

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION
Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria

Tel: (+43-1) 26026-0 · www.unido.org · unido@unido.org

OCCASION

This publication has been made available to the public on the occasion of the 50
th

 anniversary of the

United Nations Industrial Development Organisation.

DISCLAIMER

This document has been produced without formal United Nations editing. The designations

employed and the presentation of the material in this document do not imply the expression of any

opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development

Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its

authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or

degree of development. Designations such as “developed”, “industrialized” and “developing” are

intended for statistical convenience and do not necessarily express a judgment about the stage

reached by a particular country or area in the development process. Mention of firm names or

commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes

without additional permission from UNIDO. However, those who make use of quoting and

referencing this publication are requested to follow the Fair Use Policy of giving due credit to

UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

mailto:publications@unido.org
http://www.unido.org/

I
\

t I
t
I r{f.:STH.ICTi::D

' ·-~-"

----·

IJP /ID/ St.ti. A/ 7Llo
ill June 1986
ENGLISH

AllVANCt.D MANUFACTURll'iG AND E.NGINEl:.l:Ul'IG METHOuS

DP/BUL/81/009

BULGARIA

Technical report: Computer aided design (Part II)*

Prepared for the Government or tiuigaria

by the United Nations Industrial Development organization

acting as ~xecuting agency for tn~ Un1t~d iYt1ons i.levelopment PrograaD1Ue

*

dased on tne work ~f)M. Vandersluis
ixpert in computer aidea iMt~ijH-

United Nations Industrial U~velnpm~nt ur~an1zat1an
Vienna

' \
;

- 2 -

1. Introduction

2. Training

2.1 Project Training

2.2 Other Training

3. Gbservations during Visit

4. Conclusions/Recar.tnendations

1. Introduction

This report describes my ~ week mission to Bulgaria for
the U~IDO project DP/BL'L/el/009, between 22/2/86 and 8/3/86,
ane c-onsists of observations mad~ during the mission
together with recannendations where appropriate. The
mission was a contin~ation of a previous visit by Senior CAD
Advisor Dr. l<eith Shaw, also from PAFEX: Ltd {ref.l). The major
part of the mission consisted of training of various forms, which
is described more tul ly in the fol lo ing section. The major
conclusions of the mission are then Sl.l!Tl!'~rise-.::3.

•
\

2. Trainino

During the period of the assigrrnent, extensive training w~s
given in accordance with the Job Description
DP/BUL/81/009/11-02/31.9.E, and taking account of the
requests made by the CAD Laboratory in their telex no.
025/17.02.1986, a COP'/ of which was sent to UNIDO.

2.1 Project •rraininc

Training was given to ap?roximately 30 mer.hers of the C.?ill
Laboratory in the forrr. of lectures fol lowed by question
periods. The lectures covered many syster.s aspects
concerning developnent, irnplenentation and use of CAD
systens. Fach subject is described in more detail
below. A final ~estion Pericx: was also held, where
Project Members could raise points concerning any
aspect of CAD systen developnent.

2.1.l Introduction to CAD Products

The varicus canponents of a typical modern CAD
systen were disccssed. Each canpcnent or
'module' may be liniced to others, with .data
comnunicated bet...ieen the modules by using a
car:non data structure or an intermediate file.
'JYPical modules were described, with examples of
the graphical output which may be produced by
each module. The rrodules described included

2.1.l.l General 2~ Module -----
This is the basis of most CAD systems and
contains rr.any general purpose option~ (e.g.
multiple copy, drag, delete areal which ~ay be
utilised in order to create drawings
qu1ckl y and efficiently. Other
facilities norm.a 11 y available include
symbol 1 ibraries and sorr.e methods of
storing non-graphical attributes
C'prot:ierties') so that parts 1 ists may
be produced autaratically.

2.1.1.2 20 Aoolications Modules

These contai~ extra facilities (which may be
u~ed in conjunction with the general 2D ~odulel
that n~ke the CAC system more efficient
~en used in o~e particular field.
Typical examples of modules include:

a) Architecture - additional
faci 1 i ties al lowi nq wa 11 s, windows,
do'or!; etc. tr: be created with the
:'11:'n1mur. of ust:?r in;:iut.

b) Reinforced Concrete - facilities to
design R.C. structures and aetai l
drawings according to particular
ndtional standards.

c) Mapping - a ma?ping database
al lowing multi-user ilccess and
additional facilities to al low use
of mapping grid reference systens.

2.1.1.3 General 3D CAD Modules

Four different types of 30 systen may be
available, eac!l with its advantages al"'ld
disadvantages, which make each type
applicable ~o different applications.

a) Wire Frame - Lines and arcs
('wires') are defined in 3D space.

Uses

Advantages

Visualisation, Technical
Illustrations, Schenatics
applications.

Fastest of 3D systens,
Natural extension to 2D CAD.
can run on all types of
canputers/terminals.

Disadvantages: Display of complex models can
look confusing to user.

b) Simple Surfaces - Planar, Cylindrical and
Conical Surf aces.

Uses

Advantages

'True' visualisation with
hidden lines/surfaces
removed. Real is tic Il!lages
with use of co 1 our and
shading.

Reasonably fast.
Wire Frames and Surfaces can
easily be displc.yed
si!'liul taneousl y.

Disadvantages: Limited surface types.
Colour graphics terminals
are normally necessary.
When 1ocdell ing sol ids,
'correctness' of the model
cannot be guarante-ed.

c
.I

c) Sol id Model - LGgical operations (e.g.
Union, intersection) on solid primitives
(block, sphere, torus, cylinder, cone) used
to build up canplex models.

Uses

Advantages

Visualisation.
Realistic Image Generation
Para.-netrised Objects
Exploded assembly diagra.T.s.

Model is guaranteed
correct and consistent,
enabling sectioning,
volune and manent of
inertia calculations.

Disadvantages: Can be very slow.
Requires more powerful
canputer. Cannot handle
complex surfaces. User
interface is more canplex.

d) Sculptured Surface Model -
Mathematically complex surfaces defined
using sections and tangents beti,veen
sections.

Uses

Advantages

Mathematically complex
surfaces, e.g., Ships
hulls, aeroplane wings,
plastic mouldings.

Interface to 1-C systE!Tls.
Reasonably fast.
Can be easily linked to
20/30 mcdules.

Disadvantages: Not efficient for
Modelling of regular
surfaces/solids.

2.1.l.4 Finite Element Analysis

A model of the structure is defined using 2D
or 30 Finite Elenents and the structure may
then be analysed to produce such outputs as
def lect1on, natural frequencies, tanperature
di~tributions, stress distributions. A
powerfu 1 32 bit mi nicanputer is norma 11 y
required to support Finite Element Modules.

2.1.l.5 N.C. Progra."11lling

Modules al lowing graphical progra:rcr.ing and
verification of machine tool patPs and
actions, for many different types of
operation (e.g. mil ling, lathing, drilling,
nibbling, punching, spark erosion). Profiles
may be created using 20 or 30 CAD modules,
and t.~e machine tool paths viewed in 20 or
30. NC machines may be driven directly by
the canputer (~) or in an offline mode
using. for example, a paper tape containing
the required seque~ce of camiands.

2.1.l.6 I.G.2.S. Interface

This module allows the graphical data to be
co~verted fran the internal data format used
by a CAD systan to a neutral ASCII file
format as defined by the IGES standard. IGES
files so produced may be transferred to other
canputers aoo processed by another CAD
systen, to create the graphical data ir. the
format required by that systen.

2. 1
.• 2 International Standards for CAD

Standards are useful in many industries, and the CAD
industry is no exception. In recent years a few
standards have been energing for CAD, and two ""1ere
discussed in detail - IGES and GKS. For each
standard, the reasons for the standard ""1ere first
discussed and then examples shown of the practical
application of such standards.

2.:.2.l IGES

Many different CAD systens exist, each with
its own unique datn structures in which the
graphical and non-graphical information is
stored. With the widespread use of many
different CAD systens, it became apparent
that sore mea~s of efficiently transferring
both the graphical and non-grap~ical data was
necessary. IGE5 (Initial Graphics Exchange
Specification) defines a standard which may
be used to perform such a transfer. The
standard gives details of a format which may~
used to reprP.sent different craphical
entities ;e.g. 1 ine, arc, te>.t) in a text file
~hich may then be transferred (e.g. using magnetic
tape) to other r.oniputers and other CAD
systens. The use of IGES t1 transfer drawing
data beti..een two systerr.s CSysten A and Systen
81 then b<?canes 3 three step process:

I

\

;

1. Using Systen A, run a 'pre-processor' to
convert a drawing fran the format used
by Systen A, into an IGES file.

2. Transfer IGES file to a canputer on
which Systen B is running.

3. Using Systen B, run a 'post-processor'
to convert the IGES file into a drawing
file in the correct format for Systan 8.

In actual use, the process may not run quite
so snoothly as outlined above. Information
may be lost in the transfer process, due to
ambiguities in the IGES specification
docunent. 'I1le rnechani3ms for transferring
non-grapl1ical data are not of practical use,
and symbol libraries cannot be transfeLred.
Another problen concerns the size of the iGES
file. which may typically be 10 times larger
than the original drawing (and up to 50 times
large:). Recently, a new revision of IGES
has been announced, Version 3.0, which
attempts to sort out these and other
problens, and over the next year or so it is
likely that most CAD suppliers will announce
support of Version 3.0 in place of the
current version, 2.0.

Recamiendations were also made concerning the
following:

1. Method of cieve 1 o!;XT!ent of an IGES
processor.

2. tlsc- of IGES to transfer drawings bet<Neen
CAD systems.

!n summary, IGES offers a viable
method of transferring data
between CAD systems, provided some care
is taken initially when deciding which
types of graphical infonr~tion are to be
transferred.

2.1.2.2 GKS

Traditionally, ead. program which made use ~
graphics terminals 1NOuld include a number of
subroutines to interface to the particular
terminals r>?quired. $uch subroutines wculd
need to bf> modified each time a new terminal
interface was required, and the form of th·~
subroutines might, be compl~tely different for
separate frogra'TIS, This approach was not

•
' ;

only wasteful of time and effort, since new
graphics subroutines were required for each
new program, but also tended to produce
canplex code where many different ter:ninals
needed to be supported by one program. A
more sensible approach was to create a self
contained library of graphics routines which
could be used by any a?plication program to
drive many different terminal types, so that
the applications program did not need to
coomunicate directly with the individual
terminal types. Third party software houses
began to offer such graphics libraries
coomercial ly (e.g. T&.PLATE, AD-2000), and
the logical conclusion of this process was
the establishnent of International standards
for such libraries. One of these standards
(and the most widely used), is GKS - the
Graphical Kernal System.

Various aspects of GKS \olere exanined,
including the available primitives,
attributes an:l segment capabi 1 i ties. The
deficiencies in the standards \olere also discussed.
Notwithstanding these deficiencies, use of
such standards is to ~ encouraged because of
the advantages of this approach:

1. Terninal independent software packages
calling GKS routines.

2. Availability of GKS libraries fran third
parties, eliminating the need for
production of such libraries in-house.

3. Application software will not becar.e
obsolete or require modifications when
new generations of terminals are available.

2.1.3 Software Portability

The advantages of terminal independence described in
the sect~"" 2.1.2.2. apply equally to canc:>uter
independence. If software can be written in such a
way that applications need not call canput~r
dependent subroutines directly, then the software may
be ported onto different canputers with relative
ease, and will run in an identical ~anner on each
canputer. Here, however, there a~e no well defined
international standards, and so libraries of computer
independent routines need to be designed by first
identifying those facilities which are machine
dependent and then deciding what subset of those
facilities might be required by the target
applications.

I

\,

J

... - - -

Machine dependent facilities include:

- Carrnunication to/fran terminals, peripherals,
processes, files.

- Data ~ormats

- Systens Information

Process coordination and ~~nipulation.

wnen a machine independent library has been
created, it is necessary to ensure that al 1
other coding produced is not in any way machine
dependent by cal 1 ing the 1 ibrary routines where
necessary. In order to guarantee machine
independence, the following points need to be
noted.

1. Prograrrming standards must be defined and
adhered to.

2. l))cunentation describing machine independent
libraries and programning standards should be
widely a~d freely available to staff.

3. F.ducation as to the reasons for, and
importance of, machine independent coding
should be given to all new staff, and on a
continuing basis, as necessary, for existing
staff.

2.1.4 Graohics System/Database Desiqn

Many different aspects of the design of CAD
systE!lls and their databases were considered in
detai 1. Exa'Tlples '#ere taken fran existing CAD
sys tens inc 1 ud i ng cxx;s and C:XX.S 30, to show the
sort of d~isions which need to be made when a
graphics database is designed. Several
important points '#ere noted, which need to be
considered during tbe design phase, including:

separation of graphical an::3 non-graphical
information

separation of graphical data into views or
layers

- design for speed of access to graphical data
during certain database operations (e.g.
tolerancing, windowing)

- design for flexibility, expandibility

' \
;

; "'\

paranetric (macro prograrrrr.ing) ca::iabilities

identification and specification of se?arate
modules

- design of the user interface

the use of a relational database for storage
and manipulation of non-graphical attributes.

The irr.tx>rtance of software develo;:r.ie:1t
procedures for al 1 phases of the developnent
process was also stressed.

2.1. 5 Management of Large Software Projects

A 'large software project' was defined as

a) One involving 4 or rrore staff or

b) One involving 1 or more years developnent
effort or

c) One consisting of many intercarrr.unicating
modules

or any combination of the above. Large projects
pose many managenent problens, net all of which
may occur in smaller projects where a more
informal approach might be used. A great deal
of time was spent describing and discussing many
aspects of Scf tware Project Managene~t, as
detailed in the following sections.

2.1.5.1 Oraanisation and Choice of Staff

Example~ were give~ of typical staff
structures, with programners organised
into sections to deal with particular
aspects of a project, and sections
canbined to fc:m groups. The diffe~ent
skills required by Group Leaders, Section
Leaders and Prograrrmers w-.:ss discussed,
tog(cher witl1 the role of specialists working
alcngside the Group structure. The
importance of recruiting staff with the
required skills was en?hasised.

!.:!.

2.1.5.2 Estimatinc

Estirr.ating is one of the biggest problens
th~t progr.r.mers and managers face.
Prograrcr.Ers are notorious for their inability
to estirr~te tire~scales for developnents
accurately, leading to the well known 90/90
rule which states that:

'90% of the cevelopnent will take 9e% of the
time, the renaining 10% of the develo;r.ient
~ill take another 90%!'

There are two types of estimating which need
to be done:

a) Estimating the amount of work to be done
(req'Jiranents estimati~g)

b) Esti~~ting the resources available to do
the work (constraints estimating)

It is irnr;:ortant that (b) does not influence
(a) , i.e. the amount of resources actua 11 y
avai !able sho•;ld not determine the esti:r.ate
of reso:;rces required. When this occurs, the
estimate of requirements is invariable over
optimistic. The resources available covers
both the hardware - comp.Jters, terminals etc,
and the progtarnning staff. It is obviously
imr;:ortant to have enough of both types of
resources - not enough hardware and the staff
wi 11 be kept idle due to lack of terminals or
poor respor.se fran the canputer.

The le=ture concentrater:l mainly on aspects of
requirements estimating. Tbe number of lines
of coee (NLOC) required for a developr.ent
should be ~stimated. Given a figure for this
and an esti~ate of the average n~r of
lines of fully debugged and tested code that
one progr arrrner produces iri one day enab 1 es us
to estimate the total time a develo~ent will
take. Sources indicate that the industry
average is bet'.oleen 5 and l~ NLOC per
programmer per day, a figure which often
appears to be surprisingly low when first
encountered, but which has nevertheless been
validated many times.

Jn 0rder to estimate the NUX:, each part of
the deve lopl'ent needs to be considered in
detail. In fact, a significant C111ount of the
t<'tal time tai<en for a developTient should be
take~ up in s~c1fication of thP. developnent

•
\

- 12 -

to greater and greater detail before a line
of code is written. It should also be noted
that testin9 will also take up a large
proportion of ti.me, arrl figures taken fran
suc("essful ly completed large softv.are
projects suggest that each of the phases of
specification, coding and testing should take
approxiw~tely one-third of the total project
time.

As the project is defined, milestones should
also be defined, as i.iell as 'inch pebbles'
(much clo:.;e together than rr.ilestones!).
These will allow us to monitor the project
c!osely, and adjust our estirr~tes or our
resources as necessary as each mile~tone
passes.

One other important point to renenber is that
a programner will not spend 52 weeks in every
year progranming. Significant anounts of a
prograrrmer's time will be spent on other
activities, including holiday, sickness,
training, general administration, supervision
of others. The total number of weeks
renaining for programning may wel 1 be 40 or
less. By considering what values are
appropriate for an organisation, it is
possible to calculate a 'develoµnent factor'
for prc.igranmers which, when multiplied by the
estimate of the number of programming days
required, gives an elapsed time, i.e. the
time the developnent will actually take.

2.1.5.3 The Software Develoanent Environment

Software tools are essential for large
software projects, in order to make most
efficient use of what is normally the
scarcest resource - the prograr:mers
thensel ves. The fol lowing tools ~re
discussed in detail.

Full Screen F.di tors

Debugging Tools

Source Management Systens

Integrated Prograrrrning Sup~rt
Environments.

r

•
' ;

All these tools will use up additional
processing po1oier, to greater or lesser
degrees, but c\·eral l the benefits rer.ain.
The prograTmers can s;:iend more of their time
prograrm:ing instead of housekeeping. The end
result is better code, which is developed
more quickly •

2.1.5.4 Use of Walkthrouahs

Walkthrouqhs, or Reviews, ar~ a very
important aspect of project managenent. A
Walkthrough may be defined as "A meeting of a
group of people to review a product with the
purpose of finding deficiencies in it."

Sane points to bear in mind are listed below:

1. It is the product which is o~ trial, not
the producer.

2. Use a checklist of likely problens,
based on past experience.

3. At least 3 or no more than 7 people
should attend a review.

4. At least one person present at the
review should be fran outside the tea~
responsible for the product under
review.

5. A Walkthrough should not last for more
than half a day.

6. Walkthroughs are an excellent place for
new tean members to learn about the
product and software developnent
standards used.

Walkthroughs may be used at ~any diffetent
phases of a project, including specific3ti~n,
coding and testing. Use of walkthroughs will
!..!.~result in a better quality proouct,
and are strongly recorrmended.

2.1. S. 5 Test inc

Testing is of ten regarded by prograrmiers as
the aspect of software developnent which is
enjoyed least, and there is often a
tenptation to get testing canpleted as
quickly as EX:>Ssible. This philosophy leads
to release of software which has been
inadequately tested. Testing should, in

-........... -

fact, make up as moch as 30\ of the to ta 1
effort put into a developnent. The testing
effort falls into two phases:

1. Module testing -

Each module (subroutine, option) is
tested independently, to ensure that it
works in t.~ 1o.ay it is expected to work.
At this stage, every possible statenent
within the module should be executed at
least once, and 'real life' data should
be us~~ whenever possible.

2. Integration Testing -

This phase of testing checks whether the
modules work as expected when integrated
into the canplete systen, and a.Lso
checks whether the rest of the systen
still works in the same manner as it
previously did. At this stage, tests
which were used wi t.'i previous levels of
the software may be rerun.

w'henever possible, autanated testir.g methods
should be used, to al low as m1..'Ch testing as
is feasible to be unnertaken.

It should be renenbered that no anount of
testing will canpensate for a bad software
design.

2.1.5.6 Quality Assurance

'fhe best way to ensure that the final product
is of a high quality is by the formation of
an independent C\,lality Assurance Team and the
production of a ~ality Assurance Plan.

The O.A. Plan should contain a formal
definition of all phases of a software
project, from the initial proposal through to
the ultimate release of the software and on
to the maintenance phase. Figure 1 shows an
example of such a Q,A. plan. '!'he Q.A. Team
should be resr-onsible for the production of
the Q.A. Plan, monitor its use ard test the
products created using the plan. The team
should a 1 so make observations ane
recomnendations to further improve the
quality of software products.

•
~

;

- :=i -

SOF'n\ARE DEVELOPMENT PROCEDURE

1. INITIAL PROPOSAL

2. ESTill'.ATE

3. PROJECT LAUNCH

4. PRELI~IN.'\RY SPEX:IFICATION

s. DRAFT SPEX:.,MORKI~ SPEX:.

6. DETAILED SPECIFICATION

7. CODING

8. LOCAL TESTING

9. DEVELOPMENT I~'TEGRATION

19. OVERALL DEVELOW.ENT TESTING

11. SYST™ I~'TEGRATION TEST!~

12. DEVELOPMENT RELEASE

13. Q.A. TESTING

14. BETA-SITE TESTING

1 s. FULL RELEASE

16. PROJECT REVI El'i

17. MAINTENANCE

- Brief outline of proposed devel~pnent.

- Statement of key features.
Rough estimate of cost for
canparison purposes. Note ot
features of canpetitc~s products.

- Decide ~Y.> is to be ir1vol ved
in the various stages.

- To include draft User Manual.
Normally one issue only.

- Second issue to be frozen as
working specification. High
level progran design. User
Manual ·fran wrking
specification to word
processor. Overall Test Specification.

- Low level program design.
Local Test Specification.

Includes appropriate
documentation

- To Local Test Specification

- Bring al 1 developnents into
new level.

- To Overal 1 Test Spec.
Q.A. bug "Snapshot"

} ALPHA-SITE
} TESTING

- f<·Jn tests fran previous levels

- Ensure all doc1.1T1entation
canplete. Release to Q.A.

- Q.A. Section t~st the
developnent. "Release Report" issue.

- May be in part concurrent with
Q.A. testing.

- Release to CUstaner

- Post-mortem on project

fioure .!. = Example SLmnary of Q.A_:_ Plan

• ..
)

- !C -

2.1.6 Aool ications Ge:ierators and CAD Macro programning
Lanauaoes

2.1. 7

~aero Prograrrming Languages were discussed by looking
at an excrnple of such a language in sane detail - the
DOGS Para'lletric symbol Language. This language
al lows the CAD users to write their own 'prograns'
consisting of ccmr.ands to select OOGS options, read
cursor locations, text etc., are also process
information using a language similar to Bask. The
paranetric language has been found to be very popular
with users, W'lo can use the facilities to tailor the
standard CAO package for their particular fields.
The language, therefore, is also a!l applications
generator. The popularity ard success of this
approach indicates that such languages should be an
integral part of any C.Z\O package.

Involvinq the User

'ttle advantages of close liaiscn with users was
discussed. Too many software designers do not take
enough notice of user requirenents, with the end
result being that the software rr.ay be awkward (or
impossible!) to use in practice. The first users of
a new package are especially important to the success
or failure of the package, and it is important to
build close working relationships with potential
custaners early during the developnent of a new
project. The role of User Groups and their
relationships with software suppliers was also
discussed.

2.1.8 Implementing and Tunino OD Svsters

CAD Systens which are to be run on rr.any different
canputer models arid terminals need to be designed
with portability in mind. This will allow
implementations on new machines and ter.ninals to be
produced with the minim\.:'11 of effort.

'rhe actual process of installing soft-..are on a
custaner's machine also needs to be considered. For
packages which have many hundreds of users, the
installation procedures need to be as autanatic as
possible, in order to make efficient use of available
resources.

~"hen a program has been installed, it may need to be
'tuned' or optimised, in order to run efficiently. A
rule of thumb states that '90\ of run time is spent
in 10\ of the code', and it is these heavily used
areas of code which need to be identified and
optimised.

' \
;

- .. -

There are many different ,.;ays in which a program
might be optimised. The two rr.ost ccmnon ways are:

1. El irninate U."lnecessary I/0 (e.g. disk
reaciing/writinc;>.

2. Clanging systen parcrneters Ce.a. disk sector size,
buffer size).

There are, however, sane possible drawbacks of
optimisation:

1. 'Ihe optirr.ised code may be less portable, less
maintainable or less flexibl~.

2. Gptimising exploits sane observed feature of the
running of a program (e.g. most usual pattern of
user inputs). If that pattern changes, or is not
valid for all users, the systen may change fran
being an optimal one, to one which is ~rse than
ever.

2.1.9 Software Maintenance

A project is not canplete when the software is
installed at a custaner's site. The p~oject is then
at the start of its ~cintenance phase. Industry
figures suggest that maintenance may in fact take up
as much as 70\ of the resources of the total project.
Staff need to be al located ~o a special Maintenar . .:e
Team to investigate any problens reported by users
and fix then where necessary. One problem is that
the people who are most familiar with a particular
program are 1 ikely to have moved on to new
developnents and wi 11 not be permanently available
for maintenance work. One solution to this probler.
is to have a Maintenance Rota so that al 1 develo?nent
staff are regularly working as part of the
Maintenance Team for 2 or 3 week periods 2 or 3 ti;nes
a year. This ensures that the ~aintenance Team
contains staff with the necessary skills to sort out
any problens which might arise with a package.

One point to note here is that almost all user
reported problems are not software problens.
Typically, 90\ of problens are due to user error and
less than 0.25\ are genuine software errors. It is
therefore important to weed out as many as possible
of the other types of errors before passing the
r'3Tlaining ones t•' the Maintenance Team for further
investigation.

- 1: -

2.1.10 Future Trends in CJ\D

By looking at the recent history of ~puting and
OD, a mzr.bet of predictions were made concerning
possible future trends. It should be noted that
these predictions represent the personal views of tbe
author, and do not necessarily repre~nt the views of
PAFB: Ltd. The main conclusions are given below.

l. Memory will becane cheap and plentiful (16 Mbit
chips by 1999).

2. Fc.ster, 32 bit can?Jters wi 11 becane widely
available at less than Sl,9C~.

3. F\Jture generations of can?Jters wi 11 use parallel
processors for greater speed.

4. High resolution, colour, engineering workstations
with 30 capabilities will becane widespread and
cheap.

5. lbix (and C) will be adopted worldwide.

6. The enphasis for CAD syster.s wi 11 be on hig!'lly user
friendly systens running on high resolution,
colour, personal engineering workstations.

2.2 Other Trainino

During the mission, two one-day seninars were organised, one
in Varna and one in Sofia. The seninars were presented to
invited delegates fran institutes and other ur-.'DP projects.
A total of forty-five people attended these ser.inars.

The seninars \Ere entitled 'Introiuction to CAD'. A series
of lectures was given under the following headings:

Advantages of CAD

Introduction to 20 CAD

Introduction to 30 CAD

The CAD/CAl"/CAE Link

International Standards in CAD

Future Trends in CAO.

A lively question and answer session followed the lectures,
to end the day.

I ..
;

- l~ -

3. Observations durina the Visit

The CAD Laboratory has e>rpandee considerably since Dr. Shaw's
visit in 1984. The staff have a ~ide variety of backgrounds and
canputing skills, which is certainly necessary for the
developnent and enhancenent of CAD systens. w'hat is needed now
is a longer term plan for the 1o.0rk which is to be carried out at
the Laboratory, so that all staff have a clear idP.a of their
roles within the ~evelopnent plan.

The lack of availability of 32 bit car.puters and graphics
ter.r.inals due to the U.S. embargo may be a problen if it
continues after any developnent work has started, since 32 bit
canputers and good qraphics peripherals are a necessity for new
CAD developnent.

The level cf interest in CAD shown during the ser.i!iars shows that
Bulgaria is ready and waitiD;J to use CAD in many different areas
of industry. A question renains as to whether all the necessary
software can be developed within Bulgaria to meet the
requiranents of all tr.e prospective users.

4. Conclusions/Recamendations

Bulgaria needs CAD, especially if it wishes to participate
canpetitively in inte~national industrial markets. A decision
nee-is to be made as to whether the CAD software required by
i:idustry can be wholly or partially developed within Bulgaria.
It is the author's opinion that the software cannot al 1 be
developed within Bulgaria in the necessary timescales. A scrvey
of the needs of prospective users would show whether a CAD syster.
could be produced to cover sane cannon requirenents, but this systen
would still need strong links to software supplied fran outside
Bulgaria for specialist needs (e.g. surface modelling).

It is the author's opinion that with the widespread availability
of 32 bit micro-processors, 32 bit machines suitable for CAD
systens will be available in Bulgaria within one to t\IWO }'ears.
Und 1 this haPP2ns, however, developnent and use of CAD software
will be severely restricted.

The CAD Laboratory needs to consider the needs of Bulgarian
users, and draw up a long term plan to meet those needs, with a
mixture. of imported and in-house software, within the timescales
required by the users.

References

l. Report by Expert 11-02 Senior CAD Mv isor Mr. Keith Shaw
DP/BUL/81/009.

Document History

Date Issue Carmen ts Author

'18/03/86 1. 0 Written MDV

