



# OCCASION

This publication has been made available to the public on the occasion of the 50<sup>th</sup> anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

## DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

# FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

# CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

# 22018

Annex 7

# INDUSTRIAL POLLUTION REDUCTION PROGRAMME DG/SRL/91/019

# OPPORTUNITIES FOR WASTE MINIMISATION IN THE TEXTILE PROCESSING INDUSTRY IN SRI LANKA

# WASTE AUDIT

# OACIANIC KNITTERS PVT LTD

CEYLON INSTITUTE OF SCIENTIFIC AND INDUSTRIAL RESEARCH 363, Bauddhaloka Mawatha, Colombo 7, SRI LANKA

N

# **Table of Contents**

| Sumr   | nary                                         | 1 age    |
|--------|----------------------------------------------|----------|
| List c | of Abbreviations                             | <i>,</i> |
| PAR    | T 1 - ENVIRONMENTAL STATUS<br>Introduction   | 1        |
| PAR    | T 2 - WASTE AUDIT                            |          |
| 1.0    | General Information                          | . 4      |
| 2.0    | Availability of Information                  | 6        |
| 3.0    | Process Flow Diagrams                        | 6        |
| 4.0    | Housekeeping status                          | 12       |
| 5.0    | Material Balance                             | 13       |
| 6.0    | Total Water Balance                          | 17       |
| 7.A    | COD Analysis of effluent                     | 18       |
| /.B    | Waste and emissions cost                     | 19       |
| 8.0    | Waste minimisation options                   | 21       |
| 9.0    | Cost benefit analysis                        | 28       |
| 10.0   | Implementation of waste minimisation options | 39       |
| 11.0   | Conclusions                                  | 44       |
| 12.0   | Keierences                                   | 45       |

List of annexures

| A. | Organisation Chart                       | i    |
|----|------------------------------------------|------|
| B. | Location Map                             | ii   |
| C. | Factory layout                           | iii  |
| D. | Major chemicals                          | iv   |
| E. | Production data                          | vi   |
| F. | Recipes for major processes              | vii  |
| G. | Estimation of the steam cost             | viii |
| H. | Estimation of the effluent disposal cost | ix   |
| I. | Utility costs                            | х    |

ал<sub>а</sub>.

#### SUMMARY

Oacianic Knitters (Pvt) Ltd., is a Medium scale Knitting and dyeing factory located in a mainly industrial dominated urban area of Colombo South. Though it is located in an industrial area, disposal of effluent is a major issue due to lack of central disposal facilities and inadequate space within the premises.

This industry consumes 1611 of water and 0.641 of furnace oil for manufacture of one kilogram of processed fabric.

Insufficient space among the machines, underloading of dyeing machines and heat losses are several reasons for reduction of production efficiency.

The steam utilization of this industry is 75% of the steam production.

Fabric cleaning process of scouring generates 20% of total COD and balance 80 % COD is due to material wastage in the other process operations.

Most expensive waste streams of this industry are polyester and cotton dyeing. These streams and the waste streams of soaping and scouring exceed the factory average waste stream cost.

Thirty seven waste minimization options were identified for this industry and the cost benefit analysis carried out for the ten highest priority options is shown in the Table. Of the options, three of the five proposed chemical substitutions, lagging of steam lines and non-acceptance of oil contaminated fabric have been implemented. Actual cost benefit for these are compared with the expected in the Table. The industry is interested in implementing other options such as installation of low liquor ratio jets, condensate recovery, upgrading of water treatment plant and lagging of jets. Due to lack of funds the implementation of these options have been delayed.

| Option Investment Rs                                                                        |         | t Rs.  | Ks. Operating cost<br>Rs./y |       | Net Savings Rs./y                          |                                  | Pay back<br>period (M) |      | Environmental<br>Benefits                                    |
|---------------------------------------------------------------------------------------------|---------|--------|-----------------------------|-------|--------------------------------------------|----------------------------------|------------------------|------|--------------------------------------------------------------|
|                                                                                             | Exp.    | Act.   | Exp.                        | Act.  | Exp.                                       | Act.                             | Exp                    | Act. | ]                                                            |
| <ol> <li>Chem. substitution<br/>Acetic acid<br/>NaHS<br/>Na sulphide<br/>Leverol</li> </ol> | Nil     | Nil    | Nil                         | Nil   | 209,124<br>144,360<br>55,524<br>9,240<br>- | 174,244<br>28,764<br>-<br>46,272 | N/A                    | N/A  | 2% reduction in organic load                                 |
| 2. Installation of<br>temperature control<br>system for winches                             | 165,000 |        | 34,650                      | -     | 251,996                                    | -                                | 12                     | -    | 0.2% reduction in<br>effluent vol., 2.5% in<br>fuel consmpn. |
| 3. Installation of press<br>button switches                                                 | 800     | -      | Nil                         | -     | 21,911                                     | -                                | < 1                    | -    | -                                                            |
| 4. Lagging of steamlines                                                                    | 9,350   | 38,164 | 1,970                       | 8,014 | 23,227                                     | 77,672                           | 5                      | 6    | 0.5% reduction in fuel consumption                           |
| 5. Condensate recovery                                                                      | 93,918  | = .    | 19,728                      | -     | 176,765                                    | -                                | 6                      | -    | 4.7% reduction in<br>fuel consmpn., 2% in<br>effluent volume |
| 6. Lagging of boiler                                                                        | 30,948  | -      | 6,405                       | -     | 72,603                                     | -                                | 5                      | -    | 1.2% reduction in fuel consumption                           |
| 7. Lagging of jets                                                                          | 182,520 | -      | 38,329                      | -     | 211,907                                    | -                                | 10                     | -    | 7.5% reduction in fuel consumption                           |
| 8. Avoid use of sequestering agent                                                          | Nil     | -      | 299,760                     | -     | 75,525                                     | -                                | N/<br>A                | -    | 2.5% reduction in<br>organic load                            |
| 9. Reduced oil in<br>commissioned fabric                                                    | Nil     | Nil    | Nil                         | Nil   | 73,728                                     | 98,208                           | N/<br>A                | N/A  | reduction in organic<br>load                                 |
| 10. Improvement of boiler<br>efficiency                                                     | Nil     | -      | Nil                         | -     | 66,338                                     | -                                | N/<br>A                | -    | 2% reduction in fuel consumption                             |

# List of Abbreviations

| COD<br>°C | Chemical Oxygen Demand<br><sup>o</sup> Centigrade |
|-----------|---------------------------------------------------|
| h         | hour                                              |
| J         | joule                                             |
| °K        | °Kelvin                                           |
| km        | kilometre                                         |
| kg        | kilogram                                          |
| kWh       | kilo Watt hour                                    |
| 1         | litre                                             |
| min       | minute                                            |
| m         | meter                                             |
| mg        | milligram                                         |
| N         | Newton                                            |
| Ref       | Reference                                         |
| S         | second                                            |
| У         | year                                              |
| w/w       | weight/weight                                     |
| M         | Month                                             |
| Т         | Tonnes                                            |
| d         | day                                               |
| g         | gram                                              |

ť,

# PART 1 - ENVIRONMENTAL STATUS OACIANIC KNITTERS (PVT) LTD

## 1.0 Introduction

Oacianic Knitters (Pvt) Ltd is a textile processing industry carrying out knitting, dyeing and printing of cotton, polyester and polyester cotton fabrics.

| 1.1 | Organisational chart | : Attached (Annex A)                                                                                          |
|-----|----------------------|---------------------------------------------------------------------------------------------------------------|
| 1.2 | Ownership            | : Mr. Maduraiweeran, Chairman                                                                                 |
| 1.3 | Contact persons      | : Messers. Vas Gunawardena (knitting), Sydney de Silva (Dyeing), Moorthy (Engineer), Pregalather (Finishing), |

# 2.0 Site details

- 2.1 Location No. 4 Kandawela Mawatha, Ratmalana (Annex B)
- 2.2 Physical Descriptions

|     | (i)   | Area                      | : | 4136 m <sup>2</sup>                                                                         |  |
|-----|-------|---------------------------|---|---------------------------------------------------------------------------------------------|--|
|     | (ii)  | Topography                | : | Flat land                                                                                   |  |
|     | (iii) | Factory layout            | : | Attached (Annex C)                                                                          |  |
|     | (iv)  | Sealed surface            | : | 95% of the site                                                                             |  |
|     | (v)   | Depth to<br>groundwater   | : | 3 m                                                                                         |  |
|     | (vi)  | Surface water bodies      | : | None                                                                                        |  |
|     | (vii) | Surface drainage channels | : | All drains are connected to a main drain and then to the public sewer system                |  |
| 2.3 | Curre | ent use                   |   |                                                                                             |  |
|     | (i)   | Processes                 | : | Knitting, dyeing, and finishing                                                             |  |
|     | (ii)  | Products                  | : | Dyed and printed fabrics                                                                    |  |
|     | (iii) | Raw materials             | : | Yarn                                                                                        |  |
|     | (iv)  | Major chemicals           | : | Caustic soda, dyes, detergents, softners and pigments and other general chemicals (Annex D) |  |
|     | (v)   | Energy source             | : | Furnace oil, LP gas and electricity                                                         |  |

2.4 Site drainage (type & discharge points)

| (i)   | Process effluent        | : Through open drains to public sewer |
|-------|-------------------------|---------------------------------------|
| (ii)  | Domestic waste<br>water | : Through open drains to public sewer |
| (iii) | Storm water             | : Through open drains to public sewer |
| (iv)  | Toilet effluent         | : Through pipe drain to septic tanks  |

# 3.0 Environmental Emissions

| 3.1 | Atmospheric emissions    | : | Cotton dust from knitting machines, flue gas from boilers, exhaust from dryers and stentors. |
|-----|--------------------------|---|----------------------------------------------------------------------------------------------|
| 3.2 | Aqueous discharge points | : | Effluents from bleaching and dyeing.                                                         |
| 3.3 | Solid waste              | : | Cotton dust, paper and empty chemical packaging materials                                    |

# 4.0 Site history and Neighbouring sites

4.1 History of the site

| (i)  | Start date | : 1983            |
|------|------------|-------------------|
| (ii) | Former use | : Textile factory |

# 4.2 Current and former use of neighbouring sites

|     | (i)   | Northern       | ndustries and | residential buildings |
|-----|-------|----------------|---------------|-----------------------|
|     | (ii)  | Southern       | Airport       |                       |
|     | (iii) | Western        | Weaving facto | ry                    |
|     | (iv)  | Eastern        | ackaging plan | nt                    |
| 4.3 | Sign  | ificant spills | Jone          |                       |

# 5.0 Environmental Receptors

| 5.1 | Abstraction j | points |
|-----|---------------|--------|
|-----|---------------|--------|

| (i)   | Dug wells     | : None                             |
|-------|---------------|------------------------------------|
| (ii)  | Tube wells    | : 3 tube wells within the premises |
| (iii) | Surface water | : None                             |

# 5.2 Sensitive neighbours within 2 km

|     | (i)                                                                      | Residence   | : Northern side                                                                    |  |  |  |
|-----|--------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------|--|--|--|
|     | (ii)                                                                     | Hospitals   | : None                                                                             |  |  |  |
|     | (iii)                                                                    | Schools     | : None                                                                             |  |  |  |
|     | (iv)                                                                     | Others      | : None                                                                             |  |  |  |
| 5.3 | 3 Protected Natural Habitats: Attidiya Bird Sanctuary - 3 km to the east |             |                                                                                    |  |  |  |
| 5.4 | Wate                                                                     | er Bodies   |                                                                                    |  |  |  |
|     | (i)                                                                      | Surface     | : Weras ganga, Bolgoda lake (Annex B)                                              |  |  |  |
|     | (ii)                                                                     | Sub-surface | : Residents in the neighbourhood use dug wells for domestic purposes and gardening |  |  |  |

# 6.0 Solid Waste Issues

(i) Type and disposal : Containers-sold; Cotton waste and polythene-burnt method

.

# 7.0 Environment Licence issues

- 7.1 Current status : EPL issued in 1995
- 7.2 Current compliance issues :

# PART 2 - WASTE MINIMISATION STUDY

# 1.0 General Information

|                                                    | WORKSHEET 1                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                                                        |  |  |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------|--|--|
| Nam                                                | e of the Company : Oacianic                                                                                                                                                                                                                                                                                                                                                                                              | c Knitters (Pvt) Ltd.             |                                                        |  |  |
| Wast                                               | e Minimisation Team                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                                        |  |  |
|                                                    | Name                                                                                                                                                                                                                                                                                                                                                                                                                     | Designation                       |                                                        |  |  |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7.<br>8.<br>9. | Mr. H.N. GunadasaManager (Environmental Technology), CISIRMiss. G.V. MallikaResearch Officer, CISIRMrs. S. WickramaratneResearch Officer, CISIRMrs. K.D. AttanayakeSenior Technical Officer, CISIRMiss. S. de CostaResearch Officer, CISIRMr. R. IllankumaranResearch Officer, CISIRMr. K. PavananthanResearch Officer, CISIRMr. Sydney de SilvaProcessing Manager, OacianicMr. V. BaikumarProduction Assistant Oacianic |                                   |                                                        |  |  |
| А.                                                 | Major Raw Materials Con<br>i) RAW MATERIAL<br>a) Yarn - Cotton<br>b) Polyester<br>c) Polyester/Cotton<br>d) Others (commissi<br>Polyester<br>Polyester/cot                                                                                                                                                                                                                                                               | nsumption<br>ioned fabric)<br>ton | 6.0 T/y*<br>120 T/y*<br>100 T/y*<br>12 T/y*<br>30 T/y* |  |  |
|                                                    | ii) CHEMICAL<br>a) Dyes<br>b) Other chemicals                                                                                                                                                                                                                                                                                                                                                                            |                                   | 8 T/y*<br>106 T/y*                                     |  |  |
| В.                                                 | Energy Consumption<br>a) Electrical energy<br>b) Fuel for boilers<br>c) Others L P gas                                                                                                                                                                                                                                                                                                                                   | 3                                 | 40,580 kWh/M§<br>39,600 l/M§<br>2120 kg/M§             |  |  |
| C.                                                 | Water Consumption                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 120000 m³/y**                                          |  |  |

| D. | Production                                                                                 |              |
|----|--------------------------------------------------------------------------------------------|--------------|
| 1) | INSTALLED CAPACITY                                                                         |              |
|    | Winch Dyeing                                                                               |              |
|    | Winch 1                                                                                    | 200 kg/batch |
|    | Winch 2                                                                                    | 125 kg/batch |
|    | Winch 3                                                                                    | 40 kg/batch  |
|    | Winch 4                                                                                    | 150 kg/batch |
|    | Jet Dyeing                                                                                 |              |
|    | Jigger                                                                                     | 250 kg/batch |
|    | New jets 1&2                                                                               | 150 kg/batch |
|    | Jets 1 & 2                                                                                 | 400 kg/batch |
|    | Jets JF & JE                                                                               | 75 kg/batch  |
|    | Fongs                                                                                      | 600 kg/batch |
| 2) | ACTUAL PRODUCTION - November 1994                                                          |              |
|    | 100% Cotton                                                                                | 13277 kg/M   |
|    | Polyester/Cotton blend                                                                     | 34907 kg/M   |
|    | 100 % Polyester                                                                            | 15,753 kg/M  |
| E. | Type of Effluent Treatment                                                                 | No treatment |
| F. | Any Other Relevant Information :<br>The plant has 85 workers and 25 working days per month |              |

- \* Major raw material consumption per year was calculated from the monthly average consumption figures provided by the industry.
- \*\* Annual water consumption was calculated from daily average consumption figure (400 m<sup>3</sup>/day, 25 days/month)
- § Monthly energy consumption figures are actual consumption figures for November 1994.

## 2.0 Available Information

Maintenance of proper records with regard to machine wise and shade wise production figures made it easier for the study team to carry out the material balance. However in the absence of measurement facilities and emission records an energy balance was not carried out.

| WORKSHEET 2            |               |                                                                |  |  |  |  |
|------------------------|---------------|----------------------------------------------------------------|--|--|--|--|
| Information            | Availability  | Remarks                                                        |  |  |  |  |
| Process flow diagram   | Not available |                                                                |  |  |  |  |
| Material Balance       | Not available | Actual consumption for each month available                    |  |  |  |  |
| Energy balance         | Not available | Only bills for electricity<br>and furnace oil are<br>available |  |  |  |  |
| Water balance          | Not available | Average monthly<br>consumption available                       |  |  |  |  |
| Plant layout           | Available     | Satisfactory                                                   |  |  |  |  |
| Waste analysis         | Not available | No analysis done                                               |  |  |  |  |
| Emission records       | Not available | No provision to record                                         |  |  |  |  |
| Production log sheets  | Available     | Satisfactory                                                   |  |  |  |  |
| Maintenance log sheets | Not available |                                                                |  |  |  |  |

# 3.0 PROCESS FLOW DIAGRAMS

The processes indicated in the worksheets 3.1 to 3.3 are used for dyeing of fabric and Worksheets 3.4 and 3.5 indicate the process steps for white fabric with a lower number of rinses etc. Material balances were carried out according to the process steps and conditions indicated in these process flow diagrams.











# 4.0 Housekeeping Status

It is difficult to financially quantify the losses indicated in Worksheet 4 under housekeeping status. However the study team feels that the steam losses in Winch dyeing can be minimised substantially. It is also strongly felt that insufficient space affects productivity significantly.

| WORK SHEET 4<br>GENERAL REMARKS RELATED TO HOUSEKEEPING |                                                                                        |  |  |  |  |
|---------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|--|
| Sections Lapses in Housekeeping                         |                                                                                        |  |  |  |  |
| Raw material<br>handling                                | Yarn wastage due to improper handling.                                                 |  |  |  |  |
| Winch dyeing                                            | Steam wastage due to open dyeing.<br>Water spillage due to use of uncontrolled valves. |  |  |  |  |
| Dyeing Area                                             | Space between machines is not sufficient for easy transport of materials.              |  |  |  |  |

## 5.0 Material Balance

The Material balance is carried out using actual monthly production figures given by the industry for the month of November 1994 (Annexure E), liquor ratios (Annexure E) and process flow diagrams (Worksheets 3.1 to 3.5). Assumptions made and the formulae used are indicated below the Worksheet.

| WORKSHEET 5  |                 |                  |                   |                             |               |  |
|--------------|-----------------|------------------|-------------------|-----------------------------|---------------|--|
| UNIT         | INPUT MAT       | TERIALS          | OUTPUT MA         | OUTPUT MATERIALS            |               |  |
| OPERATION    |                 |                  | PRODUCT           | WASTE S                     | STREAM        |  |
|              | NAME            | QUANTITY<br>(kg) | QUANTITY<br>(kg)  | LIQUID<br>(m <sup>3</sup> ) | SOLID<br>(kg) |  |
| Scouring     | Cotton fabric   | 13277            | §12348<br>(7799)  | §929                        |               |  |
|              | Polyester       | 16754            | §16252<br>(10264) | §502                        | Nil           |  |
|              | Blend           | 31905            | 30948<br>(19545)  | 957                         |               |  |
|              | Water           | 622261           |                   | 620465                      |               |  |
|              | Steam           | 73654            |                   | *37841                      |               |  |
|              | $H_2O_2$        | 1142             |                   | 1142                        |               |  |
|              | NaOH            | 68               |                   | 68                          |               |  |
|              | Other chemicals | 1095             |                   | 1095                        |               |  |
| Acid washing | Cotton          | 12348            | 12348             |                             |               |  |
|              |                 | (7799)           | (7799)            |                             |               |  |
|              | Water           | 98477            |                   | 98477                       | Nil           |  |
|              | Acetic acid     | 182              |                   | 182                         |               |  |
| Polvester    | Blend           | 25299            | 25299             |                             |               |  |
| Dveing       | Diena           | (15979)          | (15979)           |                             | Nil           |  |
|              | Polyester       | 10863            | 10863             |                             |               |  |
|              | 5               | (6861)           | (6861)            |                             |               |  |
|              | Water           | 402562           | , ,               | 419123                      |               |  |
|              | Steam           | 72058            |                   | *55497                      |               |  |
|              | Reactive dyes   | 51               | 38                | 13                          |               |  |
|              | Disperse dyes   | 441              | 419               | 22                          |               |  |
|              | Other chemicals | 2061             |                   | 2061                        |               |  |

IPRP/CISIR/OACIANIC

13

| Cotton<br>Dyeing                                                                  | Blend<br>Cotton<br>Water<br>Steam<br>Reactive dyes<br>Disperse dyes<br>Other chemicals | 25619<br>(15975)<br>4393<br>(2774)<br>321621<br>25736<br>39<br>395<br>1672      | 25619<br>(15975)<br>4393<br>(2774)<br>29<br>375       | 332313<br>*15044<br>10<br>20<br>1672 | Nil    |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------|--------|
| Soaping                                                                           | Blend<br>Cotton<br>Polyester<br>Water<br>Steam<br>Detergent &<br>Other chemicals       | 25980<br>(15979)<br>2838<br>(4393)<br>11000<br>(6861)<br>440280<br>59545<br>598 | 25980<br>(15979)<br>2838<br>(4393)<br>11000<br>(6861) | 460489<br>*40000<br>598              | Nil    |
| <b>Cold Washing</b><br>Cotton 2 rinses<br>Polyester 2<br>rinses<br>Blend 4 rinses | Fabric<br>Water                                                                        | 60074<br>(37942)<br>1676289                                                     | 60074<br>(37942)                                      | 1676289                              | Nil    |
| Hot Washing<br>Cotton 2 rinses<br>Polyester 1<br>rinse<br>Blend 2 rinses          | Fabric<br>Water<br>Steam                                                               | 60074<br>(37942)<br>1019502<br>81080                                            | 60074<br>(37942)                                      | 1057255<br>*43327                    | Nil    |
| Hydro<br>extraction                                                               | Fabric<br>Water                                                                        | 60074<br>(37942)                                                                | 60074<br>(11553)                                      | 26389                                | Nil    |
| Drying                                                                            | Fabric<br>Moisure<br>Steam                                                             | 60074<br>(11553)<br>16310                                                       | 59435                                                 | *16310                               | ♪12192 |

Total Process effluent =  $4900m^3/M$ Total steam used in processes = 329 tonnes/M All the fabrics are dyed except white shade fabrics. Soaping is done only for dyed fabrics.

- \* The recyclable steam condensate (total volume 208 m<sup>3</sup>) is presently discharged into the cold water tank.
- ▶ Fabric moisture evaporates into atmosphere during the drying process.
- \*\* Water is absorbed by dry fabric during the first wet process
- § Weight loss occurs from the fabric to the liquid stream during scouring
- () Moisture absorbed in the fabric

## ASSUMPTIONS

- 1) Calculation of the actual heat utilization for the dyeing operation is difficult due to insufficient data. However approximate steam consumption was calculated with the following assumptions.
  - (i) Heat absorbed by the machine during the initial stages were not considered. Heat required to raise temperature of water is very high compared to the other absorption and losses.
  - (ii) Steam consumed =  $(cp_f \times m_f + cp_i \times m_i)(T_o T_r)/h_s$   $cp_f(1.4 \text{ kJ/kg}), cp_i(4.2 \text{ kJ/kg})$  - specific heats of fabric and liquid respectively (Ref 1)  $m_f,m_i$  - mass of fabric and liquid respectively  $T_o,T_r(30^\circ\text{C})$  - operating & room temperatures respectively  $h_s$  (2000 kJ/kg) - latent heat of steam

## 2) Moisture content of the fabric on wet weight basis

Raw fabric= 7%After wet process= 43%After hydroextraction= 22%After drying= 6%

eg: calculation of moisture content in raw fabric Raw weight of fabric = mMoisture in raw fabric = 0.07 x m

Weight of fabric after scouring  $(m_1)$ 

= (100-percentage weight reduction) x m/100 (weight reduction 7% for Cotton and 3% for Polyester and Blend) (ref 2) Moisture in fabric after wet process =[ $m_1 \ge 0.93/(1-0.43)$ ] x 0.43

3) Fixation of dyes (ref 3)

Reactive dyes 75% Disperse dyes 90%

4) Chemical consumption is calculated using recipes provided by the industry. (Annexure F)
Chemical consumption
= [percentage of chemical in the recipe (g/l or g/kg)] x volume of water (or weight of fabric).

It is assumed that almost 100% of the chemicals used are going out with the effluent and the amount of chemicals retained on the fabric is negligible.

- 5) Jigger and Washing machines were not operated during this month (November 1994).
- Fabric weight after hydro extractor
   m<sub>1</sub> wet weight of fabric
   m<sub>2</sub> weight of fabric after hydro extractor
   m<sub>d</sub> dry weight of fabric

 $m_{d} = (1-0.43) m_{1} = 0.57m_{1}$  $m_{d} = (1-0.23) m_{2} = 0.77m_{2}$ 

 $m_2 = (0.57/0.77) m_1 = 0.74 m_1$ 

7) Fabric weight after drying -  $m_3$   $m_3$  = weight of fabric after drying  $m = 0.77m_2$   $= (1-0.06)m_3 = 0.96m_3$  $m_3 = (0.77/0.94)m_2 = 0.82m_2$ 

# 6.0 Total Water Balance

| Worksheet 6.0 indicates the water con | sumption in individual | processes both q   | uantity and |
|---------------------------------------|------------------------|--------------------|-------------|
| percentagewise, undefined losses and  | also the actual liquor | ratios used in the | processes.  |

| WORKSHEET 6.0<br>TOTAL WATER BALANCE (NOVEMBER 1994) |                              |                 |              |               |  |  |
|------------------------------------------------------|------------------------------|-----------------|--------------|---------------|--|--|
| Operation                                            | Estimated<br>consumption I/M | Production kg/M | Liquor ratio | % consumption |  |  |
| Scouring                                             | 622,261                      | 61,941          | 10           | 6.2           |  |  |
| Acid washing                                         | 98,477                       | 12,348          | 8            | 1.0           |  |  |
| Polyester Dyeing                                     | 402,562                      | 36,163          | . 11         | 4.0           |  |  |
| Cotton Dyeing                                        | 321,621                      | 29,692          | 1            | 3.2           |  |  |
| Soaping                                              | 440,280                      | 40,555          | 11           | 4.4           |  |  |
| Cold washing                                         | 1,676,289                    | 59,548          | 26           | 16.8          |  |  |
| Hot washing                                          | 1,019,502                    | 59,548          | 17           | 10.2          |  |  |
| Domestic *                                           | 159,375                      |                 |              | 1.6           |  |  |
| Boiler water                                         | 337,135                      |                 |              | 3.4           |  |  |
| Total                                                | 5,077,502                    |                 |              | 50            |  |  |
| Actual water<br>consumption                          | 10,000,000                   |                 |              |               |  |  |
| Undefined<br>consumption"                            | 4,922,498                    |                 |              | 49.2          |  |  |

\*\* Undefined consumption, 5357m<sup>3</sup> per month is quite a high value. It must be noted that overflow washings were not taken into consideration in the water balance and also the actual figure for water consumption was provided by the industry and actual measurements were not carried out.

# ASSUMPTIONS MADE

- \* Domestic water consumption is estimated from usage per head; 75 l/worker/day and the number of workers and working days per month amount to 85 and 25 respectively.
- Actual water consumption was calculated from average daily consumption figure (400m<sup>3</sup>/day) provided by the industry
- Boiler water consumption was calculated from average fuel oil consumption (1320 l/day) and boiler efficiency (generally 70% in industries).
  Enthalpy of steam at boiler pressure(8 atm) 2775 kJ/kg
  Heat capacity of fuel 40500 kJ/l (Ref 1)
  Boiler water consumption = 1320 x 25(days) x 40500 x 0.7/2775 = 337135.14 l

# 7A. COD ANALYSIS TABLE

COD analysis was carried out for each discharge from 1 jet, winch and the fongs machine during the processing on one day, to obtain an understanding of the discharges that contribute the highest to the pollution load. Results are presented in Worksheet 7A. COD values are co-related with volume of water discharged/batch. COD analysis was carried out by Central Environmental Authority laboratory staff on 13.11.1995.

Average COD of process effluent based on above values- 1760 mg/lAverage COD of process effluent based on total water consumption (assuming other waste water<br/>generated has negligible COD)- 862 mg/l

| WORKSHEET 7A                 |                  |             |                 |          |            |  |
|------------------------------|------------------|-------------|-----------------|----------|------------|--|
| STREAM                       | WATER<br>l/batch | COD<br>mg/l | COD<br>kg/batch | COD<br>% | WATER<br>% |  |
| Jet                          |                  |             |                 |          |            |  |
| Polyester dyeing             | 750              | 2850        | 2               | 9        | 6          |  |
| Rinse of polyester dyeing    | 750              | 510         | neg*            | 2        | 6          |  |
| Cold rinse (cotton dyeing)   | 750              | 690         | 1               | 2        | 6          |  |
| Soap washing (cotton dyeing) | 750              | 905         | 1               | 3        | 6          |  |
| Cotton dyeing                | 750              | 1800        | 1               | 6        | 6          |  |
| Winch machine (cotton)       | <b>,</b>         |             |                 |          |            |  |
| Scouring                     | 1500             | 4365        | 7               | 28       | 12         |  |
| Hot rinse                    | 1500             | 1855        | 3               | 12       | 12         |  |
| Cold rinse                   | 1500             | 496         | 1               | 3        | 12         |  |
| Fongs machine (cotton)       |                  |             |                 |          |            |  |
| Scouring                     | 3000             | 2435        | 7               | 31       | 24         |  |
| Total                        | 12750            |             | 23              | 100      | 100        |  |

\* Neg -Negligible

# 7B. WASTE AND EMISSIONS COST

Material consumption figures from the material and water balances (worksheets 5 & 6) and COD analysis data (worksheet 7A) were utilised to estimate the amount of waste generated from each unit operation and its cost. This is presented in worksheet 7B.

| WORKSHEET 7B     |                                                            |                                                   |                          |                          |  |  |
|------------------|------------------------------------------------------------|---------------------------------------------------|--------------------------|--------------------------|--|--|
| UNIT OPERATION   | COST<br>COMPONENT                                          | QUANTITY<br>(kg/MONTH)                            | UNIT COST<br>(Rs/1000kg) | TOTAL COST<br>(Rs/MONTH) |  |  |
| Scouring         | Chemicals§                                                 | 2305                                              | 62,000                   | 142,910.00               |  |  |
|                  | Water                                                      | 622261                                            | 7.81                     | 4,860.00                 |  |  |
|                  | Steam*                                                     | 73654                                             | 1200                     | 88,385.00                |  |  |
|                  | COD removal**                                              | 1720                                              | 30,000                   | 51,600.00                |  |  |
|                  | Total cost assigned to<br>Cost assigned per m <sup>3</sup> | waste stream<br>of effluent (622 m <sup>3</sup> ) | •••••                    | 287,755.00<br>463.00     |  |  |
| Acid washing     | Acetic acid***                                             | 182                                               | 79,000                   | 14,378.00                |  |  |
|                  | Water                                                      | 98477                                             | 7.81                     | 769.00                   |  |  |
|                  | COD removal**                                              | 60                                                | 30,000                   | 1,800.00                 |  |  |
|                  | Total cost assigned to<br>Cost assigned per m <sup>3</sup> | waste stream<br>of effluent (98 m <sup>3</sup> )  | <b>*</b> ***             | 16,947.00<br>173.00      |  |  |
| Polyester Dyeing | Chemicals§                                                 | 2061                                              | 62,000                   | 127,782.00               |  |  |
|                  | Reactive dyes§                                             | 13                                                | 1,505,000                | 19,565.00                |  |  |
|                  | Disperse dyes§                                             | 22                                                | 1,327,000                | 29,194.00                |  |  |
|                  | Water                                                      | 402562                                            | 7.81                     | 3,144.00                 |  |  |
|                  | Steam*                                                     | 72058                                             | 1200                     | 86,470.00                |  |  |
|                  | COD removal**                                              | 277                                               | 30,000                   | 8,310.00                 |  |  |
|                  | Total cost assigned to<br>Cost assigned per m <sup>3</sup> | waste stream<br>of effluent (403 m <sup>3</sup> ) |                          | 274,465.00<br>681.00     |  |  |
| Cotton dyeing    | Chemicals§                                                 | 1672                                              | 62,000                   | 103,664.00               |  |  |
|                  | Reactive dyes§                                             | 10                                                | 1,505,000                | 15,050.00                |  |  |
|                  | Disperse dyes§                                             | 20                                                | 1,327,000                | 26,540.00                |  |  |
|                  | Water                                                      | 321621                                            | 7.81                     | 2,512.00                 |  |  |
|                  | Steam*                                                     | 25736                                             | 1,200                    | 30,583.00                |  |  |
|                  | COD removal**                                              | 711                                               | 30,000                   | 21,330.00                |  |  |

|                       | Total cost assigned to w<br>Cost assigned per m <sup>3</sup> of                                                                  | Total cost assigned to waste stream<br>Cost assigned per m <sup>3</sup> of effluent (322 m <sup>3</sup> ) |                      |                        |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------|------------------------|--|
| Soaping               | Chemicals§                                                                                                                       | 598                                                                                                       | 62,000               | 37,076.00              |  |
|                       | Water                                                                                                                            | 440280                                                                                                    | 7.81                 | 3,439.00               |  |
|                       | Steam*                                                                                                                           | 59545                                                                                                     | 1,200                | 71,454.00              |  |
|                       | COD removal**                                                                                                                    | 534                                                                                                       | 30,000               | 16,020.00              |  |
|                       | Total cost assigned to w<br>Cost assigned per m <sup>3</sup> of                                                                  |                                                                                                           | 127,989.00<br>291.00 |                        |  |
| Cold washing          | Water                                                                                                                            | 1676289                                                                                                   | 7.81                 | 13,092.00              |  |
|                       | COD removal**                                                                                                                    | 861                                                                                                       | 30,000               | 25,830.00              |  |
|                       | Total cost assigned to w<br>Cost assigned per m <sup>3</sup> of                                                                  | raste stream<br>effluent (1676 m <sup>3</sup> )                                                           |                      | 38,922.00<br>23.00     |  |
| .Hot washing          | Water                                                                                                                            | 1019504                                                                                                   | 7.81                 | 7,962.00               |  |
|                       | Steam*                                                                                                                           | 81080                                                                                                     | 1,200                | 97,200.00              |  |
|                       | COD removal **                                                                                                                   | 2272                                                                                                      | 30,000               | 68,160.00              |  |
|                       | Total cost assigned to waste stream<br>Cost assigned per m <sup>3</sup> of effluent (1020 m <sup>3</sup> )                       |                                                                                                           |                      | 173,222.00<br>170      |  |
| Composite<br>Effluent | Total cost assigned to waste stream<br>Total waste stream (4581 m <sup>3</sup> )<br>Cost assigned per m <sup>3</sup> of effluent |                                                                                                           |                      | 1,119,279.00<br>244.00 |  |

- \* Details of steam cost calculation are given in Annexure G
- \*\* Cost of disposal of effluent was calculated on the basis of COD (Annexure H) and unit cost of disposal includes both Chemical and Biological treatment costs.
   Acid washing COD load is calculated from average COD values obtained from other textile industries since COD analysis was not carried out for this stream.
- \*\*\* Cost component has been given separately for Acetic acid as substitution for this has been suggested as a waste minimisation option.
- § Unit cost of chemicals and dyes for all the processes was calculated based on the monthly chemical cost provided by industry.

Utility costs and utility costs/kg fabric are given in Annexure I.

## 8.0 WASTE MINIMISATION OPTIONS

Most of the options identified by the waste audit team were based on observations during visits to the industry and these options along with other details are presented in Worksheet 8.0.

For each option, actions were identified which would help in assessing the costs and benefits of implementing the options. Quantification and analysis listed under the actions helped in indicating the importance of implementation of some of the options identified during the visits by the team. eg. steam condensate recovery and reuse as boiler feed water. The time required to implement the option and the cost also were noted, as it is these features, that would help in motivating the industry in its implementation/ nonimplementation.

The priority for implementing the options was decided in discussion with the management of the industry.

|                                                                                                                                                       |                   |                                                 |                                                                          | I                                              | WORKSHEET 8.0                                                                                                                                                         |            |          |        |          |                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|--------|----------|----------------|
| Area/Process                                                                                                                                          | Unit<br>operation | Waste M                                         | este Minimisation (WM) Option Ad                                         |                                                | Actions to assess WM options                                                                                                                                          |            | Effect   | Timing | Priority | Cost           |
| RAW<br>MATERIAL<br>HANDLING                                                                                                                           | All<br>operations | 1.1                                             | disposal of packaging<br>materials                                       | *<br>*<br>*                                    | identification & quantification of the materi<br>Recycling of by product<br>Cost benefit analysis                                                                     | al RR      | WM       | ST     | 5        | L              |
|                                                                                                                                                       | Knitting          | 1.2                                             | Yarn waste                                                               | *<br>*<br>*                                    | identification of the material and quantifica<br>Prevention and control of the wastage<br>Cost benefit analysis                                                       | tion RC    | WM       | ST     | 4        | L <sub>1</sub> |
|                                                                                                                                                       | Purchasing        | 1.3                                             | Reduce oil content of commissioned fabric & yarn                         | *                                              | Check oil content<br>Estimate cost of additional process chemica<br>required for removal of oil                                                                       | ls MC      | PR       | ST     | 6        | L              |
| DYEING                                                                                                                                                | Dyeing            | 2.1                                             | Employ cold pad batch dyeing                                             | *                                              | Carry out trials<br>Estimate water, energy & chemical savings                                                                                                         | TC<br>EM   | WM<br>ES | LT     |          | н              |
|                                                                                                                                                       |                   | 2.2.1 Prevention<br>of under capacity operation |                                                                          | *                                              | Collection of information of orders<br>Production planning based on the supply ar<br>demand<br>Evaluation of cost benefit analysis (compar<br>with present operation) | nd<br>ison | WM<br>ES | МТ     |          | L              |
|                                                                                                                                                       |                   | 2.2.2                                           | Installation of low capacity machines                                    | *                                              | Determination of required capacity<br>Estimation of chemical & water savings wi<br>low capacity machines                                                              | th ··      | WM<br>ES | МТ     | 8        | н              |
| CR - Chemical Reduction     EM - Equipment Modification       IC - Inventory Control     L - Low Cost       MC - Material Change     MT - Medium Term |                   |                                                 | ES - Energy Savings H -<br>LT - Long Term M -<br>PC - Process Control PR | High cost<br>Medium Cost<br>- Pollution Reduct | H                                                                                                                                                                     | IK - House | keeping  |        |          |                |

QI - Quality Improvement

SI - Safety Improvement

**RC** - Resource Conservation

TC - Technology Change

**RR** - Resource Recovery WM - Wastewinimisation

ST - Short term

1 - 10 - Increasing priority

| Area/<br>Process       | Unit<br>operation | Waste | Minimisation (WM) Option                                                                                                                                                                                            |             | Actions to assess WM options                                                                                                                                                                                                                                                    | Category | Effect   | Timing | Priority | Cost |
|------------------------|-------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--------|----------|------|
| DYEING                 | Dyeing            | 2.3   | Chemical Substitution<br>Sulphur dyes<br>Leverol with Cottoclarin KD<br>Acetic acid with Formic acid<br>Common salt with Glauber salt<br>Sodium sulfide with hydrol<br>Sodium hydrosulfide with<br>Thiourea dioxide | *<br>*      | Consult textile expert<br>Determine cost benefit<br>Carry out trials                                                                                                                                                                                                            | МС       | WM<br>PR | ST     | 8        | М    |
|                        | Dyeing            | 2.4   | Elimination/ reduction of<br>chemicals<br>a) Dispersing agent<br>b) Sequestering agents                                                                                                                             | * * * *     | Consult textile expert & evaluate present<br>chemical consumption<br>Carry out trials without dispersing agent<br>Estimate savings and COD reduction<br>Estimate cost of water treatment or use of<br>municipal water for dyeing only<br>Estimate savings in sequestering agent | RC       | PR<br>WM | ST     | 8        | L    |
|                        | Dyeing            | 2.5   | Reuse of white dye bath discharges                                                                                                                                                                                  | *           | Estimate cost of construction of tank<br>Quantify water & chemical savings & estimate<br>cost benefit                                                                                                                                                                           | RR       | PR<br>WM | МТ     | 7        | М    |
| 2a)<br>WINCH<br>DYEING | All<br>operations | 2a.1  | Prevention of open heating                                                                                                                                                                                          | *           | Identification & prevention of difficulties for<br>closed steaming<br>Measure steam consumption & estimate losses                                                                                                                                                               | RC       | ES       | LT     | 3        | L    |
|                        | All<br>operations | 2a.2  | Installation of temperature<br>control system                                                                                                                                                                       | *           | Identification of required temperature &<br>working temperature<br>Calculation of losses due to overheating<br>Estimation of cost for temp control system                                                                                                                       | PC       | ES       | MT     | 6        | М    |
|                        | All<br>operations | 2a.3  | Introduction of indirect steam heating                                                                                                                                                                              | *<br>*<br>* | Estimate steam use & condensate recovery<br>Estimation of energy & water savings<br>Estimation of capital required                                                                                                                                                              | RC       | ES       | MT     | 4        | Н    |
|                        |                   | 2a.4  | Replacement of winch with advanced dyeing machine (fongs)                                                                                                                                                           | * * *       | Identification of machine<br>Estimation of savings<br>Cost benefit analysis                                                                                                                                                                                                     | EM       | WM<br>ES | LT     | 6        | н    |

| Area/<br>process | Unit<br>operation | Waste            | Minimisation (WM) option                                                                                                              |        | Actions to assess WM options                                                                                                                                                                                   | Category | Effect   | Timing    | Priority | Cost   |
|------------------|-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----------|----------|--------|
| JET<br>DYEING    | All<br>operations | 2b.1             | Repairing of automatic<br>control systems for heating                                                                                 | *<br>* | Measure temperature & identify required<br>repairs<br>Estimation of cost<br>Calculation of savings (heat waste, time)                                                                                          | PC       | ES       | МТ        | 4        | М      |
|                  | All<br>operations | 2b.3.1<br>2b.3.2 | Cooling water recovery for<br>process water<br>Heating of water after<br>cooling using stenter or<br>oiler exhaust or hot<br>effluent | * * *  | Estimate quantity of water & temperature<br>Estimate cost of construction of tanks<br>Calculation of water and heat savings<br>Selection of waste heat source<br>Estimate cost of heat exchanger &<br>benefits | RC<br>RC | WM<br>ES | МТ        | 5        | M<br>M |
|                  | All<br>operations | 2b.4             | Insulation of jet dyeing machine                                                                                                      | *      | Estimation of heat loss<br>Steam recovery                                                                                                                                                                      | RC       | ES       | МТ        | 4-5      | н      |
|                  | All<br>operations | 2b.5             | Increasing of loading<br>capacity of new Jet 1 & 2<br>(To decrease liquor ratio)                                                      | *      | Identification of possibilities to install<br>high capacity motor<br>Estimation of saving of water and heat                                                                                                    | RC       | WM       | МТ        | 5        | М      |
|                  | All<br>operations | 2b.6             | Replacing the jets with low liquor ratio ones                                                                                         | *      | Estimate required capacity<br>Estimate water & chemical savings                                                                                                                                                | EM       | WM<br>ES | MT-<br>LT | 7-8      | н      |
|                  | All<br>operations | 2b.7             | Install Press button<br>switches for view glass<br>lights                                                                             | *      | Calculate the amount of energy losses by<br>keeping light on during process<br>Estimate cost of installing switches                                                                                            | ЕМ       | ES       | ST        | 5        | L      |

| Area/Process       | Unit<br>operation   | Waste Minimisation (WM) Option                              | Actions to asses WM options                                                                                                                                  | Category | Effect   | Timing | Priority | Cost |
|--------------------|---------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--------|----------|------|
| FONGS<br>DYEING    | All<br>operations   | 3.1 Insulation of fongs                                     | <ul> <li>* Estimate surface area &amp; cost of lagging</li> <li>* Estimate present heat losses</li> </ul>                                                    | RC       | ES       | ST     | 3        | М    |
| HYDRO<br>EXTRACTOR | Water<br>extraction | 4.1 Recycle of water for dyeing operation                   | <ul> <li>Estimation of volume of water</li> <li>Estimation of required capital items</li> <li>Cost benefit analysis</li> </ul>                               | RC       | WM       | МТ     | 6        | М    |
|                    | Water<br>extraction | 4.2 Replace hydro<br>extractor with<br>squeezee             | <ul> <li>Check moisture removal efficiency</li> <li>Estimate electricity savings</li> <li>Estimate resale value of hydro extractor</li> </ul>                | EM       | ES       | LT     | 5        | Н    |
| VERTICAL<br>DRYER  | Drying              | 5.1 Using of low humidity<br>air from outside for<br>drying | <ul> <li>Estimation of humidity difference</li> <li>Calculation of steam savings</li> <li>Estimation of capital cost</li> </ul>                              | RC       | ES       | LT     | 2        | М    |
| STENTER            | Finishing           | 6.1 Introduction of low<br>humidity air from<br>outside     | <ul> <li>* Estimation of humidity difference</li> <li>* Calculation of steam savings</li> <li>* Estimation of capital cost</li> </ul>                        | RC       | ES       | LT     | 2        | М    |
|                    | Finishing           | 6.2 Avoid overdrying of fabric                              | <ul> <li>Check moisture content of fabric</li> <li>Install moisture meter</li> <li>Estimate energy savings</li> </ul>                                        | RC       | ES<br>WM | МТ     | 4        | L    |
|                    | Finishing           | 6.3 Installation of a vacuum slit device                    | <ul> <li>Check moisture content with &amp; without<br/>Vacuum slit device</li> <li>Estimate cost of installation</li> <li>Estimate energy savings</li> </ul> | EM       | ES<br>WM | LT     | 4        | Н    |

| Area/Process    | Unit<br>operation | Waste N | Ainimisation (WM) Option                          |             | Actions to assess WM options                                                                                                                               |    | Effect   | Timing | Priority | Cost |
|-----------------|-------------------|---------|---------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------|--------|----------|------|
| THERMIC         | All<br>operations | 7.1     | Improvement of boiler<br>efficiency               | *<br>*      | Carry out boiler efficiency study<br>Check possibility of heat recovery<br>Estimate cost of heat recovery                                                  | RC | ES       | MT     | 6        | L    |
| STEAM<br>BOILER | All<br>operations | 8.1     | Improvement of boiler<br>efficiency               | *<br>*<br>* | Carry out boiler efficiency study<br>Check possibility of heat recovery<br>Estimate cost of heat recovery                                                  | RC | ES       | MT     | 6        | L    |
|                 | All<br>operations | 8.2     | Condensate recovery<br>from jets, vertical dryer  | *           | Estimate total condensate recovery<br>(quantity & heat)<br>Estimate cost of collection tank &<br>pump<br>Estimate savings in boiler treatment<br>chemicals | RC | ES<br>WM | ST     | 7        | М    |
|                 | All<br>operations | 8.3     | Boiler feed water<br>quality improvement          | *           | Analysis and treatment<br>Estimation of heat losses due to scale<br>formation                                                                              | RC | ES<br>WM | MT     | 6        | L-M  |
|                 | All<br>operations | 8.4     | Lagging the steam lines                           | * *         | Estimate the length & diameter of<br>pipelines to be lagged<br>Estimate cost of lagging<br>Estimate energy savings                                         | RC | ES<br>WM | ST     | 5        | М    |
|                 | All<br>operations | 8.5     | Construction of a separate tank for cooling water | *           | Quantify the volume & determine the<br>temperature<br>Estimate cost of construction of a<br>separate tank                                                  | RC | ES<br>WM | ST     | 7        | м    |

,

26

.

| Area/Process       | Unit<br>operation | Waste N | Minimisation (WM) Option                                                 | Acti | ons to asses WM options                                                                                                                                                                                                  | Category | Effect   | Timing | Priority | Cost |
|--------------------|-------------------|---------|--------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--------|----------|------|
| STEAM BOILER       | All<br>operations | 8.6     | Lagging unlagged<br>surface area                                         | * *  | Estimate the area of<br>unlagged boiler surface<br>Measure Surface<br>temperature<br>Compare cost of lagging<br>with energy savings                                                                                      | RC       | WM<br>ES | МТ     | 6        | М    |
| WATER<br>TREATMENT | All<br>operations | 9.1     | Water quality<br>improvement                                             | * *  | Analysis of treated water<br>Evaluation of present<br>water treatment<br>Suggestions for further<br>improvement especially<br>for removal of iron<br>Estimation of savings<br>and quality improvement<br>Cost estimation | QI<br>RC | PR<br>WM | ST-MT  | 6        | L-M  |
| HEAT SETTING       | Heat<br>setting   | 10.1    | Reduce heat loss when<br>it is being utilised for<br>narrow width fabric | *    | Insulated cover (sliding<br>for open areas heat is<br>being lost)                                                                                                                                                        | RC       | ES       | ST     | 4        | L    |
| GENERAL            | All<br>operations | 11.1    | Reducing energy<br>(electricity) cost                                    | *    | Staggered utilisation of<br>pumps, machines etc. to<br>prevent electricity<br>surcharge<br>Soft starters for motors<br>to reduce KVA demand                                                                              | RC       | ES       | МТ     |          | L-M  |

## 9. COST BENEFIT ANALYSIS

From Worksheet 8.0, ten options with highest priority were selected and cost benefit analysis was carried out. The investment, savings and payback period for these options are presented in Worksheets 9.1 to 9.10 and the relevant details are indicated below the respective Worksheet. For quantification of waste in order to calculate savings, information from the material balance (worksheet 5.0), process flow sheets (worksheets 3.1 - 3.5), COD analysis (worksheet 7A) etc. were used. Individual measurements were carried out for information required with respect to energy. The investment is based on the technology identified by the Waste Audit team.

| WORK SHEET 9.1                                     |           |                                                                                                 |                                     |  |  |  |
|----------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------|-------------------------------------|--|--|--|
| Chemical Substitutions (Option 2.3 in worksheet 8) |           |                                                                                                 |                                     |  |  |  |
|                                                    | Rs        | Saving                                                                                          | Rs/y                                |  |  |  |
| Investment                                         | Nil       | Chemicals<br>Treatment cost<br>TOTAL                                                            | 144,204<br>64,920<br><b>209,124</b> |  |  |  |
| Annual operating cost                              | Rs<br>Nil | Net saving<br>=(saving - annual operating cost<br>Pay back period<br>=(Investment/Net saving)12 | <b>209,124</b><br>)                 |  |  |  |
|                                                    |           |                                                                                                 | = Not Applicable                    |  |  |  |

Chemical Saving = (present chemical consumption x unit cost)-(chemical needed to replace x unit cost)

Treatment cost saving = (percentage COD reduction) x (treatment cost Rs 30/kg) or

=(Chemical consumption x COD - substitute chemical consumption x COD) x treatment cost

#### I) Acetic acid by Formic acid (83% COD reduction & 50% chemical saving)

Chemical saving = 182 (kg/M) x 79 (Rs/kg) - 91 (kg/M) x 78 (Rs/kg) = Rs 7280/M COD reduction = 182 (kg/M) x 1.04 (kg/kg) - 91 (kg/M) x 0.34 (kg/kg) = 158.34 kg COD/M Treatment cost = Rs 4750/M reduction

#### II) Sodium hydrosulphide by Thiourea dioxide (Reducton HF), (85% COD reduction)

Chemical saving = 68 (kg/M) x 90 (Rs/kg) - 68/6 (kg/M) x 190 (Rs/kg) = Rs. 3967 COD reduction = 68 (kg/M) x 0.33 (kg/kg) - 68/6 (kg/M) x 0.33 (kg/kg) x 0.15 = 22 kg/M Treatment cost = Rs 660/M reduction

,

-

#### III) Sodium sulphide by Hydrol (only chemical saving)

Chemical saving = 154 (kg/M) x 45 (Rs/kg) - 154 (kg/M) x 40 (Rs/kg) = Rs 770/M

Total monthly saving Chemical = Rs 12,017 Treatment cost = Rs 5410

This option will reduce 2% of the totol COD (i.e 180 kg/M)

Details about chemical substitution were obtained from (ref 3)

|                                    | WORK SHEET 9.2                                                                                     |                                                            |                           |  |  |  |  |
|------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------|--|--|--|--|
| Installation Of Tempe              | Installation Of Temperature Control System For Winches (option 2a.2 in worksheet 8)<br>(4 numbers) |                                                            |                           |  |  |  |  |
| Investment                         | Rs<br>Nil                                                                                          | Saving                                                     | Rs/y                      |  |  |  |  |
| Temperature control system         | 165,000                                                                                            | Steam<br>Net saving                                        | 193,478<br><b>158,828</b> |  |  |  |  |
| Annual operating cost              | Rs                                                                                                 | =(saving - annual operating cost)                          |                           |  |  |  |  |
| Interest (21%)                     | 34,650                                                                                             | Pay back period<br>=(Investment/Net saving)12              | = 12 Months               |  |  |  |  |
| Cost of temperature control unit   |                                                                                                    | = Rs 41,250/unit (in 199                                   | 90 US\$ 750) (ref 4)      |  |  |  |  |
| Current total steam consumption in | winches at 100°C                                                                                   | = 47,026 kg/M                                              |                           |  |  |  |  |
| Steam consumption at optimum ter   | nperature (80ºC)                                                                                   | = 47,026(80-30)/(100-30)<br>= 33,590 kg/M<br>= 13,436 kg/M | )                         |  |  |  |  |
|                                    |                                                                                                    | = 13,436(Rs  1.20)/M $= Rs  193,478/y$                     |                           |  |  |  |  |

This option will reduce total effluent due to the reduction of steam condensate by 0.2% of the total

|                           | WOR             | KSHEET 9.3                                                 |        |
|---------------------------|-----------------|------------------------------------------------------------|--------|
|                           |                 | :                                                          |        |
| Installation of press but | ton switches fo | r jets (8 numbers)(option 2b.7in worksheet 8)              |        |
| Investment                | Rs<br>Nil       | Saving                                                     | Rs/y   |
| Press button              | 800             | Electricity                                                | 21,911 |
| switches                  | 000             | Net saving                                                 | 21,911 |
|                           | Rs              | =(saving - annual operating cost)                          |        |
| Annual operating cost     | Nil             | Pay back period<br>=(Investment/Net saving)12<br>= 1 Month |        |

Number of bulbs Operating hours = Total power loss = Unit cost of electricity = Electricity savings/ y

, '

3600/y (assuming 12 hours operation of jets)

8

8 x 0.12 x 3600

Rs. 6.34 =

=

Rs. 21,911

## IPRP/CISIR/OACIANIC

.

| WORK SHEET 9.4                                           |                    |                                                                                                  |                      |  |  |  |  |
|----------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|
| Lagging unlagged steam lines (option 8.4 in worksheet 8) |                    |                                                                                                  |                      |  |  |  |  |
| Investment                                               | Rs                 | Saving                                                                                           | Rs/y                 |  |  |  |  |
| Lagging Cost                                             | 9,350              | Steam                                                                                            | 25,197               |  |  |  |  |
| Annual operating cost<br>Interest (21%)                  | <b>Rs</b><br>1,970 | Net saving<br>=(saving - annual operating cost)<br>Pay back period<br>=(Investment/Net saving)12 | 23,227<br>= 5 Months |  |  |  |  |

Lagging cost

| Diameter of pipe (mm) | Length(m) | Unit cost(Rs/m) | Lagging cost(Rs) |
|-----------------------|-----------|-----------------|------------------|
| 100                   | 10        | 374             | 3740             |
| 50                    | 14        | 299             | 4186             |
| 25                    | 7         | 203             | 1421             |

\*Lagging costs were obtained from local suppliers

| Total lagging cost                       | = Rs 9,350                                                      |
|------------------------------------------|-----------------------------------------------------------------|
| Total unlagged area (A)                  | $= 5.89 \text{ m}^2$                                            |
| Unlagged surface temperature             | $= 113^{\circ} C$                                               |
| Temperature difference after lagging(TD) | = (113-40)                                                      |
|                                          | $= 73^{\circ}C$                                                 |
| Heat transfer coefficient (h)            | $= 1.25(TD)^{1/8}$                                              |
|                                          | $= 5.22 \text{ Wm}^{-2} \text{ K}^{-1}$                         |
| Total energy loss (Q)                    | = A x h x(TD) x working hours x days/y x $3600/1000 \text{ kJ}$ |
|                                          |                                                                 |
| Steam saving                             | = (Q/H) x steam cost                                            |
|                                          | $= (21,000 \times 1.2)$                                         |
|                                          | = Rs. 25,197                                                    |

Enthalpy of steam (H) at 8 atm operating pressure = 2770 kJ/kg

\* Technical data from (Ref 5)

This option will reduce requirement of steam production by 0.5% or fuel consumption by 0.5%

| WORK SHEET 9.5                                                                   |         |                                   |            |  |  |  |  |
|----------------------------------------------------------------------------------|---------|-----------------------------------|------------|--|--|--|--|
| Condensate recovery and reuse as Boiler feed water (option 8.2 in worksheet 8.0) |         |                                   |            |  |  |  |  |
| Investment                                                                       | Rs      | Saving                            | Rs/y       |  |  |  |  |
| Pipe installation etc.                                                           | 123,300 | Fuel saving                       | 154,862    |  |  |  |  |
| Collection tank                                                                  | 40,650  | Boiler water treatment cost       | 22,139     |  |  |  |  |
| Lagging of:-                                                                     |         | Water cost                        | 19,493     |  |  |  |  |
| Collection tank                                                                  | 20,094  |                                   |            |  |  |  |  |
| Pipes                                                                            | 3,124   | Total                             | 296,494    |  |  |  |  |
| Feed water tank                                                                  | 8,750   |                                   |            |  |  |  |  |
|                                                                                  |         | Net saving                        | 176,765    |  |  |  |  |
| TOTAL                                                                            | 93,918  | =(saving - annual operating cost) |            |  |  |  |  |
| A                                                                                | Data    |                                   |            |  |  |  |  |
| Annual operating cost                                                            | KS/Y    | Pay back period                   |            |  |  |  |  |
| Interest (21%)                                                                   | 19,728  | =(Investment/Net saving)12        |            |  |  |  |  |
|                                                                                  |         |                                   | = 6 Months |  |  |  |  |
|                                                                                  |         |                                   |            |  |  |  |  |
|                                                                                  |         |                                   |            |  |  |  |  |
|                                                                                  |         |                                   |            |  |  |  |  |

Existing pump is used for pumping water from main sump to boiler feed water tank. Technical data from (ref1)

| Total volume of condensate                                                                 | $= 208 m^{3}/M$                              |
|--------------------------------------------------------------------------------------------|----------------------------------------------|
| Average temperature of condensate                                                          | $= 90^{\circ}C$                              |
| Heat savings                                                                               | $= 208 \times 1000 \times 4.2 \times 60$     |
| -                                                                                          | = 52416000 kJ/M                              |
| Calorific value of fuel oil                                                                | = 40,500 kJ/l                                |
| Boiler efficiency                                                                          | = 70%                                        |
| Fuel saving                                                                                | = (52,416,000/40,500)/0.7 1/M                |
| -                                                                                          | $= 1848(1/M) \times 12(M) \times 6.98(Rs/l)$ |
|                                                                                            | = Rs.154,862                                 |
| Boiler water treatment cost saving                                                         | $= 208 \times 8.87(\text{Rs/m}^3) \times 12$ |
|                                                                                            | = Rs 22,139/y                                |
| Water cost saving                                                                          | $= 208 \times 7.81 \times 12$                |
| Cost - Collection tank (2 m <sup>3</sup> capacity circular tank with 1.5 m, 1.2 m height). |                                              |
| Cost of four metal sheets                                                                  | = Rs 8,000  x 4                              |
| Excavation and civil work                                                                  | = Rs 3650                                    |
| Construction                                                                               | = Rs 5,000                                   |
| Lagging (18.65 $m^2$ )                                                                     | = 18.65 x Rs 1,560                           |
|                                                                                            | = Rs 29,094                                  |
| Cost of carbon steel pipe (50m length, 37.5mm diameter carbon steel)                       | = Rs 12,300 (Rs 246/m length)                |
| Feed water tank lagging                                                                    |                                              |
| Area for lagging                                                                           | $= 5.6 \text{ m}^2$                          |
| Cost of lagging                                                                            | $= \text{Rs} \ 1560 \ /\text{m}^2$           |
|                                                                                            | = Rs 19,493/y                                |
| T(1) is the interval of the first constant constraints by $600%$ or fuel consumption       | h. 601                                       |

This option will reduce boiler water consumption by 62% or fuel consumption by 6%.

| WORK SHEET 9.6        |                                                                    |                                                        |            |  |  |  |  |  |
|-----------------------|--------------------------------------------------------------------|--------------------------------------------------------|------------|--|--|--|--|--|
| Lagging unlagged      | Lagging unlagged portion of the Boiler (option 8.6 in worksheet 8) |                                                        |            |  |  |  |  |  |
| Investment            | Rs                                                                 | Saving                                                 | Rs/y       |  |  |  |  |  |
| Lagging cost          | 30,498                                                             | Steam                                                  | 79,008     |  |  |  |  |  |
|                       |                                                                    | TOTAL                                                  | 79,008     |  |  |  |  |  |
| Annual operating cost | Rs                                                                 | <b>Net saving</b><br>=(saving - annual operating cost) | 72,603     |  |  |  |  |  |
| Interest (21%)        | 6,405                                                              | Pay back period<br>=(Investment/Net saving)12          | = 5 Months |  |  |  |  |  |

| Boiler Unlagged area (A)     | $= 19.55 \text{ m}^2$                                  |
|------------------------------|--------------------------------------------------------|
| Unlagged surface temperature | $= 1100^{\circ}C$ (measured)                           |
| Temperature Difference (TD)  | = (110-40)                                             |
|                              | $= 70^{\circ}$ C                                       |
| Heat transfer coefficient(h) | $= 5.151 \text{ W/m}^{2} ^{0}\text{K} \text{ (ref 3)}$ |
| Total heat loss (Q)          | = A x h x (TD) x operating time                        |
| Steam saving                 | = (Q/H) x steam cost, H-steam enthalpy                 |
| Lagging cost                 | $= \text{Rs} \ 1560/\text{m}^2$                        |
|                              |                                                        |

(Lagging costs were obtained from local suppliers)

| WORKSHEET 9.7                                                      |         |                                                        |             |  |  |  |  |
|--------------------------------------------------------------------|---------|--------------------------------------------------------|-------------|--|--|--|--|
| Lagging unlagged Jets (J1,J2,NJ1,NJ2) (option 2b.4 in worksheet 8) |         |                                                        |             |  |  |  |  |
| Investment                                                         | Rs      | Saving                                                 | Rs/y        |  |  |  |  |
| Lagging cost                                                       | 182,520 | Furnace oil                                            | 249,426     |  |  |  |  |
|                                                                    |         | TOTAL                                                  | 249,426     |  |  |  |  |
| Annual operating cost                                              | Rs      | <b>Net saving</b><br>=(saving - annual operating cost) | 211,097     |  |  |  |  |
| Interest (21%)                                                     | 38,329  | Pay back period<br>=(Investment/Net saving)12          | = 10 Months |  |  |  |  |

J1 :- Jet1, J2 :- Jet2, NJ1 :- New jet1, NJ2 :- New jet2

Total Unlagged Jets surface area (A) Maximum surface temperature Average surface temperature Temperature difference after lagging(TD) Heat transfer coefficient(h) Total heat loss (Q) Boiler efficiency Furnace oil saving

- =  $117 \text{ m}^2$ =  $127^{\circ}\text{C}$  (measured) =  $98^{\circ}\text{C}$
- $= (98-40)^{0}C$
- $= 4.84 \text{ W/m}^2\text{K} \text{ (ref2)}$
- = A x h x (TD) x operating time (714 hours)
- = 70%
- = (Q/40500 kJ/l)/(0.7)
- = Rs 249,426/y

Cost of lagging \* Cost of lagging obtained from local suppliers  $= \text{Rs} \ 1560/\text{m}^2$ 

| WORK SHEET 9.8                                                                                  |         |                                                |                  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------|---------|------------------------------------------------|------------------|--|--|--|--|--|
| Use municipal water for dyeing to avoid use of sequestering agent (option 2.4 in worksheet 8.0) |         |                                                |                  |  |  |  |  |  |
| Rs SavingRs/y<br>Nil                                                                            |         |                                                |                  |  |  |  |  |  |
|                                                                                                 |         | Chemical saving (Calagon P.T)                  | 278,640          |  |  |  |  |  |
|                                                                                                 |         | Well water saving                              | 93,645           |  |  |  |  |  |
|                                                                                                 |         | TOTAL                                          | 372,285          |  |  |  |  |  |
| Annual operating cost                                                                           | Rs      | Net saving                                     | 72,525           |  |  |  |  |  |
| Municipal water                                                                                 | 299,760 | =(saving - annual operating cost)              |                  |  |  |  |  |  |
|                                                                                                 |         | Pay back period<br>=(Investment/Net saving)*12 | = Not applicable |  |  |  |  |  |

| In September 1995                               |                                                                                     |
|-------------------------------------------------|-------------------------------------------------------------------------------------|
| Total dyed fabric production                    | = 61,649  kg                                                                        |
| Amount of sequestering agent (Calagon P.T) used | = 251 kg                                                                            |
| In November 1994                                |                                                                                     |
| Total dyed fabric production                    | = 42,027  kg                                                                        |
| Therefore assumed Calagon P.T consumption       | = 172 kg                                                                            |
| Water used for dyeing                           | = 999.201 l (from material balance 5.0)                                             |
| Chemical saving                                 | = (172 kg)(Rs135/kg)12(M)                                                           |
|                                                 | = Rs 278,640/y                                                                      |
| Municipal water cost                            | $= (999.201 \text{ m}^3) \text{ x} (\text{Rs}25/\text{m}^3) \text{ x} 12(\text{M})$ |
| -                                               | = Rs 299,760/y                                                                      |
| Deep well water saving                          | = (999.201 m <sup>3</sup> )(Rs 7.81/m <sup>3</sup> )12(M)<br>= Rs 93,365/y          |
|                                                 |                                                                                     |

| WORK SHEET 9.9                                                                                                    |    |                                               |           |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------|-----------|--|--|--|--|
| Reduce mineral oil content of the commissioned fabric and yarn (option 1.3 in worksheet 8.0)<br>(at least by 75%) |    |                                               |           |  |  |  |  |
| Rs Saving                                                                                                         |    |                                               |           |  |  |  |  |
| Investment Ni                                                                                                     | il | Chemical saving                               | 73,728    |  |  |  |  |
|                                                                                                                   |    | TOTAL                                         | 73,728    |  |  |  |  |
| Rs   Net saving<br>= (saving - annual operating cost)                                                             |    |                                               |           |  |  |  |  |
| Annual operating cost Ni                                                                                          | il | Pay back period<br>=(Investment/Net saving)12 |           |  |  |  |  |
|                                                                                                                   |    | =Not a                                        | pplicable |  |  |  |  |

Avoid purchasing of commissioned fabric with more mineral oil content and request the supplier to reduce oil content of commissioned fabric and yarn. Industry currently uses Ultravon FL to remove the oil

Chemical saving = Consumption x Price x Reduction percentage =  $33 \times 248.25 \times 0.75$ = Rs 6,144/M = Rs 73,728/y

#### Assumptions made

- \* Treatment saving not considered
- \* Percentage reduction of oil will give the same percentage of chemical saving.

| WORK SHEET 9.10                                                         |                                                                   |  |  |  |  |  |  |
|-------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|--|
| Improvement of boiler combustion efficiency (option 8.1 in worksheet 8) |                                                                   |  |  |  |  |  |  |
| Rs                                                                      | Saving Rs/y                                                       |  |  |  |  |  |  |
| Investment Nil                                                          | Furnace oil 66,338                                                |  |  |  |  |  |  |
|                                                                         | TOTAL 66,338                                                      |  |  |  |  |  |  |
| Rs                                                                      | Net saving66,338=(saving - annual operating cost)                 |  |  |  |  |  |  |
| Annual operating cost Nil                                               | Pay back period<br>=(Investment/Net saving)12<br>= Not applicable |  |  |  |  |  |  |

Current combustion efficiency of the boiler 89.5 %

Combustion efficiency was measured by staff of the Process & Plant Engineering Division of CISIR. Improvement in boiler efficiency was considered only in terms of combustion efficiency as measurement facilities were inadequate to study total boiler efficiency.

By optimising the air fuel ratio, the combustion efficiency of the boiler fuel can be increased. Fuel saving for a 2% increase in boiler efficiency can be calculated as follows.

Current furnace oil consumption Furnace oil saving

= 39,600 l/M = (39,600 - 39,600 x 0.895/0.915) x 12 = 9,504 (l/y) x 6.98(Rs/l) = Rs 66,338/ y

This option will reduce the boiler oil consumption by 2% of total .

## **10.0 IMPLEMENTATION OF WASTE MINIMISATION OPTIONS**

The status of implementation of the ten waste minimisation options identified to be of high priority for this mill is summarised in Worksheet 10. Only chemical substitution options, lagging of steam lines and non acceptance of yarn which has a high content of oil have been implemented. Reasons for non-implementation are given. Comparision of the actual savings with the theoretical expected savings (from Worksheet 9.1 - 9.10) with respect to unit production is also given in Worksheet 10.

Details of the actual savings obtained by the industry for a year are given following the worksheet. The treatment component of the saving is given separately, since this is not an actual saving at present. This saving will be obtained only when the industry installs and operates an effluent treatment system.

Implementation of the three options gave the following savings to the industry:-

## I Without treatment cost savings

| Total annual savings           | = Rs 352,698.00        |
|--------------------------------|------------------------|
| Investment                     | = Rs 38,164.00         |
| Interest on investment (21%)   | = Rs 8,014.00          |
| Pay back                       | = less than 1.5 Months |
|                                |                        |
| II With treatment cost savings |                        |
| Total annual saving            | =Rs 433,074.00         |
| Investment                     | =Rs 38,164.00          |
| Interest on investment (21%)   | =Rs 8,014.00           |
| Pay back                       | = less than 1 month    |

| WORKSHEET 10.0                                                                    |                          |                                         |                                           |                                            |                                           |                                           |                                            |                                           |                                           |                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------|--------------------------|-----------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Waste minimization                                                                | Parameters               | Before Imple                            | ementation                                |                                            |                                           |                                           |                                            |                                           |                                           |                                                                                                                                                                                    |
| option                                                                            |                          | Actual Con<br>Genera                    | sumption/<br>ation                        | Expected C<br>Generation                   | Consumption/                              | Expected<br>Saving                        | Actual Cor<br>Generation                   | Actual Consumption/<br>Generation*        |                                           | Remarks                                                                                                                                                                            |
|                                                                                   |                          | per kg of<br>Fabric (10 <sup>-3</sup> ) | Rs/kg of<br>Fabric<br>(10 <sup>-3</sup> ) | per kg of<br>Fabric<br>(10 <sup>-3</sup> ) | Rs/kg of<br>Fabric<br>(10 <sup>-3</sup> ) | Rs/kg<br>of Fabric<br>(10 <sup>-3</sup> ) | per kg of<br>Fabric<br>(10 <sup>-3</sup> ) | Rs/kg of<br>Fabric<br>(10 <sup>-3</sup> ) | Rs/kg of<br>Fabric<br>(10 <sup>-3</sup> ) |                                                                                                                                                                                    |
| 1) Chemical<br>substitution                                                       |                          |                                         |                                           |                                            |                                           |                                           |                                            |                                           |                                           |                                                                                                                                                                                    |
| a) Formic acid for<br>Acetic acid                                                 | COD (kg)<br>Chemical(kg) | 3.92<br>3.77                            | 117.38<br>324.09                          | 0.64<br>1.88                               | 19.22<br>136.61                           | 98.36<br>164.87                           | 0.88<br>2.60                               | 26.47<br>188.14                           | 90.91<br>135.95                           | Implemented                                                                                                                                                                        |
| b) Common Salt for<br>Glauber Salt                                                | Chemical(kg)             | 55.19                                   | 220.7                                     | -                                          | -                                         | -                                         | -                                          | -                                         | -                                         | Not implemented<br>Trials are instead being carried out with low<br>salt dyes                                                                                                      |
| c) Thiourea dioxide<br>(reduction HF) for<br>Sodium hydrosulfide                  | COD (kg)<br>Chemical(kg) | 0.4                                     | 10.52<br>95.7                             | 0.06)<br>0.18                              | 1.76)<br>33.79                            | 8.77 <b>)</b><br>61.91                    | 0.23<br>0.69                               | 6.80<br>61.80                             | 3.72<br>33.9                              | Not implemented but chemical consumption<br>has been reduced by minimising number of<br>machine washing steps by changing process<br>sequence from light to dark and then washing. |
| d) Hydrol for Sodium<br>sulfide                                                   | Chemical(kg)             | 2.41                                    | 108.38                                    | 2.41                                       | 96.34                                     | 12.04                                     | -                                          | -                                         | -                                         | Not implemented as use of sulphur dyes and sodium sulfide has been stopped                                                                                                         |
| e) Cottaclarin KD for<br>Leveral                                                  | COD<br>Chemical(kg)      | 2.97<br>5.94                            | 89.15<br>1634.44                          | ş                                          | Ş                                         | ş                                         | 2.64<br>6.59                               | 79.10<br>1582.03                          | 10.05<br>52.403                           | Implemented by substituting with<br>Univadine Lu as more readily available than<br>Cottaclarin.                                                                                    |
| <ol> <li>Installation of<br/>temperature<br/>controller in<br/>winches</li> </ol> | Fuel (1)                 | 124.8                                   | 871.10                                    | 89.2                                       | 622.62                                    | 248.48                                    | _                                          | _                                         | -                                         | Only temperature gauges have been installed<br>as it is proposed to replace these machines.<br>Temperature gauges have not brought savings<br>as workers are not looking at these. |
| 3) Press button switches<br>installation for jets                                 | Electricity<br>(kWh)     | 4.50                                    | 28.56                                     | -                                          | *                                         | 28.56                                     | -                                          | -                                         | -                                         | Not implemented as savings are perceived to be small and implementation impracticable                                                                                              |
| 4) Lagging steam lines                                                            | Fuel (I)                 | 619.4                                   | 4323.4                                    | 617.5                                      | 4310.2                                    | 13.2                                      | 603.35                                     | 4211.35                                   | 112.2                                     | Implemented                                                                                                                                                                        |

40

| 5) Condensate recovery                                                                              | Fuel (1)<br>Chemical(kg)<br>Water (1) | 619.4<br>5270   | 4323.4<br>46.8<br>41.11 | 599.1<br>2019.7 | 4181.7<br>17.9<br>15.75 | 141.7<br>28.9     | - | - | -                 | Not Implemented<br>Awaiting funds required for high investment.                                                                                     |
|-----------------------------------------------------------------------------------------------------|---------------------------------------|-----------------|-------------------------|-----------------|-------------------------|-------------------|---|---|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 6) Lagging boiler<br>surface area                                                                   | Fuel (l)                              | 619.4           | 4323.4                  | 613.5           | 4282.2                  | 41.2              | - | - | -                 | Not implemented as it is thought that this<br>would hinder frequent cleaning and<br>maintenance which is done by opening back<br>end of the boiler. |
| <ol> <li>Avoid use of<br/>sequestering agent by<br/>using good quality<br/>process water</li> </ol> | Chemical(kg)<br>Water(l)              | 4.1<br>23.8     | 552.5<br>122.05         | 0<br>23.8       | 0<br>390.69             | 552.5<br>-262.68  | - | - | -                 | Not implemented as municipal water is not<br>available. Awaiting funds to upgrade water<br>treatment system.                                        |
| 8) Reduce mineral oil<br>in commissioned<br>fabric <b>ß</b>                                         | Chemical<br>(kg)                      | 33000/Mont<br>h | 8184000/<br>Month       | 8250<br>/Month  | 2046000/<br>Month       | 6138000/<br>Month | 0 | 0 | 8184000/<br>Month | Customers have been warned and such batches are now not accepted.                                                                                   |
| 9) Improvement of<br>boiler efficiency                                                              | Fuel (1)                              | 619.4           | 4323.4                  | 605.8           | 4229.82                 | 93.58             | - | - | -                 | Not implemented. Boiler supplier has been requested to monitor efficiency .                                                                         |
| 10) Lagging of jets                                                                                 | Fuel (I)                              | 619.4           | 4323.4                  | 552.8           | 3858.71                 | 464.69            | - | - | -                 | Not implemented<br>due to high investment required.                                                                                                 |

\* Consumption of chemical, fuel, water etc. / Generation of COD

Note:- For before implementation and expected consumption and savings calculations, total production for November 1994 (63937 kg) was taken to calculate unit consumption for all options except for No. 2 (18592 kg), and No. 7 (42027 kg). Production for the respective processes were taken for these two options. For actual consumption and savings after implementation calculations production figures given by the industry for a time period for that option was utilised (125425 kg was taken for options 1a and 1c, 53491 kg for option 1e, 132592 for option 4).

> Expected consumption was calculated for the replacement of Sodium Hydrosulphide by Thiourea dioxide.

§ Expected value was not calculated due to the lack of information available in chemical reduction as well as COD reduction.

B Ultravon FL was used to remove oil contamination of fabric, now this chemical is not required. The consumption and price was taken as in November 1994. Treatment cost reduction is not considered. Values are given with respect to a time period (month) and not unit production for this option, as no information was available on the quantity of commissioned fabric.

#### COST BENEFIT CALCULATION FOR IMPLEMENTED OPTIONS

Monthly production figure for Nov.94 was used in the calculations (63,937 kg)

#### 1. Chemical substitution (Option 1)

#### (1a) Substitution of Formic acid for Acetic acid

| Before implementation                 |                                                                            |
|---------------------------------------|----------------------------------------------------------------------------|
| Acetic acid consumption (Nov.94)      | = 240.95 kg for the production of 63937 kg                                 |
| Cost per month                        | = 240.95 (kg) x Rs 86                                                      |
|                                       | = Rs 207,220                                                               |
| Treatment cost per month              | = COD x Treatment cost/kg of COD                                           |
|                                       | $= 240.95(kg) \times 1.04(kg \text{ COD/kg}) \times 30(Rs/kg \text{ COD})$ |
|                                       | = Rs 7518                                                                  |
| After implementation                  |                                                                            |
| Formic acid consumption               | = 325 kg for the production of 125245 kg                                   |
|                                       | = 166 kg for 63937 kg of production                                        |
| Cost per month                        | = 166  kg x  72.5(Rs/kg)                                                   |
| -                                     | = Rs 12,035                                                                |
| Treatment cost per month              | = 166 x 0.34 (kg COD/kg) x 30 (Rs/kg COD)                                  |
|                                       | = Rs 1693.2                                                                |
| Actual Chemical Saving per year       | = Rs 104,244.00                                                            |
| Actual Treatment Cost Saving per year | = Rs 69,900.00                                                             |

# (1c) Substitution of Thiourea dioxide for Sodium hydrosulfide

This option was not implemented but number of machine washing steps were reduced.

#### **Before Implementation**

| Sodium hydrosulfide consumption | = | 68 kg for 63937 kg of production |
|---------------------------------|---|----------------------------------|
| Cost per month                  | = | 68 kg x 90 Rs/kg                 |
|                                 | = | Rs 6120                          |
| Treatment cost per month        | = | 68 x 0.33 x 30 (Rs/kg COD)       |
| -                               | = | Rs 673                           |
|                                 |   |                                  |

#### After reducing the number of washing steps

| Sodium hydrosulfide consumption       | = 86 kg/125245 kg of production |
|---------------------------------------|---------------------------------|
|                                       | = 44 kg/63937 kg of production  |
| Cost per month                        | = Rs 3960                       |
| Treatment cost per month              | = Rs 436                        |
| Actual chemical savings per year      | = Rs 25,920                     |
| Actual Treatment cost saving per year | = Rs 2,844                      |

## (1e) Substitution of Leverol with Cottaclarin KD or Univadine Lu

| Before implementation |                                     |
|-----------------------|-------------------------------------|
| Leverol consumption   | = 380 kg for 63937 kg of production |
| Cost per month        | = 380 kg x 275 Rs/kg                |

#### IPRP/CISIR/OACIANIC

42

| Treatment cost per month                                                  | = Rs 104,500<br>= 380 kg x 0.5 kg COD/kg x 30 Rs/kg COD<br>= Rs 5700 |
|---------------------------------------------------------------------------|----------------------------------------------------------------------|
| After implementation                                                      |                                                                      |
| Univadine Lu consumption                                                  | = 353 kg/53490 kg of production<br>= 422 kg/63937 kg of production   |
| Cost per month                                                            | = 422 kg x 240 (Rs/kg)<br>= Rs 101,280                               |
| Treatment cost per month                                                  | = 422 kg x 0.4 (kg COD/kg) x 30 (Rs/kg COD)<br>= Rs 5064             |
| Actual annual Chemical cost saving<br>Actual annual Treatment cost saving | = Rs 38,640<br>= Rs 7,632                                            |

2. Lagging of unlagged steam lines (Option 4)

| Before Implementation            |                                      |
|----------------------------------|--------------------------------------|
| Fuel consumption                 | = 39,600 I/M (63937 kg production)   |
| After implementation             |                                      |
| Fuel consumption                 | = 80,000 1/ 132592 kg of production  |
| r dor bonoumption                | -38577 1 (63937 kg of production)    |
| Investment                       | = 58,577 mm (05957 kg 01 production) |
| Investment                       |                                      |
| Lagging cost                     | = Rs 28,164.00                       |
| Labour cost                      | $= \text{Rs} \ 10,000.00$            |
| Total cost                       | = Rs 38,164.00                       |
| Annual interest on investment    | = Rs. 8014.00                        |
| Savings                          |                                      |
| Fuel savings                     | = 12.276 $1/y$                       |
| Savings on fuel cost             | $- R_{s} 85 686/v$                   |
| Net annul and cost               | - R3 03,000/y                        |
| ivet annual savings              | = Ks / 7,0/2                         |
| Pay-back period                  |                                      |
| (Investment/Net annual savings)1 | 2 = 6  months                        |
|                                  |                                      |

## 3. Reducing oil content in the commissioned fabric (Option 8)

Such fabric is not accepted now. Ultravon FL was used earlier to remove oil. It is not required now.

| Savings                             |                                                               |
|-------------------------------------|---------------------------------------------------------------|
| Previous consumption of Ultravon FL | = 33 kg (Nov.94)                                              |
| Chemical savings                    | $= 33 (kg) \times 248 (Rs/kg) \times 12 (M)$<br>= Rs 98 208/y |
| Actual annual chemical cost saving  | = Rs  98,208/y                                                |

## 11.0 CONCLUSIONS

The Process flow diagrams depict the activities involved in each type of processing, inputs, outputs and process conditions. These along with production figures indicated in Annexure E proved to be invaluable in doing subsequent estimations. (eg. material and water balances, worksheets 5.0 and 6.0).

Carrying out the material balance enabled the quantification of different inputs and outputs in different processes and these figures were used in subsequent estimations (eg. calculation of steam condensate from jet operations for use as boiler feed water).

The water balance indicates highest water consuming processes and also the need to do further studies on water consumption to determine the reasons for a high undefined percentage.

COD analysis table (worksheet 7A) shows the percentage contribution of individual process discharges from different machines to the waste stream pollution load. Quantification of COD also helped in the calculation of the treatment cost.

Calculation of the wastes and emissions costs (worksheet 7B) for individual processes indicates the financial loss. These values were used in calculating the savings in implementing options which reduce the generation of waste.

Thirty seven waste minimisation options were identified. The majority of these were seen to be Resource Conservation options (24). Others were Material change (2), Resource Recovery (2), Technology Change (1), Equipment Modification (7), Process Control (2) and Quality Improvement (1). Most of the options were either Low Cost (14) or Medium Cost (15). Cost benefit analysis was carried out for the 10 options identified as high priority. Four of these did not require any investment and the expected savings were quite substantial. Pay back periods for the rest of the options ranged from one to twelve months.

Most of the machines are being used under capacity since the customer requirement is for smaller batches of fabric in different colours. Installation of low capacity machines with low liquor ratios has been identified as one of the priority options therefore, even though it involves a high capital investment.

The industry has at present implemented only some of the chemical substitution options, lagging of the steam lines and non-acceptance of oil contaminated fabric. It is expected that options like lagging of jets, purchasing of low liquor ratio jets etc. will be implemented, when finances are available.

IPRP/CISIR/OACIANIC

đ

## 12.0 References

- JOHN H PERRY (1963)
   Chemical engineer's hand book
   Fourth edition
   pg 3-133
- 2 R.H PETERS (1967) Textile chemistry II pg 172
- CHITTARANJAN DESAI (October, 1995)
   Report on first mission to Sri Lanka, Industrial Pollution Reduction Programme, UNIDO, Sri lanka.

.

- 4 PETERS & TIMMERHAMS Plant design and economics for chemical engineering pg 163, 205, 814
- 5 ESSTOP & McCONKEY (1993) Applied Thermodynamics Logman Scientific & Technical (5th edition)







iii

# ANNEXURE D

# LIST OF MAJOR CHEMICALS & DYES

| Chemicals              | Quantity<br>kg/month |
|------------------------|----------------------|
| Acetic acid            | 240.95               |
| Ammonium Sulphate      | 37.75                |
| Dispersant             | 221.00               |
| Bleaching powder       | 0.50                 |
| Cibafluid U            | 27.95                |
| Dispersant NS 40       | 3.00                 |
| Hydrogen Peroxide      | 1,462.50             |
| Invadine N.F.          | 13.85                |
| Invatex PC             | 27.00                |
| Irgasol CO New         | 28.75                |
| Levagol HTC            | 26.90                |
| Perintrol FH-H         | 3.00                 |
| Product 3CSR           | 89.26                |
| Setamol TX 506         | 275.65               |
| Sodium Carbonate       | 1,953.54             |
| Sodium Chloride        | 3,529.00             |
| Sodium Hydrosulphide   | 68.00                |
| Sodium Hydroxide       | 288.90               |
| Sodium Silicate        | 188.00               |
| Sodium Sulphide        | 153.80               |
| Sulphuric Acid         | 30.50                |
| Sumahite PEB           | 72.27                |
| Tinoclorite ON         | 12.50                |
| Ultravon FL            | 32.60                |
| Uvitex C.I.D.          | 25.02                |
| Alfa N/Blue BF-HR      | 3 91                 |
| Alfa Red Red 3BF       | 28.11                |
| Alfa Red Yellow 3GF    | 4 16                 |
| Alfa Red Yellow 3RF    | 34.37                |
| Alfa T/Blue G          | 5.83                 |
| Ambifix Black BF-GR    | 11 81                |
| Cibacron Blue FR       | 23                   |
| Cibacron Navy Blue FG  | 0.04                 |
| Cloadion Mary Dide I C | 0.04                 |

| Cibacron Orange FR            | 0.06    |
|-------------------------------|---------|
| Cibacron Red FB               | 1.27    |
| Cibacron Scarlet F3G          | 0.10    |
| Cibacron Yellow F3R           | 0.44    |
| Dispersal Black EXSP 300      | 0.17    |
| Dispersal Blue R 150%         | 4.07    |
| (Blue 56)                     |         |
| Dispersal Navy Blue EXBF 150% | 4.07    |
| Dispersal Orange CBN          | 0.13    |
| Dispersal Rubine B(RED B)     | 7.03    |
| Palanil Black FD-BE           | 84.80   |
| Palanil Black FD-BN           | 150.08  |
| Palanil Blue BGCF             | 20.16   |
| Palanil Brown FE3             | 0.14    |
| Palanil Yellow 3G             | 30.83   |
| Rathalin Rubine 3B            | 16.17   |
| Rathalin Black BLR 200%       | 22.16   |
| Remazol Black B Gran          | 12.50   |
| Resolin Yellow Brown          | 0.03    |
| Serilin Scarlet BB-LS 150     | 0.01    |
| Serilin N/Blue GR-LS 200      | 0.00    |
| Serilin Brown 2BLS            | 0.00    |
| Sullpphote Black Grains 00%DR | 150.99  |
| Sumifix Brill Blue B Special  | 1 88    |
| Sumifix Supra Blue BRF        | 0.19    |
| Terasil Brill Blue 54 895     | 3 33    |
| Terasil Brill Pink 36         | 8 20    |
| Terasil Brill Violet B L      | 3.48    |
| Terasil Dispersal Red P4B     | 0.01    |
| Terasil Golden Yellow 2RS     | 1.23    |
| Terasil Red 5G                | 6.01    |
| Terasil Red R                 | 15.00   |
|                               | . 10.00 |

.

۷

#### ANNEXURE E

| MACHINES<br>(capacity in kg)   | 100% COTTON |             |                  | BLEND         |               |              | 100% POLYESTER        |              |               |                       |                     |                   |
|--------------------------------|-------------|-------------|------------------|---------------|---------------|--------------|-----------------------|--------------|---------------|-----------------------|---------------------|-------------------|
| (machine liquor<br>ratio)      | D           | М           | L                | w             | D             | М            | L                     | w            | D             | М                     | L                   | w                 |
| Winch 4<br>(150)<br>(1:10)     | 1015(8)*    | Ŧ           | 150<br>(1)*      | 922<br>(6)*   | -             | 213<br>(2)*  | 171<br>3<br>(16)<br>* | 282<br>(2)*  | -             | -                     | -                   | -                 |
| Winch 1<br>(200)<br>(1:10)     | -           | 334<br>(2)* | _                | 826<br>(5)*   | _             | 749<br>(5)*  | 275<br>4<br>(18)<br>* | 865<br>(5)*  | _             | 402<br>(3)*           | 43<br>7<br>(4)<br>* | 1777<br>(14)<br>* |
| Winch 2<br>(125)<br>(1:10)     | -           | -           | -                | -             | -             | 1018<br>(9)* | 250<br>0<br>(23)<br>* | 207<br>(2)*  |               | 116<br>7<br>(12)<br>* | 54<br>8<br>(6)<br>* | 478<br>(6)*       |
| Winch 3<br>(40)<br>(1:10)      | 83<br>(6)*  | _           | -                | 70<br>(3)*    | -             | 15<br>(1)*   | 29<br>(1)*            | 19<br>(2)*   | -             | 15<br>(1)*            | 4<br>(1)<br>*       | -                 |
| New jet 2&1<br>(150)<br>(1:17) |             | -           | -                | -             | 2913<br>(24)* | 717<br>(7)*  | 140<br>4<br>(12)<br>* | -            | 1179<br>(12)* | -                     | 29<br>8<br>(3)<br>* | _                 |
| Jet 2&1<br>(400)<br>(1:10)     | -           | 613<br>(2)* | 306<br>(1)*      | -             | 1383<br>(5)*  | 1583<br>(4)* | 703<br>2<br>(18)<br>* | 310<br>(1)*  | 4823<br>(15)* | 886<br>(3)*           | _                   | 3300<br>(12)<br>* |
| Jet JF&JE<br>(75)<br>(1:10)    | -           | -           | -                | -             | 782<br>(11)*  | 157<br>(2)*  |                       | -            | 1363<br>(18)* | 77<br>(1)*            | -                   | -                 |
| Fongs<br>(600)<br>(1:7)        | -           | 859<br>(2)* | 136<br>2<br>(3)* | 6736<br>(12)* | -             | -            | 112<br>5<br>(2)*      | 4140<br>(7)* | _             | -                     | -                   |                   |

## **PRODUCTION STATISTICS (NOVEMBER 1994)**

\* Total number of batches

Jigger and washing machine were not operated during this month

Total production of November 1994

100% Cotton13,277 kgBlend31,910 kg100% Polyester16,754 kg

D - Dark, M - Medium, L - Light, W - White

#### ANNEXURE F

| Operation                        | Name of chemicals/Dyes                                                                         | Chemical concentration g/l or % of fabric weight |                                    |                                    |
|----------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------|------------------------------------|
|                                  |                                                                                                | 100% Cotton<br>D M L W                           | 100% Polyester<br>D M L W          | Cotton/Polyester blend<br>D M L W  |
| Scouring and bleaching<br>(g/l)  | H <sub>2</sub> O <sub>2</sub><br>NaOH<br>Detergent<br>Organic stabilizer                       | 3 4 5 8<br>1 2 2 3 .<br>1 1 1 1<br>0.5 1 1 1     | 2 5<br><br>1 1 1 1<br>             | 3 3 5 7<br><br>1 1 1 1<br>         |
| Cotton dyeing(g/kg<br>fabric)    | Reactive dyes (g/kg)<br>Disperse dyes (g/kg)<br>Detergent (g/l)                                | 2 8<br>8<br>1                                    |                                    | 1 - 4<br>1 - 4<br>1                |
| Soaping (g/l)                    | Detergent (g/l)                                                                                | 2 1 0.5 -                                        | 1 0.5 0.5 -                        | 2 1 0.5 -                          |
| Polyester dyeing                 | Dispersing agent(g/l)<br>Reactive dyes (g/kg)<br>Disperse dyes (g/kg)<br>Levelling agent (g/l) |                                                  | 0.2 - 1<br>0.5 - 1<br>8<br>0.2 - 1 | 0.2 - 1<br>0.5 - 1<br>4<br>0.2 - 1 |
| Acid washing(% of fabric weight) | Acetic acid*                                                                                   | 1% for all shade                                 |                                    |                                    |

#### MAJOR PROCESS CHEMICAL RECIPES

D-Dark shade, M-Medium shade, L-Light shade, W-White

\* Formic acid is being used presently in place of Acetic acid.

#### IPRP/CISIR/OACIANIC

-

#### ANNEXURE G

## ESTIMATION OF THE STEAM COST

(Based on a days consumption)

| Fuel oil cost                                         | $= 1980(1) \times 6.98(Rs/I)$                                                                                              |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Cost of fuel pumping(600min)                          | = 13820.4<br>= 0.75(kW) x (600/60) x 6.34(Rs/kWh)<br>= 47.55                                                               |
| Electric oil heater cost<br>(600min)<br>Water cost    | $= 12(kW) \times (600/60) \times 6.34(Rs/kWh)$<br>= 760.8<br>= 14.4(m <sup>3</sup> ) x 7.81(Rs/m <sup>3</sup> )<br>= 112.5 |
| * Water pumping cost considered as neglig             | liple                                                                                                                      |
| Boiler water treatment                                | = 1177(Rs/day)                                                                                                             |
| Air compressor power                                  | $= 15(kW) \times (600/60) \times 6.34(Rs/kWh)$<br>= 951                                                                    |
| Labor cost                                            | = 280 (Rs/day)                                                                                                             |
| Total cost<br>Total steam produced<br>Unit steam cost | = 17149.25<br>= 14400 kg<br>= 1.19 Rs/kg                                                                                   |

Steam cost was estimated for two days to get average unit steam cost

| Average steam cost | = 1.20  Rs/kg |
|--------------------|---------------|
|--------------------|---------------|

#### ANNEXURE H

## ESTIMATION OF EFFLUENT DISPOSAL COST ON THE BASIS OF COD REMOVAL

| a) Capacity of plant = 200 m <sup>3</sup> /day<br>b) Typical COD of textile effluent after<br>equalization = 800 mg/l<br>Chemical consumption<br>Coagulant Alum (400 mg/l) = 80 kg/day<br>Flocculant Polymer (2 mg/l in dry solid basis) = 400 g/day<br>Neutralizer Lime (120 mg/l) = 24 kg/day<br>Cost (Rs)<br>Alum (Rs 16/kg) = 1280<br>Polymer (Rs 1000/kg) = 400<br>Lime (Rs 5/kg) = 120<br>Total Chemical cost = 1800/day<br>Electricity<br>Feed pump (1 kW) = 24 kWh<br>Chemical preparation (0.2W x 3) = 18 kWh<br>Dosing pump (0.1 x 3) = 7.2 kWh<br>Flash mixer (0.5 kW) = 12 kWh<br>Clarifier scraper (0.5kW) = 12 kWh<br>Clarifier scraper (0.5kW) = 18 kWh<br>BC (1.5 kW) = 36 kwh<br>Secondary clarifier scraper (0.75 kW) = 18 kWh<br>Total power = 145.7 kWh<br>Electricity cost (Rs 5/kWh) = 726<br>Labor cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime<br>Labor cost (24 labor hours per day)<br>Total operational cost = Rs 600/day<br>Sludge handling cost = Rs 150/day<br>Total operational cost = Rs 3726/day<br>COD removal required per day = 200((300-250) x 10 <sup>-3</sup> kg/day<br>= 110 kg/day                                                                                                                                                          | Assump                       | tions                                              |                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------|---------------------------------------------------|
| b) Typical COD of textile effluent after<br>equalization = 800 mg/l<br>Chemical consumption<br>Coagulant Alum (400 mg/l) = 80 kg/day<br>Flocculant Polymer (2 mg/l in dry solid basis) = 400 g/day<br>Neutralizer Lime (120 mg/l) = 24 kg/day<br>Cost (Rs)<br>Alum (Rs 16/kg) = 1280<br>Polymer (Rs 1000/kg) = 400<br>Lime (Rs 5/kg) = 120<br>Total Chemical cost = 1800/day<br>Electricity<br>Feed pump (1 kW) = 24 kWh<br>Chemical preparation (0.2W x 3) = 18 kWh<br>Dosing pump (0.1 x 3) = 7.2 kWh<br>Flash mixer (0.5 kW) = 12 kWh<br>Clarifier scraper (0.5kW) = 18 kWh<br>RBC (1.5 kW) = 36 kwh<br>Secondary clarifier scraper (0.75 kW) = 18 kWh<br>Total power = 145.7 kWh<br>Electricity cost (Rs 5/kWh) = 726<br>Labor cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime = Rs 25/h<br>Labor cost = Rs 600/day<br>Sludge handling cost = Rs 3726/day<br>COD removal required per day = 200(800-250) x 10 <sup>-3</sup> kg/day<br>= 110 kg/day                                                                                                                                                                                                                                                                                                                                  |                              | a) Capacity of plant                               | = 200 m³/day                                      |
| equalization= 800 mg/lChemical consumption<br>Coagulant Alum (400 mg/l)= 80 kg/day<br>Flocculant Polymer (2 mg/l in dry solid basis)= 400 g/day<br>Polymer (2 mg/l in dry solid basis)Cost (Rs)<br>Alum (Rs 16/kg)= 1280<br>Polymer (Rs 1000/kg)= 400<br>ElectricityFeed pump (Rs 1000/kg)= 120<br>Total Chemical cost= 1800/dayElectricity<br>Feed pump (1 kW)= 24 kWh<br>Chemical preparation (0.2W x 3)= 18 kWh<br>Posing pump (0.1 x 3)Dosing pump (0.1 x 3)= 7.2 kWh<br>Electricity<br>RBC (1.5 kW)= 12 kWh<br>Electricity = 18 kWh<br>RBC (1.5 kW)Electricity cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime<br>total operational cost= Rs 25/h<br>E s 3726/dayLabor cost<br>Total operational cost= Rs 25/h<br>E s 3726/day= Rs 3726/dayCOD removal required per day<br>Electricity<br>Total operational cost= Rs 3726/dayCost for COD removal= 3276/110<br>E Rs 30/ kg= 3276/110<br>E Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                                |                              | b) Typical COD of textile effluent after           |                                                   |
| Chemical consumption<br>Coagulant Alum (400 mg/l) = 80 kg/day<br>Flocculant Polymer (2 mg/l in dry solid basis) = 400 g/day<br>Neutralizer Lime (120 mg/l) = 24 kg/day<br>Cost (Rs)<br>Alum (Rs 16/kg) = 1280<br>Polymer (Rs 1000/kg) = 400<br>Lime (Rs 5/kg) = 120<br>Total Chemical cost = 1800/day<br>Electricity<br>Feed pump (1 kW) = 24 kWh<br>Chemical preparation (0.2W x 3) = 18 kWh<br>Dosing pump (0.1 x 3) = 7.2 kWh<br>Flash mixer (0.5 kW) = 12 kWh<br>Clarifier scraper (0.5 kW) = 12 kWh<br>Clarifier scraper (0.5 kW) = 18 kWh<br>RBC (1.5 kW) = 36 kwh<br>Secondary clarifier scraper (0.75 kW) = 18 kWh<br>Total power = 145.7 kWh<br>Electricity cost (Rs 5/kWh) = 726<br>Labor cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime = Rs 25/h<br>Labor cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime = Rs 25/h<br>Labor cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime = Rs 25/h<br>Labor cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime = Rs 3726/day<br>COD removal required per day = 200(800-250) x 10 <sup>-3</sup> kg/day<br>= 110 kg/day<br>Cost for COD removal = 3276/110<br>= Rs 29.78/ kg<br>= Rs 30/ kg |                              | equalization                                       | = 800 mg/l                                        |
| Chemical consumption<br>Coagulant Alum (400 mg/l) = 80 kg/day<br>Flocculant Polymer (2 mg/l in dry solid basis) = 400 g/day<br>Neutralizer Lime (120 mg/l) = 24 kg/day<br>Cost (Rs)<br>Alum (Rs 16/kg) = 1280<br>Polymer (Rs 1000/kg) = 400<br>Lime (Rs 5/kg) = 120<br>Total Chemical cost = 1800/day<br>Electricity<br>Feed pump (1 kW) = 24 kWh<br>Chemical preparation (0.2W x 3) = 18 kWh<br>Dosing pump (0.1 x 3) = 7.2 kWh<br>Clarifier scraper (0.5 kW) = 12 kWh<br>Clarifier scraper (0.5kW) = 12 kWh<br>Clarifier scraper (0.5kW) = 18 kWh<br>RBC (1.5 kW) = 36 kwh<br>Secondary clarifier scraper (0.75 kW) = 18 kWh<br>Total power = 145.7 kWh<br>Electricity cost (Rs 5/kWh) = 726<br>Labor cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime = Rs 25/h<br>Labor cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime = Rs 350/day<br>Total operational cost = Rs 3726/day<br>COD removal required per day = 200(800-250) x 10 <sup>-3</sup> kg/day<br>= 110 kg/day<br>Cost for COD removal = 3276/110<br>= Rs 29.78/ kg<br>= Rs 30/ kg                                                                                                                                                                                            |                              |                                                    |                                                   |
| Coagulant Alum (400 mg/l)= 80 kg/day<br>Flocculant Polymer (2 mg/l in dry solid basis)= 400 g/day<br>Neutralizer Lime (120 mg/l)Cost (Rs) $= 24 kg/day$ Alum (Rs 16/kg) $= 1280$<br>Polymer (Rs 1000/kg) $= 400$<br>Lime (Rs 5/kg)Dime (Rs 5/kg) $= 120$<br>Total Chemical cost $= 1800/day$ Electricity $= 24 kWh$<br>Chemical preparation (0.2W x 3) $= 18 kWh$<br>Dosing pump (0.1 x 3)Feed pump (1 kW) $= 24 kWh$<br>Chemical preparation (0.2W x 3) $= 18 kWh$<br>Dosing pump (0.1 x 3)Flash mixer (0.5 kW) $= 12 kWh$<br>Clarifier scraper (0.5kW) $= 18 kWh$<br>RBC (1.5 kW)RBC (1.5 kW) $= 36 kwh$<br>Secondary clarifier scraper (0.75 kW) $= 18 kWh$<br>Total powerElectricity cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime $= Rs 25/h$<br>$= Rs 600/daySludge handling cost= Rs 150/dayTotal operational costCOD removal required per day= 200(800-250) \times 10^{-3} kg/day= 110 kg/dayCost for COD removal= 3276/110= Rs 29.78/ kg= Rs 30/ kg$                                                                                                                                                                                                                                                                                                                         | Chemic                       | al consumption                                     |                                                   |
| Flocculant Polymer (2 mg/l in dry solid basis) = 400 g/day<br>Neutralizer Lime (120 mg/l) = 24 kg/day<br>Cost (Rs)<br>Alum (Rs 16/kg) = 1280<br>Polymer (Rs 1000/kg) = 400<br>Lime (Rs 5/kg) = 120<br>Total Chemical cost = 1800/day<br>Electricity<br>Feed pump (1 kW) = 24 kWh<br>Chemical preparation (0.2W x 3) = 18 kWh<br>Dosing pump (0.1 x 3) = 7.2 kWh<br>Flash mixer (0.5 kW) = 12 kWh<br>Clarifier scraper (0.5kW) = 18 kWh<br>RBC (1.5 kW) = 36 kwh<br>Secondary clarifier scraper (0.75 kW) = 18 kWh<br>Total power = 145.7 kWh<br>Electricity cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime = Rs 25/h<br>Labor cost (24 labor hours per day)<br>Total operational cost = Rs 150/day<br>Total operational cost = Rs 3726/day<br>COD removal required per day = 200(800-250) x 10 <sup>-3</sup> kg/day<br>= 110 kg/day<br>Cost for COD removal = 3276/110<br>= Rs 29.78/ kg<br>= Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                                |                              | Coagulant Alum (400 mg/l)                          | = 80  kg/day                                      |
| Neutralizer Lime (120 mg/l) $= 24 \text{ kg/day}$ Cost (Rs)Alum (Rs 16/kg) $= 1280$ Polymer (Rs 1000/kg) $= 400$ Lime (Rs 5/kg) $= 120$ Total Chemical cost $= 1800/day$ ElectricityFeed pump (1 kW) $= 24 \text{ kWh}$ Chemical preparation (0.2W x 3) $= 18 \text{ kWh}$ Dosing pump (0.1 x 3) $= 7.2 \text{ kWh}$ Flash mixer (0.5 kW) $= 12 \text{ kWh}$ Clarifier scraper (0.5kW) $= 18 \text{ kWh}$ RBC (1.5 kW) $= 36 \text{ kwh}$ Secondary clarifier scraper (0.75 kW) $= 18 \text{ kWh}$ Total power $= 145.7 \text{ kWh}$ Electricity cost (Rs 5/kWh) $= 726$ Labor cost (24 labor hours per day) $= 726$ Labor cost (24 labor hours per day) $= Rs 600/day$ Sludge handling cost $= Rs 600/day$ Sludge handling cost $= Rs 3726/day$ COD removal required per day $= 200(800-250) \times 10^{-3} \text{ kg/day}$ Cost for COD removal $= 3276/110$ $= Rs 29.78/ kg$ $= Rs 30/ kg$                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | Flocculant Polymer (2 mg/l in dry solid basis)     | = 400  g/day                                      |
| Cost (Rs)<br>Alum (Rs 16/kg) = 1280<br>Polymer (Rs 1000/kg) = 400<br>Lime (Rs 5/kg) = 120<br>Total Chemical cost = 1800/day<br>Electricity<br>Feed pump (1 kW) = 24 kWh<br>Chemical preparation (0.2W x 3) = 18 kWh<br>Dosing pump (0.1 x 3) = 7.2 kWh<br>Flash mixer (0.5 kW) = 12 kWh<br>Clarifier scraper (0.5kW) = 18 kWh<br>RBC (1.5 kW) = 36 kwh<br>Secondary clarifier scraper (0.75 kW) = 18 kWh<br>Total power = 145.7 kWh<br>Electricity cost (Rs 5/kWh) = 726<br>Labor cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime = Rs 25/h<br>Labor cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime = Rs 600/day<br>Sludge handling cost = Rs 600/day<br>Sludge handling cost = Rs 150/day<br>COD removal required per day = 200(800-250) x 10 <sup>-3</sup> kg/day<br>= 110 kg/day<br>Cost for COD removal = 3276/110<br>= Rs 29.78/ kg<br>= Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                                |                              | Neutralizer Lime (120 mg/l)                        | = 24  kg/day                                      |
| Alum (Rs 16/kg)= 1280Polymer (Rs 1000/kg)= 400Lime (Rs 5/kg)= 120Total Chemical cost= 1800/dayElectricity= 24 kWhChemical preparation (0.2W x 3)= 18 kWhDosing pump (0.1 x 3)= 7.2 kWhFlash mixer (0.5 kW)= 12 kWhClarifier scraper (0.5kW)= 18 kWhRBC (1.5 kW)= 36 kwhSecondary clarifier scraper (0.75 kW)= 18 kWhTotal cost of labor including EPF, ETF, and annual<br>overtime= Rs 25/hLabor cost (24 labor hours per day)= Rs 600/daySludge handling cost= Rs 600/daySludge handling cost= Rs 3726/dayCOD removal required per day= 200(800-250) x 10 <sup>-3</sup> kg/dayCost for COD removal= 3276/110= Rs 29.78/ kg= Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cost (R                      | s)                                                 |                                                   |
| Polymer (Rs 1000/kg) $= 400$ Lime (Rs 5/kg) $= 120$ Total Chemical cost $= 1800/day$ Electricity $= 24 \text{ kWh}$ Chemical preparation (0.2W x 3) $= 18 \text{ kWh}$ Dosing pump (0.1 x 3) $= 7.2 \text{ kWh}$ Flash mixer (0.5 kW) $= 12 \text{ kWh}$ Clarifier scraper (0.5kW) $= 12 \text{ kWh}$ RBC (1.5 kW) $= 36 \text{ kwh}$ Secondary clarifier scraper (0.75 kW) $= 18 \text{ kWh}$ Total power $= 145.7 \text{ kWh}$ Electricity cost (Rs 5/kWh) $= 726$ Labor cost (24 labor hours per day) $= 726$ Labor cost (24 labor hours per day) $= Rs 600/day$ Sludge handling cost $= Rs 600/day$ Sludge handling cost $= Rs 3726/day$ COD removal required per day $= 200(800-250) \times 10^{-3} \text{ kg/day}$ Cost for COD removal $= 3276/110$ $= Rs 30/ kg$ $= Rs 30/ kg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ```                          | Alum (Rs 16/kg)                                    | = 1280                                            |
| Lime (Rs 5/kg) = 120<br>Total Chemical cost = 1800/day<br>Electricity<br>Feed pump (1 kW) = 24 kWh<br>Chemical preparation (0.2W x 3) = 18 kWh<br>Dosing pump (0.1 x 3) = 7.2 kWh<br>Flash mixer (0.5 kW) = 12 kWh<br>Clarifier scraper (0.5kW) = 18 kWh<br>RBC (1.5 kW) = 36 kwh<br>Secondary clarifier scraper (0.75 kW) = 18 kWh<br>Total power = 145.7 kWh<br>Electricity cost (Rs 5/kWh) = 726<br>Labor cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime = Rs 25/h<br>Labor cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime = Rs 600/day<br>Sludge handling cost = Rs 600/day<br>Total operational cost = Rs 3726/day<br>COD removal required per day = 200(800-250) x 10 <sup>-3</sup> kg/day<br>= 110 kg/day<br>Cost for COD removal = 3276/110<br>= Rs 29.78/ kg<br>= Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              | Polymer (Rs 1000/kg)                               | = 400                                             |
| Total Chemical cost= 1800/dayElectricityFeed pump (1 kW)= 24 kWhChemical preparation (0.2W x 3)= 18 kWhDosing pump (0.1 x 3)= 7.2 kWhFlash mixer (0.5 kW)= 12 kWhClarifier scraper (0.5kW)= 18 kWhRBC (1.5 kW)= 36 kwhSecondary clarifier scraper (0.75 kW)= 18 kWhTotal power= 145.7 kWhElectricity cost (Rs 5/kWh)= 726Labor cost (24 labor hours per day)Total cost of labor including EPF, ETF, and annual overtimeQuertime= Rs 25/hLabor cost= Rs 600/daySludge handling cost= Rs 150/dayTotal operational cost= Rs 3726/dayCOD removal required per day= 200(800-250) x 10 <sup>-3</sup> kg/dayCost for COD removal= 3276/110= Rs 29.78/ kg= Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | Lime (Rs 5/kg)                                     | = 120                                             |
| Electricity<br>Feed pump (1 kW) = 24 kWh<br>Chemical preparation (0.2W x 3) = 18 kWh<br>Dosing pump (0.1 x 3) = 7.2 kWh<br>Flash mixer (0.5 kW) = 12 kWh<br>Clarifier scraper (0.5kW) = 18 kWh<br>RBC (1.5 kW) = 36 kwh<br>Secondary clarifier scraper (0.75 kW) = 18 kWh<br>Total power = 145.7 kWh<br>Electricity cost (Rs 5/kWh) = 726<br>Labor cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime = Rs 25/h<br>Labor cost $(24 \text{ labor hours per day})$<br>Total cost of labor including EPF, ETF, and annual<br>overtime = Rs 25/h<br>Labor cost $(24 \text{ labor hours per day})$<br>Total cost of labor including EPF, ETF, and annual<br>overtime = Rs 25/h<br>Labor cost $(24 \text{ labor hours per day})$<br>Cost for COD removal required per day = 200(800-250) x 10 <sup>-3</sup> kg/day<br>= 110 kg/day<br>Cost for COD removal $(250 \text{ cost}) = 3276/110$<br>= Rs 29.78/ kg<br>= Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                      |                              | Total Chemical cost                                | = 1800/day                                        |
| Electricity<br>Feed pump (1 kW) = 24 kWh<br>Chemical preparation (0.2W x 3) = 18 kWh<br>Dosing pump (0.1 x 3) = 7.2 kWh<br>Flash mixer (0.5 kW) = 12 kWh<br>Clarifier scraper (0.5kW) = 18 kWh<br>RBC (1.5 kW) = 36 kwh<br>Secondary clarifier scraper (0.75 kW) = 18 kWh<br>Total power = 145.7 kWh<br>Electricity cost (Rs 5/kWh) = 726<br>Labor cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime = Rs 25/h<br>Labor cost $= Rs 600/day$<br>Sludge handling cost $= Rs 600/day$<br>Sludge handling cost $= Rs 3726/day$<br>COD removal required per day $= 200(800-250) \times 10^{-3} kg/day$<br>= 110 kg/day<br>Cost for COD removal $= 3276/110$<br>= Rs 29.78/ kg<br>= Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |                                                    |                                                   |
| Feed pump (1 kW) $= 24 \text{ kWh}$ Chemical preparation (0.2W x 3) $= 18 \text{ kWh}$ Dosing pump (0.1 x 3) $= 7.2 \text{ kWh}$ Plash mixer (0.5 kW) $= 12 \text{ kWh}$ Clarifier scraper (0.5kW) $= 12 \text{ kWh}$ RBC (1.5 kW) $= 36 \text{ kwh}$ Secondary clarifier scraper (0.75 kW) $= 18 \text{ kWh}$ Total power $= 145.7 \text{ kWh}$ Electricity cost (Rs 5/kWh) $= 726$ Labor cost (24 labor hours per day)Total cost of labor including EPF, ETF, and annual<br>overtimeovertime $= \text{Rs } 25/\text{h}$ Labor cost $= \text{Rs } 600/\text{day}$ Sludge handling cost<br>Total operational cost $= \text{Rs } 3726/\text{day}$ COD removal required per day $= 200(800-250) \times 10^{-3} \text{ kg/day}$ Cost for COD removal $= 3276/110$ $= \text{Rs } 29.78/ \text{ kg}$ $= \text{Rs } 30/ \text{ kg}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Electric                     | ity                                                |                                                   |
| Chemical preparation $(0.2 \text{ W x } 3)$ = 18 kWh<br>Dosing pump $(0.1 \text{ x } 3)$ = 7.2 kWh<br>Flash mixer $(0.5 \text{ kW})$ = 12 kWh<br>Clarifier scraper $(0.5 \text{ kW})$ = 18 kWh<br>RBC $(1.5 \text{ kW})$ = 36 kwh<br>Secondary clarifier scraper $(0.75 \text{ kW})$ = 18 kWh<br>Total power = 145.7 kWh<br>Electricity cost (Rs 5/kWh) = 726<br>Labor cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime = Rs 25/h<br>Labor cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime = Rs 600/day<br>Sludge handling cost = Rs 600/day<br>Total operational cost = Rs 3726/day<br>COD removal required per day = 200(800-250) x 10 <sup>-3</sup> kg/day<br>= 110 kg/day<br>Cost for COD removal = 3276/110<br>= Rs 29.78/ kg<br>= Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              | Feed pump (1 kW)                                   | = 24  kWh                                         |
| Dosing pump $(0.1 \times 3)$ = 7.2 kWhFlash mixer $(0.5 \text{ kW})$ = 12 kWhClarifier scraper $(0.5 \text{ kW})$ = 18 kWhRBC $(1.5 \text{ kW})$ = 36 kwhSecondary clarifier scraper $(0.75 \text{ kW})$ = 18 kWhTotal power= 145.7 kWhElectricity cost (Rs 5/kWh)= 726Labor cost (24 labor hours per day)Total cost of labor including EPF, ETF, and annual<br>overtimeLabor cost= Rs 25/hLabor cost= Rs 600/daySludge handling cost= Rs 150/dayTotal operational cost= Rs 3726/dayCOD removal required per day= 200(800-250) \times 10^{-3} kg/dayCost for COD removal= 3276/110= Rs 29.78/ kg= Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | Chemical preparation $(0.2W \times 3)$             | = 18  kWh                                         |
| Flash mixer (0.5 kW)= 12 kWhClarifier scraper (0.5kW)= 18 kWhRBC (1.5 kW)= 36 kwhSecondary clarifier scraper (0.75 kW)= 18 kWhTotal power= 145.7 kWhElectricity cost (Rs 5/kWh)= 726Labor cost (24 labor hours per day)Total cost of labor including EPF, ETF, and annual<br>overtimeLabor cost= Rs 600/daySludge handling cost= Rs 150/dayTotal operational cost= Rs 3726/dayCOD removal required per day= 200(800-250) x 10 <sup>-3</sup> kg/day<br>= 110 kg/dayCost for COD removal= 3276/110<br>= Rs 29.78/ kg<br>= Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | Dosing pump (0.1 x 3)                              | = 7.2 kWh                                         |
| Clarifier scraper (0.5kW) = 18 kWh<br>RBC (1.5 kW) = 36 kwh<br>Secondary clarifier scraper (0.75 kW) = 18 kWh<br>Total power = 145.7 kWh<br>Electricity cost (Rs 5/kWh) = 726<br>Labor cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime = Rs 25/h<br>Labor cost = Rs 600/day<br>Sludge handling cost = Rs 150/day<br>Total operational cost = Rs 3726/day<br>COD removal required per day = 200(800-250) x 10 <sup>-3</sup> kg/day<br>= 110 kg/day<br>Cost for COD removal = 3276/110<br>= Rs 29.78/ kg<br>= Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              | Flash mixer (0.5 kW)                               | = 12  kWh                                         |
| RBC (1.5 kW)= 36 kwhSecondary clarifier scraper (0.75 kW)= 18 kWhTotal power= 145.7 kWhElectricity cost (Rs 5/kWh)= 726Labor cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime= Rs 25/hLabor cost= Rs 600/daySludge handling cost<br>Total operational cost= Rs 3726/dayCOD removal required per day= 200(800-250) x 10 <sup>-3</sup> kg/day<br>= 110 kg/dayCost for COD removal= 3276/110<br>= Rs 29.78/ kg<br>= Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | Clarifier scraper (0.5kW)                          | = 18  kWh                                         |
| Secondary clarifier scraper (0.75 kW) = 18 kWh<br>Total power = 145.7 kWh<br>Electricity cost (Rs 5/kWh) = 726<br>Labor cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime = Rs 25/h<br>Labor cost = Rs 600/day<br>Sludge handling cost = Rs 150/day<br>Total operational cost = Rs 3726/day<br>COD removal required per day = 200(800-250) x 10 <sup>-3</sup> kg/day<br>= 110 kg/day<br>Cost for COD removal = 3276/110<br>= Rs 29.78/ kg<br>= Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              | RBC (1.5 kW)                                       | = 36 kwh                                          |
| Total power= 145.7 kWhElectricity cost (Rs 5/kWh)= 726Labor cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime<br>Labor cost<br>Sludge handling cost<br>Total operational cost= Rs 25/h<br>= Rs 600/day<br>= Rs 150/day<br>= Rs 3726/dayCOD removal required per day= 200(800-250) x 10°3 kg/day<br>= 110 kg/dayCost for COD removal= 3276/110<br>= Rs 29.78/ kg<br>= Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | Secondary clarifier scraper (0.75 kW)              | = 18  kWh                                         |
| Electricity cost (Rs 5/kWh) = 726<br>Labor cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime = Rs 25/h<br>Labor cost = Rs 600/day<br>Sludge handling cost = Rs 150/day<br>Total operational cost = Rs 3726/day<br>COD removal required per day = 200(800-250) x 10 <sup>-3</sup> kg/day<br>= 110 kg/day<br>Cost for COD removal = 3276/110<br>= Rs 29.78/ kg<br>= Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | Total power                                        | = 145.7  kWh                                      |
| Labor cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime<br>Labor cost<br>Sludge handling cost<br>Total operational cost<br>COD removal required per day<br>Cost for COD removal<br>= Rs 25/h<br>= Rs 600/day<br>= Rs 3726/day<br>$= 200(800-250) \times 10^{-3} kg/day$<br>= 3276/110<br>= Rs 29.78/ kg<br>= Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Electricity cost (Rs 5/kW/b) |                                                    | = 726                                             |
| Labor cost (24 labor hours per day)<br>Total cost of labor including EPF, ETF, and annual<br>overtime = Rs 25/h<br>Labor cost = Rs 600/day<br>Sludge handling cost = Rs 150/day<br>Total operational cost = Rs 3726/day<br>COD removal required per day = $200(800-250) \times 10^{-3} \text{ kg/day}$<br>= $110 \text{ kg/day}$<br>Cost for COD removal = $3276/110$<br>= Rs 29.78/ kg<br>= Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Licenie                      |                                                    | _ /20                                             |
| Total cost of labor including EPF, ETF, and annual<br>overtime= Rs 25/h<br>= Rs 600/day<br>= Rs 150/day<br>= Rs 150/dayLabor cost= Rs 600/day<br>= Rs 150/daySludge handling cost= Rs 150/day<br>= Rs 3726/dayCOD removal required per day= $200(800-250) \times 10^{-3} \text{ kg/day}$<br>= $110 \text{ kg/day}$ Cost for COD removal= $3276/110$<br>= Rs 29.78/ kg<br>= Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Labor c                      | ost (24 labor hours per day)                       |                                                   |
| overtime= Rs 25/hLabor cost= Rs 600/daySludge handling cost= Rs 150/dayTotal operational cost= Rs 3726/dayCOD removal required per day= $200(800-250) \times 10^{-3} \text{ kg/day}$ Cost for COD removal= $3276/110$ = Rs 29.78/ kg= Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              | Total cost of labor including EPF, ETF, and annual |                                                   |
| Labor cost= Rs 600/daySludge handling cost= Rs 150/dayTotal operational cost= Rs 3726/dayCOD removal required per day= $200(800-250) \times 10^{-3} \text{ kg/day}$ Cost for COD removal= $3276/110$ = Rs 29.78/ kg= Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              | overtime                                           | = Rs 25/h                                         |
| Sludge handling cost<br>Total operational cost= Rs 150/day<br>= Rs 3726/dayCOD removal required per day= $200(800-250) \times 10^{-3} \text{ kg/day}$<br>= $110 \text{ kg/day}$ Cost for COD removal= $3276/110$<br>= Rs 29.78/ kg<br>= Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | Labor cost                                         | = Rs 600/day                                      |
| Total operational cost= Rs 3726/dayCOD removal required per day= $200(800-250) \times 10^{-3} \text{ kg/day}$ Cost for COD removal= $3276/110$ = Rs 29.78/ kg= Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | Sludge handling cost                               | = Rs 150/day                                      |
| COD removal required per day $= 200(800-250) \times 10^{-3} \text{ kg/day}$ Cost for COD removal $= 3276/110$ $= \text{Rs } 29.78/ \text{ kg}$ $= \text{Rs } 30/ \text{ kg}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | Total operational cost                             | = Rs 3726/day                                     |
| Cost for COD removal<br>$= 200(800-250) \times 10^{5} \text{ kg/day}$ $= 110 \text{ kg/day}$ $= 3276/110$ $= \text{Rs } 29.78/ \text{ kg}$ $= \text{Rs } 30/ \text{ kg}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                    |                                                   |
| Cost for COD removal<br>= 3276/110 $= Rs 29.78/ kg$ $= Rs 30/ kg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | COD removal required per day |                                                    | $= 200(800-250) \times 10^{\circ} \text{ kg/day}$ |
| Cost for COD removal $= 3276/110$ $= Rs 29.78/ kg$ $= Rs 30/ kg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                                                    | = 110  kg/day                                     |
| = Rs 29.78/ kg<br>= Rs 30/ kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cost for                     | · COD removal                                      | = 3276/110                                        |
| = Rs  30/ kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000 101                     |                                                    | = Rs 29.78/ kg                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                                                    | = Rs 30/kg                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                                                    | 0                                                 |

#### ANNEXURE I

#### UTILITY COSTS

| UTILITY         | UNIT COST (Rs)       | COST (Rs/kg<br>FABRIC) |
|-----------------|----------------------|------------------------|
| WATER           | 7.81 /m <sup>3</sup> | 1.17                   |
| STEAM           | 1.20 / kg            | 5.46                   |
| ELECTRICITY     | 6.34 / kWh           | 3.45                   |
| FUEL OIL        | 6.98 / 1             | 3.74                   |
| TREATMENT COST* | 30 / kg COD          | 3.20§                  |

- S Treatment cost per kg of fabric is calculated from total effluent treatment cost (Rs 204,390/month) and total production (63937 kg/M) in November 1994.
- \* An effluent treatment plant is not available presently.

## IPRP/CISIR/OACIANIC

. .

.

х