

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at <u>www.unido.org</u>

21934

10 p. Tal-les

Final Report

Feasibility Test of Carbon Black Production from Tar Oil

UNIDO - Project US/IND/93/140 Purchase Order No.: 15-7-1025U

Prepared by: DMT-Gesellschaft für Forschung und Prüfung mbH DMT-FuelTec Franz-Fischer-Weg 61 45307 Essen

Responsible: Dr. Manfred Kaiser Tel.: +49/201/172-1789 Fax: +49/201/172-1023

1 INTRODUCTION

The Neyveli Lignite Corporation Ltd. will investigate the feasibility to use tar oil from the carbonisation of lignite as carbon black feedstock. The Bureau of Mines Correlation Index (BMCI), is a particularly important criterion of the quality of a carbon black feedstock. The investigation of the BMCI and other investigations were done by DMT-FuelTec.

2 BUREAU OF MINES CORRELATION INDEX - BMCI

In the furnace process, which today dominates carbon black production, oils rich in aromatics from naphtha or gas oil pyrolysis, and mixtures of aromatics from coal tar, are used as feedstock. The Bureau of Mines Correlation Index (BMCI) defined below, is a particularly important criterion of the quality of the carbon black feedstock:

BMCI = $473.7 * d - 456.8 + 48640 * K^{-1}$

Here, d is the density of the hydrocarbon mixture in g/ml at 15.6 °C and K the average boiling temperature in Kelvin.

Hydrocarbon mixtures of predominantly nature have a correlation index (CI) from 15 to 50; benzene, according to the defining, has a CI of 100, while high-boiling aromatic mixtures have a correlation index in excess of 100. The yield of carbon black increases as the correlation index rises; the highest yields are obtained using three- and four-ring aromatic compounds /1/.

3 TAR SAMPLE

A one kg tar sample was delivered from Neyvelis Lignite Corporation Ltd., Dy. Chief Scientist, with a covering letter dated 28.02.1997, via Mr. Grant Ramsay, UNIDO officer, Vienna, to DMT. The sample arrived on 10.03.1997.

4 ANALYSIS

Visual judgement

The sample is waxy and seems inhomogeneous, the color is light to dark brown

Density

Determination of density with Areometer (DIN 51757, 1984 and ISO 3675, 1975) The density was determined at 60 °C and converted to 15.6 °C.

$$\rho$$
 (15.6 °C) = ρ_E (t) + α (t - 15.6 °C)

Here, ρ is the density, ρ_E the density at measuring temperatur t and α a temperature coefficient ($\alpha = 0.63 \text{ kg/cm}^3 * \text{K}$)

 $\rho_{\rm E}$ (60 °C) = 929 kg/m³ ρ (15.6 °C) = 957 kg/m³

Boiling curve

A preparatory destillation of the tar was not possible. The initial boiling point is to high. A simulated destillation was done by a GC-method. The report is additional as appendix 1.

I.B.P.	303 °C
50 %	473 °C
F.B.P.	> 545 °C

Ultimate analysis

С	85.35 %	Method:	LECO
Η	10.50 %		LECO
N	0.16 %		LECO
S	0.33 %		ASTM D 5453-93
0	3.66 %		difference

Water

not detectable with xylol method

Ash

not detectable with EN7

Determination of the Conradson carbon residue (coking tendency), DIN 51551 and ASTM D 189-65

Carbon residue 3.3 %

Solubilities

Toluene insoluble	0.1 %
Heptane insoluble	4.0 %
(Asphaltene)	
Pentane insoluble	10.8 %

Melting point

51 °C

Calculation of the BMCI

BMCI = 62

5 VALUATION

The BMCI of the tar sample from Neyveli Lignite Corporation Ltd. is very low. Comparatie values from other feedstocks are 125 - 140 for pyrolysis oil, and 140 - 160 for hard coal tar /1/.

The yield of carbon black decreases as the correlation index sinks. The feed of a hydrocarbon mixture with a correlation index of 62 for the production of carbon black is not suitable.

Further investigations were not done.

REFERENCES

/1/ Frank, H.-G., Stadelhofer, J.W.
Industrial aromatic chemistry: raw materials, processes, products: with structural formulas
Berlin, Springer 1988

SIMDIS-HT750-TBP 538

Data Blank Calib Refer Instru	Vata FileC:\HPCHEM\1\DATA\D0408A\001F0501.DVank analysisC:\HPCHEM\1\DATA\D0408A\085F0201.DValibration analysisC:\HPCHEM\1\DATA\D0408A\090F0301.DC:\HPCHEM\1\DATA\D0408A\095F0401.DReference analysisC:\HPCHEM\1\DATA\D0408A\095F0401.DSIMDIS-HT750-TBP 538									
Oper	ator		ak		Seq. line nr		5			
Acqu	ired o	n	09.04.1997 1	3:01	Injection		1			
Proce	essec	at	09.04.1997 1	5:10	Instrument		1			
Sam	ple na	ame	Teer Indien		Vial		1			
Meth	od na	me	MHA21.MTH		Weight sam	ple	0,07			
Run (type		Sample		Weight CS2	5	1,725 0			
Sequ	ence	name	TEER		Theight IOTE		0			
Reco	very	%	61,6		found					
			ASTM	D 2887 Boil	ing Point ver	'sus We	ight %			
						,				
	500 ·	+								
	400									
. .										
Poin	300 -	/								
olling										
•										
	200 -									
		1 4 1								
	100 -	1								
	0 -) 10	20	30 40	50		70	80	90	
	,	- 10	23		Weight %				20	
					Weight 76					:

========	SIMDIS	=== AC S-HT750	Softwar)-TBP 53	re versi 88 ASTM	lon S2.5 D 2887	===== Analy:	zer	=====
Data File Instrumen Operator Acquired Processed Sample na Methodnan Calc. Bas Sequences	e Name: nt : on : d on : ame : me : sed On: name :	C:\HPC 1 ak 09 Apr 09 Apr Teer I MHA21. ESTD TEER	CHEM\1\D 97 01 97 3: Indien MTH	DATA\D04 :01 PM 10 PM		F0501.I Vial Injec Seq. Samp ISTD Weigh	ction : line : Le Amt: amt : cS2:	1 1 5 0.0700 0.0000 1.7248
Blank us BP Calib Reference	ed : . used: e used:	C:\HPC C:\HPC C:\HPC	CHEM\1\D CHEM\1\D CHEM\1\D	ATA\D04 ATA\D04 ATA\D04	108A\085 108A\090 108A\095	F0201.I F0301.I F0401.I) Corre))	cted
Recovery Resp. Fac IBP FBP	(%) : ctor : : :	61.6 9.161 303 > 5	found E-11 3.0 C 545 C		Thresho Start E End Elu	ld set lution t after	: 80 : 0.0	.0 00 50
Analysis % I	results BP(C)	; : %W∈ %	eight ve BP(C)	ersus Bo	BP(C)	oint %	BP(C)	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	315.5 331.0 342.0 349.5 356.0 362.0 367.5 371.0 376.5 380.0 383.5 388.0 390.5 393.5 393.5 397.5 400.5	17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	402.0 405.5 409.0 411.0 412.0 415.0 415.0 418.5 420.5 421.5 423.5 427.0 429.5 430.5 431.5 433.0 435.5	33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	438.0 439.5 440.5 442.5 445.5 445.5 447.5 448.5 449.5 451.5 454.5 456.5 456.5 458.0 460.0 463.5 465.5 466.5	49 50 51 52 53 54 55 56 57 58 59 60 61	469.5 473.0 474.5 478.5 481.0 484.5 489.0 495.0 501.0 507.0 515.0 524.5 536.5	
Analysis BP(C)	results %	: Boi BP(C)	ling po	int ver BP(C)	sus Weig	ght BP(C)	0 6	
310 320 330 340 350 360	0.8 1.3 1.9 2.8 4.1 5.7	370 380 390 400 410 420	7.8 10.1 12.7 15.7 19.4 23.6	430 440 450 460 470 480	28.6 34.5 40.4 45.1 49.1 52.4	490 500 510 520 530 540	55.2 56.9 58.4 59.5 60.5 61.2	

•

Area Percent Report

Data File Name	:	C:\HPCHEM\1\DATA\D0408A\001F0501.D					
Operator	:	ak	Page Number :	:	1		
Instrument	:	SIMDIS-HT	Vial Number	:	1		
Sample Name	:	Teer Indien	Injection Number :	:	1		
Run Time Bar Code	:		Sequence Line	:	5		
Acquired on	:	09 Apr 97 01:01 PM	Instrument Method:	:	MHA21.MTH		
Report Created on	:	09 Apr 97 03:09 PM	Analysis Method :	:	MHA21.MTH		
Last Recalib on	:	07 AUG 91 01:10 PM	Sample Amount :	:	0.0700		
Multiplier	:	1	ISTD Amount :	:	0.0000		
Sample Info	:	Seq=teer WeightCS2=1.7248 Ref	f=Ref400				
		Cal=BP400 Sam=1 Cor=0 Std=1					

Sig. 1 in C:\HPCHEM\1\DATA\D0408A\001F0501.D

Pk#	Ret Time	Area	Height	Туре	Width	Area %		
1	19.070	2066082	172371	BB	0.184	4.7686		
2	19.831	2718844	232824	BB	0.179	6.2752		
3	20.562	3822159	314929	BB	0.185	8.8216		
4	21.278	4297433	351171	BV	0.184	9.9186		
5	21.962	6261924	453328	VV	0.203	14.4527		
6	22.631	5550997	389822	VV	0.208	12.8118		
7	23.265	6366309	418577	VV	0.219	14.6936		
8	23.890	4060804	322789	VB	0.191	9.3724		
9	24.487	3614702	303608	BV	0.182	8.3428		
10	25.080	2522944	203385	VV	0.191	5.8230		
11	25.637	2044950	161440	PB	0.191	4.7198		

Total amount = 4.33271E+007

~

.

.