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PREFACE

Competitiveness, competitive advantage, competitive success: These are key
words in nearly every discussion about industry in a global environment.
Among the determinants of competitive success of industries are conven-
tional factors like labour costs, capital investment, workers’ skills and tech-
nological capability. However, there is also one fairly recent addition to the
list of sources of competitiveness which is usually circumscribed by terms
like quality assurance, total quality management or continuous improve-
ment. This has to do with the way in which inputs to production are de-
ployed. A firm’s prosperity, as well as a whole industrial subsector’s ability
to compete in the international market, will increasingly depend also on the
adoption of techniques for continuous improvement.

Normally continuous improvement involves a large number of minute adap-
tations or innovations in day-to-day operations. While potentially such
modifications are an important source of competitive strength, a precondi-
tion for realizing this potential is a systematic approach to improvement. In
order to fulfil this requirement, statistical analysis is needed. Statistical
methods enable users to identify those areas that need improvement, to
separate the essential from the not-so-important, and to ensure that adapta-
tions do not have conflicting effects. In short, the application of certain
statistical tools guarantees objectivity and ensures that progress is genuine
and lasting. And this is true for large and small firms in all sectors of
economic activity, both in developing and developed countries.

The present text sets out to provide a first introduction to and basic guidance
in the use of statistics for process study and improvement. It aims to achieve
this goal by following three guidelines of presentation. First, from the broad
range of slatistical tools in this area, a representative set is selected for
discussion. Second, these tools are discussed in considerable detail, compris-
ing an outline of the objectives of their use, an operational description of
underlying calculations and accompanying graphical techniques, and ample
illustration by way of examples of industrial processes. Third, in presenting
statistical methods, an attempt is made to outline—wherever it seems
appropriate—the broader context of management issues in which these
methods have to be embedded.
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As well as serving as a basic introduction to the above subject for a general
audience, the present monograph can be used in at least two specific ways.
One is as part of the material used in an introductory course on statistical
methods of process improvement. Another is for self-study by managers or
production engineers. For the latter use, the main target audience targeted
would be readers with managerial or technical functions in an organization
that is planning to introduce methods of quality management or continuous
improvement. In particular, personnel of small or medium-sized firms with
limited access to training in improvement methods may benefit from this
elementary text on objectives, principles and methods.

The plan of the book is as follows: A brief general discussion of the role that
variation and analysis thereof play in efforts at continuous improvement of
processes provides the starting point in Chapter 1. Chapter 2 further prepares
the ground by outlining basic facts and principles of the collection and
summarizing of data to be used for process study. Chapter 3 introduces
control charts and their practical application for the case of counts data,
while Chapter 4 describes the analysis of other data on product attributes.
Chapter 5 introduces the major concepts underlying control charts for var-
iables data, discusses the construction and use of those charts and outlines
the analysis of process capability. Chapter 6 gives a concise overview of the
analysis of components of variance in the context of process improvement,
emphasizing the important role of subgrouping to ensure usefulness of the
results of statistical process analysis. Finally, Chapter 7 deals in some detail
with the analysis of measurement processes and their impact on process
analysis. The brief text is completed by a set of practice problems and a
short bibliography. The latter is intended to point the reader to material not
only on the statistical aspects of the subject but also on the broader mana-
gerial issues and the general background of total quality management.
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CHAPTER 1

CONTINUOUS IMPROVEMENT
AND THE STUDY OF
VARIATION

The present text is intended to provide basic guidance in the statistical
analysis of systems and processes of production. It has to be seen in
connection with the use of indicators to evaluate a firm’s operations where
the goal usually isthat of improving performance in various respects. For
achieving this goal it is crucial to take into account in the analysis the
variation in performance measures. In particular, the sources of such
variation have to be identified and correctly interpreted. Such interpre-
tation together with an understanding of the effects of variation on
system performance are prerequisites for successful systems manage-
ment.

1.1 The interpretation of variation

Monitoring performance by use of indicators is a well known and widely
accepted business practice. Depending on circumstances, such indicators
might include throughput (per direct labour hour), the cost of materials
purchased (per unit of production), the value of goods in inventory, and
many other data. Numbers of this kind can reveal trends in overall
business activity, performance, efficiency and help to assess differences
in performance among production sites. More generally, monthly values
of indicators are a means for monitoring business and provide a basis for
improving performance.



2 Statistics for Process Control

Any user of performance indicators knows about their variation. Man-
agers, e.g., understand that the recorded numbers are the result of
numerous activities and decisions, many of which they can hardly
influence. Atthe same time they realize that there are strategies to effect
changes in the values of at least some of the indicators. These strategies
presuppose an understanding of the variation in observed indicator values
as well as of its sources. At issue are the depth of this understanding and
also the resultant strategic options for process improvement.

In an evaluation of performance results by use of monthly indicators, two
types of reference points are normally used: (1) an indicator value
representing a forecast, goal, standard or some other type of expectation
or prediction; (2) a value observed in a previous time period. This
practice raises some fundamental questions about deviations from the
two types of reference points which will be addressed below. Quite
independently of the answers to these questions the evaluation can
provide some guidance towards how to impact crucial outcomes. Of
course, any action with this objective largely depends on the intentions
of management, and guidance for it is not likely to be found in the
numbers themselves. Nevertheless, treating a given result as one
member of a series of results and taking into account the variation
exhibited by that series, can yield valuable insights.

In the analysis it is of great importance to distinguish between common
(or chance) and special (or assignable) causes of variation. Common
causes affect each one of the observed results and their impact is
experienced continually. Figure 1.1.A illustrates the working of com-
mon-cause sources of variation. At first glance the most recent value in
the series seems to indicate a deterioration in performance. However, it
still lies within the boundaries of variation observed in the historical
series. Hence it does not represent an exceptional case, but can be
interpreted as the effect of (a) common cause(s). Accordingly, reacting
to this particular outcome without understanding the nature of its
cause(s) may not have the intended effect.

By contrast, special causes of variation are those which affect only
certain results. Special-cause sources of variation (in addition to
common-cause sources) might have an effect on measured outcomes as
depicted in Figure 1.1.B. Given both the level and the degree of
variation of that series, the mostrecent one of the values plotted there has
to be considered exceptional. Thus, it must be suspected that the
observed deviation is due to a special cause.
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Figure 1.1 Four time patterns of process outcomes
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In theory, the distinction between common and special causes appears
simple and straightforward; in practice, however, it often requires thor-
ough investigation. The concept of special cause is meant to help
identifying sources of erratic changes in outcomes and subsequently
eliminating them. This is not to say, however, that a system subject only
tothe impactof common causes of variation is ideal. Quite independently
of the source of variation, it is the manager’s job to evaluate a system
relative to what is required and make judgements on the basis of well-
defined criteria. As was pointed out previously, numerical indicators of
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performance are usually reported each month along with a standard
indicating what is required of the system. Figures 1.1.C and 1.1.D are
plots of the time series depicted also in Figure 1.1.A . The line drawn on
the plot represents the standard of acceptable performance. This standard
changes the view of variation compared to Figure 1.1.A.

The use of standards to judge performance is prevalent in many industries.
Typically,amanager who is required to report performance measures will
at the same time be required to explain deviations from a given standard.
However, sensible explanationscan often not be found so easily due tothe
nature of standards.

Performance standards may have been set for a number of different
reasons: In some instances they are meant to describe the results of best
practices, while in others they serve as a goal. The major purpose of a
given standard must be taken into account when it is used for evaluation.
The same is true for the capability of the system that is to be examined.
If, forexample, the setting of a (high) standard does not properly take into
account capabilities of the given system, but sees the standard only as a
desirable goal, deviations from itcannot provide useful information about
system performance.

There are still other problems associated with the use of deviations from
astandard as a management signal. Forexample, ifadeviation is seen as
aone-time occurrence, common causes get often treated as special causes
without justification. To avoid such pitfalls deviations have to be
examined in the context of the given system and by use of statistical
concepts. The system could have yielded any one out of arange of possible
values for the variable under study. Consequently, what is convention-
ally seen as a deviation should be interpreted in light of probable events
within the studied system. A major argument for this approach derives
from the'natural' concept of work as a process taking place in the context
of a system.

Interpreting a deviation from a standard as a one-time event obscures the
factthata given deviation isonlyone realization out of an array of possible
values that the system could generate. Thus, the approach makes no use
of any knowledge about the range of deviating values observed in the
past. Consequently, the probabilistic nature, the historic record and the
capability of the system are ignored.

Without adopting a system-wide view, managers would not be in a
position todistinguish between special and common causes of variation.
Without such distinction, however, there would be little incentive to
analyze and improve the system; indeed, the possibility of such analysis
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and improvement may not even be perceived. Likewise, if statistical
concepts like probability or predictability were not invoked, the issue of
system variability could not be examined properly.

1.2 Evaluating the effects of variation

As arule, variation of output is not deliberately created within a system.
It rather results from the interaction of procedures, personnel, material,
and equipment used in producing a product or a service. More specifi-
cally, variation is a consequence of the ways of ‘doing business’ in an
organizational system. Neither are the sources of variation always
known, nor — if they are known — are they always understood. The
situation is similar when the effects of variation within a production
system are considered. Knowledge of these effects — in terms of cost,
capability, or performance — is essential to decide whether a reduction
of variation could be beneficial. The following examples illustrate some
of the possible effects of variation.

Fill weight fora granular product shipped in containers with a given label
weight provides one of the examples. There is a target value for
container content which is based upon a lower specification and the
assumption that there is variability in the process. Ifthe filling process
could be managed in such a way as to produce stable variation in fill
weights, managers could confidently determine the target taking into
account the known magnitude of variation. However, without such
knowledge target selection must be governed by lack of 'confidence' in
the ability to perform predictably. Since a minimum value must be
attained under all circumstances, erratic, unpredictable variation gener-
ally increases the target value in order to meet the lower specification.
Figure 1.2 provides an illustration of this point.

The advantages of predictability and of a decrease of variation in fill
weight are easy to understand. Stable variation can guide the setting of
an appropriate target value as well as the estimation of costs associated
with a given amount of variation. Decreased variation in fill weight
provides management with the possibility of lowering the target, and
hence reducing costs and increasing efficiency.

In addition to illustrating the advantages of predictable or decreased
variation, the preceding discussion suggests to process managers specific
action like measuring and analyzing variation in actual fill content.
Furthermore, operating practices have to be studied, as well as those
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characteristics of material, equipment and environment investigated that
affect variation and its stability over time.

In the present example a large variation in net content implies financial
losses due to overfilling as ameans of maintaining a specified minimum.

Figure 1.2. Three possible descriptions of fill weight measurements
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In other cases like that of gelatine capsules in use in the pharmaceutical
industry the relationship between costs and benefits is not so easily
understood. Productcharacteristics sometimes open adifferent perspective
on what variability might mean in the context of management practices.
An important property of the above capsules is wall thickness.
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Usually a target value is specified for wall thickness with a view to
providing for the material in the capsule the necessary protection from
the environment and ensuring compatibility of the capsule with custom-
ers’ filling equipment. For this reason, average wall thickness is
determined externally. High process variability implies that consistently
capsules are produced that have a wall thickness outside specifications.
The consequences of this shortcoming are easy to see: First, capsules
must be sorted in order to remove those of an incorrect size — a process
which uses up resources. Second, by implication a loss of output occurs.
The costs associated with this loss are not easy to identify by current cost-
accounting practices. Asaconsequence, costs are not correctly assessed
and benefits that may arise from improvements of the given process are
unlikely to be realized.

Financial gains of improvements internal to the process of capsule
production may appear to be modest. However, more significant
benefits may be identified external to the process. When shipments of
capsules have characteristics lying within a specified range, a customer
can have greater assurance for being ableto process the capsules without
machine stops and therefore with higher equipment utilization and
improved cycle times implying attendant economies. Thus, improvement
in the material properties of capsules can provide a competitive advan-
tage. For the producer of capsules a competitive advantage may be
derived from increased process knowledge stemming from efforts to
reduce variation. This knowledge in turn allows the manufacturer of
capsules to better adjust to new specifications of wall thickness, or other
customer needs.

[t is important to note here that the benefits of decreased variation in wall
thickness do not result in an immediate return to the manufacturer of
capsules. Managers must understand the wide implications of variability
of'this process parameter, which are notevident from process knowledge
only. It mustalso become clear what customers might value, in order to
realize potential gains. Experience indicates that financial audits are
usually focused upon a narrow, internal evaluation of costs and benefits,
thus directing attention away from the wide range of advantages to be
derived from decreased variability. Traditional financial models do not
allowto identify all the financial gains which may accrue from managing
variation.

Because of the complexity of any analysis of the effects of variation, it is
imperative for managers to work through in detail what excessive and
erratic variation might imply. Against this backdrop, determination of
the costs associated with variation is one of the essential tasks with which
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management is charged. Hence, a good understanding of the effects of
variation is vital to an objective analysis of the benefits of reducing it.

1.3 Changing practices

Understanding both the sources and the effects of variation in output is
an essential part of process control and improvement. In order for this
understanding to lead to improvement, motivation of various typeshasto
be fostered. Inparticular, attaining stability of variation is to be perceived
asoneoftheresponsibilities of management. Decreased variation results
from system change and incremental improvements in which managers
takethe leadingrole. Therefore, it is crucial that managers understand the
working of a particular system in order to correctly assess the variation
of results and any benefits of its reduction or elimination.

Asan illustration of the foregoing remarks the objective of increasing the
throughputrate of production shall be discussed in some detail. From the
outset the rationale forthis objective will not be questioned here. Rather,
the discussion will be about a strategy for achieving the set goal where
the selection from among various options and the reasons for choosing
one of them shall be examined.

Typically, expectations forincreased throughput are expressed forcibly at
plant level. However, management and staff may not have considered
realistically howto achievetherequired gains. Sometactics forattaining
an increase may be stated explicitly, such as working to eliminate a
known bottleneck or requiring that the throughput rate of each unit in the
facility be increased. However, this may not be consistent with the
system sources of variation that impact current throughput levels. Also
an overemphasis on throughput itself may promote practices that are in
conflict with other expectations and needs of the business.

For example, under pressure to increase throughput a department may
release poor quality material. By making this choice, the throughput rate
may increase while the yield stays the same. As a further consequence,
the opportunity to achieve improved throughput by increasing the ability
to consistently produce high quality products at each stage of operation
is foregone because of the concentration on schedule rather than on other
system parameters.

There are other potential losses like the failure to broaden, as well as
deepen process knowledge of management and staff. In particular, the
management group is likely to fail to acquire improved practices for use
in future tasks and sustained experience in reducing defects may be
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lacking. In summary there is no assurance that the approach on the whole
will yield appreciable benefits.

More generally, there cannot be much confidence that working on the
input side exclusively will result in improved throughput capability.
Under pressure to attain or surpass a set schedule, equipment may be run
without adequate maintenance entailing probable adverse impacts on
plant capability. Shifts, treated as if they were independent production
units, are usually goaded toward quota achievement. Likely effects are
either delaying appropriate maintenance or foregoing the opportunity to
choose the best time for maintenance. In addition, if each shift is
pressured to achieve a certain production quota, the effect is often to set
one shift working against the others. In reaction to such practice,
production knowledge is hoarded and work is moved to other shifts or
times by a variety of means. Each shiftconcentrates onachievingits own
quota, often emptying the line of all work in progress in order to achieve
the objective. The consequence is a larger start-up job for the next shift.
Thusthe idea of running the operation in a smooth, consistent fashion over
consecutive shifts is not honoured, nor are the benefits of improved
throughput realized.

A significantly different practice of working to improve throughput
levels would invoke the understanding of sources of variation in order
to suggest changes to improve the existing system. Implicit in this
approach is the concept that there exists a multitude of sources which
affect each other as well as they impact throughput rate. Consequently,
the idea of searching for one, or the most prevalent, cause of deviations
from a standard is to be replaced by that of understanding system
behaviour and the variation in those components of the system that affect
throughput levels. In examining the whole productive system, managers
might begin to look at specific activities in a different manner and find
ways for improvement previously unexamined.

Finally, numerous set-up changes and within-run modifications to accom-
modate raw material variation often reveal the fact that purchasing has not
been included in the production subsystem. Here at least two issues
surface. First, there is the obvious adverse impact on productivity and
efficiency of frequent set-ups and modifications. Second, there is
evidence of a ‘system break’ between the purchasing and the production
subsystems. Examining the interface between purchasing and produc-
tion offers large returns for the work of management.

Another simple example which can serve to illustrate the contrast
between practices that recognize variation and its implications and
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practices that do not is tool quality. Inconsistent tool quality leads to
erratic and frequent tool changes with a consequent effect on throughput
in terms of quantity and quality. However, it also indicates that
management has probably not paid sufficient attention to the issues of
tool requirements, an understanding of why tools might differ over time,
and cooperation with vendors as a means to prevent problems with tool
quality from resurfacing. The sources of variation evidenced by frequent
tool changes may in a first round be characterized by the physical
properties of the tools themselves. At a more fundamental level,
however, at least some of the variation may result from management
practicesthat fail to develop an adequate approach to problems involving
tool requirements and the relationship with vendors.

In general, within an organization attention to sources of variation can be
focused in a variety of ways. One possible focus would be on the
operational or functional level. Although this approach is valuable and
desirable, it is at the same time incomplete in that it leaves unattended
many opportunities for improvement. For example, work on improving
throughput in a particular function might have been motivated by noting
the different capabilities of several machines which are performing the
same operation. Improvements in the process would be effected by
identifying this source of variation and then making changes to ensure
adequate performance of all machines. Precisely because the opera-
tional focus is deemed to be useful, work on variation may be limited to
this level of the organization. In fact, a previously espoused role of
management has been to empower personnel involvement in this work
to investigate processes with a view to implementing such changes.

However, the operational focus alone is inadequate to address many of
the major sources of variation. Ensuring that all machines operate in a
consistent manner may provide a valuable improvement. Yet it is
perhaps more important to deal with management behaviour and actions
thatallowed the machines to operate inconsistently in the first place. Here,
a possible fault might have been that no system was in place to bring new
machines on line in accordance with other machines. In this case
purchasing would need to become involved. Another possibility isthat the
effects of differences in machine performance were not monitored; here
management would have to go for a change of standard operating
procedures. Still another possible source is that of differences in
maintenance practices. Again, itismanagement’srole to understand these
issues and address them.

Finally, the manner in which management addresses the above issues
across functions isalso important. In muchthe same way as empowering
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people to examine and make changes is not sufficient to manage
variation, merely facilitating improvement work across functions is also
too limited a role for management. While it is not justified to conclude
thatthe ‘management-as-facilitator’ approach has not provided valuable
improvements, the passive role of a facilitator is clearly not adequate to
address the improvement issues confronting management. The content
of the work of management ought to be enriched by knowledge not only
of the existence of variation, but also of methods of its quantification,
and of an assessment of its effects. Such broadening of the view of
managerial tasks in the present context is only possible on the basis of
a systems approach.

1.4 A systems perspective of managing variation

The above examples should have provided a first impression of what
variation might mean to a manager. Other cases where variation plays an
important role are presented in the following paragraphs. All the
examples discussed here appear to plead for a systems view mainly
because it renders a comprehensive picture of the relationships under
study. In addition to outlining the systems perspective, these examples
also provide a full account of variability issues, involving the magnitude,
the sources and also the predictability of variation.

As was shown previously, the view that results can be usefully managed
by examining deviations from a standard is quite limited. In particular,
it often presupposes that there is only one cause for an observed
deviation. Actions taken on such assumptions are likely to have
unintended consequences. By identifying and acting on only one cause,
other possibly hidden causes do not get addressed. This in turn may have
the consequence of moving the observed variation from one part of the
system to other parts, where it appears perhaps in a different form or at
adifferenttime. Thismay still be an appropriate strategy, butitcould also
have unintended negative effects on other system parameters. These
effects may in turn impair performance in terms of cost, quality or
delivery. Another potential negative effect of the strategy is that no new
knowledge is gained which could support system change or improvement
in future action.

To illustrate the previous arguments with an example, a situation is
considered where shipping dates are not being met. Here deviations
from committed dates are observed, attention is drawn to these devia-
tions, and a programme to improve shipping results is initiated. Perfor-
mance inrelation to shipping dates will most likely improve, at least until
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attention turns to other concerns. The reasons behind achieving this
improvement and effects on other parts of the business may be complex
in nature. Thus, for example, the achievement of shipments leaving on
schedule may be bought at the cost of material of questionable quality.
Alternatively, amongthe reasons for an improvement in shipping perfor-
mance could be that overtime has been incurred, additional crews have
been employed or more capacity has been made available at the cost of a
delay or even cancellation of maintenance.

The actions listed above as potential sources of an improvement in
shipping performance may be appropriate, but need not. In any case,
they are likely to be unintended. To illustrate this point further, it might
be hypothesized that shipping dates are manipulated through an ongoing
series of negotiations with customers. Such renegotiated dates could
then be met and performance marks improved. However, in that case
real customer needs regarding timing, quality, and quantity would not
get addressed and on account of that the business might be discredited
in the future.

By contrast, if management took a systems point of view there would be
strong indications that the issue of improvement needs to be considered
far beyond any efforts to better meet shipping date commitments.
Systems issues underlying the difficulties in meeting shipment sched-
ules would have to be addressed. Such issues may be found in rather
prosaic matters such as quality or assembly problems, which in turn may
be related to design, equipment capabilities or maintenance, or material
purchases. Likewise the inability to meet scheduled shipping dates may
be due to the process for assigning a particular order mix to the plant, or
possibly to the lack of a focus as to which products to produce first for
which customer. If the potential effects on other results such as labour
cost, future equipment performance, quality, and future sales were not
considered and attempts were made to directly affect performance in
relation to shippingschedules, the outcome could be damaging to current
and future business performance.

Another example for the usefulness of a systems approach is provided by
a manufacturing firm that incurs a large fraction of direct costs in the
acquisition of raw materials, components, or parts. Since management is
certainly aware of these costs, attention quite naturally becomes focused
on the costs of incoming materials and parts. Frequently, pressure to
reduce these costs results in searches for a low bid price, a desirable and
intended result. However, gaining a reduction in purchase price may
result in variations in other costs, many of which may not be directly linked
to the purchasing function and thus may go unnoticed. Forexample, the



Continuous Improvement and the Study of Variation 13

quality of incoming material may suffer, leading to internal sorting and
reworking with the result of an increase in production costs. In addition,
inferior materials can easily decrease productivity because of ensuing
difficulties in working, forming or assembling purchased parts.

There are a number of other ways in which the acquisition of raw
materials, components, or parts can contribute to system deficiencies.
There is no doubt about justification for the general managerial principle
of attempting to control and decrease costs. However, it is important to
identify the type of costs to be decreased as well as the criteria and the
means for their reduction from the organization’s overall perspective.
If the guidelines for managing costs are entirely functional in form and
content, then functional optimization may move the variation and
attendant waste from one part of the business to another, possibly with
little or no overall benefit.

1.5 Conclusion

In order to be able to improve performance in a comprehensive manner,
amanager must possess profound knowledge of system capability asitis
expressed in measurable parameters. He/She must also be able to judge
whether this capability is appropriate. Averages of the parameters
concerned and parameter variability mustinform decisions regarding the
management ofthe processes or systems of the organization. Evidence of
system instability indicates thateither unmanaged sources of variation are
impacting system performance or that management activity has an
inconsistentresult on performance. This inturn suggests that managerial
action is required to address this issue. By contrast, evidence of system
stability sends a different type of signal to the manager and calls for a
differentapproach.

The following chapters will introduce statistical tools for process and
systems management. The methods presented here are intended to
appraise process or system variation, assess the impact of sources of
variation on process or system outcomes, and guide the management of
that variation. Competence of the managers and engineers of an organi-
zation in using these tools is certain to improve the capability to deliver
products and services that are valued by users or customers.



CHAPTER 2

BASICS OF DATA COLLECTION

Managing process variation is one of the means to improve business
systems. In this connection various types of evaluation are essential to
the improvement effort. Such evaluation usually produces information
that is vital to the systematic investigation of a given process. In order to
obtain such information efficiently, managers or engineers have to use a
number of well-defined approaches and techniques for identifying, col-
lecting and organizing data.

In the context of production, evaluation is carried out for a variety of
reasons. Forexample, products are often evaluated in order to determine
what to do with them next: At a given stage in the production process a
decision may have to be taken about whether a certain (intermediate)
product is fit for further use or not. Alternatively, products data, along
with process data, are evaluated to judge the performance of processes.
Forthe latter reason, for example, counts of the number of pieces of scrap
are made and reported regularly. Similarly, the number of flaws in an
assembly, certain properties of a product, or the amount of impurity in a
volume of raw material are assessed and recorded. Thus, in many
instances data are developed on the performance of equipment and
processing lines ina fairly regular fashion. These data often include also
cost information for a whole business unit as well as measures of the
degree of customer satisfaction.

Evaluation is usually based on some form of measurement of a broad
number of variables. Generally, any bundle of activities aimed at
qualitative or quantitative evaluation is called a measurement process.
The following discussion begins with an outline of the major motives
behind measurement and describes the basic components of a typical
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measurement process. In this connection four broad types of data are
introduced together with some simple methods of summarizing them. In
addition, guidelines for the design of data collection forms are provided.
The chapter concludes with a brief introduction to the concept of control
chart.

2.1 Purposes of measurement and record keeping

Evaluation of a product or service output may be carried out for various
purposes at any of several points in the process of producing this output.
Five of the most common of these purposes are:

- to assess the disposition of a product or service
- to develop or update a history of product or service results

- to measure the variation of results and assess the stability of this
variation

- to change process or input factors

- to develop an understanding of the impact on the process of causal
factors.

2.1.1 Disposition

The first purpose refers to the decision about what is to be done with a
product at a particular point in the process. Here the three basic options
are to deliver the product to the next stage, to rework it, or to scrap it.
Inspection for disposition may in the short term be dictated by economic
considerations. By contrast, an analysis with longer-term objectives
would lead to process improvement that makes redundant further
inspection for disposition. Nevertheless, upstream improvement need not
be motivated only by the benefits deriving from the by-passing of
inspection. Other (internal) benefits include areduction ofthe complexity
of operations, reduced requirements to keep records as well as smaller
fluctuations in workloads for reworking or repairing.

2.1.2 History

Measurement of product or service characteristics adds to a history of
productor serviceresults. A productorservice profile may be maintained
to meet regulatory or other reporting requirements or for warranty or
reliability reference. If measurement is consistent, such a history docu-
ments the stability of variation in process results and allows to evaluate
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the capability of meeting future requirements. Although establishing and
maintaining a product or service history may be entirely legitimate, such
histories often are the result of a one-time request for information that is
never used thereafter. Thus, poorly designed measurement procedures
involving large capital investments in equipment may be introduced and
prove difficult to eliminate afterwards. Only a thorough review of the
intentof and the need for institutionalized measurement can rid the system
of such redundancies.

2.1.3 Stability of variation

Product or service evaluation is also performed to assess the degree of
stability of variation in process results providing an indicator of the
effectiveness with which the process is engineered, managed and oper-
ated. This effectiveness in turn builds on the current knowledge base of
process management and the consistent use of that knowledge.

2.1.4 Process and input factors: statistical process control

Actions taken to change process or input factors may have a temporary
effect on process results. Measurement as part of a manual or automated
‘control' system is usually taken as the basis for impacting a process and
its outputs. The term 'statistical process control' (SPC) refers to
monitoring process variables or output characteristics and adjusting the
monitored process accordingly. Hence, SPC is a form of control system
which is intended to maintain steady and predictable variation in the
output stream. Continuous adjustment with the goal of rendering the
process stable is an integral part of such services.

The measurement of product or service characteristics may be part of a
wider engineering or managerial feedback control system. Such a system
isusually intended to monitor output results and thereby gain information
for input or process adjustment. Here the term 'control' is used not in the
statistical sense, but rather means certain operating procedures for
process intervention. Such procedures may use statistical criteria to
determine the need for intervention and adjustment and to gauge the extent
of the latter.

When a process is unstable, 1.e., subject to systematic change, monitoring
and intervention in orderto attain a steady state is an important objective.
However, two critical points are often missed in the design and operation
of'the pertinent feedback system. First, such a system in many instances
does notprovide for the reduction of variation below routine levels. In this
case the bestresultachievable isthat of maintainingthe level of variation
typical for the process. Second, many managerial feedback control
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systems as well as some engineering control systems do not recognize or
appropriately interpret the 'noise’ in the results of a stable process.
Consequently, there is considerable risk of intervening in the process for
the wrong reasons with the possible consequence of increasing its
variation.

Anunderstanding of the concept of stable variation provides the necessary
basis foracomprehensive improvement inresults. Furthermore, learning
about causal factors behind variation and subsequently acting on those
factors is likely to benefit both measurement procedures and the strategies
of intervention and adjustment. For these reasons, engineering and
managerial control systems should recurrently be improved upon.

Intermediate evaluation is often performed on processes of physical
production or the delivery of services. Such evaluation may suggest
correction or adjustment at various process steps. Upstream product and
service evaluation usually leads to final outcomes that are more likely to
meet customer requirements. For example, in surgical procedures a
particular outcome from a physiological evaluation, performed priorto or
during surgery, may require that a surgical team modify their procedures
to protect the patient’s welfare or to achieve the surgical objective. In
much the same way, intermediate evaluation in manufacturing processes
is often part of a manual or automated feed-forward control strategy
which alters downstream processing conditions. Such a strategy may be
justified by economies that downstream adjustment carries in comparison
with changes in upstream conditions. However, no control strategy
should be adopted without in-depth consideration of the economic issues
involved.

2.1.5 Causal factors: the use of cause-and-effect diagrams

The purpose of evaluation is often that of understanding how causal
factorsand their interactions affect product or serviceresults. In thiscase,
evaluation results help to gain insight into the mechanisms that generate
a product or service. The objective here is to stabilize and then improve
processes in orderto create improved value for customers. The latter goal
is multi-dimensional in nature including quality, cost, timeliness and
performance in use of the productorservice. When afirstattempt is made
at stabilization, the factors behind observed variation may not be known
or at least not be well understood. In order to improve results, the effects
of potential causal factors must be carefully analyzed. The ideal situation
would be that of investigating all factors that could possibly affect
outcomes.
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Aneffective tool to helpemployees organize their ideas and work methods
is the cause-and-effect diagram (also called fishbone diagram). In a
first step employees usually agree to study a certain process characteris-
tic. Adiagram, relating this process characteristic or problem tothe main
contributing factors as well as more detailed factors, is then constructed.
Careful study of such a cause-and-effect diagram should help the manager
in answering questions such as: What isknown about the impactof certain
factors on the problem at hand? Which of these factors should be
controlled? What types of interactions between causes affectthe process
and the characteristic under study?

There is no single set of rules or guidelines for constructing a cause-and-
effectdiagram. Inany event is it essential, however, to single out potential
causes of the problem athand. These causes generally fall into one of the
followingcategories:

. Personnel
= Materials

. Equipment

- Production methods
= Measurement
. Production environment

Inacause-and-effectdiagram like thatof Figure 2.1, theresultof concern
is placed in a box on the right-hand side of the figure and referred to as
the effect. Major types of causal factors which may contribute to the
dispersion in results form the main branches in the diagram. In the given
example these major categories are materials, personnel, methods, ma-
chines and environment. Specific factors within these major categories
are then placed as stems on the corresponding branches.

The plant studied in the example of Figure 2.1 produces individual
servings of frozen meat pies (pot pies) in metal trays. Standard practice
is to inspect every bottom crust produced and to remove any crust that has
breaks in the dough or does not completely cover the bottom of the metal
tray. A large number of crusts (18 per cent) has to be scrapped aftér they
have been placed in the metal trays for filling.

The management group charged with introducing improvements in the
process finds it hard to admit that the large proportion of nonconforming
crusts represents a ‘quality’ problem. Some argue that there is no
problem, since every crust is inspected and defective ones are removed
from the production line. Nor do they believe there is any waste because
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the discarded dough is reused at a later stage in the process. Other
members of the group disagree with this view, arguing that the machine
and operator time used to produce items which cannot be sold is an
unnecessary expense. They also believe that the taste and texture of the
crust deteriorates if the dough is being reworked, making the standard
procedure an inappropriate solution. Asaconsequence,the management
group decides that more information is needed and a cause-and-effect
diagram should be developed. This diagram is reproduced in Figure 2.1
which — in addition to the major factors — shows details on hypothesized
causalrelationships.

As a general rule for the construction of cause-and-effect diagrams, it is
important to solicit input and ideas from as many persons as possible.
Another important consideration is that the cause-and-effect diagram is
only a tool for identifying potential causes. It would be too weak a basis
formaking process changes without careful analysis of underlying causal
relationships.

2.1.6 More on measurement

Up to this point little has been said about actual measurement of input
characteristics, process factors or operating conditions. For obvious
reasons measurement of input characteristics is of high significance in the
framework of feed-forward control systems. In some industries, the
evaluation of process factors and operating conditions is a matter of
meeting regulatory requirements. The pharmaceutical industry provides
an example where specifications of process conditions, such as tempera-
ture and processing times, must be met in order to satisfy regulatory
requirements. At the same time measurement of process factors and
operatingconditions can provide inputs to feedback control systems. For
example, a control system for a machining process uses measurement
results on machine temperature, machine forces and tool characteristics
as inputs to a control algorithm. In order to develop an understanding of
how causal factors and their interaction affect output characteristics,
plans for measurement of inputs and process factors must address the
issue of how the corresponding measurement results are associated with
output measures.

Since measurement and the subsequent summary and analysis of data
usually have multiple objectives, it is important that those who initiate and
carry out measurement understand the major purposes of data collection.
Thus, data collected to maintain a historical record may not be useful for
assessing process stability or implement feedback control, because in
such information the source of data and the sequence of production are
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usually not recorded. This makes it difficult to obtain information on
process changes and on potential causes of variation. For the develop-
ment and improvement of process knowledge, by contrast, the timely
collection of specific data along with careful documentation of process
changesisvital. More specifically, such data must provide information on
process changes and must support the investigation of hypothesized
cause-and-effect relationships.

Measurement of process inputs, factors, methods, and environmental
conditions, carried out with the objective of process investigation, serves
morethan justthe purpose of a simple description of what currently exists
or of what has happened in the past. The motives behind such measure-
ment are to understand the effects on process output of changes in
material, equipment, methods or environmental conditions, to judge the
correctness of the current level or average performance, and to assess the
potential benefits of reducing variation. Overall, the prime objective isto
make changes to the process with the effect of improving future outcomes.

2.2 Components of a measurement process and factors
affecting measurement results

Measurement processes can be as straightforward as makinga judgement
and recording the result. They can, however, also be complex involving
prescribed multi-step protocols for chemical, mechanical or electronic
analysis. Regardless of the sophistication of the equipment and proce-
dures applied in a particular measurement process, in all such processes
a few common components can be identified:

(i)  persons who carry out the measurement,

(i)  materials, comprising the items measured as well as materials
used in measurement,

(iii) equipmentutilized in the measurement process,
(iv) methods of measurement.

With a view to variation in the results of measurement, the environment
in which measurement takes place becomes also important, since
fluctuations in environmental factors may be reflected in measurement
fluctuations. Examples of such factors are the selection of personnel,
training practices, pressure to meet schedules, equipment procurement
policies and a host of managerial practices that create the environment in
which measurement is carried out.
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2.2.1 Personnel and methods

Methods of measurement relate to the way in which materials, equipment
and the items to be measured are prepared, the way in which equipment
is used, the way in which observations are carried out — e.g., visual
judgement relative to a specified standard, reading a dial etc.— and the
way in which an observation is translated into a recorded result. For
each one of these issues there should be a clear description of the standard
practice to be followed. A useful way of providing such a description is
a flow diagram outlining each activity and decision in their proper
sequence. Inconsistency of measurement methods is a very likely
outcome, if the personnel involved is not sufficiently trained. Asarule,
every plan forifatming should provide for continuity oftraining activities
in order to ensure maintenance of the standards yf the above procedures.

When plans are drawn up for the collection of data for process study, an
important consideration is that a new ‘technology’ may have to be
introduced in the process environment. For example, the use of certain
techniques demands skills relating to the arithmetic of data summary and
charting. In this context it is often assumed that production staff would
already possess these skills. This assumption, however, proves to be
erroneous in many cases. Accordingly, any plan for measurement, data
summary and analysis usually has to include as separate components an
assessment of relevant skills of the staff concerned and provision of
training to the extent required.

2.2.2 Materials

Measuring a certain characteristic of a product often implies that the
product reach a certain state (temperature, age, cleanliness etc.) before
measurement can be carried out. For this purpose an established
procedure of preparing the product may have to be followed, as, e.g.
cleaning the item or removing lubricants from its surface, cutting it into
sections, heating, etc. Failure to follow such a procedure can introduce
variation into measurement results and render them less reliable than
expected. Likewise, materials of measurement, such as gauge masters,
chemical additives, filters, and sc on, usually require proper handling and
storage to avoid changes in those materials that may in turn change
measurementresults. Established procedures for handling such materials
should be rigorously followed in order to preventany undesirable impact
on measurement results.
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2.2.3 Measurementequipment

Gauges and other types of measurement devices are subject to deteriora-
tion due toage and use. Such devices should therefore be subjected to the
same kind of preventive maintenance as applied to equipment used in
producing products or services. This is particularly valid for high-
precision measurement devices which require carefully controlled tem-
perature, humidity, cleanliness, freedom from vibration etc.

The'reading' of measurement values is another important issue. Measure-
ment equipment should be designed in such a way that measurementerrors
due to the difficulty of 'reading' signals are kept to a minimum. More
specifically, the resolution of the measurement readout should not be
greater than what the measurement equipment can detect. At the same
time it should be fine enough to allow for variation in product character-
istics to be detected. If, for example, this variation is on the order of a
thousandths of an inch, then the combined resolution of the measurement
equipmentand its readout (dial, digital display etc.) should be on the order
of ten-thousandths of an inch.

2.2.4 Environment

Aswasmentioned previously, there are anumber of environmental factors
that may affect measurement results. Among them are effects on the
ability of personnel to observe and evaluate. Straightforward examples
are the adequacy of lighting or freedom from distraction. Another
important ‘environmental’ factor is the consistent use of definitions in
assessments of whether a productisacceptable ornot. If, forexample, the
goal of meeting production schedules overrides all other considerations,
there may be strong pressure to change immediately the ways of evaluat-
ing products. In this case the impact of managerial policies and practices
on the social environment of measurement becomes evident. Conse-
quently, such policies have a powerful, if only indirect, influence on all
kinds of evaluation.

The preceding list of factors that could influence the quality of measure-
ment results is notoriously incomplete and the same holds for their
description. Additions to the list will be made in later chapters and
likewise will methods for investigating the effects of such factors on
measurement results be discussed in some detail later on.
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2.3 Operational Definitions

Measurement results are the information link between process outcomes
and action directed towards improvement. Communication between
individuals, groups or functions includes summaries and analyses of
measured results. The quality and consistency of this communication
depend crucially on a common understanding of what is measured, how
it is measured, and how measurement results are to be used.

When a product is delivered from a supplier to a customer (internal or
external to the enterprise) both parties involved in the transaction need to
learn about the current properties of the items. This is necessary in order
to be able to determine any need for adjustment or the conditions of
payment. The required information usually refers to product character-
istics that must meet certain specifications. Such specifications would
have little meaning and could become a source of confusion and conflict,
ifoperational definitions of the relevant characteristics were not available.
Any operational definition must meet the following three minimum
conditions:

(i)  Itshould be stated clearly what is considered to be an acceptable
process outcome, and this statement should be communicable.

(i)  There should be an agreed method of evaluating a given charac-
teristic, and both the equipment and the material to be used in
measurement should be specified.

(i) Finally, a procedure needs to be established to reach clear and
replicable decisions on whether or not requirements have been
met.

As a rule, operational definitions of key characteristics help to avoid
disagreement and uncertainty about product delivery. Figure 2.2 pro-
vides an example of a definition relating to a particular specification for
sheets of paper. It may be useful to emphasize here that a definition is
neither right nor wrong, but simply represents a unequivocally stated
agreement between producer and user of the item at hand.

2.4 Using flow diagrams and data collection sheets

The usefulness of measurement results depends crucially on a strategy for
data collection. In many organizations, a large amount of historical data
is collected and stored as part of a routine. However, such data often do
not meet the purpose of assessing the variation in process outcomes and
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Figure 2.2 A definition for a specified characteristic

Criterion for determining whether a sheet of paper meets a specification

on width of 8.5 + 0.001 inches

Choose one long edge of the sheet. Orent
it to the left.

Measure down the left edge from the
upper left corner with a (type specified)
measuring device a distance of 3 inches.
Mark the point A,

Measure down the left edge a distance of 8
inches. Mark the point B.

Repeat the marking process for the right
edge to obtain points C (3 inches down)
and D (8 inches down).

Measure the distance from A to C. Call
the result X;.

Measure the distance from B to D.  Call
the result X,.

Measure the length of the top edge of the
sheet. Call the result X

Measure the length of the bottom edge of
the sheet. Call the result X,.

Criterion:

If all of the measurements (X, X; X,.X,) are
numbers between 8.499 and 8.501 inclusive,
then the sheet meets the width
specification.

If any of the measurements is smaller than
8.499 or greater than 8.501, then the sheet
does not meet the width specification.
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identifying its sources. Ifthe measurement process is to supportthe above
objectives, they must guide the data collection strategy.

One prerequisite of any rational planning for data collection is a good
understanding of the production process in its entirety. Above all it
provides the basis for determining critical points at which measurement
needs to be taken. Thus, prior to identifying measurement points and
collecting data, the process should be described inan accurate and detailed
fashion with particular emphasis on causal relationships.

Toidentify key points in the process flow diagrams or flow charts prove
very helpful by providing a schematic picture of operations. Furthermore,
flow charts often allow to detect redundant and costly process steps so that
immediate changes can be made to reduce process complexity without
loss. The flow chart of Figure 2.3 can serve as an example where - in the
shaded areas - non-value added stages in the process are shown.

The effective use of measurement results also depends on their being
recorded correctly as well as on auxiliary information. Therefore, data
collection forms should be designed in such a way as to make correct
recording easy, efficient and as little prone to error as possible. In
particular, adata collection formshould allow not only for space to record
the data themselves but also the time of data collection, identification of
the collector, and other auxiliary information. In the present context
required auxiliary information depends on which factors may causally
affect measurementresults. For example, information on the source of the
items measured, such as lot numbers for incoming supplies, machine
identification for parts, time or productetc., might be recorded. Observed
(changes in) conditions that are considered important for the interpreta-
tion of recorded data—such asambient temperature, maintenance action,
machine adjustments, machine stops and starts—may need to berecorded
aswell. In general, it is useful for the formto provide for flexibility in the
selection ofrecorded information.

If a running record of results is to be examined for statistical control, it is
often helpfulto use graphical methods as well to represent the information
in question. Figure 2.4 shows a data collection sheet for maintaining
inspection records of counts of defects and recording their types . From
this sheet a running record of counts can be plotted.

2.5 Types of data and their analysis

The results of repeated applications of a measurement process, collected
and summarized, form a set of data. Appropriate analysis of such data
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Figure 2.3 Flow diagram of manufacturing process of horn pad
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Figure 2.4 Data collection sheet - horn pad assemblies
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requires first of all an assessment of their nature. In traditional quality
control, two basic data types are usually distinguished, namely attributes
data and variables data. Whenever a measurement process requires a
count of items or a count of occurrences of a specified qualitative
characteristic, the resulting data are of the attributes type. They comprise
the subgroups of categorical data,counts of events or items and rank data.
By contrast, variables data are generated by measurement of a quantita-

tive

characteristic, as for example, the weight of a particular item.

To summarize the above distinctions, the types of data underlying an

ana
()
(i)
(iii)
(iv)

lysis of measurement results can be grouped as follows:
categorical data
counts of events in space or in time
ranks or ratings

variables data

Each data group will be discussed briefly below.
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2.5.1 Categorical data

These data arise from classifying each member of a set of individuals,
items or events into one of two or more categories. The resulting data are
usually the counts of members in each category. Examples of categorical
data are:

. Members of a collection of parts are classified as scrap, repair or
good. Recorded data could indicate, e.g., thatamongatotal of 100
parts, 3 parts are scrap, 8 parts are slated for repair and 89 are good.

. Respondents to a survey questionnaire are classified by their age.
Theresulting data consistofthe number of respondents ineach age
category.

. Notices on engineering change are classified by the reason for

change. Recorded data indicate that out of 50 notices, 9 changes
were made with the objective of product improvement, 12 as a
result of supplier requests for revision of standards, 14 to correct
design flaws or errors, 8 to institute material changes and the
remaining 7 for unspecified reasons.

- Anovernight package delivery service defines a delivery as being
“on time” if it is made before 10.30 a.m. on the specified day. A
week’s deliveries ina givenregion are then classified as “ontime”
or “not on time” with the latter category including lost packages.
The resulting data consist of the number of on-time deliveries out
of the total number due for a given week.

= Processing line interruptions are classified by the type of interrup-
tion. The resulting data consist of counts of interruptions by type
thatoccurred inamonth. Typically thiskind of information is used
to set priorities in attempts at reducing interruptions.

. Sheets of material are examined for surface defects of various
kinds. The resulting data consist of counts of defects of various
kinds found in a given number of sheets.

Categorical data consisting of counts of items in two or more categories
are sometimes summarized using bar graphs. Figure 2.5 shows a bar
graph of the data on engineering change notices described above.

The statistical model used for the study of variation in data consisting of
counts of individuals or items in one of two categories is the Bernoulli or
binomial probability model. Generalization of this model to more than
two categories produces the multinominal medel. In the study of
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Figure 2.5 Bar graph of number of engineering change notices by
reason for change
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variation in a sequence of counts of items in two or more categories, so-
called np or p charts are usually employed.

2.5.2 Countsofeventsinspaceorintime: the use of Paretodiagrams

Such counts are made under a broad variety of circumstances. Some of
them, like the number of processing line interruptions in the previous
example, arise as a result of observing occurrences of a certain event in
a given period of time. Further examples are counts of the number of
customer complaints per month, the number of accidents per labour hour,
the number of fires per month, the number of equipment failures per
thousand parts produced, the number of requests for service orthe number
of service interruptions per unit time.

Similar treatment is required for counts of the existence of flaws in two
orthree dimensions orina givenvolume of liquid or gaseous material. The
above example of surface defects involves counting of flaws of a certain
kind inatwo-dimensional area. Similarly, the number of dirt particles in
the paint on the hood of an automobile or the number of scratches on the
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journals of a crankshaft are counts of events in a given area. Anexample
of a volumetric count of events is the number of voids and fractures in
nuclear reactor vessel welds. Other examples are certain types of air
quality measurement which are intended to reflect the concentration of
various kinds of particles per unit volume.

The basic statistical model for the study of variation in data consisting of
counts of events in space or in time is the Poisson probability model.
When studying the variation in a sequence of such counts, so-called
u charts are usually employed.

Counts of events in three or more different categories, such as defects by
type, accidents by type or impurities by type, are often summarized by use
of a Pareto diagram. A Pareto diagram is a bar graph used to compare
frequencies of events. Itis constructed by first selecting the categories for
the summary, summarizing the counts accordingly and rank ordering
them. Rare and unrelated categories may be grouped together as a residual
category (with the label “other™). Inthe resultant bar graph the horizontal
scale indicates categories, the vertical scale category frequencies and the
height of each bar is proportional to the frequency of counts in the
associated category.

Inspection of the assembly of horn pads provided the data for Table 2.1
below. In addition to keeping records of the number of defective items,
records on the types of defects were maintained. Thetable gives summary
counts of the number of defects of different types among 1,000 horn pad
assemblies with the counts arranged in descending order of magnitude.

The Pareto diagram for the different types of defects in horn pad assembly
helps to determine those stages in the production process for which
improvement efforts would be most promising. Examination of the data
summarized in Table 2.1 and in Figure 2.6 suggested to rearrange them
with a view to this objective. On the one hand, surface defects and
excessive flash are ‘produced’ in the pad-moulding process. Onthe other
hand, improper assembly, missing parts and loose nuts are directly
connected to the assembly process. Rearranging the counts of defects
accordingto their points of origin in the production process produced the
Paretodiagram shown in Figure2.7. Furtherexamination of thatdiagram
suggests that the pad-moulding process produces the greatest number of
defects and is therefore a natural point of departure for improvement
work.

A warning should be sounded, however, about potential pitfalls in the
above method of setting priorities. One of them is failing to recognize
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Table 2.1 Counts of the number of defects by type obtained in the
final inspection of horn pad assemblies

Type of Defect Number Percent of Total

Defective urethane spray 65 25.0

Surface defects 64 24.6

Excessive flash 63 24.2

Improper assembly 24 9.2

Bad trim plate 12 4.6

Other 11 42

Blow pressure wrong 9 3.5

Missing parts 8 3.1

Loose nuts 4 1.5

TOTAL 260

variation over time in the number of problematic occurrences generated
by a stable process. As a norm such a process creates varying numbers
ofthe different types of defects. Due to normal variation in the outcomes
ofthe process the ranking of these types of defectsis likely notto be stable
over time. As a consequence such rankings cannot provide reliable
guidance towards setting priorities for improvement efforts. Instead
different methods have to be used to distinguish between problems that are
chronic and others that occur only sporadically. On the basis of such
knowledge, priorities for improvement work can be set that enjoy a higher
degree of confidence in its effectiveness.

A second potential pitfall arises in connection with the problem-solving
procedure itself. Examining only defective items can be misleading and
contribute to faulty analysis and ineffective, if not incorrect, action on
processes. Ifproblem-free as well as problem items are produced within
the same time span, some of the problem-free items should also be
examined for the reason that otherwise the causes of the problem at hand
might be misjudged. Since a process generates both good and bad items,
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factorsthataccount for asufficiently large variation of the quality of items
should be identified.

The following example — built around an assembly designed to spray a
liquid into a chamber — provides an illustration of the above points.
Leakage from the assembly is of course considered to be a critical defect.
In inspections of production output several assemblies were found to
suffer from this fault. In a next step only leaking assemblies were
examined to identify possible causes of leakage with the result that such
assemblies were found to contain a particular component that was
contaminated by foreign matter. Since already in the past contamination
of components had been associated with leakage, this product character-
istic was taken as the cause of leakage. As a result, the supplier of the
component in question started preparing to include a costly decontami-
nation step in the production process. However, examination of some non-
leaking assemblies (manufactured during the same time period) produced
the surprising result that non-leaking assemblies showed both the same
type and the same degree of contamination as leaking assemblies. The fact
that contamination existed in both leaking and non-leaking assemblies
made it necessary to search for other possible causes of leakage. In this
connection the variation in some of the dimensional characteristics of the
assembly was investigated. Only on the basis of this investigation,
excessive variation in component dimension could be revealed as the
major factor behind leakage. Inturn successful attempts at reducing that
variation solved the leakage problem and rendered unnecessary the
addition of a decontamination step to component production. This
example illustrates faulty problem-solving logic as well as failure to
recognize the complex nature of the process under study. Both the
variation in the number of problem results generated by a stable process
and majortraits of the problem-solving process itself should be taken into
account in attempts at understanding cause-and-effect relationships.

2.5.3 Data consisting of ranks

Suchdata are created by orderingasetofn individuals or items according
to some criterion — like best to worst or largest to smallest — and
assigning the numbers ! to ntothe members of this ordered set. Such data
are called ordinal data. Similar data arise from assigninga rating (e.g.,
excellent, good, mediocre)to each member ofa given setof individuals or
items. The results of customer evaluation of products or services often
consist of responses of this type.
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Figure 2.6 Pareto diagram for counts of horn pad assembly
defects by type
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2.5.4 Variables data: dot plots, histograms and the normal
distribution

Variables data arise from measurement of a quantitative characteristic of
an individual, item or group. For example, measurement of a person’s
age, height and weight results in three values of the variables type.
Dimensions, forces, velocity, rates of flow, temperature, and other
quantities that are expressed by numerical values on a continuous scale
are also data of the variables type. And the same holds for time data, such
as the time required to accomplish a particular service or task . Measure-
ment of the time that elapsed until the first occurrence of a failure or
breakdown or of the time between such occurrences is commonly used in
the analysis of product reliability. Under certain circumstances, count
data of the two kinds mentioned earlier can be treated as variables data,
but the conditions for adopting this approach need to be examined
carefully.
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Figure 2.7 Pareto diagram for horn pad assembly defects
organized by process step
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There isavariety of methods of summarizing acollection of variablesdata.
Dot plots may be used to picture the pattern of variation of asmall number
of measurement values over the potential scale of measurement. A dotplot
is constructed by drawing a horizontal scale for the range of possible
values and plotting a dot for each measurement above the appropriate
point on the scale. Figure 2.8 shows an example of a dot plot based on
data on the time required to transport shipments of parts from one plant
to another. This plot suggests that two different processes exist which
result in significantly different values of transport time. It also shows an
outlying data point.
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Figure 2.8
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Histograms can be used to roughly indicate the shape of the distribution
of a larger set of measurement values. Figure 2.9 is an example of a
histogram derived from 85 values of the measurement of available
chlorine (AVCL) in production samples of a household cleaning product.

A histogram can be constructed in the following steps:

[y

2)

3)
4)

5)
6)

Find the smallestand largest measurement values in the collection
of data.

Divide that portion of the scale of measurement that covers the
smallest and largest measured values into 5 to 20 equal contigu-
ous intervals thatdo notoverlap, so thateach measurement value
belongs to only one interval. (With more data points, more
intervals can be used).

Count the number of measurement values falling in each interval.

Draw a horizontal scale representing the scale of measurement and
mark off the intervals on that scale.

Draw a vertical scale representing frequency.

Draw vertical bars over the intervals with heights that correspond
to the number of measurement values lying in each interval.
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Figure 2.9 Histogram constructed from 85 measurements of
available chlorine in samples of a consumer
cleaning product.
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Table 2.2 contains the 85 measurement values the frequency distribution
of which is summarized in Figure 2.9

Table 2.2 85 Measurements of available chlorine in samples of
a household cleaning product
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An important point to be kept in mind when examininga histogram is that
of arbitrariness of the choice of both the number and the width of
intervals. This pointis significant for the simple reason that the shape of
the underlying distribution of values indicated by the histogram is
dependent upon thatchoice. From this it follows that any interpretation
of a histogram has to invoke a high degree of caution.

Both dot plots and histograms are summaries of a collection of measure-
ment values depicting notonly the location of observed values inrelation
to a measurement scale but also approximating the distribution of the
data. If measurement values refer to characteristics of ongoing pro-
cesses, any summary of the data that ignores the time sequence of results
may obscure one of the most important aspects. It might be useful to
consider, asan illustration, the time sequence plots shown in Figures 2.10
and 2.11. In each case, the series of measurement values has been
summarized by use of a histogram on the right side of the figure where
the scale for the histogram is given by the vertical scale of each figure.
Although the summary histograms inFigures2.10and 2.11 are identical,
the sequence plots shown there reveal the existence of two very different
processes. The series of results plotted in Figure 2.10 shows no
systematic pattern, whereas the series shown in Figure 2.11 exhibits a
downward trend. The latter figure suggests that a systematic change
occurred in the process raising the question about what might be the
cause(s) of thatchange. If merely the histogram had been used, important
information concerning systematic change in the underlying process
could not have been obtained. Similarly, the dot plot of transport time
shown in Figure 2.8 may obscure useful information available in the
original time series.

The above methods are descriptive and produce records of the past.
Historical results can usually not form the sole basis for prediction of
future results; knowledge of at least the major causal factors of variation
is essential to good predictions.

The model most commonly used to study variation in data of the
variables type is that of the normal distribution. More generally, this
model provides the basis for statistical analysis of so-called control
charts for variables data. One of its essential characteristics is symmetry
of the distribution of measurement values as sketched in Figure 2.12.
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Figure 2.10 Time-ordered plot of measurements taken on
successive results of a process (random)
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Figure 2.11 Time-ordered plot of measurements taken on successive
results of a process (trend)
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Figure 2.12 A normal curve

Figure 2.13 A skewed distribution

Figure 2.12 as well as Figure 2.13 represent the relative frequency
distribution ofa large number of measurement values. Such adistribution
should be seen as the limiting case of a sequence of relative frequency
histograms with increasing numbers of measurement values. When the
number of class intervals grows very large and their width approaches
zero, the normal distribution results.

By contrast, other kinds of variables data, such as waiting time, the time
elapsing until failure occurs, or certain types of chemical measurement
have non-symmetrical distributions. Figure 2.13 depicts such a skewed
distribution model. In extreme cases of lack of symmetry the use of non-
standard statistical methods may be required. In particular, the time
between occurrences of events may be more appropriately analyzed by
use of methods other than those based upon the normal model.
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Itisvital foran understanding of the methods discussed in the present text,
that statistical control and the application of the normal distribution model
be not substituted for each other. Statistical control, based on the concept
of variation, deals with fluctuations over time in the results produced by
aprocess. In particular, it addresses the question of whether or not these
fluctuations are around a constant average and also of a steady magnitude.
The accumulated results of a process producing statistically controlled
variation may indicate a distribution that bears no resemblance to a
normal curve. Examples that come to mind in this connection are values
of a fraction defective or counts of occurrences of events produced by a
stable process. Such data may exhibit a distribution that is heavily
skewed.

Practitioners often believe that a histogram representing an accumulation
of process data over a particular time span can be used to “test” for
statistical control. Likewise, it is often held, that non-normality implies
the absence of statistical control or that, conversely, an approximately
normal shape of the probability distribution indicates the presence of
statistical control. A glance at Figure 2.11 makes it clear that when a
sequence of results is summarized by a histogram, the shape produced can
appear to be approximately normal, even though the sequence of results
is clearly non-random. Furthermore, the absence of extreme outlier
results from a histogram is not sufficient evidence for the state of
statistical control of process results. Only control charts can provide a
reliable answer to the question of whether or not process results are
statistically controlled.

2.6 Introducing control charts

Oncethe methodsof datacollection have been determined and preliminary
investigations carried out with the help of graphical techniques described
previously, analysts are ready to monitor patterns of variation. The major
tool in this task is that of control charts. These charts are fairly easy to
construct and serve several purposes: They help managers to identify
different patterns of variation, interpret their meaning, conclude on the
causes underlying variation and gauge the success of efforts to improve
the studied process.

Depending on the type of underlying data and the information sought,
different versions of control charts are constructed. All, however, share
common features which are shown in Figure 2.14. They include a centre
line representing an estimate of the average value for all observations
taken into account and control limits defining the boundaries for
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acceptable variation. A widely adopted principle of obtaining upperand
lower control limits is that of adding to and subtracting from the average
value three-times an estimate of the standard deviation of the plotted
statistic. Throughoutthe presenttext this approach (for which arationale
is provided in Annex A) will be followed.

Figure 2.14 Schematic control charts

a) A Manufacturing Process that is in Control
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The manufacturing process represented by the control chart can then be
characterized in the following way: The process is considered as being ‘in
control’ ifall data points onthe chart fall inside controllimits and exhibit
no othersign of non-random behaviour, as, forexample, a trend or other
distinctive pattern.

Should one or more observations lie outside the range between the two
control limits, this can be taken as an indication of a special cause of
variation and the process is termed as being ‘out of control’. If control
limits are reasonably symmetrical around the centre line, additional
criteria can be used to judge whether variation within control limits is
random. The mostcommon amongthese criteriaare those relatingtoruns,
trends and periodicity as signals of non-random variation. Accordingly,
the following rule-of-thumb indications of non-randomness are often
used as a guide to detect out-of-control conditions:

1)a‘run’ of at least seven successive points falling on one side of the centre
line (rule of seven, run of seven);

2) at least seven successive increases or decreases of data points on the
chart indicating a trend,;

3)data points showing periodic up-and-down trends for the same interval
on the chart.

Figure 2.14 provides an illustration of the use of control limits. Later on
in the text reference will also be made to the rules of thumb stated above.
The following chapters will discuss in considerable detail the construction
and use of the major types of control charts. This will be done on the basis
of the general guidelines presented in this section and with ample
illustration of techniques by means of real-life examples. In addition, the
discussion will frequently refer to the broader context in which control
charts and their applications have to be seen.



CHAPTER 3

ANALYZING ATTRIBUTES
DATA

The effective use of charts requires competence in the application of the
appropriate statistical methods. However, anumber of issues other than
purely statistical ones must be addressed concurrently with the use of
charts. Among them are the intent for developing control charts, the
manner in which process knowledge is being recorded, the use which
should be made of this knowledge for designing samples and subgroups
of data, and the tasks for which management uses statistical analyses of
a process.

Thischapter will notattempt to discuss all of these issues in detail, but will
consider the more prosaic aspects of constructing and interpreting a
particular type of chart for the case of attributes data. Against this
backdrop conditions for the effective use of such charts will be discussed.
Finally, several case studies which illustrate the appropriate use of the
techniques presented here will be provided.

3.1 Attributes data that require the use of p or np charts

Information onthe performance of a process is often obtained by counting
the number of items which possess acertain attribute. Suchattributes data
were labelled categorical in Chapter 2. Each one of the items examined
falls in one of two categories, according to whether it possesses the
specified characteristic or not. In quality-improvement work these data
arise from a count of the members of a collection or subgroup of items
which are judged to be nonconforming in relation to a given set of
criteria.
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lllustrative examples are:

1) Counts of the number of damaged cans in lots of a given size.
Each can is judged as being 'damaged’ or not.

2) Counts of the number of defective shafts in samples of a given
size. Here ‘defective’ is defined as the diameter failing to meet
a stated specification. Each shaft either meets or fails to meet
this specification.

3) Daily counts of the number of those motors out of each day’s
production that fail to pass a certain voltage test. Each motor is
judged as passing or failing the voltage test.

4) Weekly counts of the number of invoices which contain atleast
one error. Each invoice contains either one or more errors or is
correct.

There are at least three objectives of evaluation that lead to the collection
of attributes data. The first one has to do with the need to obtain general
information on quality. To give an example, a merchandiser may record
the number of dented cans in a lot of canned food purchased from a
producer in order to assess the quality of the lot. A second objectiveisto
draw up a product or service profile which reflects certain characteristics
ofthe productorservice. The datain Table 3.1 are an example describing
the performance of automobile engines that have been subjected to
extensivetesting. Fromeach shift’s production atthe considered plant ten
engines were selected for extensive testing. In the tests, 47 different
characteristics were checked on each engine. If an engine failed on any
one of these characteristics, it was recorded as rejected. The numbers in
the table are the counts of the numbers of enginesrejected in the production
of each one of 21 successive weeks. When, as in the present case,
attributes data are collected over time, the stability of variation in the
results can be assessed. Inthe case of stability the future performance of
the process can be predicted with regard to the characteristic studied.

Finally, generating data on nonconforming items as such may be the
objective. Attributes data are then used to gain insight into the mecha-
nisms of the process or the dynamics of the system which generated the
product under study. In this instance, current knowledge of the process
and system is used to guide data collection. Ananalysis of attributes data
then serves the purpose of updating current (system) knowledge as well
as indicating possibilities for process (system) improvement.
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Table 3.1 Number of rejected engines

Subgroup n np Subgroup n np
1 100 6 12 100 5
2 100 8 13 100 7
3 100 2 14 100 8
4 100 3 15 100 il
5 100 5 16 100 3
6 100 10 17 100 S
7 100 4 18 100 9
8 100 7 19 100 S
9 100 2 20 100 7

10 100 12 21 100 2
11 100 10

3.2 The construction of p charts

In an analysis of attributes data of the present type, p and np charts are
used. Thisisillustrated atthe case ofthe dataof Table 3.1. The entire data
set is first subdivided into 21 subgroups representing the 21 weeks over
which data were collected. For each of these subgroups containing 100
engines the counts of nonconforming engines were recorded. The
following notation will be used to describe the analysis in detail:

k denotes the number of subgroups

n denotes the number of items in a
subgroup

p denotes the fraction of non-
conformingitems

3.2.1 Plotting points on a p chart

The construction of a p chart begins by plotting the nonconforming
fraction p for each subgroup. This fraction is calculated for each
subgroup by dividing the number of nonconforming items by the total
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number of items in the subgroup. An examination of Table 3.1 shows
that, for example, out of the 100 engines tested during the first week six
were found to be nonconforming resulting in a nonconforming fraction
of .06 for the first subgroup. The p values for all 21 subgroups are
calculated in an analogous manner and then plotted on a chart with the
subgroup number along the horizontal axis and the range of the noncon-
forming fraction along the vertical axis. Figure 3.1 was constructed in
this way. It is important to note that the data were recorded and also
plotted in the same order in time in which they were collected. The
significance of plotting the data in this fashion will emerge from the
analysis.

3.2.2 Calculating the centre line for a p chart

The centre line of a control chart represents the average value of the data
which the chart represents. This average value of nonconforming items
is denoted p (bar) and given by:

total number of nonconforming items
total number of items inspected

P=

In the example of Table 3.1 out of the 2,100 engines inspected 131
engines were rejected, so that the equation for the average reads:

5= _ 00624

This value of the average has been used to position the centre line in the
p chart of figure 3.1.

3.2.3 Calculating the control limits for a p chart

The upper and lower control limits define the amount of variation which
might be expected to occur in p values if the process is stable. For the
p chart these limits are:

—~ o |P1=-P)
LCLP = p'—3 T

— ., P(-p)
IJCLp = p+3 —n—



Figure 3.1  Plot of proportion of rejected engines
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where UCL (LCL) stands for upper (lower) control limit. For the data
on the engine tests

0624(1- 0.0624)
100

=0.1350

UCL, =0.0624 + 3\P

and

0.0624(1- 0.0624)
100

LCL, = 0.0624 - 3\}

The latter value would result in a negative number. Since a negative
fraction of nonconforming items is impossible, the convention of saying
that there is no lower control limit will be used in this text. Thus, for the
engine testing data we have:

LCL, = none

Figure 3.1 also displays the values of upper and lower control limits.

Summary of the construction of p charts

1) Eachiteminasubgroupcomprised of n items is classified as either
conforming or nonconforming . For each subgroup the number of|
nonconforming items is recorded.

2)  For each of the k subgroups p (the nonconforming fraction) is
calculated.

_ number of nonconforming items in the subgroup
n

3) The average of nonconforming fraction is calculated and used to
draw the centre line on the chart:
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total number of nonconforming items

P= total number of items inspected

1) Upper and lower control limits are calculated and the correspond
ing lines drawn into the graph:

ucL, =p+3,/P0=P)
n

LCL, =p-3,/2L=P)
n

3.3 Statistical control

The p chart constructed from the data on engine tests provides specific
information about the process producing these engines. What is to be
noted about this chart is first of all the variation in the values of p. The
smallest p value plotted is 0.03, whereas the largest such value is 0.12.
An obvious question relates to what can be learned about the process
from the observed variation in p values. For example, the fact that the
largest p value occurred during the tenth week suggests to investigate
what was different about the tenth week of operation. Likewise, the fact
that the lowest p value was observed both for the fourth and the sixteenth
week poses the question of whether better work was done during these
weeks than during others. Answers to such questions can be found using
the concept of a stable process or a process in statistical control. In
this connection, it has to be specified how much variation is to be
expected in the outcomes of a stable process, and what this implies for
the interpretation of empirical data.

A stable process may be thought of as a process which produces a
constant level of variation over time. Loosely speaking, stability can be
described as the variation in outcomes being of predictable size. Such
1s the case with a process for which the sources of variation are 'common
causes', i.e., causes which are common to all outcomes. By contrast, an
unstable process is under the impact of 'special causes' — usually in
addition to common causes — of variation which act only on some
outcomes but not on all.
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The two types of causes of variation can be illustrated with the help of
the engine test data previously discussed. Common causes are those that
are present throughout the time during which data were gathered. These
causes may have to do with the capability used for engine manufacture,
the maintenance practices for this equipment, the original design of the
engine. For example, the fact that over time the metal from which the
engine block iscast variesin its degree of hardness means that machining
operations require varying amounts of time to complete. Sometimes
adequate machining may not be done because of the difficulty in
accommodating the machining equipment to the varying degree of
hardness. Consequently, some engines are improperly machined, possi-
bly resulting in oil leakage or inadequate combustion characteristics.
This type of problem might occurat any time throughout the manufacture
of the engine and would thus be common to all outcomes.

Anexample ofa special cause of variation in the fraction of nonconform-
ingengines isthe type of cutting tools or grinding wheels being used in the
machiningoperation. If for example over time these tools were purchased
from different suppliers, the type used in one week may not be the same
as that used in another week. Differences in results stemming from
inadequate tools purchased from one supplier would then affect some but
not all outcomes of the process over the given time period. When an
inadequate tool is used, amarked increase in nonconforming engines may
be expected. Thus additional variation due to the use of inadequate tools
would appear to have a special cause.

Earlier in the discussion the question was raised whether the p value of
0.12 in week ten was large enough to indicate a difference between the
way engines were produced inthis particular week and other weeks. This
question can now be rephrased as: “Does the value of p=0.12 differ
sufficiently from other p values recorded to indicate a special cause in
week ten?”

An answer to the above question or to questions of a similar type is of
considerable importance to the study of the process at hand. More
specifically, if stability could be established, the process could be pre-
dicted to behave in the future in a fashion similar to that of the past.
Conversely, if a process is not stable and the special causes of instability
cannot be identified, future outcomes cannot be predicted.

The significance of predictions can be made clear from the engine
example outlined previously. Predictions of the proportion of conform-
ing engines are the basis for reliable production cost estimates, efficient
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management of schedules for engine production, and the provision of
supply of engines to assembling within clearly specified bounds.

The benefits of any improvement due to enhanced knowledge of the
process may be gauged, for example, from a brief description of the
effects of poor scheduling. Schedules must usually be met irrespectively
of the possibility to run the process in a stable manner. If there exists a
large discrepancy between a schedule and the potential to meet that
schedule, ways have to be found to cope with the ensuing difficulties.
These ways may include overtime to meet the schedule, hold-ups at the
next stage of production, and negotiated allotments with customers. If
remedial measures become too painful, it may be decided to increase the
estimated scheduling time of a job. In other words, lack of confidence
in the ability to meet a given schedule may result in overestimates of the
time scheduled as a means of avoiding the consequences of unmet
schedules.

Inadditiontoits significance for business planning, the study of stability
ofaprocess isan important element of any quality-improvement program.
Improvement of a process requires not only comprehensive engineering
knowledge, but also analytical information about outcomes. In the
currentexample of engine testingonly little use was made of any technical
knowledge about process mechanisms. Instead, fairly standard data were
collected without considering particular technical requirements. Not-
withstanding the lack of technical detail, a stability analysis of the
recorded outcomes provides important inputs to improvement efforts.

If for a process instability is diagnosed, the next step is to identify the
underlying special cause(s). Inthe case of a special cause accounting for
increased levels of nonconforming items, the question arises about what
should be done to eliminate this cause. In the alternative case of
reduction of the levels of nonconforming items, ways should be found to
incorporate the special factor in the standard operating procedure. If in
the context of the engine test example the value of p=0.12 differed so
much from other p values that a special cause appeared to be operating,
there would be a need to identify that special cause and then try to
eliminate it. If in addition the value of p=0.03 were so much smaller than
every other p value that a special cause seemed to be acting on that
particular outcome, this would necessitate to identify the associated
special cause and attempt to make it part of the standard operation of the
process.

Alternatively, the conclusion that a process is stable and can therefore be
subject only to common causes of variation suggests that only changes
that refer to one or more such causes can be expected to result in
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improvement. Thus in order to improve a stable process information is
needed regarding the impact of common causes on process outcomes.
This is why the data on engines presented in the previous example would
most likely be insufficient to support process improvement. The
collected information provides little insight into how various factors
impact the level of variation in the production process under study.

The distinction between common and special causes is important for
judging the appropriateness of actions to improve a process. Without
knowing, for example, whether ornota p value of 0.12 points to a special
cause, it would be very difficult to propose appropriate remedial action.
If the process were in control, it would be doubtful whether any action
could effect improvement. At worst, such action could, due to
overadjustment, produce more variation in outcomes than previously.

The completed p chart in Figure 3.1 shows that none of the points plotted
falls outside control limits. Since the chart shows no other signs of non-
random behaviour either, the conclusion must be that there is no evidence
of instability. In other words, the process appears to be in statistical
control.

3.4 The example of pot-pie production revisited

Inorderto bring out more clearly some of the points mentioned in previous
sections, the example of ‘pot-pie’ production (introduced in Chapter 2)
shall be taken up again.

As was mentioned in a first brief outline of the example, management
decided to compile available information in order to summarize process
knowledge. Figure 3.2 presents the flow chart of pot-pie production while
Figure 3.3 provides a more detailed description of that portion of the
production process which produces ‘bottom crusts’. Inaddition, a cause-
and-effect diagram - displayed in Figure 2.1 - reflects information that
was provided by several of the operators of the pot-pie line.

The cause-and-effect diagram led to a lengthy discussion about which of
the causes listed there were effective in producing nonconforming pie
crusts. At this juncture it was realized that much of the difference in
opinton about the reasons for nonconforming crusts had to do with
incomplete information about the current capability of the pot-pie line.
For instance, there was only scant knowledge of whether more noncon-
forming crusts were observed on some days in comparison with others. If
there was a difference between days regarding the number of noncon-
forming crusts, the group would have to investigate more closely the
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Figure 3.2 Flow chart of pot pie production
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Figure 3.3
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causes that were effective on some days but not on others. Further, the
group possessed no knowledge about whether the number of noncon-
formingcrusts was larger ata certain time compared to the rest of the day.
Knowledge of process performance during a day would help identify
causal factors behind the production of nonconforming crusts. Further-
more, thorough knowledge of how the process was currently operated
would provide a reference point from which to judge future improve-
ments.

In order to better understand the given process, the management group
decided to collect also information on the number of crusts discarded
throughout a single day’s operation. The flow chart in Figure 3.3
describes the operation of the process and also illustrates at which points
data collection was performed. The production of pie crusts begins with
the dough being extruded from the vat in which it is mixed into a thick
sheet. From this point the dough is pulled into the forming machine,
which rolls it into a thin sheet. This is then cut into wide strips by the
forming machine with the strips covering 24 metal trays. Subsequently,
the dough is pressed into pie plates and excess dough is trimmed. The
forming of a group of 24 crusts is referred to as a cycle, and the operator
who runs the forming machine controls the time at which the cycles
occur. The same operator examines the pie crusts after the forming
operation to see that there are no visible breaks in the dough and that all
metal trays are completely covered by dough. It was the large number
of crusts discarded at this point of the operation which caused concern.
Therefore, it was decided to collect information on nonconforming
crusts at precisely this point of the process.

3.5 The construction of np charts

As indicated above, the management group trying to improve on the pot-
pie production process decided to collect information throughout the day
and over several days on the number of nonconforming crusts being
produced. In order to achieve this goal the operator who was inspecting
the crusts was instructed to record the number of nonconforming crusts
produced in four consecutive cycles once each hour. This collection of
information wascarried out for one working week, i.e., five working days.
The resultant data are shown in Table 3.2.

For an evaluation of the information contained in these data a p chart
could be utilized. Analternative is to plot the number of nonconforming
crusts rather than their fraction. The result is an np chart which contains
the same information as a p chart, howeverin adifferent form. Inthe case
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Table 3.2 Number of nonconforming crusts in four consecutive
cycles of 24 crusts

—
Date Time in subgroup nonconforming
11-08 800 a 96 15
9:00 a 96 16
10:00 a 96 17
11:00 a 96 20
12:00 a 96 12
1:00 p 96 19
2:00 p 96 13
11-09 8:00 a 96 18
9:00 a 96 27
10:00 a 96 16
11:00 a 96 21
12:00 a 96 22
1:00 p 96 20
2:00 p 96 19
11-10 8:00 a 96 9
9:00 a 96 14
10:00 a 96 18
11:00 a 96 23
12:00 a 96 19
1:00 p 96 12
2:00 p 96 13
F1-11 8:00 a 96 15
9:00 a 96 16
10:00 a 96 18
11:00 a 96 18
12:00 a 96 16
1:00 p 96 12
2:00 p 96 16
11-12 8:00 a 96 11
9:00 a 96 17
10:00 a 96 11
11:00 a 96 18
12:00 a 96 15
1:00 p 96 14
2:00 p 96 19
579
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of each subgroup containing the same number of items examined the
choice between a p chart and an np chart is merely a matter of conve-
nience.

3.5.1 Plotting the points on an np chart

Table 3.2 contains information on the time of inspection, the number in
a subgroup, and the number of nonconforming crusts in a subgroup. As
mentioned previously, on an np chart the number of nonconforming
items is plotted.

In Figure 3.4 these values are plotted in time order so that information
on the time pattern of performance is retained. As inthe case ofap chart
the subgroup numbers appear along the horizontal axis while along the
vertical axis the range of the number of nonconforming items is indicated.
Analysis of the information contained in such a plot proceeds inamanner
analogous to that applied in the case of a p chart. Accordingly, a centre
line isdrawn into the chartand so are upper and lower control limits. Like
in the case of the p chart these control limits serve to determine the level
of variation which is compatible with the data originating from a stable
process.

3.5.2 Determining centre line and control limits for an np chart

On an np chart the value used to draw the centre line is the average
number of nonconforming items in asubgroup. This average isdenoted
np (bar) and given by

total number of nonconforming items

np =
number of subgroups

For the data of Table 3.2 (with a total of 579 nonconforming crusts in the
35 subgroups) the value

np = 5—3752 =165429

is obtained and used to position the centre line in Figure 3 .4.

The calculation of upper and lower control limits for an np chart requires
the calculation of the value of p(bar) by the formula given in Section
3.2.2. Alternatively, p(bar) could be calculated by dividing np(bar) by
n, the subgroup size.

P= 165429 _ 01723
96
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The upper (UCL) and lower (LCL) control limits are then calculated as
follows:

UCL,, = np +3./np(1-p)
LCC,, = np - 3/np(1- )

For the data in Table 3.2, these limits are:

UCL, =165429+ 3\/1 6.5429(1-0.1723) =27.644

LCL,, = 165429 —3,/165429(1 - 0.1723) = 54419

The above values have been used to draw the upper and lower control
limits in Figure 3.4. The completed chart shows no indication of a
special cause operating. From the available data, it appears that hour to
hour, throughout the week studied, the proportion of nonconforming pie
crusts is stable with about 1 7% nonconforming crusts being produced on
average.

Atfirst glance the summary of the results of the np chart seems to provide
the same information as the initial statement about the pot-pie line,
namely, that it was producing about 18% nonconforming items. How-
ever, there is additional evidence arising from the np chart. This
evidence is about the direction that improvement work might best take.
The data behind the points on the chart were collected on an hour to hour
basis over a period of one week. The indication is that the process is
stable when judged in this fashion. Consequently, any investigation of
sources of variation that would result in differences between days or
hours is not recommended at this juncture, since there is no evidence
of a special cause acting at some hours and not at others. This implies
that there is no need to consider differences between hours or days in the
performance of the process. However, those causes on the chart that
might affect the number of nonconforming crusts in the course of an hour
are promising candidates for further examination. And the cause-and-
effect diagram can be used to aid in identifying causes of the production
of nonconforming crusts that might be acting inconsistently within an
hour.
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3.6 Selecting the subgroup

In the study of pie crusts each subgroup on the np chart consisted of four
groups of 24 crusts. These four groups came from four consecutive
cycles of the machine which formed 24 pie crusts at each operation. Data
for the 35 subgroups shown in Figure 3.4 were collected at various points
in time throughout one day. Obviously the manner in which subgroups
are selected determines which special causes of variation can be de-
tected.

One of the possible causes identified on the cause-and-effect diagram for
nonconforming pie crusts had to do with the position of each individual
tin at the moment when dough is placed over tins. Tins occupying an end
position at that moment are more likely to be defective, since the dough
may be too thin at this location or may not have been properly rolled out
so that it does not cover the pie tins completely, or else the dough may at
the ends dry more quickly than in middle positions. If rejection of a pie
tinisassociated with its position atthe time of filling, it would be expected
thatdifferent proportions of tins are rejected at different positions. Inthis
connection two questions arise:

1. Are the numbers of nonconforming crusts formed at different
locations stable over time?

2. How do the numbers of crusts rejected at different locations
compare?

The previous subgrouping strategy was not geared to providing answers
to these questions as each subgroup contained both “middle” and “end”
crusts. In order to determine whether the end positions do indeed
produce a higher proportion of defective crusts, a different subgrouping
strategy has to be devised. In the context of this strategy the subgroups
are selected in such a way that some contain only end crusts and some
only middle crusts.

Collecting data in this fashion requires amuch larger investment of time,
since each crust has to be identified by its location in addition to noting
whether it is nonconforming. The resulting data are recorded on a form
like the one shown in Figure 3.5. The circles on the form correspond to
the 24 locations of the pie tins when they are being covered with dough.
The places labelled 1 through 4 and 21 through 24 are end positions.
Crusts placed in these eight positions in the first four consecutive runs
formed the first subgroup. The number of nonconforming crusts in this
group with sample size n=4 x 8 =32 is given in Table 3.3. The second
subgroup consists of the remaining 64 crusts placed in middle positions
and pertaining to the same four consecutive runs from which the first
subgroup was drawn.
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Figure 3.5  Form for recording pie crusts by location
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The rest of the information in Table 3.3 was recorded in an analogous
fashion. Odd numbered subgroups were formed from end crusts and
haveasubgroupsize of 32. Even numbered subgroups were formed from
the middle crusts and have a subgroup size of 64. All 40 subgroups were
collected over one shift of operation. Because they do not all have the
same value of n (subgroup size), a control chart for varying » had to be
constructed for these data.
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Table 3.3 Number of nonconforming end crusts and middle
crusts in four consecutive cycles

Subgroup n np p Subgroup n np o]

1 32 9 281 2 64 2 .031

3 32 10 313 4 64 9 141

5 32 8 250 6 64 5 078

7 32 9 281 8 64 4 .063

9 32 8 250 10 64 9 141
11 32 6 .188 12 64 9 141
13 32 7 219 14 64 6 .094
15 32 9 281 16 64 6 .094
17 32 10 313 18 64 6 .094
19 32 12 375 20 64 1 016
21 32 11 344 22 64 7 109
23 32 12 375 24 64 5 078
25 32 10 313 26 64 7 .109
27 32 14 438 28 64 3 047
29 32 10 313 30 64 7 .109
31 32 13 406 32 64 2 031
33 32 10 313 34 64 8 125
35 32 13 406 36 64 6 .094
37 32 14 438 38 64 5 078
39 32 13 .406 40 64 1 .109

208 114

3.7 The construction of p charts when n varies

Whenever a set of data on nonconforming items is grouped in subgroups
of varying size, the appropriate chart for analyzing these data is a p chart.
Plotting the points and drawing the centre line on the chart is done in the
way described in Section 3.2. For the data in Table 3.3 the chart in
Figure 3.6 shows the values p of the nonconforming fraction plotted by
subgroup together with the centre line. The value for positioning the
latter is given by

So_ 2084114 0
(32 x 20 + 64 x 20)
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Figure 3.6 P chart for the data of table 3.3
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The formulae for upper and lower control limits for p charts given in
Section 3.2.3 were a function of subgroup size n. One way of interpreting
these formulae is that in a stable process the amount of expected variation
in the nonconforming fraction also depends on the number of items in a
subgroup.

When the size of subgroups varies as in the case of the data in Table 3.3,
different expressions have to be used. Here the control limits used for
the p values plotted depend on the number of items used in the calculation
of p values. Thus for points based on a sample of 32 crusts, the upper and
lower control limits are given by:

UCL=p+3 {M
n

0.168(1-0168) _ .

UCL=0168+ 3\/

LCL=5-3 pd-p)
n

0.168(1-0.168)
32

LCL =0.168— 3\/

LCL =none

For points which were calculated as the fraction of nonconforming items
out of 64 crusts the upper and lower control limits are:

UCL=p+3,/PU=P)
n
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UCL =0.168+ 3\/ 0163(1 ;0‘168) =0.308
LcL=p-3,/ PP

n
LCL=0168- 3\/ 0168(1-0.168) _ 0.027

Limits determined on the basis of these formulae have been inserted in
the p chart of Figure 3.6. Odd-numbered subgroups had a group size of
32 implying an upper control limit of 0.366 and no lower control limit
according to the above formulae. The remaining points correspond to a
subgroup size of 64. Therefore the control limits for these points are
0.308 and 0.027, respectively. The chart in Figure 3.6 shows several
points above the upper control limit and one p value below the lower
control limit. Since all points above the upper control limit belong to
subgroups of end crusts, it appears that such crusts tend to have larger
nonconforming rates than middle crusts.

The strategy for analyzing the aforementioned difference between crusts
can be summarized as follows: A possible source of variation in the
fraction of nonconforming crusts was identified as having to do with tin
position. In order to prove this conjecture, subgrouping distinguished
between end crusts and middle crusts. The fact that points associated
with end crusts are out of statistical control suggests that a special cause
is in all likelihood connected with end crusts.

3.8 Non-random behaviour: the example of pot-pie produc-
tion continued

The present example can serve to illustrate further systematic investiga-
tion of non-random behaviour in a production process. According to the
results reported in the previous section, improvement work on the pot-pie
line has to be based on an understanding of why more nonconforming
crusts are produced at the ends rather than in the middle. How this work
1s to be conducted depends on whether or not the number of nonconform-
ing crusts - when considered separately by type - is stable over time. If,
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for example, that part of the process associated with the production of
end crusts were statistically out of control, the underlying special causes
would have to be identified. On the other hand, if stability were
diagnosed, improvement work would have to take into account common
causes of variation in the quality of end crusts.

Inthe present example, separate p charts of the nonconforming fractions
amongend crusts and middle crusts, respectively, were constructed. The
chart forend crusts revealed non-random behaviour in the form of a trend
of the fraction of nonconforming end crusts to increase over time. This
observation called for efforts to identify the cause(s) behind this apparent
trend. Of course, nothing on the chart itself indicated what led to the
perceived systematic pattern. The chances to identify its causes in part
depend on the observation skills of managers, technical personnel, and
operators as well ason their ability to correlate observations with process
performance at large.

In the search for special causes of variation it is important to draw on
various types of information about the process. Marking on the chart
events such as changes in material, changes of operating personnel, line
shut downs, etc. can be of great help. However, consideration - prior to
data collection - of the broad range of factors which might impact process
output is the best strategy. Although a complete list of potential causes
of variation in outcomes is unlikely to be compiled before the collection
of data begins, any preliminary analysis of causes and effects will be of
much help. In this task the pool of knowledge of personnel employed in
the studied process is an invaluable source of information.

Regarding the present example, a number of possible causes of the
gradual increase in the number of nonconforming end crusts had been
listed previously. Among them two seem to deserve closer scrutiny:

(i) Changing environmental conditions

At the beginning of the day, the moisture level in the dough is set by
adjustingthe rates at which dry and liquid ingredients flow into the mixing
vat. Moisture levels are thought to be critical as dough that is too dry will
tear easily. However, as temperature and humidity in the plant change
throughout the day, the set rates may not suffice to maintain appropriate
levels of moisture. Data need to be collected and analyzed in order to
substantiate this hypothesis.

(ii) Recycling of excess and scrap dough

Cutting dough to fit the tins in which it is moulded generates a certain
amount of scrap dough. It is current practice to return this dough to the
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mixture from which other pie crusts are then rolled. Additionally, dough
from nonconforming pie crusts is also returned to the mixture. The
supposition is that this practice may cause deterioration of the dough
throughout the day resulting in increased numbers of nonconforming
crusts.

Although these two factors were identified as possible reasons for the
observed trend in nonconforming pie crusts, it was not clear whether
either one of them was actually effective. One method to find an answer
to this question is to eliminate the influence of one particular hypoth-
esized factor and assess the consequences. For example, the effect of
recycling dough could be studied by discontinuing this practice. If as
a consequence of this measure no trend were observed, the factor may
safely be excluded from the list of candidate causes. Likewise,ambient
temperature and humidity can be kept constant in an attempt to assess
the impact of environmental conditions. In still another approach the
cessation of recycling under a variety of temperature and humidity
conditions could be studied. Finally, investigations of potential causes
ofthe observed trend would have to take into account factors other than
the ones described previously.

In the reported example, the team studying the process - and, in
particular, the trend in nonconforming end crusts - gathered data from
the line over several days before as well as after recycling was stopped.
While environmental conditions were not controlled, changes in tem-
perature and humidity were recorded throughout the day. These changes
were also recorded on several successive days on which recycling had
been discontinued: Temperature and humidity were seen to change in a
fashion similar to that of earlier days. Finally, data on end crusts were
collected on one of the days on which recycling had been discontinued.
A p chart representing these data showed no evidence of non-random
behaviour of any kind. This supports the hypothesis that recycling of
dough caused the increase in the number of nonconforming end crusts.

The above result immediately raises the important issue of confirming
the outcome of a given study. In general, confirmation of results is of
great significance for improvement work giving rise to a particular kind
of study. Such confirmation studies have to be performed repeatedly in
order to establish if improvements can be maintained under a variety of
conditions. Too often an effect which is noted at one point in time - such
asthe reduction in nonconforming crusts when recycling is halted - may
not recur at a later time. Sometimes it happens that focussing on a
particular area results in improvements in that area, but that these
improvements may not be sustained after attention has been directed
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elsewhere. Thus improvements may incorrectly be attributed to some
change made to the process rather than to increased attention. Also
causes other than those investigated may bring about the observed trend
in the number of nonconforming end crusts. Here confirmation studies
could decide whether a given improvement occurred for the suspected
reason or not.

In the present example of the pie-crust line, confirmation studies might
simply consist in applying the same tests to an enlarged set of data.
Information collected over a longer time span which should preferably
include a variety of operating conditions would usually provide the data
basis. In addition, the same analysis could be performed on data
collected on other shifts and other lines as a means of validating previous
results.

3.9 Five ideas supporting the effective use of control charts

This section presents some general ideas on how the use of charts can
be mosteffectively integrated ina program for continuous improvement.
These ideas should be read as suggestions rather than rules. While there
will certainly be situations in which not all of them can be followed, it
appears to be important that the practitioner know about the options they
offer.

. A process flow diagram is a prerequisite of data collection.

Before a set of data is collected for process study, the process needs to
be understood in terms of how it affects the processes and systems in
which it is embedded and is affected by them. This is particularly
important for those managers who set the priorities of process study. It
may be possible to spell out alternatives for process improvement only
after close scrutiny of the entire system set-up, where a process flow
diagram is an indispensable tool of investigation.

In view of the above it is clear that a diagram simply giving the order in
which operations in the process should occur is insufficient. Instead a
flow chart is called for to describe the process in sufficient detail, with the
additional requirement that this chart needs to be revised with every
significant change in the operations that it describes.

. Anoperational definition of the specifications, characteristics
or attributes under study is also needed.
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Benefits usually accrue from involving managers, at appropriate levels,
in selecting and defining the characteristics that are to be measured.
Some of these benefits have to do with the strengthening of the team
working on the process due to a deepened understanding by team-
members of why a given operational definition and its consistent
application are important. In addition, the validity of measurement and
the reliability of outcomes are enhanced for obvious reasons. Further-
more, operational definitions need to be checked on a regular basis. In
this context procedures should be established for the revision of defini-
tions and specifications in the case of product or process changes.

. It should be clear how the various types of information
gained from a p chart will be used.

Management and supervisory directions about how to identify, under-
stand, and eventually eliminate special causes need to be specified.
Without such directions there is a high probability that fundamental
causes of variation donot getaddressed. 'Band-aid' problem fixing, based
upon restricted resources and, perhaps, limited understanding of the
technological aspects of special causes is then a very likely result.
Management has to provide plans for the systematic study of the process.
Forexample, alistof potential special causes could be established and the
associated factors analyzed. Furthermore, individuals that are to be
involved in related work should be identified by management with due
consideration of the issues of knowledge, skills, responsibility and
authority. An additional requirement is to take into account in this
exercise departmental and functional representation.

Other elements in a plan for process study should account for cause-and-
effect relationships. Since the ultimate goal is to improve the process,
bringing it into stable operation can only be the first step. Subsequently,
subgroup formation and sample frequency need to be considered with a
view to understanding cause-and-effect relationships. In this endeavour
a p chart can prove very helpful.

. A p chart will be most effective for process studyj, if it
relates to only one specification, standard, or non-
conformity.

[tis considered as a fundamental mistake in resource allocation to report
on various specifications or characteristics on one single chart. In terms
of time, effort and other resources, data collection and basic 'charting' is
by far the least expensive, whereas problem identification, determina-
tion of causes, and testing and implementation of solutions are consid-
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erably more resource intensive. Notwithstanding these cost relation-
ships multiple characteristics are often included in a single chart with
adverse effects on its usefulness. Thus it may happen that a trend in the
nonconforming fraction pertaining to one characteristic is obscured or
offset by contrary movements in the fraction of another characteristic.
Similar problems can arise in attempts to identify special causes of
variation in a certain characteristic. Numerous common-cause systems
and various types of special causes may be active but the chart will
provide little information about any one of these. With multiple
characteristics on one chart, the time spent on inspection and data
collection efforts will most likely be wasted since the form of data
presentation does not aid problem identification.

There are surely exceptions to the above policy. For example, before
making suggestions about process or product improvement typical
problems must have been identified together with assessing the relative
frequencies with which they occur. A p chart that includes all types of
nonconformingattributes may be useful for reporting on the current state
of a process. A Pareto diagram may then be used to support the initial
investigation and put in relief some of the larger problems. Of course
judgement will have to be exercised when setting priorities on the basis of
this work. The severity of various problems will have to be appraised,
their impact considered from the customer’s viewpoint, and their pos-
sible long run nature evaluated.

. Where technically and economically feasible, the results of
inspection for the purposes of process and productimprovement
should be recorded in the form of a variable.

Sometimes work on quality and productivity involves measurement,
comparison of the result to specifications, and then recording 'conforming'
or '‘nonconforming' as the response. If only this attribute is recorded
valuable information is discarded. Although the p chart does provide
information about failing to meet specifications, the information is too
vague for work on process improvement. There is no clue as to whether
the problem lies with excessive variation, incorrect averaging or both. A
full evaluation of process performance requires information on the
sources of variation, and these data are not available when only conform-
ance to specifications is recorded.



CHAPTER 4

MORE ON THE ANALYSIS OF
ATTRIBUTES DATA

There are situations in which process data consist of counts other than the
type discussed in the previous chapter. Data are often collected, for
example, on the number of individual flaws or defects found in a single
item or a collection of items. Examples are the number of surface flaws
on a sheet or several sheets of material, or the number of impurities found
in a volume of a continuously manufactured or batch-produced product.
Such counts are different from those analyzed by a p or np chart because
they arise from counting occurrences of some specified type rather than
classifying each item into one of two categories. Likewise, in a business
environment counts of occurrences of events in time are often made.
Examples are counts of the number of service or transmission interrup-
tions, production line stops, accidents, calls for service or customer
complaints. Such counts often exhibit variation over time due to
changing conditions. This variation needs to be studied to better
understand process and system performance.

4.1 Attributes data that require the use of ¢ or u charts

Counts of occurrences of events in time or of nonconformities on a unit
of material are analyzed by use of ¢ or u charts. The methods of analysis
depend on the way in whichsuch events occur when there are only random
or common-cause sources of variation. The four criteria listed below
summarize the conditions under which the use ofa coruchart is suggested:
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Criterion i: The counts are independent of each other.
Criterion 2: The number of possible occurrences is large.

Criterion 3: The chance of an occurrence at any specified time or place
is small.

Criterion4: The expected number of occurrences is proportional to the
amount of time or material included in an inspection unit.

The study of counts of flaws on sheets of manufactured material provides
anillustration ofthe application of these four criteria. Forexample, in the
manufacture of aluminium cans it is critical that there be no holes in the
aluminium used. Assumethat at one plant past experience has shown that
the aluminium sheets received from the supplier have no large holes, but
that occasionally pinholes are detected. The material is therefore exhaus-
tively inspected prior to its use for can manufacture and the number of
pinholes in a sheet of aluminium is recorded.

Ifthe occurence of pinholes is subjectonlyto common-cause sources of
variation, holes are scattered in a random fashion over a sheet of
aluminium. If by contrast some special cause were active, this would
supposedly have the effect of concentrating pinholes in one area of the
sheet. Furthermore, if pinholes tended to appear in clusters, detecting a
hole in one position would increase the probability of occurrence of others
in the vicinity. Criterion 1 for the use of a ¢ or u chart refers to the above
distinction. When only common causes of variation are at work,
occurrence of a pinhole at a particular location is independent of that of
others in the vicinity and holes are randomly scattered across the sheet.

[fthe size of awhole sheet of aluminium is compared withthat of a pinhole,
clearly Criterion 2 is seen to hold. In fact, if a sheet of aluminium were
subdivided into many tiny pieces, each one of these pieces might possibly
contain a pinhole. However, there would be a great number of pieces
without a pinhole, quite in accordance with Criterion 3.

If the sheet of aluminium were divided in half, the expected number of
pinholes on one-half would be the same as that on the other half. Or
conversely, on two sheets of aluminium about twice as many pinholes
would be expected as on one sheet. Thisistheideabehind Criterion4: The
expected number of pinholes is proportional to the amount of aluminium
inspected. Consistency between sheets of the expected number of pinholes
reflects the assumption of stability of the process over time. Departure
from this behaviour — evidenced, for example, by the occurrence of a
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considerably larger number of holes on one sheet compared to other
sheets— would indicate the presence of a special cause. It would then be
useful to identify such causes in the form of different conditions, materials
or other factors.

Another example for the use of a ¢ or u chart is in the analysis of counts
ofthe number of production line stops inashift. Herethe unitofinspection
isaunitoftime, in particular, one shift. Ifthe production line is shut down
at planned intervals for a tool change, use of a ¢ or u chart to summarize
the information on counts would not be appropriate. By contrast, the cor
u chart would be considered for studying a situation where randomly
occurringevents are causing some difficulty which may result in stopping
the production line. An example is in the production of paper where a
number of different causes, acting together or separately, result in breaks
in the paper. The times at which breaks might occur cannot be predicted,
they are distributed randomly.

The four criteria for using ¢ and u charts have to be applied in a slightly
modified fashion when the inspection unit is a unit of time. Criterion 1
states that the counts of occurrences should be independent. In the present
situation, this implies that if one production stop occurs, this would not
influence the probability of production stops in the near future. Rather,
the next production stop would occur at random some time in the future,
with the same chance of occurrence as if the previous one had not
occurred.

When considering the use of a ¢ or » chart, the following question might
be raised regarding the above assumption: “Is it possible that under
certain conditions production stops tend to occur inclusters?”” An answer
in the affirmative would not rule out application of a ¢ or u chart. Limits
established on the basis of a ¢ or « chart would then indicate the number
of occurrences that could be expected if the process performed according
to the above criteria. On the other hand, unusual performance reflected
onthechartin points lying outside these limits would indicate non-random
behaviour of the process.

For the case of production stops, applicability of Criteria 2 and 3 could
be considered in much the same way as for the pinholes example. If the
unit of inspection for line stops were a shift, this could be divided into
many small increments of time, for example, seconds. A stop mightoccur
inany one ofthese small time increments. Thus the number of occurrences
is possibly very large. However, the chance of seeing an occurrence ata
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large number of these time increments is very small; most of the time
increments will not contain a line stop.

Criterion 4 states that the expected number of occurrences should be
proportional to the length of the time period over which an inspection is
carried out. Usually careful examination of the ways of data collection
is required in order to see whether this criterion is met reasonably well.
For example, after a stop the production line might be down for as long
as an hour. If this were the case, an eight-hour shift might not be a good
choice for the unit of time over which production line stops are counted.
Instead, a more appropriate unit of time for analysis might be one that
corresponded to actual running time of the equipment.

4.2 The construction of ¢ charts

Both cand ucharts are used to examine the stability ofa process overtime
when the information collected consists of counts of occurrences of a
givenevent. The cchart is used to study the counts of occurrences when
the time period orthe amount of material subjected to inspection remains
the same over the course of the study. The data in Table 4.1 represent
asituation in which the amount of material inspected remains constant in
the course of the study. The data in this table originated from the above
example of aluminium can production and reflect the counts of pinholes
in each of 20 subgroups. Each subgroup was formed by inspecting 10
rolls of aluminium in a shipment received from a supplier. Each of the
rolls of aluminium had the same number of feet per roll, so that for each
subgroup the amount of material inspected remained the same. The
following notation will be used in the present discussion of ¢ charts:

k  denotes the number of subgroups
¢ denotes the number of nonconformities in

each subgroup

Asinthe case of constructing a p chart, the construction of ac chart begins
with plotting the data. With a ¢ chart, the points plotted represent the
counts of nonconformities. Figure 4.1 shows the plot of the number of
pinholes ineach of the 20 subgroups. The horizontal axis correspondsto
the subgroup number while the vertical axis corresponds to the count of
pinholes. Thetime orderrepresented by the horizontal axis corresponds
to the listing given in Table 4.1 of the subgroups. The subgroups match
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Table 4.1 Number of pinholes in aluminium rolls

Subgroup Number of Subgroup Number of
pinholes pinholes

1 22 11 15
2 29 12 10
3 25 13 33
4 17 14 23
5 20 15 27
6 16 16 17
7 34 17 33
8 11 18 19
9 31 19 22
10 29 20 27
Total 460

with the time at which the shipments were received: subgroup 1 corre-
sponds to the inspection of a shipment which arrived at the plant prior to
the material inspected for subgroup 2, etc. 1tshould be noted, though, that
the ordering in time of shipments is not necessarily reproduced in that of
manufacture.

The centre line on a ¢ chart represents the average number of non-
conformities per inspection unit. Since the number of inspection unitson

ac chart i1s the same as the number of subgroups, the average € is simply
thetotal number of nonconformities divided by the number of subgroups.

For the data in Table 4.1, there was a total of 460 pinholes in 20
subgroups, so that:

460 _

=23
20

c=




Figure 4.1  Plot of number of pinholes in 10 rolls for each of 20 subgroups
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This value has been used to insert the centre line in the ¢ chart in Figure
4.1.

The upper and lower control limits for the ¢ chart define the amount of
variation that might be expected in the recorded nonconformities if only
common-cause sources of variation are present. Stated differently, the
control limits describe the amount of variation that the recorded ¢’s would
be expected to exhibit, if criteria 1 and 4 governed the process in the
previous section. The formulae used to calculate the upper and lower
control limits are, respectively:

UCL, =T+3vT

LCL, =¢-3v¢

For the data on pinholes the upper control limit is:
UCL. =23+3v23 =374

The lower control limit is given by:

LCL, =23-34/23 =86

Figure 4.1 displays the completed control chart. Because there are no
points on or outside the control limits or any signs of non-random
behaviour in the plotted points, the completed chart shows no indication
of a special cause operating. It would appear that the occurrence of
pinholes in the aluminium is randomly spread out over time. One
subgroup of 10 rolls does nothave a significantly higher or lower number
of pinholesto indicate that the process may have been behaving differently
when those rolls were made.
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Construction of ¢ charts

1. Countthe number of nonconformities on each inspection unit(ineach
subgroup) . The values are plotted on the c chart.

2. Calculate the centre line on the chart as:

total number of nonconformities

T=
total number of units inspected

3. Calculate the control limits as:
UCL, =S+3\¢

LCL, =¢c-3¢

4.3 Comparing Processes

The previous example of counting pinholes inrolls of aluminium referred
toacompany which buys aluminiumrolls in order to produce aluminium
cans. The number of pinholesis of concern to the company since portions
of aluminium which contain holes need to be removed before the
aluminium is cut into pieces to form cans. Since the ¢ chart showed the
process to be consistent, the value of 23 provides an estimate of the
average number of pinholes that would be expected to be found in 10 rolls
ofaluminium. Managers ofthe plant for which these data were collected
felt that an average of 23 per 10 rolls (or 2.3 per roll) was too high to
be accepted. The supplier of aluminium was contacted in order to
communicate the findings of the previous study and solicit the vendor’s
help for addressing the above issue.

The supplier of aluminium was surprised by the value for the average
number of pinholes reported by the manufacturer of cans. Inspection at
the aluminium producing plantrevealed aconsiderably lower number of
holes per roll. Yet, inspection techniques used at the two sites were
different in at least two respects. Different equipment was used by the
two groups to count pinholes. Also the number of pinholes at the
supplier’s plant were counted priorto rolling the aluminium while at the
user’s plant counting took place after unrolling. The observed differ-
ences suggested that pinholes might be formed during the rolling or
unrolling of aluminium.
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In orderto follow up this clue, the two groups proposed the following joint
study. The supplier of aluminium agreed to count the number of pinholes
in 10 rollsofaluminiumin each shipment. These 10rolls would be tagged.
As they were unwound by the can manufacturer, the number of pinholes
would again be counted. Table 4.2 presents - for 10 shipments of
aluminium - the counts of nonconformities observed by both the alu-
minium supplier and the manufacturer of cans.

There are several ways of examiningthe data presented in Table 4.2. The
question raised here is about whether consistent counts were being
generated by the two different groups producing the data. Combiningthe
counts shown in Table 4.2 and calculating centre line and control limits
yields the values 19.3,32.5and 6.1 for C, UCL. and LCL., respec-

tively.

Table 4.2 Study of pinhole counts performed by aluminium supplier
and can manufacturer

Number of pinholes Number of pinholes
Shipment found by supplier found by manufacturer
1 22 29
2 18 19
3 17 23
4 14 33
5 18 10
6 I 27
7 17 34
8 12 15
9 9 17
10 14 27

I

Total 152 234
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From the data itappears that the counts obtained by the supplier are lower
than those obtained by the manufacturer.

To identify the reason for the above discrepancy necessitates further
investigation for which only the broad directions are given here. It is
possible that the equipment used by the two groups is responsible for
widely differing counts. However, there is also the possibility that the
rolling of the aluminium by the supplier or certain phases of the shipping
process or the unrolling generate additional pinholes counted by the can
manufacturer. Inthe context of the investigation it is useful to scrutinize
the data generated by the supplier in order to reveal whether the process
supplying the aluminium is stable. In general, the supplier must be
interested inreducing the number of pinholes found by the can manufac-
turer. Therefore any information provided by the manufacturer should be
valuable to the supplier too.

4.4 The construction of u charts

Like ccharts also w charts are used to examine process performance when
the data are counts of occurrences. The distinguishing feature of u charts
is that the amount of material or the unit of time defining a subgroup may
vary among such groups. The following example is intended to illustrate
the construction and use of a u chart.

A chemical firm produces many of its products in batches. Atone site of
the company attention is drawn to the question of how well the temperature
profile for these batch processes is managed and whether improvements
in this management promise improvement in yield and throughput of the
processes. Soon it is realized by the group working on the problem that
the understanding of this characteristic of batch production is deficient in
many respects. Therefore initial efforts are directed at developing
pertinent operational definitions and gaining knowledge about how well
temperature profiles are maintained.

The graphin Figure 4.2 illustrates what is meant by atemperature profile.
Thehorizontal axis is the processing time in atank and refers to one stage
ofabatch process. Temperature is graphed on the vertical axis. From this
graph it can be seen that in this stage of the batch process the temperature
in the tank is raised from 75 degrees to 150 degrees in the first two hours,
maintained at 150 degrees for the following six hours, and then reduced
to 100 degrees over the final hour. This graph is referred to as temperature
profile. Itshould be noted that those parts of the profile that reflect the rise
in temperature during the initial hours and the drop during the final hour



82 Statistics for Process Control

Figure 4.2 Temperature profile with limits
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are more explicit than the description given in the batch protocol. The
protocol requires a gradual warming and drop in temperature, where
howeverthe rate of change isnot specified. In particular, the protocol does
notrequire temperature change to be linear. However, inorder to establish
how well the protocol is being followed, an explicit description of the way
in which temperature should change as well as a definition of what
constitutes a significant deviation from the protocol are required. Initially,
a judgement was solicited from chemists and technical staff as to which
deviation of temperature from the profile would be labelled as ‘tempera-
ture excursion’. Figure 4.2 also shows limits drawn around the profile
in order to define how close to this profile temperature should be held. In
an operational way a ‘temperature excursion’ is now defined as the
temperature exceeding one of these limits.
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Table 4.3 Number of excursions from temperature profile

Batch Number of
Subgroup type Hours excursions u
1 A 10 3 300
2 B 8 0 .000
3 C 12 4 333
4 A 10 7 .700
5 B 8 1 125
6 A 10 2 200
7 C 12 7 583
8 D 8 1 125
9 B 8 4 .500
10 C 12 1 .083
11 D 8 ] 125
12 A 10 9 .900
13 C 12 2 167
14 A 10 6 .600
15 B 8 2 250
16 D 8 3 375
17 C 12 0 .000
18 D 8 2 250
19 A 10 8 .800
20 C 12 3 250
Total 196 66

An initial study of temperature excursions was conducted by use of data
that had been collected over a three week period. These data are
summarized in Table 4.3. The second column in this table is labelled
batch type. Since the processing equipment under study is used for
producing different types of material, records have been kept of the type
of batch being produced. Different types of material have, of course,
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different temperature profiles which need to be maintained. The profiles
in turn show varying levels of temperature and are also of different
duration. Thethird columninTable 4.3 . represents the duration in hours
ofthe temperature profile. Finally, thenumber oftemperature excursions
throughout the recorded hours is given in the fourth column.

These counts of temperature excursions provide an example of counting
within varyingtime units of inspection. Batch type C coverstwelve hours
of processing time, whereas type B covers only eight hours. Thus, there
is a longer time period during which temperature excursions could occur
with batchtype C. The fifthcolumn in Table 4.3 islabelled 'u.' The values
inthis column are the average number of excursions per hour. The counts
of occurrences per inspection unit— in the present case one hour— are
plotted on the u chart as shown in Figure 4.3. Here instead of points the
letters corresponding to the type of batch have been plotted.

The centre line for the u chart is plotted at the level

total number of nonconformities 66 337

U= =
total number of unitsinspected 196

The upper and lower control limits of a u chart are a function of n, the
number of inspection units in a subgroup. In Table 4.3, the third column,
labelled 'hours,’ contains the values for n. The values of the upper and
lower control limits for the first subgroup corresponding to batch A are
given by:

o
(98]
W
~

UCL = 543Y% 20337430337 _ o547
Jn

=none

59 =

Control limits for other subgroups are given in Table 4.4, while Figure 4.3
reveals the twelfth point plotted to lie above the upper control limit for
batch A. This indicates that the ability to manage temperature profiles is
notuniform across batches and time. Itisimpossibleto decide onthe basis
of the available information whether the difference noted at the twelfth
pointisduetoaparticularevent which occurred at that time point or rather



Figure 4.3 Plot of temperature excursions (u chart)
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to the fact that temperature profiles for batches of type A are more
difficult to manage than for other batch types. Nor is it possible to solve
this problem without more specific information about the process, about
the equipment used to maintain temperature profiles, and about how the
equipment performs its role of increasing , decreasing or maintaining
temperature at a given level. The initial objective of the study of
temperature profiles was to find a connection between the ability to
manage the temperature profile, on the one hand, and yield and throughput
of the batch process, on the other hand. This objective could not be
achieved because of the observed inconsistencies in the management of
temperature profiles which were not fully understood.

To provide additional insight into current operations, the analysis of the
excursion data needs to be modified.

Tuble 4.4 Control limits for u chart on number of excursions from
temperature profile

Batch Hours
type {n) UCL LCL
A 10 8872 —
B 8 9522 —
C 12 .8392 —
D 8 9522 —
Table 4.5 Control limits for u chart on number of excursions from

temperature profile using distinct centre line values

Batch Hours

type {n) u UCL LCL
A 10 583 1.307 none
B 8 219 715 none
C 12 283 744 none
D 8 219 15 none




More on the Analysis of Attributes Data 87

Construction of u charts

1. For each subgroup, calculate u, the number of nonconformities
per inspection unit.

c
u=—
n

where ¢ is the number of nonconformities in the subgroup and n the
number of inspection units.

2. Plot the u 's on the control chart.

3. The centre line of the control chart is calculated by:

total number of nonconformities

q=
total number of units inspected

4, The upper and lower control limits for each plotted u will depend
on the number of inspection units used to calculate the value of u. The
formulas for the upper and lower control limits are given by:

Ju

Upper control limit: UCL, =u+3
i | Jn

_ U
Lower control limit: LCL,=u- 3T
n

In Figure 4.4 data are plotted by batch type instead of time order.
Moreover, centre lines and limits for this u chart are calculated separately
for each type. For example, batch type A was run for a total of 60 hours
and showed 35 temperature excursions over this period. Therefore the
centre line drawn for batch type A is at the value 0.583. The upper and
lower control limits for batch A are based on these values.



Figure 4.4 U chart with separate calculations by batch type
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Table 4.5 showsall centre lines and control limits for the four batch types
while Figure 4.4 actually contains four separate control charts which, for
reasons of convenience, are plotted on the same graph. In the present
example, however, there are insufficient data on any of the batches to
allow forreliable inferences from the four separate charts. Nevertheless,
the plot in Figure 4.4 indicates that the four batch types are consistent
within themselves as regards the number of temperature excursions
experienced. Further data on each batch type are needed to assess
consistency of the excursion rates for different batch types.

The conclusions reached so far are that the numbers of excursions are
inconsistent across time and that this inconsistency may be influenced by
batch type. Personnel at the chemical plant used this information to plan
further studies of the effect of temperature excursions on batch process-
ing. Animmediate goal of further analysis was to determine the nature of
the differences in excursion rates. Althoughall of the batch types showed
different temperature profiles, these profiles were similar in that an initial
step of increasing temperature was followed by maintaining the elevated
level and finally decreasing temperature. On the basis of this common
pattern temperature excursions were now recorded not only by batch type
but also by the stage of temperature control. In other words, for each
temperature profile, the number of temperature excursions was recorded
duringthe heating, the maintaining and the cooling stages. [t was thought
that this type of information might provide useful insights into the
observed inconsistencies. A better understanding of the reasons for
inconsistent performance by batch type was believed to help plant
personnel to reduce the number of temperature excursions.



CHAPTER 5

ANALYZING VARIABLES DATA

The measurement of characteristics of processes, goods and services is
the basis of qualitative or quantitative evaluation. The former type of
evaluation draws on counts of nonconforming items, errors, defects,
omissions etc. as was discussed in preceding chapters. By contrast, the
latter type usually produces variables data which indicate the degree to
which a process or service possesses a given characteristic. For example,
variables data canresult from the measurement of physical properties like
density, pressure, temperature, resistance, force, hardness and others.
Information of this nature and the methods to analyze it are treated in the
present chapter.

5.1 Different types of variation in process data

The data analysis outlined here is expected to contribute above all to
identifyingand evaluating sources of variation in measured results. These
sources usually affect the magnitude of short-term variation, the
average, and any change of both these attributes. Consequently, data
analysis should be directed toward measuring process variation and
process level or location as well as evaluating the predictability of process
outcomes.

An introductory discussion of the above issues can be based on a series
of simple examples. In Figure 5.1 data plots from five processes, named
A, B, C,Dand E are shown. In each case, the vertical scale corresponds
to measurement of a process input, a process parameter or a process
output with the measured values referring to properties like viscosity,
length, density, flow rate, temperature or thickness. The horizontal scale
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Figure 5.1  Process examples
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correspondsto time. Measurement is carried out over an extended period
and the results are plotted in time order. Although the given examples of
time patterns of measurement results are certainly not exhaustive, they
illustrate some of the issues central to data analysis. These issues have
to do with variation, averages, and predictability.

First, the data plot of measurement results for process A is examined
where it is assumed that the results relate to some process output. Like
all the other processes investigated here, process A does not produce
exactly the same result for each point on the time scale, but exhibits
variation. The magnitude and the nature of such variation are of prime
interest also here.

For process A, the range between the smallest and the largest measure-
ment values observed during any short time span appears to be about the
same throughout the whole period over which data have been collected.
Because of this uniformity in variation, the short-term variation of the
process is said to be stable or predictable.

Long-term variation which relates to changes in ‘process level’ or
average values of measurement is another phenomenon to be studied.
More precisely, such variation concerns the level around which individual
values tend to fluctuate. In the example presently studied process A
appears to operate at a nearly constant average value throughout the
period of data collection. Because of this apparent constancy in average
value also the process level is said to be predictable.

Inthe present context of analyzing variables data, a process is considered
as being in statistical control, if both its short-term variation and its level
are virtually constant. The discussion below will show how near
constancy of variation and level can be assessed.

Comparison of process A with the other processes studied here yields
additional insights. For process B short-term variation is predictable or
stable and the same holds for process C. Moreover, for processes B and
C, respectively, point-to-point fluctuation or short-term variation is of the
same order of magnitude as that of process A. However, results for
processes A, B and C are not equivalent in regard of process level.
Process B, in particular, does not operate at a constant average over the
time period represented by the entire horizontal scale, and the same
applies to measurement results of process C. More specifically, process
B shows a smooth decline in its average displaying apparently cyclical
behaviour over longer stretches of time. In contrast to such smoothness
in change, process C exhibits abrupt shifts in its average. The perfor-
mance of both processes is different from that of process A: While the
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latter stays at a constant average, B and C do not have predictable
averages.

Process D operates at a constant average over time. However, it differs
from A, B, and C in that it displays short-term variation of a changing
magnitude. Finally, process E shows atrend in its average level together
with increasing variation of individual measurement values.

To summarize, the above processes can be compared withrespectto their
being ‘in statistical control’ or not . Process A is said to be in control
with respect to variation and average, since over a short interval
fluctuations in individual values are of the same magnitude throughout
the period of observation and the average value remains constant over
that period. Processes B, C, D, and E which do not fulfil both of these
conditions simultaneously are said to be unpredictable or ‘out of control’.
Data from B and C, respectively, display consistent short-term fluctua-
tion of individual values on the one hand, but a changing average on the
other hand. By contrast, process D maintains a constant average
throughout, but shows inconsistent fluctuation around this average.
Finally, process E is unstable with respect to both variation of individual
values and the average. In summary, Figure 5.1 provides sufficient
information for determining the state of control of the processes
described there.

It is obvious that both changes over time in the average as well as
deviations of individual values around average values contribute to total
variation in process output. All the values plotted for process A have
been used to constructthe histogram which appears to the right of the time
plot in Figure 5.1. Similar histograms are shown for processes B, C, D
and E in the same figure. From there it can be seen that the values from
processes B, C, and D show a larger total variation than those in the
distribution derived from process A, although the fluctuations around the
average during any short period of time appear to be of about the same
magnitude for these four processes.

The obvious next step in the data analysis outlined here aims at learning
more about changes in short-term variation and process level. Again,
investigations have to be directed at potential sources of variation as well
as the reasons for observed changes in short-term variation or in the
average leve! of measured outcomes of a process.
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5.2 Identifying variation and learning about its sources

In the above example processes A through E exhibit different types of
variation over time, suggesting that different causes are behind different
patterns of variation in outcome. Data plots like those shown in the
previous section can aid the analysis by showing the way in which
process output changes over time. However, time isonly a proxy variable
which stands for numerous changes in processing circumstances that
potentially affect variation or the average of process output.

For example, component parts or raw material almost certainly change
overtime and so do their characteristics. Such changes, in turn, may give
rise to increased fluctuation around an average or alternatively cause this
average to shift. Another example of change over time is that in
management, engineering or operating personnel with the likely conse-
quence of changes in the ways of operating machines, assembling
components, or mixing materials. Furthermore, environmental variables
such as temperature and humidity are also likely to change with obvious
consequences for the variation in output characteristics. Finally, the
efficiency of operating process and laboratory equipment will not remain
constant over time and thus be crucial to output variation.

Process analysis will usually proceed in several steps. At the outset
information of the type displayed in Figure 5.1 will often not be available
so that the first step in the procedure is the search for data on process
performance. These data will serve to judge, whether or not the process
is in control. If the process under study is found to be out of control, the
immediate task is to get it under control. Once this has been achieved,
control has to be maintained in order to render the variation of crucial
outcomes predictable.

Subsequently comparisons can be drawn between current output and
required results. In other words, once control has been achieved and is
being maintained, the focus shifts towards process improvement. In an
attempt at defining such improvement it could be said that it results in
reduced variation and, if required, in a preferred average of the measured
outcome. From this it becomes clear that process evaluation and
improvement work are iterative activities that are expected to help
achievingthe desired consistent results.

5.3 Control charts for ranges and averages

Table 5.1 presents a set of data on the basis of which some standard
statistical techniques of process analysis can be demonstrated. Each
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number in the table represents measurement of a single characteristic on
acollection of items. The data are organized in subgroups of four readings
each. This implies that the four values were collected under the same
conditions, or at the same point in time, or from the same source. In
general, there should always be some systematic basis for subgroupingthe
data.

There are several characteristics which need to be derived for this data set.
Some of them will be required for each subgroup, while othersrefertoall
subgroups together. For each subgroup, the subgroup range will be
computed as a measure of how much the four values differ among
themselves. In addition the average value will be compiled for each
subgroup as an indication of its location. All ofthe subgroup ranges will
be used to provide information about the stability of short-term variation
and its magnitude. The subgroup averages, by contrast, provide informa-
tion on process centring and predictability.

5.3.1. Measure of location: the arithmetic average

In the following discussion ‘n’ represents the number of measurement
values in a subgroup where in the present example n=4. The symbol ‘k’
represents the number of subgroups with k=20 in the example of Table 5.1.

A subgroup value is represented by the symbol X, , whereiindicates
the position in a sequence of observations. The average value is givenby:

n
X.
X = i=1 !

n

where the symbol . (sigma) designates the sum of the values X,
taken from i=1 toi=n. Averages for all subgroups are shown in Table
5.1 together with the original data.

The arithmetic mean or average is the most frequently used measure of
location. It can be interpreted as the balance point, or centre of mass, for
a collection of measurement values. The average value need not itself
appear as a number in the subgroup. In subgroup 1, for example, no
observation has the value of 3527 which represents the subgroup
average. The average value also need not divide the subgroup into two
equal portions of values. Takingthe example of subgroup 3, itcanbe seen
that this group contains three values larger than the average and one that
is smaller. In some data sets comprising extreme measurement values, the
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Table 5.1 A practice data set

Qbservations
Subgroup X, X, X, X, R X
1 36.13 32.85 34.05 38.04 5.19 35.2675
2 38.68 34.95 3236 33.68 6.32 349175
3 34.34 35.69 3506 29.72 5.97 33.7025
4 33.37 31.73 33.45 35.58 3.85 33.5325
h] 3242 35.58 3435 35.79 3.37 34.5350
6 30.62 34.10 34.75 36.91 6.29 34.0950
7 31.76 33.29 37.41 31.50 5.91 33.4900
8 34.94 33.79 33.68 36.90 322 34.8275
9 34.66 32.02 36.34  33.50 432 34.1300
10 39.37 34.82 3347 31.30 8.07 34.7400
11 33.06 38.97 35.88  36.07 5.91 35.9950
12 37.42 36.39 3468 33.52 3.90 35.5025
13 37.18 34.43 36.34  33.88 3.30 35.4575
14 32.19 34.90 36.34 33.41 4.15 342100
15 33.36 34.36 33.38 33.68 1.00 33.6950
16 33.22 31.18 32.95 32.51 2.04 32.4650
17 34.22 33.01 36.63 35.10 3.62 34.7400
18 32.68 33.03 38.15 35.47 5.47 34.8325
19 31.49 35.84 31.00 3547 4.34 33.4500
20 34.08 28.97 3476  35.53 6.56 33.3350
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average value need not be a faithful representation of other values in the
data set.

5.3.2. Measure of subgroup variation: the range

Numerous methods have been devised to measure the variation in a set
of numbers. For the purposes addressed in this text only one of them, the
subgroup range, will be used to characterize variation within a subgroup.
The subgroup range, indicated by the symbol ‘R’ is defined as the
difference between the largest (maximum) and the smallest (minimum)
value. The range for subgroup 1, for example, is:

R =3804-3285=519

The range is the simplest and most direct method for measuring vaniation
in a subgroup of size n with its value depending only on the two extreme
observations. The values of the range for all the subgroups of the above
example are reported in Table 5.1.

5.4 The construction of range and average charts

The average range of the entire data set can be calculated from the
ranges for all subgroups as:

k

— ZR" 9330
R:%:—Z'T=4.66554.67

Lower and upper control limits for the range are found by applying the
following formulae:

LCL, =D,Rand UCL, =D,R

where D, and D, are constants whose values depend on the number of
observations within a subgroup. The values of D, and D, for different
numbers of observations are given in Table 5.2. Forthe example of Table
5.1 (with n=4) D, assumes the value of 2.282 and hence the upper control
limit for the range is:

UCL, =2.282x4.665=10.646 = 10.65
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Table 5.2 Factors for use with average and range charts

Statistics for Process Control

Number of Factor for Factors for Factor for

observations X chart range charts estimating

in subgroups LCL UCL o
n A, D, D, d,
2 1.880 3.267 1.128
3 1.023 2.574 1.693
4 0.729 2.282 2.059
5 0.577 2.114 2.326
6 0.483 2.004 2.534
7 0.419 0.076 1.924 2.704
8 0373 0.136 1.864 2.847
9 0.337 0.184 1.816 2.970
10 0.308 0.223 1.777 3.078
11 0.285 0256 1.744 3.173
12 0.266 0.284 1.716 3.258
13 0.249 0.308 1.692 3.336
14 0.235 0329 1.671 3.407
15 0.223 0.348 1.652 3.472
16 0.212 0.364 1.636 3.532
17 0.203 0379 1.621 3.588
18 0.194 0.392 1.608 3.640
19 0.187 0.404 1.596 3.689
20 0.180 0414 1.586 3.735
21 0.173 0.425 1.575 3.778
22 0.167 0434  1.566 3.819
23 0.162 0.443 1.557 3.858
24 0.157 0.452  1.548 3.895
25 0.153 0459  1.541 3.931
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For subgroups of size six or less no lower limit for ranges can be
calculated, since the value of D, is not defined. Consequently, there exists
no lower control limit for the range in the present example. (Annex A
provides more information on constants like those above.)

When it comes to use the above results on the range, it has to be recalled
that control charts are meant to provide information on changes in the
process. As was indicated in Section 2.6, such changes are usually
identified

(a) by the magnitude of variation in the points (i.e., if all points lie
within control limits, the process is judged to have remained stable)

or

(b)  byanynon-random pattern in the points which is taken to indicate
the presence of special or unusual events. In the present context a
non-random pattern can be defined as

i) arunofsevenormoreconsecutive points lying on the same side
of the average line for the chart,

or

ii) a trend of seven consecutive increases or decreases.

According to the above conventions there isno indication of the presence
of special causes in the range chart shown in Figure 5.2: All values of
R lie below the upper control limit. There is also no pattern in the data
points which would suggest the presence of systematic influences. The
conclusion therefore is that the variation in the values of R is due to
common causes.

Evaluation of the average chart alsoshowninFigure 5.2 dependsto some
extent on the results obtained for the range chart. If there was evidence
ofthe presence of special causes of variation, it would not be appropriate
to place control limits on the average chart, although average values
could be plotted to identify systematic patterns. Nevertheless, it is only
after the range has been stabilized, that a useful analysis of the process
average can be conducted.

The present example allows for an examination of the limits for the
variation that the subgroup average values may display. Asinthecase of
other control charts the average chart too requires drawing of acentre line
and of control limits. The position of the centre line is determined by the
average of the subgroup averages. Formulae forthis average of averages



100

Figure 5.2
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as well as for upper and lower control limits are given below, along with
the numerical results for the present example.

k —
X.
~ 68692

]

=34.35

k
UCLy, = X +A,R =3435+0.729 x 467 = 37.75

LCL, = X~ A,R = 3435-0729 x 4.67 = 3095

In the evaluation of the average chart the same rules apply as in the case
oftherange chart. Inthe presentexample all subgroup averages lie within
control limits so that there is no evidence of special causes of deviation.
If the pattern of data points is examined in addition, no evidence is found
for any special causes of changes in average values.

It appears to be useful to examine the formulae for upper and lower
control limits for the average chart from a process perspective. As the
formulae indicate, the limits on average charts depend on the average
value of the range. This points to the effect on limits of common-cause
variation within subgroups. And the process average is judged to be in
control or not according to common-cause variation within subgroups.
This variation in turn is subject to two major influences: the sampling
strategy for subgroups and the measurement process from which data
result. Thus, if either the measurement process or the sampling strategy
were to change, the basis for judging the stability of the process average
is likely to change too.

Inthe example presently analyzed the process is stable and predictable in
terms of both variation and average. It has to be noted, however, that
stability or ‘control’ is a purely operational concept which says nothing
about the utility of process outcomes. A process being in control means
simply that the effects of changes in material, equipment or methods are
consistent over time. Yet a controlled process is not necessarily a
satisfactory process.
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5.5 Summaries of process performance

Once a process has been judged as stable with respect to both variation
and average, estimates of process parameters can be obtained. In
addition, a histogram can be constructed on the basis of individual
measurement values which provide additional insight into process per-
formance. Average, standard deviation and distribution of process
outcomes not only characterize the way in which a process is operated but
also provide descriptors by which actual outcomes can be compared to
what is required. The information contained in these three descriptors
will be illustrated by a further examination of the previous data set.

5.5.1 The interpretation of histograms

The 80 individual measurement values of the data set presented in Table
5.1 were used to construct the histogram of Figure 5.3 which illustrates
major characteristics of the process. The firstone of these characteristics
is the shape of the distribution of measurement values. Two terms that
are used to describe the shape of the histogram in Figure 5.3 are ‘mound-
shaped’ or ‘bell-shaped.” These terms refer to the fact that most of the
observations appear to cluster around a centre value and that observa-
tions seem to be grouped about that centre in a symmetric manner. Such
a distribution of measurement values is fairly close to the model of the
normal distribution. Thus, the data set of Table 5.1 might be termed as
being ‘normally distributed.’

The four histograms in Figure 5.4 illustrate some other shapes of
distributions which might occur in practice. Histogram A appears to
have a large number of values either right above the lower specification
limit or right below the upper specification limit. A possible reason for
the observed distribution mightbe that material which was near the upper
or the lower limit was reworked to insure it fell within specifications.
Another possible explanation is that values that were close to the upper
or lower specification limits were remeasured until a reading was
obtained which fell within specifications.

Histogram B is chopped off at the upper and lower specification limits.
As with histogram A an explanation for this shape can be expected from
acloser examination of the process generating the results. One interpre-
tation of the results is that the material being measured has been sorted
prior tothe point at which measurement was carried out. Material which
fell above or below the specification limits, respectively, was then
removed. Ifthis were correct, the process would be expected to have more
variation than can be tolerated. Histogram C shows a pattern similar to
that of B, but with a more dramatic drop at the lower specification limit.
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Figure 5.3  Histogram of values from Table 5.1
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Again, the suspicion is that there is more variation in the process than can
betolerated. Furthermore, one might suspect that the material measured
priorto sorting would have anormal distribution with the measured values
clustering around a central value. Histogram C then suggests that this
centre does not fall in the middle between specification limits.

Finally, histogram D shows two distinct peaks. A number of reasons for
such a distribution could be given, but there is need for further investiga-
tion. One hypothesis is that there are two separate processes generating
the observed data. For example, if the measured output came from two
machines, an obvious possibility would be that each machine produced
material centred at different values.

One ofthe uses of a histogram isto provide insight into process operation;
another one is the description of measurable output produced by the
process. The latter use has as one of its aims predictions about process
output, which in turn are dependent on process stability. The histograms
of Figure 5.4 provide an illustration of this point in the following way. The
histograms for processes B and C look similar in that both can be
described as mound-shaped. However, because both histograms repre-
sent processes which are inconsistent over time, neither of the two
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Figure 5.4
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histograms can be relied on to describe process outcomes. The histo-
grams only capture the shape of process outcomes over the period
investigated. Inconsistencies in the processes mean that for different time
periods the histograms will likely show different descriptions of process
outcomes.

5.5.2. Estimating process variation

The histogram of Figure 5.3 indicates variation in measurement values as
another important property of the process. Closer scrutiny of the
histogram shows that its 80 values are spread over a range from about 28
to 40. The standard deviation is a numerical measure which provides
information on process variation. Since the process which generated the
data in Table 5.1 was seen to be stable, the standard deviation derived
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from these numbers also indicates what the standard deviation for other
process values would be. It is denoted by s and given as

where in the present example X isthe average of the 80 observations and
n equals 80.

Examining the formula for the standard deviation helps to understand in
which way it captures information about process variation. The value for
sisbased on squared deviations from the average. The farther away from
the average a data value lies, the larger will be its contribution to the value
of the standard deviation.

In the above example s is based on only 80 measurement values. One
could imagine that a very large number of measurement values were
available and the standard deviation was calculated on the basis of these
numbers. (Thistaskisclearly aconceptual one and is discussed here only
to give meaning to the term process standard deviation.) The number
which would result from this calculation is referred to by the Greek letter
o . Itistaken to describe the variation over the whole process, and is
consequently referred to as the process standard deviation. The calcula-
tion of s on the basis of only 80 measurement values can be considered as
one way to estimate ¢ . Alternatively, an estimate of the process
standard deviation can be derived from the average range which was

calculated previously as R = 4.665. The formula for estimating &
in this way and the resulting value in the present example are:

o =R _2665 55
d, 2059
where the value for d, is taken from Table 5.2. The symbol & indicates
the standard deviation while the symbol ‘** indicates that the reported
numerical value is an estimate of the process standard deviation. Because
the range chart did not contain any indication of abnormal performance

and the average chart demonstrated a stable process average, 8. can be

taken as a reliable estimate of the process standard deviation.
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The standard deviation of the process is a useful descriptor of process
variation. It provides a measure by which the variation observed can be
compared to what is required. Such acomparison is often made by using
the standard deviation to estimate the range of measurement values which
may result from the process. For processes which follow a normal
distribution, almost all measurement values should fall within a range of
six standard deviations. Forthe data in Table 5.1 the standard deviation
of the process was estimated to be 2.27. Thus, an estimate of the range
over which measurement values can be expected to be distributed is
6x2.27=13.62. Thehistogram in Figure 5.3 shows thatthe measurement
values fall in a range from 28 to 40. This spread of 40 - 28 = 12 is
comparable to the value estimated by six standard deviations.

5.5.3. Estimating the process average

The histograms of Figures 5.3 and 5.4 were described as having distribu-
tions of measurement values which clustered around a central value. The
process average yields information about this central value. When signs
of abnormal process performance are absent from both the range and the
average charts, the average of subgroup averages (which isthe level of the
centre line inthe average chart) can be taken as an estimate of the central
value of the process. In the case of the data in Table 5.1 the value for the
process average is 34.35.

5.5.4 Processcapability

In its most general form, process capability refers to delivery by the
process of what isrequired. Inanarrower sense process capability refers
to whether the measured outcomes of a process exhibit sufficiently small
variation to fall within some set specification limits. If, for example,
specifications are such that the measured dimension ofthe data from Table
5.1 should fall between 30 and 40, then the engineering tolerance (ET)
for the measurement is:

ET=40-30=10

By contrast, the natural tolerance (NT) for the process refers tothe range
of measurement values over which the process will produce material.

Typically, the natural tolerance for the process is estimated by:

NT =60
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Thus, the natural tolerance for the process described by the data in Table
5.11s6x2.27=13.62. A comparison of NT with ET shows whether the
process spread is small enough so that specifications could be met if the
process were properly centred. In the present example NT is larger than
ET so that the process has to be termed ‘not capable’.

Various capability indices have been defined to quantify the ability of a

process to meet specifications. Two ofthe more common indices are Cp

and C, .C, is defined by the ratio:

ET
C,=—
NT
If the value of C_ is greater than or equal to one, the process is said to be

capable. Itis frequently stated that the preferred range of values for this
index is 1.33 or more.

A drawback ofthe use of Cp toreport on process capability is that the index
does not take into account the process average. A process could have a
large Cp ratio and yet be producing a lot of product outside specifications
ifitisnottargeted. The Cpk index on the other hand represents an attempt
to account not only for the impact of variation but also for that of the
average on the capability of the process. Cpk is defined to be the smaller
one of the numbers CpU and Cpl,’ which are calculated according to the
formulae:

_USL-X
3o

_X-LSL
3o

Cou C

pL

Here USL refers to the upper specification limit and LSL to the lower
specification limit. The dataof Table 5.1 yield the following estimates of
process characteristics:

X =3435
o =227

NT =13.62
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The upper and lower specification limits for the process are:

USL =40
LSL =30

And from the above information, Cp is calculated as:

C,=—2 _073
1362

Since the value of Cp is less than one, the process is judged as being not
capable. The number 0.73 could be given the interpretation that 73
percent of NT is ‘used’ by ET.

[n the present example CpU and CpL attain the values:

403435
W 3%227

3435-130
=083 C,=—""""" 064
Pl 3x227

Thus, the smaller of these two numbers yields 0.64 as the value for Cpk.
The fact that C . hasa value even smaller than that for C_canbeexplained
by comparingthe process average to the centre of the specification limits,
or the nominal value. The nominal value in this instance is 35. The
process is not centred on this nominal value, but is targeted somewhat
below 35 at a process average of 34.33.

5.5.5 The use of capability indices: assumptions and limitations

The previous section illustrated the calculation of two capability indices
assuming thatthe process under study was operating in statistical control.
In general, one should be sceptical about reported values of Cp andC_,
as these indices may be reported without any prior testing of the stability
of the process. Often Cp or Cpk are determined by a one-time application
of a control chart or, even worse, by collecting a number of consecutive
readings from a process. If this were the case, then the derived values for

X and o could notbe relied on to summarize process performance.
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The calculation of either of the two capability indices also assumes that
the distribution of measurement values closely resembles a normal
distribution. To verify this assumption a histogram of individual results
needs to be constructed in order to identify the shape of the distribution of
measurementvalues. Furthermore it would be highly questionable to state
as arequirement that CP or CPk be reported on all measured outcomes of
a process. Many measured values cannot reasonably be expected to be
part of a normal distribution.

Capability indices provide summary measures of how current process
performance compares to certain stated specifications. However, their
use as an aid to directing improvements efforts is limited. Forexample,
when Cp or Cpk are reported as summary results of a process, the focus of
study is often on the results of the process, rather than on the character-
istics which need to be studied to improve the results. The sources of
variation in outcomes need to be studied in addition.

Unfortunately, it is common practice in many organizations to state goals
for Cp or Cpk for many, if not all, processes. In light of the above remarks
on underlying assumptions and limitations of the use of the indices, such
practices very often do not provide useful directions to improve process
behaviour.

5.6 On the effective use of range and average charts

The major purposes for the use of the above two types of control charts
may be briefly described as:

1) The charts serve to maintain process control.

2)  The charts are used to judge the effect of deliberate process
changes. The plotted information provides data for comparing
process outcomes before and after a process change. It also
provides evidence asto the magnitude, direction and stability of the
effects of process change.

3)  Afteraprocesschangehasbeen implemented and verified asto its
effect, the charts provide ongoing confirmation that the change is
maintained. In this respect, the charts help to maintain a gain
achieved by a previous process change. Over a period of time this
purpose merges into that of maintaining control.

4)  The charts represent data in a way which allows operators,
engineers, and managers to discover and evaluate the effect of
various sources of variation.
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Obviously, a major purpose of the discussed analysis is to maintain
control over a process as defined previously. In particular applications,
baseline data are collected, out-of-control conditions identified, and
efforts madeto eliminate these causes. In practice, there is often confusion
regarding the control purpose. Engineers or operators may see a process
go out of control, make an offsetting change in one or more process
parameters and mistakenly consider ‘control’ as having been achieved.
This is awide-spread mistake made in both process control and improve-
ment work. Such practices in fact build a culture that works against
process control and improvement. Although it may be necessary to
sometimes make offsetting changes, it is nevertheless necessary that the
root causes of out-of-control conditions be identified, verified and even-
tually eliminated.

Asimprovement work proceeds, the process will be made predictable, i.e.,
it will be brought into a state of control. Outcomes will be monitored by
means of range and average charts indicating progress in relation to
variation and average. As the process becomes stable or predictable,
information about standard deviation, average, and the distributional
shape will gain credibility.

Predictability, or control, is a permanent concern and must constantly be
addressed for the simple reason that processes do not naturally stay in
control. Data that are collected and plotted continuously support good
control: the plotted points indicate where the process is or where it might
be headed. They also reveal factors which have to be eliminated in order
to reestablish process control.

Successful implementation of these practices requires considerable disci-
pline and effort. A prerequisite of success in this respect is for managers
to communicate the intention to run the respective processes in control.
Process engineers, line supervisors and operators must know how to
measure, sample and evaluate process results and must be aware of the
fact thatthese duties are expected of them. Extensive processknowledge
must be builtup, recurrently verified and deployed. Forexample, pastand
current behaviour of key input variables and work practices must be
known in detail and so must the effects of variation in these variables on
process outcomes.

It is often assumed that charts on outcome variables can serve as part of
anengineering ‘feedback’ mechanism. Whetherornotthis view iscorrect
depends very much on the process. In this connection it is often thought
that the purpose of charting is to represent current conditions and could
therefore serve the aforementioned engineering purpose. But the use of



Analyzing Variables Data 111

results in this way is often disappointing. The major reason is that the
sampling and measurement methods underlying the data for these charts
are usually not geared to serve an engineering feedback control system.
For example, the statistical limits previously derived are not related to
process dynamics which determine the design of a successful engineering
feedback mechanism.

For purposes of control, the dominant issue is whether the essential causal
factors are known and managed correctly and consistently. Understand-
ingthe management of common causes of variation provides the basis for
process improvement. Itis withthis intention that the charts are best used
for ‘control.’ Process management without reference to common causes
provides foronly reactive behaviour and cannot guarantee control. As was
stated previously, the discussed charts provide indicators not only of
control but also of the effectiveness of process change. Once a process
is in control, process change may be recommended to affect common-
cause sources of variation. Here the intention may be toreduce short-term
variation, move the average to a more favourable value or prevent long-
term shifts in averages. In any event the specific nature of the intended
effecthasto bedefined. Processchangesare normally rooted in machine
changes, revised tolerances for machine parameters, changes in material,
its characteristics or specifications, or in revised work methods or
protocols.

Charts onrange and average will characterize the stable process. Baseline
data are then used for judging the effect of process changes. A first set
of range and average charts is based on data that represent the process as
itis priorto aspecific process change. After change has been made, data
are collected and plotted again with the measurement and sampling
strategy remaining unchanged. The ‘new’ data are usually plotted
directly onto the first set of range and average charts to facilitate
comparison. In such an exercise several outcomes are possible:

a) The change has had no effect on the process. Evidence for this
conclusion stems from the observation that charts are very similar.
In other words, the new data are consistent with the old ones and
the charts do not reveal signs of sustained process change.

b)  The change has had the anticipated effect on either short-term
variation or on the average. A decrease in short-term (within-
subgroup) variation is revealed by a decline in the average range.
Likewise, a shift in the average value to a new, preferred level is
revealed by the respective average charts.
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¢)  Thechange hashadan undesirable effect on the process. It may be
thatthe change has thrown the process ‘out of control’. In this case,
itmay be thatan improved process would result if the new process
could be brought into control. The change may have resulted in
processdeterioration in other respects: for example, the short-term
variation may have become larger or the average shifted toa value
not anticipated or wanted.

5.7 The special case of subgroup size 1

There are numerous processes for which it is not feasible to design
subgroups of two or more measurement values. Typical examples are
processes where measurement is expensive or requires long periods of
time to obtain. Other examples are found in processes where measure-
mentis possible only hourly, daily, weekly oreven less frequently. In these
situations — which may obtain in manufacturing, service or administra-
tive processes — it may not be possible to form homogeneous subgroups
of measurement values. In manufacturing, subgrouping may not be
possible when large homogeneous batches of material are produced or
when records on process parameters such as temperature, pressure or
amperage are to be studied. Administrative examples include the study
of average overtime hours per full-time employee, daily utilization rates
of equipment or other resources, accounting data on shipments and orders,
monthly numbers of items produced per direct labour hour, and monthly
deviations of actual sales from forecasts. In each of these examples, only
oneobservation isavailabletorepresentagiven setof circumstances. When
there is only one measurement value available for any one set of
conditions, the notion of subgroup range becomes meaningless. If short-
term variation is to be utilized to judge long-term process movements, a
modification of the method outlined previously is needed. Short-term
variation is now calculated as the average of the absolute values of the
deviations between two consecutive values. In turn, this average devia-
tion is used to calculate limits for the chart of individual values. The
following example illustrates this procedure.

5.7.1 The construction of moving -range and individuals charts

The data for the following example are taken from a batch process
producing a sterilized, concentrated baby formula. While there are
several important product characteristics, only one of them, the Brookfield
viscosity, is reported here. Specifications on this property are 900+100
and data from 20 consecutive batches are shown in Table 5.3.
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Table 5.3 Viscosity readings

Batch Viscosity Moving range
1 805 -
2 976 171
3 901 75
4 929 28
5 927 2
6 942 15
7 904 38
8 804 100
9 874 70
10 944 70
11 850 94
12 94] 91
13 992 51
14 795 197
15 952 157
16 832 120
17 809 23
18 878 69
19 936 58
20 888 49

The sampling scheme for the data of this table requiresthat one specimen
(sample) be taken from a randomly selected position in the completed
batch. Thus, each reported number represents a finished batch. These
individual numbers, one per batch, constitute the values that will be
plotted on the 'individuals’ chart for which an average or centre line and
control limits have to be determined. The average of individual values is
computed in the usual way. The control limits for the chart for individual
values are computed from information on the chart for moving ranges
discussed in the following paragraph.

The moving range (MR) is defined as the absolute difference between
consecutive values. Thus, the first moving range recorded in Table 5.3 is
the difference between the first two values, i.e.:

MR = 976 — 805 = 17]
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Oncemovingranges have been calculated for the baseline data set, these
values are plotted on a so-called moving range chart. (It should be
noted that there will be one moving-range value less than there are
individual values in the data set). The average value for the moving
range in the present example is given by:

W:ZMR/n:%ﬂm

The upper control limit for the chart formoving ranges is then computed
in the same way as for subgroups of size two, yielding an upper control
limit of

UCL,,, = D,MR =3267x77.7=254.0

Ifall values onthe movingrange chart lie below the upper control limit,
this is again an indication that short-term variation is stable over time.
Since the average moving range reflects the size of short-term variation,
thisaverage can be used to judge the stability of individual readings too.
Here the quantity

MR
d,

describesthe standard deviation expected forindividual readings, ifthe
short-term variation captures all the variation affecting such readings.
The limits on the individuals chart reflect this short-term component of
variation. If additional sources of variation become effective over the
long term, this additional variation should emerge as an out-of-control
signal on the chart of individual values. The control limits for the
individuals chart are computed as:

UCL, = X+3(MR/d,)
LCL, =X -3(MR/d,)
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where the control chart constant d, is taken from Table 5.2. Like in the
case of the moving range chart, also the d,-value is taken for subgroup size
two. In the present example , the centre line, the upper and the lower
control limits for individual readings on viscosity are given by:

17879

X = _ 894.0

UCL, = 894.0+3x L =1100.7
1128

LCL, =894.0-3x -1 — 6872
1128

The stability of variation in individual viscosity readings can be judged by
use of the above values.

5.7.2 Effective use of moving range and individuals charts

A prerequisite for the appropriate use of any statistical chart in process
management is a good understanding of the sampling strategy. For the
present process this strategy was to select one sample from each com-
pleted batch so that one value per batch was recorded. Hence each
individual observation represents one batch.

The sources of within-batch variation and also of batch-to-batch variation
are process based. It is likely that variation originates from two general
sets of sources, namely those which tend to make one batch differ from
another and those leading to non-homogeneous batches. An example of
the first type of source can be found in the amounts and densities of raw
material used to manufacture a batch; these might vary from batch to
batch in ways that are not monitored and will tend to result in differences
between batches. There are other practices and methods which are
equipment-and personnel-related and could be added to the list of sources
of variation which make one batch different from another. Once a
particular batch is created, there are also process sources that result in
batches that are not homogeneous but display within-batch variability.
The random sample selected from a batch and measurement conducted on
that specimen ensure that variation in the individual values potentially
reflects all these causes. And the moving range displays this variation.
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The average value of the moving range indicates the average difference
among consecutive batches. The upper control limit for the moving range
chart provides information on the magnitude by which consecutive
batches could differ from each other. Points above the uppercontrol limit
forthe moving-range chart reveal abnormally large shifts or changes from
one batch to the immediately following batch. It is recommended not to
apply the usual runs or patterns tests to the moving-range chart as a way
of testing for stability of short-term variation. Moving ranges are
calculated from consecutive observations and so each one of them shares
an observation with another moving range. This characteristic prevents
values from being independent, while independence is a mathematical
prerequisite for the appropriate use of the runs or patterns tests. Never-
theless, a possible dependence between values of the moving range does
not significantly affect estimates of process variation based upon the
average for the moving range.



CHAPTER 6

SUBGROUPING AND
COMPONENTS OF VARIANCE

When improvement of systems and processes is attempted, the value of
statistical analysis depends on the rationale and purpose of the analysis,
on its concordance with the objectives of managers and other actors
involved and onthetimeliness and relevance of the underlyingdata. In this
context the sampling or subgrouping strategy of data collection has a
significantroletoplay. The collection and statistical analysis of data will
contribute to process improvement only if it helps to identify causes of
unsatisfactory process performance. In general thisis possible only if this
intention already guides the collection of data. As a consequence, the
sampling or subgrouping strategy is to be seen as a major determinant of
success or failure of the statistical analysis.

An example of a poor sampling strategy would be one that suggested to
collect data at only one point in time and thereby prevented the study of
factors that are not at work continually. Likewise, failing to give due
consideration to sources of variation included in a cause-and-effect
diagram would not be appropriate. Typically, the routine collection of
data at inspection stations suffers from such shortcomings. As data are
mainly collected for the purpose of judging process output, they will often
not provide useful information on the causal factors behind variation in
process outcomes.

In process study the major objective is to acquire knowledge that is
sufficient for operating a process in a consistent fashion. This goal
demands that sources of variation are identified and their effects under-
stood. The next objective to be pursued is to improve the process
according to certain criteria. This may take the form of reducing output
variation or improving the capability to target the process. The present
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chapter deals with the role that subgrouping and analysis techniques can
play in this context.

6.1 Components of total variation

Whether process variation can be reduced, largely depends on an under-
standing of the factors that contribute to it. Such understanding above all
concerns the nature and the significance of the sources of total variation.
To give an example: In the production of a porous membrane, a charac-
teristic of critical interest is the variation in the pore size of the membrane.
While in all likelihood the material used to produce the membrane is the
cause for much of the observed variation, its nature too needs to be
understood if variation is to be reduced. Usually, the material used to
produce membranes isreceived in large containers. Isthe variationin pore
size largely dueto differences between containers, or is its source a factor
that operates within each container? To answer this question information
has to be obtained on the relative contributions of within-container and
between-container sources of variation.

Another example is the total variation which is observed in the fill weights
of containers coming off a filling operation. The filling operation uses
three filling machines each of which has four heads. In assessing the
magnitude of variation in fill weights, it may be discovered that variation
is too large. Success in decreasing the variation will be predicated upon
knowledge of therelative contributions of differencesin filling heads and
of differences in filling machines to the total variation observed.

A third example is provided by the production of material in a batch
process. Here the variation in particle size of the material produced is of
critical importance. lIs there a large variation in particle size observed
within each batch? Orisitthe case that within a batch particle size is fairly
uniform, whereas successive batches differ much among each other with
the result of a large variation across batches? Collecting data to answer
these questions will require a sampling strategy that helps to assess the
relative contributions of within-batch and between-batch sources of
variation to total variation.

Thefollowing section discusses a technique for collecting and analyzing
datathat helps to understand the contributions of components of variation
to total variation. Although the example used to illustrate the study of
components of variation comes from a batch process, the application of
the technique is not confined to batch processes.
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6.2 Study of a batch process

The assumption underlying the following example is that ateam has been
charged with the study of the variation of a given batch process. This team
has constructed a process flow chart and identified the major quality
characteristics of the product. One of the factors suspected to affect final
product quality is viscosity of the batch at an intermediate stage of
processing. The range of measurement values of viscosity has been
specified to extend between 83 and 85. At the time when work on the
process began, little was known about how well viscosity was being
maintained. Therefore, the team decided to take one sample from each
batch in order to assess both variation and average of the process. Initial
data for the 20 batches studied are given in Table 6.1.

An analysis of range and average (not reproduced here) supports the
hypothesis that viscosity is consistent. However, an estimate of the
standard deviation of viscosity reveals an unacceptably high level of
variation:

~ MR 061

o, =——=054
d, 1128

The natural tolerance, NT, of the process is found to be:

NT=6x0.54 =324

Since the engineeringtolerance, ET, isonly 2, the variation in the process
is much wider than the stated requirements for viscosity. Because of the
large variation in viscosity readings the team decided to try to identify its
sources.

6.2.1 Sources of total variation in a batch process

Efforts to reduce the variation in viscosity readings need to be based on
athorough understanding of the sources affecting total variation. In this
contexttwo basic scenarios of the batch process can be considered. A first
scenario is one in which there is little difference in viscosity values
measured for three different batches: Each one of the batches has about
the same range and centres at about the same average. Therefore, total
variation in the combined output from the three batches can be explained
in terms of the large variation within batches. For a second scenario a
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Tables 6.1

Statistics for Process Control

Viscosity measurements for a batch process

Batch
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X

84.6
84.6
84.1
83.7
84.0
84.1
84.1
83.1
83.0
84.3
83.9
83.7
83.9
84.4
82.6
84.2
83.7
84.8
83.8
843

MR

0.5
04
03
0.1

1.0
0.1
1.3
0.4
0.2
0.2
0.5
1.8
1.6
0.5
1.1
1.0
0.5
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smaller level of within-batch variation for each one of three batches can
be assumed. Atthesame timethe assumption is made thatthere are larger
differences between the three batches. While the variation in combined
output in scenario two is similar to that for scenario one, the explanation
differs: The source of large total variation in combined output of scenario
two has to be sought in the difference between batches.

In general, it is important to understand how the sources of variation, both
within and between batches, contribute to total variation. Different causal
structures are suspected to underlie within-batch variation as opposed to
between-batch variation. For example, mixing practices of the batch
process might be the cause of variation observed within a batch, whereas
they would have little effect on differences observed for the level of
viscosity from one batch to the next. By contrast, a large variation in the
amount of a viscous ingredient added in the initial stage of production
might result in large differences in viscosity from one batch to the next
without impacting within-batch variation. Therefore, if for a given
process scenario one can be taken to represent observations correctly,
attention should be directed towards sources of the large within-batch
variation. An analogous conclusion holds for scenario two.

Any attempt to analyze the effects of within-batch and between-batch
sources of variationrequires data collection to follow a suitable subgrouping
strategy. In order to understand within-batch variation, multiple readings
of viscosity from each one of several successive batches will be needed.
On the other hand, assessing differences from one batch to another
requires readings from many different batches.

6.2.2 Assessing stability and magnitude of within-batch variation

The team in the present example decided to collect five samples from
randomly selected locations in each of 20 successive batches. Onthe basis
of these data, stability and magnitude of the within-batch component of
variation isto be assessed. The averages and ranges of the five measured
values fromeach batch arerecorded in Table 6.2. Before analyzing these
data, potential sources of variation should be considered. Since each of
the five values in a subgroup came from the same batch of material, the
magnitude of the range reflects those sources of variation active within a
batch. Of course, the amount of variation within a batch may not be
consistent between two batches. Usually a range chart is drawn to
determine whether the within-batch component of variation is stable
across the 20 batches included in the study.
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Table 6.2 Averages and ranges of five viscosity readings selected from
each of 20 batches

Batch Average Range
1 84.04 0.4
2 83.96 0.4
3 83.52 0.7
4 84.70 0.8
5 83.40 0.8
6 84.22 1.2
7 84.36 0.7
8 83.58 13
9 84.00 04
10 84.58 0.9
11 84.30 0.8
12 83.18 0.5
13 83.94 0.8
14 84.82 1.1
15 83.82 0.8
16 84.14 0.5
17 83.64 0.9
18 83.68 1.0
19 83.90 0.5

[\
o

83.24 1.0
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In the present example such a chart (not shown here) provides evidence
for consistency of within-batch variation. The magnitude ofthis variation
is estimated in terms of the standard deviation given by:

A A

O within = Ow =

= _9172 =0.333
326

B | =
N

For obviousreasons, the within-batch standard deviation does not capture
all of the variation in the process.

6.2.3 Assessingstability and magnitude of between-batch variation

The data presented in Table 6.2 can also be used to identify between- batch
sources of variation. This can be achieved by analyzing batch averages.
Since each average is an estimate of the mean level of a batch, the
differences between batch levels will be reflected in the variation observed
inthe averages. Thus, an analysis of batch averages will shed light on the
between-batch component of variation.

As a way of evaluating the stability of the between-batch component of
variation, moving ranges of batch averages have been calculated. Table
6.3 contains these moving ranges together with the batch averages that
already appeared in Table 6.2. The moving ranges reflect the short-term
variation which is observed between batches. Of course, short-term
batch-to-batch variation is not the only type of variation captured by the
movingranges. They also reflect within-batch components of variation.

Figure 6.1 shows the completed moving-range chart. The calculations
underlying this chart are as follows:

MR = 0.606

UCL,,; = D,MR = 3267 x 0.606 = 1.98

LCL = none
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Table 6.3  Moving range for averages of viscosity readings

Batch Average Movingrange
1 84.04 -

2 83.96 0.08
3 83.52 0.44
4 84.70 1.18
5 83.40 1.30
6 84.22 0.82
7 84.36 0.14
8 83.58 0.78
9 84.00 0.42
10 84.58 0.58
1 84.30 0.28
12 83.18 1.12
13 83.94 0.76
14 84.82 0.88
15 83.82 1.00
16 84.14 0.32
17 83.64 0.50
18 83.68 0.04
19 83.90 0.22
20 83.24 0.66
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where the constants for samples of size n=2 are used. Since the moving-
range chart is in control, short-term between-batch variation is proved to
be stable. Using the average moving range, control limits for the chart of
batch averages can be calculated. The standard deviation for batch
averages is given by:

MR 0606 o

d, 1128

and the centre line for the average chart is located at the average level

X =83.95

The control limits for the average chart are found by adding and
subtracting, respectively, from theabove value three standard deviations
of the batch averages:

UCL; =8395+161=285.56

LCLy =8395-1.61=8234

Since the completed average chart is in control, the long-term batch-to-
batch component of variation too can be considered as being stable over
time.

In summary, neither the short-term nor the long-term batch-to-batch
component of variation appears to be subject to variation deriving from
special causes.

For comparison with the within-batch component of variation, an estimate

of the between-batch component is derived. This estimate, o, ,isbased

on the standard deviation calculated for batch averages. The formula for
the standard deviation of the between-batch component of variation is
givenby:
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Figure 6.1 Moving- range chart (range based on batch averages)
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where n is the number of observations used to calculate each batch
average. Accordingly, the between-batch standard deviation is found to
be:

~ (0333)°

o, = \/(0.537)2 ~0516

6.2.4 The contributions of within-batch and between-batch
variation to total variation

Based on the estimates of within-batch and between-batch variation, an
estimate of the total variation of the batch process can be obtained. This
estimate reflects the fact that the total variance of the batch process is
found by summing the variances of the within-batch and between-batch
components. Thus, the standard deviation for the batch process is given

by:
G =V o + o’ = [(0516)? +(0.333)7 = 0614

This standard deviation is another estimate of the value that the process
standard deviation approximated. The process standard deviation (esti-
mated on the basis of a moving-range chart) was obtained by taking one
sample from each of 20 successive batches. By contrast, the process
variation calculated above was found by first estimating the two compo-
nents of total variation and subsequently combining these components to
derive an estimate of total process variation.

Another way of capturing the relationship between total and component
variation is to examine the relationship in terms of the total, the between-
batch, and the within-batch variances. Thisrelationship can be described
as:

A A A

2 2 2
Gy =Cp +O0w

Estimates of the values of the above variances are given as:

o} = 0377145
b2 = 0266256

o} = 0110889
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The description of total, between-batch, and within-batch variation in
terms of the corresponding variances is useful in that it points out the
relative contributions of the components to total variation. In the present
example, the ‘within’ contribution accounts for about 30 percent of total
variation due to:

A

2
O 100% = 2119889 1 00% = 20.4%
¥ 0377145

leaving about 70 percent of total variation to be accounted for by
differences between batches. This implies that reducing the variation in
viscosity readings between batches promises a greater reduction in the
overall variation of the batch process than working on within-batch
sources of variation.

6.3 Summary of the analysis of components of variance

The analysis of the components of variance forthe viscosity readings from
a batch process required several stages of plots and calculations. To
facilitate recalling the sequence of operations in this analysis, a detailed
discussion of eight steps is presented below.

Step one identifies the type of datarequired foranalyzing the between and
within components of variation contributingtototal variation. In studying
a batch process, the required data are repeated readings of n values from
each one of k batches. The n readings from each batch form one of k
subgroups. The selection of the k batches studied crucially affects
information about between-batch variation. Asarule, at least 20 batches
should be selected for further study. However, more important than the
total number of batches is the way in which selection takes place. Here
the guideline is to choose the k subgroups in such a way as to allow
identification of the sources of between-variation. Forexample, itcan be
supposed that a change in the source of raw material will affect between-
batch variation: Therefore, if the k subgroups did not include batches
from different raw material sources, the data could not capture any effect
of raw material variation on between-batch variation.

Although the present example describes the study of batch processes, the
same data collection strategy can be used for the purpose of studying
within and between components of variation for other types of processes
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as well. The process of making porous membranes (discussed in Section
6.1) provides another example. In this process it was of interest to
understand those portions of variation in pore size which can be attributed
to container-to-container variation or to within-container variation. Data
collected to analyze these two sources of variation would have to consist
of subgroups of n membranes made from the same container, and these
repeated readings on pore size would need to be made for k different
containers.

Oncethe dataare available, step two consists in constructing a range chart
for the ranges of each of the k subgroups. The constant used to find the
correct value of D, is n, the number of readings in each subgroup. The
range chart is used to evaluate stability of the within-batch, or within-
subgroup, component of variation. Ifthe range chart is out of control, the
reason for the within-subgroup variation being inconsistent needs to be
identified. A cause-and-effect diagram which captures the factors
affecting within-subgroup variation will be helpful. This diagram can be
explored to provide some indication of those sources which may be acting
intermittently to create unstable variation within batches.

If the range chart is not in control, it is not possible to investigate the
between-batch component of variation. In other words, in such a case it
is inappropriate to construct a moving-range chart of the batch averages
for mainly tworeasons. One of them is theoretical, namely, that statistical
theory does not provide for an evaluation of the moving-range chart of
batch averages when within-subgroup variation is unstable. The other
reason is pragmatic. The factthatthe range chartis out of control already
indicates the direction for future improvement work: Animmediate goal
of such work must be to discover and eliminate the sources of instability
of within-subgroup variation.

Step three in the analysis is about estimating the within-subgroup or
within-batch standard deviation. (Of course, it would not be appropriate
to estimate this component of variation if the range chart was out of
control.) The value of D, used in the formula of this step corresponds to
n, the number of readings in each of the subgroups.

Step four consists in constructing a moving-range chart from the sub-
group or batch averages. It should be noted here that the value of D, used
to calculate the upper control limit corresponds to the one for samples of
size two. This value is used because there are two averages involved in
the calculation of each moving range. It also needs to be recalled that the
moving-range chart is constructed in order to evaluate the stability of
short-term batch-to-batch variation. If the task was to evaluate the
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variation in pore size of a porous membrane, then the moving-range chart
would provide a way for evaluating the stability of short-term between-
container variation. In both cases, if the moving-range chart is out of
control, work should first be directed towards identifying the reasons for
the observed instability. For example, ifthe movingranges ofthe average
viscosity readings had shown evidence of inconsistency, attention would
have to be directed towards identifying why at some points in time one or
more batches are very different from others, whereas it would be
inappropriate to construct the average chart.

Step five in the analysis consists in the construction of the average chart.
This chart provides information on the stability of long-term between-
subgroup, or between-batch, variation. For example, ifthere were trends
orcyclesinthe batch averages, the average chart should provide evidence
of this.

If the average chart is in control, steps six and seven can be completed.
In these steps the between-subgroup components of variation as well as
total variation are estimated. Finally, step eightisabout calculating those
percentages of total process variation that are due to within-subgroup
sources and between-subgroup sources of variation. These percentages
are helpful to set priorities in the work for improving the process. If
within-subgroup sources of variation are the major contributor to total
variation, then attention needs to be directed at the corresponding causes.
In the example of viscosity readings on a batch process, investigating
within-batch sources of variation might involve an examination of the
mixing procedures of batches, since poor mixing might be one of the
reasons for large variation in viscosity within a batch.



CHAPTER 7

MEASUREMENT PROCESSES

Any measurement of acceptable quality usually relies on a measurement
process. This process - like a production process - has to be examined
in order to assess whether it delivers the expected output. Any output of
a measurement process will undoubtedly exhibit vanation. As in the
case of a production process, an understanding of the nature of this
variation — both regarding its magnitude and its stability over time — as
well as of the conditions of measurement variation is critical.

The variation and average of the outcomes of a measurement process
have profound effects on the information that measured values provide
about a production process. If a measurement process, for example,
exhibits unstable variation, then the interpretation of measurement
values will be impeded. If such instability goes unnoticed, the unstable
variation in outcomes may erroneously be attributed to an instability in
the production process on which measurement is taken. Likewise, if a
measurement process has stable, yet large vanation, then the potential
for understanding production process variation will be reduced. If a
measurement process does not deliver values at a consistent level, it
becomes impossible to evaluate the average of the underlying produc-
tion process. For reasons such as these, the study of the process
generating measurement values is indispensable for the analysis of a
production process. The example provided in the next section illustrates
the application to a measurement process of techniques described in
previous chapters.
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7.1 Evaluating a measurement process

A chemical manufacturing firm relies on laboratory measurement to
check the purity levels of a herbicide, called product M. In order to
ensure the quality of the measurement process, the laboratory carrying
out measurement routinely calculates the purity level of a sample (called
a standard) which contains a known amount (96 units) of product M.
Each time the laboratory runs an assay to determine the amount of M in
one or more production samples, the amount of M in the standard 1s also
measured. Since product M is a stable compound, the actual amount of
M measured in the standard sample should not change. Table 7.1
contains the measured amount of M in the standard for the 30 most recent
assays. The variation in these numbers is not, of course, due to changes
in the purity of material. Instead, the observed variation is characteristic
of the measurement process.

It is useful to consider - before examining control charts of the data in
Table 7.1 - how sources of variation affecting the measurement process
are reflected in the above data. Among potential causes of variation are
the following:

(a)  Inthe analytical laboratory four different chromatographs are in
use, any one of which might be employed in a given assay for
product M.

(b) Even if the same device were used for each assay, it might read
differently from one assay to the next.

(c)  Any one of eight different laboratory technicians may perform the
assay.

(d) The assay requires a fairly involved sample preparation. Even if
only one technician performed the assay, there would be slight
differences in the sample preparation which would produce
variation in results.

()  The reagents used to carry out the assay may change over time.

(f) At infrequent intervals the equipment itself changes, as the
chromatographs have columns which need to be repacked.
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Table 7.1  Amount of “product M” in standard sample

Date Assay value Moving Range
07126 959 ---
07/27 95.7 0.2
07/29 96.7 1.0
08/04 95.8 09
08/05 96.9 1.1
08/07 955 1.4
08/10 96.8 13
08/10 96.0 0.8
08/11 95.6 04
08/12 96.4 0.8
08/14 96.0 04
08/14 95.2 038
08/16 96.2 10
08/16 96.0 0.2
08/16 95.2 0.8
08/18 955 03
08/19 96.2 0.7
08/20 96.1 0.1
08/20 96.7 0.6
08/21 96.2 05
08/22 96.2 0.0
08/22 96.5 03
08/24 953 12
08/26 96.0 0.7
08/27 955 0.5
08/28 95.5 0.0
08/29 96.0 0.5
09/02 97.2 1.2
09/04 953 1.9
09/05 96.4 1.1
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Together with recorded values moving ranges for the standard sample
are also reported in Table 7.1. Since an assay may have been performed
by any of several technicians on any of several devices, differences
among individuals or devices would have an impact on the magnitude of
the ranges. Furthermore, changes due to differences in sample prepara-
tion or set-up would also affect the size of the moving ranges.

Since — as Figure 7.1 shows ——the moving-range chart is in control,
there is no evidence for assay-to-assay variation to be inconsistent across
the range of data examined. Taking into account those factors behind
variation that influence the ranges, it might be concluded that set-up
variation, operator vanation and device-to-device variation is fairly
consistent over time.

Since the moving-range chart is in control, limits can be constructed for
the values on the X-chart. However, before examining the completed X-
chart, the sources of vanation in X-values need to be scrutinized. If the
reagents used to conduct the assay deteriorated over time, this would
probably result in a trend in the values for the standard. Likewise, if the
column were repacked during the course of the study, the average value
might be affected. The completed X-chart in Figure 7.1 does not indicate
any such trend or shift in the average reading over time. Thus, the
measurement process appears to be reading to a stable average of 95.8,
a number very close to 96, the amount actually contained in the standard.

Since both the moving-range chart and the X-chart are in control, the
standard deviation from the average of the moving ranges can be
estimated. This estimate takes the value of 0.62 which was used to
calculate the control hmits for the X-chart. This standard deviation
indicates vanation in the measurement process for which 1t is useful to
identify the major sources. Since the samples are run by an analyst on
any one of several machines and the values are separated by at least one
day, the standard dewviation could be thought of as describing measure-
ment variation of the laboratory. More precisely, the standard deviation
is seen to reflect that contribution to vanation in measured values that is
due to the measurement process. An alternative procedure would be
measurement of the standard sample on the same device throughout. If
this were the case, the standard deviation would be expected to be
smaller. However, if product M is routinely measured on any device,
such an estimate would not accurately reflect the amount of variation
contributed by the measurement process.
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Figure 7.1 Control charts for purity of product
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Another practice for estimating measurement vanation is to run 30 or
more standard samples during the same assay. In other words, the
sample preparation for the 30 samples would be made at the same time
and the amount of product M in the samples would be reported. There
would be little justification for placing these numbers on control charts,
as they are not spread out over time. Nevertheless, it is possible to
calculate the sample standard dewiation. This standard dewviation pro-
vides an estimate of within-assay variation for one assay only. Nothing
could be learned about the stability of within-assay variation over time,
nor would the effect of different operators or devices be captured by the
sample standard deviation. This practice of estimating within-assay
variation might be useful for understanding sources of variation in the
measurement process, but it clearly cannot be used as a description of
measurement variation.

The 30 measurement values in Table 7.1 represent important evidence
on the performance of the measurement process over a little less than two
months’ time. Good laboratory practice would call for analyzing the
standard sample frequently, if not with every assay, since the variation
in measurement values may not remain stable. New operators or
changes in equipment, reagents or procedures could cause changes in the
vanation. Therefore, the practice of continuing to monitor measurement
variation is crucial for establishing reliable measurement.

The above analysis has only described the current state of the measure-
ment process in the given example. Whether the vaniation in this process
1s small enough will depend on what is required in terms of the quality
of output. With a view to these requirements the following section
outlines techniques for assessing the adequacy of a measurement pro-
cess.

7.2 Characterizing a measurement process

A natural starting-point for characterizing a measurement process is —as
in other cases — an examination of the sources of measurement variation.
In establishing a list of possible sources of such varation, the conditions
under which measurement will actually be made have to be considered.
In the example of the previous section, measurement in the laboratory
was carried out by several operators using several devices. Reagents
used in the assay would change over time; in addition, the device itself
was subject to changes. A characterization of the measurement process
i hand therefore required taking into account these sources.
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To give another example, measurement of the weight of a bar of hand
soap can be considered. For the checking of the scale used in
measurement, a standard weight of 5 ounces is purchased. Twice in each
shift, the standard is weighed on the scale which is also used for weighing
the bars of soap. The measurement values recorded over the past 40
shifts are presented in Table 7.2. These data have also been used to
construct the charts in Figure 7.2 The fact that the range chart is in
control, indicates that the variation in the measured weights within a shift
remains consistent across the duration of the study. Since the average
chart is also in control, the average weight read on the scale appears to
be consistent over time.
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Table 7.2 Measured weights of S-ounce standard

Subgroup

W 3 N L bW N

DWW W W W W W W W W W RN NN R RN NN NN e s e e e e = O
O W oo~ AW B WRN —= O WV NN A WN = O WO bEe WN— O

X1

4.948
4971
5.019
5.018
4.942
5.029
5.025
4.995
5.041
5.023
5.016
4.999
4.994
4974
5.022
5.051
5.014
5.019
4975
5.021
4985
5.029
5.017
5.044
5.059
5.014
5.028
5.028
5.026
5.021
5.066
5.009
5.009
5.028
4.959
5.019
5.048
5.061
5.021
4951

X2

4943
5.046
5.001
5.018
5.016
5.025
5.002
4.942
4985
5.026
4.970
5.024
5.055
4937
5.031
4.959
4.946
4987
5.022
4.993
5.039
5.050
5.012
5.020
4975
5.024
5.000
4950
4967
5.001
4.987
4.927
5.001
4.966
4.990
5.013
4959
4951
4.982
4984

R

005
075
018

074
004
023
053
056
.003
.046
025
061
037
.009
.092
068
032
.047
.028
.054
021
005
024
.084
010
028
038
059
020
079
082
.008
062
.031
006
089
110
.039
.033

>t

4.9455
5.0085
5.0100
5.0180
4.9790
5.0270
5.0135
4.9685
5.0130
5.0245
4.9930
5.0115
5.0245
4.9555
5.0265
5.0050
4.5800
5.0030
4.9985
5.0070
5.0120
5.0395
5.0145
5.0320
5.0170
5.0190
5.0140
5.0090
4.9965
5.0110
5.0265
4.9680
5.0050
4.9970
49745
5.0160
5.0035
5.0060
5.0015
4.9675
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Figure 7.2 Control charts for weights of standard
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Since the weighing of the standard weight portrays a stable measure-
ment process, a histogram can be constructed on the basis of the 80
measurement values of Table 7.2. This histogram is shown in Figure
7.3. It provides a visual representation of the variation that results from
weighing the same piece of material (a five-ounce standard) repeatedly.
Of particular interest in this context is the centre or average of the
distribution of values as well as its spread or range. In the characteriza-
tion of a measurement process the concept of accuracy is used to
indicate how closely on average the measurement process delivers the
value of a known standard. By contrast, the concept of precision refers
to the size of the vanation that is charactenistic of a measurement
process.

Figure 7.3 Measurements of standard weights
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7.2.1 Precision of a measurement process

Figure 7.4 contains histograms from four different measurement pro-
cesses. For each of these processes, a five-ounce standard was weighed
repeatedly over different time periods and under a variety of conditions.
The measurement processes were found to have stable vanation and
average. Histograms A and B show that the underlying measurement
processes have less variation than those which generated the values for
histograms C and D. Hence, measurement processes A and B are said
to be more precise than processes C and D. In general the precision of a
measurement process refers to the amount of variation which repeated
measurement of the same unit of a product or material produces.

In the measurement underlying the histograms of Figure 7.4, only a
single standard weighing five ounces was used. Consequently, the
statements about precision of the measurement processes under study
should be qualified. Precision in the present case has only been
determined for the weight of five ounces. It is perfectly possible that
measurement process A exhibits significantly larger variation when the
object measured weighs seven ounces instead of five. Any information
derived from Figure 7.4 about the precision of measurement processes
refers only to a weight of five ounces. Thus, if the weight of soap varies
over a wide range, the above results on precision of the measurement
process become inapplicable. In the case of varying weights of output,
precision of the measurement process would have to be evaluated at
vartous levels of weights. Since measurement precision may change
with changing product values, weights used for standards should be
selected with care. A reasonable choice would be to use a standard close
to the target value of the production process.

The data of Table 7.2 resulted in a range chart which is in control with
an average range of 0.04095. Thus, the precision of the process can be
estimated by use of an estimate for the standard dewviation. For the
measurement process in the present example, the precision is estimated
by:
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7.2.2. Accuracy of a measurement process

The four histograms of Figure 7.4 also illustrate the concept of accuracy.
Histograms A and C both are centred at five ounces, the actual weight of
the standard measured. Since the average delivered by these two
measurement processes 1s almost the same as the quantity measured,
measurement processes A and C are said to be accurate. More generally,
accuracy of a measurement process refers to its capability to deliver, on
average, the recognized value of a standard. By contrast to processes A
and C, the measurement processes underlying histograms B and D are
not accurate, but biased. This does not indicate however, that these
measurement processes cannot be used for evaluating product character-
istics. The reason is that if the bias i1s understood, the measured values
can be adjusted . Just as in the case of precision of a measurement
process, care should also be taken when extrapolating accuracy from the
case of measuring one value to that of measuring a whole range of values.

Figure 7.4 Measurement processes
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Here again, the accuracy of a measurement process over a range of
possible production values can only be determined by actually investi-
gating the measurement process over the indicated range of values.

The centre-line in the average chart of the data in Table 7.2 provides an
estimate of the average value that the measurement process produces
when measuring a five-ounce standard. Since this average is 5.00355,
the measurement process is considered to be accurate.

7.3 The effect of measurement variation on process study

If the amount of measurement variation is large, both the analysis and the
improvement of a given process become difficult. An examination of the
relationship between measurement variation and the variation measured
on a process illustrates these difficulties. The respective variances are
related in the following way:

2 2 2
On=0,+0,

where

afn is the variance of values measured on a production process

o f, is the variance of the output of the production process

and

O': 1s the variance of the measurement process.

Thus, the above equation states that the variance of values measured on
output from a production process is equal to the sum of the actual
variance of the output and the variance of the measurement process.

Figure 7.5 provides a graphical illustration of how large measurement
variation can hinder process study. Plot I of Figure 7.5 is a time plot of
the density of a plastic part produced at a plant. For the case of the first

plot, measurement variation, o~ , is assessed as being small.

In the production of the considered part, two sources of raw material are
used. The letter A is used to plot the density of a part produced from raw
material A and B for a part produced from raw material B. The
difference between raw materials is readily apparent from plot I.
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Although both processes appear to be stable, the average densities
pertaining to the two materials clearly differ. Hence, the differences
between the two raw materials are a source of variation in density of the
part produced at the plant.

Plot H of Figure 7.5 is similar to the previous plot where, however, the
process underlying measurement of densities is known to have large
variation. From plot II it can be seen that the difference in average
densities of parts produced from the two different types of raw material
is masked by measurement variation: the difference in average density
witnessed by plot 1 is therefore not readily detected in plot II.

Figure 7.5 Measurement variation

Time plot of product density with small msasurement variation
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Since the magnitude of measurement variation impacts the usefulness of
information about a process, criteria are needed to judge the adequacy of
a measurement process in view of its variation. Two methods can be
suggested in this connection. The first one is to calculate the percentage
of variation in measured product output that is due to measurement
variation. The second one involves the use of control charts to describe
the suitability of a measurement process in relation to the need to
discriminate between different values of product output.

7.3.1 Measurement variation as a percentage of measured output
variation

In Section 7.1 a method for studying the process underlying the measure-
ment of the purity of a product was described. An examination of part
of the data led to the conclusion that the measurement process was stable
over time and an estimate of 0.62 was obtained for the measurement
standard deviation. The same measurement process supplies data on
production regarding the purity levels of every batch produced. These
data are routinely plotted and examined. An analysis of the moving-
range and average charts constructed from these data shows that the
process is in statistical control with an estimated process average of 94.4
and an estimate for the process standard deviation of 1.6. This standard
deviation captures both the variation in purity levels as well as measure-
ment variation. Using the notation introduced earlier, the above infor-
mation on process and measurement variation can be summarized as
follows:

o, =062 o, =03844

o, =160 . =256
The vanance of the measured purity, © fn , 1s the sum of the variance
of the actual product plus the measurement variance, O'e2 . In addition,

the following relationship can be considered

2
T L 100% = 0.3844

2

x100% =15.0%

(o2

m

This relationship indicates that 15 per cent of the variation observed in
measured purity levels can be attributed to measurement variation. An
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immediate question is about whether this percentage is high or low.
Although there is no straightforward answer to this question, a value for
this percentage of 10 or less is generally accepted as an indication of the
measurement process being adequate for the study of process variation.
Since for the process under study measurement variation accounts for 15
per cent of the total variation observed, the adequacy of the measure-
ment process 1s to be questioned and the sources of measurement
variation need to be studied.

Since measurement variation includes instrument-to-instrument varia-
tion, it might be useful to set aside one instrument for continually
performing this assay and work to further reduce the variation contrib-
uted by that one instrument. Nevertheless, work directed at the reduction
of measurement variation might prove unsuccessful. In this case,
laboratory personnel may want to reconfigure the process for taking
measurement by routinely performing multiple assays on both the
standards used as well as on every product sample. The reported levels
of purity would then be the average of the multiple readings. If »
multiple readings are obtained for each sample, the measurement

variance should be reduced by a factor of J; . It will not, of course,

be sufficient to assume that the measurement variance is decreased by
this amount. A re-evaluation of the measurement process which in-
cludes collecting multiple readings on every specimen of material needs
to be performed.

7.3.2 Using control charts to evaluate the discriminative power of
measurement processes

Large measurement variation reduces the potential to evaluate the
characteristics of a product and, hence, the process producing this
product. One method of evaluating the effects of measurement variation
on measured product variation is to determine the percentage of ob-
served product variation that is due to measurement variation. Another
method is to use control charts as a means of assessing the potential of
the measurement process to discriminate between product outcomes. In
an example discussed below, this method was used by a customer and a
vendor who disagreed on the measurement of an important quality
characteristic. The vendor reported an average and a standard deviation
for every outgoing lot of material. When the lot arrived at the customer’s
plant site, some parts of the incoming matenal were selected and another
assessment of the average and standard dewviation of the lot was made.
Disagreement arose out of the fact that the difference in the results



Measurement processes 147

reported by the vendor and by the customer was at times dramatic. While
the actual sources of this difference were not obvious, sampling differ-
ences or differences in measurement methods were considered as likely
candidates.

In a first step towards reconciling their differences, managers from the
two plant sites agreed on conducting a measurement study of the
characteristic in question. The study was performed on 20 parts selected
at random from a manufactured lot. These 20 parts were measured twice
at the vendors’ facility on two consecutive days. After the two measure-
ment values had been obtained on the 20 parts, the parts were shipped to
the customer’s facility and there passed through the inspection proce-
dure on each of two consecutive days. The results of the outlined
measurement study are reported in Table 7.3. This table presents the
range of the measurement values of one given part for both the vendor’s
and the customer’s measurement as well as the average measurement
value obtained by the vendor and by the customer. Before conducting
a statistical analysis of the data, it will be instructive to consider the
sources of variation suggested by the ranges and averages.

The ranges reported for the measurement values obtained by the vendor
are an indication of the precision of the vendor’s measurement process.
Each one of these ranges describes the difference observed from one day
to the next when the same part is measured. Thus, by constructing a
range chart from these ranges, the stability of measurement variation
across parts can be evaluated. If parts of different size resulted in
different measurement variation, then this should be taken as a hint of a
special cause of variation. In other words, the range chart allows for
checking the stability of the measurement process across parts, but not
over time. In applying these results to the vendor’s measurement
process, stability of its variation over time cannot be judged. In order to
make such a judgement the vendor has to monitor his measurement
process over time and across a variety of conditions. Similar information
on the customer’s measurement variation is supplied in Table 7.3 and
Figure 7.6 presents the two range charts constructed from these data.

Both range charts in Figure 7.6 are in control. In other words, both the
vendor’s and customer’s measurement processes appear to deliver
consistent measurement variation across the 20 parts used in the study.
However, even though both processes are consistent, differences among
the measurement processes become immediately apparent from the two
charts.
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Table 7.3 Comparison of two measurement processes
Vendor’s process Customer’s process

Part Measurement Range Average  Measurement Range Average
1 285 329 44 3070 34.7 36.1 1.4 35.40
2 325 281 44 3030 32.3 30.7 1.6 31.50
3 280 228 52 2540 29.9 30.8 0.9 30.35
4 414 505 9.1 45.95 439 4277 12 43.30
5 546 547 0.1 5465 475 50.5 3.0 49.00
6 375 468 93 4215 457 43.5 22 44.60
7 36.8 383 1.5 3755 44 8 441 0.7 44 .45
8 324 403 79 3635 36.7 36.5 0.2 36.60
9 41.0 404 06 40.70 41.1 413 02 41.20
10 370 404 34 3870 33.9 36.3 2.4 35.10
11 535 454 8.1 4945 407 420 1.3 41.35
12 353 345 08 3490 36.3 363 0.0 36.30
13 342 387 45 3645 39.7 38.7 1.0 39.20
14 499 462 3.7 4805 45.0 46.5 1.5 45.75
15 464 397 67 4305 48.9 459 3.0 47.40
16 370 373 03 3715 36.3 37.1 0.8 36.70
17 469 459 10 4640 47.0 46.5 0.5 46.75
18 398 259 139 3285 31.3 300 1.3 30.65
19 463 423 40 4430 464 434 3.0 44.90
200 355 413 58 3840 41.2 40.0 1.2 40.60
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The average range for the vendor’s measurement process is considerably
larger than that of the customer's. An examination of the respective
average charts for the vendor and the customer provides a way of
evaluating the effect which the additional measurement variation from
the vendor’s measurement process has on the potential to evaluate
product characteristics.

Another point of interest is that of sources of varation affecting the
average charts. Each of the averages calculated by the vendor results
from two instances of measurement made on one of the 20 parts.
Although some of the differences among the 20 averages are due to
variation from the measurement process, it would be expected that the
averages exhibit genuine variation among the 20 parts. In fact, if the
process applied to measure the parts had negligible variation, then all the
variability in the averages would have to be ascribed to part-to-part
differences.

In constructing the average charts of Figure 7.7, the average range in the
respective range charts has been used to calculate upper and lower
control limits. Thus, the only source of variation taken into account for
these hmits 1s measurement variation. This implies that any variation in
addition to that of measurement should result in an out-of-control signal
on the average chart. Since average values are subject to part-to part
variation, as well as to measurement variation, average charts would be
expected to be out of control.

An examination of the two average charts reveals that both of them are
out of control. The conclusion reached on this basis is that both the
vendor’s and the customer’s measurement processes are capable of
discriminating between parts. Since only measurement variation was
used to construct the control limits on the average charts, differences
between parts were observed on the average chart; in fact, the part-to-
part differences were picked up as a special cause on the average charts.
Again, it 1s useful to note the differences between the two average charts.
The average chart representative of the vendor’s study does not have as
many points outside the control limits as does that of the customer’s
study; nor are the points as far outside the control limits on the vendor’s
chart. From this qualitative difference it can be concluded that, because
of the smaller vanation experienced by the customer’s measurement
process, this process has a greater potential to discriminate among parts
than has the vendor’s measurement process.
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Figure 7.6 Range charts for two measurement processes
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Figure 7.7  Charts for part averages
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7.4 Concluding remarks on the study of measurement
processes

Investigation of the process should begin with a description of how the
process operates and also of potential sources of variation in measured
outcomes. Again, process flow charts and cause-and-effect diagrams
provide useful tools for performing this task. Once information about
the sources of variation pertinent to a measurement process has been
obtained, a data collection plan can be devised for gathering evidence on
the operation of the measurement process. For example, in the study of
the measurement of purity levels in Section 7.1, the data collected about
the measurement process attempted to capture the effect that different
operators, different measuring devices, different reagents, and also
equipment changes might have on the measurement of purity in a
herbicide. Data collection should provide the basis for evaluating the
stability of the vanation in measurement values over time and - if the
measurement process is stable - to assess the precision, accuracy and
discriminative power of this process.

The studies of measurement processes in the present chapter have
focused on the design of measurement studies. It has to be noted,
however, that such studies need to be performed not only once, but
evaluation of a given measurement process has to become a continuous
activity. As materials, personnel, techniques etc. change over time, the
measurement process under study will tend to change too. Therefore,
this process should also be continually monitored.



ANNEXES

A. STATISTICAL ANNEX

The following sections outline some statistical concepts and arguments underlying
the methods described in the main text. (Detailed and comprehensive discussions of
the statistical background to process control can be found in most of the statistical
texts listed in the bibliography.)

1. Populations, samples and statistics

In statistical analysis the totality of items under consideration is called a population.
In the examples of the present text a population is a whole lot or a process in its
entirety. Since it is usually impossible or uneconomical to gather information about
a total population, a sample of one or more items is taken for the purpose to obtain
information on the population. In other words, a sample is used for estimating
characteristics of the entire population and should therefore be taken in such a way
as to reflect these characteristics faithfully. The commonly used approach is that of
random sampling, where there is equal probability for any member of the population
to be chosen.

Data used in process analysis are obtained by measuring the characteristics of interest
for each member of a sample. From these data inference can be drawn about the
characteristics of the whole sample. This is usually achieved by use of a so-called
statistic, i.e., a value calculated from the sample or more precisely, a function of
sample observations. Statistical theory provides the means to infer the value of a
(constant) population parameter from the sample-dependent value of a statistic.

2. Distributions

The notion of distribution is central to statistical inference also in the area of process
analysis. In the main text it had been shown how frequency distributions can be
constructed on the basis of sample observations. Statistical theory provides the tool
of theoretical or probability distribution for more convenient analysis by way of
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mathematical equations. A central task in the analysis of a sample is to describe in
an approximate way the distribution of actual observations in terms of a theoretical
distribution. In the process analysis described presently three types of distributions
provide the mathematical basis for most assessments and predictions: the binomial
distribution, the Poisson distribution and the normal distribution.

Binomial distribution

This distribution deals with a series of events each one of which has only two
possible outcomes. In process control the typical application is that of defectives in
population and sample: Based on the number of defectives found in a sample, the
binomial distribution allows to infer the number of defectives in the total population.

Poisson distribution

This distribution deals with the number of times a random event occurs within a
given length area, volume or period of time. In contrast to the binomial distribution,
non-occurrence of the above event is not considered here. The Poisson distribution
applies in cases where the possibility of a defect is continuous, but where only a few
defects actually occur.

Normal distribution

This distribution deals with continuous variables, not with discrete events, It is con-
cerned with the way in which measurements cluster around a central value of maxi-
mum frequency. The greater the deviation of a measurement from the central value,
the less likely is the occurrence of this measurement. The result is a bell-shaped
distribution (as shown in Fig. 2.12) which can be described by its mean value (central
tendency) and its standard deviation (dispersion about the mean).

3. More on the statistics of control chart analysis

The above distributions provide the basis for statistical inference on the behaviour of
processes. In a first step sample observations (measurements) are used to estimate the
parameters of the underlying probability distribution under the assumption of process
stability. A second step consists in confronting the empirical distribution of observa-
tions with the derived theoretical distribution. This provides for a test of the hypoth-
esis of process stability: If the empirical distribution of observed values is compatible
with the probability laws of the derived theoretical distribution, the assumption of a
stable process is maintained. Otherwise it is rejected and a change in process param-
eters suspected. In the language of control chart analysis, underlying distributions are
identified under the assumption that the studied process is subject only to common
or chance causes of variation in process outcomes. Significant deviations of single
observations or a group of observations from the characteristics of the assumed
distribution are taken as an indication of special or assignable causes of variation.
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The rules usually followed in the assessment of control charts can best be made
plausible with reference to the normal distribution. The bell-shaped curve of this
distribution (as depicted in Fig. 2.12 on p. 40) can be described in probability terms
in the following way:

(i) The distribution is symmetrical, 50 percent of measurements fall on either side
of the central value.

(ii)) On either side of the central value, only 16 percent fall outside 1 standard
deviation,

(iii) 2 percent outside 2 standard deviations and

(iv) 0.1 percent outside 3 standard deviations from the central value.

From (iv) can be derived the 3-sigma rule applied throughout the present text with
regard to control limits. If upper and lower control limits are set at a distance of 3
standard deviations from the central value, there is a chance of only 1 in 1000 for
a measurement value to be found outside control limits by chance. In 999 out of
thousand cases this must be the result of a change in process parameters, i.e., the loss
of process stability.

For the calculation of the values of control limits first the distribution of the statistic
used has to be determined. On this basis, 3-sigma limits can be calculated where
constants that are characteristic of the identified distribution can be used. Values of
these constants are usually tabulated (as shown in Table 5.2) and can be found in
most texts on statistical process control.

The discussion of control charts in the main text concentrated on 3-sigma limits as
the major analytic criterion. In addition to these control limits a few rules of thumb
for detecting non-randomness in charts were stated in Section 2.6. On the basis of
the previous outline of statistical arguments some of these rules can be given a
precise meaning and a few more rules can be established.

(1) A process is regarded as out of control when a ‘run’ or series of successive
observations all fall on one side of the ‘centre line’ of the chart. If this centre line
is taken to be the median (the middle point in the ordered set of observation points
on the chart), the occurrence of runs can be given an exact probabilistic interpreta-
tion. Thus, for example, the probability to observe among 20 points a run of at least
seven points on one side of the median line is 5 percent. From this derives the fairly
strict ‘rule of seven' (cited in Section 2.6) which under all circumstances takes a run
of seven consecutive points as an indication of abnormality. Similar rules state that
a process should be considered out of control when: (i) at least 10 of 11 consecutive
points falt on one side of the centre line; (ii) at least 12 of 14 consecutive points are
on one side of the centre line; (iii) at least 16 out of 20 consecutive points meet this
criterion.

(2) Patterns that exhibit a clear trend are other signals for the process being out of
control. Should a series of consecutive observations form a monotonically increasing
or decreasing portion of the total curve of points, an abnormality in the process has
to be assumed. For reasons similar to those stated above a length of seven for such
a trend is considered critical.
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(3) Periodicity is said to occur when repeatedly an up-and-down cycle is observed
over similar intervals on the chart. Unlike for the cases of runs or trends, there is no
simple rule for assessing periodicity in a control chart. The best strategy here is to
track the movement of data points over time. If a periodic pattern is observed on a
regular basis, this can be taken as evidence of non-random behaviour.

(4) Further hints to the existence of special causes of variation are found in the
clustering of observations around contro] limits or the centre line. The term used for
such patterns is ‘hugging’ (of control limits or centre line) and for the analysis of
such cases additional boundaries have to be introduced into the chart.

(5) Similar to the use of control limits, that of so-called warning limits is often
suggested on the basis of property (iii) of the normal distribution stated above: If
observations fall outside the 2-sigma limits, this could be taken as a warning of
possible problems. More precisely, in a control chart it is about equally unlikely to
find two out of three successive points outside the 2-sigma lines (or four out of five
successive points outside the 1-sigma lines) as to have one point outside the 3-sigma
limits.

4. Beyond control charts

The main text has focused on the important tool of control chart for an introductory
demonstration of the use of statistics for process control and improvement. In this
context the most frequently used types of control charts were introduced and dis-
cussed extensively. These charts are essentially those that Dr. Walter A. Shewhart
proposed as tools to serve three major goals of the study and control of repetitive
processes: (i) to define the goal(s) or standard(s) that should be attained; (ii) to serve
as an instrument to attain those goals; (iii) to provide a tool for judging whether the
goal(s) has(have) been reached. Thus, control charts can be used in specification,
production and inspection of industrial processes with the added advantage of inte-
grating these three phases.

Although the discussion of the standard ‘Shewhart’ set of control charts touched
upon most of the important aspects of the tool, it was not exhaustive in that it left
aside a number of charts which are commonly employed nowadays and cover special
areas of use. In particular, there are many special types of coatrol chart for variables
data like the cumulative sum (CUSUM) chart, the exponentially weighted moving
average (EWMA) chart, the modified control chart, and the acceptance control chart.
Discussions of these charts are found in any of the more comprehensive texts on
statistical process control.

Besides the broad field of control chart analysis other statistical methods are often
used in industrial research. Among theses methods are tests of various hypotheses
about proportions, means and variances, tests of normality, and the analysis of vari-
ance. Another set of methods has to do with examining the relationship between two
or more variables where correlation and simple or multiple regression methods have
to be used. The case of two variables is important, for example, in the context of
examining partial relationships as described in the framework of a cause-and-effect
(Ishikawa) diagram. Here the simple tool of a scatter diagram (scatter plot) which
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pictures the studied relationship in two dimensions can provide the starting point for
a formal analysis by way of correlation or regression methods. Again standard texts
on statistical quality and process control can be consulted on the broader range of
methods applied in industry statistics.

Finally, there are a number of subject areas closely related to the application of the
methods discussed in the present text or in more advanced presentations. One of
them is the wide field of sampling techniques which have to do with the observation
of a portion of a population with the objective of obtaining information about the
population itself. Another related field is that of the design of experiments which are
intended to analyze the effects of given factors on observed outcomes.



B. PRACTICE PROBLEMS

Each of the following practice problems is assigned to that chapter in the text that
covers the method(s) required to solve it.

Problem 1 (Chapter 3)

At a food packaging plant, a recent increase in the number of customer claims
concerning defective cans has prompted your investigation into the situation. An
initial concern was whether or not the inspection process is stable and predictable.
You have been informed that operational definitions have been developed and an
inspection training program has been implemented in the recent past. Assuming,
therefore, that the inspection process is consistent, your attention tumed to the pack-
aging process. Knowing that the sealed metal containers pass through a final inspec-
tion, where they are checked for proper can height, label application, vacuum, and
other surface characteristics, you have requested data on the proportion of defective
cans found in final inspection. You are pravided with the following:

Fractions defective in 22 samples of 1000 cans each
{Total number of defective units: 67)

.003 .004 .008 .006 .003 .006 .004 .006 .002
.005 .004 .003 .004 .001 .002 .001 .002 .000
001 .001 .000 .001

a. Construct an appropriate control chart for the data.
b. Comment on the method by which these data were obtained.

c. In order to determine the current status of the process and to analyze the pos-
sible causes for the increase in defective cans, what will be your course of action?

Problem 2 (Chapter 3)

The shift 2 supervisor has expressed his belief that the number of defective cans are
higher in shift 1 than in his own shift. In order to check this claim, you request that,
on each of 26 successive shifts, 700 cans are to be inspected, and the number of
defective cans in each sample recorded. You are later presented with the following
data:
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Sample Shift Number defective Sample Shift Number defective
1 1 4 14 2 2
2 2 0 15 1 i
3 1 2 16 2 2
4 2 1 17 1 3
5 1 3 18 2 3
6 2 1 19 1 2
7 1 2 20 2 4
8 2 0 21 1 2
9 1 2 22 2 3

10 2 0 23 1 3
11 1 2 24 2 1
12 2 1 25 1 2
13 1 7 26 2 2

a. Draw a control chart.

b. Based on your analysis of this chart, what would your conclusions be concern-
ing the stability of the process?

¢. Construct separate sets of control charts for the two different shifts.

d.  As a manager, how would you respond to the shift 2 supervisor's claim?

e.  Are there any reasons that make you sceptical about the data and, consequently,
about the information provided in these control charts?

Problem 3 (Chapter 3)

In your company, individual work centre performance is measured on the basis of
whether or not processes are kept in control. After your area has manufactured
crankshafts, they are sent to the line where they are used in engine assemblies. Due
to several complaints you have received from the line concerning defective crank-
shafts, you decide to investigate your process for control through use of a control
chart. The data are obtained by 100% visual inspection of 24 lots of varying sizes.
Out of a total of 5,544 crankshafts inspected, 367 of the units are found to be
nonconforming. Data for two particular points on the chart are given below:

Lot Lot size Number nonconforming
22 200 23
23 275 5

a. Calculate the values which would be plotted on the control chart and the control
limits for these two lots.

b.  Discuss the impacts that methods of performance appraisal can have on the use
of data to improve systems.

Problem 4 (Chapter 4)

In an electronics manufacturing facility, radios are checked for nonconformities after
the assembly process is complete. For some time, the process has been in control at
an average of six nonconformities per radio.
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a. If the process were to be monitored by inspecting three radios from time to time
and recording the total number of nonconformities per group, what type of control
chart should be used?

b. What should the centre line and control limits be for the chart?

Problem 5 (Chapter 4)

In a potato chip plant, after the chips are drained, they enter into one of three lines
where seasonings are applied. Line | applies seasoning to flat chips, while the other
two lines season the “angled” chips. After the chips are seasoned, they are sampled
by one of three inspectors on that shift. The inspectors are responsible for sampling
chips out of each seasoned batch and determining whether the batches are consistent
with respect to chip presentation and amount of seasoning. If the inspectors find that
a series of several batches are inconsistent, they can stop the line for adjustment. The
line can also stop because of machine breakdowns, change of seasonings, shortage
of chips at the start of the seasoning lines, etc. You are on the work team which is
investigating the stops in the production line.

In order to help determine where the specific causes of the line stops may be, the
flow diagram of the process has been developed. In addition to the flow diagram, you
have suggested that a cause-and-effect diagram would also help the team to identify
possible causes of line stops. Before constructing the cause-and-effect diagram, you
questioned several people on the lines. The following are comments that were made:

“As [ see it, the line stops can’t be prevented until someone changes the way the
system is run. There are just too many different people who can stop the line.”

“The inspectors are the problem. There's one inspector who calls for a line stop for
every little thing.”

“If we didn’t always have to wail for the chips to be delivered to the line, the
situation would not be so bad.”

“I can tell you where the problem is: It's with maintenance. These machines are just
patched so we can keep running. If they would fix them right, it would make a big
difference in the long run.”

a. The following data report the number of line stops per day (24 hours) for each
of the three lines. Construct a control chart to determine whether there exists a
difference in the number of line stops between the three lines. (Put individual sets
of control limits on the chart for the different lines.)

Day Line | Line 2 Line 3
1 8 10 14
2 11 9 13
3 7 14 13
4 9 11 10
5 8 16 12
6 11 7 8
7 5 13 13
8 8 16 ]
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Day Line 1 Line 2 Line 3
9 7 15 14
10 9 13 13
11 14 13 9
12 6 11 14
13 9 10 10
14 3 8 12

b.  Your team has asked you to make recommendations on what the next step in
the improvement effort should be. What will your recommendations be?

Problem 6 (Chapter 4)

A company manufacturing oilcloth determines all cost estimates and prices on the
basis of 100 square yards of oilcloth. The following data are obtained from inspec-
tion:

Lot number Square yards inspected Total number of defects

1 200 5
2 250 7
3 100 3
4 90 2
5 120 4
6 80 1

Construct the appropriate preliminary control chart(s) for these data.

Problem 7 (Chapter 5)

A chemical product is produced in large batches. An important characteristic of the
product is the level of active chlorine in the material. It is suspected that there exist
two major sources of variation in the process which affect the level of active chlorine
in the product. One possible source of variation is that the mix of ingredients is not
the same from batch to batch. Another potential source is that the batches may not
be thoroughly mixed. In order to study the active chlorine levels, three samples from
each of 30 successive batches are taken. The levels of active chlorine in the three
samples are measured. The range and the average of the three samples are calculated
and plotted on control charts for ranges and means. The sum of the sample means
is 1.648 and the sum of the sample ranges is 0.151.

a. Draw the range and average charts.

b. Compute the control limits for the range chart and, if appropriate, the average
chart.

¢. Which of the two major sources of variation is reflected in the range values?

d. Which source of variation would tend to cause the range of variation in the
subgroup averages to be larger than that predicted by the control limits on the
average chart?

e. From visual inspection of the charts, which of the two sources of variation
appears to be causing most of the product variation?
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Problem 8 (Chapter 5)

In the production of steel bars, square billet stock is heated and rolled. After the bars
are cut to length and straightened, they are shipped to one of two converters where
they are sized. Your plant requires the following size specifications to be met by the
two converters: 8.75 + 0.025. After the steel bars are sized at the converters, they are
returned to your plant, where they are stored in lots. The lots generally consist of a
mixture of the steel bars sized at the two converters. Prior to shipping to your
customers, a final inspection is performed where a sample of bars is inspected for
defects and size data is collected on the sample. Because of recent claims by custo-
mers that the steel bars are not meeting the size specifications, 10 bars are randomly
selected from each of 20 lots and measured.

Measurement
] 2 3 4 5 6 7 8 9 10 X-bar  Range

8.760 B.749 8743 8.793 8.772 8.779 8.743 8.741 8779 8775 8.7634 0.052
8.780 8.781 8.743 8757 8760 8.778 8760 8.732 8.767 8.745 87600 0.049
8.757 8.779 8753 8.768 8.722 8.786 8.770 8.775 8.779 8774 8.7663 0.064
8.779 8.769 8.730 8.771. 8.774 8774 B8.758 8.752 8.746 8.779 8.7632  0.049
8.772 B8.749 8.753 8.755. 8.784 8.775 8.789 8.778 8.784 8751 8.7690 0.040
8.764 8772 8755 8.760 8.787 8.766 8.785 8.783 8.752 8.737 B8.7661 0.050
8.738 8.774 B8.783 8.781 8.762 8.746 8.777 8.780 8.771 8776 8.7688  0.045
8.785 8.736 8.782 8.787 8.760 8.756 8.737 8.762 8.745 8754 87604 0.051
8.782 8785 8.775 8.761 8.781 8.777 8.782 8.751 8.750 8.744 B.7688  0.04]
8.725 8.788 8.776 8.778 8.779 B8.740 8.760 8.749 8.765 8.776 8.7636  0.063
8.784 8779 8782 8.728 8.758 8.741 8750 8.756 8.757 8.780 8.7615  0.056
8.778 8.779 8.783 8.775 8.747 8.746 8.788 8.782 8.779 8.776 8.7733  0.042
8.781 B8.745 8.748 B8.748 8.742 8.761 8.779 8765 8.780 B8.776 8.7625  0.039
8.794 8.743 8768 8.757 B8.747 8.789 8772 8774 8.799 8775 8.7718 0.056
8759 8.745 8.739 8.755 B8.747 8790 8.774 8.788 8.766 8.785 87648  0.051
8.759 8.758 8773 8.750 8.740 8.783 8.787 8.768 8.773 8.783 8.7674 0.047
8.774 8.751 8.737 8.732 8.749 8.740 8.754 8.773 8.777 8775 8.7562 0.045
8.770 8.770 8.755 8.763 8.773 8.767 8.754 8.780 8.778 8.741 8.765f1  0.039
8.750 8.759 8.739 8.752 8.759 8.791 8.783 8.773 8.755 8.739 8.7600 0.052
8.752 8.757 8.784 8.781 8.772 8.785 8768 8.751 8.755 8.758 8.7663 0.034

a. Construct the appropriate control charts to analyze the stability of the process.
Is the variability of the sizing process in control? Is the process average in control?

b. If appropriate, compute an estimate of the process standard deviation. Determine
if the process is capable of meeting the specifications.

Problem 9 (Chapter 6)

Oven dried moisture tests are conducted by taking a 12 x 12 sample from each
finished roll of paper. Specifications on moisture are 6%+1%. Data from the last 20
rolls are reported below.

a. Using two-item moving range and individuals charts, determine if the process is
in control over this time period.

b, Is the process capable of meeting specifications?
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Roll number X MR
1 6.4 -
2 4.8 1.6
3 6.7 19
4 4.9 1.8
5 6.4 1.5
6 42 22
7 5.8 1.6
8 6.4 0.6
9 59 0.5

10 55 04
11 6.3 0.8
12 6.4 0.1
13 7.1 0.7
14 59 1.2
15 6.1 0.2
16 49 1.2
17 54 0.5
18 7.1 1.7
19 6.9 0.2
20 59 1.0

Problem 10 (Chapter 7)

Bottles of shampoo are filled on an automatic line using a five-head filler. You have
been assigned to the team responsible for analyzing the process, determining process
capabilities, and recommending ways in which to improve the process. In order to
begin a study of the fill weights, you have decided to check the calibration of the
scale to determine whether or not the measurement process is stable. Three members
of your team have suggested the following different subgrouping methods for this
purpose.

I. A subgroup is to consist of the weights of five consecutive bottles from one
head.

2. One bottle should be selected from each head. The subgroup consists of four
weights of the same bottle from one head.

3. A subgroup should consist of one bottle selected from each of the five heads, and
each bottle should be weighed once.

a. What are the sources of within-subgroup variation in the subgrouping methods
(1), (2) and (3), respectively?

The team has decided to use the second subgrouping method, whereby a bottle is
chosen from one head, and four repeat measurements of the weight are made.

s I Measurement

ample

number Head 1 2 3 4 X-bar Range
1 1 479.17 478.93 479.54 479.12 479.19 0.61
2 2 481.13 481.75 480.97 481.21 481.27 0.78
3 3 475.71 476.24 475.95 475.48 475.85 0.76
4 4 485.37 485.17 484.70 484.89 485.03 0.67
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Measurement

Sample

number  Head ) 2 3 4 X-bar Range
5 5 476.80 477.12 471.07 477.10 4717.02 0.32
6 1 479.01 479.23 479.12 479.10 479.12 0.22
7 2 481.16 480.83 481.10 481.30 481.10 0.47
8 3 475.82 476.14 476.17 475.93 476.02 0.35
9 4 485.08 485.29 485.52 484.92 485.20 0.60
10 5 477.11 476.68 477.32 477.54 477.16 0.86

b. Construct a range chart from these data.

c.
d.

e.

What sources of variation are captured in the range chart?
If appropriate, estimate the within-subgroup variation.

Construct the average chart based on the above range chart. Discuss the issue of

using the value of R-bar to put the limits on the average chart for this subgrouping
strategy.

f

tion

g

Estimate the percentage of total variation that is due to within-subgroup varia-

What does the above information tell you about variation in your measurement

process?



C. SOLUTIONS TO PRACTICE PROBLEMS

Problem 1

a. p-bar = 0.003045
UCLp = 0.008275
LCLp = none
All points are inside control limits.

b.  There is no information available on how the data were collected. Are the data
time ordered? Without this information runs tests are inappropriate. There is also no
information available on the method of subgrouping. The most easily obtainable data
do not always provide sufficient information about the process.

¢. Course of further action:
Draw the process flow chart in order to define the process.
Analyze the potential causes of defective cans by a cause-and-effect diagram.

Develop a data collection strategy to provide the desired information.

Problem 2

a. np-bar = 2.12
UCLnp = 6.47
LCLnp = none

b. The process is not stable. There is one observation above the upper control
limit.

c¢. The number of measurements in the sample is 700.

Shift 1:

p-bar = 0.0038
np-bar = 2.6923
UCLnp = 7.6053
LCLnp = none
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Shift 2:
p-bar = 0.0022
np-bar = 1.5385
UCLnp = 5.2554
LCLnp = none

d.  The process of shift  is stable and predictable. The same holds for the process
of shift 2. As a consequence, the average proportions of defective cans between the
two shifts can be compared. It appears that shift 1 has a lower fraction of defective
cans produced.

e. More questions concerning the data:
Who took the measurements?
Is the inspection process consistent between the two shifts?

Are there operational definitions?

Problem 3

a. p-bar = 0.0662

Lot 22:

n =200

p =0.1150

UCLp = 0.1189

LCLp = 0.0135

All points are inside control limits.

Lot 23:

n =275

p = 00182

UCLp = 0.1112

LCLp = 0.0212

There are points outside control limits.

b. Methods of performance appraisal can have the following impact on the use of
data for system improvement:

I.  Possible misrepresentation of data.

2. Data may be used to support individual performance instead of
process performance.

Problem 4

a. In this analysis a c chart should be used.

b. The centre line is at the level 18.

UCLc = 30.7279
LCLe = 5.2721
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Problem 5

a. A set of c charts based on the inspection unit of 1 day need to be constructed.

Line 1:
c-bar = 8.2143
UCLc = 16.8125
LCLc = none
Line 2:
c-bar = 11.8571
UCLc = 22.8173
LCLc = 1.5269
Line 3:
c-bar = 12.1429
UCLc = 22.5969
LCLc = 1.6889

There are no points outside control limits.
b. The focus should be on reducing the number of stops on lines 2 and 3. Sigjce

there are no special causes acting on the process, improvement efforts must be
directed at the system.

Problem 6

Using 100 square yards as an inspection unit the following numbers are obtained:

Lot number n c u UCLu LCLu
1 2.00 5 2.50 6.052 -
2 2.50 7 2.80 5.690 -
3 1.00 3 3.00 7474 -
4 0.90 2 2.22 1.737 -
5 1.20 4 333 7.051 -
6 0.80 1 1.25 8.047 -
u-bar = 2.619
UCLu = 7.474
LCLu = none
Problem 7
a,b. Range chart: The centre line is at the level 0.00503
UCLR = 0.0129
LCLR = none

Average chart: The centre line is at the level 0.05493

UCL = 0.0601
LCL = 0.0498
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¢.  Within-batch variation is reflected in the range values.

d. Between-batch variation - the variation due to the ingredients being different
between batches - causes the range of variation in subgroup averages to be larger
than that predicted by the control limits on the average chart.

e. The variation between batches appears to be causing most of the variation in the
process.

Problem 8

a. Range chart: The centre line is at the level 0.048

UCLR = 0.085
LCLR = 0.011

No points are outside control limits.

Average chart: The centre line is at the level 8.765

UCL = 8.780
LCL = 8.750

No points are outside control limits.
b.  An estimate of the process standard deveiation is 0.0156
NT = 0.0936

ET = 0.0500
The process is not capable.

Problem 9

a. Calculations for the moving-range chart:

MR-bar = 1.037
UCLMR = 3.387
LCLMR = none

The moving-range chart is in control.

Calculations for the individuals chart:

X-bar = 5.95
UCLX = 8.71
LCLX = 3.19

The individuals chart is in control.

b.  An estimate of the standard deviation of X is 0.919.
NT = 5.516
ET =2
The process is not capable.
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Problem 10

a. Sources of within-group variation for
method (1):
within-head variation - lack of homogeneity

bottle-to-bottle variation within the same head
measurement variation

method (2):

measurement variation
method (3):

head-to-head variation

measurement variation
bottle-to-bottle variation

b. Range chart: The centre line is at the level 0.564.
UCLR = 1.287
LCLR = none

¢. The range chart captures within-subgroup variation and measurement variation.

d.  Since the range chart is in control, it is appropriate to estimate within-subgroup
variation. An estimate is 0.274.

e. Average chart:

The centre line is at the level 479.695
UCL = 480.106
LCL = 479.284

When the value of R-bar is used to put control limits on the average chart, only
within-subgroup variation is taken into consideration. There are two other
sources of variation (head-to-head and bottle-to-bottle) that should be consid-
ered as part of the system, but are not captured in the within-subgroup variation.

J Calculations for measuring between-subgroup variation:

Moving-range chart:
MR-bar(X-bar) = 5.6754
UCL = 18.5417
LCL = none

Average chart:

X-double-bar = 479.695
UCL = 494.7891
LCL = 464.0085

An estimate of the between-batch standard deviation is 5.0295. An estimate of total
variation is 25.3711. Therefore the percentage of total variation due to within-sub-
group variation is 0.30%.

g Variation in the measurement process is small compared to total process vari-
ation.
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