

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION
Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria

Tel: (+43-1) 26026-0 · www.unido.org · unido@unido.org

OCCASION

This publication has been made available to the public on the occasion of the 50
th

 anniversary of the

United Nations Industrial Development Organisation.

DISCLAIMER

This document has been produced without formal United Nations editing. The designations

employed and the presentation of the material in this document do not imply the expression of any

opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development

Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its

authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or

degree of development. Designations such as “developed”, “industrialized” and “developing” are

intended for statistical convenience and do not necessarily express a judgment about the stage

reached by a particular country or area in the development process. Mention of firm names or

commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes

without additional permission from UNIDO. However, those who make use of quoting and

referencing this publication are requested to follow the Fair Use Policy of giving due credit to

UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

mailto:publications@unido.org
http://www.unido.org/

Chapter I. Parallel Processing - An Introduction

Boleslaw K. Szymanski
Department of Computer Science & Scientific Computation

Research Center
Rensselaer Polytechnic Institute

Troy, NY 12180, USA
e-mail: szymab@rpi.edu

1. Introduction

This document presents the current state-of-the art in
parallel processing. In this chapter, we start with the
overall introduction to the problems and challenges of
parallel computing. More detailed and regional perspectives
are described in the following chapters.

2. The roie of computers

It is widely recognized that the computer technology has
become a critical component of everyday life cf a modern
society. The computer has become ubiquitous in manufacturing,
services, products, entertainment. r.omputers have been
changing ways in 11hich we conduct busL ~ss, produce goods and
do science. Export controls introduced on certain computer
equipment and secrecy surrounding some computer projects
underline importance of computer technology in military and
security services. There have been three stages of exponential
growth in the power of computers and related systems. First,
in 1960's and 1970's computing centers were being constantly
upgraded with ever-more powerful machines. This was followed
by an exponential growth in the number ?f computers during
so-called personal computer (PC) revolution in 1980's.
Currently we are undergoing yet another stage of the same
process: :i.n exponen - .; al growth in interconnectivity and
bandwidth of the n~twork joining computers and systems
together.

Computer literacy is becoming a norm, not the exception, and
many knowledgeable workers, managers and other professionals
now have the technical ability and skills to write software.

1

t~{· :,_,
l. - ...

. I ..; . I) t . ·.,-·,;~L;;:,1_ ,·,(I (,;,/,1, 1 (;t~> .1 1 // /•,·t. ; t. I, / -

. '; I I//)// A ·,i.-·
, , // . , ", " / '·· 1 .,: I' l"v

.)~~' ,,',) I •. I .. , ''f . ' I '

'

According to [lJ there are nearly two million people in the US
that work directly with software and about ten million
managers, engineers, architects, accountants and other
knowledge work~rs who know enoug:1 about programming to be
able to build end-user applications with high-level tools
(spreadsheets, databases, visual languages). Similar ratios
are found in other industrialized countries around the world.

country Software End Users with Percentage
Professional Programming Skills of workf orr::e

United States 1. 750. 000 10,000,000 9%

Japan 850,000 3,500,000 6%

United Kingd~m 385,ooo l. 750. 000 6%

France 375,000 l. 700. 000 7%

I Germany 350,000 l. 650. 000 4%

Brazil 475,000 1,500,000 3%

China 950,000 l,250,000 <1%

India 750,000 l,200,000 <1%

Russia .750,000 900,000 1%

South Korea 300,000 750,000 I 5%

Table 1. Professional software personnel and end-users who
program, 1995 estimates (source [l]J.

On the global basis, there are more thdn ten million
professional software personnel and more than 30 million end
users who can program. Table 1 gives rough estjmates for each
group in ten countries around the world (data arP ~ith high
margin of error) . An interesting observation is that Brazil
and ~outh Korea have as high percentage of the workforce able
to write software as the most developed countries of the
world.

The end-user programming population seems to be growing at
more t!'lan ten percent per year worldwide. The percentage
growth rate for software professionals is now down to a single

2

..

digit in industrialized countries. In developing countries,
the number of both end-user and professional prograrr.mers is
still growing at double-digit percentage rates. In view of
this developments, it is not an exaggeration to corr.pare the
impact of comp~ters on society to the Industrial Re7olucion of
the 18th Century.

The Industrial Revolution had freed physical workers from the
enslavement of manual labor and had -:ransforrned craft and
handwork into the mass-producing industries of today.
Likewise, the Computer Revolution, which we are witnessing now
has been freeing the off ice workers from routine mental tasks
which were and often are still done by assistants, clerks and
low-level managers.

3. Significance of Parallel Processing

Parallel processing is currently a small fraction of overall
computer tecl.nology and the Computer Revolution. Yet, there
are two compelling reasons for parallel processing to be of
much higher importance than indicated by its current share of
computer technology. The first reason is that parallel
processing supports the largest computations which became an
integral part of the science, medi.:::ine and manufacturing.
Large-scale computer modeling enabled by parallel processing
impacts decision making in banking, finance, military and
government. Parallel computers empower decision makers, s~ch

as high-level managers, military leaders and chief scientists
with the ability to gather, access, and synthesize
information, as well as to simulate real-life processes to
measure the impact of social, economical and industrial
decisions. The quality of the simulations and synthesized
information strongly depends on the applied computational
power. Today, even the largest uniprocessor computers are too
slow for the more challenging problems of this kind.

The second reason for importance of parallel processing is the
transient nature of the current dominance ~f ser1uential
computing. There are clear indications, discussed below, that
the semiconductor industry ability to double the processor
speed every 18 months, as it has been done for the last decade

3

•

•

cannot continue and that the processor design technoiogy is
maturing. An interesting comparison of this process to
historical technological breakthroughs are presented in [2}.
The authors contend th~t virtually every industry more than a
few decades old underwent similar phase changes which are
caused by economic prinr.iples of supply and demand. The past
transitions of older industries such as aviation, automobiles
and railroads could be used as indicators of what to expect of
the semiconductor industry.

For example, aviation, like the semiconductor industry, went
through a period of rapid growth. In less t:han f0ur decades
the industry moved from the Wright brother's monoplane to the
Pan A!n Clipper jet and Super-fortress bomber. The growth of
aviation was initially fueled by military markets, then moved
on to civil transportation, much like the growth pattern in
the semiconductor industry. Progress in aviation was made by
increasing speed of airplanes (thus reducing trans:_ t time l and
by lowEring the costs of transportation. Such dual progress is
similar to the computer processor's increasing speed (which
~educes the time to obtain answers) while lowering the
processor price. After several decades of growth in passe:ngers
capacity and airspeed, these trends peaked with Boeing's 747
as the highest mark for capacity and the Concord as one for
speed. Further progress was stopped by the economic
constraints (at least in civil aviation, for military
application, where cost is not a primary consideration,
fighters produced by many manufactures exceed the speed of a
Concord). The limiting factor for Boeing's 747 was the
difficulty of filling the available space on all but the
longest or most popular routes. The usefulness of Concord was
limited by the cost of fuel and noise pollution. After these
technological marvels, aviation entered a second phase in
which a plethora of smaller/slower airplanes were designed and
produced for more specific markets. The focus of research and
development shifted from aircraft's speed and size to
operational efficiency and p~ssenger's comfort.

Another example given in [2] is railroads. The research there
focused initially on increasing the power of locomotives to
lower the cost of transportation. This trend peaked at EMO

4

•

DD-40, a monster locomotive that ~as to~ big and inflexibie
for any other purpose than hauling freight across the U.S.
These limitations resulted in increased use of smaller engines
that could operate separately for s~all loads but could aiso
be joined together for transporting big ioads. The authors
conclude that today the semiconductor industry is in a similar
position as railroad companies were just before the EMD DD-40
wa£ designed. The high cost of developing factoYies for futu~e
generation processor cnips forced the semiconductor companies
to join forces to attempt to manufacture extremely dense chips
economically.

The final example used in [2) ~s the automobile industry.
Ford's initial success in car production resulted from
lowering costs by concentrating production in ever- larger
factories. These trend led to diminishing ability to vary the
p~oduct. In early 1930's, General Motors recognized that big
factories were good only for building large numbers of the
same product and thaL the efficiency no longer increases with
the factory size once some critical size is achieved.
Ti.1erefore, General Motors ~plit the company into divisions
with clearly defined markets and factories dedicated to
support them. The resulting wider variation in designs allowed
General Motors to gain market share at Ford's expense.

A similar scenario is happening today in semiconductor
industry. Intel offers more than 30 variations of its 486
microprocessor, while in the early 80's the company offered
just three versions of its 8036 microprocessor. The authors
conclude that in technology dri•:c:m industries the initial
phase is dominated by improvements both in performance and
costs. The second, mature phase, is characterized by product
refir.ement and diversity - similar to what is now starting to
happen in the semiconductor industry. The slowing rate of
progress in processors will provide a more stable environrnent
for computer architectur~ and software. As a result, parallel
processing will become much more widely spread than it is
today.

5

•

4. Applications of Parallel Processing

In the United States, the quest fer higher-spee~ machines has
been fueled by computationally intensive problems with
profound economical an~ social impacts referred to as Grand
Cl.allenges [3 J . It is difficult to list all Grand Challenge
prcblems because so many areas of science and engineeri!"lg are
potential sources of such problems. The short list typically
includes:

High-resolution weather forecasting crucial for
agriculture, disaster prevention, etc.
Pollution studies that include cross-pollutant
interactions, important in environmental protection.

- Global modeling of atmosphere-ocean-biosphere interar:tions
to measure the long-term impact of human activities on the
stability of the global ecosystem.
Human genome sequencing that will assist in recognizing,
preventing and fighting genetic diseases.
The design of new and more efficient drugs to cure cancer,
AIDS and other diseases.
High-temperature superconductor design that can
revolutionize computer design, electrical devices, etc.
The aerodynamic design of aerospace vehicles (airflow
modeling) and improvements in automotive engine design
(ignition and combustion modeling) that can lead to more
efficient use of depletable fossil fuels in
transportation.

The design of quantum switching devices important for
building more powerful computers.

U.S. research support agencies, such as the National Science
Foundatic~"1. various agencies in the Departments of Defense and
Energy as well as the National Aeronautical and Space Agency
together fund project:3 targeting Grand Challenge problems.
This is a fjve year effort referred to as High Performance
Computation and Communication Program or HPCC in short. It
started in 1993 and has a yearly budget of several hundred
million dollars. The investigations conducted under HPCC
Program involves multidisciplinary teams of researchers in
natural sciences, applied mathematics, computational and

6

•

comp~ter science from different institutions.

As an example, the author of this chapter is involved in four
projec~s involving Grand Challenges problems investigated at
Rensselaer Polytechnic Institute. Two of these projects are
funded directly from HPCC Program and two others indirectly.
One 0f the projects focuses vn modeling human joints, ir.
particular 3ho~lders and knees. The research is conducted in
cooperation with Orthopedics Division of Columbia University
Medical Center. The goal is to be able to guide t~e surgeons
operating on joints by simulating the behavior of a joint
under different operation scenarios. Adaptive meshes and
finite element methods are used to solve the partial
differential e~ations that describe joints' behavior.

Another project focuses on problem solving environments for
optimization and control of chemical and biological processes.
This investigation is conducted in cooperation with groups at
University of Minnesota and l!~.iversity of California in San
Diego. The primary goal of this research is the development of
a high-performance problem solving environment (PSE) for the
optimization and cont.:-ol of chemical and biological processes,
with initial emphasis on bioengineering applications. The
optimization and control of such procEsses requires the
repetitive solution of time-dependent partial differential
equations (PDEs) in two or three spatial dimensions. The
computational requirements of this problem, which must be
solved interactively, can only be met by the use of nassively
parallel computers. Such a comprehensive and powerful PSE
does not currently exist, and its development presants
significant computational and computer science challenges.

The third project is a part of a tokamak design with an
ultimate goal of building a sustainable plasma generation
device fueled by hot fusion. ThE purpose of our investigation
is to develop a scalable and portable Plasma in Cell (PIC) for
Gimulation of plasma behavior in a self-geneLated
electromagnetic field. This work is being done in cooperation
with researchers at University of California in San Diego and
Jet Propulsion Laboratory. Finally, the fourth project focuses
on indf.vidual based modeling of epidemics. In cooperation with

7

\

biologists from State University of New York in Albany we are
investigating the spread of Lyme -:1isease and the ways of
controlling this spread.

Our basic computational tool is a 36-node IBM SP2 parallel
computer with peak performance of about 9 gigaflops (i.e., 9
billion floating point operations per second) which we have
available on campus. This machines is used raainly for code
development and test runs. The production runs are conducted
on 400-node SP2 at the Maui (Hawaii) Supercomputing Center
and 512-node SP2 at Cornell SupFrcomputing Center located at
Cornell University. Both of these machines have a peak
performance in the order of a hundred of gigaf lops. The
research on plasma simulation involves additional machines,
Cray T3D and Intel Paragon at Jet Propulsion Laboratory as
well as a network of Sun workstation at Rensselaer Polytechnic
Institute. These example of research involvement of a single
scientist perhap:; best describes how diversified the HPCC
Program is and how much cooperation it has fostered.

5. Required Computational Power

It is estimated that to achieve interactive response time for
Grand Challenge problems, in the order of minutes for smaller
instances and hours for larger ones, will require a machine
with performance of teraflops (which is a thousand billion
floating point operations per second) . Today, there are
several parallel machines with a theoretic. 'll peak of teraflops
and the price below US$ 100 million (e.g., AVALON computer
based on DEC Alpha chip and a fast interconnection network) .
However, the sustained performance has been demonstrated at
the level of tenths of teraflops, i.e., about several hundred
gigaflops. Even in those cases, such speed was achieved only
on certain very large, highly localized, finely tuned, often
idealized applications. The real drawback is in the software
and the programmer's ability to find enough useful parallelism
in an application to utilize all of the processors of a
parallel computer most of the time. Yet, paraliel processing
is the only feasible option for sustained growth in computer
performance in view of the incoming stalemate in the
semiconductor industry discussed earlier.

8

In addition to economical forces (exponentially increasing
cost of hardware needed to fabricate chips with smaller
dimensions) there are basic laws)f physics that put limit on
the speed of a uniprocessor. The speed of signal transmission
in a computer cannot exceed the speed of light in the
transmission media, which is about 300, 000 km/sec for
silicon. Consequently, it takes one billionth of a second for
a signal to propagatt--. in a silicon chip of an inch in
diameter. However, one signal propagation can at most support
one floating point operat~on. Hence, a sequential computer
built with a chip of such size can provide at most one
gigaflops of performance, merely one-thousandth of the needed
teraflops.

6. Parallel Architectures

An interest in parallel computing systems is not new and can
be traced back as far as the 1920's. However, as late as the
early 1970' s, major criticism of parallel processing was based
on Grosch's law which states that the computing power of a
single processor increases in proportion to the square of its
cost. Recent careful analysis of Grosch's law showed that it
is valid only within :-,ne technology. Econol"'.ly of scale for
mass-produced memory and RISC (Reduced Instruction Set Chip)
processors makes them orders of magnitude less expensive than
custom designed chips for mainframes and craditional vector
supercomputers. The improving computer chip technology enables
the placement of ever-faster processors with ever-increasing
amounts of memory on a single wafer. Hence, introduction of
RISC technology made Grosch' s law obsolete. Massively parallel
computers built from a large number of RISC processors
provide a superior performa.nce-to-price ratio compared to
computers based on the powerful, custom-designed CISC
(Complex Instruction Set Chip) processors.

The traditional vector supercomputers are built from a limited
number of powerful, specially designed processors connected to
large shared memory. In addition, they explore array operation
parallelism through vector co-processors. However, the
support for sharei memory limits the number of processor: that
can be clustered .:.ogether in such a way that all have the same

9

access time to the whole memory. Hence, purely shared memory
machines are not scalable. In contrast, massively parallel
computers consist of a large number of off-the-shelf
processors with local memories. The processors a~e connected
directly to each other by a network. The cost of such a
parallel computer is roughly proportional to the needed number
of processors. Therefore the size of the computer installation
is more limited by costs than technical considerations. In
addition, the process of technological progress for off-the
shelf processors is driven by the general computing market
which is two orders of magnitude larger than the parallel
computing market. As a result, off-t~e-shelf processors enjoy
larger increases in speed and reduc~ions in prices than the
custom designed processors do. Hence, the Massively Parallel
Processors (MPP' s) have three advantages over traditional
vector supercomputers:

1. An accelerated rate of advance of peak processing power. In
the last decade, microprocessor performance has increased
four times every three years, following the rate of
intP.grated circuit logic density improvement. By contrast,
the clock rates of vector machines have improved much more
slowly, doubling every seven years [3]. These trends are
expected to continue for at least the rest of 1990's.

2. An improvement in the performance-to-cost ratio. This ratio
was between two to eight times high~r for MPP's than for
the vector supercomputers in 1993.

3. Scalability of the machine. The smallest configurations of
MPP's are usually priced low to entice initial purchase (in
1995, the least expensive MPP's was priced below $50,000).
The initial configuration of the MPP can be incrementally
upgraded as the needs and available funds arise.

The clear conclusion is that only massively parallel computers
can deliver the much needed teraflops level of performance.

7. Parallel programming

Parallel programming has experienced a long and difficult

10

maturation process. The reasons are many, b•.tt according to [2]
the most critical one has been the difficulty in proyramming
the constantly developing new architectures. Porting and
tuning an application to a new architecture often takes as
long as the time between introduction of the subsequent
architecture, making a newly developed code obsolete at the
moment of it is fully implemented. In such environments,
programmers face a daunting challenge, especially with
increa5ingly large and complex applications. Programrners must
identify parallelism in an application, translate that
parallelism into code and design the corresponding
communication and synchronization for the program. All these
steps must be done in the context of currently available
architectures which may change tomorrow, making some of the
designs suboptimal or inefficient.

One of the promising approaches to curb the cost of the
parallel software redevelopmer.t resulting f=om new
architect1.lre introduction is object-oriented programming.
HowevEr, according to Grimshaw L4], the object-oriented
parall,~l programming community is divided over the issue how
to support parallelism in an application. There are two basic
camps. The first one, the libraries group, advocates building
highly optimized, extensible class libraries that will
encapsulate parallelism leaving the languJge unchaLged. Users
would be able to use such class libraries without knowing
anything about parallelism, the targ~t architecture or
implementation details of the class library. The proponents of
the library approach argue that C++ already provides a
powerful mechanism for language extension via classes,
inheritance, and templates. Additional extensions would only
clutter the language. Furthermore, with no consensus on
language features, compiler vendors are unlikely to support
any language extensions, and users will not want to risk
embracing the feature which will no make it to the future
standa:.c:c.

The second camp, the extension group, believes tl.1at t 1 1e be,,t
way to achieve parallelism is via language extensions. The
proponents of this approach argue that parallel composition is
as important and fundamental a concept as sequential

11

composition. They point out to languages s·.ich as OCCAM and ADA

in which explicit parallelism is a part of the language and
therefore their compilers have been abJe to develop parallel
code optimizations. With concurrency being a part of C++, the
same process wo~ld happen for C++ compilers.

Grimshow [4] conjectures that th·~ parallel processing is at a
crossroad. In the past, parallel processing was relevant only
t-::· expensive supercomputers and software was often developed
in-house because such a narrow market was not rinanr::ic>.lly
viable for the corrunercial software developers. Instead, the
successf11l commercial softwarehouses concentrated on booming
personal computers and workstations market. Today, however,
the cost-effective desktop computers are closing the
performance gap to supercomputing. The desktop software is
moving increasingly towards object-base and object-oriented
interoperability standards. At the same time, many ::radi tional
parallel processing users are downsizing and no longer have
the resources to develop software in-house. Therefore, the
parallel processing community has an incentive and opportunity
to adapt and conform to emerging standards and link to desktop
software market.

Interoperability standards are also important for integration
of parallel components developed by different research groups.
Increasingly important multidisciplinary simulati0ns require
coupling of different models to create a more realistic model
of a phenomena. For example, tokamak simulation requires
linking of a model of plasma particles motion in an
electromagnetic field with a model of chemical reactions that
these particles undergo. The individual components of such
simulations are often stand-alone parallel codes. While the
system file can be used as an interface and data exchange
mechanism, more efficient integration methods are needed.
Object: technology simplifies description of an interface
mechanism, a data exchange and conversion mechanism. As a
result object technology can extend the life of the para:lel
components.

Grimshaw (4] concludes that parallel processing components can
conform ::o standard interface description by encapsulating

12

parallelism within objects and making the parallel component
a particularly fast version of an existing sequential code.

From that perspective, the decision of the High Performance
Fortran (HPF) designers to based the language on Fortran90 was
very helpful. Fortran90 includes all the basic constructs
required of object oriented programming and there is an
increasing interest in object-oriented programming using
Fortran90.

8. Summary of the following chapters

above trends have focused on the global
parallel programming. The rest of this

more detailed and regional points of view on

The discussed
perspective of
document provides
these issues.

8.1 USA Perspectives

First, in a chapter entitled "Trends in Software Engineering
for Parallel ProcessingA the author assesses the current
state-of-the-art in this area from the United States
perspective. The U.S. amounts for about 50% of the parallel
computing power installed in the world, has national research
and development programs in the area of high performance
computers and the highest number of personal computers and
computer users. Therefore the United States provides an
importQnt perspective for other countries and an early
indication o= future developments.

The chapter starts with a discussion of trends in
architectural design including the deep transformation which
occurred in the U.S. High Performance Computing ind•Jstry. The
emphasis of this industry shifted from record-breaking
performance for any price to price-performance optimization.
The successful companies, such as Silicon Graphics or IBM, use
the performance gains driven by the general market to improve
the performance of their parallel machines. In contrast,
companies that relied on processors designed specifically for
their architectures, like Kendall Square Research or Thinking
Machine Corporation, were forced out of the computer design

13

market.

Another trend discussed in the following chapter is an
increasing importance of the memory for speed and economy of
parallel processors. The increasing speed of the processors is

matched by the increasing capacity but not speed of the
memory. As a result, the gap between the speed of processors
and memory widens every year. The gap is masked oy the use of
ever-increasing cache. As evidenced by the pricing and
performance of Silicon Graphics Challenger, the ratio of cache
to mamory improves price-performance of parallel machines on
memory intensive applications.

The chapter also discusses trends in speed, price-performance
and distribution of parallel processors. '1'he U.S. annual
Gordon Bell Awards indicate steady exponential growth in speed
and price-performance of parallel computers for the last
decade. The parallel computing speed on useful applications
reached several hundred gigaflops last year. The price
performance ratio is in the order of ten gigaf lops per million
dollar of hardware cost. The largest world-wide
supercomputing sites are still dominated by the governmental
centers. However, the medium sites are mainly industrial and
the smallest ones are mainly academic. This distribution
contrasts with the overwhelmingly governmental centers in all
categories just five years ago. Such shifts in distribution
indicate that the impact of parallel processing on industries
is growing.

Another topic discussed in this chapter is the development of
software models for parallel processing. First, the
traditional models are discussed, such as Single Instruction
Multiple Data (SIMD) and Single Program Multiple Data (SPMD),
which is a restricted version of the more general Multiple
Instruction M'.iltiple Data (MIMD) model. Then a new Bulk
Synchronous Parallelism Model (BSP) is described together
with its library. The final pages of the chapter are devoted
to trends in languages. In particular, the basic ideas behind
High Performance Fortran (HPF) are described and compared to
Message Passing Interface (MPI) based approach.

14

8.2 Asian Perspectives

The third chapter of this docl..i.rnent, entitled "High Performance
Computing in India and Far-East• and authored by Prof. Patnaik
from India focuses on Asian perspective on parallel
processing. The author describes India's national initiative
in supercomputing and its goal to develop a modern distributed
memory paralJ.el computer. The result was PARAM-8000 parallel
computer based initially on INMOS transputer (1990-92). The
sustained performance of 16-node PARAM 8600 was in the range
of 0.1 0.2 gigaflops. The next generation of PARAM
computers, PARAM-9000, was based on SuperSparc series
processor, thus following the modern trend of using off-the
shelf mainstream processors in the parallel machine
architecture. After discussing architectural details of these
machines, prof. Patnaik describes its software environment
which includes support for HPF for data parallelism and PVM
and MPI for MIMD parallelism. Then, tr£e author focuses on
applications run on PARAM which currently are of typical
scientific computation mix. However, plans are made to
incorporate the production quality industrial codes in the
near future.

In the following pages, prof. Patnaik describes several others
Indian parallel computers developed by different governmental
research centers. Discussing the performance capabilities of
these machines, prof. Patna5k dernonst~ates that by employing
sufficient number of nodes, PARAM-9000 can achieve a peak
performance of teraflops. The support for Indian High
Performance Computing activities comes from different agencies
of the government.

In his chapter, prof. Patnaik summarizes also briefly High
Performance Computing activities in other countries from the
Far-East Region. His sununary discusses developments and
programs in Singapore, China, Australia, Korea, New Zealand
and Hong Kong. The chapter concludes with a brief assessment
of the major trends in parallel computation.

15

Chapter XX. Trends in Software Engineering for Parallel
Processing

Boleslaw K. Szymanski
Department of Computer Science & Scientific Computation

Research Center
Rensselaer Polytechnic Institute

Troy, NY 12180, USA
e-mail: szymab@rpi.edu

1. Introduction

The increasing importance of parallel processing caused by its
rapid growth encouraged development of standaras in parallel
progranuning languages and tools. Yet, there is no evidence of
convergence cf the supported paradigms to a single model. In
this chapter, we review two currently most popular models for
parallel program design: de.ta parallelism and message passing.
We also discuss the relevant developments in object oriented
progranuning techniques as well as in client-server
distributed/parallel processing. The declining share of the
parallel processing market held by traditional supercomputers
and the waning popularity of SIMD machines, together with the
increasing role of clusters of workstations, created the
conditions for rapid spread of parallel machines in government
and industry. The price of entry into parallel processing
decreased significantly making abundant opportunities for new
enterprises in software industry in this area. The chapter
discusses these developments and describes also changes in
corresponding areas of software engineering for high
performance distributed compu~ing. Finally, there is a review
of the perspectives and impact of the changing parallel
computing industry on inforr..ation processing at international
and national levels.

2. Trends in Architectural Design

Recent events, such as the filing for Chapter 11 bankruptcy by
the Thinking Machine Corporation in August 1994, the
discontinuation of manufacturing and sale of KSR

16

~upercomputers by Kendall Square Research in September 1994,
and the disappearance of Cray Computer this year raised the
question how secure is the future of paralle:l co:nputing
industry.

It is important to realize that currently the parallel
computing constitutes a small fractio~ of the overall
information technology industry. In 1994, the overall U.S.
information technology products were worth about $500 billion
[5]. This value is a middle point of two esti~ates. The first
estimate was provided by the U.S. Department of Commerce and
was based on data from the U.S. Bureau of the Census. It
values shipments for the information technology industry at
$421 billion for 1993. This number includes computers, storage
related devices, terminals, and peripherals, packaged
software, computer software manufacturing, data processing,
information services, facilities raanagements and other
services and telecommunication equipment and s~rvices.

However, this number does not include revenue from equipment
rentals, fees for after-sale service and mark-ups in the
product distribution channel, as well as office equipment.

The Computer and Business Equipment Manufacturers Asscciaticn
(CBEMA) values the worldwide 1993 revenue of the U.S.
information technology industry at $602 billion. This number
includes sales of office equipment, and CBEMA reports larger
revenues for information technology hardware and
telecommunications equipment than the reports provided by the
Department of Commerce.

In the United States, the total revenues of parallel computer
hardware manufacturers were estimated at about $1 billion in
1993. Out of it, about $400 million was received by
manufacturers of massively parallel machines. Even with
services and software revenues, the parallel co:nputer industry
was about 0.5% of the U.S. information technology industry.
Such a small percentage of the overall market indicates a
narrow user base that can be easily saturated with new
products. In addition, par::tllel computing has been highly
dependent on government policies; institutions and government.
supported universities traditionally constituted more than 50%

17

of all users.

The end of the Cold War and the associated shift ot
governmental spending in the United States drastically changed
the market for parallel machines and supercomputers. ;..s a
result, companies relying solely on the man'-lfacturing of
parallel machines have suffered the most. At the same ti.me.
companies for which parallel computing manufact'.lring i.s only
a part of the product line (e.g., IBM Corp., Silicon Graphics
Inc., Intel Supercomputing) have feysevered, aud others {most
notably Hita~hi and NEC in Japan· ~ave entered or ~xpanded
their presence in the parallel sy::::.ems market.

Predictions about a lasting impact of ~he current changes on
the parallel computing industry vary widely. Some see in the
recent bankruptcy ~rotection requests the beginning of che end
of parallel computing based c~ massive parallelism. Others
argue that it is just an end of a beginning. In the first camp
is Gordon Bell, the founder of several computer companies and
the sponsor of the yearly Gordon Bell Awards for the fastest
parallel computer [1]. Mr. Bell believes that the latest
threat to the very existence of the industry comes fr.om
standard workstations and fast, low-latency networks based on
A'I'M. These networks, according to Bell, like massively
parallel machines, offer size scalability (smooth transition
from fewer to more processors). However, unlike parallel
machines, they also support generational scalability {from
previous to future hardware generatior.s) and space scalability
{from multiple nodes in a box, to computers in multiple rooms
to geographical regions) . The most important capability
offered by th~se networks is application co~patibility with
workstations and multiprocessor servers. This is a capability
which massively parallel computers sor~ly lack. According to
Bell, the weaknesses of massively parallel mac~ines stem from
the following two factors:

1. parallel archite~tures are best suited to highly-tun~d.
course-grain~~. and/or data parallel problems

2. every new generation of parallel architectures differs
from the previous one, forcing the users to redevelop

18

their applications.

Bell sees the future of parallel processing in networked
workstations and shared-memory multiprocessors.

In a rebuttal to Bell's criticism, James Cownie from Meiko [4]
cited the reasons why networked workstations are not an answer
in many environments. The most important reason is the need
for data security and availability. For a large commercial
organization, security of data and its accessibility to those
who need it are crucial. The sclution is a single, central
repository. However, the central repository could use the same
components as workstations to amortize the cost of their
development. The natural solution is to use multiple
processors compatible with the workstations. High performance
requires a small physical size because the speed of light:
limits the performance of highly distributed machines (to keep
the latency of communication below one microsecond, the
distance between computers must be kept below 300 m) .
Switching technology cannot be based on ATM's in such a
repository, because ATM switches are an order of magnitude
slower and more costly than proprietary switching technology.
According to Cownie, the only alternative is a massively
parallel machine.

A similar point is raised by Philip Carnelley and William
Cappelli of OVUm Ltd (2] . They underline that effective
manipulation of large amounts of data is crucial for companies
in maintaining a competiti·..re advantage in the market. The
complex applications in manufacturing, commerce, travel, and
entertainment require a sophisticated database support that
demands enormous computing power. The costs of hardware and
application development restricted parallel processing to
niche applications such as scientific computing, weather
forecasting, etc. Yet, only parallel computing can meet the
current challenge of information processing and, in response
to those needs, parallel processing has entered the commercial
mainstream. Parallel computers built from standard components
(e.g., shared-memory, like Sequent, or distributed memory,
like IBM SP2) can run powerful parallel relational databases.
Such systems ~an process data extremely quickly, are

19

reasonably priced, and are imprPssively scalable. Today, most
of the com.~ercial uses focus on data repository. Carnelley and
Cappelli predict the futLre applications of parallel systems
will transform operational systems, decision support systems,
and multimedia applications, and, in the process, will provide
an er.orrnous impetus for the parallel computing industry.

Ken Kennedy from Rice University [8] underlines tr.at pa:?:"t cf
the difficulty in making parallel computing wide-spread and
popular was the lack of standards in parallel prograrn.'Tling
interfaces. As discussed later in this article. such standards
have been developed and are gaining wide-spread acceptance.

The optimistic views on the future of parallel processing are
supported by an exponential growth in the usage of parallel
supercomputers at the NSF Supercomputing Centers in the U.S.
(see Table 1) .

Fiscal Active Usage in Normalized
Year Users CPU Hours

1986 1,350 29,485

1987 3,326 95,752

1988 5,069 121,615

1989 5,975 165,950

1990 7,364 250,628

1991 7,887 361,037

1992 8,758 398,932

1993 7,730 910,088

1994 7,431 2,249,562

Table 1. Supercomputing Usage at NSF Centers in US (Source:
National Research Council {5], .1995).

Some analysts see the exponential growth of revenues for

20

massively parallel computers in the near f~ture. Terry Bennet.
director of technical systems research fer Infor-Corp in
Beaverton, Oregon, was quoted in [12] as saying :hat the
industry is currently in a ''lag'' where traditional vector
supercomputers are fading out while other approaches are
maturing. Bennet predicts that:: by 1996 there should be a
reasonable upswing in the high-performance computing business
an~ the :narket will continue to grow over $4. 5 billion in
1998. The strong sales of relative newcomers to the market.
IBM Corp. with its SP series and Silicon Graphics Inc. with
the Challenger computer, agree with Bennet's prediction.

199 199 1998 2001 2004
2 5

Feature size .5 .35 .25 .18 .12
(micron)

Gates per 300 800 2M SM lOM
chip K K

Bits per chip 16M 64M 256M lG 4G
in DRAM

Microprocesso 250 400 600 800 1000
r chip size

in square mm

Memory (DRAM) 132 200 320 500 700
chip size in

square mm

Wafer 200 200 200- 200- 200-
diameter in 400 400 400

mm

Table 2. Semiconductor Technology Trends
Semiconductor Industry Association, March 1993).

2007

.1

20M

16G

1250

1000

200-
400

(Source:

Steve Wallach of Convex [13) arguej that parallel processing
has been becoming ubiquitous on all levels of computing
technology. In microprocessor desig11, super-scalar techniques

21

- executing multiple instructions at the same time - are now
a standard. Multiprocessor file servers are in the process of
becoming a standard. The continuing increase in the
semiconductor density (see Table 2) will naturally lead to
multiple processors on one semicor.ductor die. If a standard
64-bit RISC microprocessor has 1-2 million transistors
{without cache), what else (other than creating a
multiprocessor chip) can be done with transistors when 100
million and 1 billion transistors become available? Wide
spread use will drive the costs of such a chip down and
therefore will make massively parallel computing cost
effective.

100

10

0.1
1965 1970 1975 1980 1985 1990

Year

Figure 1. Trends in microprocessors and Mainframe CPU
Performance Growth.

The case against supercomputing and massively parallel
computers often is based on the difference in speed with which
the performance of microprocessors and other CPU's grew (see
Figure l, which was based on (7)). However, the CPU
performance gains are of one of two kinds:

1. Architectural advances: bit-parallel memory and ari thrnetic,
cache, interleaved memory, instruction lookahead,

22

instruction pipelining, multiple functional units.
pipelined functional units and data pipeliPing.

2. Pure hardware advances, basically improvement in
instruction cycle time which is costly and limited by the
physics of propagating signals through a medium and
dissipating heat generated by transistor operation.

Microprocessors only relatively recently started to use
architectural advances, whereas supercomputer CPU's used some
of them before 1970's. Consequently, performance improvement
resulting from some of the architectural advances is not seen
in the plot for supercomputer CPU improvements. However, the
pure hardware advances are based on advances in technology,
which are increasingly costly. For example, the capital cost
of a semiconductor fabrication line is growing rapidly with
improvements in wafer and features sizes (see Figure 2) _

80

2-inch
wafer

so
I:!
.!!
0
Q ._
0 40
"' c
~

::!

20

0
10µ 8µ

1968

3-inch
wafer

1978

4-inch

wafer

Year

6-inch

wafer

1988

.. 5µ

1998

Figure 2. Semiconducto.-r- fabrication line capital cost per
thousand wafers per week. Feature size is measured in microns.
Source: (7 J.

23

This capita~ cost can be much more easily amortized if the
produced chips are used not only in supercomput.ers or parallel
comput.ers but also in all other lines of comput.ers. Another
reason for using stock hardware in building parallel machines
is the constantly improving performance of microprocessors. h.s
shown in Figure 3, designing a specialized processor for
parallel processing which has a 10 fold performance advant.age
over the current uniprocessor design gives the designers just
four years of speed superiority. After that time. the
improvements in general microprocessor design will nullify any
initial performance advantage. Perhaps this is the reason why

1000

Time window

u 100
(.J
c
~ ,,
e ,, ,,
Ja

,, ,, ... ,,
d! ,,

10
,,

IOXUNI

1
0 l 2 3 4 5 6 7 8 9 10

Years

Figure 3. Performance window of opportunity for custom design
chips.

24

all three companies mentioned at the beginning of this section
as getting out of the parallel processing manufacturing were
using custom design chips in thei.;::- products. On the other
hand, the recently most successful parallel hardware
manufacturers (IBM Corp. and Silicon Graphics, Inc.) u3e th~
standard CPU chips designed fer in their main l~ne of
workstations.

3. Importance cf Memory

Technology is behind yet another phenomenon important for
design and programming of parallel machines. There is a clear
trend of DRAM speed improvements lagging behind t 1_1e processor
speed improvements (see Figure 4). In the last twelve years,
the CPU speed increased several hundred times, whereas the
speed of DRAM chips merely doubled. Both chips are produced by
the same technology, however; the advancement in technology
for DRAM chips is used to increase RAM density, not speed.

·~

l~l.-i::::::::~~~~~~==::::::::::::::=:=:=:=:==:==:=:=~~DRAM~~~
1980 1982 1984 1986 1988 1990 1992

Figure 4. Trends in DRAM and processor cycle time: Source [7].

To mask the difference in speed between the processor and
memory, modern processors use caching systems, often two level
caches. A cache trades capacity for speed. During program
execution, the mo&t recently referenced fragment of the memc.ry

25

is kept in the cache and data arE retrieved from it. Each time
data needed by the processor are already in cache. the access
is don~ at (roughly) processor speed. Such an access is called
a cache hit. When the data are not ~vailable in cache, cache
miss happens. and a bucket of data (equal in size to the cache
line) that contains the needed data is moved from a slow
memory to cache. The access to data is slow in such a case.
The cache miss ratio (or in other words the percentage of
cache misses over all data accesses) dictates the resultant
speed of processing. The bigger the difference in speed
between the memory and the processor, the lower the cache-miss
ratio must be for the processor to work at near capacity (see
Figure 5).

MIPS with cache miss ratio 5%
35 r-.,..---r---.,..--T-·-.,..---r-----r---~

:L
15 ············

20 f' ·····

··········-····-·-

10
--

CPU cyle=Sns -
CPU cycle=10ns ·-·-
CPU cycle=20ns

······--·-·-···-·--····-·········-··-·-

............
5 ··

memory access time in ns
~00~~1~so=-~2·00~~~~....._~......&..~~L-~-'-~_J

250 300 350 400 450 500

Figure 5. Effects of Memory-Access Time on Speed of
Processing·.

26

In general, the cache miss ratio can be improved only by
increasing the size of cache. Consequently, an inc~ease in
difference between performance of processor and memory is
compensated by an increase in the cache size.

A multiprocessor brings not only multiple power of the CPU's
together but also improved memory capacity and performance
thanks to multiple cache capacity. As a result, a
multiprocessor consisting of n processors may perform faster
than n times the speed of a single processor for some
applications. In such cases, the multiprocessor achieves
super-linear speedup. It should be noted that the improved
cache miss ratios of component processors of a multiprocessor
must provide performance improvement that exceeds the overhead
of parallel execution (such as load imbalance, not all
processors having the same amount of work, and communication
overhead, delayed access to non-local data), so cases of
super-linear speedup are rar~. However, in all applications,
the impact of the extended memory of the parallel computer
versus its single processor counterpart can be significant.

David Wood and Mark Hill discuss in (15] the concept of a
costup and show t~1at large memories can make parallel
computing cost-effective even with modest speedups. Let s(p)
denotes the speedup of a program when executed on p
processors, i.e.,

l/time(p) time(l)
s(p; = ----------- = ---------

l/time(l) time(p)

The speedup is linear when s(p) = p, super-linear when s(p) >

p, and sublinear (the most often case) when s(p) < p. Let c(p)
denotes cost of p-processor machine. The cost-performance of
such a machine, costperf (p) is then c(p)*time(p). If a
parallel machine is to achieve better cost-performance than a
uniprocessor, then costperf(p) < costperf(l), which leads to
the following conclusion (see (15]):

p-processor parallel computing is more cost-effective then
uniprocessor computing whenever s(p) > c(p).

27

The main point is that 0ften c(p} < p because processors in
the multiprocessor may have less memory each then the
uniprocessor. The a~thors provide an exa.~ple of SGI systems.
As of July 1994, a uniprocessor Challenge DM was priced
according to the formula:

cost(l,m) = $38,400 + $100*m

where m is memory size measured in Mbytes. The comparable
p-processor, SGI Challenge XL, was priced as follows:

cost(p,a,m) = $21,600 + $20,000*p+ $100*a*m

where a > 1 is the factor of the memory overlap on different
processors. By substitution, David Wood and Mark Hill
obtained the following formula for SGI machines:

c(p,a,m,) = (2.125+0.521*p+0.0026*a*m)/(l+0.0026*m)

Figure 6 illustrates costups with SGI prices under the
assumption that a = 2, i.e. that the parallel implementation
requires twice the memory of the uniprocessor program.
Dif fercnt lines correspond to different number of processors
p. The data support the assertion that parallel computing can
be cost effective at speedups much less than p for large but
practical memory sizes. Wood and Hill conclude that more than
one processor might be needed to effectively utilize
suf~iciently large memories.

In the closing of this section, it should be noted that
several different architectural approaches to parallel
processing are slowly converging to a similar solution. The
workstations interconnected through a fast network, when
dedicated to a single application behave like a
multiprocessor. The modern shared memory multiprocessor relies
on an interconnection network between the global memory and
local processor caches, and therefore behaves similarly to the
distributed memory multiprocessor. Finally distributed memory
machines through extensive use of caches approach in their
behavior shared memory machines. The overall trend is to use
powerful computing nodes interconnected through a high speed

28

network of large capacity. The trend is to rely on standard,
off-the-shelf components.

p::4 -

8 p::8 -----
p:16

7

-----. __ required speedup
6

3

Figure 6. SGI costups with double memory overhead for a = 2.

6. Perfozmanc:e of Parallel Computers

As already discussed, the speedup s(p) of a parallel Machine
with p processors can be found by comparing time of execution
of a program by a uniprocessor (time(!)) and by a
multiprocessor (time(p))

time(l)
s(p)=---------

time(p)

The well known. adage that the chain breaks at the weakest link
has a computer science counterpart in Amdahl's Law which
states that the least parallelizable part of the code limits
the speedup. More precisely, if f is the fraction of the code
which is inherently sequential (so called Amdahl fraction)

29

then, independently of the number of processors used s(p} <=

l/f, simply because f*time(l) <= time(p).

Amdahl's Law seems very pessimistic: after all. every program
has sequential parts and even if these parts are small and
limited to few percent of the code, still the speedup is
limited to less than hundred times (see Figure 7).

70

60

Speedup as a function of Amdahl fraction f

Speedup
p::64 -

p:128 ··
p=256 ···-----

fraction of the sequential code f
0 .._~-'-~---''--~-'-~---''--~-'-~---''--~-'-~--'~---'
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Figure 7. Impact of the Amdahl's Law on the Maximum Speedup.

Fortunately, often the execution time of sequential parts of
the algorithm do not change, or change slowly with the growth
of the problem size, whereas execution time of parallelizable
parts changes rapidly when the j,)roblem size is increased.

30

Hence, the Amdahl fractior. is dependent on the problem size.
For a wide class of proble1ns f can be r.ade arbitrary small by
selecting sufficiently large problem size. Consequently, for
such probleres. the speedup can be made arbitrary large.

Often the problems computed on parallel machines ::lre too large
too fit on a uniprocessor, so measu~ing an A.~dahl fraction for
them is impossible or difficult. John Gustafson [6] pro9osed
different measure, g, that represents a fraction of time
during which the parallel machine executed the sequential part
of the code. Therefore time(p) = g+(l-g) = 1 but time(l) =
g+(l-g)*p = p-(p-l)*g, so the speedup is:

s(p) = p[l-(1-1/p)*g]

'l'he nice feature of this formula is that it clearly shows how
to improve the speedup. If we start adding processors (i.e.,
increasing p) but keep the work of all processors the same,
then most likely g will stay the same and the speedup will
grow. Likewise, with the constant number of proces~ors, we
decrease g by increasing the problem size. The final
conclusion is similar to what the Amdahl's Law implies_: by
selecting large enough problem to keep all processors occupied
for a long time, the impact of the sequential parts of the
program could be made negligible.

Though these principles may seem simple in theory, applying
them to real problems is difficult. To encourage innovation,
the annual Gordon Bell Awards are given for achievements in
supercomputing. The thre: categories are performance,
price/performance and compiler parallelization. The last six
Gordon Bell Awards are summarized in Figure 8. They provide a
wealth of information about the current trends in parallel
computing.

In figure 8, the winners of price/performance category are
marked with black rectangles and winners of performance
category by black circles. After initial successes of SIMD
machines (please note three CM2 machine winners in 1989-90)

31

GFLO

300

GF/sfMS

30

180 10
-···· ···-··········-···········-···-;,····· ··---···-···· I GFMIS ?

30 3

~=-"!"
• lit 015 sbock.... '.

pro~q - ,, , : __ .,...... __ .. :
,,'IHP~ DELTA _. . ,,

64k CM2 RS/6000 &: Masic . ,
~~-- .~..................... ~:.~ ,, ,

CM.1Atisalic _. ,., iPSC 121 pnc elednmic stnctme

3
OU· oil resenoir

1 0.1

1919 1'90 1995

Figure 8. Trends in Gordon B~ll Awards Winning Entries.

came the reign of Intel machines (Intel hypercube iPSC in
1990, DELTA in 1992 and Paragon in 1994). The
price/performance category is clearly dominated by
workstations. A quick glance through applications indicates
that scientific computing is still the dominant and favored
domain. The trend is very clear in both categories and it
indicates rapid e:xponential growth in capabilities of the

32

machines.

Over the years. the actual speed record was rapidly growing
and the holders ot the record were changing quickly. until
recent years. the record was usually held by vecto::-izing
supercomputers with a single or a few processors. Only
recently have massively parallel machines started to provide
better performance. As cf this writing, Intel's Paragon XP/S
MP Supercomputer is the record holder with a sustained speed
of 281 gigaflops, achieved on an industry standard MP Linpack
benchP>~rk in December 1994. The previous record of 170
gigaflops was made by Fujitsu in August 1994. The Intel
machine even achieved 328 gigaf lops while executing a
double-precision co~plex LU factorization code. The Paragon
system used for the record-breaking runs was created by
joining two machines at Sandia National Laboratory in U.S. It
included 2256 compuce nodes, each with three Intel i860 XP
processors, a total of 6,768 microprocessors.

It should be noted that since 1993, awards similar to the
U.S. 's Gordon Bell Prizes were introduced in Europe. The
so-called SuParCup' s are awarded yearly at Mannheirr.
Supercomputer Conferences.

5. Distribution of Parallel Progranning Resources

Category USA and Japa :.:urope Other
Canada n countries

Number of 248 82 143 27
computers

Installed 54% 27% 17% 2%
power

Leading USA Japa Germany, Korea,
countries n UK Australia

Table 3. The Distribution of Powerful Computers over the World

33

Distribution of parallel machines and supercomputers :s still
heavily concentrated in the most developed countries_ The data
quoted below are based on the TOPSOO list of the most powerful
computers in the world. compiled by Dongarra. ~·!eurer and
Strohrneir for November 1994 _ The list publishes Rrnax, the
maximum performance of a machine on one particular benchmark,
so it is not indicative of the speed whi~h can ~e achieved on
an entire application. The total performance installed
worldwide in the~a 500 machines is over 2,600 gigaflops, or
2.6 teraflops. The geographical distribution of the computers
is given in Table 3.

A similar list of nearly 200 sites with the most powerful
computers is maintained by Gunter. The sununary of this list
for May 1995 is given in Table 4.

-
I

Category USA Jap Euro Othe Governm Acad~rr.1 Indus
an pe rs ent 1a try

Sites 1- 16 7 2 0 141 51 6
25

Sitei:: 26- 31 15 26 3 30 is I 30
100

,__ !
I

Sit?.S 40 10 33 8 14 43 34
100-1~0

Table 4. The Distribution of Powerful Computing Sites o~rer the
World

The sites outside of US, Europe and .Japan were located in
Canada, Korea and Taiwan (for sites ranked 26-100) and two
sites in Australia, two in Hong Kong, as well as single sites
in Mexico, Canada, China and Saudi Arabia in tier 100-200. It
is interesting to observe that the most powerful sites are
mainly governmental laboratories, medium sites are mainly
commercial and the smallest sites are mainly academic.

The growing importance of parallel computing to many countries
in the world was demonstrated in the special session of

34

Supercomputing' 93 entitled Supercomputing .'\round the t·lorld.
Among others, researchers from Singapore, Indonesia and
Malaysia wen: talking about their countries' support for using
parallel computers for aerospace, oil, and environmental
applications.

6. Software Models

The increasing importance of parallel processing prompted
growth in the body of standardizatinn in parallel programming
languages and tools. Yet, there is ~o evidence of convergence
of the supported programming paradigms to a single model.
currently there are two most popular models for parallel
program design: data parallelism and message passing.

Data parallelism is popular because of its simplicity. In this
model, a single program (and therefore a single t.i:l.read of
execution) is replicated on many processors and each copy
operates on separate part of data. Depending on the tightness
with which the execution of progra.~s is synchronized, there
are two modes of using data parallelism. When each instruction
of the program is synchronically executed on all processors,
then Single Instruction Multiple Data (SIMD) mode is used.
Such tight synchronization requires hardware support.

SIMD machines were quite popular at the turn of the last
decade (see Gordon Bell Awards in t!le pre,;ious section) . From
the software engineering point of view, SIMD machines are easy
to program because there is a single flow of control on all
processors. The main focus of parallelization is to find large
data structures that can be distributed to all processors to
keep them all occupied. Another concern is to minimize the
data movements necessary to provide data to processors that
are to execute them. Due to the small granule of parallelism
(single instruction) SIMD machines consist of a very large
number of simple processors (tens or hundred thousand of
processors in a single machine is not unusual). Each of these
processors must either execute the same statement as all the
others or idle, so SIMD machines achieve poor efficiency on
programs that do not contain sufficiently large data
structures. They also do not perform well on programs which

35

require irregular data references (list structures. dynamic
memory, etc.). The consensus is that SIMD architecture has a
very specialized niche of applications (e.y.. visual
information and scene processing), but it is not the best
choice for general parallel processing.

Data parallelism can be also used in a loosel:-z: synchronized
mode, when the program execution consists of two stages:

1. computational stage, when copies of the same> 9rogram are
executed in parallel on ea~h processor locally. The
execution can differ in the conditional branches taken,
number of loop iteration executed, etc.,

2. data exchange stage, when all processors concurrently
engage in exchanging non-local data.

It should be noted that the data exchange stage is very simple
in case of shared memory machines (when it can be enforced by
use of locks or barriers) . The frequency of synchronization in
SPMD model can be adjusted t~ correspond to the latency of the
interconnection network. The 3P!1D model is very adequate for
scientific computing which of ten requires applying basically
the same algorithm at many poin~s of computational domain.
SPMD parallel programs are conceptually simple because of a
single program executing on all ~·rocessors, but more complex
then SIMD programs.

For more complex applications, running a single program across
the parallel machine may be unnecessarily restrictive. In
particular, dynamically changing programs with unpredictable
execution times result in poorly balanced parallel
computations when implemented in SPMD mode. This is because in
SPMD mode, processors synchr?nize at the data exchange stage,
and none of the processors can proceed to the next
computational stage until all others reach the data exchange
stage.

The SPMD model was abstracted into a Bulk-Synchronous
Parallelism model proposed by Leslie Valiant of Harvard
University (14]. The model attempts to provide the abstraction

36

for parallel algorithm description that lends itself to
performance analysis. The model also became a basis for a
library that facilitates the creation of portable parallel
software.

The BSP model consists of three components

1. Processors perform processing or memory functions.

2. A router provides point to point communication between
pairs of components.

3. A synchronization mechanism synchronizes all or a subset
of the components at regular intervals of L time units
(L is called also the synchronization periodicity).

In the BSP model, computation consists of a sequence of
supersteps. In each superstep, a component performs some local
computation and transmits messages to other components. After
a period of L time units, a global check is performed to
determine if all components completed the superstep. If not,
the superstep is extended by another L time units, after which
the check is made again. In the BSP model, the data
transmitted are not guaranteed to be available at the
destination until after the end of the superstep at which they
were sent.

Using this model, the cost of an algorithm can be expressed in
terms of L and g, two parameters that are defined by the
network latency and bandwidth, respectively. Using the BSP
cost of an algorithm, it is possible to predict the
perfonr.ance of the algorithm on new hardware, given the values
of the parameters L and g for this hardware. The BSP model
facilitates an algorithm optimization through data
distribution selection based on the characteristics of the
problem rather than the architectural features of the target
machine.

A BSP computer is characterized by the following set of
parameters: number of processors p, processor speed s,
synchronization periodicity L, and a parameter to indicate the

37

global computation to communication balance g. The
synchronization periodicity L is the smallest number of time
steps between successive synchronization operations. Parameter
g is the ratio of the total number of local operations
performed by all processors in one time unit to the total
numbP~ of words delivered by the communication network in o~e
time unit. Processor speed s is measured in flops (floating
point operations per second) . Synchronization parameter L is
measured in flops. Parameter g is measured in flops per word.

BSP parameters allow tor algorithm performance analysis. For
example, consider a superstep that needs to communicate h
words of data. Since it takes g*h time units for the
communication network to deliver the data to its destination,
and L units to synchronize all the processors performing the
superstep, at least L+g*h units of computation are needed to
keep the processor busy; a level of computation less than this
threshold results in idling of some processor, and therefo~e
is a source of inefficiency.

In terms of the BSP parameters, distributed memory parallel
machines are often characterized by large values of s
(relatively fast processors) and low values of L and g (a
communication network with low latency and large bandwidth) .
A general purpose network of workstations, on the other hand,
is characterized by values of s that are somewhat lower than
for the parallel machines and values of L and g that are much
larger than the corresponding values for the parallel machines
(high latency and low bandwidth due to the loosely coupled
nature of these networks). Thanks to this distinction, optimal
BSP algorithms for network of workstation use different data
distribution then those designed for a parallel computer.

BSP ~lgorithms can be directly implementad in a high-level
traditional language (e.g., C or Fortran) with addition of the
necessary calls to BSP pri~itives. ~he Oxford BSP Library [9).
developed by Richard Miller can be used for this purpose.
The library is based on a slightly simplified version of the
model presented in [14] . Ti.1ese simplifications require that
the processors are allocated statically before the program is
run and the programs are written in a SPMD mode. The ~ost

38

significant feature of the library is the support for remote
assignment as a means for non-local data access. The library
consists of just six functions and is simple to use. Despite
its simplicity, we have found it to be quite useful and
robust. Tne library for C-BSP prograinming includes the
functions for

1. Starting and ending a BSP session

2. Starting and ending a superstep

3. Fetching and storing a values from a remote processor.

Computationally intensive applications with frequent
communication and synchronization require careful design for
efficient execution on networks of workstations. Such design
is supported by Bulk-Synchronous Processing (BSP) model. In
(11] authors demonstrate an implementation of a pla~ma

simulation on a network of workstations and the use of BSP
analysis technique::; for tuning the program for this kind of a
machine. They al~n compare the performance of the BSP
implementation with a version based on MPI and conclude that
the BSP model, serving as the basis for an efficient
implementation, compares favorably with MPI.

The memory distributed machines use message passing for
exchanging data between different ~=ocessors. The SPMD model
may shield the user from specifying the detailed data
movements thanks to data distribut~on directives from which a
compiler generates the message passing statements. However,
the user which decides to write the message passing statements
himself has full control over the program execution. In
particular, the user may define when and how many processors
synchronize in their execution. This gives the user a lot of
flexibility at the cost of requiring the user to make very
intricate and detailed description of the program. The
programs tend to be longer and more complex than their SPMD
counterparts, and therefore more error-prone. Once debugged
and tuned up, they are also more efficient. The flexibility of
the message passing model makes it applicable for a wide
variety of problems. As discussed below, the newly developed

39

standard library of functions for message passing, MPI. has a
potential of becoming a universal tool for parallel software
development.

7. Trends in Languages

There is a plethora of resea:..:ch parallel progranuning languages
with different flavors to choose from, starting from
functional, dataflow to object oriented, logical etc However,
the majority of parallel programs are stil.:i. itten in

Fortran. Since 1950's this language was a favorite choice for
writers of scientific programs and particularly for
generations of graduate students in applied sciences. Over the
years, Fortran underwenc a remarkable transformation, from one
of the first languages at all to the first language with a
well defined standard (Fortran66) to structured programming of
Fortran77, to data parallel and object-oriented Fortran90 and
finally to the newest standard of High Performance Fortran
(HPF) . Each generation brought with it new features ~nd set a
new standard for the manufacturers of hardware and compilers.

Compared to Fortran77, Fortran90, which was introduced at the
beginning of this decade, brought to t:he world of Fortran
users s~veral modern language design features, such as:

1. Dr:!rived types, kinds, pointers and dynamic memory
allocation that enable the user to define own data types
and dynamically allocate data structures.

2. Modules, characterized by public and private data types.
Modul~s can be 5mported from other programs by the USE
clause and renaming.

3. Array operations and new control structures allowing for
a very concise and elegant definition of data parallel
programs.

4. RP.cursive procedures.

5. Interface blocks for abstract definition of the
input/output as well as terminal-oriented source forms.

40

The first two features enatle the users to write
object-oriented programs. In brief, object-o~iented

programming involves developing user's own abstraction of the
application domain. This abstraction is defined by the user i~
the form of data abstraction, object types and type
inheritance. An object is defined by its (hidden) state and a
set of operations that are applicable to it. Abstract data
type is just a set of objects whereas a class is an
abstraction of objects. Each object has private data and
attributes (that define its implementation) a~d public data
and attributes visible to users of the object. Such a
distinction between object's data and attributes is often
referred to as data encapsulation. Finally, polymorphism and
function overloading are another characteristics of an object
oriented language. Basically, they allow an operator or a
function to carry different processing for different types of
their arguments. The simplest example of such overloading is
its use to define an optimized function of raising to a power.
It could be done by using a power series approximation for
non-integer exponents and also by an iterative multiplication
for integer exponents. Careful analyses of Fortran90 features
indicates that all the above features can be expressed in
Fortran90 [10].

Another important feature of Fortran90 is the ability to
operate on the whole arrays. Array expressions allow the user
to define arrays of various shapes and apply operators to such
arrays in a piecewise manner. Array shapes can use a set of
conditions to decide to which particular elements of tr.e
argument an operation should be applied (WHERE clause). The
array expressions allow for a very succinct definition of da':.a
parallel operdtions.

A new generation of parallel Fortran, HPF was introduced in
1993 by an HPF Forum, a group of parallel hardware
manufacturers and academic, industrial and governmental users
of high performance machines. During 1994 there were six
announced commercial HPF products and 11 a~nounced commercial
HPF efforts, with many of these compilers becoming availabl~
now (mid of 1995) . HPF introduced new data partitioning
directives, like ALIGN/REALIGN data structures relative to

41

each other, DXSTRXBUTE/REDXSTRXBUTE data str~ctures (or their
templates) to processors according to one of the predefined
patterns (BLOCK, CTCLXC, or BLOCK-CYCLXC). Directives for
definition of processor arrangements (PROCESSORS), or loop
parallelization (XHDEPEHDENT/FORALL) are available. These
directives enable the user to define data movement.s indirectly
without the need of detailed description of the message
passing statements that are must be executed to achieve
directive-defined effect.

Critics of HPF think that the HPF standard is not general
enough. In particular, HPF does not allow for dynamically
defined alignments and distribution that are permitted in
Fortran HPF+ [3]. However, standardization of the language
features is extremely important for users and compiler and
tool writers because it protects their software investments
against changes in the architecture. In that respect,
introduction of Fortran90 and then HPF is an important step
forward towards more stable parallel software.

HPF can be seen as the flagship of the data parallelism camp.
On the other hand, the supporters of message passing based
parallel programming achieved standardization of their
approach in the Message Passing Interface (MPI). MPI is a
large library of the message passing utilities that includes
125 functions. The basic MPI subset, sufficient for writing
simple applications, consists of just the following six
functions:

1. MPX_DnT - to initialize MPI on in a process,

2. MPX_COMM_SXZE - to find the number of processes
participating in the MPI session,

3. MPX_COMM_RANK - to find a unique rank of the calling
process among the MPI session part:cipants.

4. MPX_Send - to send a message to the other processes,

5. MPX_Receive - to ~eceive a message,

42

6. MPI_Finalize - to terminate the MPI session.

The innovations of MPI are centered around an abstract vie"': of
the communication. This abstract view supports portability of
programs using MPI to different machines. Messages in :-!PI are
described as triples consisting of an address, data count and
data type. Data types in such triples can be user defined. MPI
allows the processes to group themselves and arrange
themselves into a hierarchy where each process has its own
rank. A process can have different ranks inside different
groups and it can partici~ate in different communication
sessions concurrently. MPI provides also a default initial
group whose members are all processes that exec:..ited the
MPI_mIT function. Families of messages can be defined in
terms of communication context and group.

MPI provides also more complex feacures, such as collective
communication that includes data movements and global
reduction operations. MPI allows the user to define virtual
topologies and use different communication mcdes. It provides
also functions for debugging and profiling and support for
heterogeneous networks. The MPI standard does not define,
purposefully, how the MPI sturtup is implemented, the amount
of system buffering, or the limitations on recognized errors
to avoid unnecessary restrictions on implementations.

Judging from the widespread popularity of the Parallel Virtual
Machine (PVM), MPI can become an important step towards
providing efficient and unifying tool for expressing message
passing in parallel and distributed applications. Although
introduced recently (in 1993), MPI has been quickly embraced
by manufacturers and is supported on many parallel machines
(among them Cray T3D, Intel Paragon and IBM SP2).

8. Conclusions

Parallel processing is at a critical point of its evolution.
After a long period of intense support by government and
academia, it slowly moves to derive the bulk of its support
from th~ ~ommercial world. Such a move brings with it a change
of emphasis from record breaking performance to price

43

performa!lce and sustained speed of program execution. The
winning architectures are not only fast but also economically
S.)und. As a result. there is a clear trend towards widening
the base of parallel processing both in hardware and software.
On the hardware side, that means using off-the-shelf
commercially available components (processor, interconnection
switches) which benefit frcm rapid pace of rPchnological
advancement fueled by the large customer base. The other
effect is the convergence of different architectures thanks to
spreading the successful solutions among all of them.
Workstations interconnected by a fast network approach the
performance of parallel machines. Shared memory machines with
multilevel caches and sophisticated prefetching strategies
execute programs with efficiency similar to distributed memory
machines.

On the software side, the widening the base of the users
currently relies on standardization of parallel programming
tools. By protecting the programmer's investment in software,
standardization promote~ development of libraries, tools and
application kits that in turn will attract more end-users to
parallel processing. It appears that parallel program.~ing is
ending a long period of craft design and is entering a stage
of industrial development of parallel software. This is a~
industry in the making that will provide new opportunities for
software developers and investors.

Acknowledgment

Some of the research discussed in this chapter has been
supported from the following U.S. agencies: Office of Naval
Research under N00014-93-1-0076, National Aeronautical and
Space Agency under NGT-70334, and National Science Foundation
under grants ASC-9318184 and BIR-9320264. The content of this
chapter does not necessarily reflect the position or policy of
the U.S. Government no official endorsement should be
inferred or implied.

44

References

(1] Gorden Bell, "Why there won't ')e apps: The problem "W"ith
MPPs, '' IEEE Parallel & Distributed Technology: Systems
& Applications, vol. 2, no. 3, pp. 5-6, 1994.

[2] Philip Carnelley and William Cappelli, Beyond the Data
Warehouse, New Markets for Parallel Computing, Ovum
Reports, 1995.

[3] Barbara Chapman, Hans Zima and Piyush Mehrotra,
''Extending HPF for Advanced Data-Parallel
Applications,'' IEEE Parallel & Distributed Technology:
Syste..~s & Applications, vol. 2, no. 3, pp. 59-70 , 1994.

[4! James Cownie, ''Why MPPs?'' IEEE Parallel & Distributed
Technology: Systems & Applications, vol. 2, no. 3, pp.
7-8, 1994.

[5] Evolving High Performance Computing and Communications
Initiative to Support the Nations's Info=-mation
Infrastructure, National Research Council, National
Academy Press, Washington, D.C. 1995.

[6] John L. Gustafson, ''Reevaluating Amdahl's Law,''
Communications of the ACM, vol. 31, no. 5, pp. 532-3,
1988.

[7} John Hennessy and David A. Patterson, Computer
Architectures: A Quantitative Approach, Morgan Kaufman
Publishers, Inc., 1990.

[8] Ken Kennedy, ''Is Parallel Computing Dead?'' Parallel
Computing Research, vol. 2, no. 4, pp. 2-19, 1994.

[9} Richard Miller and J.L. Reed, The Oxford BSP Library:
Users' Guide, Version 1.0, Oxford Parallel Technical
Report, Oxford University Computing Laboratory, 1994.

(10} Charles Norton, Boleslaw Szymanski and Viktor Decyk,
''Object Oriented Parallel Computation for Plasma PIC

45

Simulation,·' Comr.i~nications of the ACM. \:ol. 38, no.10,
October, 1995.

[11] M. Nibhanupudi, C. Norton. and B.K. Szymanski, ·'Plasma
Simulation on Networks of Workstations using the Bulk
Synchronous Parallel Model." Proc. International
Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA '95). Athens, GA.
November, 1995, CSREA, 1995 pp. 13-22.

[12] Monica Snell, ''Supercomputing: Same name, different
game,'' IEEE Computer. vol. 27, no. 11, pp. 6-7, 1994.

[131 Steve Wallach, ''Teraflops into laptops.'' IEEE Parallel
& Distributed TechnJ~ogy: Systems & Applications, vol. 2,
no. 3, pp. 8-9, 1994.

[14] Leslie Valiant, ''A bridging model for parallel
computation, ''Communication of the ACM. vol. 33, no. 8,
pp. 103-11, 1990.

[15) David Wood and Mark Hill, ''Cost-Effective Parallel
Computing,'' IEEE Computer, vol. 28, no. 2, pp. 69-72,
1995.

Glossary

ATM: Asynchrono..is Transfer Mode, a new standard of
transmitting data over a network that unifies the need of
computer processing and teleconununications (voice and video
transmission).

BSP: Bulk Synchronous Parallelism model developed to unify
algorithm description for parallel machines (Section 6).

Cache: Fast but expensive memory used to speed up access to
data in main memory of the computer (see Section 3).

Cluater of Workatationa: or COW, a parallel machine created by

46

joining independent workstations by a net~ork (usually Local
Area Network, LAN) .

DRAM: Dynamic Random Access Memory, is currently the
technology producing the densest computer memory chips
(16-64MB or millions bytes in a single chip).

Fi1e server: A special computer in a network of workstations
responsible for providing the file storage and services for
the entire network.

Massively para11e1 machine: A computer with many processors,
not necessarily the fastest. computer on the market (see
supercomputer).

llu1timedia: Use of nwr..erical data, voice and pictures/movies,
:n data processing.

llu1tiprocessor: A computer with many processors, a synonym of
parallel comput~r. Supercomputers often are multiprocessors.

SDID machine: Single Instruction Multiple Data multiprocessor.
It consists of a large number of simple processors, each
executing the same instruction.

SPllD: Single Program Multiple Data mode of parallel
processing. Each of many processors executes the same program
on different data. Unlike SIMD computer, conditional
statements may cause that at any given instant each of the
processors in SPMD mode may execute different instructions.

supercomputer: Ultra-fast computer for numerical computation,
usually based on vector units (~pecialized processors for
matrix and vector operations) and some, not necessarily
massively, parallelism.

Uniprocessor: a computer with a single
sequential machine. The first
uniprocessors with vector units.

47

processor, a synonym of
supercomputers were

..

100

10

0.1
196S 1970 197S 1980 198S 1990

Year

Figure 1: Trends in microprocessors and Mainframe CPU Performance Growth

..

80

.5µ
2-inch 3-inch 4-inch 6-inch
wafer wafer wafer wafer

60
z:

'
~
0 c ...
0 40 -c ::
:i

20

1998
Year

Figure 2: Semiconductor fabrication line capital cost per thousand wafers per week.
Feature size is measured in microns. Source: [7]

..

u 100
u
c = e

J2 ...
d:! 10

l

Time window

" " " IOXUNI

0 1 2 3 4 5 6 7 8 9 10

Years

Figure 3: Performance window of opportunity for custom design chips

..

IOK
19IO 1911 19M 1916 1911 1990

Figure 4: Trends in DRAM and processor cycle time: Source [7)

I ------- -

1992

..

MIPS with cache miss ratio 5%

30

25

20 '··-·-·---.. __

·····-·-...... _____ _

15 ----

10

CPU cyle=5ns -
CPU cyde=100S -
CPU cyde=20ns ---·····

memory access time in ns
o..._~_._~~.L.......~--'-~~.L.......~--'-~~..._~_._~___.

100 150 200 250 300 350 400 4SO 500

Figure 5: Effects of Memory-Access Time on Speed of Processing

..

8

7

6 ·· .

4

3

Costup{p)

required speedup

..................... __

···-............ _

.........

p=4-
p=8 -

p:16 ····---·

···--.. ..

size of memory
2'--~-'-~.....i...~......1.~~i......~-'-~-'-~ ~......1.~---1
100 200 300 400 500 600 700 800 900 1000

Figure 8: SGI costups with double memory overhead for a = 2

••

Speedup as a function of Amdahl fraction f
80.--~-.-~--~ ~--....~~--~--~-..-~--.-~---.

70 . Speedup

60

p:64-
p:128 ---
p=256 ·······

fraction of the sequential coda f
o.__~....._~_,_~--'-~......r.~~"--~-"-~--~-.i.~--i

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0..1)9 0.1

Figure 7: Impact of the Amdahl's Law on the Maximum Speedup

•
•

GFLO

300

100

GF/s/MS

30

10

?

-----
8GF/s/MS ? _.,;.f":

• lk CMS shock waa :
ll'UQllllilll - , , ~

......... ,... , 111111

DELTA , ', SllPwo~ JO . , :
64k CMl 1111i1r' RS16000 & Mw.ic : . , :

~.! .. -~·-··················· ~:~---·····-···---··----·-·--····-··---- ~ , . , :
~iPSC - _. ____ : ;

CM~liismic .- 1_, proc aa;uUIUC structure ;

3
CM2. oil nsenoir

1 0.1

1'89 1"8

Figure 8: Trends in Gordon Bell Awards Winning Entries

