OCCASION This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation. #### **DISCLAIMER** This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO. #### FAIR USE POLICY Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO. #### **CONTACT** Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications. For more information about UNIDO, please visit us at www.unido.org 21243 Distr. LIMITED ID/WG.541/5(SPEC.) 9 October 1995 United Nations Industrial Development Organization ORIGINAL: ENGLISH First Global Consultation on Environmental Management/ Cleaner Technologies in the Metallurgical Industry Vienna, Austria, 16-18 October 1995 ## REPORT ON LEGAL FRAMEWORKS OF ENVIRONMENTAL STANDARDS OF SEAISI MEMBER COUNTRIES* prepared by the Committee on Environmental Affairs of SEAISI ^{*}The views expressed in this paper are those of the authors and do not necessarily reflect the views of the Secretariat of the United Nations Industrial Development Organization (UNIDO). Mention of firm names and commercial products does not imply the endorsement of UNIDO. This document has not been edited. # Report on Legal Frameworks of Environmental Standards of SEAISI Member Countries Environmental standards (taken from questionnaires given to SEAISI contact persons and selected member companies in each country) of all member countries were collected before the first meeting of the committee (Annex 1). The collected data was summarized in the form of a table and presented at the 2nd meeting (Annex 2). In addition to the data on legal standards, the frameworks of environmental regulation of several member countries have been submitted. To date, legal frameworks of 8 countries, Japan, Indonesia, Malaysia. Singapore, Philippines, Taiwan, Australia and Korea have been collected. The main structure of most legal frameworks collected here consists of: - declaration of environmental policy - construction and organization of administration - power and functions of administration - duties and responsibilities of businesses, individuals, communities and governments - rights and duties of citizens - emission standards for hazardous substances and toxic waste related to living environments and human health - solid waste disposal and noise control guidelines - prohibited acts and penalties - principle of pollution prevention and polluter accountability - principle of report, registration, permission and remediation - marine pollution control - radiation protection - investigation duties on environmental pollution of government - governmental duties on dissemination of knowledge and information on environmental preservation - promotion of environmental science and technology - installation and management of pollution prevention facilities - duties of preparation of statements of environmental impact - mediation of disputes and relief of damage There is no country in which the legal framework integrates the idea of sustainable development as a means to keep the balance between the environment and the economy. Environmental regulation must state that the activities of business, individuals, communities and government must be consistent with the philosophy of sustainable development. Most of the legal frameworks studied here do not clear the following items: - local emission standards to meet the international level - governmental parties must clearly define their responsibilities for protection and demolition of the ecological system - definition of responsibility for non-point source pollution - legal system for pursuing the source of pollution - import/export ban regulation for environmentally harmful articles The following new concepts and strategies may be integrated in future frameworks of environmental legislation to attain sustainable development. - adoption of the philosophy of zero discharge for the control of toxic substances - adoption of clean production technology for preventing pollution prior its generation - long term monitoring of effluents and discharges - virtual elimination of non-conventional toxic substances - adoption of limits on emission parameters based on the BAT(Best Available Technology) - need for risk assessment - adoption of total loading control of pollutarits - legal system for environmental auditing | | ADC | PRESS | |-------------|--|---| | COUNTRY | ADDRESS 1 | ADDRESS 2 | | INDONESIA | DR. SUHENDRO NOTOWIDJOJO | KRAKATAU STEEL, P.T. | | | BUDIDHARMA JAKARTA, P.T.
Wisma Argo Manunggal
9th Fl., Jl. Jend. Gatot Subroto
Kav. 22, Jakarta 12930
Indonesia | Wisma Baja
Ji. Gatot Subroto
Kav. 54, Jakarta Selatan
Indonesia | | MALAYSIA | DATO'SOONG SIEW HOONG | MALAYAWATA STEEL BERHAD | | | MALAYSIAN IRON & STEEL FEDERATION
6th floor, Wisma MCIS
(Secondary Tower Block), Jalan Barat
46200 Petaling Jaya, Selangor D.E.
Malaysia | P.O. Box 60
12700 Butterworth
Penang
Malaysia | | PHILIPPINES | MR. ROLANDO JAURIGUE | | | | PHILIPPINES STEEL COATING CORP. Philsteel Tower 140 Amorsolo St., Legaspi Village Makti, Metro Manila 1227 Philippines | | | SINGAPORE | MR, ANG CHEOK SAI | NATSTEEL LTD. | | | MATSTEEL LTD. 22 Tanjong Kling Road Jurong Town 2262 Singapore | 22 Tanjong Kling Road
Jurong Town 2262
Singapore | | AUSTRALIA | MR. EARLE J.S. HO | CHINA STEEL CORPORATION | | | TUNG HO ENTERPRISE CORP.
6th floor, Chang An East Road
Section 1
Taipei 10404
Taiwan | Lin Hai Industrial District
P.O. Box 47 – 29
Hisio Kang Kaohsiung 81233
Taiwan | | THAILAND | MR. VISITH NOIPHAN | SIAM IRON AND STEEL CO., LTD., THE | | | MINISTRY OF INDUSTRY Department of Mineral Resource Rama VI Rd., Phayathai Bangkok 10400 Thailand | 1 Siam Cement Rd.,
Bangsue
Bangkok 10800
Thailand | | AUSTRALIA | MR. HUGH TREWARTHA | BROKEN HILL PROPRIETARY
CO. LTD., THE | | | 45, Banggalay Avenue Frankston
Victoria 3199
Australia | BHP House
140 William Street Melbourne
Victoria 3000
Australia | | JAPAN | MR. SCAHIO HATORI | KAWASAKI STEEL COPORATION | | | c/o NKK Corporation
1-2-2 Marunouchi
Chiyoda-ku
Tokyo 100
Japan | Hibiya Kokusai Bldg 2-3
Uchi-Saiwaicho, 2-Chome
Cniyoda-ku, Tokyo 100
Japan | ## 1. Legal Framework #### - Environmental related acts in Korea | | _ | | | | |---|---|--------------------|-------------------------------------|------------------------------| | Acts | i' | Establi-
siment | Relation
to Iron &
Steel Work | Remarks | | Policy Act | Environmetal preservation planning Legislative and financial activities Preservation of natural environment Environment impact assessment Wediation of dispute | *90.8.1 | 0 | highest
positi-
on la= | | Environment-
al Pollution
Demage Dis-
pute Adjust-
ment Act | adjustment | *90, 8, 1 | 0 | | | Atmospheric
Environment
Preservation
Act | - Emission regulation of air pollutants from industry. living environment and automobiles - Air pollution control business | *90.8.1. | 0 | | | Water
Environment
Preservation
Act | Effluent regulation of wastewater Final wastewater treatment plant Water quality preservation of public water-way and specific lakes and marshes Water pollution control business | | ū | | | Noise &
Vibration
Regulation
Act | Regulation for noise and vib
ration from industrial plant
construction, traffic, livin
activities and airplane | | 0 | | | Acts | Principal Contents | Establi-
shment | Relation
to iron &
Steel Fork | Remarks | |---|---|-----------------------------------|-------------------------------------|---------| | Noxious
Chemical
Substance
Act | Toxicity test of chemical substances Registration of hazaroous material business Management of hazardous material | *90.8.1 | 0 | | | Traste
Control
Act | Regulation of waste treatment Waste generation restraint and recycling Guidance and supervision of waste treatment business | *86.12.31
*91.3.8
amendment | | | | Synthetic
Resin Waste
Disposal
Business Act | Korea Resource Recovery Corp. Expenditure charging | '79.12.28
'91.3.8
amendment | | | | Act Regulating to Treatment of Sewage, Excreta and Livestock Wastewater | Regulation on treatment of sewage, excreta, and livestock wastewater Permission of excreta related business | '91.3.8 | Δ | | | Marine
Pollution
Control
Act | Regulation of oil and waste
from ship and marine facility
Activity for marine poliution
preservation | | | | | Act of Control on the Production, etc. of Specified Substance for the Protection of Ozone Layer | - Regulation on manufacture
and use of specified
substances | '91.1.14 | X | | | Special Measure Act Relating to Purnishment of Environmental Offence | Purnishment regulation on actitivities which cause hazardous effects on human health | 91.5.3 | | | ## 2. Basic Criteria of Environmental Regulations - In case of water pollution, the basic scientific criteria of the regulation limit can be helpful for the comparison of the data - In case of air pollution, the regulation method is based on facility, region and fuel. In some countries, it is not specified. | Pollutant | Indivisual
Facility is
Regulated | Regulated in
Regional
Basis | Regulated in
Regional
Basis | Not Specified | |-------------|---|-----------------------------------|-----------------------------------|---| | SOx | Korea
Singapore
Malaysia
Thailand
Australia | Japan | Taiwan | Incionesia
Philippines | | N ÚX | Korea
Japan
Singapore
Malaysia
Thailand | | Japan
Taiwan | Taiwan1)
Indonesia
Australia
Philippines | | Dust | Korea
Japan
Malaysia
Thailand
Australia | | Japan
Tnailand | Taiwan ²⁾
Singapore
Indonesia | ¹⁾ Taiwan differently regulates MM in exist and new facilities. ²⁾ Taiwan regulates dust in the basis of facility capacity. ## 3. Commarison of Standards of Each Countries #### 3.1. Water Pollution (!) Basic items: COD BOD, SS, TDS, pH, temperature, n-nexame, color, coliform Thailand, Australia: regulate only BOD instead of COD TDS: is regulated only in Singapore and Indonesia - Color : in Korea and Singapore Coliform: in Korea, Japan and Australia Taiwan, Korea: pre-notified the standards (to '98 and '96) #### (2) Anions and/or its compounds Australia: on the whole, has ten times stricter regulation than other countries Cl- SO₄2-, S²⁻: don't regulate these items in most countires --> if these pollutants are in wastewater, then it is impossible to recycle wastewater because these pollutants are very corrosive NH₃, NO₂⁻, NO₃²⁻, PO₄³⁻: are regulated only in Japan, Taiwan, Indonesia and Australia --> will be regulated in the region that nutrification may be occurred · CN: in all countries #### (2) Metais (Cations) - Regulations of Thailand and Australia are stricter than other countries - 2-10 times - Pb and Mn : 20-200 times stricter in Australia · Ba, Be, Ca, Mg : only in Singapore #### (4) Toxic organic pollutants · Organic phosphorus: only in Korea, Japan and Taiwan - TCE(trichloroethylene), PCE(perchloroethylene) - only in Korea, Japan and Malaysia - will be regulated in other countries soon may be discharged from rolling process of iron & steel works (cleaning agent) #### 3.2. Air Pollution #### (1) Gaseous pollutants - NFig : much more strictly regulated in Thailand and Indonesia than Korea and Philippines - · CS2, formaldehyde: more strictly regulated in Korea than Philippines - HON, Br, bezene, phenol : only in Korea and Japan - HCl. Cl2: most strictly regulated in Korea #### (2) Particulates - In metals, Cr. Ni and Zn are regulated in a few countries while Cd and Pb are regulated in all countries - Fugitive dust : only in Korea and Taiwan - Smoke: 1º in Taiwan, Malaysia and Australia 2º in Korea, Singapore and Thailand not regulted in Japan, indonesia and Philippines - = We have to prepare for CO2 regulation. - ${\rm CO}_2$ primary sources in iron & steel works - coke plant - blast furnace - power plant ### 1. Water Pollution | Pollutants | | | E M I S S | SIONS | TAND | ARD | | | |--|-----------|-------------|-----------|----------------------|-----------|--|-----------|-----------| | (unit) | Korca | Japan | Taiwan | Singapore | Malaysia | Thailand | Indonesia | Australia | | COD (mg/L) | 100 | 100*(160)** | 200 | 100 | 100 | | 300 | | | BOD (") | 100 | 100 (160) | 100 | 50 | 50 | 20 - 60 | 150 | 20 | | SS(") | 100 | 100 (160) | 100 | 50 | 100 | 30(DR***=1/8-1/150)
60(DR=1/151-1/300)
100(DR=1/301-1/500) | | | | TDS (") | | | | 2000 | | | 400 | } | | pH | 5.8 - 8.6 | 5.8 - 8.6 | 5.0 - 9.0 | 6.0 - 9.0 | 5.5 - 9.0 | 5.0 - 9.0 | 6.0-9.0 | 6.5 - 8.5 | | Temperature(C) | 40 | 40 | 35 | 45 | 40 | 40 | 40 | | | n-Hexane Extract
(mg/L) • Mineral oil | 5 | 5 | 10 | 10
(grease & oil) | 10 | 5
(grease & oil) | | | | Others | 30 | 30 | 30 | | | | | | | Phenol (") | 5 | 5 | 5 | 0.2 | 1.0 | 1.0 | 1 | 0.001 | | Cyanide (") | 1 | 1 | 1 | 0.1 | 0.10 | 0.2 | | 0.05 | | Fluoride (") | 15 | 15 | 15 | | | | 3 | 1.5 | | Chloride (") | | | | 6(X) | | | | 250 | | Free Chlorine (") | | | | 1 | 2.0 | | 2 | | ^{*} Data submitted by Kawasaki Steel ** Data submitted by the Japan Iron and Steel Federation | Pollutants | | | E M I S S | ION S | TAND | ARD | | p.,, | |-------------------|-------|-------|-----------|----------------|----------|----------|-----------|-----------| | (unit) | Korea | Japan | T. iwan | Singapore | Malaysia | Thailand | Indonesia | Australia | | Sulfate (mg/L) | | | | 500 | | | | 250 | | Sulfide (") | | | , | O.2(as sulfur) | 0.5 | | 0.1 | | | Organic P (") | 1 | 1 | | | | | | | | PCB (") | 0.003 | 0.003 | | | | | | | | Color (degree) | 300 | | | 7 Lovibond | | | | | | Coliform (No./mL) | 3000 | 3060 | | | | | | 2 | | Total Cr (mg/l_) | 2 | 2 | | 1 | | 2.0 | 2 | | | Cr (") | | | | | 1.0 | | | | | Cr (") | 0.5 | 0.5 | | | 0.05 | 0.5 | 0.5 | 0.05 | | Fc (") | 10 | 10 | | 20 | 5.0 | | 10 | 0.3 | | Cu (") | 3 | 3 | | 0.1 | 1.0 | 1.0 | 3 | 1.0 | | Cd (") | 0.1 | 0.1 | | 0.1 | 0.02 | 0.03 | 0.1 | 0.01 | | 11g (") | 0.005 | 0.005 | | 0.05 | 0.05 | 0.005 | 0.005 | 0.001 | | As (") | 0.5 | 0.5 | | 1 | 0.1 | 0.25 | 0.5 | 0.05 | | Pb (") | 1 | 1 | | 0.1 | 0. i | 0.2 | 1 | 0.05 | | Mn (") | 10 | 10 | | 5 | 1.0 | 5 | 5 | 0.05 | . | Pollutants | | E M I S S | ION S | TAND | ARD | | | |----------------------------------|---------|-----------|------------|----------|----------|-----------|-----------| | (unit) Kore | a Japan | Taiwan | Singarpore | Malaysia | Thailand | Indonesia | Australia | | Ni (mg/L) | | | 1 | 1.0 | | 0.5 | | | Sn (") | | | 0.5 | 1.0 | | 3 | | | Zn (") | | | 1 | 1.0 | | | 5.0 | | Ba (") | | | 5 | | | 3 | 1.0 | | Bc (") | | | 0.5 | | | | | | Ca (") | | | 200 | | | | | | Mg(") | | | 200 | | | | | | B (") | | | .5 | 4.0 | | | 1.0 | | Metals in Total (") | | | 1 | | | | | | инэ (") | | | | | | 5 | 0.5 | | NO) (") | | | | | | 30 | 10 | | NO2 (") | | | | | | 3 | 10 | | PO4 (") | | | 5 | | | | | | Trichloroethylene(")0.3(after ' | 93.1) | | | 0.3 | | | | | Tetrachloro- 0.1(") ethylene (") | | | | 0.1 | | | | | Detergents (") | | | 15 | | | | | ### 2. Air Pollution ## 2.1. Gaseous Pollutants | | | EMISSION STANDARD | | | | | | | | | | | |-------------------------------|--|--|---|---|-------------------------------|--|-------------------------|-----------------------------------|--|--|--|--| | Pollutants | | Korea | | Japan | | Taiwan | Singapore | | | | | | | | STD
(ppm) | Facilities | STD
(ppin) | Facilities | STD
(ppm) | Facilities | STD
(g/Nm3) | Facilities | | | | | | Sulfur
Oxide
(as SO2) | 1200(4)
650
300(7)
300(12)
800 | power plant
blast furnace
coke plant
others | K*=
3.0-17.5
1.17-2.34 | defined by
regions
new facilities | 750 (6) | 1.5% S in fucl | 3.0
(as \$O3)
0.1 | sulfuric acid
plants
others | | | | | | Nitrogen
Oxide
(as NO2) | 250(4)
200 | power plant
others | 60-150
(5)
200-350
(6)
130-180
(4)
100(15)
220(15)
170(7)
100-180(11)
250(15) | boiler(;;as)** " (coal)** " (l:quid)** blast furnace, basic oxygen converter, open iurnace sinter plant coke oven heating furnace** lime cacination furnace drying furnace | 300 (6)
400 (6)
500 (6) | boiler(gas)
" (liquid)
" (solid) | 2.0 | nitric acid plant
others | | | | | | Ammonia | 200 | all | | | | | | | | | | | | Carbon
Disulfide | 30 | all | | | | | | | | | | | | Form-
aldehyde | 20 | all | | | | | | | | | | | *q= K x 10³ x He, q=allowable limit of SOx (Nm3/h), He=effective stack height (m) :different according to regions . | | | | T | 1 S S I O N | T | | <u> </u> | | |-------------------------------|-------------------------------------|-----------------------------------|-------------------|--|------------------|------------|-----------------|------------| | Pollutants | M | lalaysia | T | hailand | Inc | lonesia | Australia | | | | (E/Nm3) | Facilities | STD
(m)qq) | Facilities | STI)
(g/Nin3) | Facilities | STD
(mg/Nm3) | Facilities | | Sulfur
Oxide
(as SO2) | 3.5
(as SO3)
0.2 | sulfuric acid
plants
others | 500
400
700 | sulfuric acid
plants
others in
Bangkok
others in
other area | 0.25 | all | 100
(as SO3) | ali | | Nitrogen
Oxide
(as NO2) | equiv.
of 1.7
g/Nm3
of SO3 | lla | 487
974 | con-bustion source nitric acid production and others | 4.6 | ali | 2500 | ali | | Aininonia | | | 25 | gas plant | | | | | | Carbon
Disulfide | | | | | | | | | | Form-
aldehyde | | | | | | | | | . | | | | ЕМ | 1 S S 1 O N | STAN | IDARD | | | | | |----------------------|----------------|---|-----------------|--------------------------------|--------------|---------------|----------------|--|--|--| | Pollutants | | Korea | | Japan | | Caiwan | | Singapore | | | | | QT2
(mqq) | Facilities | STD
(mg/Nm3) | Facilities | STD
(ppm) | Facilities | STD
(g/Nm3) | Facilities | | | | Hydrogen
Sulfide | 10
15 | desulfurizer
others | | | 100 | all | 5 ppm | all | | | | Hydrogen
Cyanide | 10 | all | | | | | | | | | | Fluoride
Compound | 5 | all | 1.0-20 | all | 2(1 | nll | 0.1 | process with fluctine, hydrofluoric acic or inorganic fluorins | | | | Bromide
Compound | 5 | ali | | | | | | | | | | Benzene
Compound | 50 | all | | | | | | | | | | Phenol
Compound | 10 | all | | | | | | | | | | Hydrogen
Chloride | 10
80
10 | acid treatment
incinerator
others | 700
80 | waste
incinerator
others | 80 | all | 0.2 | ila | | | | Chlorine | | | 30 | nlı | | | 0.1 | ali | | | | Mercury
Compound | 5 | ลใ | | | | | 0.01 | ali | | | | Arsenic
Compound | 3 | all | | | | | 0.02 | all | | | . | | | EMISSION STANDARD | | | | | | | | | | | | |----------------------|----------------|-------------------|------------------|------------|----------------|------------|-----------------|------------|--|--|--|--|--| | Polintants | Malaysia | | Th | Thailand | | donesia | Australia | | | | | | | | | STD
(£mM\g) | Facilities | STD
(mg/Nin3) | Facilities | STD
(g/Nm3) | Facilities | STD
(mg/Nm3) | Facilities | | | | | | | Hydrogen
Sulfide | 5 | all | 100
100 | all | 5 ppm | all | 5 | ali | | | | | | | Hydrogen
Cyanide | | | | | | | 100 | uli | | | | | | | Fluoride
Compound | | | | | 0.02 | all | | | | | | | | | Bromide
Compound | | | | | | | | | | | | | | | Benzene
Compound | | | | | | | | | | | | | | | Phenol
Compound | | | | | | | | | | | | | | | Hydrogen
Chloride | 0.4 | all | 2(X) | all | 0.5 | all | | | | | | | | | Chlorine | | | | | 0.25 | all | | | | | | | | | Mercury
Compound | 0.01 | all | 0.1 | all | 0.01 | all | 3 | all | | | | | | | Arsenic
Compound | 0.025 | all | 20 | all | 0.025 | ılı | 10 | all | | | | | | #### 2.2. Particulates | | | EMISSION | | | | S T A N D A R D | | | | | |----------------------|---|--|--|---|----------------------------|--|------------------|------------|--|--| | Pollutants | Korea | | Japan | | | Taiwan | Singapore | | | | | | STD
(mg/Sm3) | Facilities | STD
(mg/Nm3) | Facilities | STD
(mg/Nni3) | Facilities | STD
(mg/Nm3) | Facilities | | | | Dust | 150(4)
100(2)
30
70
200
100(11)
100(7)
120 | power plant incinerator electric are furnace blast furnace sintering furnace heating furnace coke plant others | 50-100
(5)
50-300
(4)
100-300
(6)
150
50
100
100-200
(11)
300(15)
500(16)
100 | boiler(gas)* " (liquid)* " (solid)* sinter plant blast furnace basic oxygen converter heating furnace* lime calcination furnace drying furnace clectric furnace coke oven | 189-500
95-176
50-39 | gas flowrate(Nm3.min)=
30 - 1000
1000-10000
1000070000 and over | 200
(12% CO2) | all
, | | | | Cadmium
Compound | 1.0 | all | 1.0 | all | 1 | ati | 10 | all | | | | Lead
Compound | 20
10 | blast furnace
others | 10-30 | all | 10 | ali | 20 | กแ | | | | Chromium
Compound | 1.0 | all | | | | | • | | | | | Copper
Compound | 10 | all | | | | | 20 | all | | | ^{*}Different according to capacities | Pollutants | Malaysia | | Thailand | | Indonesia | | Australia | | |----------------------|-----------------|---------------------------|------------------------------------|---|-----------------|------------|--------------------------|--| | | QT2
(EmM\gm) | Facilities | STD
(mg/Nm3) | Facilitics | STD
(mg/Nm3) | Facilities | CTD
(EmM\gin) | Facilities | | Dust | 20
4(X) | heating furnace
others | 3(X)
5(X)
4(X)
400
500 | boiler (heavy oil) boiler(coal) cement plant & calcium carbide plant steel manu- facturing rock & gravel aggregate plant others | 500 | all | 250
400
200
250 | power plant incinerator and boilers electric furnace other | | Cadmiun
Compound | 15 | all | 1.0 | all | 15 | all | 3 | all | | Lead
Compound | 25 | all | 30 | all | 25 | all | 10 | ali | | Chromium
Compound | | | | | | | | | | Copper | 0.1 | all | 20 | ail | | - | | | ^{():} Oxygen Content (%) | Pollutants | Korea | | Japan | | Taiwan | | Singapore | | |----------------------|-----------------|--|-------------------------|--------------------------------------|---------------------|--------------|-------------|------------| | | STD
(mg/Sm3) | Facilities | STI)
(mg/Nm3) | Facilities | S'TID
(EmM\unin) | Facilities | STD (EmMym) | Facilities | | Nickel .
Compound | 20 | all | | | | | | | | Zinc
Compound | 30 | electric are
furnace &
incinerator
others | | | | | | | | Antimony
Compound | | | | | | | | | | Fugitive
Dust | 1.5 | all | | | 1 | | | | | Smoke*
(degree) | 2 | all | | | 1 | | 2 | all | | Noise(dB) | 70
65 | day
night | 50-70
45-65
40-55 | day
mornong &
evening
night | 80
70 | day
night | | | | · | * smoke: Degree of Ringelmann Smoke Chart | Pollutants | Malaysia | | Thailand | | Indonesia | | Australia | | |----------------------|-----------------|------------|-----------------|---------------------|-----------------|------------|-----------------|------------| | | STD
(mg/Nm3) | Facilities | STD
(mg/Nm3) | Facilities | STD
(mg/Ngm) | Facilities | STD
(mg/Nm3) | Facilities | | Nickel
Compound | | | | | | | | | | Zinc
Compound | 100 | all | | | 100 | ali | | | | Antimony
Compound | 25 | all | | | 25 | all | 10 | all | | Fugitive
Dust | | | | | | | | | | Smoke
(degree) | 1 | all | 40% | boiler &
furnace | | | 2 | all | | Noise(dB) | 85 | all | 80 | all | į | | | | | | | | | | 1 | | | | | | | |