

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION
Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria

Tel: (+43-1) 26026-0 · www.unido.org · unido@unido.org

OCCASION

This publication has been made available to the public on the occasion of the 50
th

 anniversary of the

United Nations Industrial Development Organisation.

DISCLAIMER

This document has been produced without formal United Nations editing. The designations

employed and the presentation of the material in this document do not imply the expression of any

opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development

Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its

authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or

degree of development. Designations such as “developed”, “industrialized” and “developing” are

intended for statistical convenience and do not necessarily express a judgment about the stage

reached by a particular country or area in the development process. Mention of firm names or

commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes

without additional permission from UNIDO. However, those who make use of quoting and

referencing this publication are requested to follow the Fair Use Policy of giving due credit to

UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

mailto:publications@unido.org
http://www.unido.org/

I lllll lllllll llll 11111111111111111111111111111111111111 ----
XD9700193

2./15 I INTELLIGENT TECHNOLOGIES.
NEW OPPORTUNITIES FOR MODERN INDUSTRY.

./"'' ~ l-
. Alexander R. Kornilov -- (_.>,1. !'v P4 r;)_

. '~cLd'kr 7(11 · ~ ~~
Moscow Institute of Electronic Technology - Technicd/ University

Computer Science Department.

«<.
(\";-.: r

1. Introduction

During the last few decades the attitude of the industrial community to the ability of computer

science to deal with uncertainty of data in a way any human being does, has changed from

unlimited optimism to a more realistic and pragmatic approach. Their ambitions shifted from

creation of artificial intelligence towards development of intelligent technologies. The latter are

usually considered as computer methods to solve problems that require any intellectual efforts.

The scope of possible applications of intelligent technologies is very wide : automatic control,

decision making, learning, natural languages, scheduling, speech and pattern recognition, games

etc.

Studying modern trends in intelligent technologies reveals an increasing role of "Soft

Computing" as the main methodology of design and analysis of intelligent systems. The term

"Soft Computing" introduced by L.Zadeh [1] means an approach based on computer algorithms

driven by their own inseparable guiding principle in contrast to traditional ''Hard Computing"

driven by some deterministic algorithm (program). The main activities in "Soft Computing" are

centred around the following principal areas : fuzzy logic, neural networks and genetic algorithms

(GAs).

The general objective of soft computing methods is to provide adaptation to changes of the

.Page

4-~/4'
td~
rwc1.l!-.1

CW1.t; /.IU' v
f'

l· .. m

analysed object behaviour, what is inherent to many real-life problems. Here abundance, fuzziness

and incompleteness of knowledge are not disadvantages to avoid but essential parts of a domain

model to obtain the optimal or a sufficient solution within a shorter time period and with less

efforts (expenditure) comparing with traditional methods.

The relations between microelectronics and intelligent technologies can be specified as special or

mutually beneficial. There are two reasons for their partnership. On the one hand,

microelectronics as industry and science, requires carrying out R&D and production methods

matching its sophistication. Indeed, the following specific features of microelectronics prove it:

systems of microelectronics (either these are their products or technological equipment or

technological processes or processes ofR&D) are so complex that there are no precise

deterministic or stochastic mathematical models available. It can occur when some

factors affecting a process or their contribution are unknown;

time consumed by precise mathematical methods are intolerable;

critical importance of human factor in microelectronic manufacturing that can hardly be

captured by traditional methods;

extremely high reliability of products of microelectronics makes it practically impossible to

obtain data samples in a sufficient volume;

some parameters of technological process of microelectronics allow only qualitative

representation;

at the beginning of a design process a great deal of expert estimation, discourses in form of

tendencies, heuristics are available along with no need in high precision of decisions

made at this stage.

On the other hand, the progress of microelectronics opens new opportunities for application of

microelectronic hardware, stimulates the development of new methods of complex systems

analysis and does provide manufacturers and designers with appropriate hardware to implement

Pag~

1.· Page:

modern intelligent technologies.

, I m

2.1. Fuzzy logic

2.1.1. Basic concepts

Fuzzy Logic was initiated in 1965 by Lotfi A Zadeh [2], professor for computer science at the

University of California in Berkeley, and it is probably the most developed part ofintelligent

technologies. This theory is based on extension of traditional (Boolean) binary logic which is

considered inadequate for capturing a domain uncertainty, ambiguities or a number of exceptions.

Fuzzy Logic is basically a multivalued logic that allows intermediate values to be defined between

conventional evaluations like yes/no, true/false, black/white etc. Notions like high or pretty high

can be formulated mathematically and processed with a computer. For example, is 50 degrees

Centigrade a high or low temperature of integrated circuit performance environment? In the real

world an answer "it depends" is common, and in fuzzy logic "some of both" might be the answer,

that is 50 degrees Centigrade is partially high and partially low temperature. In this way an

attempt is made to apply a more human-like way of thinking in the programming of computers.

Fuzzy logic in this sense provides a designer with a powerful technology of presenting expert

knowledge in a more natural and explicit way almost like in the daily life.

This is reached by a more general notion of a set comparing to the classical set theory. In classical

or conventional set theory, the set S is defined by a function fs called a characteristic function of

S. It maps elements of S to {0,1), so that for xES,

{
l, if x ES

fs(x)= 0, ifx~S

Therefore, for any element x of S fs(x) = 1, if x is an element of S, and fs(x) =O, if x is not an

element of S.

Page

'[

In contrast, in fuzzy set theory the set S is defined by a function µs, called a membership function

of S. This function maps elements of S to [O, 1], so that for x ES, µs= 1 means that x totally

belongs to S, µs=O means that x does not belong to S, and O<µs<J means that x belongs to S

with a degree of membership of µs.

Therefore fuzzy logic recognises not only "pure" cases (belongs/does not belong), but also infinite

gradations in between, assigning numbers (degrees of membership) to them. So, ifthe

membership function of ''High temperature" is as in Fig. 1, then 75°C might be classified as high

with a degree of0.7. Such numbers can be used to obtain exact solutions using imprecise

information.

!(I)

1.0

0.7

High

Temperature (°C)

Fig.1. Fuzzy set ''High temperature"

.Page

2.1.2. Fuzzy decision making (control) process.

Within fuzzy approach these expressiveness and inherent flexibility are reached by special logic

inference on a set of "IF-THEN' rules which combine antecedents (inputs) and consequences

(respective outputs) in a way to match a domain (or at least an expert knowledge of it). A set of

such rules is called a knowledge base. A control (decision making) procedure in fuzzy systems

usually consists of the following steps: fuzzification, rule evaluation, defuzzification [3].

Fuzzification is a procedure of obtaining fuzzy representation of crisp values using predefined set

of membership functions. As soon as such set is defined the procedure of fuzzification compares

crisp values with the membership functions to determine corresponding fuzzy values. So the first

step in fuzzification procedure is to define a linguistic variables [4], i.e. variables with values form

a set of artificial or natural language sentences. These sentences are considered as labels of fuzzy

sets. For example, a linguistic variable "temperature" can have values "smalf' - S, "less then

medium" - nM, "medium" -M, "more then medium" - pM, "high" - H.

At the next step of fuzzification for each label of fuzzy sets, corresponding membership functions

are defined. Each membership function identifies the range of input values that corresponds to a

label. Although a precise deterministic procedure is used to process fuzzy rules, fuzziness is

introduced by configuring overlap between antecedent's membership function domain, so crisp

input values can belong to more than one fuzzy set. Fuzzy outputs also have membership

functions. Describing crisp inputs in fuzzy terms allows the system to gracefully respond to

gradual changes in input. The shape of the membership function reflects subjective opinion of an

expert about the system behaviour, or states and affects the fuzzy process a in subtle way. For

example, the function's shape directly affects the time and space requirements for a

microcontroller performing fuzzification and defuzzification. Membership functions can be of

several different shapes (Fig. 2).

Pager

µ(X) µ(X) µ(X)

x x x
Triangular Trapezoidal Singleton

Fig.2. Membership function shapes.

Trapezoidal and triangular shapes of membership functions are most frequently used. Membership

functions of arbitrary shapes may be more representative, but they require more complicated

equations or large lookup tables to be represented accurately. Singletons are easily represented in

computer and require more simple defuzzification algorithms. So they are frequently used to

represent fuzzy outputs. An example of membership functions of fuzzy sets for the linguistic

variable "temperature" is shown in Fig. 3.

µ(x)

1.0
0.9

0.6
0.5

s nM M pM H

,___.'--~-1-~~---~__,.__~~~~~~oc

25° 50° 75° 100° 125°
70°

Fig.3. Membership functions for linguistic variable "temperature".

Depending on the shapes of membership functions, various methods are used to represent the

Page~

' r·m

functions in a microcontroller. A point-slope representation allows trapezoidal, triangular, and

singleton functions to be represented with a minimal amount of space and time. A lookup table is

a common representation for an arbitrary shaped function. It is the fastest representation in terms

of fuzzification, but it requires a lot of memory. Studies have shown that reasonable performance

and the significant time savings can be obtained using singleton outputs, but the resultant output

actions may not represent the response as closely as desired,

Rule evaluation (fuzzy inference) is the second stage of the fuzzy logic processing where

linguistic rules are used to determine what fuzzy outputs (control actions, decisions) should occur

in response to a given set of input values, In processing of a set of rules, the fuzzy system

(algorithm) fires rules with antecedents which membership functions indicate non-zero degree of

membership corresponding to a fuzzy inputs generated by a current crisp value of a system input

on the stage of fuzzification. So several rules can be fired at the same time. Fuzzy rules are usually

IF-THEN statements that describe the action to be taken in response to various fuzzy inputs,

Linguistic rules are confined to a predefined set of linguistic terms and a strict syntax:

IF antecedent 1ANDantecedent2 ... ,THEN consequent 1 AND consequent 2 ... ,

where AND is one of the fuzzy logic operators, and the antecedent and the consequent are in the

form of

Antecedent: Input variable is label,

Consequent: Output variable is label.

Rules describe the behaviour of a system and are written in terms of the membership function

linguistic labels. For two-input one-output system the rules can be represented in the form of a

table in Fig. 4, where an algorithm of evaluation of mean-time to failure of integrated circuit

Page

. rm••

metallization is presented. Here I and T mean linguistic variables "current density" and

"tempe t " ra ure , respec 1ve1y.

T
I s nM M pM L

s
nM M

M M

pM pM s
L

Fig.4. Fuzzy algorithm for evaluation of mean-time to failure of metallization.

This fuzzy algorithm consists of 4 linguistic rules:

1) IF current density is pM AND temperature is nM,

THEN mean-time to failure of metallization is pM.

2) IF current density is pM AND temperature is H,

THEN mean-time to failure of metallization is H.

3) IF current density is nM AND temperature is H,

THEN mean-time to failure of metallization is M.

4) IF current density is M AND temperature is M,

THEN mean-time to failure of metallization is M.

The next step in the procedure of fuzzy inference is to evaluate the relevance or degree of

membership of each rule antecedent. The relevance of an antecedent is determined as a degree of

membership of an input crisp value to a fuzzy set of the corresponding antecedent. This is

performed for each antecedent of a rule.

Page

' Im m •••

"Current density"

µ(x)
s nM M pM H

1.0

7.S-102
103 A/mm.2

"Mean time to failure of metallization"

µ(x)
s nM M pM H

1.0

105 2.5·105 5·105 7.5·105 106 Hrs

Fig.5. Fuzzy sets used in algorithm of evaluation of mean-time to failure of metallization

Let the linguistic variables for the fuzzy algorithm of evaluation of mean-time to failure of

integrated circuit metallization be defined as in Fig. 4, with fuzzy sets of variables "current

density" and "mean-time to failure of metallization" presented in Fig.5. Then for the linguistic

variable "current density" and inputs of 6.102 Nmm2 of current density the relevance of

antecedents are 0.7 for the fuzzy set "pM", 0.3 for the fuzzy set "nM'' and 0.8 for the fuzzy set

''M" (Fig.5). Following the same procedure for the linguistic variable "temperature" and input of

70°C, the relevance of antecedents are 0.6 for the fuzzy set "nM", 0.9 for the fuzzy set ''M'' and

0.0 for the fuzzy set ''H" (Fig.3).

At the following step the degree of truth (rule strength) for each rule is to be determined as the

smallest strength value (relevance) of the rule antecedents. The strengths of the rules of the

algorithm presented above, when crisp input values are 6.102 Nmm2 a current density and 70°C

for temperature, are:

1) min{0.7,0.6}=0.6

Page 1

2) min{0.7,0.0}=0.0

3) min{0.3,0.0}=0.0

4) min{0.8,0.9}=0.8.

The next step is to determine the fuzzy output by comparing the rule strengths of all rules that

represent the same consequent label (output action). When there are several rules with the same

consequent label, the fuzzy output is determined as the largest rule strength of all such rules. This

procedure produces one fuzzy output membership function label. For fuzzy algorithm presented in

Fig.4, the fuzzy output for the given crisp inputs (6.105 Ncm2, 70°C) will be

mean -time to failure of metallization is pM (0.6) ORM (0.8).

So the main steps of the rule of inference described (min-max inference) are the following:

- describe the system behaviour in terms of IF-THEN rules;

- apply fuzzification procedure for current crisp input values to determine the degree of

truth of each antecedent:

- determine the strength of the entire rule as the minimum of the antecedent degrees of

truth;

- find the fuzzy outputs which are equal to the maximum rule strength for each consequent

label.

During the last stage - defuzzification - a single crisp output action is obtained. There are mainly

two algorithms: the mean of maxima and the centre of gravity procedures. The first one takes the

smallest xl and the largest x2 of the elements which give the maximum membership value, and

calculate the mean of the two.

One of the most frequently used defuzzification method is the centre of gravity (COG) or centroid

method. According to this method each output membership function is truncated above the value

Page 1

......... page'

determined by its respective fuzzy output. Since all resulting membership functions are

determined, they are combined according to OR operator as the union of corresponding fuzzy

sets. The union of two fuzzy sets A and B with membership functions µA(x) and µB(x), xEU is a

fuzzy setAuB with the membership function µAnB(x)=max(µA(x),µB(x)), XEU. In the example

under consideration, the output membership function looks like in Fig.6 (the shaded area).

µ(x)

1.0

0.8

0.6

M pM

105 2.5·105 5·105 7.5·105 106 Hrs

COG=5.85· 105

Fig.6. Output membership function of mean-time to failure of metallization

The next step is to find the centre of gravity of the shaded area as

J µ(x)xdx
COG=_a __ _

J µ(x)dx
a

More practically an estimation of COG is calculated over a sample of points in the output domain

with a step size enough to reach the sufficient accuracy:
b

Lµ(x)x
COG= ~x=~:--­

L µ(x)

Frequently used singleton output membership functions considerably simplify the defuzzification

procedure. In this case truncated singleton values of output membership functions are combined

using a weighted average.

Applying the COG method to the output membership function of mean-time to failure of

metallization, the crisp value of 5.85· 105 hours is obtained (Fig.6).

2.1. 3.Fuzzy control.

The development of the fuzzy logic theory has stimulated alternative ways of solving automatic

control problems. Based on ideas of fuzzy logic, Mamdani and Assilian [5] proposed fuzzy

controllers which describe human control in a linguistic form. As a result the first applications of

the fuzzy control replaced human operators. But it is only recently, since about 1990, that the

interest in the fuzzy control has increased strongly, because of successful fuzzy control of

industrial processes, success and advertisement of Japanese consumer products. Table I [6] that

contains the estimations of degrees of sharp and vague information for the main elements in

process information: the input variables, the process classes, the automation functions and the

output variables, indicates the reasons of fuzzy logic application to control.

According to [6] some advantages of fuzzy control can be summarised as follows:

For processes where no sufficient control performance can be reached with PI- and

PID-controllers and parameter adjustment by tuning rules, the fuzzy control may be an

alternative. This is especially valid for processes with difficultly understandable behaviour, if

only qualitative knowledge is available and strongly non-linear properties exist.

If manual control is possible the operator's knowledge can be formulated in fuzzy rules with

linguistic inputs and outputs.

An additional advantage of the fuzzy control concept is a fast prototyping by some few rules, if

classical standard controller is not suitable.

Table I. Degrees of sharpness and vagueness for main elements in process automation. Intensity
f l d" 11 o a property: +++ ar~ e; ++ me mm; + sma .

Automation elements Degree of sharp and vague information
Crisp Fuzzv

I .Input Variable Precise Values Imprecise Values
- Usual sensor +++
- Low cost sensor + ++
- Non directly measurable ++ +

variables
- Linguistic +++
2.Process Classes Quantitative Knowledge Quantitative Knowledge
- Mechanical processes ++ +
- Electrical processes ++ +
- Thermal processes ++ +
- Chemical processes + ++
- Biological processes + ++
3. Automation function Precise Algorithms Rules
- Control ++ +
- Supervision + ++
- Management + ++
- Man-machine interface + ++
4. Output-Variable Precise Values Imprecise Values
- Actuator +++
- Operator + ++

Comprehensive review of different fuzzy control architectures can be found in [6].

2.1.4. Fuzzy logic applications.

Nowadays fuzzy logic algorithms are widely used in microcontrollers, e.g. fuzzy coprocessor SAE

81 C99 of Siemens [7]. The coprocessor is able to process within one control cycle up to 256 8-bit

inputs and to form up to 64 output control signals using programmable knowledge base

containing up to 16384 rules. The coprocessor is manufactured by I micron CMOS technology

and having frequency 20 MHz is able to process 7.9 million rules per second. The coprocessor is

shown in Fig. 7.

r

Microcontroller
interface

KBM interface

On-chip ROM

8

15

ROM bus

Data bus

8

Fuzzifier

Rule decoder

Rule evaluator

with on-chip RAM

Inference

Defuzzifier

Fig.7. Architecture of Fuzzy Logic Coprocessor

Fuzzy Logic has emerged as a profitable tool for the controlling of subway systems and complex

industrial processes, as well as for household and entertainment electronics, diagnosis systems and

other expert systems.

Here is a short list of examples of fuzzy logic applications sourced from WWW

http://www. mitgmbg. de/erudit:

Automatic control of dam gates for hydroelectric-power plants (Tokyo Electric Pow.).

Preventing unwanted temperature fluctuations in air-conditioning systems (Mitsubishi,

Sharp).

Efficient and stable control of car-engines, Cruise-control for automobiles (Nissan,

Subaru).

Positioning of wafer-steppers in the production of semiconductors (Canon).

Optimized planning of bus time-tables (Toshiba, Nippon-System, Keihan-Express).

Page 1

> I mm

Prediction system for early recognition of earthquakes (Inst. of Seismology Bureau of

Metrology, Japan).

Medicine technology: cancer diagnosis (Kawasaki Medical School).

Recognition of handwritten symbols, objects, voice (Sony, Hitachi, Hosai Univ.)

Recognition of motives in pictures with video cameras; Back light control for

camcorders; Compensation against vibrations in camcorders (Canon, Minolta,

Sanyo, Matsushita).

Automatic motor-control for vacuum cleaners with recognition of surface condition and

degree of soiling (Matsushita).

Controlling of machinery speed and temperature for steel-works (Kawasaki Steel,

New-Nippon Steel, NKK).

Controlling of subway systems in order to improve driving comfort, precision of halting

and power economy (Hitachi).

Improved fuel-consumption for automobiles (NOK, Nippon Denki Tools).

Improved sensitiveness and efficiency for elevator control (Fujitec, Hitachi, Toshiba).

Improved safety for nuclear reactors (Hitachi, Bernard, Nuclear Fuel div.).

Practice of fuzzy logic application reveals that it results in a better performance, a lower power

consumption, a higher degree of adaptability, a higher autonomy. Its current state makes it

possible to say that the ''fuzzy logic industry'' really exists.

2.2. Neural Networks

2.2.1.Basic concepts

Page·

Many hopes of specialists in artificial intelligence in 50s were dealt with the conception of

perceptron developed by F.Rosenblatt [8,9]. But in the end of 60s they were ruined by M.Minsky

and S.Papert [10]. Since the end of 70s there has been a growing interest among different

specialists to neural models which are its further development.

Neural networks, unlike fuzzy systems, do not require explicit representation of process

knowledge in a set of rules. Being a highly interconnected non-linear system, neural nets elicit

knowledge (learn) directly from a set of input/output data examples (training data) that represent

the process behaviour. This is an important feature which perfectly matches the problem of

developing complex systems adaptive to changing input conditions. Moreover, neural networks

are very helpful when dealing with incomplete or noisy input signals because they can extract

knowledge from incoming data that only partially similar to the training data.

The areas most suitable for neural nets applications are:

pattern recognition (classification);

function estimation;

feature extraction and filtering;

data compression and decompression;

statistical analysis.

Neural networks as one of intelligent technologies were inspired by the brain and human

neurones. Neural network models consist of neural elements (Fig. 8) and are based on the

activities of processing elements (PE) - "nodes", strengths of connections among the nodes

("weights"), and techniques for adapting the connection strengths in order to improve network

performance over time [11].

Page'

-i····

f ~4---y

Fig 8. Neural element

A processing element (PE) in a neural net can receive many inputs

xl, x2, ... , xM (or an input vector X), and generates one outputy that is some non-linear function

f of its inputs. The operations performed by the processing element depends upon the type of

neural network algorithm used. Usually it aggregates its inputs as a weighted sum with weights
M

S= "wx ~ ll
wl, w2, ... , wM: i=l , where weights are associated with the interconnections between

processing elements and generates an outputy=f(S-6?) if this aggregation is above some threshold

value e. Usually the simplest non-linear functions are used: binary function (threshold function,

hard limiter) (Fig. 9a) that provides the PE with a digital output

y= {
1, ifs> 0

0, ifs s 0

or sigmoid function that provides an analog output (Fig. 9b)
1

y-
- (1-e-(s-e))

f

1

s
a

f

s
b

Page 1

Fig. 9. Tipical non-linear functions

The processing element is said to ''fire" if a sufficient excitation is applied to its inputs.

Processing elements are connected into complex arrangements depending on the type of neural

network architecture implemented. The most common neural network architecture is the

three-layer network (Fig. 10), which usually consists of an input layer (one node for each input

variable), an output layer (one node for each output) and a middle or "hidden'• layer in which the

number of nodes is a configurable parameter that has a significant influence on the performance of

the network.

Input
Layer

Hidden
Layer

Output
Layer

Fig.10. Neural network with three layers.

One of the main features of the neural nets is their selforganization and selfadaptivity. Some

training is required before a neural network can be used. During this training process, input data

(also called training data) is presented to the network and the connection weights at each PE are

adjusted based on a mathematical algorithm called a learning law. Learning can be supervised or

unsupervised. In supervised learning the network is presented with inputs and the desired outputs.

The weights are then adjusted to minimise the error between the actual output and the desired

output. An example of supervised learning is the backpropagation network.

··· ····· F>a9e2

In unsupervised learning only input data is presented to the network. Here, the learning law

provides information that allows the network to modify itself based solely on features in the input

data. Examples of unsupervised learning are self organising maps and learning vector quantization

networks.

The most widely used learning laws are listed below.

Hebb 's Rule states that ifthe connected neurones fire, the connection should be strengthened.

This learning rule is the foundation of most learning techniques used in artificial neural networks.

Generalized delta rule. This rule also known as the least mean square (LMS) learning rule since it

minimises the mean square error. It is based on the idea of modifying the strengths of connections

to reduce the difference between the desired output value and the current output value of a

processing element. The backpropagation technique is the most commonly used generalisation of

this rule.

Kohonen 's learning law. This law is used only in unsupervised learning. In this law, processing

elements must compete for the opportunity to learn. The PE with the largest output will be the

winner and can then either inhibit its competitors or excite its neighbours. Only the winner can

have an output and only the winner and its neighbours can adjust their weights. Since the winning

element is defined as the one that has the closest match to the input pattern, Kohonen networks

model the distribution in the inputs.

After the training process is finished, and the neural network has learned a proper output

response, it can be used in it's "normal" operating mode in the target application.

'[

2.2.2.Neural nets models.

There are many training algorithms which were developed for different neural nets models some

of which are described below in more detail.

Multilayer perceptron.

While the simple (one layer) perceptron defines borders of a decision area in a form of

hyperspaces, the two layer perceptron can define any convex area in a space of output signals. As

for multilayer perceptrons, they are able to realise any input-output mapping. The

back-propagation network (BPN), also known as a multilayer perceptron (MPL) network, is one

of the most popular neural network algorithms of this type.

The BPN is a multilayer network requiring that at least two of the layers contain adaptive

weights. The input layer distributes the inputs to the hidden layer. The network is typically fully

connected, that is, every PE in a layer has a connection to every PE in the subsequent layer (Fig.

10).

M

S=Lw;;X;
A processing element in a BPN performs a weighted sum of its inputs: i=t

where:

xi: is the input to the PE, and

wji: is the weight from input i to PEj of the following layer.

Then an output function (a transfer function, threshold function or squashing function) is applied

to the sum of weights. This non-linear function is used to limit the output of the PE. Otherwise,

the potential could have a value significantly larger than the input value. This can cause an

Page~

explosion in the output value when PEs are connected in a cascade manner.

The BPN requires a training data to be presented. The data sample consists of pairs of patterns

between which a relation should be determined. In a multilayer perceptron there can be many

hidden layers between input and output ones. Each neural element can be connected to any

element of neighbour layers, but not to the elements of the same layer. The training of the BPN

includes two phases: a forward-propagation or a processing phase, and a back-propagation or

learning phase.

During the processing phase, an input vector is presented to the network. The input layer simply

passes the inputs to the first hidden layer (multiple hidden layers are allowed, although a single

layer is most common). Each PE in this hidden layer performs the weighted sum of its inputs,

applies an output function to this aggregation, and passes the result to the following layer. The

process is repeated for all layers in the network until the output layer generates an output.

In terms of pattern recognition, an input vector means a set of characteristics (symptoms), but an

output vector corresponds to a class of patterns. Here a hidden layer is used for knowledge

representation.

During the learning phase, an output error is computed and then propagated back through the

proceeding layers. The weights in the layers are adjusted to minimise the error between the actual

output and the desired output of each PE

At the beginning of the learning phase all weights are preset to small random values and a training

input vector is presented. Then an output error for each PE in the output layer is computed

e1c =(d1c-Y1c)·!{~w~·yj),

Page 2:

using previously determined values of outputs yj for every PE in the hidden layer

Y1=1(f w1; · x;)
l=l

and the outputs yk for every PE in the output layer

Yt = 1(f wi!i · Y1)
J=l

Then this error is propagated back through the proceeding layers by calculating the error for each

PE in the hidden layer

The weights at the output layer and the hidden layer are updated after each presentation of a

training input vector

wi!i(t + 1) = w"'1.(t)-; e1 y1

Wj;(t+l)=wAt)+; ejxi.

Here the following notations are used:

xi: inputi.

wji: weight connecting unit i in the input layer to PEj in the hidden layer.

yj: output of PEj in the hidden layer.

wkj: weight connecting PEj in the hidden layer to PEk in the output layer.

yk: output of PEk in the output layer.

f(): output function (typically a sigmoid).

ek: error of the output layer.

dk: desired output of unit kin the output layer.

ej: error at the hidden layer.

fO: derivative of the PE's output functionJO./{x)=j{x)(l:fCx)) for a sigmoid function.

~:learning rate (usually a small number between 0.05 and 0.25)

··Page~

·r ..

All steps are repeated for all training vectors until the error for all the training vectors is

acceptable. With the backpropagation algorithm, multiple presentations of the training set are

usually necessary.

In some situations the backpropagation algorithm may not find an optimum solution due to local

minima. A local minimum occurs because of the BPN learning law is based on a gradient descent

function. There can be other reasons why the BPN may not converge. In this case there is an

options to modify any of the design parameters (network architecture: number of layers, number

of PEs in a layer, number of inputs/outputs, connectivity between layer bias terms; learning

parameters: weight initialisation, learning rate, momentum; training data) and to try the procedure

agam.

If the network is properly trained, it can be used in its processing phase in the target application.

Design flexibility in modifying any number ofBPN parameters along with the ability to learn a

tremendous variety of complex input-to-output mapping functions from training data make the

multilayer perceptron very efficient in different applications

But for the adequate training, the training data consisting of system inputs and proper outputs

must be available and should be carefully selected. Moreover the learning algorithm is

computationally intensive, and sometimes for it to converge to an optimal solution, the multiple

presentation (hundreds) of all training data are required. Anyway this is probably the most popular

model of neural network and it is often used for control and optimisation ..

Self-Organising Maps

Self-organising maps (SOM), also called feature maps, were first used by T.Kohonen [12,13] for

pattern recognition and classification applications. The SOM usually is a two-layer network

(Fig.11).

page.2

. 1 ·

a)

b)

Input
vector

Input
vector

Input
I aver

Xn
Xi

Xl\1

Quantizat
ion

Fig.11. Self-organising map

V;

SOM
Laver

The input layer is fully connected to the second layer, which is also called the quantization layer,

competitive layer or SOM layer. The input layer passes the input values to the SOM layer. The

PEs in the SOM layer are sometimes called quantization units and are organised into a two

dimensional array. The number ofPEs in the input layer determines the dimensionals of the input

space. The figure depicts an N-dimensional input layer and the weights associated with

quantization unit} in the SOM layer (Fig. I lb). The weights connecting to a quantization unit also

form an N-dimensional vector W which sometimes is called a quantization vector.

SOMs use an unsupervised learning law based on competitive learning. Competitive learning

.. Page.

allows the units in a layer to compete amongst each other for the right to adjust their weights. The

"winning" unit will then make its weights more similar to the input vector. Training of the SOM

allows the weights in the SOM layer to fall into clusters (groups) based on relationships in the

input data. The similarities between patterns in the input space are thus mapped into closeness

relationships in the weights of the SOM. This has the effect of"projecting" the relationships

among patterns in the large-dimensional SOM layer. Patterns in the input space can then be easily

visualised in the weights of 2-dimensional SOM layer.

The SOM training algorithm starts with initialising of the weight vector Wand applying a training

vector X to its inputs. Training vectors are presented sequentially to the network. When the input

vector is received, the distance dj between the input vector and each weight vector is computed

dj = ±(xi -wjir
i=O

Then the winning PE in the competitive layer, having the smallest distance dj, is selected. The

training algorithm then selects the PE that best matches the input vector by finding the weight

vector W that is the closest (in N-dimensional Euclidean space) to the input vector X which is

declared the winner. After that the weights of the PEs in the neighbourhood Ne are adjusted

w1;(t + 1) = w1i(t) +~(x;(t1)-w1;(t)),

while the weights of other PEs (outside Ne) remain unchanged
W 1;(t + 1) =W Ji(t).

The training algorithm is repeated for all training vectors.

The following symbols are used:

xi: i-th component of input vector X

wji: weight connecting input unit X to PEj in the SOM layer.

dj: distance between an input vector and the weights of PEj in the SOM layer.

11: the learning rate.

Ne: the neighbourhood around the winning PE.

· F>a9e2£

Kohonen recommends that the learning rate 11 and the neighbourhood size Ne around the winning

quantization unit be decreased as the training progresses. Usually, the pattern is to start with a

larger definition of the neighbourhood and then narrow it as the training continues.

After training is completed, an input vector presented to the network is classified by the PEs that

fire in the SOM layer. The SOM network can thus be used for pattern recognition and

classification applications.

Self organising maps are able to classify large and complex input spaces and its fast training

algorithm requires just a few presentations of the training set. But sometimes the SOM can lose

some important information in low occurrence pattern. These neural networks are good for

problems that require classification of faults and other process states. They can directly capture

probability distributions, temporal relationships and other important characteristics of

manufacturing systems.

The latest neural systems for manufacturing can train themselves to predict process behaviour,

using examples obtained directly from on-line process data. All this utility brings only a modest

requirement to specify the internal workings of the system - the system itself is largely able to

organise the parameters that it needs to classify on-line data, recognise process states, and make

predictions. This means that process specialists can implement and manage model-based

applications that they never would have attempted using traditional statistical or modelling

approaches.

2.2.3.Applications of neural nets.

Now there are a lot of practical realisations of neural systems in different forms: software

products for personal computers or workstations [14, 15, 16], neural coprocessors connected to a

.Page 2

personal computer (or workstation) which increase the size of a modelling network and the

system productivity.

The strong attention is paid to R&D of hardware for neural systems using modern VLSI

technology. Here are some examples of recent VLSI implementations announced at IEEE

International Conference on Neural Networks (ICNN'95):

Self-Learning Analog Neural Network LSI with computational power of I 0 MCPS and

weight updating rate of more then 40 kHz has been fabricated using 1.3-µm

double-poly CMOS process [17].

Hardware implementation of multilayer neural network with on-chip learning.

Experimental circuit runs with 25 MHz clock, and delivers 14.6xl06 CPS and 10.9

x106 CUP [18].

The compact CMOS VLSI design for recursive neural networks with the capability of

hardware annealing which can solve optimisation and signal processing problems

[19].

Leading electronics companies and research centres (AT&T Bell Labs, Intel, Nestor, JPL, MIT

Lincoln Laboratory) also show their significant interest to hardware implementation of neural

networks for a wide range of applications. The greatest potential of neural nets is the high speed

processing that could be provided through massively parallel VLSI implementation.

The scope of neural system application ranges from pattern recognition and image processing

(fully digital VLSI neural system for motion detection from image sequences [20], machine vision

for obstacle sensing in cars [21], realisation of high-order CMAC model for colour calibration

[22]), supervision and control of technical processes (prediction of end conditions of basic oxygen

steelmaking process [23]) to biomedical applications (ECG classification [24], analysis of

multivariable medical images [25]) and business (bankruptcy predictions [26]).

Page~

I

Neural networks and fuzzy logic systems can be combined to capture the best of both approaches.

So they can be considered as complementary intelligent technologies.

2.3. Genetic Algorithms

2.3.1. Basic concepts

The need to solve optimisation problems is a dominant theme in the engineering world. A great

number of analytic and numerical optimisation techniques were developed. Although there are still

large classes of functions which present significant difficulties for numerical techniques, and

moreover, for analytical methods. These are not continuous or differentiable everywhere,

functions which are non-convex, multi-modal, and functions which contain noise. As a

consequence, there is a continuing search for more robust optimisation techniques capable to

overcome such problems.

Genetic Algorithms have attracted a great deal of attention regarding their potential as

optimisation techniques for complex functions. GAs are a heuristic search method based on

mechanics of natural selection and natural genetic, a form of stochastic production systems. It

combines the survival of the fittest among string structures with a structured yet randomised

information exchange to form a search algorithm. While randomised, GAs efficiently exploit

historical information to speculate on new search points with expected improved

performance[27].

Prior to the use of genetic algorithms for search in artificial systems, a number of biologists used

computers to perform simulations of natural genetic of the early 1960s. The first mention of the

page;

words "genetic algorithm" and the first published application of a genetic algorithm to

game-playing program both came in Bagley's (1967) dissertation. In 1970 Cavicchio in his

dissertation "Adaptive Search Using Simulated Evolution" applied genetic-like algorithm to the

design of a set of detectors for a pattern-recognising machine. The first application of GAs to a

pure problem of mathematical function optimisation was Hollstien's (1971) work "Artificial

Genetic Adaptation in Computer Control Systems". Techniques under the name

Evolutionstrategie were independently developed at the Technical University of Berlin

(Rechenberg, 1965).

The present understanding of the term "Genetic Algorithm" came from a milestone work by John

Holland "Adaptation in natural and artificial systems" [28] and De Jong's dissertation "An analysis

of the behaviour of a class of genetic adaptive systems", as well as Grefenstette's software

GENESIS [29]. These works have formed a theoretical base for artificial system designers that

retains the important mechanisms of natural systems.

To solve an applied task, GAs maintain a set of strings (population of "chromosomes"). Each

string represents an encoded parameter set, a solution alternative, or a point in the search space.

Usually, the natural parameter set of the optimisation problem is coded as a finite-length bit string.

GAs evaluate a population based on application dependent criteria, and generate a new one

iteratively. A new population of chromosomes is generated using probabilistic genetic-like

operator, called crossover and mutation, with the intent of generating chromosomes which map to

high fitness values. In other words, beneficial changes of parents are combined in their offspring,

and the GA adapts to the problem being solved. The commonly used generational model of GA is

shown below:

Procedure GA

begin
Generate initial population, P(O); t=O;

... Pcige 3

end.

Evaluate chromosomes in P(O);
repeat

t=t+ I;
Select P(t) from P(t-1);
Recombine chromosomes in P(t) using genetic operators;
Evaluate chromosomes in P(t);

until termination condition satisfied;

GA starts with an initial population of chromosomes chosen at random. By contrast to other

search techniques, GAs have no need for auxiliary information about features of search space,

they only require the value of an application dependent objective function to be associated with an

individual chromosome. Each member of the initial population must be evaluated using this

function. Objective function associates a numerical value (also called a fitness value) with a

chromosome, which serves as some measure of goodness that is to be maximised. Further steps of

GA are repeated iteratively until either all chromosomes have the same associated fitness value

(convergence condition) or the desired number of iterations is reached. Each iteration of the

algorithm consists of two basic steps: selection and recombination. Selection is a process in which

chromosomes are copied to the next population according to their objective function values. The

recombination usually proceeds in two steps. First, members of the new population are mated at

random. Second, each pair of chromosomes is recombined using a crossover operator. Optionally,

mutation operator may be applied to some members of the newly generated population. Finally,

each chromosome in the obtained population undergoes the evaluation.

2.3.2. Example of GA application to optimisation problem

Consider the following real parameters optimisation problem:

Minimise f(x1,X2, .. .,XN},

where each Xi is a real parameter subject to ru Xi bi for some constants ai and bi .

.• i=>a9e3

The objective of the problem is to find the values ofx={Xi} to obtain the minimal possible value of

function f. GAs have been successful at solving problems of this type that are too ill-behaved

(such as multi-modal and non-differentiable) for more conventional hill-climbing and derivative

based techniques.

For example, let the problem under consideration be minimisation of the function

f(x1,X2)=x12+X22, which-lx1l and-2 X2 2. The first step is to code the parameter vector x as a

finite-length bit string using either a standard binary coding or a Gray coding. The bit strings for

the parameters are concatenated together to give a single bit string (or "chromosome") which

represents the entire vector of parameters. Thus, the problem is transformed into a combinatorial

problem where the points of the search space are the comers of a high-dimensional cube.

The m-bit binary code for real parameter x can be obtained as a binary representation of an integer

k=[(x-a)/(b- a)*2m], where [E] denotes the closest integer less than E. Let there be four bits

representing each parameter. Then the point (0.25,1) would be represented by the bit string 1010

1100 using binary coding.

Gray coding is another way of coding parameters into bits which has the property that an increase

in one step in the parameter value corresponds to a change of a single bit in the code. The

conversion formula from binary coding to the Gray one is:

if k = 1}
if k > 1

where Yk is the k-th Gray code bit, Pk is the k-th binary code bit, bits are numbered from 1 to N

starting from the left, and © denotes addition mod 2. The conversion from Gray coding to binary

coding is:

Page3

where the summation is done mod 2. So, the binary code 1010 1100 corresponds to the Gray

code of 1111 1010.

GA starts with an initial randomly generated population of strings and thereafter generates

successive populations of strings. Let the initial population of the size N=4 be the following:

(1010 1100), (1101 0101), (0011 0110), (0100 1011), where the binary coding is used. To

evaluate the initial population, it is necessary to decode each chromosome and to apply objective

function to it. The result of evaluation is shown in Table 2.

T bl 2 I .. l l . f hr a e rut1a popu ation o c omosomes

No. Chromosomes x=(x1,X2) Fitness value

f(x) = x12 + X22

1 1001 0010 (0.125,-1.5) 2.27

2 11100101 (0.75,-0.75) 1.125

3 0110 1100 (-0.25, 1. 0) 1.0625

4 1011 1111 (0.375,1. 75) 3.203

The selection operator may be implemented in a number of ways. The most popular one is based

on a biased roulette wheel, where each slot corresponds to a chromosome in the population and

its size is proportional to the chromosome's goodness. The corresponding weights of roulette

slots pi can be calculated according to the following formulas:

,.
I

-N--

Lf~
pi= k=1

N

'Lt1
• 1=1

fk =--
fk

, where fj - the fitness value of j-th chromosome.

Each spin of the roulette wheel selects an i-th chromosome with the probability pi. Spinning

roulette N times, N candidates are determined for a new population subjected to further genetic

operators. Let pl=0.17, p2=0.34, p3=0.36, p4=0.13. Suppose that values 0.15, 0.3, 0.5, 0.7 were

obtained as a result of four roulette spins. The value 0.15 belongs to the first sector of the roulette

Page

between 0.0 and 0.17; values 0.3 and 0.5 belong to the second sector (0.17,0.51); and the value

0.7 belongs to the fourth sector (0.51,0.87). Thus chromosomes with numbers 1,2,2,3 are

selected. The result of the selection is summed up in the Table 3.

Table 3 Result of the selection

No. Fitness f(x) f'(x) Expected Count from

probability pi roulette wheel

1 2.27 3.37 0.17 1

2 1.13 6.81 0.34 2

3 1.06 7.21 0.36 1

4 3.20 2.39 0.13 0

Total: 7.66 19.78

Average: 1.91

After selection, a recombination operator is to be applied. Members of the new population are

mated at random, let it be the following pairs: (1,2) and (3,4). Then each pair of strings undergoes

crossing over with the crossover site selected at random, see Table 3. According to a simple

crossover algorithm, two new strings are created by swapping substrings starting from the

crossover site. For example, consider strings 1 and 2 in the population obtained after selection and

crossover site is 2:

10 I 01 0010

11 110 0101

As a result of applying simple crossover two strings of a new population are obtained, as follows:

10110 0101

11101 0010

The result of recombination: the new population decoded x=(x1,xz) and the corresponding fitness

Page 3,

1····

values are given in Table 4.

Table 4 Results of the recombination

No. Population after Crossover site New Decoded New fitness

reproduction population x=(x1,X2) f(x)

1 10101 0010 2 1010 0101 (0.25,-0.75) 0.625

2 11110 0101 2 1101 0010 (0.625,-1.5) 2.640

3 1110 01101 6 1110 0100 (0.75,-1.0) 1.560

4 0110 11100 6 01101101 (-0.25, 1.25) 1.625

Total: 6.450

Average: 1.610

The population average fitness has improved from 1. 915 to 1. 61 in one generation. The minimum

fitness has decreased from 1. 0625 to 0.625. This improvement is no fluke. The best string of the

first generation id copied twice because of its high performance. When it is crossed with the other

one, the offspring inherit best properties of their parents.

The process repeated iteratively for a new population until GA termination condition is satisfied,

i.e. when the desired number ofiteration is reached or when all strings in the population become

identical (convergence condition). The best string in the final population represents the best

solution of the problem reached at the moment of GA termination.

2. 3.3. GA 's operators

The genetic operators have a key position in GAs, they are so chosen that manipulating the

population leads GA away from unpromising areas of the search space and towards prospective

ones, without the GA having to explicitly remember its trail through the search space.

. Page 3

The crossover operator plays a central role in the GAs, and, in fact, could be considered to be one

of the algorithm's defining characteristics. Numerous investigations have been aimed at finding

powerful crossover operators. For a finite-length string representation of chromosomes, crossover

operator produces new strings by exchanging substrings from the parents. The number of

crossover points usually fixed at a very low constant value of 1 or 2. This decision came from the

early theoretical works and recommended to use a 2-point crossover. However, there are

situations in which having a higher number of crossover points is beneficial [30]. Perhaps the most

interesting and effective operator (uniform crossover) was introduced by Syswerda [31]. In the

uniform crossover the allele of any position in an offspring is copied from the first parent with

probability PO and from the second parent with probability 1-PO.

For a wide variety of problem domains, such as Travelling Salesman Problem (TSP) and Job

Scheduling Problem (JSP), it is natural to code solutions as a permutation of integers which

represent a sequence of visited cities or a sequence of scheduling operations. The traditional

recombination operators for bit string representation of solutions do not work when the solutions

are coded as sequences. Obviously, the string that represents a tour of cities must contain exactly

one instance of each city label, while GAs traditionally assume that the symbols within a string can

be independently modified and rearranged. Therefore, a number of crossover operators were

suggested for problems of this class, i.e. for permutation of integers[32].

Consider, for example, the Order Crossover which creates two offspring preserving the order and

the position of symbols in a subsequence of one parent while keeping the relative order of the

remaining symbols of the other parent. Let there be two parents selected for recombination:

Parenti: 1231456178

Parent2: 7351128146

Two crossover points are chosen at random. The symbols between crossover points are copied

Page3

from the Parent 1 into same positions of the Child 1. Then, starting just after the second crossover

point, the symbols are copied from the Parent2, omitting symbols that were copied from the

Parenti. When the last symbol of Parent2 is reached, the process continues with the first one in

the Parent2 until all of the symbols have been copied to the child. The second child is formed in

the same way by switching the roles of the parents.

Childl: 1281456173

Child2: 4561128173

Mutation operator is used for finding new points in the search space to evaluate. Suppose a

population containing strings which have j-th bit equal to 1. Crossover operator can not change

that bit to 0 because it operates with substrings presented in the population and it preserve

position of any substring. Thus, mutation could introduce some new features to population. When

mutation is applied to a binary coded chromosome, a random choice is made of some of its bits

and they are flipped from 0 to 1 or from 1 to 0. Normally the mutation rate is very low, so that it

would be unlikely to have for a string more than one bit mutated. For the permutation of integers,

mutation can be applied by swapping two integers at arbitrary chosen positions.

2. 3. 4. Analysis of GAs behaviour

Holland has suggested [28] that the better way to view GAs is in terms of optimising a sequential

decision process involving uncertainty in the form of lack of a priory knowledge, noisy feedback,

and time-varying payoff functions. Holland showed via his Schemata Theorem that, given a

number of assumptions, GA is quite robust in producing near optimal sequences of trials for

problems with high level of uncertainty.

While using GA for solving optimisation problems there is a tendency to treat GA as a tool for

I m

function optimisation. However, it is not true. The proper understanding of GAs behaviour helps

to understand their potential application to any particular problem. Several common viewpoints

on GA behaviour were clearly pointed out by De Jong.

The genotypic viewpoint is to consider the contents of the population as a gene collection and

study proportions of gene value (allele) over time. It is quite clear that, if fitness proportional

selection is the only mechanism driving evolution of GA, an initial population rapidly evolves to a

population containing only duplicate copies of the best individual in the initial population. Genetic

recombination operators counterbalance this selective pressure by providing diversity in the form

of new alleles and new combinations of alleles. When recombination operators are applied at fixed

rates, the population evolves to some point of dynamic equilibrium at a particular diversity level.

Most of the individuals of this population are identical and represent optimal or near optimal

solution of the problem under consideration.

A phenotypic viewpoint is to focus on physical meaning of the genes. In the optimisation example

discussed above, the phenotype is the set of pairs of reals (x1,X2) defined by binary strings.

Plotting over time positions of the population members on the fitness landscape, it is possible to

observe that the population rapidly shifts to a region close to some point. Frequently, this is an

optimal point, but not always, especially for multi-modal fitness surfaces.

The optimisation point of view focuses on monitoring the average fitness or the best fitness value

of individuals. The plot of the best individual fitness over time looks like "optimisation curve", it

shows that fitness value become more and more close to some "optimal" value. Measurements of

that sort have encouraged the view of GA as a tool for function optimisation. The genotypic and

phenotypic viewpoints show that the population does not, in general, converge to a steady state

containing multiple copies of the global optimum. So, comparing GA with other optimisation

.... Page~

methods is possible only in terms of obtaining the best decision as a function of the amount of

effort involved (the number of trials).

2.3.5. Applications ofGAs

GAs have been successfully tried on NP-hard combinatorial optimisation problems, such as

network link optimisation and travelling salesperson problem; and they are of interest in

themselves as a primitive model for natural selection. Also GAs have been applied to such

problems as design of semiconductor layout and factory control, and used in AI systems and

neuromorphic networks to model processes of cognition, e.g. language processing and induction.

Here are some examples of GAs application:

Multiobjective Optimisation [33].

Fault coverage test code generation [34].

VLSI circuit layout and compacting via GA [35,36].

Scheduling multiprocessor tasks [37]

Assembly-line balancing problem using GA [38].

Adaptation of robot behaviour [39].

Transportation problem [40].

Design of system reliability [41].

Designing telecommunication networks [42,43].

Management of Isochronous Channels Reusing in LANs [44].

GAs are theoretically and empirically proven to provide robust search in complex spaces. Many

examples state the validity of the technique in function optimisation, control applications, VLSI

design, and machine learning. Having been developed as a valid approach to the problems

requiring efficient and effective search, GAs are now finding a more widespread application in

Page~

·1·······

business, scientific and engineering circles. The reason for the growing number of applications is

that GAs are computationally simple yet powerful in their search for improvement. Furthermore,

they are not fundamentally limited by restrictive assumptions about the search space (those

concerning continuity, existence of derivatives, unimodality, and others). Unlike other search

algorithms, the probabilistic primitives that GAs use to manipulate their populations, are very fast

on contemporary hardware [45].

2.4. Rough set theory

Rough set theory is a relatively new mathematical and intelligent technique introduced in early

1980's by Pawlak [46]. The technique is particularly suited to reasoning about imprecise or

incomplete data, and discovering relationships in this data. The primary application of the rough

sets so far has been in data and decision analysis, databases, knowledge based systems, and

machine learning. The main advantage of the rough set theory is that it does not require any

preliminary or additional information about data.

In some sense the rough set theory exploits the same approach as the fuzzy set theory - revision

of the classical set theory. The rough set philosophy is based on the assumption that, in contrast

with the classical set theory, there is some additional information (knowledge, data) about

elements of the universe. But if the fuzzy logic allows gradual and continuous transition of logic

or qualitative expressions such as "high", the rough set theory, on the other hand, identifies

degrees of significance for input and output attributes and, by means of" quantization", discerns

vague information. The rough control also allows descriptive or qualitative expressions.

The basic idea of the rough set theory is in the assumption that elements that display the same

Page4

information, are indiscernible in terms of the available information and form elementary granules

(blocks, classes, etc.) of knowledge. These granules are called elementary sets or concepts and are

considered as elementary building blocks of our knowledge. Elementary concepts can be

combined into compound concepts, i.e. concepts that are uniquely defined in terms of elementary

concepts. Any union of elementary sets is called a crisp set, and any other sets are referred to as

rough (vague, imprecise).

Within the rough set theory the two crisp sets called the lower and the upper approximation of X,

are associated with every set X The lower approximation of Xis a union of all elementary sets

which are included in X, whereas the upper approximation of Xis a union of all elementary sets

which have non-empty intersection with X In other words, the lower approximation of a set is the

set of all elements that surely belong to X, whereas the upper approximation of Xis a set of all

elements that possibly belong to X The difference of the upper and the lower approximation of X

is its boundary region. Obviously, a set is rough if it has a non-empty boundary region; otherwise

the set is crisp. Elements of the boundary region cannot be classified, employing the available

knowledge, either to the set or to its components. Approximations of sets are basic operations in

the rough set theory and are used as main tools to deal with vague and uncertain data.

The proposed method of data analysis has several advantages. Some of them are listed below:

1. Provides efficient algorithms for finding hidden patterns in data.

2. Finds minimal sets of data (data reduction).

3. Evaluates significance of data

4. Generates minimal sets of decision rules from data.

5. It is easy to understand and offers straightforward interpretation of results.

Page•

Precise mathematical formulations of the above ideas can be found in [46].

3. Promising future

Many industrial problems can be solved by combining components of the "Soft Computing" in

different ways. In the solving process they complement rather than compete with each other.

Thus, fuzzy logic and neural networks are successfully used in pattern recognition, manufacturing

processes, control, etc.

Although, Fuzzy Logic was invented in the United States the rapid growth ofthis technology had

started from Japan and had now again reached the USA and Europe as well. Fuzzy Logic is still

booming in Japan, the number of patent applied for, increases exponentially. Fuzzy has become a

key-word for marketing. Electronic articles with intelligent component have more opportunities

for market success.

In Japan the Fuzzy-research is widely supported with a huge budget. In Europe and the USA

efforts are being made to catch up with the tremendous Japanese success. For instance, the NASA

space agency is engaged in applying Fuzzy Logic for complex docking-maneuvers.

In order to support the development oflntelligent Technologies and to disseminate knowledge

and expertise within the European Union, between universities and industry companies, ERUDIT

- the European Network of Excellence in ''Uncertainty Techniques Developments for Use in

Information Technology" - has been started by European Commission (DG III Industry- ESPRIT

programme) in 1995.

Summing up, the following main tendencies characterise the current state of application of Soft

Page4

·r-

Computing in the modern industry:

• Leading microelectronics companies (Siemens, Motorola, Texas Instruments)

launched manufacturing of electronic devices implementing intelligent technologies

and successfully created the respective market;

• Growing interest and support ofR&D in intelligent technologies from governments

and international organisations;

• Expansion of activities from pure academic research towards development of

industrial applications.

These factors combined together form a powerful vehicle to drive the former extremely exotic and

mostly academic science to promising future of real life applications.

References

1. L.A.Zadeh. Foreword by the Honorary Chairman. In Proceedings of the Second European

Congress on Intelligent Techniques and Soft Computing EUFIT'94, Aachen, Germany,

September 20-23, 1994.

2. Zadeh L. Fuzzy sets. Information Science. - 1965. - No8, p.338.

3. Zimmermann H-J. Fuzzy set theory and its applications. - Kluwer Academic Publishers,

Boston, MA, 1992.

4. Zadeh L. Outline of a new approach to the analysis of complex systems and decision process.

IEEE Trans. on SMC. - 1973. - Vol. 3, No.1, p.28-44.

5. Mamdani E., Assilian S., An experiment in linguistic systhesis with a fuzzy logic controller.

International Journal ofMan-Machine-Studies, Vol 7, pp.1-13.

6. Isermann R. On fuzzy logic applications for automatic control, supervision and fault

diagnosis. - Proceedings of the Third European Congress on Intelligent Tehniques and Soft

Page 4

Computing. EUFIT'96 Aachen, Germany-August 28-31, 1995, p.738-753.

7. Fuzzy Coprocessor SAE 8JC99. Data sheet, SIEMENS AG, Semiconductor Group, Munchen,

April, 1994.

8. Rosenblatt F. The perceptron: A probabilistic mode/for itiformation storage and organisation

in the brain. Psychol. Rev., Vol. 65, p.386-408.

9. Rosenblatt F. Principles ofneurodynamics. Baltimore, 1962.

10. Minsky M., Papert S. Perceptrons. Cambridge, 1969.

11. S. Fraleigh. Fuzzy Logic and Neural Networks. Practical Tools for Process Management. PC

AI, May/June 1994, pp.17-21.

12. Kohonen T. Self-organized formation of topologically correct feature maps. Biol. Cybern. -

1982, Vol. 43, p.59-69.

13. Kohonen T. Self-organization and associative memory. Berlin, Springer, 1984.

14. P.Wilke, J.Rehder, G.Billing, J.Nilson, C.Mansfeld. NeuroGraph -An Integrated

Development Environment for Neural Networks, Genetic Algorithms and Fuzzy Logic. In

Proceedings of the Third European Congress on Intelligent Techniques and Soft Computing

EUFIT'95, Aachen, Germany, August 28-31, 1995, pp.1879-1883.

15. D.Georges, B.Geropp, A.Seeliger. DiDa-A Too/for the Training of Neural Networks. In

Proceedings of the Third European Congress on Intelligent Techniques and Soft Computing

EUFIT'95, Aachen, Germany, August 28-31, 1995, pp.1884-1887.

16. J.Angstenberger. DataEngine -A Software Product Family for Intelligent Data Analysis. In

Proceedings of the Third European Congress on Intelligent Techniques and Soft Computing

EUFIT'95, Aachen, Germany, August 28-31, 1995, pp.1892-1896.

17. Morie T., Fujita 0., Uchimura K. Self-Leaming Neural Network LSI with High-Resolution

Non-Voltage Analog Memory. In Proceedings of the 1995 IEEE International Conference on

Neural Networks (ICNN'95), Perth, Western Australia, pp. 1628-1631.

18. Hikawa H. Implementation of Simplified Multilayer Neural Networks with On-chip Learning.

Page~

In Proceedings of the 1995 IEEE International Conference on Neural Networks (ICNN'95),

Perth, Western Australia, pp. 1633-1637.

19. Chou E.Y., Sheu B.J., Jen S.H. A Compact VLSI Design for Recursive Neural Networks with

Hardware Annealing Capability. In Proceedings of the 1995 IEEE International Conference

on Neural Networks (ICNN'95), Perth, Western Australia, pp. 1650-1655.

20. A.Abruzzo, M.Gioiello, M. La Cascia, F.Sorbello. Motion Detection from Image Sequences

Using a New Fully Digital VLSI Neural Architecture. In Proceedings of the Third European

Congress on Intelligent Techniques and Soft Computing EUFIT'95, Aachen, Germany, August

28-31, 1995, pp.1341-1345.

21. M.Brauckmann, C.Goerick, T.Zielke. Automatic Visual Sensing/or Cars. In Proceedings of

the Third European Congress on Intelligent Techniques and Soft Computing EUFIT'95,

Aachen, Germany, August 28-31, 1995, pp.1396-1402.

22. Ker J-S., Kuo Y-H., Liu B-D Hardware realization of High-order CMAC Model for Color

Calibration. In Proceedings of the 1995 IEEE International Conference on Neural Networks

(ICNN'95), Perth, Western Australia, pp. 1656-1661.

23. Keuthen M., Seeliger A, Thornton S. Neural Net for Process Condition Prediction in

Steelmaking. In Proceedings of the Third European Congress on Intelligent Techniques and

Soft Computing EUFIT'95, Aachen, Germany, August 28-31, 1995, pp.304-309.

24. C.Ramirez-Rodriguez, T.Vladimirova. A Hierarchical Fuzzy Neural System for ECG

Classification. In Proceedings of the Third European Congress on Intelligent Techniques and

Soft Computing EUFIT'95, Aachen, Germany, August 28-31, 1995, pp.1668-1672.

25. F.Firenze, A.Schenone, F.Acquarone, M.Gambaro, F.Masulli. NeuroGraph -An Adaptive

Resolution Analysis of Multivariable Medical Images via Unsupervised Neural NetworkBased

Clustering. In Proceedings of the Third European Congress on Intelligent Techniques and Soft

Computing EUFIT'95, Aachen, Germany, August 28-31, 1995, pp.1690-1694.

26. P.Protzel, J.Wallrafen, H.Popp, J.Baetge. Bankruptcy Prediction Using Different Soft

l ...

Computing Methods. In Proceedings of the Third European Congress on Intelligent

Techniques and Soft Computing EUFIT'95, Aachen, Germany, August 28-31, 1995,

pp.1710-1714.

27. Goldberg D.E. Genetic Algorithms in Search, Optimization, and Machine Learning. Reading,

MA: Addison-Wesley, 1989.

28. Holland J.H. Adaptation in natural and artificial systems. Ann Arbor: The University of

Michigan Press, 1975.

29. Grefenstette GENESIS: A system for using genetic search procedures.- Proceedings of the

1984 Conference on Intelligent Systems and Machines, 161-165.

30. Spears W.M., De Jong K.A. An Analysis of Multi-Point Crossover.- In Foundations of

Genetic Algorithms, Ed. G. Rawlins, Morgan Kaufinan, San Mateo, California, 1991,

pp.301-315.

31. Syswerda G. Uniform Crossover in Genetic Algorithms.- In proceedings of the 3rd

International Conference on Genetic Algorithms, 1989.

32. Fox B.R., McMahon M.B. Genetic Operators for Sequencing Problems.- In Foundations of

Genetic Algorithms, Ed. G. Rawlins, Morgan Kaufinan, San Mateo, California, 1991,

pp.284-300.

33. Voget S. Multiobjective optimization with Genetic Algorithms and Fuzzy-Control.- In

Proceedings of the Fourth European Congress on Intelligent Techniques and Soft Computing

EUFIT'96, Aachen, Germany, September 2-5, 1996, pp.391-394.

34. Bilchev G., Parmee I., Darlow A. The Inductive Genetic Algorithm with application to the

fault coverage test code generation problem.- In Proceedings of the Fourth European

Congress on Intelligent Techniques and Soft Computing EUFIT'96, Aachen, Germany,

September 2-5, 1996, pp.452-456.

35. Davis L., Smith D. Adaptive design for layout synthesis (Texas Instruments internal report).

Dallas: Texas Instruments, 1985.

. .. J=>§tge 4E

·1

36. Fourman M.P. Compacting of symbolic layout using genetic algorithms. Proceeding of an

International Conference on Genetic Algorithms and their Applications, 141-153, 1985.

37. Sze-Sing Lam, Cai X.,Lee C.-Y.. A Genetic Algorithm for scheduling multiprocessor tasks

without prespecified processor allocation.- In Proceedings of the Fourth European Congress

on Intelligent Techniques and Soft Computing EUFIT'96, Aachen, Germany, September 2-5,

1996, pp.448-451.

38. Tsujimura Y., Gen M., Li Y., Kubota E. An. Efficient method for solving.fuzzy assembly-line

balancing problem using GA. In Proceedings of the Third European Congress on Intelligent

Techniques and Soft Computing EUFIT'95, Aachen, Germany, August 28-31, 1995,

pp .406-415.

39. Leitch D., Probert P. A Fuzzy Model of the Evolution of Behaviors in Robotics using Genetic

Algorithms In Proceedings of the Third European Congress on Intelligent Techniques and Soft

Computing EUFIT'95, Aachen, Germany, August 28-31, 1995, pp.447-452.

40. Ida K., Gen M., Li Y. Solving multicriteria solid transportation problem with fuzzy numbers

by Genetic Algorithms. In Proceedings of the Third European Congress on Intelligent

Techniques and Soft Computing EUFIT'95, Aachen, Germany, August 28-31, 1995,

pp.434-441.

41. Gen M., Yokota T., Taguchi T. Optimal design of system reliability using Genetic

Algorithm. Proc. of 10th Fuzzy Symp., Osaka, Japan, 1994.

42. Abuali F.N., Schoenefeld D.A., Wainwright R.L. Designing Telecommunications Networks

using Genetic Algorithms and Probabilistic Minimum Spanning Trees Proceedings of the

1994 ACM Symposium on Applied Computing (SAC'94) March 6-8, 1994, Phoenix, AZ.,

242-246.

43. Abuali F.N., Schoenefeld D.A., Wainwright R.L. Terminal Assignment in a Communications

Network using Genetic Algorithms Proceedings of the 22nd Annual Computer Science

Conference, March 8-10, 1994, Phoenix, AZ., 74-81.

.. Page~

44. Vasilakos A., Markaki M., Kassotakis I. A Hybrid Genetic Algorithm for an effective

management of Isochronous Channels in LANs!MANs.- In Proceedings of the Fourth

European Congress on Intelligent Techniques and Soft Computing EUFIT'96, Aachen,

Germany, September 2-5, 1996, pp.438-442.

45. Rawlins G. J.E., editor. Foundations of Genetic Algorithms, San Mateo, 1991. Morgan

Kaufinann.
46. Z.Pawlak, Rough sets: Theoretical aspects and reasoning about data, Dordrecht,
Netherlands: Kluwer Academic, 1991.

Page 4f

