G @ | TOGETHER

!{’\N i D/? L&y

=S~ vears | for a sustainable future
OCCASION

This publication has been made available to the public on the occasion of the 50" anniversary of the
United Nations Industrial Development Organisation.

’-.
Sy
B QNIDQI
s 77

vears | for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations
employed and the presentation of the material in this document do not imply the expression of any
opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development
Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its
authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or
degree of development. Designations such as “developed”, “industrialized” and “developing” are
intended for statistical convenience and do not necessarily express a judgment about the stage
reached by a particular country or area in the development process. Mention of firm names or
commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY
Any part of this publication may be quoted and referenced for educational and research purposes
without additional permission from UNIDO. However, those who make use of quoting and
referencing this publication are requested to follow the Fair Use Policy of giving due credit to
UNIDO.
CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION
Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria

Tel: (+43-1) 26026-0 * www.unido.org * unido@unido.org

mailto:publications@unido.org
http://www.unido.org/

-——— -

RESTRICTED DP/ 1D/ SEK.A/7Ub
10 June 1936
ENGLISH

ADVANCED MANUFACTURING AND ENGINEEKRING METHOLS

e

DP/BUL/81/00Y

BULGARIA

Technical report: Computer aided design (Part LI)*

Prepared for the Government of Buigaria
by the United Nations Industrial Development Organization

acting as executing agency fur tne United nations Development Programme

Based on tne work ofJ4. Vandersluis
cxpert in_computer aidea desigm

United Nations Industrial Oevelopment vrganizaClon
Vienna

“ This document nas veen reproduced witnout formdl editing.

V.ab 11276

\ R

CONTENTS
Introduction
Training
2.1 Project Training
2.2 Other Training
Cbservations during Visit

Conclusions/Recormencdations

Introduction

This report describes my twn week mission to Bulgaria for

the UNIDO project DP/BUL/E1/8@9, between 22/2/86 and 8/3/86,

ané consists of observations made durinc the mission

together with recommendations where appropriate. The

mission was a continuation of a previous visit by Senior CAD
Advisor Dr. Keith Shaw, also from PAFEC Ltd (ref.l). The major
part of the mission consisted of training of various forms, which
is described more tully in the following section. The major
conclusions of the mission are then summarised.

=

)
(o}
|

Trainina

During the period of the assigrment, extensive training was
civen in accordance with the Job Description
OP/BUL/81/009/11-€2/31.9.E, ané taking account of the
requests made by the CAD Laboratory in their telex nc.
@25/17.02.1986, a copy of which was sent to UNIDO.

2.1 Project Training

Training was given to approximately 3@ marbers of the CAD
Laboratory in the form of lectures followed by guestion
periods. The lectures covered many systems aspects
concerning development, implementation and use of CAD
systems. Each subject is described in more detail

below. A final Question perioc was also held, where
Project Members could raise points concerring any

aspect of CAD system development.

2.1.1 Introduction to CAD Procducts

The varicus components of a typical modern CAD
system were discussed. Each compcnent or
'module’ may be linked to others, with data
commnicated between the modules by using a
common data structure or an intermediate file.
Typical mocdules were described, with examples of
the graphical output which may be produced by
each module. The modules described included

2.1.1.1 General 20 Module

This is the basis of most CAD systems and
contains many general purpose options (e.q.
multiple copy, drag, delete area) which may be
utilised in order to create drawings

guickly and efficiently. Other

facilities normally available include

symbol likbraries ané some methods of

storinc non-graphical attributes

(‘properties’) so that parts lists may

be procduced autaratically.

2.1.1.2 _Z_QADolications Modules

These contain extra facilities (which may be
used in conjunction with the general 2D mocule)
that nake the CAC system more efficient

when used in ore particular fielid.

Typical examples of modules include:

a) Architecture - additional
facilities al lowing walls, windows,
doors etc. to be created with the
minimur of user 1nput.

N\~

b)

c)

Reinforced Concrete - facilities to
design R.C. structures and detail
drawings according to particular
national standards.

Mappinag - a maoping database

al lowing multi-user access and
additional facilities to allow use
of mapping grid reference systemws.

2.1.1.3 General 3D CAD Modules

Four different types of 3D system may be
available, each with its advantaces and
disadvantages, which make each type
applicable to different applications.

a)

b)

Wire Frame - Lines and arcs
('wires') are defined in 3D space.

Uses : Visual isation, Technical
Illustrations, Schematics
applications.

Advantages : Fastest of 3D systems,
Natural extension to 2D CAD.
Can run on all types of
camputers/terminals.

Disadvantaces: Display of complex models can
look confusing to user.

Simple Surfaces - Planar, Cylindrical and
Conical Surfaces.

Uses : "True' visualisation with
hidden lines/surfaces
removed. Reelistic Images
with use of colour and
shacding.

Advantages : Reascnably fast.
wire Frames and Surfaces can
easily be displayed
simultaneously.

Disadvantages: Limited surface types.
Colour graphics terminals
are normally necessary.
when modelling solids,
‘correctness' of the model
cannot be guaranteed.

wn
|

c) Solid Model - Lcgical operations (e.g.
Union, intersection) on solid primitives
(clock, sphere, torus, cylinder, cone) used
to build up camplex models.

Uses : Visualisation.
Realistic Image Generation
Parametrised Objects
Exploded assembly diagrars.

Advantages : Model is quaranteed
correct and consistent,
enabling sectioning,
volune and moment of
inertia calculations.

Disadvantaces: Can be very slow.
Requires more powerful
computer. Cannot handle
complex surfaces. User
interface is more complex.

d) Sculptured Surface Model -
Mathematical ly complex surfaces defined
using sections and tangents between
sections.

Uses

Mathematically complex
surfaces, e.g., Ships
hulls, aeroplane wings,
plastic mouldings.

Advantages : Interface to KC systems.
Reasonably fast.
Can be easily linked to
20/3D modules.

Disadvantages: Not efficient for
Modelling of regular
surfaces/solids.

2.1.1.4 Finite Element Analysis

A model of the structure is defined using 2D
or 3D Finite Elements and the structure may
then be analysed to produce such outputs as
deflection, natural freguencies, temperature
distributions, stress distributions. A
powerful 32 bit minicamputer is normally
required to support Finite Element Modules.

A IR e

ON

2.1.1.5 N.C. Programming

Mocules allowing graphical programming and
verification of machine tool paths and
actions, for many different types of
operation (e.g. milling, iathing, ¢rilling,
nibbling, punching, spark erosion). Profiles
may be created using 2D or 3D CAD modules,
and the machine tool psths viewed in 2D or
3D. NC machines may be driven directly by
the computer (CNC) or in an offline mode
using, for example, a paper tape containing
the required sequence of commands.

2.1.1.6 1.G.Z.5. Interface

This module allows the graphical data to be
converted fram the internal data format used
by a CAD system to a neutral ASCII file
format as defined by the IGES standard. IGES
files so produced may be transferred to other
camputers and processed by another CAD
system, to create the graphical data ir. the
format required by that system.

2.1.2 International Standards £9£ CAD

Standards are useful in many industries, ané the CAD
industry is no exception. In recent years a few
standards have been emerging for CAD, and two were
discussed in detail - IGES and GKS. For each
standard, the reasons for the standard were first
discussed and then examples shown of the practical
application of such standards.

2.1.2.1 IGES

Many different CAD systems exist, each with

its own unigue data structures in which the
graphical and non-graphical information is
stored. With the widespread use of many
different CAD systems, it became apparent

that same means of efficiently transferring
both the graphical and non-graphical data was
necessary. IGES (Initial Graphics Exchange
Specification) defines a standard which may

be used to perform such a transfer. The
standard gives details of a format which may be
used to represent different crachical

entities (e.g. line, arc, teat) in a text file
which may then be transferred (e.g. using magnetic
tape) to other computers and other CaD

systems. The use of IGES t- transfer drawing
data between two systems (System A and System
B! then becomes a three step process:

-

2.1.2.2

1. Using System A, run a ‘pre-processor’ to
convert a drawing fram the format used
by System A, into an IGES file.

2. Transfer IGES file to a carputer on
which System B is running.

3. Using System B, run a ‘post-processor’
to convert the IGES file intc a drawing
file in the correct format for System B.

In actual use, the process may not run quite
so smoothly as outlined above. Information
may be lost in the transfer process, due to
ambiguities in the IGES specification
document. The mechanizms for transferring
non-graphical data are not of practical use,
and symbol libraries cannot be transferred.
Another problem concerns the size of the IGES
file. which may typically be 10 times larger
than the original drawing (and up to 58 times
largez). Recently, a new revision cf IGES
has been announced, Version 3.8, which
attempts to sort out these and other
problems, and over the next year or so it is
likely that most CAD suppliers will announce
support of Version 3.6 in place of the
current version, 2.0.

Recommendations were also made concerning the
following:

1. Method of development of an IGES
pProcessor.

2. Use of IGES to transfer drawings between
CAD systems.

In summary, IGES offers a viatle

method of transferring data

between CAD systems, provided some care
is taken initially when deciding which
types of graphical information are to be
transferred.

GKs

mraditionally, eact program which made use £
graphics terminals would inclucde a number of
subroutines to interface to the particular
terminals raquired. Such subroutines weuld
need to be modified each time a new terminal
interface was reguired, and the form of th2
subroutines might be completely different for
separate programs, This approach was not

-

only wasteful of time and effort, since new
graphics subroutines were required for each
new procram, but also tended to produce
complex code where many cdifferent terminals
needed to be supvorted by one procram. A
more sensible approach was to create a self
contained library of craphics routines which
could be used by any application program to
drive many different terminal types, so that
the applications program did not need to
communicate directly with the individual
terminal types. Third party software houses
began to offer such graphics libraries
commercially (e.a. TEMPLATE, AD-2000), and
the logical conclusion of this process was
the establishment of International stendards
for such libraries. One of these standards
{and the most widely usad), is GKS - the
Graphical Kernal System.

Various aspects of GKS were examined,
including the available primitives,
attributes and segment capabilities. The

deficiencies in the standards were also discussed.

Notwithstanding these deficiencies, use of
such standards is to be encouraged because of
the acdvantages of this approach:

1. Terminal independent software packages
calling GKS routines.

2. Availability of GKS libraries from third
parties, eliminatinc the need for
production of such libraries in-house.

3. Application software will not become
obsolete or reguire modifications when
new generations of terminals are available.

2.1.3 Software Portability

The advantages of terminal incepencdence described in
the section 2.1.2.2. apply equally to camputer
independence. If software can be written in such a
way that applications need not call camputar
dependent subroutines directly, then the software may
be ported onto different computers with relative
ease, and will run in an identical manner on each
canputer. Here, however, there are no well defined
international standards, and sc libraries of computer
independent routines need to be designed by first
1dentifying those facilities which are machine
dependent and then deciding what subset of those
facilities might be required by the target
applications,

-

2.1.4

0

Machine depencent facilities include:

- Comunication to/fram terminals, peripherals,
processes, files.

- Data Fommats
~ Systems Information
- Process coordination and Manipulation.

When a machine independent library has been
created, it is necessary to ensure that all
other coding produced is not in any way machine
dependent by calling the library routines where
necessary. In order to guarantee machine
independence, the following points need to be
noted.

1. Programming standards must be defined and
adhered to.

2. Documentation describing machine independent
libraries ard programming standards should be
widely and freely available to staff.

3. Education as to the reasons for, and
importance of, machine independent coding
should be given to all new staff, and on a
continuing basis, as necessary, for existing
staff.

CGraohics System/Database Design

Many different aspects of the design of CAD
systens and their databases were considered in
detail. Examples were taken fram existing CAD
systems including DOGS and DOGS3D, to show the
sort of decisions which need to be made when a
graphics database is designed. Several
important points were noted, which need to be
considered during the design phase, including:

- separation of graphical and non-graphical
information

- separation of graphical data into views or
layers

- design for speed of access to graphical data
during certain database operations (e.qg.
tolerancing, windowing)

- design for flexibility, expandibility

r—

2.1.5

- parametric (macro programming) capatilities

- 1identification anc specification of separste
modules

- design of the user interface

~ the use of a relational database for storage
an¢ manipulation of non-graphical attributes.

The importance of software develomment
procedures for all phases of the develomment
process was also stressed.

Management of Large Software Projects

A 'large software project' was defined as
a) One involving 4 or more staff or

b} One involving 1 or more years develomment
effort or

C) One consisting of many intercommunicating
modules

or any combination of the above. Large projects
pose many management problems, nct all of which
may occur in smaller projects where a more
informal approach might be used. A great deal
of time was spent describing and discussing many
aspects of Scftware Project Management, as
detailec in the following sections.

2.1.5.1 Organisation and Choice of Staff

Examples were given of typical staff
structures, with programmers orcanised
into sections to deal with particular
aspects of a project, and sections
combined to foom groups. The different
skills required by Group Leaders, Section
Leaders and Programmers was discussed,
toge cher with the role of specialists working
alengside the Group structure., The
importance of recruiting staff with the
required skills was emphasised.

2.1.5.2 Estimating

Estimating is one of the bigcest problems
that procramers and managers face.
Prograrmers are notorious for their inability
to estimate tim2scales for developments
accurately, leading to the well known 9¢/9¢
rule which states that:

'9@% of the cevelopment will take 9¢% of the
time, the remaining 10% of the develomment
will take anotner 90%!’

There are two types of estimating wnich need
to be done:

a) Estimating the amount of work to be done
(requirements estimating)

b) Estimating the resources available to do
the work (constraints estimating)

It is important that (b) does not influence
(a), i.e. the amount of resources actually
available should not determine the estimate
of resources required. When this occurs, the
estimate of requirements is invariable over
optimistic. The resources available covers
both the hardware - computers, terminals etc,
and the prociamming staff. It is obviously
important to have enough of both types of
resources - not enough hardware and the staff
will be kept idle due to lack of terminals or
poor resperse fram the camputer.

The lecture concentrated mainly on aspects of
requirements estimating. The number of lines
of code (NLOC) recuired for a developrent
should be =2stimated. Given a figure for this
and an estimate of the average number of
lines of fully debuuged and tested code that
one programmer produces in one day enables us
to estimate the total time a develooment will
take. Sources indicate that the industry
average is between 5 and 1¢ NLOC per
programmer per day, a figure which often
appears to be surprisingly low when first
encountered, but which has nevertheless been
validated many times.

In crder to estimate the NLOC, each part of
the development needs to be considered in
detail., In fact, a significant amount of the
total time taken for a development should be
taken up in specification of the development

)

N, o~

2.1.5.3

to greater and greater detail before a line
of code is written. It should also be noted
that testinag will also tzke up a large
proportion of time, and figures taken from
successful ly completed large software
projects suggest that each of the phases of
specification, coding and testing should take
approximately one-third of the total project
time,.

As the project is defined, milestones should
also be defined, as well as 'inch pebbles'
(much close together than milestones!).
These will allow us to monitor the project
closely, and adjust our estimates or our
resources as necessary as each milecstone
passes.

One other important point to remember is that
a programmer will not spend 52 weeks in every
year programming. Significant amounts of a
programmer's time will be spent on other
activities, including holiday, sickness,
training, general administration, supervision
of others. The total number of weeks
remaining for programming may well be 4@ or
less. By considering what values are
aporopriate for an organisation, it is
possible to calculate a 'develomment factor'
for programmers which, when multiplied by the
estimate of the number of programming days
required, gives an elapsed time, i.e. the
time the development will actually take.

The Software Develooment Environment

Software tools are essential for large
software projects, in order to make most
efficient use of what is normally the
scarcest resource - the procrarmers
themsel ves, The following tools were
discussed in detail.

- Full Screen Editors
- Debugging Tools
- Source Management 3Systems

- Integrated Prograrming Supoort
Environments.

-

-

2.1.5.4

2.1.5.5

-

All these tools will use up adéitional
processinag power, to greater or lesser
dearees, but cverall the benefits remain.
The programmers can spend more of their time
procramming instead of housekeepina. The end
result is better code, which is developed
more quickly.

Use of Walkthroughs

Walkthroughs, or Reviews, are a very
important aspect of project management. A
Walkthrouch may be defined as "A meeting of a
group of people to review a product with the
purpose of finding deficiencies in it."

Some points to bear in mind are listed below:

1. It is the product which is on trial, not
the producer.

2. Use a checklist of likely problems,
based on past experience.

3. At least 3 or no more than 7 people
should attend a review.

4, At least one person present at the
review should be from cutside the team
responsible for the product under
review.

5. 2 walkthrough should not last for more
than half a day.

6. Walkthroughs are an excellent place for
new tean members to learn about the
product and software development
standards used.

Walkthroughs may be used at many different
phases of a project, including specification,
coding and testing. Use of walkthroughs will
always result in a better quality product,
and are strongly recommended.

Testinc
——————

Testing is often regarded by programmers as
the aspect of software development which is
enjoyed least, and there is often a
temptation to get testing campleted as
quickly as possible. This philosophy leads
to release of software which has been
inadequately tested. Testing should, in

r—

N\, o~

2.1.5.6

fact, make up as much as 3€% of the total
effort put into a development. The testina
effort falls into two phases:

1. Module testing -

Each module (subroutine, option) is
tested independently, to ensure that it
works in the way it is expected to work.
At this stage, every possible statement
within the module should be executed at
least once, and 'real life' data should
be use. whenever possibtle.

2. Integration Testing -

This phase of testing checks whether the
modules work as expected when integrated
into the complete system, and also
checks whether the rest of the system
still works in the same manner as it
previously did. At this stage, tests
which were used with previous levels of
the software may be rerum,

Whenever possible, automated testing methods
should be used, to allow as much testing as
is feasible to be undertaken.

It should be remembered that nc amount of
testing will compensate for a bad software
design.

Quality Assurance

The best way to ensure that the final product
is of a high quality is by the fcrmation of
an independent Quality Assurance Team and the
production of a Quality Assurance Plan,

The Q.A. Plan should contain a formal
definition of all phases of a software
project, from the initial proposal through to
the ultimate release of the software and on
to the maintenance phase. Figure 1 shows an
example of such a Q.A. plan., The Q.A. Team
should be resgonsible for the production of
the Q.A. Plan, monitor its use ard test the
products created using the plan. The team
should also make observations and
recommendations to further improve the
guality of software products.

L 4

le.

11,

12.

13.

14,

15.
16.
17.

SOFTWARE DEVELOPMENT PROCEDURE

INITIAL PRCPOSAL

ESTIMATE

PROJECT LAUNCH

PRELIMINARY SPECIFICATION

DRAFT SPEC./WORKING SPEC,

DETAILED SPECIFICATION

CODING

LOCAL TESTING

DEVELOPMENT INTEGRATION

OVERALL DEVELOPMENT TESTING

SYSTEM INTEGRATION TESTING

DEVELOPMENT RELEASE

Q.A. TESTING

BETA-SITE TESTING

FULL RELEASE
PROJECT REVIEW

MAINTENANCE

Brief outline of propcsed develcgment.

Statement of key features.

Rough estimate of cost for
comparison purposes. Note ot
features of campetitcrs products.

Decide wt»n is to be invelved
in the various stages.

To incluce draft User Manual.
Normally one issue only.

Second issue to be frozen as

working specification. High

level program design. User

Manual "from working

specification to word

processor. Overall Test Specification.

Low level program design.
Local Test Specification.

Includes appropriate
documentation

To Local Test Specification

Bring all develomments into
hew level.

To Overall Test Spec. } ALPHA-SITE
Q.A. bug "Snapshot" } TESTING

kan tests fram previous levels

Ensure all éncumentation
camplete. Release to Q.A.

Q.A. Section test the
development. "Release Report" issue.

May be in part concurrent with
Q.A. testing.

Release to Custamer

Post-mortem on project

Figure 1 ~ Example Summary of Q.A. Plan

AR o

2.1.6

2.1.7

2.1.8

Apclications Generators and CAD Macro procramming
Lanquages

Macro Programming Languages were discussed by looking
at an example of such a language in same detail - the
DOGS Parametric Symbol Language. This lanauage
allows the CAD users to write their own ‘programs'
consisting cf cammands to select DOGS options, read
cursor locations, text etc., ané also process
information using a language similar to Basic. The
parametric language has been found to be very popular
with users, who can use the facilities to tailor the
standaré CAD package for their particular fields.
The lancuage, therefore, is alsc an applications
generator. The popularity and success of this
approach indicates that such languages should be an
integral part of any CAD package.

Involving the User

The advantages of close liaiscn with users was
discussed. Too many software designers do not take
enouwgh notice of user requirements, with the end
result being that the software may be awkward (or
impossible!) to use in practice. The first users of
a new package are especially important to the success
or failure of the package, and it is important to
build close working relationships with potential
customers early Guring the development of a new
project. The role of User Groups and their
relationships with software suppliers was also
discussed.

Imolementing and Tunino CAD Svstems

CAD Systems which are to be run on many different
computer models and terminals need to be designed
with portability in mind. This will allow
implementations on new machines and terminals to be
produced with the minimen of effore,

The actual process of installing software on a
custamer's machine also needs to be considered. For
packages which have many hundreds of users, the
installation procedures need to be as automatic as
possible, in order to make efficient use of available
resources.

When a program has been installed, it may need to be
'tuned' or optimised, in order to run efficiently. A
rule of thumb states that '98% of run time is spent
in 19% of the code', and it is these heavily used
areas of code which need to be identified and
optimised,

-~

2.1.9

There are many different ways in which a procram
might be optimised. The two most cammon ways are:

1. Eliminate unnecessary 1/0 (e.g. disk
reading/writing) .

2. Changing system parameters (e.g. disk sector size,
buffer size).

There are, hcwever, some possible drawbacks of
optimisation:

1. The optirised code may be less portable, less
maintainable or less flexible.

2. Optimising exploits some observed feature of the
running of a program (e.g. most usual pattern of
user inputs). If that pattern changes, or is not
valid for all users, the system may change fram
being an optimal one, to one which is worse than
ever.

Software Maintenance

A project is not complete when the software is
installec at a custamer's site. The project is then
at the start of its maintenance phase, Industry
figures sugcest that maintenance may in fact take up
as much as 70% of the resources of the total project.
Staff need to be allocated to a special Maintenar.ce
Team to investigate any problems reported by users
and fix them where necessary. One problem is that
the people who are most familiar with a particular
program are likely to have moved on to new
developments and will not be permanently available
for maintenance work. One solution to this problem
is to have a Maintenance Rota so that all devel ooment
staff are regularly working as part of the
Maintenance Team for 2 or 3 week periods 2 or 3 times
a year. This ensures that the Maintenance Team
contains staff with the necessary skills to sort out
any problems which might arise with a package.

One point to note here is that almost all user
reported problems are not software problems.
Typically, 90% of problems are due to user error and
less than 0.25% are genuine software errors. It is
therefore important to weed out as many as possible
of the other types of errors before cassing the
ramaining ones to the Maintenance Team for further
investigation,

-

2.2

2.1.10 Future Trends in CAD

Bv looking at the recent history of computing and

CrD, a nurber of predictions were made concerning
possible future trends. It should be noted that
these predictions represent the perscnal views of the
author, and do not necessarily represent the views of
PAFEC Ltd. The main conclusions are given below.

1.

2.

Memory will become cheap and plentiful (16 Mbit
chips by 1996).

Faster, 32 bit computers will become widely
avallable at less than S$1,6C7.

Future generations of computers will use parallel
processors for greater speed.

High resolution, colour, engineering workstations
with 3D capabilities will became widespread and
cheap.

Unix (and C) will be adopted worldwide.
The emphasis for CAD systems will be on highly user

friendly systems running on high resolution,
colour, personal emgineering workstations.

Other Training

During the mission, two one-day seminars were organised, one
in Varna and one in Sofia. The seminars were presented to
invited delegates from institutes and other UNDP projects.
A total of forty-five people attendec these seminars.

The seminars were entitled ‘'Introduction to CAD'. A series
of lectures wes given under the following headings:

- Acvantages of CAD

- Introduction to 2D CAD

- Introduction to 3D CAD

- The CAD/CAM/CAE Link

- International Standards in CAD

- Future Trerds in CAD.

A lively question and answer session fol lowed the lectures,
to end the day.

1Yy

3. Observatisons during the Visit

The CAD Laboratory has expanded considerably since Dr. Shaw's
visit in 1984. The staff have a wide variety of backgrounds and
computing skills, which is certainly necessary for the
development and enhancement of CAD systems. What is needed now
is a longer term: plan for the work which is to be carried out at
the Laboratory, so that all staff have a clear idea of their
roles within the Zevelomment plan.

The lack of avarlability of 32 bit carmputers and graphics
tertinals due to the U.S. embargo may be a problem if it
continues after any develomment work has started, since 32 bit
computers and good graphics peripherals are a necessity for new
CAD development.

The level ¢f interest in CAD shown during the seminars shows that
Bulgaria is ready and waiting to use CAD in many different areas
of industry. A gquestion remains as to whether all the necessary
software can be developed within Bulgaria to meet the
requirements of all the prospective users.

4. Conclusions/Recommendations

Bulgaria needs CAD, especially if it wishes to participate
campetitively in international industrial markets. A decision
needs to be made as to whether the CAD software regquired by
industry can be wholly or partially developed within Bulgaria.

It is the author's opinion that the software cannot all be
developed within Bulgaria in the necessary timescales. A survey

of the needs of prospective users would show whether a CAD system
couid be produced to cover same cammon requirements, but this system
would still need strong links to software supplied from outside
Bulgaria for specialist needs (e.g. surface modelling).

It is the author's opinion that with the widespread availability
of 32 bit micro-processors, 32 bit machines suitable for CAD
systems will be available in Bulgaria within one to two years.
Uncil this happens, however, develognent and use of CAD software
will be severely restricted.

The CAD Laboratory needs to consider the needs of Bulgarian
. users, and draw vp a long term plan to meet those needs, with a

mixture of imported and in-house software, within the timescales
required by the users.

References

1. Report by Expert 11-82 Senior CAD Advisor Mr. Keith Shaw
DP/BUL/81/009.

Document History

Date Issue Comments Author

©28,/01/86 1.0 Written MOV

