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Chapter I. Parallel Processing - An Introduction 

Boleslaw K. Szymanski 
Department of Computer Science & Scientific Computation 

Research Center 
Rensselaer Polytechnic Institute 

Troy, NY 12180, USA 
e-mail: szymab@rpi.edu 

1. Introduction 

This document presents the current state-of-the art in 
parallel processing. In this chapter, we start with the 
overall introduction to the problems and challenges of 
parallel computing. More detailed and regional perspectives 
are described in the following chapters. 

2. The roie of computers 

It is widely recognized that the computer technology has 
become a critical component of everyday life cf a modern 
society. The computer has become ubiquitous in manufacturing, 
services, products, entertainment. r.omputers have been 
changing ways in 11hich we conduct busL ~ss, produce goods and 
do science. Export controls introduced on certain computer 
equipment and secrecy surrounding some computer projects 
underline importance of computer technology in military and 
security services. There have been three stages of exponential 
growth in the power of computers and related systems. First, 
in 1960's and 1970's computing centers were being constantly 
upgraded with ever-more powerful machines. This was followed 
by an exponential growth in the number ?f computers during 
so-called personal computer (PC) revolution in 1980's. 
Currently we are undergoing yet another stage of the same 
process: :i.n exponen - .; al growth in interconnectivity and 
bandwidth of the n~twork joining computers and systems 
together. 

Computer literacy is becoming a norm, not the exception, and 
many knowledgeable workers, managers and other professionals 
now have the technical ability and skills to write software. 
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According to [lJ there are nearly two million people in the US 
that work directly with software and about ten million 
managers, engineers, architects, accountants and other 
knowledge work~rs who know enoug:1 about programming to be 
able to build end-user applications with high-level tools 
(spreadsheets, databases, visual languages). Similar ratios 
are found in other industrialized countries around the world. 

country Software End Users with Percentage 
Professional Programming Skills of workf orr::e 

United States 1. 750. 000 10,000,000 9% 

Japan 850,000 3,500,000 6% 

United Kingd~m 385,ooo l. 750. 000 6% 

France 375,000 l. 700. 000 7% 

I Germany 350,000 l. 650. 000 4% 

Brazil 475,000 1,500,000 3% 

China 950,000 l,250,000 <1% 

India 750,000 l,200,000 <1% 

Russia .750,000 900,000 1% 

South Korea 300,000 750,000 I 5% 

Table 1. Professional software personnel and end-users who 
program, 1995 estimates (source [l]J. 

On the global basis, there are more thdn ten million 
professional software personnel and more than 30 million end
users who can program. Table 1 gives rough estjmates for each 
group in ten countries around the world (data arP ~ith high 
margin of error) . An interesting observation is that Brazil 
and ~outh Korea have as high percentage of the workforce able 
to write software as the most developed countries of the 
world. 

The end-user programming population seems to be growing at 
more t!'lan ten percent per year worldwide. The percentage 
growth rate for software professionals is now down to a single 
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digit in industrialized countries. In developing countries, 
the number of both end-user and professional prograrr.mers is 
still growing at double-digit percentage rates. In view of 
this developments, it is not an exaggeration to corr.pare the 
impact of comp~ters on society to the Industrial Re7olucion of 
the 18th Century. 

The Industrial Revolution had freed physical workers from the 
enslavement of manual labor and had -:ransforrned craft and 
handwork into the mass-producing industries of today. 
Likewise, the Computer Revolution, which we are witnessing now 
has been freeing the off ice workers from routine mental tasks 
which were and often are still done by assistants, clerks and 
low-level managers. 

3. Significance of Parallel Processing 

Parallel processing is currently a small fraction of overall 
computer tecl.nology and the Computer Revolution. Yet, there 
are two compelling reasons for parallel processing to be of 
much higher importance than indicated by its current share of 
computer technology. The first reason is that parallel 
processing supports the largest computations which became an 
integral part of the science, medi.:::ine and manufacturing. 
Large-scale computer modeling enabled by parallel processing 
impacts decision making in banking, finance, military and 
government. Parallel computers empower decision makers, s~ch 

as high-level managers, military leaders and chief scientists 
with the ability to gather, access, and synthesize 
information, as well as to simulate real-life processes to 
measure the impact of social, economical and industrial 
decisions. The quality of the simulations and synthesized 
information strongly depends on the applied computational 
power. Today, even the largest uniprocessor computers are too 
slow for the more challenging problems of this kind. 

The second reason for importance of parallel processing is the 
transient nature of the current dominance ~f ser1uential 
computing. There are clear indications, discussed below, that 
the semiconductor industry ability to double the processor 
speed every 18 months, as it has been done for the last decade 
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cannot continue and that the processor design technoiogy is 
maturing. An interesting comparison of this process to 
historical technological breakthroughs are presented in [2}. 
The authors contend th~t virtually every industry more than a 
few decades old underwent similar phase changes which are 
caused by economic prinr.iples of supply and demand. The past 
transitions of older industries such as aviation, automobiles 
and railroads could be used as indicators of what to expect of 
the semiconductor industry. 

For example, aviation, like the semiconductor industry, went 
through a period of rapid growth. In less t:han f0ur decades 
the industry moved from the Wright brother's monoplane to the 
Pan A!n Clipper jet and Super-fortress bomber. The growth of 
aviation was initially fueled by military markets, then moved 
on to civil transportation, much like the growth pattern in 
the semiconductor industry. Progress in aviation was made by 
increasing speed of airplanes (thus reducing trans:_ t time l and 
by lowEring the costs of transportation. Such dual progress is 
similar to the computer processor's increasing speed (which 
~educes the time to obtain answers) while lowering the 
processor price. After several decades of growth in passe:ngers 
capacity and airspeed, these trends peaked with Boeing's 747 
as the highest mark for capacity and the Concord as one for 
speed. Further progress was stopped by the economic 
constraints (at least in civil aviation, for military 
application, where cost is not a primary consideration, 
fighters produced by many manufactures exceed the speed of a 
Concord). The limiting factor for Boeing's 747 was the 
difficulty of filling the available space on all but the 
longest or most popular routes. The usefulness of Concord was 
limited by the cost of fuel and noise pollution. After these 
technological marvels, aviation entered a second phase in 
which a plethora of smaller/slower airplanes were designed and 
produced for more specific markets. The focus of research and 
development shifted from aircraft's speed and size to 
operational efficiency and p~ssenger's comfort. 

Another example given in [2] is railroads. The research there 
focused initially on increasing the power of locomotives to 
lower the cost of transportation. This trend peaked at EMO 
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DD-40, a monster locomotive that ~as to~ big and inflexibie 
for any other purpose than hauling freight across the U.S. 
These limitations resulted in increased use of smaller engines 
that could operate separately for s~all loads but could aiso 
be joined together for transporting big ioads. The authors 
conclude that today the semiconductor industry is in a similar 
position as railroad companies were just before the EMD DD-40 
wa£ designed. The high cost of developing factoYies for futu~e 
generation processor cnips forced the semiconductor companies 
to join forces to attempt to manufacture extremely dense chips 
economically. 

The final example used in [2) ~s the automobile industry. 
Ford's initial success in car production resulted from 
lowering costs by concentrating production in ever- larger 
factories. These trend led to diminishing ability to vary the 
p~oduct. In early 1930's, General Motors recognized that big 
factories were good only for building large numbers of the 
same product and thaL the efficiency no longer increases with 
the factory size once some critical size is achieved. 
Ti.1erefore, General Motors ~plit the company into divisions 
with clearly defined markets and factories dedicated to 
support them. The resulting wider variation in designs allowed 
General Motors to gain market share at Ford's expense. 

A similar scenario is happening today in semiconductor 
industry. Intel offers more than 30 variations of its 486 
microprocessor, while in the early 80's the company offered 
just three versions of its 8036 microprocessor. The authors 
conclude that in technology dri•:c:m industries the initial 
phase is dominated by improvements both in performance and 
costs. The second, mature phase, is characterized by product 
refir.ement and diversity - similar to what is now starting to 
happen in the semiconductor industry. The slowing rate of 
progress in processors will provide a more stable environrnent 
for computer architectur~ and software. As a result, parallel 
processing will become much more widely spread than it is 
today. 
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4. Applications of Parallel Processing 

In the United States, the quest fer higher-spee~ machines has 
been fueled by computationally intensive problems with 
profound economical an~ social impacts referred to as Grand 
Cl.allenges [ 3 J . It is difficult to list all Grand Challenge 
prcblems because so many areas of science and engineeri!"lg are 
potential sources of such problems. The short list typically 
includes: 

High-resolution weather forecasting crucial for 
agriculture, disaster prevention, etc. 
Pollution studies that include cross-pollutant 
interactions, important in environmental protection. 

- Global modeling of atmosphere-ocean-biosphere interar:tions 
to measure the long-term impact of human activities on the 
stability of the global ecosystem. 
Human genome sequencing that will assist in recognizing, 
preventing and fighting genetic diseases. 
The design of new and more efficient drugs to cure cancer, 
AIDS and other diseases. 
High-temperature superconductor design that can 
revolutionize computer design, electrical devices, etc. 
The aerodynamic design of aerospace vehicles (airflow 
modeling) and improvements in automotive engine design 
(ignition and combustion modeling) that can lead to more 
efficient use of depletable fossil fuels in 
transportation. 

The design of quantum switching devices important for 
building more powerful computers. 

U.S. research support agencies, such as the National Science 
Foundatic~"1. various agencies in the Departments of Defense and 
Energy as well as the National Aeronautical and Space Agency 
together fund project:3 targeting Grand Challenge problems. 
This is a fjve year effort referred to as High Performance 
Computation and Communication Program or HPCC in short. It 
started in 1993 and has a yearly budget of several hundred 
million dollars. The investigations conducted under HPCC 
Program involves multidisciplinary teams of researchers in 
natural sciences, applied mathematics, computational and 
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comp~ter science from different institutions. 

As an example, the author of this chapter is involved in four 
projec~s involving Grand Challenges problems investigated at 
Rensselaer Polytechnic Institute. Two of these projects are 
funded directly from HPCC Program and two others indirectly. 
One 0f the projects focuses vn modeling human joints, ir. 
particular 3ho~lders and knees. The research is conducted in 
cooperation with Orthopedics Division of Columbia University 
Medical Center. The goal is to be able to guide t~e surgeons 
operating on joints by simulating the behavior of a joint 
under different operation scenarios. Adaptive meshes and 
finite element methods are used to solve the partial 
differential e~ations that describe joints' behavior. 

Another project focuses on problem solving environments for 
optimization and control of chemical and biological processes. 
This investigation is conducted in cooperation with groups at 
University of Minnesota and l!~.iversity of California in San 
Diego. The primary goal of this research is the development of 
a high-performance problem solving environment (PSE) for the 
optimization and cont.:-ol of chemical and biological processes, 
with initial emphasis on bioengineering applications. The 
optimization and control of such procEsses requires the 
repetitive solution of time-dependent partial differential 
equations (PDEs) in two or three spatial dimensions. The 
computational requirements of this problem, which must be 
solved interactively, can only be met by the use of nassively 
parallel computers. Such a comprehensive and powerful PSE 
does not currently exist, and its development presants 
significant computational and computer science challenges. 

The third project is a part of a tokamak design with an 
ultimate goal of building a sustainable plasma generation 
device fueled by hot fusion. ThE purpose of our investigation 
is to develop a scalable and portable Plasma in Cell (PIC) for 
Gimulation of plasma behavior in a self-geneLated 
electromagnetic field. This work is being done in cooperation 
with researchers at University of California in San Diego and 
Jet Propulsion Laboratory. Finally, the fourth project focuses 
on indf.vidual based modeling of epidemics. In cooperation with 
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biologists from State University of New York in Albany we are 
investigating the spread of Lyme -:1isease and the ways of 
controlling this spread. 

Our basic computational tool is a 36-node IBM SP2 parallel 
computer with peak performance of about 9 gigaflops (i.e., 9 
billion floating point operations per second) which we have 
available on campus. This machines is used raainly for code 
development and test runs. The production runs are conducted 
on 400-node SP2 at the Maui (Hawaii) Supercomputing Center 
and 512-node SP2 at Cornell SupFrcomputing Center located at 
Cornell University. Both of these machines have a peak 
performance in the order of a hundred of gigaf lops. The 
research on plasma simulation involves additional machines, 
Cray T3D and Intel Paragon at Jet Propulsion Laboratory as 
well as a network of Sun workstation at Rensselaer Polytechnic 
Institute. These example of research involvement of a single 
scientist perhap:; best describes how diversified the HPCC 
Program is and how much cooperation it has fostered. 

5. Required Computational Power 

It is estimated that to achieve interactive response time for 
Grand Challenge problems, in the order of minutes for smaller 
instances and hours for larger ones, will require a machine 
with performance of teraflops (which is a thousand billion 
floating point operations per second) . Today, there are 
several parallel machines with a theoretic. 'll peak of teraflops 
and the price below US$ 100 million (e.g., AVALON computer 
based on DEC Alpha chip and a fast interconnection network) . 
However, the sustained performance has been demonstrated at 
the level of tenths of teraflops, i.e., about several hundred 
gigaflops. Even in those cases, such speed was achieved only 
on certain very large, highly localized, finely tuned, often 
idealized applications. The real drawback is in the software 
and the programmer's ability to find enough useful parallelism 
in an application to utilize all of the processors of a 
parallel computer most of the time. Yet, paraliel processing 
is the only feasible option for sustained growth in computer 
performance in view of the incoming stalemate in the 
semiconductor industry discussed earlier. 
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In addition to economical forces (exponentially increasing 
cost of hardware needed to fabricate chips with smaller 
dimensions) there are basic laws )f physics that put limit on 
the speed of a uniprocessor. The speed of signal transmission 
in a computer cannot exceed the speed of light in the 
transmission media, which is about 300, 000 km/sec for 
silicon. Consequently, it takes one billionth of a second for 
a signal to propagatt--. in a silicon chip of an inch in 
diameter. However, one signal propagation can at most support 
one floating point operat~on. Hence, a sequential computer 
built with a chip of such size can provide at most one 
gigaflops of performance, merely one-thousandth of the needed 
teraflops. 

6. Parallel Architectures 

An interest in parallel computing systems is not new and can 
be traced back as far as the 1920's. However, as late as the 
early 1970' s, major criticism of parallel processing was based 
on Grosch's law which states that the computing power of a 
single processor increases in proportion to the square of its 
cost. Recent careful analysis of Grosch's law showed that it 
is valid only within :-,ne technology. Econol"'.ly of scale for 
mass-produced memory and RISC (Reduced Instruction Set Chip) 
processors makes them orders of magnitude less expensive than 
custom designed chips for mainframes and craditional vector 
supercomputers. The improving computer chip technology enables 
the placement of ever-faster processors with ever-increasing 
amounts of memory on a single wafer. Hence, introduction of 
RISC technology made Grosch' s law obsolete. Massively parallel 
computers built from a large number of RISC processors 
provide a superior performa.nce-to-price ratio compared to 
computers based on the powerful, custom-designed CISC 
(Complex Instruction Set Chip) processors. 

The traditional vector supercomputers are built from a limited 
number of powerful, specially designed processors connected to 
large shared memory. In addition, they explore array operation 
parallelism through vector co-processors. However, the 
support for sharei memory limits the number of processor: that 
can be clustered .:.ogether in such a way that all have the same 

9 



access time to the whole memory. Hence, purely shared memory 
machines are not scalable. In contrast, massively parallel 
computers consist of a large number of off-the-shelf 
processors with local memories. The processors a~e connected 
directly to each other by a network. The cost of such a 
parallel computer is roughly proportional to the needed number 
of processors. Therefore the size of the computer installation 
is more limited by costs than technical considerations. In 
addition, the process of technological progress for off-the
shelf processors is driven by the general computing market 
which is two orders of magnitude larger than the parallel 
computing market. As a result, off-t~e-shelf processors enjoy 
larger increases in speed and reduc~ions in prices than the 
custom designed processors do. Hence, the Massively Parallel 
Processors (MPP' s) have three advantages over traditional 
vector supercomputers: 

1. An accelerated rate of advance of peak processing power. In 
the last decade, microprocessor performance has increased 
four times every three years, following the rate of 
intP.grated circuit logic density improvement. By contrast, 
the clock rates of vector machines have improved much more 
slowly, doubling every seven years [3]. These trends are 
expected to continue for at least the rest of 1990's. 

2. An improvement in the performance-to-cost ratio. This ratio 
was between two to eight times high~r for MPP's than for 
the vector supercomputers in 1993. 

3. Scalability of the machine. The smallest configurations of 
MPP's are usually priced low to entice initial purchase (in 
1995, the least expensive MPP's was priced below $50,000). 
The initial configuration of the MPP can be incrementally 
upgraded as the needs and available funds arise. 

The clear conclusion is that only massively parallel computers 
can deliver the much needed teraflops level of performance. 

7. Parallel programming 

Parallel programming has experienced a long and difficult 
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maturation process. The reasons are many, b•.tt according to [2] 
the most critical one has been the difficulty in proyramming 
the constantly developing new architectures. Porting and 
tuning an application to a new architecture often takes as 
long as the time between introduction of the subsequent 
architecture, making a newly developed code obsolete at the 
moment of it is fully implemented. In such environments, 
programmers face a daunting challenge, especially with 
increa5ingly large and complex applications. Programrners must 
identify parallelism in an application, translate that 
parallelism into code and design the corresponding 
communication and synchronization for the program. All these 
steps must be done in the context of currently available 
architectures which may change tomorrow, making some of the 
designs suboptimal or inefficient. 

One of the promising approaches to curb the cost of the 
parallel software redevelopmer.t resulting f=om new 
architect1.lre introduction is object-oriented programming. 
HowevEr, according to Grimshaw L4], the object-oriented 
parall,~l programming community is divided over the issue how 
to support parallelism in an application. There are two basic 
camps. The first one, the libraries group, advocates building 
highly optimized, extensible class libraries that will 
encapsulate parallelism leaving the languJge unchaLged. Users 
would be able to use such class libraries without knowing 
anything about parallelism, the targ~t architecture or 
implementation details of the class library. The proponents of 
the library approach argue that C++ already provides a 
powerful mechanism for language extension via classes, 
inheritance, and templates. Additional extensions would only 
clutter the language. Furthermore, with no consensus on 
language features, compiler vendors are unlikely to support 
any language extensions, and users will not want to risk 
embracing the feature which will no make it to the future 
standa:.c:c. 

The second camp, the extension group, believes tl.1at t 1 1e be,,t 
way to achieve parallelism is via language extensions. The 
proponents of this approach argue that parallel composition is 
as important and fundamental a concept as sequential 
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composition. They point out to languages s·.ich as OCCAM and ADA 

in which explicit parallelism is a part of the language and 
therefore their compilers have been abJe to develop parallel 
code optimizations. With concurrency being a part of C++, the 
same process wo~ld happen for C++ compilers. 

Grimshow [ 4] conjectures that th·~ parallel processing is at a 
crossroad. In the past, parallel processing was relevant only 
t-::· expensive supercomputers and software was often developed 
in-house because such a narrow market was not rinanr::ic>.lly 
viable for the corrunercial software developers. Instead, the 
successf11l commercial softwarehouses concentrated on booming 
personal computers and workstations market. Today, however, 
the cost-effective desktop computers are closing the 
performance gap to supercomputing. The desktop software is 
moving increasingly towards object-base and object-oriented 
interoperability standards. At the same time, many ::radi tional 
parallel processing users are downsizing and no longer have 
the resources to develop software in-house. Therefore, the 
parallel processing community has an incentive and opportunity 
to adapt and conform to emerging standards and link to desktop 
software market. 

Interoperability standards are also important for integration 
of parallel components developed by different research groups. 
Increasingly important multidisciplinary simulati0ns require 
coupling of different models to create a more realistic model 
of a phenomena. For example, tokamak simulation requires 
linking of a model of plasma particles motion in an 
electromagnetic field with a model of chemical reactions that 
these particles undergo. The individual components of such 
simulations are often stand-alone parallel codes. While the 
system file can be used as an interface and data exchange 
mechanism, more efficient integration methods are needed. 
Object: technology simplifies description of an interface 
mechanism, a data exchange and conversion mechanism. As a 
result object technology can extend the life of the para:lel 
components. 

Grimshaw (4] concludes that parallel processing components can 
conform ::o standard interface description by encapsulating 
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parallelism within objects and making the parallel component 
a particularly fast version of an existing sequential code. 

From that perspective, the decision of the High Performance 
Fortran (HPF) designers to based the language on Fortran90 was 
very helpful. Fortran90 includes all the basic constructs 
required of object oriented programming and there is an 
increasing interest in object-oriented programming using 
Fortran90. 

8. Summary of the following chapters 

above trends have focused on the global 
parallel programming. The rest of this 

more detailed and regional points of view on 

The discussed 
perspective of 
document provides 
these issues. 

8.1 USA Perspectives 

First, in a chapter entitled "Trends in Software Engineering 
for Parallel ProcessingA the author assesses the current 
state-of-the-art in this area from the United States 
perspective. The U.S. amounts for about 50% of the parallel 
computing power installed in the world, has national research 
and development programs in the area of high performance 
computers and the highest number of personal computers and 
computer users. Therefore the United States provides an 
importQnt perspective for other countries and an early 
indication o= future developments. 

The chapter starts with a discussion of trends in 
architectural design including the deep transformation which 
occurred in the U.S. High Performance Computing ind•Jstry. The 
emphasis of this industry shifted from record-breaking 
performance for any price to price-performance optimization. 
The successful companies, such as Silicon Graphics or IBM, use 
the performance gains driven by the general market to improve 
the performance of their parallel machines. In contrast, 
companies that relied on processors designed specifically for 
their architectures, like Kendall Square Research or Thinking 
Machine Corporation, were forced out of the computer design 
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market. 

Another trend discussed in the following chapter is an 
increasing importance of the memory for speed and economy of 
parallel processors. The increasing speed of the processors is 

matched by the increasing capacity but not speed of the 
memory. As a result, the gap between the speed of processors 
and memory widens every year. The gap is masked oy the use of 
ever-increasing cache. As evidenced by the pricing and 
performance of Silicon Graphics Challenger, the ratio of cache 
to mamory improves price-performance of parallel machines on 
memory intensive applications. 

The chapter also discusses trends in speed, price-performance 
and distribution of parallel processors. '1'he U.S. annual 
Gordon Bell Awards indicate steady exponential growth in speed 
and price-performance of parallel computers for the last 
decade. The parallel computing speed on useful applications 
reached several hundred gigaflops last year. The price
performance ratio is in the order of ten gigaf lops per million 
dollar of hardware cost. The largest world-wide 
supercomputing sites are still dominated by the governmental 
centers. However, the medium sites are mainly industrial and 
the smallest ones are mainly academic. This distribution 
contrasts with the overwhelmingly governmental centers in all 
categories just five years ago. Such shifts in distribution 
indicate that the impact of parallel processing on industries 
is growing. 

Another topic discussed in this chapter is the development of 
software models for parallel processing. First, the 
traditional models are discussed, such as Single Instruction 
Multiple Data (SIMD) and Single Program Multiple Data (SPMD), 
which is a restricted version of the more general Multiple 
Instruction M'.iltiple Data (MIMD) model. Then a new Bulk 
Synchronous Parallelism Model (BSP) is described together 
with its library. The final pages of the chapter are devoted 
to trends in languages. In particular, the basic ideas behind 
High Performance Fortran (HPF) are described and compared to 
Message Passing Interface (MPI) based approach. 
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8.2 Asian Perspectives 

The third chapter of this docl..i.rnent, entitled "High Performance 
Computing in India and Far-East• and authored by Prof. Patnaik 
from India focuses on Asian perspective on parallel 
processing. The author describes India's national initiative 
in supercomputing and its goal to develop a modern distributed 
memory paralJ.el computer. The result was PARAM-8000 parallel 
computer based initially on INMOS transputer (1990-92). The 
sustained performance of 16-node PARAM 8600 was in the range 
of 0.1 0.2 gigaflops. The next generation of PARAM 
computers, PARAM-9000, was based on SuperSparc series 
processor, thus following the modern trend of using off-the
shelf mainstream processors in the parallel machine 
architecture. After discussing architectural details of these 
machines, prof. Patnaik describes its software environment 
which includes support for HPF for data parallelism and PVM 
and MPI for MIMD parallelism. Then, tr£e author focuses on 
applications run on PARAM which currently are of typical 
scientific computation mix. However, plans are made to 
incorporate the production quality industrial codes in the 
near future. 

In the following pages, prof. Patnaik describes several others 
Indian parallel computers developed by different governmental 
research centers. Discussing the performance capabilities of 
these machines, prof. Patna5k dernonst~ates that by employing 
sufficient number of nodes, PARAM-9000 can achieve a peak 
performance of teraflops. The support for Indian High 
Performance Computing activities comes from different agencies 
of the government. 

In his chapter, prof. Patnaik summarizes also briefly High 
Performance Computing activities in other countries from the 
Far-East Region. His sununary discusses developments and 
programs in Singapore, China, Australia, Korea, New Zealand 
and Hong Kong. The chapter concludes with a brief assessment 
of the major trends in parallel computation. 
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Chapter XX. Trends in Software Engineering for Parallel 
Processing 

Boleslaw K. Szymanski 
Department of Computer Science & Scientific Computation 

Research Center 
Rensselaer Polytechnic Institute 

Troy, NY 12180, USA 
e-mail: szymab@rpi.edu 

1. Introduction 

The increasing importance of parallel processing caused by its 
rapid growth encouraged development of standaras in parallel 
progranuning languages and tools. Yet, there is no evidence of 
convergence cf the supported paradigms to a single model. In 
this chapter, we review two currently most popular models for 
parallel program design: de.ta parallelism and message passing. 
We also discuss the relevant developments in object oriented 
progranuning techniques as well as in client-server 
distributed/parallel processing. The declining share of the 
parallel processing market held by traditional supercomputers 
and the waning popularity of SIMD machines, together with the 
increasing role of clusters of workstations, created the 
conditions for rapid spread of parallel machines in government 
and industry. The price of entry into parallel processing 
decreased significantly making abundant opportunities for new 
enterprises in software industry in this area. The chapter 
discusses these developments and describes also changes in 
corresponding areas of software engineering for high 
performance distributed compu~ing. Finally, there is a review 
of the perspectives and impact of the changing parallel 
computing industry on inforr..ation processing at international 
and national levels. 

2. Trends in Architectural Design 

Recent events, such as the filing for Chapter 11 bankruptcy by 
the Thinking Machine Corporation in August 1994, the 
discontinuation of manufacturing and sale of KSR 
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~upercomputers by Kendall Square Research in September 1994, 
and the disappearance of Cray Computer this year raised the 
question how secure is the future of paralle:l co:nputing 
industry. 

It is important to realize that currently the parallel 
computing constitutes a small fractio~ of the overall 
information technology industry. In 1994, the overall U.S. 
information technology products were worth about $500 billion 
[5]. This value is a middle point of two esti~ates. The first 
estimate was provided by the U.S. Department of Commerce and 
was based on data from the U.S. Bureau of the Census. It 
values shipments for the information technology industry at 
$421 billion for 1993. This number includes computers, storage 
related devices, terminals, and peripherals, packaged 
software, computer software manufacturing, data processing, 
information services, facilities raanagements and other 
services and telecommunication equipment and s~rvices. 

However, this number does not include revenue from equipment 
rentals, fees for after-sale service and mark-ups in the 
product distribution channel, as well as office equipment. 

The Computer and Business Equipment Manufacturers Asscciaticn 
(CBEMA) values the worldwide 1993 revenue of the U.S. 
information technology industry at $602 billion. This number 
includes sales of office equipment, and CBEMA reports larger 
revenues for information technology hardware and 
telecommunications equipment than the reports provided by the 
Department of Commerce. 

In the United States, the total revenues of parallel computer 
hardware manufacturers were estimated at about $1 billion in 
1993. Out of it, about $400 million was received by 
manufacturers of massively parallel machines. Even with 
services and software revenues, the parallel co:nputer industry 
was about 0.5% of the U.S. information technology industry. 
Such a small percentage of the overall market indicates a 
narrow user base that can be easily saturated with new 
products. In addition, par::tllel computing has been highly 
dependent on government policies; institutions and government.
supported universities traditionally constituted more than 50% 
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of all users. 

The end of the Cold War and the associated shift ot 
governmental spending in the United States drastically changed 
the market for parallel machines and supercomputers. ;..s a 
result, companies relying solely on the man'-lfacturing of 
parallel machines have suffered the most. At the same ti.me. 
companies for which parallel computing manufact'.lring i.s only 
a part of the product line (e.g., IBM Corp., Silicon Graphics 
Inc., Intel Supercomputing) have feysevered, aud others {most 
notably Hita~hi and NEC in Japan· ~ave entered or ~xpanded 
their presence in the parallel sy::::.ems market. 

Predictions about a lasting impact of ~he current changes on 
the parallel computing industry vary widely. Some see in the 
recent bankruptcy ~rotection requests the beginning of che end 
of parallel computing based c~ massive parallelism. Others 
argue that it is just an end of a beginning. In the first camp 
is Gordon Bell, the founder of several computer companies and 
the sponsor of the yearly Gordon Bell Awards for the fastest 
parallel computer [1]. Mr. Bell believes that the latest 
threat to the very existence of the industry comes fr.om 
standard workstations and fast, low-latency networks based on 
A'I'M. These networks, according to Bell, like massively 
parallel machines, offer size scalability (smooth transition 
from fewer to more processors). However, unlike parallel 
machines, they also support generational scalability {from 
previous to future hardware generatior.s) and space scalability 
{from multiple nodes in a box, to computers in multiple rooms 
to geographical regions) . The most important capability 
offered by th~se networks is application co~patibility with 
workstations and multiprocessor servers. This is a capability 
which massively parallel computers sor~ly lack. According to 
Bell, the weaknesses of massively parallel mac~ines stem from 
the following two factors: 

1. parallel archite~tures are best suited to highly-tun~d. 
course-grain~~. and/or data parallel problems 

2. every new generation of parallel architectures differs 
from the previous one, forcing the users to redevelop 
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their applications. 

Bell sees the future of parallel processing in networked 
workstations and shared-memory multiprocessors. 

In a rebuttal to Bell's criticism, James Cownie from Meiko [4] 
cited the reasons why networked workstations are not an answer 
in many environments. The most important reason is the need 
for data security and availability. For a large commercial 
organization, security of data and its accessibility to those 
who need it are crucial. The sclution is a single, central 
repository. However, the central repository could use the same 
components as workstations to amortize the cost of their 
development. The natural solution is to use multiple 
processors compatible with the workstations. High performance 
requires a small physical size because the speed of light: 
limits the performance of highly distributed machines (to keep 
the latency of communication below one microsecond, the 
distance between computers must be kept below 300 m) . 
Switching technology cannot be based on ATM's in such a 
repository, because ATM switches are an order of magnitude 
slower and more costly than proprietary switching technology. 
According to Cownie, the only alternative is a massively 
parallel machine. 

A similar point is raised by Philip Carnelley and William 
Cappelli of OVUm Ltd (2] . They underline that effective 
manipulation of large amounts of data is crucial for companies 
in maintaining a competiti·..re advantage in the market. The 
complex applications in manufacturing, commerce, travel, and 
entertainment require a sophisticated database support that 
demands enormous computing power. The costs of hardware and 
application development restricted parallel processing to 
niche applications such as scientific computing, weather 
forecasting, etc. Yet, only parallel computing can meet the 
current challenge of information processing and, in response 
to those needs, parallel processing has entered the commercial 
mainstream. Parallel computers built from standard components 
(e.g., shared-memory, like Sequent, or distributed memory, 
like IBM SP2) can run powerful parallel relational databases. 
Such systems ~an process data extremely quickly, are 
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reasonably priced, and are imprPssively scalable. Today, most 
of the com.~ercial uses focus on data repository. Carnelley and 
Cappelli predict the futLre applications of parallel systems 
will transform operational systems, decision support systems, 
and multimedia applications, and, in the process, will provide 
an er.orrnous impetus for the parallel computing industry. 

Ken Kennedy from Rice University [8] underlines tr.at pa:?:"t cf 
the difficulty in making parallel computing wide-spread and 
popular was the lack of standards in parallel prograrn.'Tling 
interfaces. As discussed later in this article. such standards 
have been developed and are gaining wide-spread acceptance. 

The optimistic views on the future of parallel processing are 
supported by an exponential growth in the usage of parallel 
supercomputers at the NSF Supercomputing Centers in the U.S. 
(see Table 1) . 

Fiscal Active Usage in Normalized 
Year Users CPU Hours 

1986 1,350 29,485 

1987 3,326 95,752 

1988 5,069 121,615 

1989 5,975 165,950 

1990 7,364 250,628 

1991 7,887 361,037 

1992 8,758 398,932 

1993 7,730 910,088 

1994 7,431 2,249,562 

Table 1. Supercomputing Usage at NSF Centers in US (Source: 
National Research Council {5], .1995). 

Some analysts see the exponential growth of revenues for 

20 



massively parallel computers in the near f~ture. Terry Bennet. 
director of technical systems research fer Infor-Corp in 
Beaverton, Oregon, was quoted in [ 12] as saying :hat the 
industry is currently in a ''lag'' where traditional vector 
supercomputers are fading out while other approaches are 
maturing. Bennet predicts that:: by 1996 there should be a 
reasonable upswing in the high-performance computing business 
an~ the :narket will continue to grow over $4. 5 billion in 
1998. The strong sales of relative newcomers to the market. 
IBM Corp. with its SP series and Silicon Graphics Inc. with 
the Challenger computer, agree with Bennet's prediction. 

199 199 1998 2001 2004 
2 5 

Feature size .5 .35 .25 .18 .12 
(micron) 

Gates per 300 800 2M SM lOM 
chip K K 

Bits per chip 16M 64M 256M lG 4G 
in DRAM 

Microprocesso 250 400 600 800 1000 
r chip size 

in square mm 

Memory (DRAM) 132 200 320 500 700 
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Wafer 200 200 200- 200- 200-
diameter in 400 400 400 

mm 

Table 2. Semiconductor Technology Trends 
Semiconductor Industry Association, March 1993). 
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Steve Wallach of Convex [13) arguej that parallel processing 
has been becoming ubiquitous on all levels of computing 
technology. In microprocessor desig11, super-scalar techniques 
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- executing multiple instructions at the same time - are now 
a standard. Multiprocessor file servers are in the process of 
becoming a standard. The continuing increase in the 
semiconductor density (see Table 2) will naturally lead to 
multiple processors on one semicor.ductor die. If a standard 
64-bit RISC microprocessor has 1-2 million transistors 
{without cache), what else (other than creating a 
multiprocessor chip) can be done with transistors when 100 
million and 1 billion transistors become available? Wide
spread use will drive the costs of such a chip down and 
therefore will make massively parallel computing cost 
effective. 

100 

10 

0.1 
1965 1970 1975 1980 1985 1990 

Year 

Figure 1. Trends in microprocessors and Mainframe CPU 
Performance Growth. 

The case against supercomputing and massively parallel 
computers often is based on the difference in speed with which 
the performance of microprocessors and other CPU's grew (see 
Figure l, which was based on (7)). However, the CPU 
performance gains are of one of two kinds: 

1. Architectural advances: bit-parallel memory and ari thrnetic, 
cache, interleaved memory, instruction lookahead, 
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instruction pipelining, multiple functional units. 
pipelined functional units and data pipeliPing. 

2. Pure hardware advances, basically improvement in 
instruction cycle time which is costly and limited by the 
physics of propagating signals through a medium and 
dissipating heat generated by transistor operation. 

Microprocessors only relatively recently started to use 
architectural advances, whereas supercomputer CPU's used some 
of them before 1970's. Consequently, performance improvement 
resulting from some of the architectural advances is not seen 
in the plot for supercomputer CPU improvements. However, the 
pure hardware advances are based on advances in technology, 
which are increasingly costly. For example, the capital cost 
of a semiconductor fabrication line is growing rapidly with 
improvements in wafer and features sizes (see Figure 2) _ 
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Figure 2. Semiconducto.-r- fabrication line capital cost per 
thousand wafers per week. Feature size is measured in microns. 
Source: (7 J. 
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This capita~ cost can be much more easily amortized if the 
produced chips are used not only in supercomput.ers or parallel 
comput.ers but also in all other lines of comput.ers. Another 
reason for using stock hardware in building parallel machines 
is the constantly improving performance of microprocessors. h.s 
shown in Figure 3, designing a specialized processor for 
parallel processing which has a 10 fold performance advant.age 
over the current uniprocessor design gives the designers just 
four years of speed superiority. After that time. the 
improvements in general microprocessor design will nullify any 
initial performance advantage. Perhaps this is the reason why 
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Figure 3. Performance window of opportunity for custom design 
chips. 
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all three companies mentioned at the beginning of this section 
as getting out of the parallel processing manufacturing were 
using custom design chips in thei.;::- products. On the other 
hand, the recently most successful parallel hardware 
manufacturers (IBM Corp. and Silicon Graphics, Inc.) u3e th~ 
standard CPU chips designed fer in their main l~ne of 
workstations. 

3. Importance cf Memory 

Technology is behind yet another phenomenon important for 
design and programming of parallel machines. There is a clear 
trend of DRAM speed improvements lagging behind t 1_1e processor 
speed improvements (see Figure 4). In the last twelve years, 
the CPU speed increased several hundred times, whereas the 
speed of DRAM chips merely doubled. Both chips are produced by 
the same technology, however; the advancement in technology 
for DRAM chips is used to increase RAM density, not speed. 

·~ 

l~l.-i::::::::~~~~~~==::::::::::::::=:=:=:=:==:==:=:=~~DRAM~~~ 
1980 1982 1984 1986 1988 1990 1992 

Figure 4. Trends in DRAM and processor cycle time: Source [7]. 

To mask the difference in speed between the processor and 
memory, modern processors use caching systems, often two level 
caches. A cache trades capacity for speed. During program 
execution, the mo&t recently referenced fragment of the memc.ry 
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is kept in the cache and data arE retrieved from it. Each time 
data needed by the processor are already in cache. the access 
is don~ at (roughly) processor speed. Such an access is called 
a cache hit. When the data are not ~vailable in cache, cache 
miss happens. and a bucket of data (equal in size to the cache 
line) that contains the needed data is moved from a slow 
memory to cache. The access to data is slow in such a case. 
The cache miss ratio (or in other words the percentage of 
cache misses over all data accesses) dictates the resultant 
speed of processing. The bigger the difference in speed 
between the memory and the processor, the lower the cache-miss 
ratio must be for the processor to work at near capacity (see 
Figure 5). 

MIPS with cache miss ratio 5% 
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Figure 5. Effects of Memory-Access Time on Speed of 
Processing·. 
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In general, the cache miss ratio can be improved only by 
increasing the size of cache. Consequently, an inc~ease in 
difference between performance of processor and memory is 
compensated by an increase in the cache size. 

A multiprocessor brings not only multiple power of the CPU's 
together but also improved memory capacity and performance 
thanks to multiple cache capacity. As a result, a 
multiprocessor consisting of n processors may perform faster 
than n times the speed of a single processor for some 
applications. In such cases, the multiprocessor achieves 
super-linear speedup. It should be noted that the improved 
cache miss ratios of component processors of a multiprocessor 
must provide performance improvement that exceeds the overhead 
of parallel execution (such as load imbalance, not all 
processors having the same amount of work, and communication 
overhead, delayed access to non-local data), so cases of 
super-linear speedup are rar~. However, in all applications, 
the impact of the extended memory of the parallel computer 
versus its single processor counterpart can be significant. 

David Wood and Mark Hill discuss in (15] the concept of a 
costup and show t~1at large memories can make parallel 
computing cost-effective even with modest speedups. Let s(p) 
denotes the speedup of a program when executed on p 
processors, i.e., 

l/time(p) time(l) 
s(p; = ----------- = ---------

l/time(l) time(p) 

The speedup is linear when s(p) = p, super-linear when s(p) > 

p, and sublinear (the most often case) when s(p) < p. Let c(p) 
denotes cost of p-processor machine. The cost-performance of 
such a machine, costperf (p) is then c(p)*time(p). If a 
parallel machine is to achieve better cost-performance than a 
uniprocessor, then costperf(p) < costperf(l), which leads to 
the following conclusion (see (15]): 

p-processor parallel computing is more cost-effective then 
uniprocessor computing whenever s(p) > c(p). 

27 



The main point is that 0ften c(p} < p because processors in 
the multiprocessor may have less memory each then the 
uniprocessor. The a~thors provide an exa.~ple of SGI systems. 
As of July 1994, a uniprocessor Challenge DM was priced 
according to the formula: 

cost(l,m) = $38,400 + $100*m 

where m is memory size measured in Mbytes. The comparable 
p-processor, SGI Challenge XL, was priced as follows: 

cost(p,a,m) = $21,600 + $20,000*p+ $100*a*m 

where a > 1 is the factor of the memory overlap on different 
processors. By substitution, David Wood and Mark Hill 
obtained the following formula for SGI machines: 

c(p,a,m,) = (2.125+0.521*p+0.0026*a*m)/(l+0.0026*m) 

Figure 6 illustrates costups with SGI prices under the 
assumption that a = 2, i.e. that the parallel implementation 
requires twice the memory of the uniprocessor program. 
Dif fercnt lines correspond to different number of processors 
p. The data support the assertion that parallel computing can 
be cost effective at speedups much less than p for large but 
practical memory sizes. Wood and Hill conclude that more than 
one processor might be needed to effectively utilize 
suf~iciently large memories. 

In the closing of this section, it should be noted that 
several different architectural approaches to parallel 
processing are slowly converging to a similar solution. The 
workstations interconnected through a fast network, when 
dedicated to a single application behave like a 
multiprocessor. The modern shared memory multiprocessor relies 
on an interconnection network between the global memory and 
local processor caches, and therefore behaves similarly to the 
distributed memory multiprocessor. Finally distributed memory 
machines through extensive use of caches approach in their 
behavior shared memory machines. The overall trend is to use 
powerful computing nodes interconnected through a high speed 

28 



network of large capacity. The trend is to rely on standard, 
off-the-shelf components. 

p::4 -
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Figure 6. SGI costups with double memory overhead for a = 2. 

6. Perfozmanc:e of Parallel Computers 

As already discussed, the speedup s(p) of a parallel Machine 
with p processors can be found by comparing time of execution 
of a program by a uniprocessor (time(!)) and by a 
multiprocessor (time(p)) 

time(l) 
s(p)=---------

time(p) 

The well known. adage that the chain breaks at the weakest link 
has a computer science counterpart in Amdahl's Law which 
states that the least parallelizable part of the code limits 
the speedup. More precisely, if f is the fraction of the code 
which is inherently sequential (so called Amdahl fraction) 
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then, independently of the number of processors used s(p} <= 

l/f, simply because f*time(l) <= time(p). 

Amdahl's Law seems very pessimistic: after all. every program 
has sequential parts and even if these parts are small and 
limited to few percent of the code, still the speedup is 
limited to less than hundred times (see Figure 7). 

70 

60 

Speedup as a function of Amdahl fraction f 

Speedup 
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Figure 7. Impact of the Amdahl's Law on the Maximum Speedup. 

Fortunately, often the execution time of sequential parts of 
the algorithm do not change, or change slowly with the growth 
of the problem size, whereas execution time of parallelizable 
parts changes rapidly when the j,)roblem size is increased. 

30 



Hence, the Amdahl fractior. is dependent on the problem size. 
For a wide class of proble1ns f can be r.ade arbitrary small by 
selecting sufficiently large problem size. Consequently, for 
such probleres. the speedup can be made arbitrary large. 

Often the problems computed on parallel machines ::lre too large 
too fit on a uniprocessor, so measu~ing an A.~dahl fraction for 
them is impossible or difficult. John Gustafson [6] pro9osed 
different measure, g, that represents a fraction of time 
during which the parallel machine executed the sequential part 
of the code. Therefore time(p) = g+(l-g) = 1 but time(l) = 
g+(l-g)*p = p-(p-l)*g, so the speedup is: 

s(p) = p[l-(1-1/p)*g] 

'l'he nice feature of this formula is that it clearly shows how 
to improve the speedup. If we start adding processors (i.e., 
increasing p) but keep the work of all processors the same, 
then most likely g will stay the same and the speedup will 
grow. Likewise, with the constant number of proces~ors, we 
decrease g by increasing the problem size. The final 
conclusion is similar to what the Amdahl's Law implies_: by 
selecting large enough problem to keep all processors occupied 
for a long time, the impact of the sequential parts of the 
program could be made negligible. 

Though these principles may seem simple in theory, applying 
them to real problems is difficult. To encourage innovation, 
the annual Gordon Bell Awards are given for achievements in 
supercomputing. The thre: categories are performance, 
price/performance and compiler parallelization. The last six 
Gordon Bell Awards are summarized in Figure 8. They provide a 
wealth of information about the current trends in parallel 
computing. 

In figure 8, the winners of price/performance category are 
marked with black rectangles and winners of performance 
category by black circles. After initial successes of SIMD 
machines (please note three CM2 machine winners in 1989-90) 
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Figure 8. Trends in Gordon B~ll Awards Winning Entries. 

came the reign of Intel machines (Intel hypercube iPSC in 
1990, DELTA in 1992 and Paragon in 1994). The 
price/performance category is clearly dominated by 
workstations. A quick glance through applications indicates 
that scientific computing is still the dominant and favored 
domain. The trend is very clear in both categories and it 
indicates rapid e:xponential growth in capabilities of the 
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machines. 

Over the years. the actual speed record was rapidly growing 
and the holders ot the record were changing quickly. until 
recent years. the record was usually held by vecto::-izing 
supercomputers with a single or a few processors. Only 
recently have massively parallel machines started to provide 
better performance. As cf this writing, Intel's Paragon XP/S 
MP Supercomputer is the record holder with a sustained speed 
of 281 gigaflops, achieved on an industry standard MP Linpack 
benchP>~rk in December 1994. The previous record of 170 
gigaflops was made by Fujitsu in August 1994. The Intel 
machine even achieved 328 gigaf lops while executing a 
double-precision co~plex LU factorization code. The Paragon 
system used for the record-breaking runs was created by 
joining two machines at Sandia National Laboratory in U.S. It 
included 2256 compuce nodes, each with three Intel i860 XP 
processors, a total of 6,768 microprocessors. 

It should be noted that since 1993, awards similar to the 
U.S. 's Gordon Bell Prizes were introduced in Europe. The 
so-called SuParCup' s are awarded yearly at Mannheirr. 
Supercomputer Conferences. 

5. Distribution of Parallel Progranning Resources 

Category USA and Japa :.:urope Other 
Canada n countries 

Number of 248 82 143 27 
computers 

Installed 54% 27% 17% 2% 
power 

Leading USA Japa Germany, Korea, 
countries n UK Australia 

Table 3. The Distribution of Powerful Computers over the World 
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Distribution of parallel machines and supercomputers :s still 
heavily concentrated in the most developed countries_ The data 
quoted below are based on the TOPSOO list of the most powerful 
computers in the world. compiled by Dongarra. ~·!eurer and 
Strohrneir for November 1994 _ The list publishes Rrnax, the 
maximum performance of a machine on one particular benchmark, 
so it is not indicative of the speed whi~h can ~e achieved on 
an entire application. The total performance installed 
worldwide in the~a 500 machines is over 2,600 gigaflops, or 
2.6 teraflops. The geographical distribution of the computers 
is given in Table 3. 

A similar list of nearly 200 sites with the most powerful 
computers is maintained by Gunter. The sununary of this list 
for May 1995 is given in Table 4. 

-
I 

Category USA Jap Euro Othe Governm Acad~rr.1 Indus 
an pe rs ent 1a try 

Sites 1- 16 7 2 0 141 51 6 
25 

Sitei:: 26- 31 15 26 3 30 is I 30 
100 

,__ ! 
I 

Sit?.S 40 10 33 8 14 43 34 
100-1~0 

Table 4. The Distribution of Powerful Computing Sites o~rer the 
World 

The sites outside of US, Europe and .Japan were located in 
Canada, Korea and Taiwan (for sites ranked 26-100) and two 
sites in Australia, two in Hong Kong, as well as single sites 
in Mexico, Canada, China and Saudi Arabia in tier 100-200. It 
is interesting to observe that the most powerful sites are 
mainly governmental laboratories, medium sites are mainly 
commercial and the smallest sites are mainly academic. 

The growing importance of parallel computing to many countries 
in the world was demonstrated in the special session of 
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Supercomputing' 93 entitled Supercomputing .'\round the t·lorld. 
Among others, researchers from Singapore, Indonesia and 
Malaysia wen: talking about their countries' support for using 
parallel computers for aerospace, oil, and environmental 
applications. 

6. Software Models 

The increasing importance of parallel processing prompted 
growth in the body of standardizatinn in parallel programming 
languages and tools. Yet, there is ~o evidence of convergence 
of the supported programming paradigms to a single model. 
currently there are two most popular models for parallel 
program design: data parallelism and message passing. 

Data parallelism is popular because of its simplicity. In this 
model, a single program (and therefore a single t.i:l.read of 
execution) is replicated on many processors and each copy 
operates on separate part of data. Depending on the tightness 
with which the execution of progra.~s is synchronized, there 
are two modes of using data parallelism. When each instruction 
of the program is synchronically executed on all processors, 
then Single Instruction Multiple Data (SIMD) mode is used. 
Such tight synchronization requires hardware support. 

SIMD machines were quite popular at the turn of the last 
decade (see Gordon Bell Awards in t!le pre,;ious section) . From 
the software engineering point of view, SIMD machines are easy 
to program because there is a single flow of control on all 
processors. The main focus of parallelization is to find large 
data structures that can be distributed to all processors to 
keep them all occupied. Another concern is to minimize the 
data movements necessary to provide data to processors that 
are to execute them. Due to the small granule of parallelism 
(single instruction) SIMD machines consist of a very large 
number of simple processors (tens or hundred thousand of 
processors in a single machine is not unusual). Each of these 
processors must either execute the same statement as all the 
others or idle, so SIMD machines achieve poor efficiency on 
programs that do not contain sufficiently large data 
structures. They also do not perform well on programs which 
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require irregular data references (list structures. dynamic 
memory, etc.). The consensus is that SIMD architecture has a 
very specialized niche of applications (e.y.. visual 
information and scene processing), but it is not the best 
choice for general parallel processing. 

Data parallelism can be also used in a loosel:-z: synchronized 
mode, when the program execution consists of two stages: 

1. computational stage, when copies of the same> 9rogram are 
executed in parallel on ea~h processor locally. The 
execution can differ in the conditional branches taken, 
number of loop iteration executed, etc., 

2. data exchange stage, when all processors concurrently 
engage in exchanging non-local data. 

It should be noted that the data exchange stage is very simple 
in case of shared memory machines (when it can be enforced by 
use of locks or barriers) . The frequency of synchronization in 
SPMD model can be adjusted t~ correspond to the latency of the 
interconnection network. The 3P!1D model is very adequate for 
scientific computing which of ten requires applying basically 
the same algorithm at many poin~s of computational domain. 
SPMD parallel programs are conceptually simple because of a 
single program executing on all ~·rocessors, but more complex 
then SIMD programs. 

For more complex applications, running a single program across 
the parallel machine may be unnecessarily restrictive. In 
particular, dynamically changing programs with unpredictable 
execution times result in poorly balanced parallel 
computations when implemented in SPMD mode. This is because in 
SPMD mode, processors synchr?nize at the data exchange stage, 
and none of the processors can proceed to the next 
computational stage until all others reach the data exchange 
stage. 

The SPMD model was abstracted into a Bulk-Synchronous 
Parallelism model proposed by Leslie Valiant of Harvard 
University (14]. The model attempts to provide the abstraction 
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for parallel algorithm description that lends itself to 
performance analysis. The model also became a basis for a 
library that facilitates the creation of portable parallel 
software. 

The BSP model consists of three components 

1. Processors perform processing or memory functions. 

2. A router provides point to point communication between 
pairs of components. 

3. A synchronization mechanism synchronizes all or a subset 
of the components at regular intervals of L time units 
(L is called also the synchronization periodicity). 

In the BSP model, computation consists of a sequence of 
supersteps. In each superstep, a component performs some local 
computation and transmits messages to other components. After 
a period of L time units, a global check is performed to 
determine if all components completed the superstep. If not, 
the superstep is extended by another L time units, after which 
the check is made again. In the BSP model, the data 
transmitted are not guaranteed to be available at the 
destination until after the end of the superstep at which they 
were sent. 

Using this model, the cost of an algorithm can be expressed in 
terms of L and g, two parameters that are defined by the 
network latency and bandwidth, respectively. Using the BSP 
cost of an algorithm, it is possible to predict the 
perfonr.ance of the algorithm on new hardware, given the values 
of the parameters L and g for this hardware. The BSP model 
facilitates an algorithm optimization through data 
distribution selection based on the characteristics of the 
problem rather than the architectural features of the target 
machine. 

A BSP computer is characterized by the following set of 
parameters: number of processors p, processor speed s, 
synchronization periodicity L, and a parameter to indicate the 
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global computation to communication balance g. The 
synchronization periodicity L is the smallest number of time 
steps between successive synchronization operations. Parameter 
g is the ratio of the total number of local operations 
performed by all processors in one time unit to the total 
numbP~ of words delivered by the communication network in o~e 
time unit. Processor speed s is measured in flops (floating 
point operations per second) . Synchronization parameter L is 
measured in flops. Parameter g is measured in flops per word. 

BSP parameters allow tor algorithm performance analysis. For 
example, consider a superstep that needs to communicate h 
words of data. Since it takes g*h time units for the 
communication network to deliver the data to its destination, 
and L units to synchronize all the processors performing the 
superstep, at least L+g*h units of computation are needed to 
keep the processor busy; a level of computation less than this 
threshold results in idling of some processor, and therefo~e 
is a source of inefficiency. 

In terms of the BSP parameters, distributed memory parallel 
machines are often characterized by large values of s 
(relatively fast processors) and low values of L and g (a 
communication network with low latency and large bandwidth) . 
A general purpose network of workstations, on the other hand, 
is characterized by values of s that are somewhat lower than 
for the parallel machines and values of L and g that are much 
larger than the corresponding values for the parallel machines 
(high latency and low bandwidth due to the loosely coupled 
nature of these networks). Thanks to this distinction, optimal 
BSP algorithms for network of workstation use different data 
distribution then those designed for a parallel computer. 

BSP ~lgorithms can be directly implementad in a high-level 
traditional language (e.g., C or Fortran) with addition of the 
necessary calls to BSP pri~itives. ~he Oxford BSP Library [9). 
developed by Richard Miller can be used for this purpose. 
The library is based on a slightly simplified version of the 
model presented in [ 14] . Ti.1ese simplifications require that 
the processors are allocated statically before the program is 
run and the programs are written in a SPMD mode. The ~ost 
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significant feature of the library is the support for remote 
assignment as a means for non-local data access. The library 
consists of just six functions and is simple to use. Despite 
its simplicity, we have found it to be quite useful and 
robust. Tne library for C-BSP prograinming includes the 
functions for 

1. Starting and ending a BSP session 

2. Starting and ending a superstep 

3. Fetching and storing a values from a remote processor. 

Computationally intensive applications with frequent 
communication and synchronization require careful design for 
efficient execution on networks of workstations. Such design 
is supported by Bulk-Synchronous Processing (BSP) model. In 
(11] authors demonstrate an implementation of a pla~ma 

simulation on a network of workstations and the use of BSP 
analysis technique::; for tuning the program for this kind of a 
machine. They al~n compare the performance of the BSP 
implementation with a version based on MPI and conclude that 
the BSP model, serving as the basis for an efficient 
implementation, compares favorably with MPI. 

The memory distributed machines use message passing for 
exchanging data between different ~=ocessors. The SPMD model 
may shield the user from specifying the detailed data 
movements thanks to data distribut~on directives from which a 
compiler generates the message passing statements. However, 
the user which decides to write the message passing statements 
himself has full control over the program execution. In 
particular, the user may define when and how many processors 
synchronize in their execution. This gives the user a lot of 
flexibility at the cost of requiring the user to make very 
intricate and detailed description of the program. The 
programs tend to be longer and more complex than their SPMD 
counterparts, and therefore more error-prone. Once debugged 
and tuned up, they are also more efficient. The flexibility of 
the message passing model makes it applicable for a wide 
variety of problems. As discussed below, the newly developed 
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standard library of functions for message passing, MPI. has a 
potential of becoming a universal tool for parallel software 
development. 

7. Trends in Languages 

There is a plethora of resea:..:ch parallel progranuning languages 
with different flavors to choose from, starting from 
functional, dataflow to object oriented, logical etc However, 
the majority of parallel programs are stil.:i. itten in 

Fortran. Since 1950's this language was a favorite choice for 
writers of scientific programs and particularly for 
generations of graduate students in applied sciences. Over the 
years, Fortran underwenc a remarkable transformation, from one 
of the first languages at all to the first language with a 
well defined standard (Fortran66) to structured programming of 
Fortran77, to data parallel and object-oriented Fortran90 and 
finally to the newest standard of High Performance Fortran 
(HPF) . Each generation brought with it new features ~nd set a 
new standard for the manufacturers of hardware and compilers. 

Compared to Fortran77, Fortran90, which was introduced at the 
beginning of this decade, brought to t:he world of Fortran 
users s~veral modern language design features, such as: 

1. Dr:!rived types, kinds, pointers and dynamic memory 
allocation that enable the user to define own data types 
and dynamically allocate data structures. 

2. Modules, characterized by public and private data types. 
Modul~s can be 5mported from other programs by the USE 
clause and renaming. 

3. Array operations and new control structures allowing for 
a very concise and elegant definition of data parallel 
programs. 

4. RP.cursive procedures. 

5. Interface blocks for abstract definition of the 
input/output as well as terminal-oriented source forms. 
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The first two features enatle the users to write 
object-oriented programs. In brief, object-o~iented 

programming involves developing user's own abstraction of the 
application domain. This abstraction is defined by the user i~ 
the form of data abstraction, object types and type 
inheritance. An object is defined by its (hidden) state and a 
set of operations that are applicable to it. Abstract data 
type is just a set of objects whereas a class is an 
abstraction of objects. Each object has private data and 
attributes (that define its implementation) a~d public data 
and attributes visible to users of the object. Such a 
distinction between object's data and attributes is often 
referred to as data encapsulation. Finally, polymorphism and 
function overloading are another characteristics of an object 
oriented language. Basically, they allow an operator or a 
function to carry different processing for different types of 
their arguments. The simplest example of such overloading is 
its use to define an optimized function of raising to a power. 
It could be done by using a power series approximation for 
non-integer exponents and also by an iterative multiplication 
for integer exponents. Careful analyses of Fortran90 features 
indicates that all the above features can be expressed in 
Fortran90 [10]. 

Another important feature of Fortran90 is the ability to 
operate on the whole arrays. Array expressions allow the user 
to define arrays of various shapes and apply operators to such 
arrays in a piecewise manner. Array shapes can use a set of 
conditions to decide to which particular elements of tr.e 
argument an operation should be applied (WHERE clause). The 
array expressions allow for a very succinct definition of da':.a 
parallel operdtions. 

A new generation of parallel Fortran, HPF was introduced in 
1993 by an HPF Forum, a group of parallel hardware 
manufacturers and academic, industrial and governmental users 
of high performance machines. During 1994 there were six 
announced commercial HPF products and 11 a~nounced commercial 
HPF efforts, with many of these compilers becoming availabl~ 
now (mid of 1995) . HPF introduced new data partitioning 
directives, like ALIGN/REALIGN data structures relative to 
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each other, DXSTRXBUTE/REDXSTRXBUTE data str~ctures (or their 
templates) to processors according to one of the predefined 
patterns (BLOCK, CTCLXC, or BLOCK-CYCLXC). Directives for 
definition of processor arrangements (PROCESSORS), or loop 
parallelization (XHDEPEHDENT/FORALL) are available. These 
directives enable the user to define data movement.s indirectly 
without the need of detailed description of the message 
passing statements that are must be executed to achieve 
directive-defined effect. 

Critics of HPF think that the HPF standard is not general 
enough. In particular, HPF does not allow for dynamically 
defined alignments and distribution that are permitted in 
Fortran HPF+ [3]. However, standardization of the language 
features is extremely important for users and compiler and 
tool writers because it protects their software investments 
against changes in the architecture. In that respect, 
introduction of Fortran90 and then HPF is an important step 
forward towards more stable parallel software. 

HPF can be seen as the flagship of the data parallelism camp. 
On the other hand, the supporters of message passing based 
parallel programming achieved standardization of their 
approach in the Message Passing Interface (MPI). MPI is a 
large library of the message passing utilities that includes 
125 functions. The basic MPI subset, sufficient for writing 
simple applications, consists of just the following six 
functions: 

1. MPX_DnT - to initialize MPI on in a process, 

2. MPX_COMM_SXZE - to find the number of processes 
participating in the MPI session, 

3. MPX_COMM_RANK - to find a unique rank of the calling 
process among the MPI session part:cipants. 

4. MPX_Send - to send a message to the other processes, 

5. MPX_Receive - to ~eceive a message, 
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6. MPI_Finalize - to terminate the MPI session. 

The innovations of MPI are centered around an abstract vie"': of 
the communication. This abstract view supports portability of 
programs using MPI to different machines. Messages in :-!PI are 
described as triples consisting of an address, data count and 
data type. Data types in such triples can be user defined. MPI 
allows the processes to group themselves and arrange 
themselves into a hierarchy where each process has its own 
rank. A process can have different ranks inside different 
groups and it can partici~ate in different communication 
sessions concurrently. MPI provides also a default initial 
group whose members are all processes that exec:..ited the 
MPI_mIT function. Families of messages can be defined in 
terms of communication context and group. 

MPI provides also more complex feacures, such as collective 
communication that includes data movements and global 
reduction operations. MPI allows the user to define virtual 
topologies and use different communication mcdes. It provides 
also functions for debugging and profiling and support for 
heterogeneous networks. The MPI standard does not define, 
purposefully, how the MPI sturtup is implemented, the amount 
of system buffering, or the limitations on recognized errors 
to avoid unnecessary restrictions on implementations. 

Judging from the widespread popularity of the Parallel Virtual 
Machine (PVM), MPI can become an important step towards 
providing efficient and unifying tool for expressing message 
passing in parallel and distributed applications. Although 
introduced recently (in 1993), MPI has been quickly embraced 
by manufacturers and is supported on many parallel machines 
(among them Cray T3D, Intel Paragon and IBM SP2). 

8. Conclusions 

Parallel processing is at a critical point of its evolution. 
After a long period of intense support by government and 
academia, it slowly moves to derive the bulk of its support 
from th~ ~ommercial world. Such a move brings with it a change 
of emphasis from record breaking performance to price 
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performa!lce and sustained speed of program execution. The 
winning architectures are not only fast but also economically 
S.)und. As a result. there is a clear trend towards widening 
the base of parallel processing both in hardware and software. 
On the hardware side, that means using off-the-shelf 
commercially available components (processor, interconnection 
switches) which benefit frcm rapid pace of rPchnological 
advancement fueled by the large customer base. The other 
effect is the convergence of different architectures thanks to 
spreading the successful solutions among all of them. 
Workstations interconnected by a fast network approach the 
performance of parallel machines. Shared memory machines with 
multilevel caches and sophisticated prefetching strategies 
execute programs with efficiency similar to distributed memory 
machines. 

On the software side, the widening the base of the users 
currently relies on standardization of parallel programming 
tools. By protecting the programmer's investment in software, 
standardization promote~ development of libraries, tools and 
application kits that in turn will attract more end-users to 
parallel processing. It appears that parallel program.~ing is 
ending a long period of craft design and is entering a stage 
of industrial development of parallel software. This is a~ 
industry in the making that will provide new opportunities for 
software developers and investors. 
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Glossary 

ATM: Asynchrono..is Transfer Mode, a new standard of 
transmitting data over a network that unifies the need of 
computer processing and teleconununications (voice and video 
transmission). 

BSP: Bulk Synchronous Parallelism model developed to unify 
algorithm description for parallel machines (Section 6). 

Cache: Fast but expensive memory used to speed up access to 
data in main memory of the computer (see Section 3). 

Cluater of Workatationa: or COW, a parallel machine created by 
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joining independent workstations by a net~ork (usually Local 
Area Network, LAN) . 

DRAM: Dynamic Random Access Memory, is currently the 
technology producing the densest computer memory chips 
(16-64MB or millions bytes in a single chip). 

Fi1e server: A special computer in a network of workstations 
responsible for providing the file storage and services for 
the entire network. 

Massively para11e1 machine: A computer with many processors, 
not necessarily the fastest. computer on the market (see 
supercomputer). 

llu1timedia: Use of nwr..erical data, voice and pictures/movies, 
:n data processing. 

llu1tiprocessor: A computer with many processors, a synonym of 
parallel comput~r. Supercomputers often are multiprocessors. 

SDID machine: Single Instruction Multiple Data multiprocessor. 
It consists of a large number of simple processors, each 
executing the same instruction. 

SPllD: Single Program Multiple Data mode of parallel 
processing. Each of many processors executes the same program 
on different data. Unlike SIMD computer, conditional 
statements may cause that at any given instant each of the 
processors in SPMD mode may execute different instructions. 

supercomputer: Ultra-fast computer for numerical computation, 
usually based on vector units (~pecialized processors for 
matrix and vector operations) and some, not necessarily 
massively, parallelism. 

Uniprocessor: a computer with a single 
sequential machine. The first 
uniprocessors with vector units. 

47 

processor, a synonym of 
supercomputers were 



.. 

100 

10 

0.1 
196S 1970 197S 1980 198S 1990 

Year 

Figure 1: Trends in microprocessors and Mainframe CPU Performance Growth 



.. 

80 

.5µ 
2-inch 3-inch 4-inch 6-inch 
wafer wafer wafer wafer 

60 
z: 

' 
~ 
0 c ... 
0 40 -c :: 
:i 

20 

1998 
Year 

Figure 2: Semiconductor fabrication line capital cost per thousand wafers per week. 
Feature size is measured in microns. Source: [7] 



.. 

u 100 
u 
c = e 

J2 ... 
d:! 10 

l 

Time window 

" " " IOXUNI 

0 1 2 3 4 5 6 7 8 9 10 

Years 

Figure 3: Performance window of opportunity for custom design chips 



.. 

IOK 
19IO 1911 19M 1916 1911 1990 

Figure 4: Trends in DRAM and processor cycle time: Source [7) 

I ------- -

1992 



.. 

MIPS with cache miss ratio 5% 

30 

25 

20 '··-·-·---.. __ 

·····-·-...... _____ _ 

15 ----

10 

CPU cyle=5ns -
CPU cyde=100S -
CPU cyde=20ns ---····· 

memory access time in ns 
o..._~_._~~.L.......~--'-~~.L.......~--'-~~..._~_._~___. 

100 150 200 250 300 350 400 4SO 500 

Figure 5: Effects of Memory-Access Time on Speed of Processing 



.. 

8 

7 

6 ·· . 

4 

3 

Costup{p) 

required speedup 

..................... __ 

···-............ _ 

......... 

p=4-
p=8 -

p:16 ····---· 

···--.......................................... .. 

size of memory 
2'--~-'-~.....i...~......1.~~i......~-'-~-'-~ ........ ~......1.~---1 
100 200 300 400 500 600 700 800 900 1000 

Figure 8: SGI costups with double memory overhead for a = 2 



•• 

Speedup as a function of Amdahl fraction f 
80.--~-.-~--~ ........ ~--....~~--~--~-..-~--.-~---. 

70 . Speedup 

60 

p:64-
p:128 ---
p=256 ······· 

fraction of the sequential coda f 
o.__~....._~_,_~--'-~......r.~~"--~-"-~--~-.i.~--i 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0..1)9 0.1 

Figure 7: Impact of the Amdahl's Law on the Maximum Speedup 



• 
• 

GFLO 

300 

100 

GF/s/MS 

30 

10 

? 

----- .................................................................................................................. .. 
8GF/s/MS ? _.,;.f": 

• lk CMS shock waa : 
ll'UQllllilll - , , ~ 

......... ,... , 111111 

DELTA , ', SllPwo~ JO . , : 
64k CMl 1111i1r' RS16000 & Mw.ic : . , : 

~.! .. -~·-··················· ........ ~:~---·····-···---··----·-·--····-··---- ~ , . , : 
~iPSC - _. ____ : ; 

CM~liismic .- 1_, proc aa;uUIUC structure ; 

3 
CM2. oil nsenoir 

1 0.1 

1'89 1"8 

Figure 8: Trends in Gordon Bell Awards Winning Entries 




