7		
Ξ	CRUDE EQUIVALENT BILLET EQUVIVALENT	34799 29692	11374 9705	23425 19987	0 0	51723 44132	41152 35113	10571 9020	71625 61113		-20463 -17460	5.1 5.1	6.7 6.7		

C) HIGH-GROWT	H CASE	PROJECTIONS	1990	AND	1995

E E		CONS	199 PRCD	IMPORT	CONS	199 PROD	5 IMPORT	CONSUMPTION GROWTH BASE PERIOD-1990	RATE PA. 1990-95				
_	CRUDE EQUIV. TONNES	34799	11374	23425	0	80339	41152	39187	120481	92088	28393	11.0	8.4
Ξ	PERCENT GROWTH IN MAG AVERAGE 81-83 TO 1990 TO 1995	CRO VAR 1990	IABLES	Ę	3DP 5.9 5.2		POPUI.	ATION 1.6 1.4		GDP/CA	PITA 4.2 3.7		

	D) LOW-GROW	TH CASE PROJECTIONS 1990	AND 1995	
AVERAGE 1	981 - 1983	1990	1995	<u>CONSUMPTION GROWTH RATE PA.</u>
CONS PROD	IMP EXP	CONS PROD IMPORT	CONS PROD IMPORT	BASE PERIOD - 1990 1990-95
CRUDE EQUVIV. TONNE 34799 11374	23425 0	41613 41152 461	51397 92088 -40691	2.3 4.3
PERCENT GROWTH IN MACRO VARIABLES	GDP	POPULATION	GDP/CAPITA	
AVERAGE 81-83 TO 1990	1.5	1.6	-0.1	
1990 TO 1995	1.9	1.4	0.6	

84

3.8 4.6 1.6 1.4 2.2 3.2

.

.

TABLE 2, PROJECTION WITH ACCELLERATED REPLACEMENT OF INDIRECT STEEL IMPORTS A) MACRU VARIABLES: DATA AND BASE CASE PROJECTIONS

.

=

=

Ξ

MAURITIUS

AVERAGE 1981 - 1983	PROJECTION 1990	PROJECTION 1995	GROWTH RATES PCT. P.A
GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POPU- GDP PER	GOP POP GDP/POP
MILL. LATION CAPITA	MILL. LATION CAPITA	MILL. LATION CAPITA	TO 1990- TO 1990- TO 1990-
US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	19901995 19901995 1990 1995
888 1.0 879	1200 1 1 1043	1500 1.2 1220	

B) BASE CASE PROJECTIONS 1990 AND 1995, TONNES

-	AVERAGE 1981 - 1983					983		199	0		199	5	CONSU	GROWTH CONSUMPTION		H RATES P.A. EXPL.VARIABLE	
-	PRODUCT NAME S	511C	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1 9 90	1990- 1995	1990	1990- 1995	
-	TIN.& COAT.PL 6 HOOP AND STRP 6 RAILS+ MATER. 6 WIRE 6	5734 5735	11084 739 5466 1153 1258 2241 620 48 1640 2344	6440 2509 0 0 0 0 0 0 0 0 0 0 0	4644 739 2957 1153 1258 2241 620 48 1640 2344	00.00.00	11738 1443 9453 2893 3709 5232 754 169 3188 3315	20000 2000 0 0 0 0 0 0 0 0 0 0 0 0	-8262 1443 7453 2893 3709 5232 754 169 -6812 3315	14907 1991 13381 4317 6415 8249 925 279 4977 4129	30000 30000 0 0 0 12000	- 15093 1991 - 16619 4317 6419 8249 925 279 - 7023 4129	0.7 8.7 12.5 11.25 17.7 84.4	4.9 6.7 8.36 11.5 4.5 19.35 19.35	206066606 3454555	54636333633 46636333633 666463	
_	TOTALS		26594	8949	17644	0	41895	32000	9895	59573	72000	-12427	5. 8	7.3			
=	CRUDE EQUIVALEN BILLET EQUVIVAL		34799 29692	11374 9705	23425 19987	0 0	55250 47142	41152 35113	14098 12029	78681 67134	92088 78573	-13407 -11439	5.9 59	7.3 7.3			

C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995

AVERAGE 1981 - 1983 CONS PROD IMP EXP						CONS PROD IMPORT CC			199 PROD	5 IMPORT	CONSUMPTION GROWTH BASE PERICO-1990	<u>CONSUMPTION GROWTH RATE PA.</u> Base period-1990 1990-95		
CRUDE EQUIV. TONNES	34799	11374	23425	0	83867	41152	42715	127538	92088	35450	11.6	8.7		
PERCENT GROWTH IN MA AVERAGE 81-83 TO 1990 TO 1995		IABLES		5DP 5.9 5.2		POPUL	ATION 1.6 1.4			PITA 4.2 3.7				

LOW-GROWTH CASE PRUJECTIONS 1990 AND 1995											
AVERAGE	1981 - 1983	1990	1995	CONSUMPTION GROWTH RATE PA.							
CONS PROD	IMP EXP	CONS PROD IMPORT	CONŠ PROD IMPORT	BASE PERIOD - 1990 1990-95							
CRUDE EQUVIV. TONNE 34799 11374	23425 0	45140 41152 3988	58452 92088 -33636	3.3 5.3							
PERCENT GROWTH IN MACRO VARIABLES	GDP	FOPULATION	GDP/CAPITA								
AVERAGE 81-83 TO 1990	1.5	1.6	-0.1								
1990 TO 1995	1.9	1.4	-0.6								

- 85

PRODUCT NAME SITC		IMPO	RTS			PRODUCTI			1981	EXPORTS	583	AVER	APP. CC AV 81-8
	1981	1982	1983	AVER	1981	1982	1983	S AVER	1901	1902 13	505	AVEN	
NIRE RODS 6731 BARS AND RODS 6732	2521 2207	1080 5525	150 2449	1250 3394	6440	6185	6696	6440)				11 98
ANGLES SHP.HM 6734	609	842	707 3068	739 2957	2509	2714	2304	2509	9				54
ANĜLEŜ SHPL 6735 PLATES, HEAVY 6741	2437 808	3367 789	628	742	2000	2119	2.00						-
PLATES, MED. 6742 PLATES, LIGHT 6743	400 1211	480 1080	355 1483	412 1258									1:
TINPLATE 6747	1157	1250	1376	1261 980									1:
OTHER COAT P 6748 HOOP AND STRP 6750	1000 500	1168 612	772 747	620									(
RAILS 6761 OTHER RL TRCK 6762	50	92	1	48									
WIRE 6770	1700	1672	1548	1640 1087									1(
SEAMLESS TUBE 6782 WELDED TUBES 6783	1102 990	1447 1579	711 1203	1257									1:
TOTALS	16692	20983	15258	17644	8949	8899	9000	8949) 0	0	0		0 269
							CTC AL			(TONNES)			
		DEMAND	/ SUPPLY	BALANCES	FOR ROLL		CTS AN	ND FERROUS	MATERIALS	(TONNES)	GE		
A ROLLED PF	RODUCTS					19	981	1982			GE		
APPAREN OF WHICH:	RODUCTS	TION OF	ROLLED PR	ODUCTS		19 21	981 5641	1982 29882	1983 24258	AVERAC 26594	GE		
APPAREN OF WHICH; NET	RODUCTS	TION OF I	ROLLED PR	ODUCTS		19	981 5641 2	1982	1983	AVERAC 26594	GE		
APPAREN OF WHICH: NET LOCA B FERROUS MA	RODUCTS NT CONSUMP IMPORTS OF AL PRODUCT	TION OF I F ROLLED ION	ROLLED PR	ODUCTS		19 29 1669 8949	981 5641 2 9	1982 29882 20983 8899	1983 24258 15258 9000	AVERAC 26594 17644 8949	GE		
APPAREN OF WHICH: NET LOCA B FERROUS MA	RODUCTS NT CONSUMP IMPORTS OF AL PRODUCT	TION OF I F ROLLED ION	ROLLED PR	ODUCTS		19 29 16693 8949 44	981 5641 2 9 4857	1982 29882 20983 8899 45164	1983 24258 15258 9000 43104	AVERA(26594 17644 8949 44375	GE		
APPAREN OF WHICH: NET LOCA B FERROUS MA TOTAL SUPPL 1 NET	RODUCTS NT CONSUMP IMPORTS OF AL PRODUCT ATERIALS CO IED FROM; IMPURTS	TION OF P F ROLLED ION	ROLLED PR PRODUCTS	ODUCTS EQUIVAL	ENTS) ')	19 2! 1669 8949 44 4	981 5641 2 9 4857 7099	1982 29882 20983 8899 45164 40532	1983 24258 15258 9000 43104 44320	AVERA(26594 17644 8949 44375 43984	GE		
APPAREN OF WHICH; NET LOCA B FERROUS MA TOTAL SUPPL 1 NET OF	RODUCTS IMPORTS OF AL PRODUCT ATERIALS CO IED FROM; IMPURTS WHICH; WHICH; MAD	TION OF P F ROLLED ION ONSUMPTIO	ROLLED PR PRODUCTS DN (CRUDE	ODUCTS EQUIVAL	ENTS) ')	19 29 1669 8949 44 4 4	981 5641 2 9 4857 7099	1982 29882 20983 8899 45164 40532 209	1983 24258 15258 9000 43104 44320 44	AVERAC 26594 17644 8949 44375 43984 98	GE		
APPAREN OF WHICH; NET LOCA B FERROUS MA TOTAL SUPPL I NET OF	RODUCTS IMPORTS OF AL PRODUCT ATERIALS CO IED FROM; IMPURTS WHICH; WHICH; MAD	TION OF P F ROLLED ION ONSUMPTIO	ROLLED PR PRODUCTS DN (CRUDE	ODUCTS EQUIVAL	ENTS) ')	19 29 1669 8949 44 4 4	981 5641 2 9 4857 7099 2 5 0	1982 29882 20983 8899 45164 40532 209 5775 27825	1983 24258 15258 9000 43104 44320 44 11909 20282	AVERAC 26594 17644 8949 44375 43984 98 10186 23426	GE		
APPAREN OF WHICH; NET LOCA B FERROUS MA TOTAL SUPPL I NET OF	RODUCTS NT CONSUMP IMPORTS OF AL PRODUCT ATERIALS CO IED FROM; IMPURTS	TION OF P F ROLLED ION ONSUMPTIO	ROLLED PR PRODUCTS DN (CRUDE	ODUCTS EQUIVAL	ENTS) ')	19 29 1669 8949 44 4 1287 2217 1201	981 5641 2 9 4857 7099 2 5 0 2	1982 29882 20983 8899 45164 40532 209 5775 27825 6723	1983 24258 15258 9000 43104 44320 44 11909 20282 12085	AVERAC 26594 17644 8949 44375 43984 98 10186 23426 10273	GE		
APPAREN OF WHICH: NET LOCA B FERROUS MA TOTAL SUPPL 1 NET OF	RODUCTS IMPORTS OF AL PRODUCT ATERIALS CO IED FROM; IMPURTS WHICH; WHICH; MAD	TION OF F F ROLLED ION ONSUMPTIO TERIALS F S OF BILL S OF BILL S OF ROLL RODUCTS	ROLLED PR PRODUCTS DN (CRUDE CR SMELT ETS ETC ED PRODU (INDIRECT	ODUCTS EQUIVAL	ENTS) ')	19 29 1669 8949 44 4 1287 2217 1201	981 5641 2 9 4857 7099 2 5 0	1982 29882 20983 8899 45164 40532 209 5775 27825	1983 24258 15258 9000 43104 44320 44 11909 20282	AVERAC 26594 17644 8949 44375 43984 98 10186 23426	GE		

_

Ξ

=

Ξ

-

1) INPORT, EXPORT AND PRODUCTION FIGURES ARE CONVERTED TO CRUDE STEEL EQUIVALENTS (INGOTS) BY USING COEFFICIENTS DEVELOPED BY THE ECE. "FERROUS MATERIALS FROM LOCAL SOURCES" ARE CALCULATED BY APPLYING THESE COEFFICIENTS TO LOCALLY PRODUCED ROLLED PRODUCTS, ARCIVING AT BILLET EQUVIVALENTS, AND THEN DEDUCTING NET IMPORTS OF BILLETS AND "FERROUS MATERIALS FOR SMELTING". DIFFERENCES BETWEEN THIS AND THE FIGURE GIVEN FOR SCRAP GENERATION MAY BE DUE TO INACCURACIES IN CONVERSION FACTORS, STOCKS OF SCRAP OR DEFICIENCIES IN THE EXTERNAL TRADE STATISTICS USED

- 86 -

MAURITIUS TABLE 4

_

_

-

-

Ξ

=

.

•

MACRO DATA AND PROJECTIONS

٠

.

.

YEAR	ACTUALS, ESTIMATES 1981 1982 1983	PROJECTIONS 1990 1990 1995 1995 1995
GDP. AND POPULATION		HIGH BASE LOW HIGH BASE LOW
POPULATION (MILL) GDP PER CAPITA US\$ (1975)	1.0 1.0 1.0 876.0 921.3 911.3	1.1 1.1 1.1 1.2 1.2 1.2 1272.7 1090.9 909.1 1500.0 1250.0 916.7
GDP MILL US\$ (1975) GROSS CAP FORM MILL US\$ (1975)	855.9 902.9 905.8 191.1 164.3 169.6	1400.0 1200.0 1000.0 1800.0 1700.0 1100.0 270.0 240.0 180.0 360.0 300.0 190.0
BLDG AND CONSTR V.A MILL US\$ (1975) MANUFACTURING V.A. MILL US\$ (1975)	39.8 38.2 38.7	60.0 50.0 40.0 80.0 65.0 45.0
	174.9 184.1 184.3	320.0 280.0 190.0 450.0 380.0 220.0
BALANCE OF PAYMENIS MILLON RS EXPORTS	2999.0 3985.0 4346.0	11500.0 9700.0 8000.019000.015000.012000.0
OTHER CURRENT ITEMS ODA, NET INFLOWS	-240.0 -500.0 -354.0 157.0 371.0 227.0	-500.0 -500.0 -400.0 -670.0 -670.0 -500.0 700.0 600.0 600.0 1000.0 800.0 800.0
LONG TERM CAPITAL,NET Reserves errors and omissions	406.0 524.0 -218.0 938.0 -67.0 503.0	1700.0 1600.0 1600.0 2400.0 2100.0 2100.0 -800.0 -800.0 800.0-1200.0-1200.0-1200.0
IMPORTS, IMPORT CAPACITY	4260.0 4313.0 4504.0	12600.010600.0 9000.020530.016030.013200.0
GROWTH RATES PER CENT P.A. POPULATION	1981-82 <u>1982-83</u>	1981-1983 TO BASE 1990 BASE 1990-1995
GDP CONSTANT US\$ (1975)	1.4 1.4 5.5 0.2	1.6 4.1 4.6

TABLE 5; ESTIMATED IN		TS, 1981 -	1983 AND	AVE	RAGES	VALUE	5 114 1000	05 4. 90		IN TONNES.
COUNTRY MAUR	11105			YE	AR					AVERAGE TONNES
		19	81	19	82	19	83	AVERAGE	AVERAGE	IN PCT
		VALUE	QUANTITY	VAL.UE	QUANTITY	VALUE	QUANTITY	VALUE	TONNES	OF TOTAL
SITC										13
MET. STRUCT	URES	703	600	405	828	2465		1192	1180	
TANKS, VESSI	ELS, ETC	1317	245	896	322	852	558	1022	375	4
WIRE PRODUC	тs	439	331	300	311	376	338	372	327	4
NAILS, NUTS		941	451	405	267	417	156	588	291	3
HAND TOOLS		1700	244	1412	295	1217	248	1443	262	3
CUTLERY		302	.58	281	29	345	62	309	40	0
DOM. UTENSI	1 5	1200	220	935	230	1551	538	1229	329	4
AGR. MACH., T		1644		1116	234	821	188	1 194	276	3
DOM. EL. EQ		1534		1580	333	2029	419	1714	345	4
		6324		20	0	29	117	2124	846	10
RAIL. LOCOS		19334		10861		11762	3852	13986	3927	44
ROAD VEHICI				748		747		852	200	2
BICYCLES ET	с.	1060				833				4
HEATING, SA	NITARY	1035		543					157	
FURNITURE		230) 59	266						
TOTAL		37765	10892	19768	6319	24001	9457	27178	8889	100

ì

i •

-

-

-

--

-

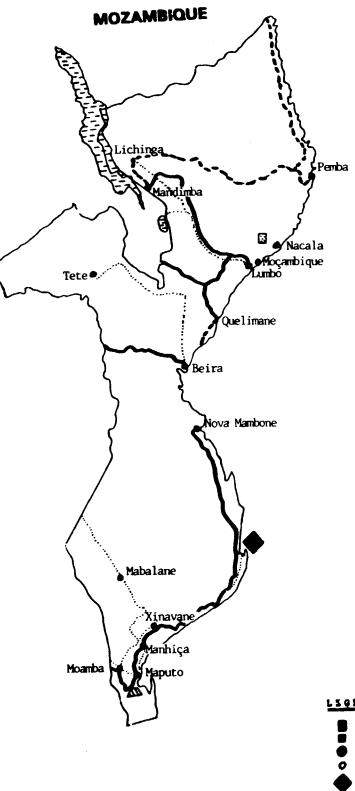
=

1

4

•

88 -


MOZAMBIQUE

.

Map of t	the country	•••	••	••	••	••	••	••	••	••	••	••	90
Country	notes	••	••	••	••	••	••	••	••	••	••	••	91
Table 1:	: Main pro	jecti	on	••	••	••	••	••	••	••	••	••	93
Table 2: imports	Projecti											•	94
	Section		-						-	-		••	95
	: Section materials												96
Table 5:	: Estimate	d ind	irect	steel	impo	rts,	1981-	83 ar	nd ave	rages	:		9 7

4

.

LIGERD

. . ..

Iron ore (exploited) . Iron ore (unapploited) · Onel (emploited) Cosi (unamploited) Network gas . . Starl plant(s) - Railwaye - Isproved roads - Unisproved roads

•

.

.

- 90 -

MOZAMBIQUE

1.1.1.1

.

From 1980 to 1983 Mozambique experienced an annual fall of 6.3 per cent in its GDP. Declines in value added were recorded in all sectors. Particularly rapid declines (of respectively 9.5 per cent and 7.8 per cent per annum) were recorded in agriculture and industries. Natural calamities from which the country has still not recovered and a major internal security problem caused by South African backed armed bands are major reasons for the country's difficulties.

Future economic development is only partly dependent on the world markets for the country's major export commodities. Most of all it depends on the extent to which South Africa continues its support of the armed bands and thereby inflicts severe damage on the economy. As this is dependent on internal developments in South Africa, economic projections are exceedingly difficult to make.

The GDP growth rate of just below 1 per cent for the period up to 1990 reflects an optimistic view, both with regard to internal security and with regard to the balance-of-payments. Exports will have to increase from present levels. Foreign exchange contributions from bilateral and multilateral donors will have to be stepped up. This would, given a better security situation, allow considerable investment for rehabilitation of the economy. Given a successful rehabilitation by the end of the decade the country could look forward to a stronger growth of production. A 3.7 per cent per annum growth is forecasted for the period 1990-1995.

The base period overall steel consumption per capita in Mozambique is very low. There are indications that the years after 1981-83 saw an even lower steel consumption. Therefore the return to more normal levels will in reality appear even more dramatic in terms of percentage growth than indicated in the table. Nevertheless, such an increase is possible and must be expected if the macro scenario sketched out above is realized. The period 1990-1995 would also be influenced by a catching-up effect which will furthermore be fuelled by a more rapid growth in the economy.

TELEVISION FOR THE THE THE TELEVISION OF TELEVIS OF TELEVISION OF TELEVIS OF T

1

1.1.11 1.1.1

- 91 -

The overall low growth case projections does not appear to deviate dramatically from the base case. This is largely because the catching-up effect is so strong that economic growth plays a less important role as a driving force for steel demand. This effect would, however, be limited by foreign exchange availability (for import of both rolled products and raw materials). As the projection model used takes this into account only indirectly, steel consumption increase in the low growth case which assumes a tight balance-of-payments is likely to be overestimated.

MOZAMBIQUE TABLE 1, MAIN PROJECTION

=

_

-

-

=

=

_

-

.

٠

A) MACRO VARIABLES, DATA AND BASE CASE PROJECTION

AVERAGE 1981 - 1983	PROJECTION 1990	PROJECTION 1995	GROWTH RATES PCT. P.A.
GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POP GDP/POP
MILL. LATION CAPITA	MILL, LATION CAPITA	MILL. LATION CAPITA	TO 1990- TO 1990- TO 1990-
US\$ -75 MILL. US\$ -75	US\$ -75 MILL, US\$ -75	US\$ -75 MILL. US\$ -75	19901995 19901995 1990 1995
3270 11.1 295	3500 13.9 252	4200 15.9 264	0.9 3.7 2.9 2.7 -1.9 1.0

B) BASE CASE PROJECTIONS 1990 AND 1995 , TONNES

• •

			ERAGE 1	981 - 19	83		199	90		199	5	GROWTH CONSUMPTION		EXPL.VARIABLE		=
PRODUCT NAME	SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1990	1990- 1995	TO 1900	1990- 1995	
ANGLES SHP. H ANGLES SHP.,L PLATES, H.+ M PLATES, LIGHT TIN.& COAT.PL HOOP AND STRP	6734 6735	9882 157 780 1234 2469 2235 638 450 737 1827	9733 0 0 0 0 0 0 0 0 0 0	149 157 780 1234 2469 2235 638 450 737 1827		19974 1024 2924 4683 8724 6916 706 1328 2788 4136	30000 5000 0 0 0 0 0 0 0 0 0 0 0	-10026 1024 -2076 4683 8724 6916 706 1328 2788 4136	27965 1520 4245 6898 12781 9838 833 1840 4109 5408	37000 7000 0 0 0 0 0 0 0 0 0 0 0 0 0	-9035 1520 -2755 6898 12781 9838 833 1840 4109 5408	9.2 26.4 18.0 18.1 17.1 15.2 1.3 14.5 18.1 10.8	7.02 7.02 7.19 3.47 7.34 7.15 8.5	0.87 2.67 1.66 1.66 1.66 1.66	34343333433 34343333433 3334333	- 93 -
TOTALS		20410	9733	10676	0	53202	35000	18202	75437	44000	31437	12.7	7.2			
CRUDE EQUIVALE BILLET EQUVIVA		26922 22971	12371 10555	14552 12416	0	70660 60290	44485 37956	26175 22334	100190 85486	55924 47717	44266 37769	12.8 12.8	7.2 7.2			

^	HIGH-GROWTH	CACE	DBO IF CTIONS	1000	AND	1005	
<u>ເ</u> ງ	HIGH-GROWIN	CASE	PROJECTIONS	1990	ANU	1993	

	AVERAGE 1981 - 1983 CONS PROD IMP EXP						U IMPORT	CONS-	199 PROD	5 IMPORT	CONSUMPTION GROWTH RATE PA. Base Period-1990 1990-95			
CRUDE EQUIV. TONNES	26922	12371	14552	0	85299	44485	40814	134917	55924	78993	15.5	9.6		
PERCENT GROWTH IN MA Average 81-83 to 1990 to 1995	CRO VAR 1990	IABLES	~	DP .6 .2			ATION 2.9 2.7			PITA 0.3 3.4				

D) LOW-GROWTH CASE PROJECTIONS 1990 AND 1995												
AVERAGE 1981 - 1983 1990 1995 CONSUMPTION GROWTH RATE PA. CONS PROD IMP EXP CONS PROD IMPORT CONS PROD IMPORT BASE PERIOD - 1990 1990-95												<u>H RATE PA.</u> 0 1990-95
CRUDE EQUVIVTONNE	26922	12371	14552	0	59704	44485	15219	83774	55924	27850	10.5	7.0
PERCENT GROWTH IN MA AVERAGE 81-83 TO 1990 TO 1995		IABLES	- 1	iDP . 1 I. 1			ATION 2.9 2.7			CAPITA 3.8 0.4		

MOZAMBIQUE TABLE 2, PROJECTION WITH ACCELLERATED REPLACEMENT OF INDIRECT STEEL IMPORTS A) MACRO VARIABLES: DATA AND BASE CASE PROJECTIONS

=

-

=

-= =

-Ξ -

Ξ

=

	A) MACRO VARIABLES: DAT	A AND BASE CASE PROJECTIONS	
AVERAGE 1981 - 1983 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1990 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1995 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	<u>GROWTH RATES PCT. P.A.</u> GDP POP GDP/POP TO 1990- TO 1990- TO 1990- 19901995 19901995 1990 1995
3270 11.1 295	3500 13.9 252	4200 15.9 264	0.9 3.7 2.9 2.7 -1.9 1.0

B) BASE CASE PROJECTIONS 1990 AND 1995, TONNES

				B) BA	SE CASE	PROJECT	IONS 1990	AND 1995	. TONNE	5					
	AV	ERAGE 1	981 - 19	983	1990				1995					.VARIABLE	
PRODUCT NAME SITC		PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1990	1990- 1995	1991	1990- 1995	
BARS AND RODS 6730 ANGLES SHP. H 6734 ANGLES SHP.,L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743 TIN.& COAT.PL 6743 HOOP AND STRP 6750 RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	9882 157 780 1234 2469 2235 638 450 737	9733 0 0 0 0 0 0 0 0 0	149 157 780 1234 2469 2235 638 450 737 1827		23068 1792 4168 5439 10945 8801 916 1630 3439 4636	30000 5000 0 0 0 0 0 0 0 0 0 0	-6932 1792 -832 5439 10945 8801 916 1630 3439 4636	34153 3056 6735 8410 17224 13607 1252 2445 5412 6409	37000 7000 0 0 0 0 0 0 0 0 0 0 0	-2847 3056 -265 8410 17224 13607 1252 2445 5412 6409	11.2 35.6 23.3 20.5 18.7 4.6 17.5 21.2 12.3	8.2 11.3 10.1 9.5 9.4 8.4 9.5 6.7	0.87 2.6 2.7 1.6 1.6 2.7 1.6 1.6	3.3 4.2 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	
TOTALS	20410	9733	10676	0	64834	35000	29834	98701	44000	54701	15.5	8.8			
CRUDE EQUIVALENT BILLET EQUVIVALENT	26922 22971	12371 10555	14552 12416	0 0	86048 73419	44485 37956	41563 35463	130970 111749	55924 47717	75046 64032	15.6 15.6	8.8 8.8			

	C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995										
		ERAGE	1981 - 1 IMP			1990 CONS PROD IMPORT			1995 PROD IMPORT	CONSUMPTION GROWTH RATE BASE PERIOD-1990 199	
CRUDE EQUIV. TONNES		12371	14552	0	100689	44485	56204	165696	55924 109772	17.9	10.5
PERCENT GROWTH IN MA AVERAGE 81-83 TO 1990 TO 1995	ACRO VAR	RIABLES		GDP 2.6 6.2		POPUL	ATION 2.9 2.7		GDP/CAPITA -0.3 3.4		

	LOW-GROWTH	CASE PROJECTIONS 1990 AN	ID 1995	
AVERAGE 1	<u>CONSUMPTION GROWTH RATE PA.</u>			
CONS PROD	BASE PERIOD - 1990 1990-95			
CRUDE EQUVIV. TONNE 26922 12371	14552 0	75094 44485 30609	114551 55924 58627	13.7 8.8
PERCENT GROWTH IN MACRO VARIABLES	GDP	POPULATION	GDP/CAPITA	
AVERAGE 81-83 TO 1990	-1.1	2.9	-3.8	
1990 TO 1995	3.1	2.7	0.4	

1 94

Т

MOZAMBIQUE TABLE 3

Ξ

≡

-

A) COMPONENTS OF APPARENT STEEL CONSUMPTION BY PRODUCT (TONNES)

٠

RODUCT NAM	E SITC		IMPO			1001	PRODUCT		AVER	1091	EXPORTS 1982 19		AVER	APP. Av 8	
		1981	1982	1983	AVER	1981	1982	1983	AVER	1961	1902 18	703	AVER	AV 0	
IRE RODS ARS AND RO NGLES SHP.1		230 32	90 200	127 240	149 157	12700	8500	8000	9733						988 15
NGLES SHP. LATES, HEA	.L 6735 VY 6741	400 1692	980 1415	960 596	780 1234										78 123
LATES, MED LATES, LIG INPLATE	HT 6743 6747	3385 5670	2829 336	1192 523	2469 2176										246 217
THER COAT. OOP AND ST AILS		129 292 450	919 450	46 703 450	58 638 450										63 45
THER RL TRU	CK 6762 6770	1028 2349	526 111	657 3022	737 1827										73 182
ELDED TUBE		2343		3022	1021										
OTALS		15657	7856	8516	10676	12700	8500	8000	9733	· 0	0	0		0	2041
		B)	DEMAND /	SUPPLY	BALANCES	FOR RULL	D PRODU	CTS ANI	DFERROUS	MATERIALS	(TONNES)				
A	ROLLED PI		DEMAND /	SUPPLY	BALANCES	FOR RULL		OTS AND	D FERROUS	MATERIALS 1983	(TONNES)	 3E			
Α	APPAREI					FOR RULL	1	981				 3E			
Α	APPAREI OF WHICH; NET	RODUCTS	ION OF R	OLLED PR	ODUCTS		1	981 8357 7	1982	1983	AVERA	3E			
	APPAREN OF WHICH: NET LOCA	RODUCTS NT CONSUMPT IMPORTS OF AL PRODUCTI ATERIALS CO	ION OF R ROLLED ON	OLLED PR	ODUCTS		1 2 1565 1270	981 8357 7	1982 16356 7856	1983 16516 8516	AVERAC 20410 10676	3E			
	APPAREI OF WHICH: NET LOC/ FERROUS M/ TOTAL SUPPL 1 NET	RODUCTS NT CONSUMPT IMPORTS OF AL PRODUCTI ATERIALS CO IED FROM; IMPORTS	ION OF R ROLLED ON	OLLED PR	ODUCTS		1 2 1565 1270 8	981 8357 7	1982 16356 7856 8500	1983 16516 8516 8000	AVERAC 20410 10676 9733	ЗЕ			
	APPARE OF WHICH: NET LOC/ FERROUS M/ TOTAL SUPPL 1 NET OF	RODUCTS NT CONSUMPT IMPORTS OF AL PRODUCTI ATERIALS CO IED FROM;	ION OF R ROLLED ON NSUMPTIO ERIALS F OF BILL OF ROLL	OLLED PR PRODUCTS N (CRUDE OR SMELT ETS ETC ED PRODU	EQUIVA EQUIVA	_ENTS) 1) _ SCRAP	1 2 1565 1270 8	981 8357 7 0 4531 2048 3 3 8	1982 16356 7856 8500 60962 50851 29 0 10495	1983 16516 8516 8000 55159	AVERAC 20410 10676 9733 66884	 ЭЕ			
	APPAREN OF WHICH: NET LOCA FERROUS MA TOTAL SUPPL 1 NET OF	RODUCTS NT CONSUMPT IMPORTS OF AL PRODUCTI ATERIALS CO IED FROM; IMPORTS WHICH; FERROUS MAT NET IMPORTS	ION OF R ROLLED ON NSUMPTIO ERIALS F OF BILL OF ROLL ODUCTS (OLLED PR PRODUCTS N (CRUDE OR SMELT ETS ETC ED PRODU INDIRECT	EQUIVA EQUIVA	_ENTS) 1) _ SCRAP	1 2 1565 1270 8 10 3266 2147	981 8357 70 4531 2048 3 38 84	1982 16356 7856 8500 60962 50851 29 0 10495	1983 16516 8516 8000 55159 47529 80 1834 11683	AVERAC 20410 10676 9733 66884 66810 37 11499 14552	3E			

1) IMPORT, EXPORT AND PRODUCTION FIGURES ARE CONVERTED TO CRUDE STEEL EQUIVALENTS (INGOTS) BY USING COEFFICIENTS DEVELOPED BY THE ECE. "FERROUS MATERIALS FROM LOCAL SOURCES" ARE CALCULATED BY APPLYING THESE COEFFICIENTS TO LOCALLY PRODUCED ROLLED PRODUCTS, ARRIVING AT BILLET EQUVIVALENTS, AND THEN DEDUCTING NET IMPORTS OF BILLETS AND "FERROUS MATERIALS FOR SMELTING". DIFFERENCES BETWEEN THIS AND THE FIGURE GIVEN FOR SCRAP GENERATION MAY BE DUE TO INACCURACIES IN CONVERSION FACTORS, STOCKS OF SCRAP OR DEFICIENCIES IN THE EXTERNAL TRADE STATISTICS USED

MOZAMBIQUE TABLE 4

=

=

_

-

-

-

-

-

-

-

-

=

-

MACRO DATA AND PROJECTIONS

.

· ·

YEAR	A <u>CTUALS, ESTIMATES</u> 1981 1982 1983	1990 1990 1990 HIGH BASE LOW	TI <u>NS</u> 1995 1995 1995 HIGH BASE LOW
GDP. AND POPULATION POPULATION (MILL) GDP PER CAPITA US\$ (1975) GDP MILL US\$ (1975) GROSS CAP FORM MILL US\$ (1975) BLDG AND CONSTR V.A MILL US\$ (1975) MANUFACTURING V.A. MILL US\$ (1975)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4000.0 3500.0 3000.0 54 480.0 390.0 320.0 6 200.0 170.0 150.0 2	15.9 15.9 15.9 339.6 264.1 220.1 400.0 4200.0 3500.0 640.0 480.0 370.0 260.0 200.0 170.0 380.0 300.0 270.0
BALANCE OF PAYMENTS BILLION MT EXPORTS OTHER CURRENT ITEMS ODA, NET INFLOWS LONG TERM CAPITAL,NET RESERVES ERRORS AND OMISSIONS IMPORTS, IMPORT CAPACITY	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
GROWTH RATES PER CENT P.A. POPULATION GDP. CONSTANT US\$ (1975)	<u>1981-82 1982-83</u> 2.9 2.9 -2.8 -7.0	<u>1981-1983 TO BASE 199</u> 0 2.9 1.8	BASE 1990-1995 2.7 3.7

• •

TABLE 5; ESTIMATED INDIRECT STEEL	IMPORTS, 1981 -	1983 AND	AVE	RAGES	VALUE	S IN 1000	US \$. QU	ANTITIES	IN TONNES.
COUNTRY MOZAMBIQUE			YE	A D					AVERAGE
						••			TONNES
	19	81	198	82	19		AVERAGE	AVERAGE	IN PCT
	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	TONNES	OF TOTAL
SITC									
MET. STRUCTURES	12197	15217	17569	13617	9282	9430	13016	12755	33
TANKS, VESSELS, ETC	426	109	510	397	1179	1138	705	548	1
WIRE PRODUCTS	31152	16316	11223	6227	3427	1306	15267	7950	21
NAILS, NUTS, BOLTS	1018	5 92	1475	1274	792	308	1095	725	2
HAND TOOLS	2004	397	6464	1043	5249	925	4572	788	2
CUTLERY	361	52	243	30	470	83	358	55	0
DOM. UTENSILS	101	4	253	20	417	28	257	17	0
AGR.MACH., TRACTORS	10940	1956	6888	1683	7919	2486	8582	2042	5
DOM. EL. EQUIPMENT	396	45	507	73	714	75	539	64	0
RAIL. LOCOS ETC.	20477	795	16642	1201	19473	3646	18864	1881	5
ROAD VEHICLES	37645	7172	53578	11670	50875	10595	47366	9812	25
BICYCLES ETC.	1834	442	2708	1057	3472	3012	2671	1504	4
HEATING, SANITARY	2423	542	1314	501	632	167	1456	403	1
FURNITURE	1090	102	571	154	1409	435	1023	230	1
TOTAL	122064	43741	119945	38947	105310	33634	115773	38774	100

7

٠

.

-

= --

=

_

_

-

_

=

ŧ 97

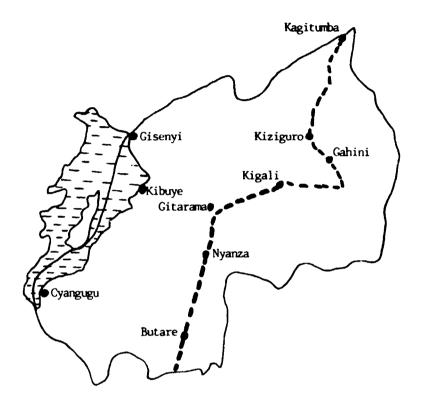
.

٠

I.

<u>RWANDA</u>

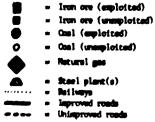
٠


-

.

.

1


Map of the	e countr y		••	••	••	••	••	••	••	••	••	••	99
Country no	otes	••	••	••	••	••	••		••	••	••	••	100
Table 1:	Main pro	jecti	on	••	••	••	••	••	•••	••	•••	••	101
Table 2: imports	Projecti 	on wi	th ac	cele:	rated 	abson 	rption	n of 	indire	ect st	teel 	••	102
Table 3: product	Section	A) Co 	mpon ··	ents (of ap 	parent	t ste	el co 	nsump [†]	tion 	b y 	••	103
Table 4: ferrous ma												••	104
Table 5:	Estimate	ed inc	lirect	t ste	el im	ports	, 198	1-83	and a	verage	es	••	105

RWANDA

RWANDA

During the last ten years Rwanda has experienced a steady GDP growth of above 4 per cent per annum. Government policies as well as favourable weather conditions, terms of trade and capital inflows helped acceleration of growth in the latter half of the 70s. Since 1983, however, a tendency to a slackeming pace has occurred mainly due to a more adverse development in external and natural conditions. The projection, based on World Bank assessment, assumes that these factors will negatively influence economic growth up to 1990. The period from 1990 to 1995 will, however, see renewed growth, with the manufacturing sector increasing its share of GDP.

Steel consumption, was less depressed in the base period 1981-83 than in many other PTA countries. The overall rate of consumption increase up to 1990 is therefore only slightly over the GDP growth rate, consumption of heavy and medium plates falling mainly as a result of initially high levels. The faster economic growth and investment projected for the period from 1990 to 1995, implying a rise in GDP per capita will considerably boast consumption of all items. The consumption of plate, where a fall is projected is notoriously hard to forecast and the outturn may change depending on the composition of investment projects.

1.1.10

11 11 11 1

1 II II III

1.1.1.10

hin.

1.1.1.100

1 II II I

1

11111

RWANDA TABLE 1, MAIN PROJECTION

.

•

A) MACRO VARIABLES, DATA AND BASE CASE PROJECTIONS

.

.

A) MACRO VARIAGES, DATA AND DASE CASE (REMEDING									
AVERAGE 1981 - 1983 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1990 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1995 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	GROWTH RATES PCT. P.A. GDP POP GDP/POP TO 1990- TO 1990- TO 1990- 19901995 19901995 1990 1995						
757 5.2 146	980 7.0 140	1200 8.3 145	3.3 4.1 3.8 3.5 -0.5 0.6						

B) BASE CASE PROJECTIONS 1990 AND 1995 , TONNES

		AVI	ERAGE 1	981 - 19	983		199	0		199)5	CONSU	GROWTH		PA. VARIABLE
PRODUCT NAME	SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1990	1990- 1995	1990	1990- 1995
	6734 6735	2934 255 1022 2337 4572 3879 66 63 860 2238		2934 255 1022 2337 4572 3879 66 63 860 2238	0	3652 380 2475 1795 6472 5876 90 1620 1925	000000000000000000000000000000000000000	3652 380 2475 1795 6472 5876 90 65 1620 1925	5150 486 3615 8871 7924 120 67 2337 1746	000000000000000000000000000000000000000	5150 486 3615 2056 8871 7924 120 67 2337 1746	2.8 11.7 -3.24 5.04 0.2 -1.9	7.1 5.9 6.9 5.6 5.6 7.7 7.9 7.9	43333335555555555555555555555555555555	3.7 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6
TOTALS		18225	0	18225	0	24348	0	24348	32370	0	32370	3.7	5.9		P
CRUDE EQUIVALE BILLET EQUVIVA		24743 21112	0	24743 21112	0	32762 27954	0	32762 27954	43386 37018	0	43386 37018	3.6 3.6	5.8 5.8		

			C)	HIGH-GR	OWTH CASE	PROJE	CTIONS 199	0 AND 19	95			
		PROD	981 - 19 IMP	83 EXP	CONS	199 PROD	QIMPORT	CONS	199 PROD	5 IMPORT	CONSUMPTION GROWTH BASE PERIOD-1990	<u>RATE PA.</u> 1990-95
CRUDE EQUIV. TONNES	24743	n	24743	0	37616	0	37616	52536	0	52536	5.4	6.9
PERCENT GROWTH IN MA Average 81-83 to 1990 to 1995		IABLES	4	iDP . 5 . 1			ATION 3.8 3.5		GDP/CA	PITA 0.7 2.5		

			D)	LOW-GRO	WTH CASE	PROJEC	TIONS 1990	AND 1995	5			
		ERAGE 1 PROD	981 - 19 IMP	983 EXP	CONS	1990 PROD	IMPORT	CONS	199 PROD	5 IMPORT	CONSUMPTION GR BASE PERIOD -	ROWTH RATE PA. 1990 1990-95
CRUDE EQUVIV. TONNE	24743	0	24743	0	28951	0	28951	34449	0	34449	2.0	3.5
PERCENT GROWTH JN MA Average 81-83 to 1990 to 1995		IABLES		3DP 1.9 2.2			ATION 3.8 3.5		_	CAPITA 1.8 1.2		

=

Ξ

Ξ = _

Ξ -

Ξ

Ξ _

Ξ

Ξ

= =

-

TABLE 2, PROJECTION WITH ACCELLERATED REPLACEMENT OF INDIRECT STEEL IMPORTS A) MACRO VARIABLES: DATA AND BASE CASE PROJECTIONS

Ξ

. . .

=

-

≣

_

.

RWANDA

AVERAGE 1981 - 1983	PROJECTION 1990	PROJECTION 1995	GROWTH RATES PCT. P.A.
GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POPU- GDP PER	GOP POP GDP/POP
MILL. LATION CAPITA	MILL, LATION CAPITA	MILL. LATION CAPITA	TO 1990- TO 1990- TO 1990-
US\$ -75 MILL. US\$ -75	US\$ -75 MILL, US\$ 75	US\$ -75 MILL. US\$ -75	19901995 19901995 1990 1995
757 5.2 146	980 7.0 140	1200 8.3 145	3.3 4.1 3.8 3.5 -0.5 0.6

B) BASE CASE PROJECTIONS 1990 AND 1995, TONNES

		AVE	RAGE 1	981 - 19	983		199	0		199	5	CONSU			P.A. VARIABLE	:
PRODUCT_NAME	SLTC	CONS	PROD	IMP	EXP	CONS	PROD	NËT IMPORT	CONS	PROD	NET IMPORT	1990	1990	1990	1990- 1995	
	6734 6735 6740 6743 6749	2934 255 1022 2337 4572 3879 66 63 860 2238		2934 255 1022 2337 4572 3879 66 63 860 2238		4574 608 2846 2020 7134 6437 152 155 1814 2074	000000000000000000000000000000000000000	4574 608 2846 2020 7134 6437 152 155 1814 2074	6994 943 4357 2506 10195 9048 245 247 2725 2044	00000000000000000000000000000000000000	6994 943 4357 2506 10195 9048 245 247 2725 2044	5.7 11.5 13.7 5.7 6.5 11.0 9.8 -0.9	8.9 9.2 4.4 7.4 7. 4 9.8 8 .5 8 .5	2555555 4 333 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	3.7 4.0 4.6 4.6 4.6 4.6 4.6 4.6 4.6	- 102
TOTALS		18225	0	18225	0	27816	0	27816	39305	0	39305	5.4	7.2			I
CRUDE EQUIVALE BILLET EQUVIV		24743 21112	0 0	24743 21112	0 0	37345 31864	0 0	37345 31864	52556 44843	0 0	52556 44843	5.3 5.3	7.1 7.1			

C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995

	AVI CONS	ERAGE 1 PROD	981 - 1 IMP	983 EXP	CONS	199 PROĎ	0 IMPORT	CONS	199 PROD	5 IMPORT	CONSUMPTION GROWTH BASE PERIOD-1990	HRATE PA. 1990-95
CRUDE EQUIV. TONNES	24743	0	24743	0	42205	0	42205	61709	0	61709	6.9	7.9
PERCENT GROWTH IN MA Average 81-83 to 1990 to 1995		IABLES		GDP 4.5 6.1			ATION 3.8 3.5		GDP/CA	PITA 0.7 2.5		

			LO	W-GROWTH	CASE PR	DJECTIO	INS 1990 AN	ID 1995				
	ÂVI ĈŰÑŜ	ERAGE 1 PROD	981 - 19 IMP	983 EXP	CONS	199 PROD	IMPORT	CONS	199 PROD	1MPORT	CONSUMPTION G BASE PERIOD -	ROWTH RATE PA. 1990 1990-95
CRUDE EQUVIV. TONNE	24743	0	24743	0	33540	0	33540	43624	0	43624	3.9	5.4
PERCENT GROWTH IN MA AVERAGE 81-83 TO 1990 TO 1995		IABLES		GDP 1.9 2.2			ATION 3.8 3.5			CAPITA 1.8 1.2		

•

•

RODUCT NAME	SITC		IMPO				PRODUCTION			EXPOR			APP, CO
		1981	1982	1983	AVER	1981	1982 19	83 AVEF	1981	1982	1983	AVER	AV 81-8.
IRE RODS ARS AND RODS NGLES SHP.HM NGLES SHPL LATES, HEAVY LATES, MED.	M 6734 L 6735 Y 6741 6742	2537 277 1112 1239 32	2345 242 968 2842 76	6 3914 246 985 2722 99	2 2932 255 1022 2268 69								293 29 1 0 220
LATES, LIGHI	1 6743 6747	2586	5685	5445	4572								45
THER COAT,P DOP AND STRF AILS THER RL TRCM	P 6750 6761	4900 68	4849 63 185	1888 68 3	3879 66 63								38
IRE AMLESS TUBE ELDED TUBES	6770 E 6782	1122 1938	503 2676	955 2099	860 2238								8 22
TALS		15811	20434	18430	18225	0	0	0	0 C	0	0	c	182:
		B)	DEMAND ,	SUPPLY	BALANCES	FOR ROLL	D PRODUCTS	AND FERROUS	MATERIALS	(TONNES	;)		
A	ROLLED P		DEMAND ,	SUPPLY	BALANCES	FOR ROLL	D PRODUCTS	AND FERRCUS	MATERIALS	(TONNES			
	APPARE	RODUCTS			ODUCTS		1981 15811	1982			AGE		
	APPARE OF WHICH; NET	RODUCTS	TION OF F	ROLLED PR	ODUCTS		1981	1982	1983	AVER	AGE		
C	APPARE DF WHICH; NET LOC FERROUS M TOTAL	RODUCTS NT CONSUMP IMPORTS OF AL PRODUCT	TION OF F F ROLLED ION	ROLLED PR	ODUCTS		1981 15811 15811	1982 20434 20434	1983 18430 18430	AVER 1822 18225	AGE		
C	APPARE DF WHICH; NET LOC FERROUS M TOTAL SUPPL 1 NET	RODUCTS NT CONSUMP IMPORTS OF AL PRODUCT ATERIALS CO IED FROM; IMPORTS	TION OF F F ROLLED ION	ROLLED PR	ODUCTS		1981 15811 15811 0	1982 20434 20434 0	1983 18430 18430 0	AVER 1822 18225 0	RAGE 25		
C	APPARE DF WHICH; NET LOC FERROUS M TOTAL SUPPL 1 NET OF	RODUCTS NT CONSUMP IMPORTS OF AL PRODUCT NATERIALS CO IED FROM;	TION OF F F ROLLED ION ONSUMPTIO TERIALS F S OF BILL S OF ROLL	ROLLED PR PRODUCTS DN (CRUDE COR SMELT ETS ETC ED PRODU	EQUIVAL ING, INCL	.ENTS) 1) . SCRAP	1981 15811 15811 0 29866 29866	1982 20434 20434 0 40891	1983 18430 18430 0 38407	AVER 1822 18225 0 3638	RAGE 25		
C	APPARE DF WHICH: NET LOC FERROUS M TOTAL SUPPL 1 NET OF	RODUCTS NT CONSUMP IMPORTS OF AL PRODUCT NATERIALS CO IED FROM; IMPORTS WHICH; FERROUS MA NET IMPORTS	TION OF F F ROLLED ION ONSUMPTIC TERIALS F S OF BILL S OF ROLL RODUCTS (ROLLED PR PRODUCTS DN (CRUDE COR SMELT ETS ETC ED PRODU INDIRECT	EQUIVAL EQUIVAL ING, INCL CTS IMPORTS)	.ENTS) 1) . SCRAP	1981 15811 15811 0 29866 29866 29866 0 21381	1982 20434 20434 0 40891 40891 0 27893	1983 18430 18430 38407 38407 0 24951	AVER 18225 0 3638 3638 0 24741 11647	RAGE 25		

1) IMPORT, EXPORT AND PRODUCTION FIGURES ARE CONVERTED TO CRUDE STEEL EQUIVALENTS (INGOTS) BY USING COEFFICIENTS DEVELOPED BY THE ECE. "FERROUS MATERIALS FROM LOCAL SOURCES" ARE CALCULATED BY APPLYING THESE COEFFICIENTS TO LOCALLY PRODUCED ROLLED PRODUCTS, ARRIVING AT BILLET EQUVIVALENTS, AND THEN DEDUCTING NET IMPORTS OF BILLETS AND "FERROUS MATERIALS FOR SMELTING". DIFFERENCES BETWEEN THIS AND THE FIGURE GIVEN FOR SCRAP GENERATION MAY BE DUE TO INACCURACIES IN CONVERSION FACTORS, STOCKS OF SCRAP OR DEFICIENCIES IN THE EXTERNAL TRADE STATISTICS USED

RWANDA TABLE 3

_

Ξ

Ξ

Ξ Ξ

=

_

-

Ξ

=

Ξ

RWANDA TABLE 4

-

=

-

-

=

_

=

-

• •

MACRO DATA AND PROJECTIONS

	ACTUALS ESTIMATES	PROJECT	IONS
YEAR	A <u>CTUALS, ESTIMATES</u> 1981 1982 1983	PROJECT 1990 1990 1990 High Base Low	1995 1995 1995 HIGH BASE LOW
GDP. AND POPULATION POPULATION (MILL) GDP PER CAPITA US\$ (1975) GDP MILL US\$ (1975) GROSS CAP FORM MILL US\$ (1975) BLOG AND CONSTR V.A MILL US\$ (1975) MANUFACTURING V.A. MILL US\$ (1975)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1080.0 980.0 880.0 14 160.0 140.0 110.0 2 60.0 50.0 40.0	8.3 8.3 8.3 174.7 144.6 118.1 450.0 1200.0 980.0 230.0 170.0 120.0 85.0 60.0 45.0 190.0 175.0 150.0
BALANCE OF PAYMENTS BILLION RWF EXPORTS OTHER CURRENT ITEMS ODA, NET INFLOWS LONG TERM CAPITAL,NET RESERVES ERRORS AND OMISSIONS IMPORTS, IMPORT CAPACITY	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
GROWTH RATES PER CENT P.A. POPULATION GDP. CONSTANT US\$ (1975)	1981-82 1982-83 3.6 3.6 4.0 0.0	<u>1981-1983 TO BASE 199</u> 0 3.8 3.6	<u>BASE 1990-1995</u> 3.8 4.1

- 104 -

. .

TABLE 5; ESTIMATED INDIRECT STEEL IMPORTS, 1981 - 1983 AND AVERAGES VALUES IN 1000 US \$. QUANTITIES IN TONNES.

٠

4

.

1

COUNTRY RWANDA

= --

= -

-

Ξ =

-

=

Ξ

Ξ

			YE	AR					AVERACE
	19	81	19	82	19	83	AVERAGE	AVERAGE	IN PCT
	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	QUANTITY	VAL UE	TONNES	OF TOTAL
SITC									
MET. STRUCTURES	2494	2656	2333	2533	1137	899	1988	2029	18
TANKS, VESSELS, ETC	280	173	90	60	458	679	276	304	3
WIRE PRODUCTS	357	272	600	488	377	316	445	359	3
NAILS, NUTS, BOLTS	221	154	326	206	157	112	235	157	1
HAND TOOLS	1129	345	813	140	1023	262	988	249	2
CUTLERY	156	11	18	0	106	6	93	6	0
DOM. UTENSILS	276	33	415	55	154	21	282	36	0
AGR.MACH., TRACTORS	1552	291	1543	302	769	155	1288	249	2
DOM. EL. EQUIPMENT	455	106	5 06	114	416	71	459	97	1
RAIL. LOCOS ETC.	97	34	129	42	29	71	85	49	0
ROAD VEHICLES	17874	3310	29383	7570	31757	8693	26338	6524	56
BICYCLES ETC.	1670	610	1674	751	4030	1770	2458	1044	9
HEATING, SANITARY	364	120	505	291	532	225	467	212	2
FURNITURE	927	246	1155	339	572	142	885	242	2
TOTAL	27852	8361	39490	12891	41517	13 422	36286	11558	100

SEYCHELLES

•

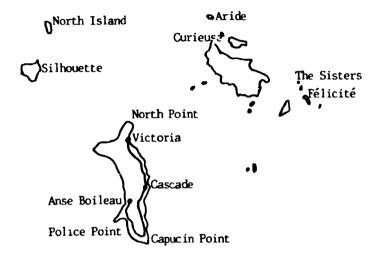
-

٠

.

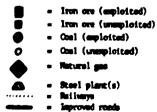
1 111

ALL REPORTED FOR THE FILM


Map of the	country	••	••	• •	••	••	••	••	••	••	••		107
Country no	tes	••	••	••	••	••	••	••	••	••	••	••	108
Table 1:	Main pro	jecti	on	••	••	••	••	••	••	••	••	••	109
Table 2: imports													110
Table 3: product .	Section	A) Co 	mpore ••	nts o 	f app 	arent	stee 	1 con 	sumpt	ion t	р у 	••	111
Table 4: ferrous ma	Section terials	B) D∉ 	mand/	suppl 	y bal	ances	fo r 	rolle 	d pro	ducts	s and 	••	112
Table 5:	Estimate	d ind	lirect	stee	1 imp	orts,	1981	-83 a	nd av	erage	3 5	••	113

1.11

IL I I


The second secon

SEYCHELLES

1 IL IL IL

LEGEND

- Unimproved roads

SEYCHELLES

In terms of population, area and GDP Seychelles is the smallest country of the PTA. A demand projection method, which does not specifically take into account major development projects and particular sectoral developments is not quite satisfactory for such a country. Adjustments have therefore been made to model results.

The negative record of overall economic growth for the most recent years is not encouraging. In making projections, account has been taken of the countrys ambitious National Development Plant 1985-89. It is assumed that a strong expansion in the exchange receipts from tourism and fisheries will give room for an expansion of the manufacturing sector up to 1990. In the period after a long term growth rate of 3.7 per cent will give rise to considerable increase in GDP per capita given the relatively low population growth projected for the Seychelles.

Given the relatively high level of GDP per capita, the tiny market, and a very high per capita steel consumption in the base year, overall steel consumption growth has been projected at a level slightly under the rate of growth of GDP. Abnormally high or abnormally low (in relation to overall average) consumption have been assumed to develop towards a more 'normal' level over the two periods. The forecast is not built on detailed assumptions on development projects envisaged and should therefore be considered tentative.

SEYCHELLES TABLE 1, MAIN PROJECTION

=

_

-

=

Ξ

A) MACRO VARIABLES, DATA AND BASE CASE PROJECTIONS

AVERAGE 1981 - 1983	PROJECTION 1990	PROJECTION 1995	GROWTH RATES PCT. P.A.
GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POP GDP/POP
MILL. LATION CAPITA	MILL. LATION CAPITA	MILL. LATION CAPITA	TO 1990- TO 1990- TO 1990-
US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	19901995 19901995 1990 1995
60 0.1 600	75 0.1 682	90 0.1 750	2.8 3.7 1.2 1.8 1.6 1.9

B) BASE CASE PROJECTIONS 1990 AND 1995 , TONNES

		AVE	RAGE 19	981 - 19	83		199			1995	5	CONSU	GROWT		PA. VARIABLE
PRODUCT NAME S	<u>11C</u>	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	T0 1990	1990- 1995	TO 1990	1990- 1995
TIN.& COAT.PL 6 HOOP AND STRP 6 RAILS+ MATER. 6 WIRE 6	734 735	604 37 151 432 377 1 0 5 243		604 37 151 432 377 0 5 243	0	730 50 220 460 400 30 7 300	000000000000000000000000000000000000000	730 50 220 460 400 30 7 300	980 60 270 480 420 54 9 360	000000000000000000000000000000000000000	980 60 270 480 420 54 9 360	2.4 3.8 4.8 0.8 0.7 53.0 4.3 2.7	6.1 34.27 0.90 12.5 3.7	85 25252 525255	3.7 3.3 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
TOTALS		1850	0	1850	0	2202	0	2202	2639	D	2639	2.2	3.7		
CRUDE EQUIVALEN BILLET EQUVIVAL		2471 2108	0	2471 2108	0	2934 2503	0	2934 2503	3504 2990	0	3504 2990	2.2 2.2	3.6 3.6		

C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995

		PROD	281 - 19 IMP	EXP	CONS	199(PROD	IMPORT	CONS	1995 PRUD	IMPORT	CONSUMPTION GROWTH BASE PERIOD-1990	RATE PA 1990-9
CRUDE EQUIV. TONNES	2471	0	2471	U	3278	0	3278	3958	0	3958	3.6	3.8
PERCENT GROWTH IN MAG AVERAGE 81-83 TO 1990 TO 1995	CRO VAR: 1990	IABLES		3DP 3.7 1.6		POPUL	ATION 1.2 1.8	G		2.4 2.8		

			D)	LOW-GROW	TH CASE	PROJECT	TIONS 1990	AND 1995	5			
		ERAGE 11 PROD	9 <u>81 - 19</u> IMP	EXP	CONS	1 <u>9</u> 90 FROD	IMPORT	CONS	1999 PROD	5 IMPORT	CONSUMPTION GROWTH BASE PERIOD - 1990	<u> RATE_PA.</u> 1990-95
CRUDE EQUVIV. TONNE	2471	0	2471	0	2624	0	2624	2929	0	2929	0.8	2.2
PERCENT GROWTH IN MAG AVERAGE 81-83 TO 1990 TO 1995		IABLES		DP .0 .5		POPULA	ATION 1.2 1.8		- (CAPITA D.2 D.3		

I

109

SEVCHELLES TABLE 2, PROJECTION WITH ACCELLERATED REPLACEMENT OF INDIRECT STEEL IMPORTS A) MACRO VARIABLES: DATA AND BASE CASE PROJECTIONS

-

-

_

-

Ē

Ξ

-

Ξ

	A) MACRU VARIABLES: DA	TA AND DASE CASE PRODECTIONS	
AVERAGE 1981 - 1983 GDP POPU- GDP PER MILL LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1990 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1995 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	GROWTH RATES PCT. P.A. GDP POP GDP/POP TO 1990- TO 1990- TO 1990- 19901935 19901995 1990 1995
60 0.1 600	75 0.1 682	90 0.1 750	2.8 3.7 1.2 1.8 1.6 1.9

B) BASE CASE PROJECTIONS 1990 AND 1995, TONNES

7

.

	AVI	ERAGE 19	981 - 19	83		199	0		1995		CONSU	GROWTH MPTION	A RATES	VARIABLE	
PRODUCT NAME SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1990	1990- 1995	Ť0 1 9 90	1990- 1995	
BARS AND RODS 6730 ANGLES SHP. H 6734 ANGLES SHP. L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743 TIN.& COAT.PL 6749 HOOP AND STRP 6750 RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	604 37 151 0 432 377 1 0 5 243	.0.0000	604 37 151 0 432 377 1 0 5 243	0 - - - - - - - - - -	951 105 59 619 535 45 22 336		951 105 309 619 535 45 22 54 336	1423 170 448 114 798 690 84 43 102 432	000000000000000000000000000000000000000	1423 170 448 114 798 690 84 43 102 432	5.8 13.9 9.4 4.6 4.5 60.9 34.6 4.1	8.4 10.1 7.7 14.1 5.2 13.3 14.3 13.6 5.2	8525252255 22525555255 52555	3.7 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	- 110 -
TOTALS	1850	0	1850	0	3034	0	3034	4302	0	4302	6.4	7.2			'
CRUDE EQUIVALENT BILLET EQUVIVALENT	2471 2108	0 0	2471 2108	0	4036 3444	0 0	4036 3444	5707 4869	0 0	5707 4869	6.3 6.3	7.2 7.2			

C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995

		ERAGE 19 PROD	981 - 19 IMP	83 EXP	CONS	- <u>1990</u> PROD	O IMPORT	CONS	199 PROD	5. IMPORT	CONSUMPTION GROWTH BASE PERIOD-1990	<u>RATE PA.</u> 1990-95
CRUDE EQUIV. TONNES	2471	0	2471	0	4379	0	4379	6150	0	6159	7.4	7.1
PERCENT GROWTH IN MAC AVERAGE 81-83 TO 1990 TO 1995	CRO VAR 1990	IABLES	3	DP .7 .6		POPUL	ATION 1.2 1.8		GDP/CA	2.4 2.8		

			LOW	-GROWTH	CASE PR	OJECTION	NS 1990 AN	D 1995				
	AVI CONS	ERAGE 19 PROD	981 - 19 IMP	983 EXP	ĊŌNŜ	1990 PROD	IMPORT	CONS	<u>1999</u> PROD	IMPORT	CONSUMPTION GROWI BASE PERIOD - 199	<u>1990-95 RATE PA.</u>
CRUDE EQUVIV. TONNE	2471	C	2471	0	3724	0	3724	5130	0	5130	5.3	6.6
PERCENT GROWTH IN MA AVERAGE 81-83 TO 1990 TO 1995	GDP 1.0 1.5		POPUL	ATION 1.2 1.8		- (CAPITA 0.2 0.3					

SEYCHELLES TABLE 3

=

Ξ

A) COMPONENTS OF APPARENT STEEL CONSUMPTION BY PRODUCT (TONNES)

PRODUCT NAME	SITC		IMPO	 DTC			PRODUCT				EXPORT			APP. CONS
	31/0	1981	1982	1983	AVER	1981	1982	1983	AVER	1981		983	AVER	AV 81-83
VIRE RODS	6731	316	508	60	295									295
		489	111	328	309									309
NGLES SHP.HM		57	30	25	37									37
NGLES SHPL		220	122	111	151									151
LATES, MED.	6742													
LATES, LIGHT	6743	515	390	390	432									433
INPLATE	6747	260	190	190	213									213
THER COAT P	6748	190	150	150	163									16:
OOP AND STRP	6750		2	2	1									
AILS	6761													
THER RL TRCK	6762		•	~	-									
IRE	6770		8	6	5									243
EAMLESS TUBE	6782	300	250	180	243									24.
ELDED TUBES	6783													L L
OTALS		2347	1761	1442	1850	0	0	0	0	0	0	0	0	1850
		-011				Ū	Ũ	Ũ	0	5	•	•	•	

B) DEMAND / SUPPLY BALANCES FOR ROLLED PRODUCTS AND FERROUS MATERIALS (TONNES)

101 101

					(
Α	ROLLED PRODUCTS	1981	1982	1983	AVERAGE	
	APPARENT CONSUMPTION OF ROLLED PRODUCTS	2347	1761	1442	1850	
	UF WHICH; NET IMPORTS OF ROLLED PRODUCTS LOCAL PRODUCTION	2347 0	1761 0	1442 0	1850	
B	FERROUS MATERIALS CONSUMPTION (CRUDE EQUIVALENTS) 1) TOTAL SUPPLIED FROM:	6757	5854	4309	5640	
	1 NET IMPORTS OF WHICH:	6757	5854	4309	5640	
	FERROUS MATERIALS FOR SMELTING, INCL SCRAP NET IMPORTS OF BILLETS ETC NET IMPORTS OF ROLLED PRODUCTS FINISHED PRODUCTS (INDIRECT IMPORTS)	0 0 3128 3630	0 0 2353 3502	0 0 1933 2376	0 0 2471 3169	
	2 LOCAL SOURCES (INCL. SCRAP)	0	0	0	0	
С	ESTIMATED ANNUAL LOCAL SCRAP GENERATION	0	0	0	0	

1) IMPORT, EXPORT AND PRODUCTION FIGURES ARE CONVERTED 10 CRUDE STEEL EQUIVALENTS (INGOTS) BY USING COEFFICIENTS DEVELOPED BY THE ECE. "FERROUS MATERIALS FROM LOCAL SOURCES" ARE CALCULATED BY APPLYING THESE COEFFICIENTS TO LOCALLY PRODUCED ROLLED PRODUCTS, ARRIVING AT BILLET EQUVIVALENTS, AND THEN DEDUCTING NET IMPORTS OF BILLETS AND "FERROUS MATERIALS FOR SMELTING". DIFFERENCES BETWEEN THIS AND THE FIGURE GIVEN FOR SCRAP GENERATION MAY BE DUE 10 INACCURACIES IN CONVERSION FACTORS, STUCKS OF SCRAP OR DEFICIENCIES IN THE EXTERNAL TRADE STATISTICS USED -

Ξ

-

--

-

Ξ

• •

MACRO DATA AND PROJECTIONS

YEAR	A <u>CTUALS, ESTIMATES</u> 1981 1982 1983	PROJECTIO 1990 1990 1990 19 HIGH BASE LOW HI	95 1995 1995
GDP. AND POPULATION POPULATION (MILL) GDP PER CAPITA US\$ (1975) GDP MILL US\$ (1975) GROSS CAP FORM MILL US\$ (1975) BLDG AND CONSTR V.A MILL US\$ (1975) MANUFACTURING V.A. MILL US\$ (1975)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1141.2 1070.0 927.2 1305 80.0 75.0 65.0 100 20.0 17.0 15.0 28 6.0 5.0 4.0 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
BALANCE OF PAYMENTS MILLION US\$ EXPORTS OTHER CURRENT ITEMS ODA, NET INFLOWS LONG TERM CAPITAL,NET RESERVES ERRORS AND OMISSIONS IMPORTS, IMPORT CAPACITY	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	65.0 55.0 50.0 110 40.0 35.0 30.0 55 7.0 6.0 6.0 9	
GROWTH RATES PER CENT P.A. POPULATION GDP. CONSTANT US\$ (1975)	<u>1981-82 1982-83</u> 0.6 0.6 -1.7 3.9	<u>1981-1983 TO BASE 1990</u> 1.4 1.0	BASE 1990-1995 1.8 1.0

• •

TABLE 5; ESTIMATED INDIRECT STEEL IMPORTS, 1981 - 1983 AND AVERAGES VALUES IN 1000 US \$. QUANTITIES IN TONNES.

•

1

•

٠

COUNTRY SEYCHELLES

Ξ

-_

-

Ξ

_

Ξ

-

--

_ -

_

= = -

-

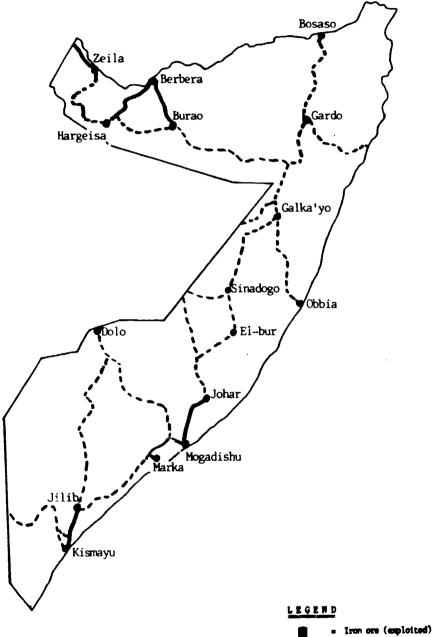
					AVERAGE TONNES				
	19	81	19	82	19	83	AVERAGE	AVERAGE	IN PCT
	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	QUANTITY		TONNES	OF TOTAL
SITC									
MET. STRUCTURES	798	658	887	1024	573	409	753	697	25
TANKS, VESSELS, ETC	372	296	82	18	53	11	169	108	4
WIRE PRODUCTS	236	242	344	376	116	136	232	251	9
NAILS, NUTS, BOLTS	328	47	309	152	250	116	296	105	4
HAND TOOLS	407	23	658	102	387	107	484	77	З
CUTLERY	115	4	125	25	86	8	109	12	0
DOM. UTENSILS	756	134	539	131	428	81	574	115	4
AGR.MACH., TRACTORS	385	139	136	23	187	48	236	70	Э
DOM. EL. EQUIPMENT	1801	332	1239	157	934	228	1325	239	9
RAIL. LOCOS ETC.			10	1	•		З	0	0
ROAD VEHICLES	3464	635	3232	630	2581	512	30 92	592	21
BICYCLES ETC.	150	114	103	24	103	30	119	56	2
HEATING, SANITARY	722	322	708	173	437	178	622	224	8
FURNITURE	669	209	1166	238	531	225	789	224	8
TOTAL	10203	3155	9538	3074	6666	2089	8802	2773	100

SOMALIA

Page

.

.


.

Map of the	e country	1	••	••	••	••	••	••	••	••	••	••	115
Country no	otes	••	••	••	••	••	••	••		••	••	••	116
Table 1:	Main pro	ojecti	on	••	••	••	••	••	••	••	••	••	117
Table 2: imports	Projecti 	ion wi	ith ac	cele:	rated	abso: 	rption	n of : 	indire	ect s:	teel	••	118
Table 3: product	Section	A) Co 	mpone 	ents (of app	erent	t ste	el com 	n sump 	tion 1	• y 	••	119
Table 4: ferrous ma	Section aterials	B) De 	emand/	supp:	ly ba: 	Lance:	s for 	roll	ed pro	oduct: 	s and	••	120
Table 5:	Estimate	ed in	direct	: ste	el imp	ports	, 198	1-83	and a	verag	ê S	••	121

,

-

SOMALIA

анных аналыгы алагы а

- Iron ore (unemploited)
- Coml (emploited)
- Coni (unamploited)
- Natural gas

٠

0

. . .

- Stael plant(s)
 Railways
 Laproved roads
 Unimproved roads

•

SOMALIA

Although National Accounts data in Somalia are weak it is clear that a major upswing took place in the economy from 1980-81 from the very depressed levels of the late 70s.

In terms of GDP growth rates, the economic projections cover a range from 5 per cent to under 1 per cent per annum, the former reflecting an optimistic government view and the latter and unfavourable scenerio with reoccurrence of drcught, lower aid inflows and worsening balance-of-payments. A middle situation implying a growth rate of just over 2 per cent per annum as been selected as a base case for both projection periods.

The steel demand projection indicate an overall growth well above the GDP growth rate for both periods, reflecting a substantial catch up effect from the exceedingly low levels of consumption per capita which prevailed in the base period 1981-83. Also, most strikingly in the period up to 1990, the structure of consumption changes to from the one recorded in available import statistics to one which is more in line with the average for the subregion.

1 1

11 II II I I I

1.11

1.1.11

11

1.1

н. н.

SOMALIA TABLE 1, MAIN PROJECTION

=

-

-

=

Ξ

Ξ

Ξ

-

-

Ξ

Ξ

-

Ĩ

•

.

A) MACRO VARIABLES, DATA AND BASE CASE PROJECTIONS _____ _____ PROJECTION 1995 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75 GROWTH RATES PCT. P.A. GDP POP GDP/POP TU.1990- TO 1990- TO 1990-19901995 19901995 1990 1995 AVERAGE 1981 - 1983 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75 PROJECTION 1990 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75 2.2 2.1 2.3 1.6 -0.1 0.5 800 6.5 123 603 5.0 121 720 6.0 120

B) BASE CASE PROJECTIONS 1990 AND 1995 , TONNES

	AVERAGE 1981 - 1983		83	1990				1995			GROWTH RATES PA.			E	
<u>SITC</u>	CONS	PROD	IMP	EXP	CONS	PROD	NET IMFORT	CONS	PROD	NET IMPORT	1990	1990~ 1995	TO 1990	1990- 1995	Π.
6730 6734 6735 6740 6743 6749 6750 6760 6760 6770 6780	713 147 567 308 112 1323 323 60 552 1696		713 147 567 308 112 1323 323 60 552 1696		1163 335 619 1350 570 1660 279 344 650 2188	000000000000000000000000000000000000000	1163 335 619 1350 570 1660 279 344 650 2188	1722 426 810 920 2101 277 433 730 2320		1722 426 810 920 2101 277 433 730 2320	6.3 10.8 1.1 20.3 22.9 -1.8 24.4 2.1 3.2	8.2 4.9 5.5 7.1 4.8 -0.8 -0.7 2.3 1.2	1.776 1.2.67 1.2.66 1.2.66 1.2.66 1.2.66 1.2.66 1.2.66	2.4 2.7 2.7 2.7 2.7 2.7 7 2.7 7 2.7 7 2.7 7 2.7 7 2.7 7 2.7 7 2.7 7 2.7 7 2.7 7 2.7 7 7 2.7 7 7 7	- 117 -
	5800	0	5800	•	9158	0	9158	11638	0	11638	5.9	4.9			'
ENT Alent	7897 6738	0	7 897 6738	:	12502 10667	0	12502 10667	15 839 13515	0	15839 13515	5.9 5.9	4.8 4.8			
	6730 6734 6735 6740 6743 6749 6750 6760 6760 6780	SITC CONS 6730 713 6734 147 6735 567 6740 308 6743 112 6749 1323 6750 323 6760 60 6770 552 6780 1696 5800 5810	SITC CONS PROD 6730 713 - 6734 147 - 6735 567 0 6740 308 0 6743 112 0 6749 1323 0 6760 60 0 6770 552 0 6780 1696 0 5800 0 ENT 7897 0	SITC CONS PROD IMP 6730 713 . 713 6734 147 . 147 6735 567 0 567 6740 308 0 308 6749 1323 0 1323 6750 323 0 323 6760 60 0 60 6770 552 0 552 6780 1696 0 1696 5800 0 5800 5800 ENT 7897 0 7897	SITC CONS PROD IMP EXP 6730 713 . 713 . 6734 147 . 147 . 6735 567 0 567 . 6740 308 0 308 . 6749 1323 0 1323 . 6760 60 0 60 . 6760 60 0 60 . 6770 552 0 552 . 6780 1696 0 1696 . 5800 0 5800 . . 587 0 7897 . .	SITC CONS PROD IMP EXP CONS 6730 713 713 1163 6734 147 147 335 6735 567 0 567 619 6740 308 0 308 1350 6749 1323 0 1323 1660 6750 323 0 323 279 6760 60 0 60 344 6770 552 0 552 650 6780 1696 0 1696 2188 5800 0 5800 9158 ENT 7897 0 7897 12502	SITC CONS PROD IMP EXP CONS PROD 6730 713 . 713 . 1163 0 6734 147 . 147 . 335 0 6734 147 . 147 . 335 0 6735 567 0 567 . 619 0 6740 308 0 308 . 1350 0 6749 1323 0 112 . 570 0 6750 323 0 323 . 1660 0 6770 552 0 552 . 650 0 6780 1696 0 1696 . 2188 0 5800 0 5800 . 9158 0 ENT 7897 0 7897 . 12502 0	SITC CONS PROD IMP EXP CONS PROD IMFORT 6730 713 . 713 . 1163 0 1163 6734 147 . 147 . 335 0 335 6735 567 0 567 . 619 0 619 6740 308 0 308 . 1350 0 1350 6743 112 0 112 . 570 0 570 6749 1323 0 1323 . 1660 0 1660 6750 323 0 323 . 279 0 279 6760 60 0 . 344 0 344 6770 552 0 550 0 650 6780 1696 0 1696 2188 0 2188 5800 0 5800 .	SITC CONS PROD IMP EXP CONS PROD IMFORT CONS 6730 713 . 713 . 1163 0 1163 1722 6734 147 . 147 . 335 0 335 426 6735 567 0 567 . 619 0 619 810 6740 308 0 308 . 1350 0 1350 1900 6749 1323 0 1323 . 1660 0 1660 2101 6750 323 0 323 . 279 0 279 277 6760 60 0 60 . 344 0 344 433 6770 552 0 552 650 0 650 730 6780 1696 0 1696 2188 2320 5800 0 5800	SITC CONS PROD IMP EXP CONS PROD IMFORT CONS PROD 6730 713 . 713 . 1163 0 1163 1722 0 6734 147 . 147 . 335 0 335 426 0 6734 147 . 147 . 335 0 335 426 0 6735 567 0 567 . 619 0 619 810 0 6740 308 0 308 . 1350 1900 0 6749 1323 0 1323 . 1660 0 1660 2101 0 6750 323 0 323 . 279 0 279 277 0 6770 552 0 552 . 650 0 650 730 0 6780 1696	SITC CONS PROD IMP EXP CONS PROD IMFORT CONS PROD IMPORT 6730 713 . 713 . 1163 0 1163 1722 0 1722 6734 147 . 147 . 335 0 335 426 0 426 6735 567 0 567 . 619 0 619 810 0 810 6740 308 0 308 . 1350 1900 0 1900 6190 619 810 0 810 0 810 0 810 0 810 0 120 122 570 0 570 920 0 920 920 920 6749 1323 0 1323 . 1660 0 1660 2101 0 2101 6750 323 0 323 670 552 0 552	SITC CONS PROD IMP EXP CONS PROD IMFORT CONS PROD IMPORT 10 6730 713 . 713 . 1163 0 1163 1722 0 1722 6.3 6734 147 . 147 . 335 0 335 426 0 426 10.8 6735 567 0 567 . 619 0 619 810 0 810 1.1 6740 308 0 308 . 1350 0 1350 1900 0 1900 20.3 6743 112 0 112 . 570 0 570 920 0 920 22.6 6749 1323 0 1323 . 1660 0 1660 2101 0 2101 2.9 6750 323 0 323 . 279 0 <	SITC CONS PROD IMP EXP CONS PROD IMP ORT CONS PROD IMP ORT OUS NET TO 1990 100 11 55	NET NET NET NET TO 1990 1990 1990 6730 713 713 1163 0 1163 1722 0 1722 6.3 8.2 1.7 6734 147 147 335 0 335 426 0 426 10.8 4.9 1.7 6734 147 147 619 0 619 810 0 1.1 5.5 2.6 6740 308 0 308 1350 0 1350 1900 0 1900 20.3 7.1 1.7 6740 308 0 308 1350 0 1350 1900 0 1900 20.3 7.1 1.7 6743 112 0 112 570 0 570 920 0 920 22.6 10.0 2.6 6750 323 0 323 279 277 0 277 -1.8 -0.1 2.6 6760 60 650 730 0 730	SITC CONS PROD IMP EXP CONS PROD IMP ORT CONS PROD IMP ORT CONS PROD IMP ORT TO 1990 100 100 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110

C) HIGH-GROWTH	CASE	PROJECTIONS	1990	AND	1995
----------------	------	-------------	------	-----	------

			ر ب	firan an	Children Choi							
		ERAGE 19 PROD	9 <u>81 - 1</u> IMP	983 EXP	CONS	199 PROD	0 IMPORT	CONS	199 PROD	5 IMPORT	<u>CONSUMPTION GROWTH</u> BASE PERICD-1990	1990-95
CRUDE EQUIV. TONNES	7897	0	7897		16410	0	16410	23850	0	23850	9.6	7.8
PERCENT GROWTH IN MAC AVERAGE 81-83 TO 1 1990 TO 1995		IABLES		GDP 3.9 4.0		POPUL	ATION 2.3 1.6		GDP/CA	PITA 1.6 2.4		

			D)	LOW-GRO	WTH CASE	PROJEC	1990 ILIONS	AND 199	5			
		ERAGE 19 PROD	981 - 1 IMP	983 EXP	CONS	1991 PROD	IMPORT	CONS	<u>199</u> PROD	5 IMPORT	CONSUMPTION GRO BASE PERIOD - 1	<u>WIH RAIE PA.</u> 990 1990-95
CRUDE EQUVIV. TONNE	7897	0	7897		9015	0	9015	10847	0	10847	1.7	3.8
PERCENT GROWTH IN MAG AVERAGE 81-83 TO 1990 TO 1995		IABLES		GDP 0.3 0.9		POPUL	ATION 2.3 1.6			CAPITA 1.9 0.7		

SOMALIA TABLE 2, PROJECTION WITH ACCELLERATED REPLACEMENT OF INDIRECT STEEL IMPORTS A) MACRO VARIABLES: DATA AND BASE CASE PROJECTIONS

. 1

Ξ

_

-

_

-

Ξ

=

-

Ξ

=

Ξ

Ξ

AVERAGE 1981 - 1983	PROJECTION 1990	PROJECTION 1995	<u>GROWTH RATES PCT. P.A.</u>
GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POP GDP/POP
MILL. LATION CAPITA	MILL. LATION CAPITA	MILL. LATION CAPITA	TO 1990- TO 1990- TO 1990-
US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	19901995 19901995 1990 1995
603 5.0 121	720 6.0 120	800 6.5 123	2.2 2.1 2.3 1.6 -0.1 0.5

B) BASE CASE PROJECTIONS 1990 AND 1995, TONNES

	AVE	EDINE 19	98 :			199	()		199	5		GROWTH		P.A. VARIABLE	
PRODUCT NAME SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1990	1990- 1995	TO 1 99 0	1990- 1995	
BARS AND RODS 6730 ANGLES SHP. H 6734 ANGLES SHP.,L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743 TIN.& COA ⁺ .PL 6749 HOOP AND STRP 6750 RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	7 3 1+7 567 3012 1323 602 552 1696		713 147 567 308 112 1323 323 552 1696		4910 1265 2126 3261 3942 532 710 1439 2793	000000000000000000000000000000000000000	4910 1265 2126 3261 3942 532 710 1439 2793	9216 2285 3824 3731 6301 6665 784 1166 2308 3531	000000000000000000000000000000000000000	9216 2285 3824 3731 6301 6665 784 1166 2308 3531	27.3 30.9 188.3 52.6 36.4 36.2 12.7 6	13.4 12.6 12.5 10.5 14.1 1.1 10.4 9.9 4.8	1.776 1.766 1.666 1.666 1.66 1.66	2.4 22.7 22.7 22.7 22.7 22.7 22.7 22.7 2	- 118 -
TOTALS	5800	0	5800		23244	0	23244	39811	0	39811	18.9	11.4			•
CRUDE EQUIVALENT BILLET EQUVIVALENT	7897 6738	0 0	7897 6738	•	31137 26568	0 0	31137 26568	53110 45316	0	53110 45316	18.7 18.7	11.3 11.3			

C) HIGH-GROWTH	CASE	PROJECTIONS	1990	AND	1995
----------------	------	-------------	------	-----	------

			• /											
	AVERAGE 1981 - 1983 CONS PROD IMP EXP				CONS	CONS PROD IMPORT CONS			199 PROD	5 IMPORT	CONSUMPTION GROWTH RATE PA, BASE PERIOD-1990 1990-95			
CRUDE EQUIV. TONNES	7897	0	7897		35048	0	35048	61118	0	61118	20.5	11.8		
PERCENT GROWTH IN MAC AVERAGE 81-83 TO 1 1990 TO 1995	RO VARIA 1990	BLES		GDP 3.9 4.0		POPUL	ATION 2.3 1.6		GDP/CA	PITA 1.6 2.4				

		LOW-GROWT	H CASE PROJECTIONS 1990 AN	ND 1995	
	AVERAGE CONS PROE	1981 - 1983 IMP EXP	1990 CONS PROD IMPORT	CONS PROD IMPORT	<u>CONSUMPTION GROWTH RATE PA.</u> Base period - 1990 1990-95
CRUDE EQUVIV. TONNE	7897 0	7897 .	27650 0 27650	48117 0 48117	17.0 11.7
PERCENT GROWTH IN MAG AVERAGE 81-83 TO 1990 TO 1995	CRO VARIABLES 1990	GDP 0.3 0.9	POPULATION 2.3 1.6	GDP/CAPITA -1.9 -0.7	

							PRODUCT			DUCT (TONN	EXPORTS			APP. CON
RODUCT NAME	SITC	1981	IMPO 1982	RTS 1983	AVER	1981	1982	1983	AVER	1981	1982 19		AVER	AV 81-83
IRE RODS ARS AND RODS NGLES SHP.HN NGLES SHP.L LATES, HEAVY LATES, MED.	M 6734 - 6735 7 6741 6742	470 100 370 50 153	890 180 710 95 290	780 160 620 83 254	713 147 567 76 232 112									7 14 50
LATES, LIGHI INPLATE THER COAT.P OOP AND STRF AILS	T 6743 6747 6748 P 6750 6761	73 8 863 212 40	140 15 1637 403 75	123 13 1434 353 65	12 1311 323 60									13 3 5
THER RL TRCH IRE EAMLESS TUBE ELDED TUBES	6770 E 6782	363 586 509	689 1112 965	603 975 940	552 891 805							_		8 8
OTALS		3797	7201	6403	5800	0	0	0	ť) 0	0	0		0 58
		8)	DEMAND /	SUPPLY	BALANCES	FOR ROLL				MATERIALS				
A	ROLLED PR		DEMAND /	SUPPLY	BALANCES	FOR ROLL	1	981	1982	1983	AVERAC	 3E		
	APPAREN					FOR ROLL	1		1982 7201	1983 6403	AVERA0 5800	3E		
	APPAREN OF WHICH; NET	ODUCTS	TION OF F	OLLED PR	ODUCTS	FOR ROLL	1	1981 3797	1982	1983	AVERAC	3E		
	APPAREN OF WHICH; NET LOCA FERROUS MA	ODUCTS IT CONSUMPT IMPORTS OF AL PRODUCTI	TION OF F	ROLLED PR	ODUCTS		379	981 3797 97	1982 7201 7201	1983 6403 6403	AVERAC 5800 5800	ЭЕ		
	APPAREN OF WHICH; NET LOCA FERROUS MA	ODUCTS IT CONSUMPT IMPORTS OF AL PRODUCTI ATERIALS CO LED FROM;	TION OF F	ROLLED PR	ODUCTS		379	1981 3797 97 0	1982 7201 7201 0	1983 6403 6403 0	AVERAC 5800 5800 0	GE		
	APPAREN OF WHICH; NET LOCA FERROUS MA TOTAL SUPPLI 1 NET I OF	ATERIALS CO IT CONSUMPT IMPORTS OF AL PRODUCTI ATERIALS CO IED FROM; IMPORTS WHICH; ERROUS MAT NET IMPORTS	TION OF F ROLLED ONSUMPTIC	OLLED PR PRODUCTS ON (CRUDE COR SMELT ED FOCDU	EQUIVA	LENTS) 1) L SCRAP	379	1981 3797 97 0 36671 36896 3 36896 3 22 67	1982 7201 7201 0 55686	1983 6403 6403 0 72833	AVERAC 5800 5800 0 55063	ЭЕ		
(APPAREN OF WHICH; NET LOCA FERROUS MA TOTAL SUPPLI 1 NET I OF F	ATERIALS CO IT CONSUMPT IMPORTS OF AL PRODUCTI ATERIALS CO IED FROM; IMPORTS WHICH; EERROUS MAT SET IMPORTS	TION OF F ROLLED ION DNSUMPTIC TERIALS F S OF BILL S OF ROLL RODUCTS	OLLED PR PRODUCTS ON (CRUDE COR SMELT ETS ETC ED PRODU (INDIRECT	EQUIVA	LENTS) 1) L SCRAP	379 379 315 315	1981 3797 97 0 36671 36896 3 36896 3 22 67	1982 7201 7201 0 55686 55692 6 0 9799	1983 6403 6403 72833 73233 400 8723	AVERAC 5800 5800 0 55063 55273 136 74 7896			

Ξ.

_

=

Ξ

-

1) IMPORT, EXPORT AND PRODUCTION FIGURES ARE CONVERTED TO CRUDE STEEL EQUIVALENTS (INGOTS) BY USING COEFFICIENTS DEVELOPED BY THE ECE. "FERROUS MATERIALS FROM LOCAL SOURCES" ARE CALCULATED BY APPLYING THESE COEFFICIENTS TO LOCALLY PRODUCED ROLLED PRODUCTS, ARRIVING AT BILLET EQUVIVALENTS, AND THEN DEDUCTING NET IMPORTS OF BILLETS AND "FERROUS MATERIALS FOR SMELTING". DIFFERENCES BETWEEN THIS AND THE FIGURE GIVEN FOR SCRAP GENERATION MAY BE DUE TO INACCURACIES IN CONVERSION FACTORS, STOCKS OF SCRAP OR DEFICIENCIES IN THE EXTERNAL TRADE STATISTICS USED

=

Ξ

-

Ξ

Ξ

-

Ξ

-

=

-

MACRO DATA AND PROJECTIONS

.

•

	ACTUA	LS. EST	IMATES			PROJE	CTIONS		
YEAR	1981	LS 1932	1983	1990	1990	1990	1995	1995	1995
				HIGH	BASE	LOW	HIGH	BASE	LOW
GDP, AND POPULATION POPULATION (MILL)	4.0	F 0	F 0	6.0	c o	6.0	6 5	~ ~	6 5
GDP PER CAPITA US\$ (1975)	4.8 118.0	5.0 122.2	5.2 120.1	6.0 136.6	6.0 120.0	6.0 103.3	6.5 153.0	6.5 123.0	6.5 100.0
GDP MILL US\$ (1975)	572.3	611.1	624.7	820.0	720.0	620.0	1000.0	800.0	650.0
GROSS CAP FORM MILL US\$ (1975)	149.8	152.2	145.7	200.0	170.0	145.0	255.0	190.0	150.0
BLDG AND CONSTR V.A MILL US\$ (1975)	33.0	34.4	36.6	50.0	40.0	35.0	65.0	45.0	38.0
MANUFACTURING V.A. MILL US\$ (1975)	55.3	56.8	58.4	75.0	70.0	60.0	90.0	80.0	65.0
DALANCE OF DAVMENTS MALL TON USA									
BALANCE OF PAYMENTS MILLION US\$ EXPORTS	114.0	137.0	100.0	220.0	200.0	190.0	360.0	325.0	310.0
OTHER CURRENT ITEMS	63.0	20.0	23.0	40.0	200.0	35.0	55.0	45.0	45.0
ODA, NET INFLOWS	229.0	280.0	248.0	430.0	410.0	410.0	570.0	540.0	540.0
LONG TERM CAPITAL, NET									
RESERVES ERRORS AND OMISSIONS	16.0	47.0	79.0	40.0	40.0	40.0	30.0	30.0	30.0
IMPORTS, IMPORT CAPACITY	422.0	484.0	450.0	730.0	685.0	675.0	1015.0	940.C	925.0
GROWTH RATES PER CENT P.A.	1981	-82 10	82-83	1981-198	3 10 84	SE 1997) BA	SE 1990	- 1995
POPULATION	198 <u>1</u> 3	9 3).9	1901 190	2.1		, 04	1.6	1999
GDP. CONSTANT US\$ (1975)	ĕ	.8 2	2.2		2. i			2.1	

4 **•**

.

COUNTRY SOMALIA AVE RAGE TONNES YEAR 1983 1981 1982 AVERAGE AVERAGE IN PCT VALUE TONNES OF TOTAL VALUE QUANTITY VALUE QUANTITY VALUE QUANTITY VALUE SITO 6416 14 9590 7956 14783 9017 **299**3 2275 10994 MET. STRUCTURES 7 5485 3117 5539 449 227 9583 3586 6424 TANKS, VESSELS, ETC 1661 2063 4 3390 4898 309 282 1284 1008 WIRE PRODUCTS

NAILS, NUTS, BOLTS	371	440	1209	1373	1819	2427	1133	1413	З
HAND TOOLS	2760	768	3257	825	4992	2010	3670	1201	З
CUTLERY	130	0	44	5	407	267	194	91	0
DOM. UTENSILS	1659	303	1813	426	2435	654	1969	461	1
AGR.MACH., TRACTORS	6829	1415	5860	1424	7966	2235	6885	1691	4
DOM. EL. EQUIPMENT	948	221	1958	531	2305	576	1737	443	1
RAIL. LOCOS ETC.	5	5	78	122	2193	1480	759	536	1
ROAD VEHICLES	113080	24190	116537	22225	128011	27704	119209	24706	53
BICYCLES ETC.	739	278	3361	1465	3621	1536	2574	1093	2
HEATING, SANITARY	571	272	1790	970	3560	1533	1974	925	2
FURNITURE	1624	750	6604	3680	9281	3 96 5	5836	2798	6
TOTAL	132467	31426	164372	45596	191187	63841	162675	46954	100

TABLE 5; ESTIMATED INDIRECT STEEL IMPORTS, 19 1 - 1983 AND

=

=

=

- -

Ξ

Ξ

Ξ

Ξ

-

_

AVERAGES VALUES IN 1000 US \$. QUANTITIES IN TONNES.

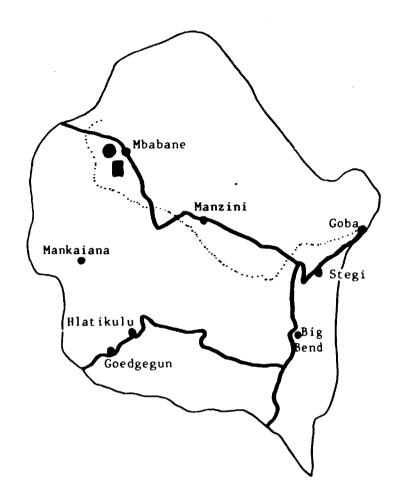
3

.

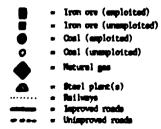
SWAZILAND

.

.


٠

-


Map of the	e country			••	••	••	••	••	••	••	••	123
Country no	otes		••	••	••	••	••	••	••	••	••	124
Table 1:	Main proj	jection	•••	••	••	. • •	••	••	••	••	••	125
Table 2: imports												126
Table 3: product											••	127
Table 4: ferrous ma												128
Table 5:	Estimated	d indire	ct ste	el imu	ports	. 1981	l-83 /	and av	verage	es		129

I

SWAZILAND

LEGEND

SWAZILAND

Swaziland is one of the mini-economies of PTA/SADCC where forecasts are difficult to make, because of the size and structure of the economy but and because of its proximity to and linkages with South Afirca. Economic projections up to 1990 have been based on macro projections in Swaziland's Fourth National Development Plan. Although the countrys consumption of rolled steel products per capita is quite high, the projection methodology chosen, using the very high per capita GDP as an explanatory variable makes for an even higher consumption. Partly, this problem also is related to the structure of steel consumption in Swaziland, where an unusual large number of products are imported from South Africa in their final forms instead of being produced in the country on the basis of rolled products. As this can be expected to continue for some time, the projections produced by the straingt forward application of the model have been scaled down.

The transfer of the test of te

SWAZILAND TABLE 1, MAIN PROJECTION

٠

.

A) MACRO VARIABLES, DATA AND BASE CASE PROJECTIONS

1

.

- 125 -

AVERAGE 1981 - 1983	PROJECTION 1990	PROJECTION 1995	GROWTH RATES PCT, P.A.
GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POP GDP/POP
MILL. LATION CAPITA	MILL. LATION CAPITA	MILL. LATION CAPITA	TO 1990- TO 1990- TO 1990-
US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	19901995 19901995 1990 1995
521 0.6 840	620 0.8 785	720 0.9 774	2.2 3.0 3.1 3.3 -0.9 -0.3

B) BA E CASE PROJECTIONS 1990 AND 1995 , TONNES

	AVI	ERAGE 1	981 - 19	83		199	0		199	5	CONSU	GROWT		PA. VARIABLE	
PRODUCT NAME SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1990	1990- 1995	TO 1990	1990- 1995	
BARS AND RODS 6730 ANGLES SHP. H 6734 ANGLES SHP.,L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743 TIN.& COAT.PL 6749 HOOP AND STRP 6750 RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	112 759 3035 57 118 2692 212 40 259 141		112 759 3035 57 118 2692 212 40 259 141		548 820 3985 120 245 3980 221 72 450 210	0 0 0 0 0 0 0 0 0 0 0 0 0	548 820 3985 120 245 3980 221 72 450 210	1247 880 4747 520 5280 241 103 680 270	00000000000000000000000000000000000000	1247 880 4747 150 320 5280 241 103 680 270	22.0 1.05 9.60 5.05 7.1 5.1	17.9 1.6 3.6 5.5 5.87 7.6 5.2	0.57 0.2.8 0.0.8 0.0.8 0.0.8 0.0.80000000000	1.42929999299 22.92999229 22.922299	
TOTALS	7425		7425		10650	0	10650	13918	0	13918	4.6	5.5			
CRUDE EQUIVALENT BILLET EQUVIVALENT	9725 8298	•	9725 8298		13983 11931	0 0	13983 11931	18284 15601	0 0	18284 15601	4.6 4.6	5.5 5.5			

C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995

		RAGE 19 PROD	981 <u>- 19</u> IMP	983 EXP	CONS	<u>199</u> PROD	0 IMPORT	CONS	199 PROD	IMPORT	CONSUMPTION GROWTH BASE PERIOD-1990	RATE PA. 1990-95
CRUDE EQUIV. TONNES	9725	•	9725	•	15182	0	15182	21545	0	21545	5.7	7.3
PERCENT GROWTH IN MAG AVERAGE 81-83 TO 1990 TO 1995		ABLES	-	GDP 3.4 4.1		POPUL	ATION 3.1 3.3		GDP/CA	PITA 0.3 0.7		

D) LOW-GROWTH CASE PROJECTIONS 1990 AND 1995

		ERAGE 1 PROD	9 <u>81 -</u> 19 IMP	83 EXP	CONS	199 PROD	0 IMPORT	CONS	199 PROD	5 IMPORT	CONSUMPTION GROWTH BASE PERIOD - 1990	RATE PA. 1990-95
CRUDE EQUVIV. TONNE	9725	•	9725		13413	0	13413	14820	0	14820	4.1	2.0
PERCENT GROWTH IN MA AVERAGE 81-83 TO 1990 TO 1995		IABLES		iDP 0.0 .1		POPUL	ATION 3.1 3.3			CAPITA 3.0 2.1		

SWAZILAND TABLE 2, PROJECTION WITH ACCELLERATED REPLACEMENT OF INDIRECT STEEL IMPORTS A) MACRO VARIABLES: DATA AND BASE CASE PROJECTIONS

.

Ξ

_

≡

-

=

-

-

-

AVERAGE 1981 - 1983	PROJECTION 1990	PROJECTION 1995	<u>GROWTH RATES PCT. P.A.</u>
GDP POPU- GDP FER	GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POP GDP/POP
MILL. LATION CAPITA	MILL. LATION CAPITA	MILL. LATION CAPITA	TO 1990- TO 1990- TO 1990-
US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	19901995 19901995 1990 1995
521 0.6 840	620 0.8 785	720 0.9 774	2.2 3.0 3.1 3.3 -0.9 -0.3

B) BASE CASE PROJECTIONS 1990 AND 1995, TONNES

		AVE	ERAGE 19	981 - 19	83		199	0		199	5	CONSU	GROWT		P.A. VARIABL	E
PRODUCT NAME	SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1990	1990- 1995	1990	1990- 1995	<u> </u>
TIN.& COAT.PL HOOP AND STRP RAILS+ MATER. WIRE	6734 6735	112 759 3035 57 118 2692 212 40 259 141	, , , , , , , ,	112 759 3035 57 118 2692 212 40 259 141		2018 1185 4576 1301 4875 320 215 760 448	000000000000000000000000000000000000000	2018 1185 4576 479 1301 4875 320 215 760 448	4188 1610 5930 2432 7071 440 390 1299 745	000000000000000000000000000000000000000	4188 1610 5930 2432 7071 440 390 1299 745	43.57 5.35 305.77 335.77 234.4 15.5	15.7 5.3 12.7 13.7 6.6 11.3 10.7	0.57 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	122929999299 	- 126
TOTALS		7425		7425	•	16177	0	16177	24973	0	24973	10.2	9.1			t
CRUDE EQUIVALE BILLET EQUVIVA		9725 8298		9725 8298		21294 18169	0 0	21294 18169	32911 28081	0 0	32911 28081	10.3 10.3	9.1 9.1			

C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995

			981 - 19	983		199	0		199	5 IMPORT	CONS	UMPTION GROWTH PERIOD-1990	RATE PA.
	CONS	PROD	IMP	ÊXP	CONS	PROD	IMPORT	CONS	PROD	IMPORT	BASE	PERIOD-1990	1990-95
CRUDE EQUIV. TONNES	9725	•	9725		22496	0	22496	36169	0	36169		11.1	10.0
PERCENT GROWTH IN MAC AVERAGE 81-83 TO 1990 TO 1995	CRO VARI 1990	ABLES	3	GDP 3.4 1.1			ATION 3.1 3.3			PITA 0.3 0.7			

LOW-GROWTH CASE PROJECTIONS 1990 AND 1995

	AVE CONS	RAGE 19 PROD	981 - 19 IMP	83 E X P	CONS	199 PROD	0 IMPORT	CONS	199 PROD	5 IMPORT	CONSUMPTION GROWTH BASE PERIOD - 1990	RATE PA. 1990-95
CRUDE EQUVIV. TONNE	9725		9725		20723	0	20723	29443	0	29443	9.9	7.3
PERCENT GROWTH IN MAG AVERAGE 81-83 TO 1990 TO 1995	CRO VARI 1990	ABLES	- 0	DP . 0 . 1		POPUL	ATION 3.1 3.3		-	CAPITA 3.0 2.1		

.

.

SWAZILAND TABLE 3

Ξ

=

≡

Ξ

=

A) COMPONENTS OF APPARENT STEEL CONSUMPTION BY PRODUCT (TONNES)

RODUCT NAME	SITC		IMPO	RTS			PRODUCT	ION			E XPO	RTS		APP, CON
	0.0	1981	1982	1983	AVER	1981	1982	1983	AVER	1981	1982	1983	AVER	AV 81-83
IRE RODS	6731													
ARS AND RODS	6732	154	155	27	112									11
NGLES SHP.HM	6734	530	924	822	759									75
NGLES SHP. L	6735	2120	3697	3289	3035									303
LATES, HEAVY	6741	70	20	80	57									5
LATES, MED.	6742													
LATES, LIGHT	6743	140	54	160	118									11
INPLATE	6747													
THER COAT.P	6748	2596	2389	3090	2692									269
DOP AND STRP	6750	462	70	105	212									21
AILS	6761	24	27	68	40									4
THER RL TRCK														0.5
IRE	6770	150	374	253	259									25 14
EAMLESS TUBE	6782	100	216	108	141									14
ELDED TUBES	6783													
OTALS		6346	7926	8002	7425	0	0	0	0	0	0	0	(742

B) DEMAND / SUPPLY BALANCES FOR ROLLED PRODUCTS AND FERROUS MATERIALS (TONNES)

2

A	ROLLED PRODUCTS	1981	1982	1983	AVERAGE	
	APPARENT CONSUMPTION OF ROLLED PRODUCTS	6346	7926	8002	7425	
	OF WHICH; NET IMPORTS OF ROLLED PRODUCTS LOCAL PRODUCTION	6346 0	[•] 7926 0	8002 0	7425 0	
в	FERROUS MATERIALS CONSUMPTION (CRUDE EQUIVALENTS) 1)	29367	30729	25821	286 39	
	SUPPLIED FROM; 1 NET IMPORTS	29408	30733	25872	28671	
	OF WHICH: FERROUS MATERIALS FOR SMELTING, INCL SCRAP NET IMPORTS OF BILLETS ETC NET IMPORTS OF ROLLED PRODUCTS FINISHED PRODUCTS (INDIRECT IMPORTS)	41 0 8325 21043	4 0 10351 203 7 8	51 0 10500 15322	32 0 9725 18914	
	2 LOCAL SOURCES (INCL. SCRAP)	-41	-4	-51	-32	
С	ESTIMATED ANNUAL LOCAL SCRAP GENERATION	2500	2500	2500	2500	

1) IMPORT, EXPORT AND PRODUCTION FIGURES ARE CONVERTED TO CRUDE STEEL EQUIVALENTS (INGOTS) BY USING COEFFICIENTS DEVELOPED BY THE ECE. "FERROUS MATERIALS FROM LOCAL SOURCES" ARE CALCULATED BY APPLYING THESE COEFFICIENTS TO LOCALLY PRODUCED ROLLED PRODUCTS, ARRIVING AT BILLET EQUVIVALENTS, AND THEN DEDUCTING NET IMPORTS OF BILLETS AND "FERROUS MATERIALS FOR SMELTING". DIFFERENCES BETWEEN THIS AND THE FIGURE GIVEN FOR SCRAP GENERATION MAY BE DUE TO INACCURACIES IN CONVERSION FACTORS, STOCKS OF SCRAP OR DEFICIENCIES IN THE EXTERNAL TRADE STATISTICS USED =

Ξ Ξ Ē --

-

-

_

____ -

-

-= -

- -

-

MACRO DATA AND PROJECTIONS

•

	ΔΟΤΠΑ	S. EST	IMATES			PROJE	CTIONS 1995		
YEAR	Ĩ 9 81	1982	1983	1990 HIGH	1990 BASE	1990 LOW	1995 HIGH	1995 BASE	1995 LOW
GDP. AND POPULATION POPULATION (MILL) GDP PER CAPITA US\$ (1975) GDP MILL US\$ (1975) GROSS CAP FORM MILL US\$ (1975) BLDG AND CONSTR V.A MILL US\$ (1975) MANUFACTURING V.A. MILL US\$ (1975)	0.6 894.0 514.1 169.3 27.5 122.7	0.6 888.3 529.4 161.2 27.7 129.7	0.6 846.4 519.7 151.7 25.7 130.4	0.8 887.7 680.0 180.0 30.0 170.0	0.8 809.4 620.0 170.0 28.0 160.0	0.8 678.9 520.0 120.0 21.0 130.0	0.9 921.0 830.0 200.0 33.0 190.0	0.9 789.1 720.0 190.0 30.0 185.0	0.9 610.4 550.0 130.0 21.0 140.0
BALANCE OF PAYMENTS									
EXPORTS	•	•	•	•	•	•	•		
OTHER CURRENT ITEMS	•	•	•	•	•	•	•		
ODA, NET INFLOWS	•	•	•	•	•	•	•		
LONG TERM CAPITAL, NET	•	•	•	•	•	•	•		
RESERVES ERRORS AND OMISSIONS	•	•	•	•	•	•	•	:	
IMPORTS, IMPORT CAPACITY	•	•	•	•	•	•	•	•	•
GROWTH RATES PER CENT P.A. POPULATION GDP. CONSTANT US\$ (1975)	<u>1981</u> 3 3	- <u>82 19</u> .0 3 .0 -1		<u> 1981–198</u>	<u>3 TO BA</u> 3.2 2.6	<u>SE 199</u> 0	9 <u>8</u> 4	<u>SE 1990</u> 3.3 3.0	- 1995

• •

TABLE 5; ESTIMATED INDIRECT STEEL	IMPORTS, 1981 -	1983 AND	AVE	RAGES	VALUES	5 IN 1000	US \$. QU/	ANTITIES	IN TONNES.	
COUNTRY SWAZILAND										
YEAR									AVERAGE TONNES	
	19	81	1982 1983			33	AVERAGE	AVERAGE		
	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	TONNES	OF TOTAL	
SITC										
ROAD VEHICLES	69836	20531	67693	19671	65430	15072	67986	18425	100	
TOTAL	69836	20531	67693	19671	66430	15072	67986	18425	100	

÷

-

Ξ

-

-

=

Ξ

•

- 129

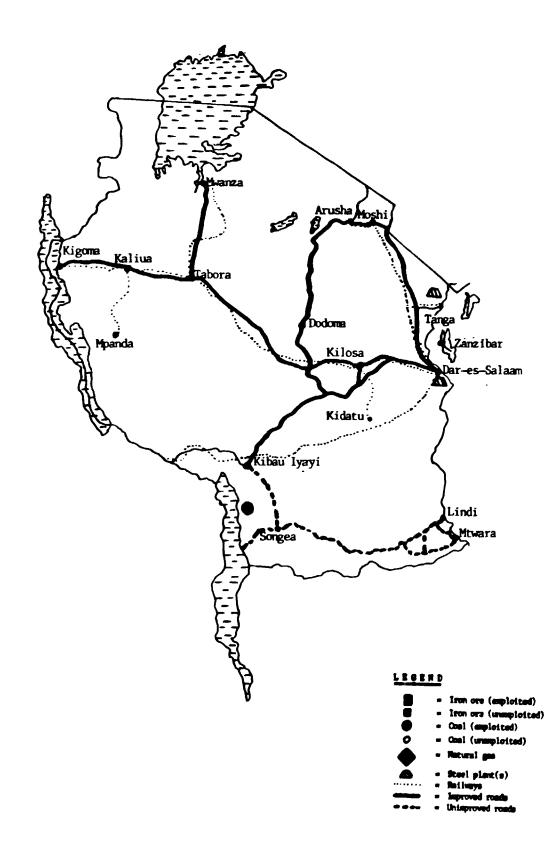
1

، •

<u>TANZANIA</u>

•

<u>Page</u>


-

-

.

Map of the	country	•••	••	••	••	••	••	••	•••	••	••	••	131
Country no	tes	••	••	••	••	••	••		••	••	••	••	132
Table 1: 1	Main pro	jecti	on	••	••	••	••	••	••	••	••	••	133
Table 2: 1 imports	Projecti 												134
Table 3: ; product .	Section	A) Co	mpone 	nts (of app 	arent	t stee 	el co 	nsump 	tion l	• y 	••	135
Table 4: ferrous ma													136
Table 5:	Estimate	ed inc	lirect	ste	el imp	orts	, 1983	1-83	and a	verage	es	••	137

TANZANIA

TANZANIA

Tanzania has experienced a decline in GDP during the 80s. Natural disasters, adverse terms of trade and the liberation war in Uganda have been major factors causing the decline.

1984 and 1985 saw a slight improvement in the overall situation but economic recovery was heavily constrained by the lack of foreign exchange for importation of necessary raw materials, spares and capital equipment for agriculture and industry.

Whether an economic upswing will come about given the absence of natural calamities is crucially dependent on terms of trade development and access to foreign exchange by international concessionary borrowing.

Because of the present favourable development in prices of coffee (Tanzania's main export) and decline in prices of oil which counts heavily in the country's overall import bill, a base case implying considerable growth from 1985-1990 has been assumed. Barring, however a dramatic terms of trade change in Tanzania's favour, achievement of the growth rate of 2.5 per cent from the base period 1981-83 up to 1990 would imply substantial external borrowing. The base case for the years 1990-1995 illustrates a situation where GDP grows slightly over the rate of population growth and industry increases its share of GDP based on substantial investment also in the preceeding period. The high growth scenario illustrates the effect of favourable external circumstances as well as successful domestic policies particularly with regard to agriculutre and manufacturing. The low growth case could easily materialize given a less favourable development in terms of trade and very limited access to foreign borrowing.

Overall steel consumption is projected to grow at roughly the same rate as GDP. The relatively rapid growth in consumption of heavy and medium plate is caused by the relatively rapid increase in investment in both priords.

11 1

TT THE THE T

TANZANIA TABLE 1, MAIN PROJECTION

A) MACRO VARIABLES, DATA AND BASE CASE PROJECTIONS

AVERAGE 1981 - 1983	PROJECTION 1990	PROJECTION 1995	<u>GROWTH RATES PCT. P.A.</u>
GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POP GDP/POP
MILL. LATION CAPITA	MILL. LATION CAPITA	MILL. LATION CAPITA	TO 1990- TO 1990- TO 1990-
US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	19901995 19901995 1990 1995
3032 19.2 158	3700 24.9 149	4400 29.1 151	2.5 3.5 3.3 3.2 -0.7 0.3

B) BASE CASE PROJECTIONS 1990 AND 1995, TONNES

		AV	ERAGE 1	981 - 19	83		199	0		199	5	CONSU	GROWTH MPTION	RATES	PA. VARIABLE	
PRODUCT NAME	SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1990	1990- 1995	1990	1990- 1995	
ANGLES SHP. H ANGLES SHP.,L PLATES, H.+ M PLATES, LIGHT TIN.& COAT.PL HOOP AND STRP	6734 6735	28816 908 3847 3114 6228 7465 2017 1251 6750 3701	13804 212 0 0 0 0 0 0 0 0 0 0	15012 908 3635 3114 6228 7465 2017 1251 6750 3701	0 0 0 0 0	34376 1424 3703 8015 6930 7706 2111 1400 7127 4670	30000 2000 0 0 0 0 0 0 0 0 0 0 0	4376 1424 1703 8015 6930 7706 2111 1400 7127 4670	40019 1843 4248 11413 9147 9209 2220 1622 7883 5413	40000 3000 0 0 0 0 0 0 0 0 0 0 0	19 1843 1248 11413 9147 9209 2220 1622 7883 5413	2.855 -0.55 12.53 0.46 1.47 0.2.9	3.1 5.8 7.3 7.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	3.4 3.9 1.7 1.7 1.7 1.7 1.7	3343633 394443 44344 4344	- 133 -
TOTALS		64098	14016	50082	0	77461	32000	45461	93017	43000	50017	2.4	3.7			
CRUDE EQUIVALE BILLET EQUVIVA		84146 71797	1 7814 15200	66332 56597	0	102158 87165	40672 34703	61486 52462	1 22948 104904	54653 46632	68295 58272	2.5 2.5	3.8 3.8			

C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995

A\ CONS	ERAGE 1	981 - 1983 IMP EXP	CONS	1990 PROD IMPORT	1995 CONS PROD IMPURT	CONSUMPTION GROWTH RATE PA. BASE PERIOD-1990 1990-95
CRUDE EQUIV. TONNES 84146	17814	66332 0	112734	40672 72062	43865 54653 89212	3.7 5.0
PERCENT GROWTH IN MACRO VAF AVERAGE 81-83 TO 1990 1990 TO 1995	RIABLES	GDP 4.0 5.0		POPULATION 3.3 3.2	GDP/CAPITA 0.7 1.8	

C) LOW-GROWTH CASE PROJECTIONS 1990 AND 1995

<u>A</u> CONS	/ERAGE 1 PROD	1981 - 1983 IMP EXP	1990 CONS PROD IMPORT	1995 CONS PROD IMPORT	CONSUMPTION GROWTH RATE PA. BASE PERIOD - 1990 1990-95
CRUDE EQUVIV. TONNE 84146	17814	66332 0	90082 40672 49410	99078 54653 44425	0.9 1.9
PERCENT GROWTH IN MACRO VAL AVERAGE 81-83 TO 1990 1990 TO 1995	RIABLES	GDP 1.0 1.5	POPULATION 3.3 3.2	GDP/CAPJTA -2.2 -1.6	

133

TANZANIA TABLE 2, PROJECTION WITH ACCELLERATED REPLACEMENT OF INDIRECT STEEL IMPORTS A) MACPO VARIABLES: DATA AND BASE CASE PROJECTIONS

=

Ξ

Ξ

-

Ξ

-

Ξ

=

_

_

= -=

Ξ

_

_

٠

ж

AVERAGE 1981 - 1983 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1990 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1995 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	<u>GROWTH RATES PCT. P.A.</u> GDP POP GDP/POP TO 1990- TO 1990- TO 1990- 19901995 19901995 1990 1995
3032 19.2 158	3700 24.9 149	4400 29.1 151	2.5 3.5 3.3 3.2 -0.7 0.3

B) BASE CASE PROJECTIONS 1990 AND 1995, TONNES

				- / -											-
	 AV	ERAGE 1	981 - 19	983		199	0		199	5	CONSU	GROWTH MPTION	A RATES	P.A. VARIABLI	E
PRODUC SITC	CONS	PROD	IMP	EXP	CONS	PROD	NËT IMPORT	CONS	PROD	NET IMPORT	1990	1990- 1995	1990	1990- 1995	-
BARS KODS 6730 ANGLE HP. H 6734 ANGLE SHP., L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743 TIN.& COAT.PL 6749 HOOP AND STRP 6750 RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	28816 908 3847 3114 6228 7465 2017 1251 6750 3701	13804 212 0 0 0 0 0 0 0 0 0	15012 908 3635 3114 6228 7465 2017 1251 6750 3701	0 0 0 0 0	36862 2041 4703 8622 8715 9220 2279 1643 7650 5072	30000 2000 0 0 0 0 0 0 0 0 0	6862 2041 2703 8622 8715 9220 2279 1643 7650 5072	44991 3077 6248 12628 12717 12237 2556 2108 8930 6216	40000 3000 0 0 0 0 0 0 0 0 0	4991 3077 3248 12628 12717 12237 2556 2108 8930 6216	3.1 10.7 2.5 13.6 4.3 2.7 1.5 3.5 1.6 4.0	4.1 8.8 7.9 8.3 1.2 5.1 4.2	3.4 3.9 1.7 3.9 1.7 1.7 3.9 1.7 1.7	4636333633 47444344 44344	- 104 -
TOTALS	64098	14016	50082	0	86807	32000	54807	111709	43000	68709	3.9	5.2			
CRUDE EQUIVALENT BILLET EQUVIVALENT	84146 71797	17814 15200	66332 56597	0 0	114521 97714	40672 34703	73849 63011	147675 126002	54653 46632	93022 79370	3.9 3.9	5.2 5.2			

C) HIGH-GROWTH CASE	PROJECTIONS	1990	AND	1995
---------------------	-------------	------	-----	------

AVERAGE 1	<u>981 - 1983</u>	1990	1995	CONSUMPTION GROWTH RATE PA.
CONS PROD	IMP EXP	CONS PROD IMPORT	CONS PROD IMPORT	BASE PERIOD-1990 1990-95
CRUDE EQUIV. TONNES 84146 17814	66332 0	125099 40672 84427	168594 54653 113941	5.1 6.1
PERCENT GROWTH IN MACRO VARIABLES	GDP	POPULATION	GDP/CAPITA	
AVERAGE 81-83 TO 1990	4.0	3.3	0.7	
1990 TO 1995	5.0	3.2	1.8	

LOW-GROWTH CASE PROJECTIONS 1990 AND 1995

AVERAGE 1	981 - 1983	1990	1995	CONSUMPTION GROWTH RATE PA.
CONS PROD	IMP EXP	CONS PROD IMPORT	CONS PROD IMPORT	BASE PERIOD - 1990 1990-95
CRUDE EQUVIV. TONNE 84146 17814	66332 0	102446 40672 61774	123807 54653 69154	2.5 3.9
PERCENT GROWTH IN MACRO VARIABLES	GDP	POPULATION	GDP/CAPITA	
AVERAGE 81-83 TO 1990	1.0	3.3	-2.2	
1990 TO 1995	1.5	3.2	1.6	

TANZANIA TABLE 3

Ξ

=

A) COMPONENTS OF APPARENT STEEL CONSUMPTION BY PRODUCT (TONNES)

PRODUCT NAME SITC		IMP	ORTS			PRODUC	TION			EXPO	RTS		APP. CONS
	1981	1982	1983	AVER	1981	1982	1983	AVER	1981	1982	1983	AVER	AV 81-83
WIRE RODS 6731	638	5190	3026	2951									2951
BARS AND RODS 6732	11918	14117	10146	12060	16000	13163	12250	13804					25865
ANGLES SHP.HM 6734	760	690	1273	908									908
ANGLES SHP. L 6735	3036	2776	5094	3635	273	189	174	212					3847
PLATES, HEAVY 6741	3901	3631	1809	3114									3114
PLATES, MED. 6742	7000	7000	2010	6000									6000
PLATES, LIGHT 6743	7803	7263	3619	6228									6228
TINPLATE 6747	5663	3555	2607	3942									3942
OTHER COAT.P 6748 HOOP AND STRP 6750	4071	4170	2330	3524									3524
	1587	1776	2689	2017									2017
RAILS 6761 OTHER RL TRCK 6762	220	962	972	718									718
	1136	360	103	533									533
WIRE 6770	14487	3874	1890	6750									6750
SEAMLESS TUBE 6782 WELDED TUBES 6783	4955	66	942	1988									1988 1714
WELDED TUBES 6783	1377	1764	2000	1714									1714
TOTALS	61552	50194	38500	50082	16273	13352	12424	14016	0	0	0	c	64098

B) DEMAND / SUPPLY BALANCES FOR ROLLED PRODUCTS AND FERROUS MATERIALS (TONNES)

13

ټن ۱

A	ROLLED PRODUCTS	1981	1982	1983	AVERAGE
	APPARENT CONSUMPTION OF ROLLED PRODUCTS OF WHICH:	77825	63546	50924	64098
	NET IMPORTS OF ROLLED PRODUCTS LOCA' PRODUCTION	61552 16273	50194 13352	38500 12424	50082 14016
В	FERROUS MATERIALS CONSUMPTION (CRUDE EQUIVALENTS) 1) TOTAL SUPPLIED FROM:	164726	162749	121120	149532
	1 NET IMPORTS OF WHICH:	155615	149244	110790	138550
	FERROUS MATERIALS FOR SMELTING, INCL SCRAP NET IMPORTS OF BILLETS ETC NET IMPORTS OF ROLLED PRODUCTS FINISHED PRODUCTS (INDIRECT IMPORTS)	1262 9040 82284 63030	774 1649 66169 80653	1364 3126 50548 55752	1133 4605 66333 66478
	2 LOCAL SOURCES (INCL. SCRAP)	9111	13505	10331	10982
С	ESTIMATED ANNUAL LOCAL SCRAP GENERATION	10000	10000	10000	10000

1) IMPORT, EXPORT AND PRODUCTION FIGURES ARE CONVERTED TO CRUDE STEE' EQUIVALENTS (INGOTS) BY USING COEFFICIENTS DEVELOPED BY THE ECE. "FERROUS MATERIALS FROM LOCAL SOURCES" ARE CALCULATED BY APPL/ING THESE COEFFICIENTS TO LOCALLY PRODUCED ROLLED PRODUCTS, ARRIVING AT BILLET EQUVIVALENTS, AND THEN DEDUCTING NET IMPORTS OF BILLETS AND "FERROUS MATERIALS FOR SMELTING". DIFFERENCES BETWEEN THIS AND THE FIGURE GIVEN FOR SCRAP GENERATION MAY BE DUE TO INACCURACIES IN CONVERSION FACTORS. STOCKS OF SCRAP OR DEFICIENCIES IN THE EXTERNAL TRADE STATISTI USED TANZANIA TABLE 4

MACRO DATA AND PROJECTIONS

YEAR	A <u>CTUALS, ESTIMATES</u> 1981 1982 1983	PROJECTIO 1990 1990 1990 19 HIGH BASE LOW HI	95 1995 1995
GDP. AND POPULATION POPULATION (MILL) GDP PER CAPITA US\$ (1975) GDP MILL US\$ (1975) GROSS CAP FORM MILL US\$ (1975) BLDG AND CONSTR V.A MILL US\$ (1975) MANUFACTURING V.A. MILL US\$ (1975)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	24.9 24.9 24.9 29 166.6 148.6 132.1 182 4150.0 3700.0 3290.0 5300 835.0 770.0 610.0 1040 185.0 165.0 125.0 240 190.0 170.0 160.0 250	.1 151.2 122.0 .0 4400.0 3550.0 .0 920.0 660.0 .0 195.0 140.0
BALANCE OF PAYMENTS MILLION TSHS EXPORTS OTHER CURRENT ITEMS ODA, NET INFLOWS LONG TERM CAPITAL,NET RESERVES ERRORS AND OMISSIONS IMPORTS, IMPORT CAPACITY	4372.8 3767.0 3772.0 781.0 597.0 548.5 3055.6 2989.0 3253.0 1235.9 281.0 461.0 -325.5 2605.0 1198.0 9120.010239.0 9232.0	10750.0 9750.0 9000.019400 1330.0 1200.0 1200.0 2000 6900.0 6200.0 6200.010000 1500.0 1300.0 1300.0 2200 2000.0 2000.0 2000.0 2700 22450.020450.019700.031900	.0 1800.0 1800.0 .0 8300.0 8300.0 .0 1700.0 1700.0 .0 2700.0 2700.0 .030900.029400.0
GROWTH RATES PER CENT P.A. POPULATION GDP. CONSTANT US\$ (1975)	<u>1981-82 1982-83</u> 3.5 3.6 1.3 -0.4	<u>1981-1983 TO BASE 199</u> 0 3.3 2.9	BASE 1990-1995 3.2 3.5

1 F

• •

.

TABLE 5: ESTIMATED INDIRECT STEEL IMPORTS, 1981 - 1983 AND			AVER	AVERAGES VALUES IN 1				000 US \$. QUANTITIES IN TONNES.			
COUNTRY TAN	ZANIA										
				YEA	AR					AVERAGE TONNES	
		19	81	195	32	19	83	AVERAGE	AVERAGE	IN PCT	
		VALUE	QUANTITY	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	TONNES	OF TOTAL	
SITC											
MET. STRUC	TURES	4990	4478	13450	9730	7589	6005	8676	6738	22	
TANKS, VES	SELS, ETC	1825	1075	1634	450	648	854	1369	793	3	
WIRE PRODU	стѕ	624	425	775	747	1428	1665	942	946	3	
NAILS, NUT	S, BOLTS	2758	2423	1213	765	902	685	1624	1291	4	
HAND TOOLS		5183	1024	6274	2014	4288	854	5248	1297	4	
CUTLERY		239	30	204	20	30	4	158	18	0	
DOM. UTENS	ILS	581	113	556	122	337	101	49 1	112	0	
AGR.MACH.,	TRACTORS	11391	2649	13592	3540	4407	1260	9797	2483	8	
DOM. EL. E	QUIPMENT	1603	365	1044	163	829	166	1159	231	1	
RAIL. LOCO	S ETC.	17773	4180	4158	365	14316	1268	12082	1938	6	
ROAD VEHIC	LES	92312	16726	64086	11725	49335	10510	68578	12987	42	
BICYCLES E	TC.	2788	1407	3398	1298	1547	981	2578	1229	4	
HEATING, S	ANITARY	1308	544	1548	654	1299	469	1385	556	2	
FURNITURE		1424	484	1907	555	1534	566	1622	535	2	
TOTAL		144799	35923	113839	32148	88489	25388	115709	31153	100	

٠

-

.

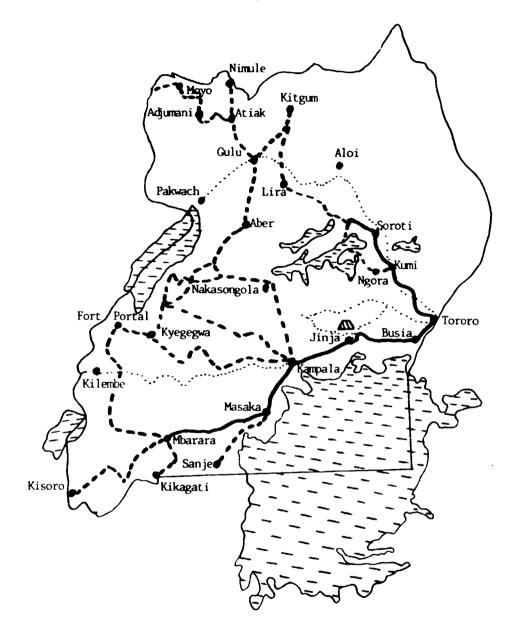
.

•

- 137 -

UGANDA

٠


٠

.

•

Map of the	e country	y	••	••	••	••	••	••	••	••	••	••	139
Country no	otes	••	••	••	••	••	••	••	••	••	••	••	140
Table 1:	Main pro	ojecti	on	••	••	••	••	••	••	••	••	••	141
Table 2: imports	Project:											••	142
Table 3: product												••	143
Table 4: ferrous ma													144
Table 5:	Estimate	ed ind	lirect	t ste	el i m g	ports	, 1981	83	and av	rerage	es	••	145

LEGEND

- Iron ore (exploited) . Iron ore (unapploited) . Cosi (exploited) Coal (unamploited) . Natural gas Steel plant(s) . 6 Suitneys
 Taproved roads
 Unisproved roads
 - ----

UGANDA

Because of the situation in Uganda during the time when country missions were undertaken (June 1985), it was impossible to enter the country. The developments after that time has made any assessment of future development highly uncertain. The new government will need time to set overall policies and the resources at governments disposal depends substantially on the positions taken by multilateral and bilateral donors.

As complete import statistics were not available, the steel import figures used are based on information from countries exporting steel to Uganda. Problems of coverage make it likely that consumption in the base period is underestimated. Production figures are based on an informed guess. The base case macro scenario is based on projections by the World Bank. It may well be that the low case, after disruption caused by war and changing governments is a more realistic case than the base case. Because, however, the agricultural back bone of Uganda's economy has performed reatively well in difficult conditions and without heavy investment, the base case which seemed most likely in early 1985 has been retained. The average GDP growth rate from the base period 1981-83 up to 1990 is pushed up because of the good performance of the economy in 1983/1984. The longer term growth rate is expected to be roughly that of population growth since development still will be hampered by the mismanagement and neglect under the Amin regime.

Overall consumption of steel would most likely increase dramatically (nearly 20 per cent per annum) from the depressed (and probably underestimated) level of 1981-83. Growth rates are fairly uniform from 1990-1995 indicating that a relatively "normal" structure of consumption has been reached by 1990. UGANDA TABLE 1, MAIN PROJECTION

٠

•

A) MACRO VARIABLES, DATA AND BASE CASE PROJECTIONS

	A) MACKU VARIADLES, DAI	IN AND DASE CASE INCOLUTIONS	
AVERAGE 1981 - 1983 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1990 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1995 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	GROWTH RATES PCT, P.A. GDP POP GDP/POP TO 1990- TO 1990- TO 1990- 19901995 19901995 1990 1995
3618 14.1 256	5000 18.7 267	6000 22.4 268	4.1 3.7 3.6 3.7 0.5 0.0

B) BASE CASE PROJECTIONS 1990 AND 1995 , TUNNES

	AV	ERAGE 19	981 - 19	83		199	0		199	5	CONSU	GROWT		PA. VARIABLE
PRODUCT NAME SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1990	1990- 1995	1990	1990- 1995
BARS AND RODS 6730 ANGLES SHP. H 6734 ANGLES SHP. L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743 TIN.& COAT.PL 6749 HOOP AND STRP 6750 RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	10631 133 52 1847 533 94 205 1477 287	10000 0 0 0 0 0 0 0 0 0 0 0	631 133 52 1847 533 94 205 1477 287	000000000000000000000000000000000000000	28552 1685 1265 8687 6940 4273 720 1775 3046 6308	21000 0 0 0 0 0 0 0 0 0 0 0	7552 1685 1265 86940 4273 720 1775 3046 6308	37979 2372 1813 12717 9704 6126 983 2450 4002 8716	27000 0 0 0 0 0 0 0 0 0 0 0	10979 2372 1813 12717 9704 6126 983 2450 4002 8716	13.1 37.4 113 89.6 18.0 29.7 29.0 31.0 9.5 47.1	577769 676767 6656 	0020222022 0020220022 0020220022	4.0 4.09 3.09 3.99 3.99 3.09 3.09 3.09 3.09 3
TOTALS	15263	10000	5263	0	63251	21000	42251	86862	27000	59862	19.4	6.5		
CRUDE EQUIVALENT BILLET EQUVIVALENT	19745 16847	12710 10845	7035 6003	0 0	84095 71753	26691 22774	57404 48980	115645 98673	34317 29281	81328 69392	19.9 19.9	6.6 6.6		

C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995

AVERAGE 1	981 - 1983	1990	1995	CONSUMPTION GROWTH RATE PA.			
CONS PROD	IMP EXP	CONS PROD IMPORT	CONS PROD IMPORT	BASE PERIOD-1990 1990-95			
CRUDE EQUIV. TONNES 19745 12710	7035 0	96495 26691 69804	138765 34317 104448	21.9 7.5			
PERCENT GROWTH IN MACRO VARIABLES	GDP	POPULATION	GDP/CAPITA				
AVERAGE 81-83 TO 1990	5.8	3.6	2.2				
1990 TO 1995	5.1	3.7	1.3				

D) LOW-GROWTH CASE PROJECTIONS 1990 AND 1995

AVERAGE 19	981 - 1983	1990	1995	CONSUMPTION GROWTH RATE PA.			
CONS PROD	IMP EXP	CONS PROD IMPORT	CONS PROD IMPORT	BASE PERIOD - 1990 1990-95			
CRUDE EQUVIV. TONNE 19745 12710	7035 0	65619 26691 38928	80358 343+7 46041	16.2 4,1			
PERCENT GROWTH IN MACRO VARIABLES	GDP	POPULATION	GDP/CAPITA				
AVERAGE 81-83 TO 1990	1.6	3.6	1.9				
1990 TO 1995	1.0	3.7	2.6				

- 141

Т

• •

UGANDA TABLE 2, PROJECTION WITH ACCELLERATED REPLACEMENT OF INDIRECT STEEL IMPORTS A) MACRO VARIABLES: DATA AND BASE CASE PROJECTIONS

AVERAGE 1981 - 1983	PROJECTION 1990	PROJECTION 1995	<u>GROWTH RATES PCT. P.A.</u>
GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POP GDP/POP
MILL. LATION CAPITA	MILL. LATION CAPITA	MILL. LATION CAPITA	TO 1990- TO 1990- TO 1990-
US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	19901995 19901995 1990 1995
3618 14.1 256	5000 18.7 267	6000 22.4 268	4.1 3.7 3.6 3.7 0.5 0.0

B) BASE CASE PROJECTIONS 1990 AND 1995, TONNES

	 AV	ERAGE 19	981 - 19	83		199	0		199	5 5	CONSU	GROWTH MPTION		P.A. VARIABLE	
PRODUCT NAME SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NËT IMPORT	1990	1990- 1995	1990	1990- 1995	
BARS AND RODS 6730 ANGLES SHP. H 6734 ANGLES SHP.,L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743 TIN.& COAT.PL 6749 HOOP AND STRP 6750 RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	10631 133 52 1847 533 94 205 1477 287		631 133 52 1847 533 94 205 1477 287	000000	29675 1964 1716 8962 7746 4957 796 1885 3283 6489	21000 0 0 0 0 0 0 0 0 0 0 0	8675 1964 1716 8962 7746 4957 796 1885 3283 6489	40226 2930 2717 13266 11317 7494 1135 2669 4475 9079	27000 0 0 0 0 0 0 0 0 0 0 0 0	13226 2930 2717 13266 11317 7494 1135 2669 4475 9079	13.7 40.0 121 90.3 19.6 32.1 30.6 32.0 10.5 47.7	6 3 3 6 2 9 6 2 9 6 4 2 4 9 6 6 6 6	65555555555555555555555555555555555555	443439999999 44343999999999999999999999	, ;
TOTALS	15263	10000	5263	0	67474	21000	46474	95307	27000	68307	20.4	7.2			
CRUDE EQUIVALENT BILLET EQUVIVALENT	19745 16847	12710 10845	7035 6003	0 0	89681 76519	26691 22774	62990 53745	126819 108207	34017 29281	92502 78926	20.8 20.8	7.2 7.2			

C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995

	AVERAGE 1 CONS PROD	1981 - 1983 IMP EXP	1990 CONS PROD IMPORT	1995 CONS PROD IMPORT	CONSUMPTION GROWTH RATE PA. BASE PERIOD-1990 1990-95
CRUDE EQUIV. TONNES	19745 12710	7035 0	102080 26691 75389	149938 34317 115621	22.8 8.0
PERCENT GROWTH IN MA AVERAGE 81-83 TO 1990 TO 1995	CRO VARIABLES 1990	GDP 5.8 5.1	POPULATION 3.6 3.7	GDP/CAPITA 2.2 1.3	

LOW-GROWTH CASE PROJECTIONS 1990 AND 1995

.

		LOW	GRUWIN	CHOE FR	000010	NG 1950 AN	0 1000				
A CONS	ERAGE 1	981 <u>- 198</u> IMP	B3 EXP	CONS	199 PROD	IMPORT	CONS	199 PROD	IMPORT	CONSUMPTION GROWIH BASE PERIOD - 1990	RATE PA. 1990-95
CRUDE EQUVIV. TONNE 19745	12710	7035	0	71205	26691	44514	91531	34317	57214	17.4	5.2
PERCENT GPOWTH IN MACRO VAL AVERAGE 81-83 TO 1990 1990 TO 1995	RIABLES	G[1 . 1 .)P .6 .0			ATION 3.6 3.7		-	CAPITA 1.9 2.6		

- 142

2 -

.

•

		A 		ENTS OF A	PPARENI	SIEEL CU	JNSUMPTIO	N BA PRODU		NESJ			
PRODUCT NAME SITC	1001	IMPO			1001	PRODUCT				EXPO		A. (5 D	APP. CONS
	1981	1982	1983	AVER	1981	1982	1983	AVER	1981	1982	1983	AVER	AV 81-83
WIRE RODS 6731	2	12	1	5									5
BARS AND RODS 6732	253	1202	422	626	5000	10000	15000	10000					10626
ANGLES SHP.HM 6734	116	209	75	133									133
ANGLES SHPL 6735		6	2	3									3
PLATES, HEAVY 6741	18	73	14	35									35
PLATES, MED. 6742	3	41	6	17									17
PLATES, LIGHT 6743	3655	1812	75	1847									1847
TINPLATE 6747		486	19	168									168
OTHER COAT.P 6748	426	540	129	365									365
HOOP AND STRP 6750	55	4	224	94									94
RAILS 6761		250		83									83
OTHER RL TRCK 6762		348	17	122									122
WIRE 6770	218	3167	1047	1477									1477
SEAMLESS TUBE 6782	18	186	12	72									72
WELDED TUBES 6783	158	193	295	215									215
TOTALS	4922	8529	2338	5263	5000	10000	15000	10000	0	0	D	c	15263

B) DEMAND / SUPPLY BALANCES FOR ROLLED PRODUCTS AND FERROUS MATERIALS (TONNES)

Α	ROLLED PRODUCTS	1981	1982	1983	AVERAGE
	APPARENT CONSUMPTION OF ROLLED PRODUCTS	9922	18529	17338	15263
	OF WHICH; NET IMPORTS OF ROLLED PRODUCTS LOCAL PRODUCTION	4922 5000	8529 10000	2338 15000	5263 10000
в	FEPROUS MATERIALS CONSUMPTION (CRUDE EQUIVALENTS) 1) TOTAL SUPPLIED FROM:	29352	35154	40072	34859
	1 NET IMPORTS	23395	23295	22178	22956
	OF WHICH; FERROUS MATERIALS FOR SMELTING, INCL SCRAP NET IMPORTS OF BILLETS ETC NET IMPORTS OF ROLLED PRODUCTS FINISHED PRODUCTS (INDIRECT IMPORTS)	8 0 6661 16726	71 0 11352 11873	0 0 3096 19081	26 0 7036 15893
	2 LOCAL SOURCES (INCL. SCRAP)	5957	11858	17894	11903
С	ESTIMATED ANNUAL LOCAL SCRAP GENERATION	3500	3500	3500	3500

1) IMPORT, EXPORT AND PRODUCTION FIGURES ARE CONVERTED TO CRUDE STEEL EQUIVALENTS (INGOTS) BY USING COEFFICIENTS DEVELOPED BY THE ECE. "FERROUS MATERIALS FROM LOCAL SOURCES" ARE CALCULATED BY APPLYING THESE COEFFICIENTS TO LOCALLY PRODUCED ROLLED PRODUCTS, ARRIVING AT BILLET EQUVIVALENTS, AND THEN DEDUCTING NET IMPORTS OF BILLETS AND "FERROUS MATERIALS FOR SMELTING". DIFFERENCES BETWEEN THIS AND THE FIGURE GIVEN FOR SCRAP GENERATION MAY BE DUE TO INACCURACIES IN CONVERSION FACTORS, STOCKS OF SCRAP OR DEFICIENCIES IN THE EXTERNAL TRADE STATISTICS USED

UGANDA TABLE 3

.

A) COMPONENTS OF APPARENT STEEL CONSUMPTION BY PRODUCT (TONNES)

.

.

- 143

• •

MACRO DATA AND PROJECTIONS

٠

د

YEAR	ACTUALS <u>ESTIMATES</u> 1981 1982 1983	PROJECTIONS 1990 1990 1995 1995 1995 HIGH BASE LOW HIGH BASE LOW
GDP. AND POPULATION POPULATION (MILL) GDP PER CAPITA US\$ (1975) GDP MILL US\$ (1975) GROSS CAP FORM MILL US\$ (1975) BLDG AND CONSTR V.A MILL US\$ (1975) MANUFACTURING V.A. MILL US\$ (1975)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
BALANCE OF PAYMENTS MILLION US\$ EXPORTS OTHER CURRENT ITEMS ODA, NET INFLOWS LONG TERM CAPITAL,NET RESERVES ERRORS AND OMISSIONS IMPORTS, IMPORT CAPACITY	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
GROWTH RATES PER CENT P.A. POPULATION GDP. CONSTANT US\$ (1975)	<u>1981-82 1982-83</u> 3.5 3.5 8.2 4.9	<u>1981–1983 TO BASE 1990 BASE 1990–1995</u> 3.6 3.6 3.9 3.7

·

COUNTRY UGANDA			YE	AR					AVERA TONN
	19	81	19	1982		1983			
	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	QUANTITY	AVE RAGE VALUE	AVE RAGE TONNES	IN P OF TO
SITC									
MET. STRUCTURES	3262	1536	3426	1281	5543	2352	4077	1723	
TANKS, VESSELS, ETC	453	92	267	166	513	658	411	305	
WIRE PRODUCTS	511	228	716	1102	287	292	505	541	
NAILS, NUTS, BOLTS	226	159	356	56	94	127	225	114	
HAND TOOLS	4112	1355	3570	1347	264 5	503	3442	1068	
CUTLERY	117	16	242	21	138	29	166	22	
DOM. UTENSILS	156	17	640	149	184	39	327	68	
AGR.MACH., TRACTORS	3828	643	5438	1650	6749	1758	5338	1350	
DOM. EL. EQUIPMENT	170	13	405	5 9	635	101	403	58	
RAIL. LOCOS ETC.	24300	1583	10141	782	726	86	11722	817	
ROAD VEHICLES	40801	9992	18888	4127	26403	6602	28697	6907	
BICYCLES ETC.	885	375	3001	669	2374	1174	2087	739	
HEATING, SANITARY	363	152	325	17	239	54	309	74	
FURNITURE	1235	334	1864	333	470	199	1190	289	
TOTAL	80419	16495	49279	11759	47000	13974	58899	14076	

.

• •

• •

ZAMBIA


.

.

٠

.

Map of the	e country	1	••	••	••	••	••	••	••	• •	••	••	147
Country no	otes	••	••	••	••	• •	••	••		••	••	••	148
Ta ble 1:	Main pro	ojecti	ion	••			••	••	••	••	••	••	150
Table 2: imports	Projecti	ion wi	ith a	ccele 	rated	abson	rption	n of 	indire 	ect si	teel 		151
Table 3: product	Section	A) Co 	mpon 	ents (of app 	parent	t stee 	el co 	nsumpi 	ion 1	b y 	••	152
Table 4: ferrous m	Section aterials	B) D(emand	/supp	ly ba] 	lance: 	s for 	roll	ed pro	oduct:	s and	••	153
Table 5:	Estimat	ed ind	direc	t ste	el imp	ports	, 198	1-83	and a	verage	es	••	154

LEGEND

Iron ore (aploited) lron ore (unexploited) Qual (amploited) Cost (unexploited) Netural gas Steel plant(s) Pailways Improved roads Unimproved roads . .

.

ZAMBIA

Zambia's economy is heavily based on copper mining. From the country's independence up to the mid-70s the economy developed rapidly, in particular the manufacturing sector. Agriculture receoved limited attention. The present situation with economic decline, severe balance-of-payments restriction and industry working at only small functions of all capacity is caused by the weakness in the copper market over the last ten years. The effect of the copper price decline is exacerbated by structural deficiencies in the economy, particularly the poorly developed agricultural sector and an import dependent manufacturing sector.

A considerable time will have to be spent on the economic restructuring process now underway. Balance-of-payments is likely to be extremely tight and substantial foreign borrowing will have to take place to finance necessary capital investment.

The economic projections assume that the years up to 1990 will see considerable investment particularly in agriculture which will, however, take some time to respond in terms of increased production. After 1990 the effect of earlier investment will materialize in production increases resulting in a growth rate near the projected population growth. For the period up to 1990 considerable decline in GDP per capita would be expected.

The high growth case illustrates a quick response by agriculture, resulting in a higher GDP growth particularly in the period up to 1990. The low growth case illustrates a severe shortage of foreign exchange limiting investment during the first period.

Projecting steel demand under the present circumstances in Zambia is difficult. A major uncertainty is related to the fate of the mining industry which is a major source of demand for steel. If severe contractions in the mining sector happens, the projections will have to be scaled down considerably. Although in the period up to 1990 projections show a decline in consumptions of some steel products related to mining investment, the overall consumption increases at a rate above that of GDP. This is because of a particularly strong increase in light plates, tin plates, other coated plates and wire. In both periods the structure of consumption changes as a response to the assumed changes in the country's economic structure. TABLE 1, MAIN PROJECTION

	A) MACRO VAR'	S, DATA AND BASE CASE PROJE	CTIONS	
AVERAGE 1981 - 1983 GDP POPU- GDP MILL. LATION CAPI US\$ -75 MILL. US\$	TA MILL. LATION CAP	ITA MILL. LATION	CAPITA TO 1990	RATES PCT. P.A. POP GDP/POP - TO 1990- TO 1990- 19901995 1990 1995
2301 6.2 37	1 2500 8.2 3	05 2970 9.8	303 1.0 3.5	3.6 3.6 -2.4 -0.1

•

- 150 -

B) BASE CASE PROJECTIONS 1990 AND 1995 , TONNES

******************	AVE	RAGE 1	981 - 19	83		199	0		199	95	CONSU	GROWT MPTION		PA. VARIABLE	
PRODUCT NAME SI J	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1990	1990- 1995	TO 1990	1990- 1995	
BARS AND RODS 6730 ANGLES SHF. H 6734 ANGLES SHP.,L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743 TIN.& COAT.PL 6749 HOOP AND STRP 6750 RALLS+ MATER. 6760 WIRE 6770 TUBES 6780	15439 5709 8563 8255 14841 12412 890 3470 206 2724	0 0 0 0 0 0 0 0	15439 5709 8563 8255 14841 12412 890 3470 206 2724	0 0 0 0 0 0 0	17697 2767 11456 7254 25322 21216 764 1994 5485 2950	17000 0 11500 0 0 0 0 0 0 0 0	697 2767 -44 7254 25322 21216 764 1994 5485 2950	21734 2115 13694 7517 31941 26574 811 1782 7970 3500	22000 0 13500 0 0 0 0 0 0 0	-266 2115 194 7517 31941 26574 811 1782 7970 3500	1.7 -8.7 3.7 -1.6 6.9 -1.9 -6.7 50.7 1.0	45.07 45.07 41.22 41.22 86 2.85	3.59 3.89 3.88 1.89 1.89 1.89 1.89 1.89 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80	3.0 3.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	*
TOTALS	72509	0	72509	0	96904	28500	68404	117639	35500	82139	3.7	4.0			1
CRUDE EQUIVALENT BILLET EQUVIVALENT	96402 82254	0 0	96402 82254	Ŭ O	129218 110254	36223 30907	92994 79346	156883 133859	45120 38499	111763 95360	3.7 3.7	4.0 4.0			

C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995

	AVERAGE CONS PROD	<u>1981 - 1983</u> IMP EXP	1990 CONS PROD IMPORT	1995 CONS PROD IMPORT	CONSUMPTION GROWTH RATE PA. BASE PERIOD-1990 1990-95
CRUDE EQUIV, TONNES	96402 0		136813 36223 10059 :	188145 45120 143025	4,5 6.6
PERCENT GROWTH IN MAC AVERAGE 81-83 TO 1 1990 TO 1995	RO VARIABLES		POPULATION 3.6 3.6	GDP/CAPITA -1.3 0.3	

D) LOW-GROWTH CASE PROJECTIONS 1990 AND 1995

.

	RAGE 1 PROD	981 - 19 IMP	83 E XP	CONS	199 PROD	0 IMPORT		199 PROD	5 IMPORT	CONSUMPTION GROWIH BASE PERIOD - 1990	RATE PA. 1990-95
CRUDE EQUVIV. TONNE	0	96402	0	106064	36223	69840	114315		69195	1.2	1.5
PERCENT GROWTH IN MA AVERAGE 81-83 TO 1990 TO 1995	ABLES	- C	DP 1.4 1.0			ATION 3.6 3.6		-	CAPITA 3.9 3.5		

4

۰

ZAMBIA

TABLE 2, PROJECTION WITH ACCELLERATED REPLACEMENT OF INDIRECT STEEL IMPORTS A) MACRO VARIABLES: DATA AND BASE CASE PROJECTIONS

٠

ZAMBIA

٠

AVERAGE 1981 - 1983 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1990 GDF POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	PROJECTION 1995 GDP POPU- GDP PER MILL. LATION CAPITA US\$ -75 MILL. US\$ -75	GROWTH RATES PCT. P.A. GDP POP GDP/POP TO 1990- TO 1990- TO 1990- 19901995 19901995 1990 1995
2301 5.2 371	2500 8.2 305	2970 9.8 303	1.0 3.5 3.6 3.6 -2.4 -0.1

.

.

E) BASE CASE PROJECTIONS 1990 AND 1995, TONNES

	AVI	AVERAGE 1981 - 1983 1990				199	95	GROWTH RATES P.A. CONSUMPTION EXPL.VARIAE							
PRODUCT NAME SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	1990	1990- 1995	1990	1990- 1995	
BARS AND RODS 6730 ANGLES SHP. H 6734 ANGLES SHP.,L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743 TIN.& COAT.PL 6749 HOOP AND STRP 6750 RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	15439 5709 8563 8255 14841 12412 3470 3470 2724		15439 5709 8563 8255 14841 12412 890 3470 206 2724	00.000 .000 .000	20201 3388 12463 7866 27120 22741 933 2239 6012 3355	17000 0 11500 0 0 0 0 0 0 0 0 0	3201 3388 963 7866 27120 22741 933 2239 6012 3355	26741 3357 15708 8741 35537 29623 1150 2272 9025 4309	22000 0 13500 0 0 0 0 0 0 0 0 0	4741 3357 2208 8741 35537 29623 1150 2272 9025 4309	4386896356 - 407705356 - 522	50.71643351 - 42554085	331.598 31.098 1.0988 1.0988 1.0988 1.0988 1.0988 1.0988 1.0988 1.0988 1.0988 1.098	3.0 3.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	- 1.01 -
TOTALS	72509	0	72509	0	106316	28500	77816	136462	35500	100962	4.9	5.1			•
CRUDE EQUIVALENT BILLET EQUVIVALENT	96402 82254	0 0	96402 82254	0 0	141671 120879	36223 30907	105448 89972	181788 155109	45120 38499	136668 116610	4.9 4.9	5.1 5.1			

C \	UTCU_	CDOWTH	(ACE	PROJECTI	ONIC	1000	AND	1005
U)	niun-	GRUWIN	UASE	PROJECTI	UNS-	1990	AND	1333

	AVERAGE CONS PROD	1981 - 1983 IMP EXP	CONS	1990 PROD IMPORT	CÖNS	1995 PROD IMPORT	CONSUMPTION GROWTH BASE PERIOD-1990	RATE PA. 1990-95
CRUDE EQUIV. TONNES	96402 0	96402 0	149265	36223 113042	213049	45120 167928	5.6	7.4
PERCENT GROWTH IN MA AVERAGE 81-83 TO 1990 TO 1995	CRO VARIABLES 1990	GDP 2.2 4.0		POPULATION 3.6 3.6		GDP/CAPITA -1.3 0.3		

LOW-GROWTH CASE PROJECTIONS 1990 AND 1995												
	AVE CONS	RAGE 1 PROD	981 - 11 IMP	983 EXP	CONS	199 PROD	IMPORT	CONS	199 PROD	IMPORT	CONSUMPTION GI BASE PERIOD -	ROWTH RATE PA. 1990 1990-95
CRUDE EQUVIV. TONNE	96402	0	96402	0	118516	36223	82292	139219	45120	94098	2.6	3.3
PERCENT GROWTH IN MA AVERAGE 81-83 TO 1990 TO 1995		ABLES	~	GDP 0.4 0.0			ATION 3.6 3.6		+	CAPITA 3.9 3.5		

151 -

ZAMB	IA	TABLE 3

A) COMPONENTS OF APPARENT STEEL CONSUMPTION BY PRODUCT (TONNES)

PRODUCT NAME SITC		TMP	ORTS			PRODUCT	ION			EXPO			APP. CONS
PRODUCT MAINE SITC	1981	1982	1983	AVER	1981	1982	1983	AVER	1981	1982	1983	AVER	AV 81-83
WIRE RODS 6731 BARS AND RODS 6732 ANGLES SHP.HM 6734 ANGLES SHP.LL 6735 PLATES, HEAVY 6741 PLATES, MED. 6742 PLATES, LIGHT 6743 TINPLATE 6747 OTHER COAT.P 6748 HOOP AND STRP 6750 RAILS 6761 OTHER RL TRCK 6762 WIRE 6770 SEAMLESS TUBE 6782 WELDED TUBES 6783	711 12187 6962 10443 9743 16973 15261 1791 1113 946 473 155 21 1461	619 18500 5614 8422 7806 13260 7316 2859 452 2974 2183 248 2183 248 15 3805	585 13715 4550 6825 7215 14290 7280 2730 2730 2105 2015 1820 215 1820 215 1820 215	638 14801 5709 8563 8255 14841 9952 2460 890 1978 1492 206 15 2709									638 14801 5709 8563 8255 0 14841 9952 2460 890 19 ⁻ 14 206 15 2709
TOTALS	78240	74073	65215	72509	0	0	0	0	0	0	0	C) 72509 I

B) DEMAND / SUPPLY BALANCES FOR ROLLED PRODUCTS AND FERROUS MATERIALS (TONNES)

ίσ.

N I

 		1981	1982	1983	AVERAGE	
Α	ROLLED PRODUCTS	1901	1902			
	APPARENT CONSUMPTION OF ROLLED PRODUCTS	78240	74073	65215	72509	
	OF WHICH; NET IMPORTS OF ROLLED PRODUCTS LOCAL PRODUCTION	78240 0	74073 0	65215 0	72509 0	
в	FERROUS MATERIALS CONSUMPTION (CRUDE EQUIVALENTS) 1)	143723	135907	112267	130632	
	SUPPLIED FROM; 1 NET IMPORTS	144258	137128	112320	131235	
	OF WHICH; FERROUS MATERIALS FOR SMELTING, INCL SCRAP NET IMPORTS OF BILLETS ETC NET IMPORTS OF ROLLED PRODUCTS FINISHED PRODUCTS (INDIRECT IMPORTS)	535 0 104185 39538	1221 0 98274 37632	53 0 86747 25520	603 0 96402 34230	
	2 LOCAL SOURCES (INCL. SCRAP)	-535	-1221	-53	-603	
С	ESTIMATED ANNUAL LOCAL SCRAP GENERATION	10000	10000	10000	10000	

1) IMPORT, EXPORT AND PRODUCTION FIGURES ARE CONVERTED TO CRUDE STEEL EQUIVALENTS (INGOTS) BY USING COEFFICIENTS DEVELOPED BY THE ECE. "FERROUS MATERIALS FROM LOCAL SOURCES" ARE CALCULATED BY APPLYING THESE COEFFICIENTS TO LOCALLY PRODUCED ROLLED PRODUCTS. ARRIVING AT BILLET EQUVIVALENTS, AND THEN DEDUCTING NET IMPORTS OF BILLETS AND "FERROUS MATERIALS FOR SMELTING". DIFFERENCES BETWEEN THIS AND THE FIGURE GIVEN FOR SCRAP GENERATION MAY BE DUE TO INACCURACIES IN CONVERSION FACTORS, STOCKS OF SCRAP OR DEFICIENCIES IN THE EXTERNAL TRADE STATISTICS USED

MACRO DATA AND PROJECTIONS

•

•

	ACTUALS, ESTIMATES	PROJECTIONS
YEAR	1981 1982 1983	1990 1990 1990 1995 1995 1995
		HIGH BASE LOW HIGH BASE LOW
GDP. AND POPULATION		
POPULATION (MILL)	6.0 6.2 6.4	8.2 8.2 8.2 9.8 9.8 9.8
GDP PER CAPITA US\$ (1975)	394.0 369.9 351.2	332.9 304.8 279.3 338.8 281.6 226.5
GDP MILL US\$ (1975)	2359.9 2293.8 2247.9	2730.0 2500.0 2220.0 3320.0 2970.0 2220.0
GROSS CAP FORM MILL US\$ (1975)	340.7 260.7 197.6	390.0 360.0 170.0 450.0 420.0 180.0
BLDG AND CONSTR V.A MILL US\$ (1975)	138.1 147.1 148.1	210.0 190.0 160.0 280.0 220.0 170.0
MANUFACTURING V.A. MILL US\$ (1975)	399.4 385.4 356.9	470.0 440.0 400.0 630.0 510.0 420.0
DALANCE OF DAVAENTS MILL TON 74		
BALANCE OF PAYMENTS MILLION ZK	866.3 883.0 1150.4	2250.0 2040.0 1870.0 3460.0 2950.0 2690.0
EXPORTS	-612.3 -550.9 -602.2	-1150.0-1150.0-1150.0-1800.0-1800.0-1800.0
OTHER CURRENT ITEMS ODA. NET INFLOWS	276.6 183.2 169.8	310.0 280.0 280.0 430.0 380.0 380.0
LONG TERM CAPITAL, NET	89.5 128.3 40.0	70.0 60.0 60.0 100.0 80.0 80.0
RESERVES ERRORS AND OMISSIONS	306.4 288.4 137.2	170.0 140.0 140.0 250.0 200.0 200.0
IMPORTS, IMPORT CAPACITY	926.4 932.0 895.2	1650.0 1370.0 1200.0 2440.0 1810.0 1550.0
INFORTS, INFORT CATACITY	320.4 332.0 033.2	
GROWTH RATES PER CENT P.A.	<u>1981-82 1982-83</u>	1981-1983 TO BASE 1990 BASE 1990-1995
POPULATION	3.3 3.2	3,6 3.6
GDP. CONSTANT US\$ (1975)	-2.8 -2.0	1.5 2.0

TABLE 5; ESTIMATED INDIRECT STEEL IN COUNTRY ZAMBIA	MPORTS, 1981 -	1983 AND	AVE	RAGES	VALUE	5 IN 1000	US \$. QU/	ANTITIES	IN TONNES.	
COULTRI FAMOLA			YE	AR					AVERAGE	
	19	81	19	82	19	83			TONNES	
	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	QUANTITY	AVERAGE VALUE	AVERAGE TONNES	IN PCT OF TOTAL	
SITC										
MET. STRUCTURES	13037	14136	5594	3586	2120	1365	6917	6362	20	
TANKS, VESSELS, ETC	1636	747	896	393	628	274	1053	471	2	
WIRE PRODUCTS	3458	1881	814	454	993	1046	1755	1127	4	
NAILS, NUTS, BOLTS	627	284	541	275	286	103	485	221	1	
HAND TOOLS	5280	723	4520	974	2678	362	4159	686	2	
CUTLERY	430	33	497	22	5 8	0	328	18	0	
DOM. UTENSILS	633	37	400	51	78	12	370	33	0	
AGR.MACH.,TRACTORS	7631	1562	18850	4848	9524	2014	12002	2808	9	
DOM. EL. EQUIPMENT	899	148	1607	345	561	79	1022	191	1	
RAIL. LOCOS ETC.	12270	1328	2475	202	10665	2700	8470	1410	4	
ROAD VEHICLES	78412	14057	108356	23201	63306	13695	83358	16984	54	
BICYCLES ETC.	1694	567	2741	785	1579	557	2005	636	2	
HEATING, SANITARY	1584	639	1212	313	331	91	1042	348	1	
FURNITURE	580	85	685	91	254	54	506	77	0	
TOTAL	128171	36227	149188	35540	93061	22352	123473	31373	100	

۲

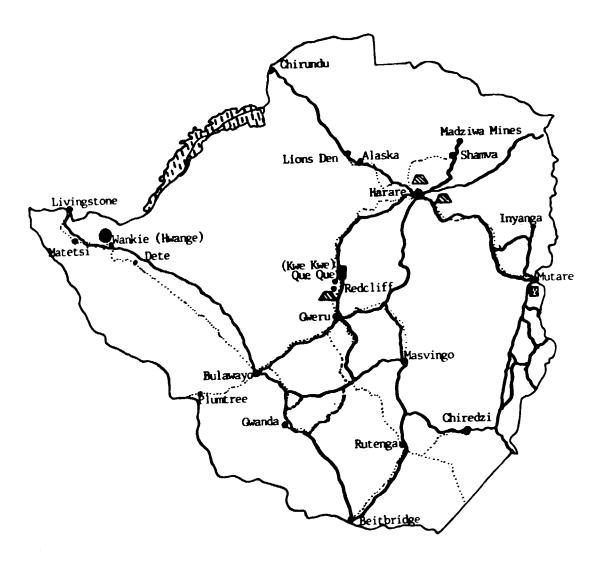
٠

Χ.

.

ZIMBABWE

•


\$

4

-

Map of the	e country	•••	••	••	••	••	••	••	••	•••	••	••	156
Country no	otes	••	••	••	••	••	••	••	••	••	••	••	157
Table 1:	Main pro	ojecti	on	••	•••	••	••	•••	••	••	••	••	15 8
Table 2: imports	Projecti											••	159
Table 3: product													160
Table 4: ferrous ma					-				_				161
Table 5:	Estimate	ed ind	lirec	t ste	el i m g	ports	, 1981	L83	and av	/erage	es	••	162

ZIMBABWE

LEGEND

	 Iron ore (exploited)
ē	= iron ore (unamploited)
Ő.	- Chal (amploited)
ō	- Cosl (unemploited)
	= Matural gas
Å	= Steel plant(s)
	- Baihays
	- Isproved roads
-	والمري المروم والم

.

.

ZIMBABWE

Zimababwe accounts for 30 per cent of steel consumption in PTA and more than half of that in SADCC. Projections for Zimbabwe will therefore have a major effect on projections for the two sub-regions. Unfortunately, the Zimbabwean National Development Plan, covering the years 1986-1991 was not available as an input for the economic projections.

The Zimbabwean economy performed well with a GDP growth of around 5 per cent in 1985. It is likely that the outturn for 1986 will be as good. As a substantial factor behind the good performance were good weather conditions, growth is hardly likely to continue at the same rate. For the period from 1986-1990 a growth rate of 4 per cent per annum was assumed. The 5 per cent projected from the period 1990-1995 is based on the assumption of good export performance and access to external financing in the earlier period, giving room for substantial productive investment. A particularly rapid development of the manufactuirng sector could be expected in this period.

Downside risks relate to the external balance, prices of major export products and scope for manufactured exports particularly to other countries in the subregion. Major uncertainties are, however, represented by the developments in the South African economy and society. Like the other countries bordening Souther Africa, Zimababwe is economically linked to its neighbour albeit with a much stronger independent basis than any of the others.

The low growth scenario would illustrate a situation with considerable turmoil in South Africa as well as less favourable external balance and weather conditions. The high growth case illustrates a very fortunate situation with regard to neighbour relations and trade as well as external balance and successful investment policies. The projections increased in overall steel consumption in Zimbabwe does not deviate much from the rates of GDP growth. This could be seen as the result of two opposite tendencies, Firstly, as illustrated in the case of Kenya, a tendency for steel intensity to decline in a relatively developed economy producing an increasing share of high value added products. Secondly the effect of growth tending to conteract the declining steel intensity particularly by building a demand basis for durable consumber goods.

TABLE 1, MAIN PROJECTION ZIMBABWE

A) MACRO VARIABLES, DATA AND BASE CASE PROJECTIONS

AVERAGE 1981 - 1983	PROJECTION 1990	PROJECTION 1995	<u>GROWTH RATES PCT. P.A.</u>
GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POP GDP/POP
MILL. LATION CAPITA	MILL. LATION CAPITA	MILL. LATION CAPITA	TO 1990- TO 1990- TO 1990-
US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	19901995 19901995 1990 1995
4207 8.0 526	5600 10.7 523	7150 12.8 559	3.6 5.0 3.7 3.6 -0.1 1.3

B) BASE CASE PROJECTIONS 1990 AND 1995 , TONNES

	AV	ERAGE 1	981 - 1	983		1990			1995		GROWTH CONSUMPTION		EXPL.VARIABLE	
PRODUCT NAME SITC	CONS	PROD	IMP	EXP	CONS	PROD	NET IMPORT	CONS	PROD	NET IMPORT	TO 1990	1990- 1995	1990	1990- 1995
BARS AND RODS 6730 ANGLES SHP. H 6734 ANGLES SHP.,L 6735 PLATES, H.+ M 6740 PLATES, LIGHT 6743 TIN.& COAT.PL 6749 HOOP AND STRP 6750 RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	64024 64756 33397 23809 30932 21871 9188 12048 26515 3844	148872 68667 35333 0 0 0 3882 28667 3465	5489 6247 23809 30932 21871 9188 9975 319 1044	90337 10158 1937 0 0 0 1809 2471 665	74941 65760 46217 32896 62524 47861 9530 12403 34749 5100	170000 75000 55000 0 0 7000 36500 8400	-95059 -9240 -8783 32896 62524 47861 9530 5403 -1751 -3300	87234 66644 66177 39529 110435 87564 9984 12933 47052 6500	200000- 80000 0 0 80000 0 8000 50000 12000	-112766 -13356 -13823 39529 110435 87564 9984 4933 -2948 -5500	2.0 0.2 4.1 9.2 10.3 0.5 0.4 3.6	3.1 0.3 7.4 3.7 12.8 0.8 0.8 5.0	4.1 4.5 4.0 4.5 4.0 4.0 4.0 4.0 4.0 4.0	5.3 4.2 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
TOTALS	290383	288886	108874	107376	391980	351900	40080	534051	430000	104051	3.8	6.4		
CRUDE EQUIVALENT BILLET EQUVIVALENT		369352 315146		136780 116706	515456 439808		64564 55089	705592 602039	551550 470605	154042 131434	3.9 3.9	6.5 6.5		

C) HIGH-GROWTH	CASE	PROJECTIONS	1990	AND	1995	
----------------	------	-------------	------	-----	------	--

AVERAGE 1981 CONS PROD	- 1983 IMP EXP	1990 CONS PROD IMPORT	CONS PROD IMPORT	CONSUMPTION GROWTH BASE PERIOD-1990	RATE PA. 1990-95
CRUDE EQUIV. TONNES 379264 369352 146	690 136780	569136 450891 118244	837970 551550 286420	5.2	8.0
PERCENT GROWTH IN MACRO VARIABLES AVERAGE 81-83 TO 1990 1990 TO 1995	GDP 4.5 6.5	POPULATION 3.7 3.6	GDP/CAPITA 0.8 2.7		

D) LOW-GROWTH CASE PROJECTIONS 1990 AND 1995								
AVERAGE 19 CONS PROD	9 <u>81 - 1983</u> IMP EXP	CONS	199 PROD	0 IMPORT	CONS PROD IMPORT	<u>CONSUMPTION GROWTH</u> BASE PERIOD - 1990	<u>RATE PA.</u> 1990-95	
CRUDE EQUVIV. TONNE 379264 369352		443999	450891	-6893	520205 551550 -31345	2.0	3.2	
PERCENT GROWTH IN MACRO VARIABLES AVERAGE 81-83 TO 1990 1990 TO 1995	GDP 2.4 3.0			ATION 3.7 3.6	GDP/CAPITA - 1.2 - 0.7			

1 158

ZIMBABWE TABLE 2, PROJECTION WITH ACCELLERATED REPLACEMENT OF INDIRECT STEEL IMPORTS A) MACRO VARIABLES: DATA AND BASE CASE PROJECTIONS

-

AVERAGE 1981 - 1983	PROJECTION 1990	PROJECTION 1995	GROWTH RATES PCT. P.A.
GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POPU- GDP PER	GDP POP GDP/POP
MILL. LATION CAPITA	MILL. LATION CAPITA	MILL. LATION CAPITA	TO 1990- TO 1990- TO 1990-
US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	US\$ -75 MILL. US\$ -75	19901995 19901995 1990 1995
4207 8.0 526	5600 10.7 523	7150 12.8 559	3.6 5.0 3.7 3.6 -0.1 1.3

B) BASE CASE PROJECTIONS 1990 AND 1995, TONNES

	AVERAGE	1981 - 1983	1990	1995	GROWIH RATES P.A. CONSUMPTION EXPL.VARIABLE
PRODUCT NAME SITC	CONS PROD	IMP EXP	NĒT CONS PROD IMPORT	NËŤ Cons prod import	TO 1990- TO 1990- 1990 1995 1990 1995
BARS AND RODS 6730 ANGLES SHP. H 6734 ANGLES SHP., L 6735 PLATES, H.+ M 674U PLATES, LIGHT 6743 TIN.& COAT.PL 6749 HCOP AND STRP 6750 RAILS+ MATER. 6760 WIRE 6770 TUBES 6780	64024 148872 64756 68667 33397 35333 23809 0 30932 0 21871 0 9188 0 12048 3882 26515 28667 3844 3465	i937 23809 0 30932 0 21871 0 9188 0 9975 1809 319 2471	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
TCTALS	290383 288886	108874 107376 4	401887 351900 49987	553865 430000 123865	4.1 6.6
CRUDE EQUIVALENT BILLET EQUVIVALENT	379264 369352 323603 315146		528561 450891 77670 450990 384719 66271	731805 551550 180255 624405 470605 153801	4.2 6.7 4.2 6.7

C) HIGH-GROWTH CASE PROJECTIONS 1990 AND 1995

AVERAGE 19	81 - 1983	1990	1995	CONSUMPTION GROWTH RATE PA.
CONS PROD	IMP EXP	CONS PROD IMPORT	CONS PROD IMPORT	BASE PERIOD 1990 1990-95
CRUDE EQUIV. TONNES 379264 369352 1	46690 136780	582242 450891 131351	864186 551550 312636	5.5 8.2
PERCENT GROWTH IN MACRO VARIABLES	GDP	POPULATION	GDF/CAPITA	
AVERAGE 81-83 TO 1990	4.5	3.7	0.8	
1990 TO 1995	6.5	3.6	2.7	

	LOW-GROWTH	I CASE PROJECTIO	NS 1990 A	ND 1995			
AVERAGE 1 CONS PROD	1981 - 1983 IMP EXP	CONS PROD	U IMPORT	CONS PROD	95 IMPORT	CONSUMPTION GROWTH BASE PERIOD - 1990	RATE PA. 1990-95
CRUDE EQUVIV. TONNE 379264 369352	146690 136780	457104 450891	6213	546420 551550	-5130	2.4	3.6
PERCENT GROWTH IN MACRO VARIABLES AVERAGE 81-83 TO 1990 1990 TO 1995	GDP 2.4 3.0	POPUL	ATION 3.7 3.6		CAP11A 1.2 0.7		

ZIMBABWE TA	BLE 3		۵) COMPO	NENTS OF	APPARENT	STEEL C	ONSUMPT	ION BY PRO	DUCT (TON	INES)			
PRODUCT NAME	SITC	981)RTS 1983	AVER	1981	PRODUC 1982	TION 1983	AVER	1981	EXPC 1982	0RTS 1983	AVER	APP. CONS AV 81-83
WIRE RODS BARS AND RODS ANGLES SHP.HM ANGLES SHPL	6731 6732 6 6734	6300 7243	5917 5302	4249 6196	5489 6247	52000 123617 70000 34000	39000 96000 73000 36000	35000 101000 63000 36000	106872	83749 16825	5000 72348 9049 358	5000 89915 4600 2175	8333 82004 10158 1937	33667 30357 64756 33397 23809
PLATES, MED.	6741 24	1296	26493	20639	23809									30932
PLATES, LIGHT TINPLATE OTHER COAT.P HOOP AND STRP RAILS OTHER RL TRCK	6743 33 6747 10 6748 1 6750 9 6761 1 6762 6 6770 6 6782	3906 0642 1813 9284 7567 977 288 1353	40052 9674 14806 6689 10323 596 298 1226	18837 9988 8691 11591 338 123 372 553	30932 10101 11770 9188 9409 565 319 1044	1077 2500 32000 2810	1500 2700 29000 3093	768 3100 25000 4492	2767 28667 3465	820 3421 210	1000 1593 1991 293	268 1168 2000 1492	615 1194 2471 665	10101 11770 9188 9909 2138 26515 3844 0
TOTALS	12:	3669	121376	81577	108874	286004	251293	243360	260219	123879	91632	106618	107376	261717
A	B) DEMAND / SUPPLY BALANCES FOR ROLLED PRODUCTS AND FERROUS MATERIALS (TONNES) A ROLLED PRODUCTS 1981 1982 1983 AVERAGE													
	APPARENT CO		TION OF	ROLLED P	RODUCTS		2	285794	281037	218319	261	717		
OF	WHICH; NET IMPO LOCAL PR	RTS C	OF ROLLED	PRODUCT	S		-2 2860	210 204 2		25041 43360	1 498 260219			
B FE	ERROUS MATERI TOTAL SUPPLIED F 1 NET IMPCR OF WHIC	ROM:					- '	188978	290873 - 197101 - 1231	220349 -288370 5349				
	FERRO NET I NET I FINIS	US MA MPORI MPORI HED F	ATERIALS TS OF BIL TS OF ROL PRODUCTS	LETS ETC LED PROD (INDIREC	UCTS T IMPORTS	S)	-2284 84 363	490 -2 488 382	277629 -3 47489 -		-270095 9912 35780			
			CES (INCL					488269	487974	508718	494	987		
C ES	STIMATED ANNU	AL LO	JCAL SCRA	P GENERA	TION			50000	50000	50000	50	000		

1) IMPORT, EXPORT AND PRODUCTION FIGURES ARE CONVERTED TO CRUDE STEEL EQUIVALENTS (INGOTS) BY USING COEFFICIENTS DEVELOPED BY THE ECE. "FERROUS MATERIALS FROM LOCAL SOURCES" ARE CALCULATED BY APPLYING THESE COEFFICIENTS TO LOCALLY PRODUCED ROLLED PRODUCTS, ARRIVING AT BILLET EQUVIVALENTS, AND THEN DEDUCTING NET IMPORTS OF BILLETS AND "FERROUS MATERIALS FOR SMELTING". DIFFERENCES BETWEEN THIS AND THE FIGURE GIVEN FOR SCRAP GENERATION MAY BE DUE TO INACCURACIES IN CONVERSION FACTORS, STOCKS OF SCRAP OR DEFICIENCIES IN THE EXTERNAL TRADE STATISTICS USED

- 160 -

ZIMBABWE TABLE 4

.

-

MACRO DATA AND PROJECTIONS

•

۲

YEAR	ACTUALS, ESTIMATES 1981 1982 1983	PROJECTIONS 1990 1990 1995 1995 1995 HIGH BASE LOW HIGH BASE LOW
GDP. AND POPULATION POPULATION (MILL) GDP PER CAPITA US\$ (1975) GDP MILL US\$ (1975) GROSS CAP FORM MILL US\$ (1975) BLDG AND CONSTR V.A MILL US\$ (1975) MANUFACTURING V.A. MILL US\$ (1975)	7.7 8.0 8.3 542.0 524.5 513.1 4166.7 4195.9 4258.8 922.7 995.6 828.3 128.1 125.5 115.1 1113.4 1107.8 1075.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
BALANCE OF PAYMENTS MILLION Z\$ EXPORTS OTHER CURRENT ITEMS ODA, NET INFLOWS LONG TERM CAPITAL,NET RESERVES ERRORS AND OMISSIONS IMPORTS, IMPORT CAPACITY	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2500.0 2250.0 1900.0 4900.0 4100.0 3050.0 -870.0 -800.0 -800.0-1150.0-1000.0-1000.0 250.0 200.0 200.0 350.0 300.0 300.0 300.0 250.0 250.0 450.0 350.0 350.0 2180.0 1900.0 1550.0 4550.0 3750.0 2760.0
GR <u>OWTH RATES PER CENT P.A.</u> FOPULATION GDP. CONSTANT US\$ (1975)	<u>1981-82</u> 1 <u>982-83</u> 3.9 3.8 0.7 1.5	1981-1983 JD BASE 1990 BASE 1990-1995 3.7 2.3 7.1

- 161 -

COUNTRY ZIMBABWE			YE	NR .					AVE RAGE TONNES
	19	81	198	1982		83	AVERAGE	AVERAGE	IN PCT
	VALUE	QUANTITY	VALUE	QUANTITY	VALUE	QUANTITY		TONNES	OF TOTAL
SITC						1629	1747	1178	4
MET. STRUCTURES	328	93	4076	1813	837			_	
TANKS, VESSELS, ETC	546	460	233	177	433	148		262	
WIRE PRODUCTS	141	27	902	350	139	27	394	135	
NAILS, NUTS, BOLTS	662	482	687	359	335	113	561	318	1
	3134	531	3263	604	1832	268	2743	468	1
HAND TOOLS	319		223	13	124	9	222	16	0
CUTLERY			156	10	107	12	138	12	0
DOM. UTENSILS	152		17706	5081	16858		17051	4635	14
AGR.MACH., TRACTORS	16590				833	_		195	1
DOM. EL. EQUIPMENT	610	148	741	240					
RAIL. LOCOS ETC.	2013	584	14399	1405	9536				
ROAD VEHICLES	111143	27494	101823	22359	102703	22633			·
BICYCLES ETC.	996	277	753	287	1442	2 273	1064		
HEATING, SANITARY	370) 130	316	59	214	1 30	300	73	
	878	3 133	494	93	44() 73	601	100) 0
FURNITURE TOTAL	137882	-	145762	32850	135833	3 31181	139826	33024	100

_

-

162

1

Т