

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

22020

Annex 9

INDUSTRIAL POLLUTION REDUCTION PROGRAMME DG/SRL/91/019

OPPORTUNITIES FOR WASTE MINIMISATION IN THE TEXTILE PROCESSING INDUSTRY IN SRI LANKA

1

WASTE AUDIT

BAKSONS TEXTILES PVT LTD

CEYLON INSTITUTE OF SCIENTIFIC AND INDUSTRIAL RESEARCH 363, Bauddhaloka Mawatha, Colombo 7, SRI LANKA

TABLE OF CONTENTS

	Summary	Page
	List of abbreviations	
PART I	Environmental status	1 - 3
PART II	Waste Audit	4 - 39
1.0	General information	4
2.0	Availability of information	6
3.0	Process flow diagrams	6
4.0	Housekeeping status	18
5.0	Material balance	19
6.0	Total water balance	23
7.0A	COD analysis of effluent	25
7.0B	Waste and Emissions cost	26
8.0	Waste Minimisation options	29
9.0	Cost Benefit Analysis	41
10.0	Conclusions	53
11.0	References	54

ANNEXURES

.

.

А	Organisation Chart	i
В	Location map of the industry	ii
С	Plant layout	iii
D	List of major chemicals and dyes	iv
E	Production data	vi
F	Recipe for major processes	vii
G	Estimation of the steam cost	ix
Η	Estimation of effluent treatment cost on the	
	basis of COD removal	x
Ι	Utility cost	xi
J	Other information	xii

SUMMARY

Baksons Textiles (Pvt) Ltd., is a medium scale textile processing industry situated in a industry dominated urban area of Colombo South. The Major environmental pollution issues from this factory are the disposal of highly alkaline textile effluent and emission of kerosene vapour from the textile printing section.

This industry consumes 110 l of water and 0.2 l of furnace oil for each kilogram of textile processed.

The organic load of the effluent discharged from the fabric cleaning processes of scouring, bleaching, mercerization (only for this industry mercerization is also considered as cleaning process because grey cloth mercerization is carried out) generate 23% of the total COD. 31% of total COD is generated from garment washing and the balance 46% of organic load is due to wastage of materials utilized in the processing.

The most expensive waste streams are cold pad dyeing, printing and mercerization. The waste streams from continuous wash, bleaching and normal wash also exceed the average value of waste stream cost. The high cost for cold pad dyeing is mainly due to the discharge of a low volume of concentrated effluent.

Sixty one waste minimization options were identified and cost benefit analysis done for 10 options identified to be of high priority by the industry. Conclusions from the cost benefit analysis are summarized in the Table. The industry was subsequently closed, and so was not able to implement these options.

Option	Investment	Operating cost/y	Savings/y	Pay back period in months	Environmental benefits
1) Reuse of waste caustic during handling	41,120/-	8,860/-	38,096/-	13	reduction in alkalinity of effluent
2) Recycle final rinse water for counter current and screen washing	47,962/-	14,932/-	49,226/-	11	reduction in effluent volume by 1.8%
3) Recycle counter current rinse water for washing screen	46, 962/- ·	14,722/-	24,533/-	28	reduction in effluent volume by 1%
 Recycle of screen washings for preparation of caustic 	195,000/-	47,430/-	1,686,090/-	2	reduction in alkalinity of effluent and volume of effluent by 0.4%
5) Installation of temp. control system for mercerizer	247,500/-	51,975/-	176,765/-	9	reduction of boiler fuel consumption by 8.3 %
6) Recovery of caustic	4,284,225/-	2,347,747/-	4,251,253/-	12	reduction of effluent by 1% and high reduction of alkalinity of effluent
7) Counter current rinsing in washing range	20,000/-	6,600/-	102,266/-	2	0.7% reduction of effluent volume, 1.4% of fuel consumption
8) Condensate recovery drum dryer	5,000/-	1,050/-	30,978/-	2	0.1% reduction of effluent volume, 0.5% of boiler fuel consumption
9) Recycling of hydro extraction water	16,000/-	4,740/-	7,260/-	26	0.3% reduction of effluent volume
10) Installation of doctor blade and print paste recovery	86,000/-	20,112	255,420/-	4	Effluent volume reduction by 1.6% and COD load reduced by 2%

* reduction of fuel consumption results in reduction of atmospheric emissions

Abbreviation List

COD	Chemical Oxygen Demand
J	joule
K	kelvin
kg	kilogram
kWh	kilo Watt hour
kW	kilo Watt
1	liter
Μ	month
m	meter
min	minute
mg	milligram
g	gram
s	second
Т	ton
у	year
°C	⁰ Centigrade
Ref	Reference
d	day
h	hour
hp	horse power

IPRP/CISIR/BAKSON

.

.

PART 1 - ENVIRONMENTAL STATUS BAKSONS TEXTILES (PVT) LIMITED

1.0 Introduction

2.0

Baksons Textiles (Pvt) Ltd is a textile processing industry carrying out mercerising, dying and printing of cotton, polyester and polyester cotton fabrics, and garment washing

1.1 Organisati	onal chart : Attached	(Annex A)		
1.2 Ownership	• Mr. B.K.	Bakshani		
1.3 Contact pe	ersons : Messers. S Lal Pieris Managing	: Messers. S.S. Vidhyanandan, Store keeper/Accounts Clerk, Lal Pieris, Administrative Manager. B.K. Bakshani, Managing Director, Mr. Lloyd Perera, Dyeing Manager.		
Site details				
2.1 Location	: No. 11 Ma	aligawa Road, Ratmalana (Annex B))		
2.2 Physical D	Descriptions			
(i) Area	• ~ 4500 m ²			
(ii) Topo	graphy : Flat land			

- (iii) Factory layout : Attached (Annex C)
- (iv) Sealed surface : 100% of the site
 - (v) Depth to : 3 m
 - groundwater (vi) Surface water : None bodies
 - (vii) Surface drainage channels: All the drains are connected to one receiving sump and then to the public sewer system
- 2.3 Current use

(i)	Processes	: Mercerizing, dyeing, printing, garment washing and drying
(ii)	Products	: Dyed and printed fabrics and washed garments
(iii)	Raw materials	: Grey cloth, denim and non denim garments
(iv)	Major chemicals	: Caustic soda, dyes (direct, pigment, reactive, and sulfadyes) detergents, softners and pigments and other general chemicals (Annex D)
(v)	Energy source	: Furnace oil and electricity

2.4 Site drainage (type & discharge points)

(i)	Process effluent	: Through open drains to public sewer
(ii)	Domestic waste water	: Through open drains to public sewer
(iii)	Storm water	: Through open drains to public sewer
(iv)	Toilet effluent	: Through pipe drain to septic tanks

3.0 Environmental Emissions

3.1	Atmospheric emissions	:	Flue gas from boilers, solvents from printing and curing machines, exhaust from garment dryer and stentor.
3.2	Aqueous discharge points	:	Effluents from mercerization, bleaching, dyeing, printing, and garment washing
3.3	Solid waste	:	Paper, sacks, used nickel screens and empty chemical packaging materials

4.0 Site history and Neighbouring sites

- 4.1 History of the site
 - (i) Start date : Textile weaving from 1986
 - (ii) Former use : Bare land

4.2 Current and former use of neighbouring sites

	(i)	Northern	: Visaka garment and Ajantha Textiles-textile weaving
	(ii)	Southern	 factories CIC (Colombo) LtdManufacture of PVA, Agrochemicals and Plastic items
	(iii)	Western	: Sadaharitha Lanka-Metal fabrication (dry operation)
	(iv)	Eastern	: Nelumpura Housing scheme
4.3	Sign	ificant spills	: None

5.0 Environmental Receptors

- 5.1 Abstraction points
 - (i) Dug wells : One dug well but abandoned
 - (ii) Tube wells : None
 - (iii) Surface water : None

5.2 Sensitive neighbours within 2 km

		(i)	Residence	: Mixed industrial & residential area	
		(ii)	Hospitals	: None	
		(iii)	Schools	: None	
		(iv)	Others	:	
	5.3	Prot	ected Natural Habitat	: Attidiya Bird Sanctuary - 3 km to the east (refer map)	
	5.4	Wate	er Bodies		
		(i)	Surface	: Weras ganga, Bolgoda lake	
		(ii)	Sub-surface	: Residents in the neighbourhood use dug wells for domestic purposes and gardening	
6.0	Sol	id W	aste Issues		
		(i)	Type and disposal	• Metal and plastic drums-sold: Gunny sacks-sold: Paper and	

(i)	Type and disposal	: Metal and plastic drums-sold; Gunny sacks-sold; Paper and
	method	polythene - garbage; Cotton waste from dryers-garbage;
		Fabric rejects and Offcuts-sold; Used nickel printing screens -
		1 11 0 1

7.0 Environment Licence issues

7.1	Current status :	EPL not issued due to high pH, BOD and COD - >10, 70- 1600 mg/l and 230 -2400 mg/l respectively
7.2	Current compliance issues :	Non-conformance of effluent discharge to standards; Complains from the neighbourhood regarding kerosene and soot emissions from the factory

•

PART 2 - WASTE AUDIT

1.0 General Information

	WORKSHEET 1			
Name of the Company : Bakson	Textiles (Pvt) ltd			
Waste Audit Team				
<u>Name</u>	Designation			
 Mr. H.N. Gunadasa, Mrs. K.D. Attanayake, Mrs. S.Wickramaratna, Miss. S.de Costa Mr. K. Pavanandan Mr. R. Ilangkumaran Mr. S. Vidhyanandan Mr. Lal Pieris Mr. Lioyd Perera 	Manager, Environmental Tech Senior Technical Officer, CISI Research Officer, CISIR Research Officer, CISIR Research Officer, CISIR Research Officer, CISIR Stockkeeper, Bakson Textiles Administrative Manager, Baks Dyeing Manager, Bakson Text	nology Group, CISIR IR (Pvt) Itd on Textiles (Pvt) Itd tiles (Pvt) Itd		
A. Major Raw Materials Con	sumption			
i) RAW MATERIAL a) Fabric ii) CHEMICAL		T*/y		
 a) Printing chemicals b) Garment washing c) Bleaching chemic d) Printing dyes e) Fabric dyes f) Other chemicals 	s chemicals als	46.8 T/y [§] 91.7 T/y [§] 274.1 T/y [§] 10.2 T/y [§] 4.6 T/y [§] 161.6 T/y [§]		
B. Energy Consumption				
a) Electrical energy		1,281,540 kWh/y [§]		
b) Fuel for boilers		270,000 l/y§		

IPRP/CISIR/BAKSON

.

C.	Water Consumption	177,612 m³/y§
D.	Production	
	i) Installed Capacity	
	Mercerizing	25-50 m/min
	Cold pad dveing	45-50 m/min
	Washing range	70 m/min
	Stenter	80 m/min
	Jumbo jigger - 3 numbers	1000 kg/batch
	Small jiggers - 10 numbers	110 kg/batch
	Jet dyer - unit 1	100 kg/batch
	Jet dyer - unit 2	200 kg/batch
	Washing machines - 12 numbers	200 kg/batch
	Thies Dyer	70 kg/batch
	Drum drier	50 m/min
	Rotating screen printer	45 m/min
ii)	ACTUAL PRODUCTION (September 1994)	
	Mercerizing	650,000 m
	Cold pad dyeing	61,000 m
	Jigger or jet dyeing	15,000 m
	Bleaching	886,000 m
	Laundry	48,649 kg
	Printing	160,000 m
E.	Type of Effluent Treatment	No treatment
F.	Any Other Relevant Information : 25 Working days per 240 workers and this is a commission process industry with production capacity of 50,000 m fabrics as well as 10,000 g	month, the plant has a daily average garments.

* Not provided by client. § Calculated using average monthly figures.

2.0 Available Information

Available information is very limited. No proper recording system available to quantify process wise production. Job card system is used to assign task to workers. Metering system also not available to determine important process parameters.

WORKSHEET 2					
Information	Availability	Remarks			
Process flow diagram	Not available				
Material Balance	Not available	Only monthly consumption available			
Energy balance	Not available	No provision to record			
Water balance	Not available	Average monthly consumption available			
Plant layout	Available	Not satisfactory			
Waste analysis	Not Available	Not done			
Emission records	Not available	Not done			
Production log sheets	Available	Not satisfactory			
Maintenance log sheets	Not available				

3.0 Process Flow Diagram

There are a number of production processes available for dyeing printing and laundering of fabrics and garments. The production process depends on type of material used and the type of product required. Worksheet 3.1 to 3.10 give the most commonly used production processes of this industry.

4.0 Housekeeping Status

The waste audit team identified several housekeeping lapses, which will affect the production output and these are described in Worksheet 4. Some of the losses caused by lapses in housekeeping cannot be quantified financially. However they would result in decreased productivity due to discomfort of the workers.

WORKSHEET 4 GENERAL REMARKS RELATED TO HOUSEKEEPING				
Sections	Lapses in Housekeeping			
MERCERIZER	Water overflow from raw water tank of counter current washing due to improper adjustment of flow rate.			
DRUM DRIER	Steam leakages due to unattendence of small repairs.			
WASHING RANGE	Improper use of steam (steam valves are kept open even when the plant is stopped for short periods).			
COLD PAD DYEING	Open water valves when washing is over.			
PRINTER	Spillage of dye/chemical solutions. Open water hoses. Increase of ambient temperature due to heat dissipated from dryer.			
BOILER	Fuel leaks in joints.			
Dyeing and Laundering	Open water hoses. Warm working environment due to hot discharge and heat dissipated from dryers.			

5.0 Material Balance

Material balance carried out using actual material consumption of September 1994(Annexure E) and calculated water and steam consumptions based on liquor ratio for batch operations and measured flow rate for continuous operations.

WORK SHEET 5 MATERIAL BALANCE FOR THE MONTH OF SEPTEMBER 1994.						
Unit Operation	Input Materi	ial		Output		
			Product	Product Waste Stream		
	Name	Qty (kg)	Qty (kg)	Liquid (kg)	Solid/ gas (kg)	
Mercerization	Fabric Caustic Water Steam	71,500 15,600 549,000 50,731	71,500 (45,000) 14	15,586 554,000	Nil	
Printing	Fabric Chemicals Dyes Kerosene Water	17,600 4,700 800 19,700 296,000	17,600 (760)	4,700 40 296,000	19,700	
Continuous Washing range	Fabric Steam Water	6,710 11,000 233,000	6,710 (4,200)	239,800	Nil	
Bleaching Small jiggers	Fabric Steam Water NaOH NaSiO ₃ H_2O_2 Uvitex CID NaCl Thinovadine Ju	9,900 9,270 144,000 100 288 378 39 126 49	9,310 (5918)	490 147,292 100 288 378 39 126 49	Nil	

7

Bleaching Jumbo	Fabric	87,660	83,277	4,383	
(88 batches)	Steam Water NaOH NaSiO ₃ H_2O_2 NaCl Thinovadine Ju	73,9200 1,056,000 2,552 3,472 2,217 1,624 161	(33,472)	1,076,445 2,552 3,472 2,217 1,624 161	Nil
Cold Pad dyeing	Fabric Chemicals Dyes Water	6,710 1,200 300 26,500	6,710 (4,227) 270	1,200 30 22,273	Nil
Bleach wash /Ice wash (305 batches)	Garment Steam Water Pimaze Al Pisoft 195 H_2O_2 Other chemicals	11,600 63,440 2,196,000 552 552 442 663	11,600 (10,440)	2,236,440 552 552 442 663	Nil
Stone Bleach (345 batches)	Garment Steam Water Pimaze Al Pisoft 195 HAC Other chemicals	13,100 79,000 3,036,000 655 655 52 883	13,100 (11,790)	3,103,210 655 655 52 883	Nil
Normal wash (80 batches)	Garment Water Chemicals	4,000 128,000 200	4,000 (3,600)	124,400 200	Nil

Garment wash (28 batches)	Garment Water Chemicals	2,800 44,800 100	2,800 2,520	42,280 100	Nil
Enzyme wash (177 batches)	Garment Steam Water Pimaze Al Pisoft 195 CH_3COOH H_2O_2 Other chemicals	6,700 26,066 1,168,200 335 335 26 325 587	6,700 (6,030)	1,188,236 335 335 26 325 587	Nil
Jet dyeing (9 batches)	Fabric Steam Water NaOH NaSiO ₃ H_2O_2 Thinovadine Ju Na2CO3 Dye	1,650 5,108 86,400 36 14 22 44 97 272	4,500 (1040)	\$ 5,108 85,360 36 14 22 44 97 272	Nil

Total volume of process effluent

 $= 7895 \text{ m}^3/\text{M}$ = 318 T/M

Steam consumption = 318 T/M ^Q The recyclable steam condensate discharged into drain.

() Moisture accompanied with fabric.

ASSUMPTIONS

1. Fabric undergoes 5% weight reduction in dry basis during the scouring and bleaching process.

2. Moisture content of the fabric in weight basis (wet) given in annexure J.

CALCULATIONS

- 1. Moisture absorbed into fabric
- Let M Weight of the fabric with 7% moisture M_d Dry weight of the fabric= 0.93M

Moisture absorbed after wet process(43%) = $(0.43 \times 0.93 \text{M}/0.57 - 0.07 \text{M})$ = 0.63 M

2. Similarly moisture absorbed into garment after Hydroextractor

 $= (0.51 \times 0.93 \text{M}/0.49 - 0.07 \text{M})$ = 0.9 M

3. Chemical consumptions were calculated according to the recipe.

Recipes are given in annexure F.

4. Steam consumption is calculated using heat requirement for each process to achieve required temperature and properties of steam.
Steam consumed =(cp_f x m_f + cp₁ x m₁)(T_o -T_r)/h_f cp_f, cp₁ are specific heat of fabric and water respectively (ref3) m_f, m₁ are weight of fabric and water respectively
T_o, T_r are operating temperature and room temperature(30^oC) respectively h_f is heat released from steam condensation =2000 kJ/kg

Heat absorbed by machines and other losses are neglected.

6.0 TOTAL WATER BALANCE

A breakdown for water consumption for each unit operation was calculated on theoretical basis and is presented in Worksheet 6. This enabled the determination of the high water consumption activities and unidentified consumption in monthly basis.

WORKSHEET 6 WATER BALANCE FOR SEPTEMBER 1994					
Operation	Total Estimated Consumption (m ³)	Total Product (T/month)	Water/Production Ratio	% Consumption	
Mercerization	✿ 549	71.5	7.7	3.7	
Printing	§ 296	17.6	16.8	2.0	
Washing range	233	6.7	34.8	1.6	
Bleaching	1200	97.5	. 12.3	8.1	
Cold Pad dyeing	27	6.7	4	0.2	
Bleach/Ice wash	2196	• 11.6	189	14.8	
Stone bleach	3036	13.1	231.8	20.4	
Normal wash	128	4	32	0.9	
Garment wash	45	2.8	16	0.3	
Enzyme wash	1168	6.7	174.3	7.9	
Jet dyeing	86	1.65	52.8	0.6	
Domestic	♀ 1336			8.9	
Total water consumed (estimated)	10540			69.3	
Actual water consumed	14870			100.0	
Undefined water consumption	4570			30.7	

Actual water consumption for the month of September 1994 was 14,870 m³.

- ☆ Water use for caustic preparation, floor washing after caustic preparation and overflow from the counter current rinse water tank was not taken into account.
- § Only the water used for washing the blanket was taken into account. Water used for dye preparation, screen, equipment and floor washing was not considered.
- P Domestic water consumption was calculated was calculated on the basis of 200 l per person since the workers are used to have baths in the factory.

It was not possible to measure boiler water consumption even though steam consumption in most of the processes other than dryers have been taken into account.

The 30% unidentified water consumption may be attributed to floor washing, boiler water, leakage and additional rinses etc.

Jet cooling water is recycled.

7.0 COD Analysis

COD analysis were carried out for effluent discharge from each machines operated in one day to identify the discharges that contribute the highest to the pollution load.

Average COD of process effluent= 2635 mg/lAverage COD based on the factory total effluent= 1588 mg/l

WORKSHEET 7.0							
Date of sample	11.10.	95		r <u> </u>			
Stream	Water	Duration	Water	Water	COD	COD	COD
	l/m	min	l/d	%	mg/l	kg/d	%
Mercerizer							
Screen washing	13	600	7800	18.6	5900	46.02	8.1
Final rinse	28	600	16800	40.2	6600	110.88	19.4
Counter	11	600	6600	15.0	10350	68.31	12.0
current rinse							
Dyeing							
Cold pad bath 6	55	6 batches	330	0.8	8500	2.805	0.5
Washing bath & tank	16	3 x 6	288	0.7	2900	0.835	0.2
Cooling water	1.5	360	540	1.3	0.00	0.00	0.0
Printer							
Blanket	83	79	6557	15.7	5000	32.78	5.8
Screen	294	2	588	1.4	26400	15.52	2.7
Pump wash	90	17	1530	3.7	165000	252.45	44.3
Squeeze	50	16	800	1.9	50900	40.77	7.1
TOTAL			41833	100		570.37	100

7B. WASTE AND EMISSIONS COST

Material consumption figures from the material and water balances and COD analysis data were utilized to estimate the amount of waste generated from each unit operation and its cost.

WORK SHEET 7B					
UNIT OPERATION	COST COMPONENT	QUANTITY (kg/M)	UNIT COST (Rs/1000kg)	TOTAL COST (Rs/M)	
Mercerisation	Chemicals	15,600	31,000	483,600.00	
	Water	549,000	20	10,980.00	
	Steam	50,231	1500	75,346.50	
	COD Removal	3,963	30,000	118,890.00	
	Total cost assigned Cost assigned per m	to waste stream ³ of effluent (549 m ³)		688,816.50 1,254.67	
Printing	Dyes	40	683,000	27,320.00	
	Chemicals	4700	56,000	263,200.00	
	Water	296,000	20	5,920.00	
	COD Removal	10,667.6	30,000	320,128.00	
	Total cost assigned Cost assigned per m	to waste stream ³ of effluent (296 m ³)		616,468.00 2,082.66	
Continuous wash	Chemicals	2061	62,000	127,782.00	
	Steam	11,000	1,500	16,500.00	
	Water	233,000	20	4,660.00	
	COD Removal	136	30,000	4,080.00	
	Total cost assigned Cost assigned per m	153,022.00 656.75			
Bleach wash/Ice	Chemicals	2209	266,000	587,594.00	
wash	Water	2,196,000	20	443,920.00	
	Steam	63,440	1,500	95,160.00	
	COD Removal	2,504	30,000	75,120.00	
	Total cost assigned Cost assigned per m	801,794.00 365.10			
Bleaching (Small	Chemicals	1,151	55,000	63,305.00	
jigger)	Water	144,000	20	2,880.00	

فتحتد المستحد المستحد المراجع والمستحد المراجع فالمستج الملته المستحد والمراجع والمحاد				
	Steam	9,270	1,500	13,905.00
	COD Removal	168	30,000	5,040.00
	Total cost assigned t Cost assigned per m	85,130.00 591.20		
Cold pad dyeing	Water	26,500	20	530.00
	Chemicals	1,200	56,000	67,200.00
	Dyes	30	683,000	20,490.00
	COD Removal	42	30,000	1,260.00
	Total cost assigned t Cost assigned per m	to waste stream ³ of effluent (26.5 m ³))	88,950.00 3,357.00
Bleaching	Water	1,056,000	20	21,120.00
(Jumbo jigger)	Chemicals	10,098	43,000	434,214.00
	Steam	73,920	1,500	110,880.00
	COD Removal	1,230	30,000	36,900.00
	Total cost assigned Cost assigned per m	to waste stream ³ of effluent (1056 m ³)	603,114.00 571.00
Stone bleach	Water	3,036,000	. 20	60,720.00
	Steam	79,000	1,500	118,500.00
	Chemicals	2,245	332,000	745,340.00
	COD Removal	3,377.50	30,000	101,325.00
	Total cost assigned Cost assigned per m	1,025,885.00 337.90		
Normal wash	Chemicals	200	453,000	90,600.00
	Water	128,000	20	2,560.00
	COD Removal	1.61	30,000	48.30
	Total cost assigned Cost assigned per m	93208.30 728.20		
Enzyme wash	Chemicals	1,608	64,000	102,912.00
	Water	1,168,200	20	23,364.00
	Steam	26,066	1,500	39,099.00
	COD Removal	1,299	30,000	38,970.00
	Total cost assigned Cost assigned per m	204,345.00 174.90		

Jet dyeing	Chemicals	485	58,000	28,130.00
	Water	86,400	20	1,728.00
	Steam	5,108	1,500	7,662.00
	COD Removal	136	30,000	4,080.00
	Total cost assigned t Cost assigned per m	to waste stream ³ of effluent (86.4 m ³))	41,600.00 481.50
	Chemicals	100	56,000	5,600.00
Garment wash	Water	44,800	20	896.00
	COD Removal	97	30,000	2,910.00
	Total cost assigned t Cost assigned per m	9,406.00 210.00		
Composite	Total cost assigned	4,411,738.80		
Effluent	Cost assigned per m	³ of effluent		492.17

Unit cost of disposal based on the COD of the effluent which includes both chemical and biological treatment costs (Details are given in Annexure H).

Steam cost was given by the industry (Annexure G).

Utility costs and utility costs per kg fabric are given in Annexure I.

8.0 Waste minimisation options

Waste minimisation options were identified by the waste audit team based mainly on observations made during visits to the industry. Losses identified from the material balances helped in identifying some of the options. The options identified together with details are presented in Worksheet 8.

Actions were identified for each options, which would help in assessing the costs and benefits of implementing the option. It is anticipated that these actions would help the industrialist subsequently in determining the suitability of implementation. The time required to implement the option and the cost also were noted, as it is these features, that would help in motivating the industry in its implementation/nonimplementation. The priority that would be given for implementing each option was determined in discussion with the management of the industry.

			WORKSHEET 8.0					
Process unit	Unit operation	Waste Minimisation (WM) option	Actions to assess WM options	Category	Effect	Priority	Timing	Cost
MERCERIZER	Mercerising	1: Containing the barrel opening area and collection of spillage	 Estimate caustic spillage and water usage Estimate cost of construction of a tank, bunding the area and pump Estimate labour savings, treatment cost savings and cost benefit 	RC	WM QI PR	7	ST	L
	Mercerising	2: Use of final rinse water for counter current rinsing and screen washing	 Estimate water use for screen washing and counter current rinsing Estimate cost of construction of a tank & pump Estimate water and energy savings 	RR	WM PR ES	7	МТ	М
	Mercerising	3.1 Use of counter current rinse water for screen washing	 Estimate water use for screen washing Estimate cost of construction of collection tank & pump 	RR	WM PR	7	MT	М
	Mercerising	3.2: Recycling of screen washings for caustic preparation (with the implementation of 3.1)	 Estimate water use for caustic preparation Estimate NaOH strength of screen washing Estimate cost of construction of collection tank, pump & filtration system 	RR	WM PR	6	МТ	М

CR - Chemical Reduction	IC - Inventory Control	MT - Medium Term	QI - Quality Improvement	TC - Technology Change
EM - Equipment Modification	L - Low Cost	PC - Process Control	RC - Resource Conservation	WM - Waste Minimisation
ES - Energy Savings	LT - Long term	PCP - Penta Chloro Phenol	RR - Resource Recovery	1-10 - Increasing priority
HK - Housekeeping	M - Medium cost	PR - Pollution Reduction	SI - Safety Improvement	
H - High cost	MC - Material Change	PVA - Poly Vinyl Acetate	ST - Short term	

.

IPRP/CISIR/BAKSON

.

Process unit	Unit operation	Waste Minimisation (WM) option	Actions to assess WM options	Category	Effect	Priority	Timing	Cost
MERCERIZER	Mercerising	4 : Preventing the counter current rinse water tank overflow	 Estimate volume of water lost Estimate cost of installing a level control 	RC	WМ		ST	М
	Mercerising	5 : Automatic temperature control device in baths	 Measure maximum variations in temperature Check the optimum temperature Estimate cost of temperature control unit and energy savings 	PC	ES	7	МТ	М
	Mercerising	6: Indirect steam heating for baths	 Estimate cost of installation of a system with steam trap & cover plate Estimate total steam consumption Estimate cost of construction of condensate recovery tank 	RC	WM ES	3	LT	м
	Mercerising	7.1 Recovery of caustic (after using final rinse water for counter current rinsing and screen washing)	 Estimate cost of construction of 2 tanks, pumps, filter presses & evaporator system Estimate cost of construction of caustic tanks, Pump, overhead tank Estimate cost of installation of cooling coil for storage tank Estimate operational cost and savings 	PR	WM PR	6	МТ	Н
	Mercerising	7.2 Recovery of caustic after using counter current rinse water for screen washing	- Same as above	RR	WM PR	6	МТ	н

* Desizing and scouring processes should be carried out for the grey cloth prior to mercerizing. Recovery of caustic from mercerizer effluent is possible only if the above is implemented as the impurities in the mercerizer effluent from the grey cloth will hinder the caustic recovery. Desizing & scouring could be carried out in jigger

Process unit	Unit operation	Waste	Minimisation (WM) Options	Actions	to assess WM Options	Category	Effect	Priority	Timing	Cost
MERCERIZER	Mercerising	8:	Selling the effluent containing caustic to an outside party	-	Estimate quantity & strength Check possibility of selling	RR	WM PR	2	LT	L
	Mercerizing	9:	Omitting the final rinsing step from the process	-	Estimate water use in final rinser Estimate water & energy savings	RC	WM ES	4	MT	L
	Mercerising	10:	Reducing heat wastage	-	Estimate cost of lagging counter current rinser bath Estimate heat losses & cost of installing a steam flow meter	RC	WM ES	4	MT	м
	Mercerising	11:	Planned use of machine avoiding frequent start up	-	Estimate water use in counter current & final rinser & energy required for initial heating Check the frequency of start up Estimate cost of automation of the plant	RC	WM ES	4	ST	L
WASHING RANGE	Washing	12 :	Counter current rinsing in the first four baths & the last three	-	Estimate cost of one pump Estimate water & energy savings	RC	WM ES	7	MT	м
	Washing	13:	Indirect steam heating of baths	- -	Estimate cost of installation of a system with a steam trap & cover plate Estimate steam consumption Estimate cost of construction of condensate collection tank	RC	WM	5	LT	М
	Washing	14:	Stopping the water flow when the machine is not running	-	Check the interruption time & frequency Estimate cost of automation of pumps Estimate cost of installation of common water & steam valves	RC	WM ES		MT	М
	Washing	15:	Reduction of volume of water	-	Carryout trials to determine optimum flow rate Estimate cost of installation of flow meter	RC	WM ES	4	LT	М

Process unit	Unit operation	Waste N Options	Minimisation (WM)	Actions	to assess WM Option	Category	Effect	Priority	Timing	Cost
CONTINUOUS PRINTER	Printing	16 :	Installation of doctor blades on the blankets & recycling blanket wash water	-	Estimate cost of installation Quantify print paste recovery Estimate water savings	RR	WM PR	7	МТ	L
	Printing	17 :	Collection of print paste from screens into print feed barrels before washing	-	Estimate the quantity getting into the waste stream Check the possibility of using them for dark shades	RR	WM PR	6	МТ	L
	Printing	18:	Construct dip tanks for screens to be immersed in before washing with water	-	Estimate cost of construction of tank Educate workers	RC	WМ	5	ST	L
	Printing	19 :	Installation of self closing valves for raw water hose pipes & use of pressure guns for container & floor washing	-	Estimate water wastage Estimate cost of installation of self closing valves or pressure jets	RC	WM	6	ST	L
	Printing	20 :	Avoiding overfilling of containers used for dye preparation	-	Supervision of the procedure	RC	WM PR		ST	L
	Printing	21 :	Use synthetic thickener instead of kerosene	-	Get expert opinion Estimate expenses involved & emission treatment costs	МС	PR	5	LT	М
	Printing	22 :	Disposal of printing screens	-	Estimate the number of discarded screens per annum Check the possibility of reusing or selling for recycling	RR	WM	5	МТ	L

.

Process unit	Unit operation	Waste 1	Minimisation (WM) Option	Ac	ctions to assess WM Options	Category	Effect	Priority	Timing	Cost
CONTINUOUS PRINTER	Printing	23 :	Use of return paste for dark shades	-	Estimate quantity Check the possibility of using them for dark shades	RR	WM PR	5	MT	L
	Drying	24 :	Improvement of drying efficiency in the dryer	-	Measure ambient air humidity Cost estimate for installing an air inlet from outside the factory	RC	WM ES	4	LT	L
	Drying	25 :	Minimising heat losses in the dryer	-	Estimate heat losses Estimate cost of insulating the entire unit	RC	ES	5	MT	М
	Drying	26 :	Optimising the air flow rate in the dryer	-	Estimate present air flow & compare with design values Cost benefit analysis	RC	WM	5	МТ	M
LAUNDRY	Garment washing	27 :	Use of machine at the maximum operating capacity	-	Estimate present capacity utilization Identify reasons for under capacity utilization Production planning	RC	WM	4	МТ	L

...

IPRP/CISIR/BAKSON

Process unit	Unit operation	Waste I option	Minimisation (WM)	Actions	to assess WM options	Category	Effect	Priority	Timing	Cost
LAUNDRY	Garment washing	28 :	Optiimise the chemical use	-	Prepare a list of chemicals & consumption for different washing procedures Optimise use of chemicals	RC	WM PR	5	MT	L
	Garment washing	29 :	Reduction of hydro extractor running time	-	Check the present hydro extractor running time & efficieny of extraction Carry out trials & estimate energy savings	RC	WM ES	4	МТ	L
	Garment washing	30 :	Recycling of water from hydro extractor	-	Estimate the volume Estimate the cost of construction of collection tank	RR	WМ	5	МТ	М
DRUM DRYER	Drying	31 :	Collection of condensate for recycling	-	Estimate volume & temperature of condensate Estimate energy recovery Estimate cost of construction of a collection tank	RR	ES WM	7	ST	м
	Drying	32 :	Avoid overdrying of fabric	-	Estimate moisture content of dried fabric & temperature Control drying to maintain the moisture content at 8%	RC	ES WM	5	LT	L
GARMENT DRYER	Drying	33 :	Collection of condensate	-	Estimate quantity & temperature Cost of investment	RR	ES WM	6	МТ	м
	Drying	34 :	Avoid overdrying of fabric	-	Estimate moisture content of dried fabric & temperature Control drying to maintain the moisture content at 8%	RC	ES WM	5	MT	L

Process unit	Unit operation	Wa	ste Minimisation (WM) Option		Actions to assess WM options	Category	Effect	Priority	Timing	Cost
JIGGERS	All operations	35 :	Use of direct heating for rapid heating and indirect heating to maintain temperature	-	Estimate cost of installation & volume and temperature of condensate Estimate energy recovery	RC	WM ES	5	МТ	М
	All operations	36 :	Collection and recycling of hot rinses	-	Estimate volume of water that can be recycled & water and energy savings Estimate cost of construction of a collection tank	RR	WM ES	3	LT	М
	All operations	37 :	Temperature control	-	Measure maximum variations in temperature Check the optimum temp Estimate cost of temp control unit Estimate energy savings	PC	ES	6	MT	М
	All operations	38 :	Recycling of some of the rinses	-	Carryout COD analysis of the rinses Estimate the volume that can be recycled	RR	WM ES	3	LT	L
	Bleaching	39 :	Improve handling practices of hydrogen Peroxide	-	Use separate containers for caustic soda & Hydrogen Peroxide to avoid peroxide decomposition	RC	WM PR CR	5	ST	L
	Bleaching	40 :	Optimize the bleaching recipe		Carry out trials with 10-15% lesser concentrations of H_2O_2	RC	WM CR	4	МТ	L
	Bleaching	41 :	Check the efficiency of sodium silicate as peroxide stabiliser	-	Check the Mg content in raw water	МС	WM CR	4	мт	L
	Bleaching	42 :	Monitor pH in bleaching bath	-	Estimate cost of pH meter	PC	QI WM	4	ST	М

Process unit	Unit operation	Waste N option	Ainimisation (WM)	Actions	to assess WM Options	Category	Effect	Priority	Timing	Cost
JET DYER	All operations	43 :	Heat recovery from condensate	-	Determine volume & temperature of condensate Estimate cost of construction of a collection tank	RR	WM ES	6	MT	М
	All operations	44 :	Use of cooling water for processing	-	Check the cooling water temperature & volume Estimate cost of construction of a collection tank	RR	WM ES	6	ST	М
	All operations	45 :	Counter current rinsing system	-	Identification & quantification of recyclable rinses Estimate cost of collection & recycling	RR	WM	3.	LT	М
	Dyeing	46 :	Computer colour matching	-	Estimate the present cost of colour matching Estimate capital & operational cost of computer aided colour matching system	PC	QI	2	LT	Н
COLD PAD DYEING	Dyeing	47 :	Installation of self closing valves for raw water hose pipes	-	Estimate raw water losses Estimate cost of installation of self closing valves	RC	ES WM	5	ST	L
	Dyeing	48 :	Recycling of hydraulic pump cooling water	-	Quantify the volume	RR	WM	5	ST	L
COLD PAD BLEACHI NG	Bleaching	49 :	Cold pad bleaching	-	Get expert opinion on process introduction Estimate cost benefit	тс	ES WM	4	LT	М

BOILER	All operations	50 :	Containing the spillages during furnace oil unloading	-	Bunding the area around the furnace oil tank	RC	ES	3	ST	L
	All operations	51 :	Optimisation of fuel combustion efficiency and boiler efficiency	-	Determine present combustion efficiency & heat loss Optimisation of air flow & fuel atomisation Estimate cost of introducing an economiser or air preheater	RC	ES WM	6	MT	М
	All operations	52 :	Construction of a hot water tank	-	Estimate total volume of factory condensate Estimate cost of construction of a tank & heat insulation	RC	WM ES PR	6	МТ	М

Process unit	Unit operation	Waste 1	Minimisation (WM) option	Actions	to assess WM Options	Category	Effect	Priority	Timing	Cost
	All operations	53 :	Heat insulation of all steam and hot water pipes	-	Estimate cost	RC	ES	5	М	М
	All operations	54 :	Improvement of water quality	-	Analysis of boiler feed & boiler water Estimate chemical consumption Check blow down frequency Estimate heat losses due to scale formation Water quality improvement & cost benefit analysis	PC	WS WM	4	М	М
STENTER	Finishing	55 :	Improvement of drying efficiency	- -	Measure ambient air humidity Cost estimation for installing a system to get air from outside Get expert opinion	RC	ES	3	М	М
	Finishing	56 :	Heat insulation of the machine	-	Estimate heat losses & cost benefit in lagging	RC	ES	5	М	М
GENERAL	Effluent treatment	57 :	Neutralising the alkaline effluent with flue gas	-	Carry out trials Calculate savings in treatment costs	RC	PR CR	6	L	м
	Effluent treatment	58 :	Segregation of the colour effluent from alkaline effluent	-	Estimate volumes of two streams Estimate cost of segregation & identify advantages in treatment	RC	ES WM	5	М	м

-

3.9

All operations	59 : Substitute preser chemicals with r environmentally ones eg: Chromic acid Sodium silicat	t . nore friendly e	МС	PR		L	М
-------------------	---	------------------------------	----	----	--	---	---

...

. .

9.0 COST BENEFIT ANALYSIS

Cost benefit analysis was carried out for the 10 waste minimisation options given the highest priority by the management (from worksheet 8). The investment, savings and pay back period for each option is presented in a worksheet, while relevant details for each calculation are presented below the respective worksheet.

	WORK	SHEET 9.1	
Containing the barrel of (containing the bar	opening aro	ea and collection of caustic spillage 1 worksheet 8).	
Investment	Rs	Saving	Rs/y
Civil work Pump Piping Total	29,120 10,000 2,000 41,120	Caustic soda Treatment cost Labor Total	4,536 4,620 37,800 49,956
Annual operating cost	Rs	Net saving	38,096
Interest(21%) Pump operating cost Total	8,635 225 8,860	 =(saving - annual operating cost) Pay back period =(Investment/Net saving)x12 = 13 Months 	,
Chemical Saving Caustic spillage	= 200g/barr	el (assumed)	<u> </u>
Number of barrel Caustic spillage Caustic saving	= 63/M =12.6 kg/M =12.6(kg)x3	(lower OH ⁻ alkalinity in effluent) 30(Rs/kg)x12(M)	
Treatment cost saving $2 \text{ NaOH} + \text{H}_2\text{SO}_4> \text{Na}_2\text{SO}_4 + \text{H}_30$ 98	=r I ₂ O	s 4,330/y	
H_2SO_4 needed Cost saving	=15.4 kg/M =15.4X25(F -Rs 4 620/z	Rs/kg)x12(M)	
Labor cost saving Barrel handling 6 laborers Labor hours consumed Total Labor hours saving	=42 h/M (2 =126 h/M	h/3 barrels, 63 barrels)	
Civil work Existing tank size 2m x 1m x 1.5m(depth) Excavation cost(1.5m x 2m x 2m) Concrete walls (Rs 17,500/m ³) Platform(2m x 2m area, Rs 437/m ²) Total Pump cost (1 hp, domestic) Piping cost	א= ק= ק= ק= ($\begin{array}{l} \text{Rs } 1,120\\ \text{Rs } 26,250\\ \text{Rs } 1,750\\ &= \text{Rs } 29,120\\ &= \text{Rs } 10,000\\ &= \text{Rs } 2,000 \end{array}$	

	WORK	SHEET 9.2	
Use of final rinse wa	ater for coun (option 2	ter current rinsing and screen washing in worksheet 8)	
Investment	Rs	Saving	Rs/y
Collection tank Pumps(2)	10,962 30,000	Steam	1,278
Piping & valves	7,000	Water	62,880
Total	47,962	Total	64,158
Annual operating cost Interest (21%) Pumping operation	Rs 10,072 4 860	Net saving =(saving - annual operating cost) Pay back period	49,226
Total	14,932	=(Investment/Net saving)*12 = 11 Months	
Construction of collection tank (Excavation cost(1.5mx1.) Tank construction	(1m ³) 5mx1.5m)	=Rs 742 =Rs 10,220	
Cost of pumps(1hp, 3phase, 2 numbers, 1 standby)=Rs 30,000Pumping operational cost (1650 l/h, 135kWh)=Rs 405/M			

Cost of piping & valves

Water saving $=262(m^{3}/M)x20(Rs/m^{3})x12(M)$ (i.e 1.8% of total water) =Rs 62,880 =95kgX75%/M =71(kg)x1.5(Rs/kg)x12(M) =Rs 1,278/y

=Rs 7,000

WORK SHEET 9.3				
Use of counter current rinse	water for	screen washing (option 3.1 in worksheet	t 8)	
Investment	Rs	Saving	Rs/y	
Collection tank	10,962	Water	34,800	
Pumps, piping & valves	36,000	Net saving	24,533	
Total	46,962	=(saving - annual operating cost) Pay back period		
Annual operating cost	Rs	=(Investment/Net saving)x12 = 28 Months		
Interest (21%) Pumping operational cost Total	9,862 4,860 14,722			
Water saving	=	=145m ³ /M (about 1% of total water) =Rs 34,800/y		
Cost of collection tank (1m3)	=	=Rs 10,962		
Cost of pumps, Valves(5) and pipes	; =	=Rs 36,000		
Pumping cost (Electricity)	=	=Rs 4860/y		

	WORK S	HEET 9.4	
Recycling of screen washing option	g for caustic 3.1 (option	preparation ,with the implement 3.2 in worksheet 8)	ation of
Investment	Rs	Saving	Rs/y
Collection tank	22,000	Water	14,880
Pumps(3) Piping & valves	40,000 8,000	Caustic	1,718,640
Filter press	125,000	Total	1,733,520
Total	195,000	Net saving =(saving - annual operating	1,686,090
Annual operating cost	Rs	cost) Pay back period	
Interest (21%) Electricity(pumping) Total	40,950 6,480 47,430	=(Investment/Net saving)*12 = 2 Months	
Monthly NaOH consumption		=15.590 Kg	
Water requirement for 25%		$=62 \text{ m}^3/\text{M} (0.4\% \text{ of total w})$	vater)
Caustic strength in effluent		$=77 \text{kg/m}^3$	·
Caustic recovery		=4774 kg/M	·
Caustic saving		=4774x30(Rs/kg)x12	
		=Rs 1,718,640/y	
Water saving		$=62 \times 20 (\text{Rs/m}^3)$	
T		=Rs 14,880/y	
Cost of collection $tank (1m^3)$		$-R_{s}$ 22 000	
Cost of numps(3 numbers)		$-R_{s} 40,000$	
Cost of piping & Valves		=Rs 8,000	
Operational cost (electricity)			
Pump(47kWh)		=Rs 1,620/y	
Pump(135kWh)		=Rs 4,860/y	
<i>n</i>			

WORK SHEET 9.5			
Automatic temperature control device for baths (option 5 in worksheet 8))
Investment	Rs	Saving	Rs/y
Temperature control unit(6)	247,500	Steam	402,192
TOTAL	247,500	Total	402,192
Annual operating cost	Rs/y	Net saving =(saving - annual operating cost)	176,765
Interest (21%)	51,975	Pay back period =(Investment/Net saving)x12 = 9 Months	

٤

Cost of temperature control unit(including installation cost) Number of units required

Steam savings

=22,344 kg/M (8.3% reduction of boiler fuel) =Rs 402,192/y

= Rs 41,250

=6

WORK SHEET 9.6			
Recovery of Caustic (Cour (option 7.2 in worksheet 8)	nter current r	inse water after recycling for screer	washing)
Investment	Rs	Saving	Rs/y
Counter current rinse water co	ollection	Caustic	3,247,200
tank	11,000		
Pumps(7), Pipes & Valves(ind	cluding	Treatment cost	3,312,000
Installation)	187,000		
Civil work	86,225	Water	34,800
Filter press(2)	250,000		
Triple effect evaporator	3,500,000	1	
Condensate tank(steel)	100,000	TOTAL	6,594,000
Caustic collection tank	50,000		
Over head collection tank	100,000		
	4 204 225	Net saving	4,251,253
Total	4,284,225	=(saving - annual operating	
Annual operating cost	Rs	COSL)	
	000 (07	Pay back period	
Interest (21%)	899,687	=(Investment/Net saving)x12	
Electricity(pumping)	43,560	= 12 Months	
Labor(2 skilled laborer)	180,000		
Maintenance cost(3%)			
Filter press	7,500		
Evaporator	105,000		
Depreciation(10%)	375,000		
Steam	732,000		
Total	2,342,747		

Investment cost

Counter current rinse water collection tank =Rs 11,000 2 pumps including valves and piping =Rs 36,000

Collection tank for screen washing(10m³, 2mx2mx2.5m, 700l/h)Excavation cost(2.5mx2.5mx3m)Excavation cost(2.7mx3m)Concrete work (4.7m3)Total civil work=Rs 86,225

Two pumps including valves	=Rs 36,000
Triple effect evaporator (Including steam lines, condensate lines et	=Rs 3,500,000 c)
Condensate tank(heat insulated, capacity 3 Two pumps(including insulated piping etc)	.5m ³ steel)=Rs 100,000) =Rs 100,000
Caustic collection tank(steel 2 m ³) Pump	=Rs 50,000 =Rs 15,000
Overhead collection tank (including coolin	g coils 2m ³)=Rs 100,000
Operational cost	١
Electricity(pumping)	=Rs 43,560/y
Steam cost Two kg of water can be evaporated by usi	ng 1 kg of steam
Evaporation	=483 l/h
Therefore steam requirement	=240 kg/h
Steam cost	=Rs 732,000/y
Two skilled labourers	=Rs 180,000/y
Savings	
Caustic saving	=Rs 270,600/M (lower alkalinity of effluent)
Treatment cost(Neutralization)	=Rs 276,000/M
Water saving (Rs20/Kg)	=145m3/M (1% of total water) =Rs 34,800/y

.

WORK SHEET 9.7			
Counter current rinsing in the 1st four baths and last three baths (option 12 in worksheet 8)			
Investment	Rs	Saving	Rs/y
Pumps(including fittings)	20,000	Water	24,000
		Steam	85,266
		TOTAL	109,266
Annual operating cost	Rs	Net saving	102,666
Interest (21%) Electricity	4,200 2,400	=(saving - annual operating cost)	
Tratel	2,400	Pay back period =(Investment/Net saving)x12	
	0,000	= 2 Months	
Savings			
Water saving(Rs 20/kg)	=	= 100 m ³ /M (0.7% of total water cons =Rs 24,000/y	umption)
Steam saving(Rs 1.5/kg)	=	= 4737 kg/M (1.4% of total fuel consu =Rs 85,266/y	imption)
Investment			
Pumps(four pumps, 1 standby, 1 h (including fittings)	np, 3/4 kW	h) =Rs 20,000	
Variable cost			
Electricity (63 kWh/M)		=Rs 2,400/y	

WORK SHEET 9.8			
Collectio	n of condensate ((option 31	(from Drum dryer) for recycling in worksheet 8)	
Investment	Rs	Saving	Rs/y
Pipes	5,000	Steam	31,848
		TOTAL	31,848
Annual operating cost Interest (21%)	Rs 1,050	Net saving =(saving - annual operating cost) Pay back period =(Investment/Net saving)x12 = 2 Month (or 170,000 m drving)	30,798

Investment

Extension of condensate pipe to the mercerizer condensate collection tank =Rs 5,000 (including lagging and installation)

٥

SavingsSteam condensate=155 kg/h (0.1% of water consumption)=155 kg/h (0.1% of water consumption)=155 kg/h (0.1% of water consumption)=155 kg/h (0.1% of water consumption)Steam=39060(kJ/h)/2500(kJ/kg)=15.6 kg/h (0.5% of total boiler fuel)Operating hours per month(assumed)=100 h

	WORK	SHEET 9.9	
Recycling of water	r from Hydro	pextractor (option 30 in worksheet 8)	
Investment	Rs	Saving	Rs/y
Collection tank Pump	11,000 5,000	Water	12,000
Total	16,000	TOTAL	12,000
Annual operating cost	Rs	Net saving =(saving - annual operating cost)	7,260
Interest(21%) Electricity	3,360 1,380	Pay back period =(Investment/Net saving)x12	
Total	4,740	=26 Months	
Investment			
Collection tank (1 m ³) Pump (1000l/h)	=	=Rs 11,000 =Rs 5,000	
Operating cost(Electricity)	=	=Rs 1,380/y	
Water saving (per month) Normal wash Garment wash (without of Enzyme wash Bleach wash/Ice wash Stone bleach Total	= lenim) = = = =	$=5 m^{3}$ =3.7m ³ =8.6m ³ =15m ³ =17m ³ =49.3m ³	
Total water saving	=	=50m ³ /M (0.3% of total water consumpt =Rs 12,000/y	tion)

W	ORK SHI	EET 9.10	
Installation of doctor blades or (option	n the blan 16 in wo	kets & recycling blanket wash water rksheet 8)	
Investment	Rs	Saving	Rs/y
Doctor blade Collection tank Pumps(Including valves etc)	10,000 40,000 36,000	Water5Treatment cost17Print paste4	6,832 4,960 3,740
Total	86,000	TOTAL 27	5,532
Annual operating cost	Rs	Net saving 25 =(saving - annual operating cost)	5,420
Interest(21%) Electricity	18,060 2.052		
Total	20,112	<pre>Pay back period =(Investment/Net saving)x12 = 4 Months</pre>	
Investment			
Doctor blade Collection tank (2 m ³) Pumps(2 numbers, 1hp, 45kWh) (Including valves and piping etc)		=Rs 10,000 =Rs 40,000 =Rs 36,000	
Operating cost Electricity		=57 kWh/M =Rs 2,052/y	
Savings			
(i) Water Water consumption before scraping 80% reduction of water		=296 m ³ /M =296 x 0.8 m ³ /M =236.8 m ³ /M (i.e 1.6% of total wate =236.8(m ³ /M) x 20(Rs/m ³) x 12(M) = Rs 56,832/y	r)

(ii) Treatment cost saving

COD reduction	=27.6x10 ⁻³ (kg COD/kg fabric)x17600 (kg/M)
	=486 kg COD/M (i.e 2.05 % reduction of total COD)
	$= 486(kg) \times 30 (Rs/kg) \times 12(M)$
	=Rs 174,960 /y

(iii) Print paste recovery

Recovered paste can be reused for dark shades, and cost of print paste is about Rs 7.5 per kg

•

Total paste saving	$= 486(kg) \times 7.5(Rs/kg) \times 12(M)$
	= Rs 43,740/y

Total saving

= Rs 274,532/y

10.0 Conclusions

General housekeeping lapses were observed which have a significant affect on productivity. The general atmosphere in this industry also shows a lack of motivation among the workers to take initiative and responsibility about their jobs.

Inspection of the processes carried out in the industry suggested very obvious waste minimisation options that should be implemented for eg. Termination of grey cloth mercerisation and switching to scoured cloth mercerisation will enable the installation and operation of a caustic recovery plant for the mercerisation waste water, so reducing alkali consumption significantly.

Use of appropriate synthetic thickeners, instead of kerosene based solvents will provide an economical solution to the prevailing nuisance and health hazards caused by the emission of kerosene vapours during curing and drying.

Material wastages (identified in the balances) could be controlled by the requirement for maintaining daily manufacturing sheets including material consumption and factory downtime analysis.

Calculated steam consumption excluding the losses and steam production indicates and unacceptable high boiler efficiency. It is difficult to accept this high value, and it is thought that this value is due to recording of incorrect values for actual fuel consumption.

The recovery of condensate and lagging of hot surfaces, optimisation of water consumption in jiggers and garment washing machines are several options for improvement of economy in steam production.

A total of 61 Waste Minimisation options were identified by the team and of these it is estimated that 24 require low investment, 34 require medium investment and 3 require high investment. The majority of the options are Resource Conservation (33) and Resource Recovery (19), while the others are Process Control (5), Material Change (3) and Technology Change (1).

The industry was not able to implement these options, as it was closed shortly after the study was carried out.

11.0 References

- 1 JOHN H PERRY Chemical engineer's hand book Fourth edition pg 3-133
- 2 ESSTOP & McCONKEY (1993) Applied Thermodynamics Logman Scientific & Technical (5th edition)
- 3 PETERS & TIMMERHAMS Plant design and economics for chemical engineering pg 163, 205, 814
- 4 R.H PETERS (1967) Textile Chemistry II pg 172
- 5 CHITTARANJAN DESAI (October, 1995) Report on first mission to Sri Lanka,Industrial Pollution Reduction Programme, UNIDO, Sri lanka.

.

1

N

IPRP/CISIR/BAKSON

. س

ANNEXURE A

PRIMARY RESIDENTIAL

MIXED INDUSTRIAL / RESIDENTIAL

COMMERCIAL ZONES

Ť

ASSOCIATED

ANNEXURE C

iii

Annexure D

LIST OF MAJOR CHEMICALS AND DYES (For September 1995)

<u>DYES</u>

DESCRIPTION

<u>QUANTITY</u> <u>kg/month</u>

,

Cibacron Blue	FGF	1.344
Cibacron Blue	FR	3.327
Colour Chem Black I	FBRK	200.00
Colour Chem Blue Fl	FRN	50.00
Colour Chem Green	FB	50.00
Colour Chem Golden	yellow FRM	50.00
Colour Chem Navy E	Blue FBR	25.00
Colour Chem Orange	FB	50.00
Colour Chem Red FC	FR	50.00
Colour Chem Turquis	e Blue FBN	25.00
Colour Chem Violet	FFR	25.00
Colour Chem Yellow	F20	25.00
Cibacron Navy FG		1.816
Cibacron Red FB		18.266
Cibacron Scarlet F3G		30.607
Cibacron Yellow F3R		13.454
Cibacron Yellow F4C	Ĵ	22.088
Drimarene Golden Ye	ellow K2R	1.275
Drimarene Turquise H	Blue K2B	42.13
Levafix Black EB		37.97
Levafix Turquise Blu	e EBA	11.342
Remozol Golden Yell	low RNL	1.179
Remazol RED RB		6.741
Sulphole Black QC		125.00

CHEMICALS

DESCRIPTIONQUANTITY kg/monthAcetic Acid90.00Becksol 2K600.00Bluton K2D100.00Bio Wash L100.00

Bleaching powder	50.00
Colour Chem Binder 684	2500.00
Calcium Hypo Chlorite	150.00
Caustic soda	19615.00
Calatac VB	400.00
Di Ammonium Phosphate	300.00
Hydrogen Peroxide	2310.00
Irgalon St	50.00
Pisoft 195	365.00
Pimaze Al	300.00
Ryudye W Binder S420	25.00
Salt	500.00
Soda Ash	250.00
Sodium Silicate	2860.00
Sodium Sulphide Flake	25.00
Tinovadine JU HC	210.00
Texfix M	150.00
Urea	1200.00
Uvitex CID	150.00

PRINTING UPKEEP

DESCRIPTION

Araldite Gum	2.000
Chromic acid flakes	17.000
Nickel Screen 80 Mesh	6.000
Nickel Screen 80 Mesh Large	3.000
RS25a Daylight Film	20.000
RS 61 Sensitizer	1.000
RS 63 Photo Emulsion	5.000
Uland Flim	1.000

BOILER UPKEEP

DESCRIPTION

Nalco-19

QUANTITY kg/month

2.000	
17.000	
5.000	
3.000	
0000	
20.000	
1.000	
20.000 1.000 5.000	
20.000 1.000 5.000 1.000	

<u>QUANTITY</u> kg/month

35.000

Annexure E

Production data (September 1994)

Tot	tal production (Bleaching and	Laundry)	= 146,109 kg
	Printing	= 160,000 m (17,	,600 kg)
	Laundry	= 48,649 kg	
	Bleaching	= 886,000 m (97,	,460 kg)
	Jigger/Jet dyeing	= 15,000 m (1,65	50 kg)
	Cold pad dyeing	= 61,000 m (6,71	0 kg)
	Mercerizing	= 650,000 m (71	,500 kg)

,

Annexure F

Process recipes

Jiggers

100kg/batch

Scouring

NaOH	2.5kg (38°Be)
NaSio ₃	2.5 kg
H ₂ O ₂	3 kg
Ju	0.5 kg

Bleaching

NaOH	400 g (38°Be)
NaSio ₃	400 g
H ₂ O ₂	800 g
NaCl	1250 g
Uvitex CID	400 g

•

.

Jet dyeing

100kg/batch

100% Polyester	
Soda ash	2.4 kg
Thinovadine Ju	1-0.5 kg
Dyes	2.5 kg
Polyester/Cotton	

NaOH	4 kg
NaSio ₃	3.2 kg
H_2O_2	4.8 kg
Thinovadine Ju	0.8 kg
Dyes	2.5 -0.5 kg

Small Jiggers (Unmercerized)

32 kg/batch

Desizing	
Pimaze Al	1 kg
Thinovadine Ju	0.5 kg

Scouring/Bleaching

NaOH	2.9 kg
NaSio ₃	2.9 kg
H_2O_2	3.8 kg
Thinovadine Ju	0.5 kg
Uvitex CID	0.5 kg
NaCl	1.2 kg

Stone/Bleach

(38 kg/batch)

Pimaze Al	1.9 kg
Thinovadine Ju	2 kg
Piscon 80	475 g
HAC	150 g
Pisoft 195	1.9 kg

Dyeing 100kg/Batch

Dyes	2.5-0.5 kg
Soda ash	8-2.5 kg
N _a C1	20 10 10

Soda ash	8-2.5 kg
NaCl	30-10 kg
Thinovadine Ju	1-0.6 kg
Pisoft 195	3 kg

\$

.

Bleach wash/Ice wash

42 kg/Batch

Pimaze Al	2 kg
Thinovadine Ju	1 kg
Ca Hyperchloride	1.4 kg
Pisoft 195	2 kg
H^2O^2	1.6 kg

Enzyme/Stone wash

38kg/Batch

Pimaze Al	1.9 kg
Thinovadine Ju	0.95 kg
Ca Hyperchloride	1.9 kg
Pisoft 195	1.9 kg
H^2O^2	1.9 kg
Pican 80	0.475 kg
Hac	0.15 kg

Normal wash

100kg/Batch(without denim)	
Pisoft 195	5 kg
50kg/Batch(denim)	

Pisoft 195 3 kg

Annexure G

ESTIMATION OF THE STEAM COST

Average Steam cost =Rs 1500/1000kg of steam (GIVEN BY THE INDUSTRY)

1

Annexure H

ESTIMATION OF EFFLUENT DISPOSAL COST IN THE BASIS OF COD REMOVAL

e

Assumption a) Capacity of plant b) Typical COD of textile effluent after equality	$= 200 \text{ m}^3/\text{d}$ ization = 800 mg/l
Chemical consumption Coagulant Alum (400 mg/l) Flocculent Polymer (2 mg/l in dry solid basis) Neutralizer Lime (120 mg/l)	= 80 kg/d = 400 g/d = 24 kg/d
Cost Alum (Rs 16/kg) Polymer (Rs 1000/kg) Lime (Rs 5/kg) Total Chemical cost	=1280 =400 , =120 =1800/d
Electricity Feed pump (1 kW) Chemical preparation(0.25x3) Dosing pump (0.1x3) Flash mixer (0.5 kW) Clarifier scraper(0.5kW) RBC (1.5 kW) Secondary clarifier scraper(0.75 kW) Total power	=24 kWh =18 kWh =7.2 kWh =12 kWh =18 kWh =36 kwh =18 kWh =145.7 kWh
Electricity cost (Rs 5/kWh) Labor cost (24 labor hours per day) Total cost of labor including EPF, ETF,	=726
and annual overtime Labor cost Sludge handling cost Total operational cost	=Rs 25/h =Rs 600/d =Rs 150/d =Rs 3726/d
COD removal per day	$=200x(800-250)x10^{-3} \text{ kg/d}$ = 110 kg/d
Cost for COD removal	=3276/110 =Rs 29.78/ kg =Rs 30/ kg

Annexure I

UTILITY COSTS

UTILITY	UNIT COST (Rs)	COST Rs/kg FABRIC
WATER	33.4 /m ³	3.35
STEAM	1.5 / kg	3.27 ♀
ELECTRICITY	4.98 / kWh	3.64
FUEL OIL	6.43 / 1	1.11
TREATMENT COST 🌣	30 / kg COD	4.91 § ,

Treatment unit cost (Rs 30/kg) include Chemical and biological treatment cost. (Detail calculation is in the annexure H).

§ Treatment cost per kg of fabric was calculated using total cod removal cost (from waste emission cost Rs 717,801) and total production (146,109 kg) in September 1994.

² Steam cost per kg of fabric was calculated using total steam consumption(from material balance 318,535 kg) and total production (146,109 kg) in September 1994.

IPRP/CISIR/BAKSON