

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

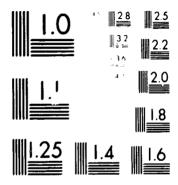
DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT


Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at <u>www.unido.org</u>

•

_

.

MCROCOPY RECORDION 11-3 CHAPT

09673

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION UNIDO/IOD.353 19 May 1980 ENGLISH

Ţ

Distr. LIMITED

REPORT ON THE USE OF PESTICIDES IN LATIN AMERICA*

рÀ

Christopher Maltby UNIDO Expert

* This document has been reproduced without formal editing.

The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

· • • .:

•••

CONTENTS

Sectio	n	Pa⊆e	
	Introduction	1	
1.	Summary		
2.	Conclusions and Recommendations	5	
3.	Use of Pesticides	7	
	3.1. Argentina	õ	
	3.2. Bolivia	11	
	3.3. Brazil	12	
	3.4. Central America	14	
	3.3. Chile	15	
	3.6. Colombia	17	
	3.7. Ecuador	18	
	3.8. Mexico	19	
	3.9. Paraguay	21	
	3.10. Peru	22	
	3.11. Uruguay	23	
	3.12. Venezuela	2.4	
4.	Production of Pesticides and Intermediates	25	
5.	Formulation of Pesticides	41	
6.	Potential Inter-Country Cooperative Scheme	s 35	

APPENDICES

Section	Pade
7. <u>TABLES</u> - PESTICIDE 1973 USE AND FORECAST 1	988 59
1. SUMMARY INSECTICIDES	60
2. SUMMARY HERBICIDES	61
3. SUMMARY FUNGICIDES	62
1.1. Argentina – Insecticides	63
1.2. Argentina - Herbicides	6 4
1.3. Argentina - Fungicides	65
2.1. Bolivia - Insecticides	66
2.2. Bolivia - Herbicides	ō7
2.3. Bolivia - Fungicides	68
3.1. Brazil - Insecticides	69
3.2. Brazil - Herbicides	70
3.3. Brazil - Fungicides	71
4.1. Central America - Insecticides	72
4.2. Central America - Herbicides	73
4.3. Central America - Fungicides	74
5.1. Chile - Insecticides	75
5.2. Chile - Herbicides	76
5.3. Chile - Fungicides	77
6.1. Colombia - Insecticides	78
6.2. Colombia - Herbicides	79
6.3. Colombia - Fungicides	80
7.1. Ecuador – Insecticides	81
7.2. Ecuador - Herbicides	92
7.3. Ecuador - Fungicides	83

1

Section

.

Ρ	а	Ţ	e
---	---	---	---

8.1.	Mexico	- Insecticides	÷3
8.2.	Mexico	- Herbicides	85
8.3.	Mexico	- Fungicides	86
9.1.	Paraguay	- Insecticides	87
9.2.	Paraguay	- Herbicides	88
9.3.	Paraguay	- Fungicides	89
10.1.	Peru	- Insecticides	90
10.2.	Peru	- Herbicides	91
10.3.	Peru	- Fungicides	92
11.1.	Uruguay	- Insecticides	93
11.2.	Uruguay	- Herbicides	<u>9</u> 7
11.3.	Uruguay	- Fungicides	95
12.1.	Venezuela	- Insecticides	96
12.2.	Venezuela	- Herbicides	97
12.3.	Venezuela	- Fungicides	98
TABLES	- PRODUCTI INTERMED	ON OF PESTICIDES AND CHEMICAL	
1.4.	Argentina	- Pesticides	99
1.4.1	. Argentina	- Chemicals	100
3.4.	Brazil	- Pesticides	101
3.4.1	. Brazil	- Planned Pesticides	102
3.4.2	. Brazil	- Chemicals	103
4.4.	Central A	merica - Pesticides	104
4.4.1	. Central A	merica - Chemicals	105
5.4.	Chile	- Pesticides	106
6.4.	Colombia	- Pesticides	107
6.4.1	. Colombia	- Chemicals	108

8.4. Mexico - Pesticides 109

8.4.1. Mexico - Chemicals 111

Section

10.4.	Peru	- Pesticides	113
11.4.	Uruguay	- Pesticides	114
12.4.	Venezuela	- Pesticides	115
12.4.1.	Venezuela	- Chemicals	115

TABLES - PESTICIDE FORMULATION AND PRODUCTION OF ADDITIVES

1.5.	Argentina	- Formulation	117
1.5.1.	Argenting	- Additives	118
3.5.	Brazil	- Formulation	119
3.5.1.	Brazil	- Additives	120
4.5.	Central An	merica - Formulation	121
4.5.1.	Central An	merica - Additives	122
5.5.	Chile	- Formulation	123
6.5.	Colombia	- Formulation	124
6.3.1.	Colombia	- Additives	125
8.5.	Mexico	- Formulation	126
8.5.1.	Mexico	- Additives	127
9.3.	Paraguay	- Formulation	128
10.5.	Peru	- Formulation	129
11.5.	Uruguay	- Formulation	130
12.5.	Venezuela	- Formulation	131

8. INTERMEDIATES REQUIRED FOR PESTICIDE PRODUCTION 132

1

INTRODUCTION

l

л

The purpose of this report is to record, by country in Latin America:

- the estimated 1978 pesticide use and forecast for 1988, in volume.
- the important pesticide producers, their plant capacities and estimated 1978 production.
- the important pesticide formulators and their estimated capacities by type of product and formulation.
- the chemical intermediates and the pesticide formulation additives which are produced locally, and their selling prices.

Visits have been made to Venezuela, Brazil, Argentina, Colombia, Guatamala and Mexico.

1. SUMMARY

Pesticide sales within the Latin American region, at distributor prices, in 1978 are estimated at US \$1110 million, or some 15% of world sales.

Little increase has taken place in the planted areas of the major pesticide consuming crops within the region during the past five years, except soya, and no significant increase is forecast over the next ten years, except soya.

Therefore, only a modest volume increase in the use of pesticides is forecast over the next ten years to accommodate the increased soya area, and that a greater part of the planted area of other crops will be treated with pesticides in the future, than hitherto, as a result of more information being available regarding the benefits of pesticide application.

Cotton, soya and rice are the more important crops on which insecticides are used. Rice, sugar cane and soya are the major crops on which herbicides are used, with an increasing volume forecast on pastures. Vegetables and bananas account for most of the fungicide use, with some on coffee, and on deciduous fruit in the south.

The detail of the estimated 1978 use and forecast for 1988, for pesticides in volume, may be seen in the summary tables Nos 1, 2 and 3 in Section 7.

There has been a recent surge in building pesticide plants in Brazil. These new plants are now on stream, using locally produced intermediates in part, but some are operating at a fraction of capacity, because the comparatively high costs of local intermediates and of production preclude them from competing on the international market, without assistance.

Meanwhile in Mexico, which has a longer history of pesticide production, a number of plants are either not operated now or operate at a fraction of capacity, for the same reasons as in Brazil and because of product obsolescence. Pesticide production in Argentina is contracting for the same reasons. The plants in Venezuela closed in 1979 because it was not possible to make a profit selling at the local, Government controlled, selling prices. The plants in Colombia continue to operate, at reported profitable levels, due apparently to the multinational nature of the local producers, who transfer product to their subsidiaries in the cther countries.

Some producing countries, such as Brazil, provide export subsidies, which materially assist the export sales of high cost pesticides (and intermediates), but these subsidies are forecast to be withdrawn so as to permit free market conditions to prevail.

Some chemical intermediates, from which some pesticides are produced, are made in the larger countries in this region. The local selling prices of these intermediates vary between countries, but are broadly higher than the international market prices. For example, while the international market price now is:

- US \$1050 ton for phenol, the price in Argentina is \$1550, \$856 in Brazil and \$1476 in Mexico.
- US \$194 ton for chlorine, the price in Argentina is \$360, \$154 in Brazil, \$370 in Central America, \$650 in Colombia, \$262 in Mexico and \$600 in Venezuela.

The larger countries in the region all possess comprehensive and substantial formulation facilities, with capacities which in total are near three times that required. In these countries a preference in import duty and/or the import licencing legislation encourages local formulation, except in Argentina where no duty is levied on technical or formulated pesticides that are not made locally.

Either a nil duty, or the same duty, is levied on both technical and formulated pesticides in Bolivia, Chile, Ecuador, Paraguay and Uruguay, who all import ready formulated products, sometimes from the larger countries within the region. Only Peru impose a nil duty on formulated products and a 50% duty

- 3 -

on technical pesticides, so naturally most pesticides are imported ready formulated although substantial formulation capacity exists, built when the duty differential was different.

Suitable fillers and solvents for pesticide formulation exist locally in the larger countries within the region.

Sufficient pesticide production capacity exists within the region to satisfy, and more, the requirements for a number of the major volume pesticides in the region. Yet substantial imports are made from outside the region, because broadly, local production costs are high and preclude competitiveness, freely, on the international market. Those countries producing pesticides, protect local producers. Those countries not producing seek to purchase at the lowest price.

Some preference exists for producers within the region, but generally this is insufficient to b idge the gap between local production costs/prices and the international market price, without further subsidy/preference.

2. CONCLUSIONS AND RECOMMENDATIONS

Pesticide production plants within the Latin American region possess sufficient capacity to satisfy the forecast requirements for the region of a number of the major volume pesticides. Yet substantial imports are made from cutside the region, because of the non competitiveness of locally produced pesticides. Local duty preferences are insufficient to bridge the gap between the selling prices of local production and those of the international market.

In a further attempt to more fully utilise the production capacity within the region, it is proposed that agreement of the countries within the region be sought, in principle, to a transfer price system for pesticides, on a contra account basis.

Several pesticide materials are candidates for production within the region, inter alia on a cooperative basis. The majority of them are reported to be in patent, and problems with intermediates may be encountered. Only Dalapon appears to be without problems, except that propionic acid would have to be imported, and like most other products more than half is used in Brazil.

The existing formulation capacity is near three times that required. The preferred method of more fully utilising the capacity within the region is to ensure that the formulations made are above reproach, so that the smaller countries who import formulations, will do so from within the region rather than from elsewhere.

No cooperative or complementary marketing schemes are proposed for pesticides between the independent minded countries comprising the Latin American region.

A number of schemes would be possible by changing legislation, import licencing, tariffs and subsidies. However, it is understood that this is not the purpose of this report. It is therefore recommended that:

- 1. Agreement be scught in principle to a system of transfer prices for pesticides on a contra account basis, between countries in Latin America, in order to more fully utilise existing production facilities.
- 2. The viability be investigated of a Dalapon production unit on a cooperative basis between member countries, including Brazil and other Dalapon users.
- 3. Standards be examined, and agreed, regarding formulation facilities, procedures and finished products, in order to encourage an even higher standard within the region, particularly among producers, and so encouraging the purchase of pesticides formulated within the region by member countries.

3. USE OF PESTICIDES

ť

Each country under study is dealt with separately in this Section.

Most insecticides can be, and are used over a broad crop spe ctrum. While pressure exists to reduce or stop the use of many organochlorine insecticides in some parts of the world, and to at least reduce the use of the more toxic organophosphates, there is little sign that this is taking place in Latin America, with the exception of Colombia and elsewhere with DDT/Toxaphene mixtures. Organochlorine insecticides continue to be the most economic materials to combat many cotton pests, and additionally they are produced in several countries. Local production of a pesticide tends to increase the local use of that pesticide, and once production has started it becomes unlikely that that product will be banned, or restricted to any extent. The one exception is that DDT production stopped in Argentina in 1976, whereas Toxaphene production has just started in Guatamala.

Among the important herbicides; the major crops uses are:

- the phenoxies in cereals and sugar cane
- Molinate, Benthiocarb, Propanil and Butachlor are used in rice.
- Diuron and Ametryne in sugar cane.
- Trifluralin and Alachlor in cotton and soya.
- Bentazone and Metribuzin in soya.
- Atrazine in maize and sorghum.

and the others in a variety of crops.

- 7 -

Among the important fungicides:

- Quintozene, Thiram, HCB and Captan are used in seed dressings, as are some of the amine derived materials, and the excellent Triadimeron.
- the inorganics are used in fruit and vegetables.
- Ediferfos and Kitazin in rice

with the others, including the dithiocarbamates, being used over a wide crop spectrum.

It will be noted from the appropriate crop statistics, that there has been no significant increase in the area planted to the important pesticide consuming crops during recent years, with the exception of soya, mainly in Brazil and to a lesser extent in Argentina, Mexico and Paraguay. No significant increase is forecast over the next ten years, on the basis of present performance.

For this reason, only modest increases in the volume use of pesticides are forecast.

Since there are several pyrethroid insecticides, with different dosage rates, the 1979 use and forecast 1988 volumes in this report are struck in terms of NRDC 149 and Fenvalerate, at 50 grms active/ha.

- 5 -

3.1. ARGENTINA

The estimated value of pesticide use in Argentina in 1978 at distributor selling prices in US Ø millions, was:

- insecticides \$54 million, of which more than 20% was used in deciduous fruit, near 15% in each of cotcon and soya, and less than 10% in each of corn/sorghum, winter cereals, vegetables and tobacco.
- herbicides \$32 million, of which more than 20% was used in each of rice and sugar cane, and less than 20% in each of cotton, soya and wheat, and near 5% in corn.
- fungicides \$16 million, of which near 20% was used in each of deciduous fruit and potatoes, and near 10% in each of citrus, vines, tomatoes and other fruit.
- other pesticides \$1 million, which included nematocides and plant growth regulator;

with a total of US \$103 million.

The economic climate in Argentina is the most important single factor influencing local forecasts of any kind. In the present circumstances, with planted areas and production near static, with little incentive to invest in agriculture:

- insecticide and fungicide use is forecast to increase 1% annually in volume.
- herbicide use is forecast to increase 2-3% annually in volume, especially in the more profitable soya and sunflower crops where a big increase in the use of Trifluralin is forecast.

These modest forecasts assume that:

- inflation becomes no worse than in 1979

- Government do not enforce price controls more than in 1979.

The estimated 1978 use, and forecast use in 1988, by volume, is shown separately in:

- Table 1.1. for insecticides

- Table 1.2. for herbicides
- Table 1.3. for fungicides.

3.2. BOLIVIA

.

The estimated value of pesticide use in Bolivia in 1978 at distributor selling prices, in US 3 millions, was:

- insecticides \$5.6 million, of which near 80% was on cotton, and the remainder on rice, potatoes and sugar cane.
- herbicides \$2 million, mainly on cotton, sugar cane and rice.
- fungicides \$0.8 million, mainly on potatoes, rice and vegetables.

with a total of US 28.4 million.

A 3-5% annual increase is forecast for most pesticides, since:

- the cotton area is expected to increase, where an increased volume of insecticides and herbicides will be used.
- more pesticides will be used on a greater part of the planted area of rice, soya, sugar cane and vegetables.

- Table 2.1. for insecticides
- Table 2.2. for herbicides
- Table 2.3. for fungicides

3.3. <u>BRAZIL</u>

The estimated value of pesticide use in Brazil in 1978 at distributor selling prices in US \$\$ million, was:

- insecticides \$220 million, of which near 30% was used in each of cotton and soya, 11% in vegetables, and some in each of fruits, bananas, sugar cane, coffee, wheat, cocoa and tobacco.
- herbicides \$158 million, of which over 30% was used in soya, 25% in rice, just over 10% in each of sugar cane and pastures, and less than 10% in coffee and cotton.
- fungicides \$72 million, of which 30% was in vegetables, 26% in wheat, 15% in coffee, 11% in fruit, and near 5% in each of rice and cocoa.
- other products \$21 million, including fumigants, nematocides and plant growth regulators.

with a total of US \$471 million.

Three years ago forecasts for pesticide use in Brazil tended toward a 30-35% annual increase in volume. Now forecasts are more conservative and tend toward:

- maximum 1% annual volume increase for insecticides (soya) and fungicides (wheat).
- 3-5% annual volume increase for herbicides, mainly in soya, of which a vastly increased planted area is still forecast. Local production of a product stimulates local sales of that product.

An 80% annual inflation, a rising cost of local intermediates already much higher than international prices which has lifted the selling prices of locally produced pesticides, and the fact that the more obvious pesticide markets have now been secured, have slowed down the hitherto explosive growth of pesticide sales. Even these modest forecasts assume that:

- Government price control attitudes toward pesticides will not harden.
- export rebates will not be withdrawn.

- Table 3.1. for insecticides
- Table 3.2. for herbicides
- Table 3.3. for fungicides.

3.4. CENTRAL AMERICA

The estimated value of pesticide use throughout Central America in 1978 at distributor selling prices in US 3 millions, was:

- insecticides \$130 million, of which 82% was used in cotton, and 6% in rice, and the balance in other crops.
- herbicides \$20 million, of which 32% was used in sugar cane, 25% in rice, 18% in cotton, 14% in bananas and 10% in coffee.
- fungicides \$15 million, of which 62% was used in bananas, near 10% in coffee, and near 5% in each of rice, potatoes, other vegetables and tobacco

with a total of US \$165 million. Sales fell in 1979 by near 20%, largely due to the problems in Nicaragua.

No significant increase in cultivated area is forecast in Central America during the next ten years, and only a natural growth of 1% increase annually in volume is forecast for each of insecticides, herbicides and fungicides, on the base year of 1978. This forecast assumes that Nicaragua plants and harvests cotton in the future, as in the past, and excludes any possible political upheavals in Central America in the next ten years.

The area planted to bananas is falling, but other crops will be substituted on this area. In 1979 there was a near 600% increase in the use of Chlorothalonil, particularly in bananas, and this volume is forecast to be sustained throughout the ten year period. Similarly the use of pyrethroid insecticides will increase, since they were used in greater volume in 1979, when some 30 tons were used, at the equivalent of the NRDC 149/Fenovalerate dosage rates. The use of organochlorine insecticides will fall, with the rise of pyrethroids, and there will be an increased use of organophosphase insecticides. The estimated 1978 use, and forecast use in 1988, by volume, is shown separately in:

- Table 4.1. for insecticides
- Table 4.2. for herbicides
- Table 4.3. for fungicides.

- 15 -

3.5. CHILE

The estimated value of pesticide use in Chile in 1978 at distributor selling prices, in US \$ millions, was:

- insecticides, including miticides \$10 million, mainly in deciducus fruit, citrus and wheat.
- herbicides \$2.8 million, mainly in cereal small grains, rice, vegetables and fruit.
- fungicides \$6 million, mainly in apples and pears, vines, tomatoes, other fruit and sugar beet.

with a total of US \$18.8 million.

A 2-3% annual increase in volume use is forecast of most pesticides, since, although no substantial increase in planted area is foreseen, pesticides will be used on a greater part of the planted area, as the economic situation improves.

The estimated 1978 use, and forecast use in 1988, by volume, is shown separately in:

- Table 5.1. for insecticides
- Table 5.2. for herbicides
- Table 5.3. for fungicides.

- 15 -

3.6. COLOMBIA

The estimated value of pesticide use in Colombia in 1978 at distributor selling prices in US Ø millions, was:

- insecticides \$75 million, of which more than 60% was used in cotton, 13% in rice, 6% in each of corn/sorghum and vegetables, and less than 3% in each of soya and fruit.
- herbicides \$42 million, of which 35% was used in rice, near 20% in each of cotton and pasture, and near 5% in each of sugar cane, soya, sorghum and corn.
- fungicides \$15 million, of which more than 40% was used in potatoes, near 15% in each of bananas and rice, and near 5% in each of barley, beans and other vegetables.
- other products \$1 million, including nematocides, fumigants and plant growth regulators.

with a total of US \$133 million.

There is no real sign that the cultivated area will be increased over the next ten years. For this reason only a 1% annual increase in volume of insecticides and fungicides is forecast. The most significant change in the use of insecticides will be a marked decrease in the use of the organochlorines, with an increase in the use of organophosphates and of the pyrethroids. A 2% annual increase in the use of herbicides is forecast, particularly in cotton, in rice where more than one application is being made, in pasture and in soya, where a greater part of the planted area will be treated in the future as labour costs continue to rise.

The estimated 1978 use of pesticides, and forecast use in 1988, by volume, is shown separately in:

- Table 6.1. for insecticides
- Table 6.2. for herbicides
- Table 6.3. for fungicides.

- 17 -

3.7. ECUADOR

The estimated value of pesticide use in Ecuador in 1978 at distributor selling prices, in US \$ millions, was:

- insecticides \$5 million and nematocides \$4 million, mainly in cotton, rice, corn, bananas and vegetables.
 - herbicides \$8 million, mainly in cotton, sugar care, rice, corn and wheat.
 - fungicides \$2.5 million, mainly in potatoes, bananas, rice, tomatoes and other vegetables

with a total of US \$19.5 million.

A 3-5% annual increase is forecast for all pesticides due to increased plantings of cotton, rice and vegetables, and an increased pesticide use on the areas planted to other crops due to the local enlightened attitude to the benefits available from the use of pesticides.

- Table 7.1. for insecticides and nematocides
- Table 7.2. for herbicides
- Table 7.3. for fungicides.

3.8. MEXICO

The estimated value of pesticide use in Mexico in 1978 at distributor selling prices in US \$\$ millions, was:

- insecticides \$79 million, of which near 50% was used in cotton, 15% in vegetables, 10% in corn/ sorghum, 5% in soya, and near 1% in fruit and rice.
- herbicides \$26 million, of which 24% was used in corn, near 15% in each of sugar cane and rice, and near 10% in each of pasture, cotton, wheat and sorghum.
- fungicides \$13 million, of which near 20% was used in each of wheat and tomatoes, near 10% in cucurbitacae, and near 5% in each of potatoes, cotton and strawberries.
- other pesticides \$3 million, which included nematocides, fumigants and plant growth regulators

with a total of US \$121 million.

In Mexico there are no significant signs of an increase in planted area or increased exports of primary agricultural produce to the USA (on which a substantial volume of pesticides are used). The protective policy toward local industry continues, and although there may Le some change in import licence policy, protection will continue in the form of high import duties. There is no sign of any decrease in the use of organochlorine insecticides, which are produced by the State owned Fertimex (previously Guanomex), although the use of pyrethroid insecticides is expected to increase, at the expense mainly of the organochlorines.

Therefore, an annual increase of 1% involume is forecast for insecticides and fungicides, and 2% for herbicides, over the next ten years.

The estimated 1978 use, and forecast use in 1988, by volume, is shown separately in:

- Table 8.1. for insecticides
- Table 8.2. for herbicides

•

- Table 8.3. for fungicides.

3.9. PARAGUAY

The estimated value of pesticide use in Paraguay in 1978 at distributor selling prices, in US β millions,was:

- insecticides \$1.2 million, mainly on cotton and soya, with some used on wheat and tobacco.
- herbicides \$0.6 million, mainly used on cotton and soya and wheat.
- fungicides \$0.4 million, mainly on wheat and tomatoes

with a total of US \$2.2 million.

A substantial increase in pesticide use is forecast of most pesticides because:

- Government supports the vastly increased use of fungicides to control mildew and rust in wheat, hence the greatly increased volume forecast of Triadimefon and the amine derived products.
- a greater volume of herbicides is expected to be used in soya and cotton, hence the increase forecast for Trifluralin, and also more insecticides in these two crops.

- Table 9.1. for insecticides
- Table 9.2. for herbicides
- Table 9.3. for fungicides.

3.10.<u>PERU</u>

The estimated value of pesticide use in Peru in 1978 at distributor selling prices, in US \$ millions, was:

- insecticides \$7.5 million, mainly in cotton, rice, potatoes, other vegetables, corn and coffee.
- herbicides \$3.6 million, mainly in sugar cane, rice, corn, potatoes, cotton and coffee.
- fungicides \$4.7 million, mainly in potatoes, rice, vegetables (tomatoes, peppers and cucurbits), cotton and beans.
- nematocides \$3.2 million, mainly in potatoes and sugar cane

with a total of US \$19 million.

A comparatively small increase is forecast in the use of pesticides in Peru, largely because of the severe financial constraints.

- Table 10.1. for insecticides
- Table 10.2. for herbicides
- Table 10.3. for fungicides.

3.11. URUGUAY

The estimated value of pesticide use in Uruguay in 1978 at distributor selling prices, in US 3 millions, was:

- insecticides \$2.6 million, mainly on soya, sunflowers, vines, citrus, wheat, rice, apples and pears, and sugar beet.
- herbicides \$1.6 million, mainly in small cereal grains, soya, sunflowers, sugar beet and sugar cane.
- fungicides \$2.2 million, mainly in apples and pears, citrus and other fruit, vines, potatoes and sugar beet

with a total of US \$6.4 million.

A 5% annual increase in insecticide and fungicide use, and 10% for herbicide use, is forecast in volume, since:

- increase in cropped areas is forecast, especially of cereals now that constraints have been removed, as well as of the more profitable soya and sunflower crops.
- more of the planted area of most crops will be treated now that free market conditions exist.

- Table 11.1. for insecticides
- Table 11.2. for herbicides
- Table 11.3. for fungicides.

3.12. VENEZUELA

The estimated value of pesticide use in Venezuela in 1973 at distributor selling prices in US \$\$ millions, was:

- insecticides \$15 million, of which the majority was used in cotton, and some in rice, tobacco, maize, potatoes and tomatoes.
- herbicides \$22 million, mainly in sugar cane and rice, with some in cotton and maize.
- fungicides \$6 million, mainly on potatoes, rice and vegetables.

with a total of US \$43 million.

A 2-5% annual increase is forecast for most pesticides, because:

- the cotton, rice and sugar cane areas are forecast to increase.
- a higher proportion of the area planted to cash crops will be treated with pesticides, than in 1978.

These forecasts assume that Government price control will be less punitive than in 1979.

- Table 12.1. for insecticides
- Table 12.2. for herbicides
- Table 12.3. for fungicides.

4. PRODUCTION OF PESTICIDES

The plants producing technical pesticide materials, in each country, are noted in this Section, the producer identified, as well as the estimated plant capacity, and the estimated production in 1978.

The chemical intermediates required to produce some of the important pesticide technical materials, that are produced in each country, are listed in this Section.

By reference to this data, by country, and to Section 8., it may be seen which locally produced intermediates are used to produce the pesticides manufactured in each country, and also which intermediates are available from local sources which could be utilised to extend the local pesticide production, should such action be considered useful.

The local selling prices of the intermediates made in each country are listed in US dollar equivalent per ton.

4.1. ARGENTINA

Table 1.4. lists the pesticide production plants in Argentina, the estimated plant capacities and the estimated production in 1978.

Points relevant to production include:

- Cia. Quimica and Sintesis Quimica esterify 2,4-D acid, which they normally purchase from Atanor.
- in late 1979 the main Sulphur mine in Argentina closed, so that Basso y Tonnelier and Cia. Quimica reduced production of their Sulphur dust and wettable powder, importing the necessary Sulphur lump.
- Quimel is part owned by each of Elanco who supplied the Trifluralin production technology, and by Cia. Quimica who formulate and distribute this product.
- Duperial have an HCB production facility but have not worked it since 1970.
- Electroclor, a Duperial subsidiary, have a PCP production facility but have not worked it since 1970.
- Cia. Quimica have an 800 ton capacity BHC production plant, but have not worked it since 1974.
- Atanor planned to build a 1500 ton capacity plant to produce Maneb and Zineb, but this project has been shelved until at least 1983, and probably until 1984/85.
- the capacities listed for the Estrella plants are those given by the company. Some doubt must exist as to the quality of the products and to the actual volume produced, on their old Government munitions plant.

The most important chemical manufacturer, Atanor, part Government owned, is pessimistic regarding the competitiveness of local production, since production costs are rising faster, as is inflation, than Peso devaluation against the US dollar. This situation has meant that for 2,4-D and TCA (for example) their production costs are as high as the international market price. For this reason, Atanor have cut back on 2,4-D production, planning to export only a minimal volume in 1980, and are reviewing the viability of the TCA plant, believing it may be economic to close it. This TCA plant is Atanor's old DDT plant, which they converted when they ceased DDT production in 1976.

Table 1.4.1. lists the chemical intermediates, which are suitable for pesticide production, which are made in Argentina, with their local selling prices.

Reference to this list, and to the data in Section 8. of this report, will indicate the local pesticide production plants in which the locally produced chemical intermediates are used.

There is a project to make Maleic anhydride.

4.2. BOLIVIA

No pesticide technical materials are produced in Bolivia.

Within the Andean Pact countries, Bolivia was allotted the right and responsibility to produce insecticides.

Originally, Aquila S.A. La Paz, financed by:

- Y.P.F. Buenos Aires
- Cooperativa Fomento Boliviana. La Paz

planned to erect a plant at Oruro to produce:

- Malathion 2000 tons capacity
 - ethyl and methyl Parathion 5000 tons capacity
- Fenitrothion 500 tons capacity

No intermediates were available, and although Sumitomo sought to supply one intermediate, no progress was made.

A new proposal was made by the Junta of the Cartagena agreement that Aquila should erect the plant at Oruro with the following capacities:

-	Monocrotophos	940-1040	tons
-	Parathion	7500-8500	tons
-	Dimethoate	270-350	tons
-	Trichlorfon	50-56	tons

No progress is known to have been made on this project.

No intermediates suitable for production of pesticide technical materials are known to be available locally in Bolivia.

4.3. BRAZIL

Table 3.4. lists the pesticide production plants which were on stream in 1978, the estimated plant capacities and the actual production in 1978.

Subsequent and planned increase in capacities to these plants are:

- Matarazzo have increased the capacity of their Toxaphene plant to 11500 tons.
- Shell sought Ciba-Geigy's interest in doubling their plant capacity for Monocrotophos and Dicrotophos, but Ciba-Geigy have opted to erect their own 2000 ton capacity plant for production in 1981/82.
- Bayer plan to increase the capacity of their M-Parathion plant to 7360 tons, and their E-Parathion plant to 2260 tons.
- Dupont, and Rohm and Haas plan to increase the capacities of their Maneb/Mancozeb plants by 5500 tons.
- Guilini and Sandoz plan to increase the capacities of their copper product plants by 9000 tons, up to a total cf 15000 tons capacity.
- C.N.D.A. (Rhodia) plan to increase the capacity of their Thiram/Ziram plant by a further 1250 tons.

Table 3.4.1. lists the additional production plants which were approved by Government to end 1979, the planned capacities and planned date of production.

Other points relevant to production plans are:

- Montedison planned to erect a Dimethoate plant, on which Fenthoate would also be made, with a capacity of 3000 tons. However it appears that Nortox plan to increase the capacity of their plant to 1500, from which they will supply Montedison's local requirements.

- Sumitomo planned a Fenitrothion plant, but this plan appears to have lapsed.
- Union Carbide planned a plant to produce both Carbaryl and Aldicarb, but there has been no published confirmation, and their plan is pending.
- Bayer's Propenil plant started production in early 1979, but shut down in mid 1979.
- Dupont report they started Diuron production in 1979, probably from DCPI, as in Colombia and Mexico.
- Makhteshim are involved in several plans to erect production plants:
 - with Fercotrigo, a wheat and soya Cooperative in Rio Grande do Sul, as Defensa, to produce Trifluralin. No product has been manufactured and only bought-in technical material formulated.
 - with Formiplac, Herbitecnica and others, as Formiquimica, to make Diuron, the triazines, Dicofol and other pesticides. At early 1980 no known action had been taken, nor land purchased.
 - Monsanto are reported to be considering building a plant for Alachlor, although it is not clear if this is for formulation only, or for actual production.

The huge losses sustained by several multinational companies with pesticide divisions in Brazil, at end 1979, which were compounded by the 30% devaluation, has influenced would-be producers to review their plans.

The facts are that:

- all local intermediates cost minimum 25% above the international market price to produce. If an intermediate is produced locally, no import licences

are granted, or only to the producer if local production falls short of local demand.

- the cost of production of pesticides in Brazil is higher, sometimes substantially higher, than production costs in Europe/North America/Japan.
- while some pesticides are exported with the help of the currently available export subsidy, should this subsidy be removed and free market conditions prevail, as Government now propose, substantial losses would be incurred on exports until the cost of the new large local plants have been amortised, but perhaps no greater than if these plants are operated at a small percentage of capacity sufficient only to supply local needs.

Table 3.4.2. lists the chemical intermediates made in Brazil which are suitable for pesticide production, and their selling prices in the local market.

The local selling prices are reported to be as much as three times the international market prices of some intermediates.

Plans are being developed for production of more intermediates suitable for pesticide production, inter alia at the new complex at Camacari. Bahia, and include:

- phosgene
- diethylamine and dimethylamine
- 3,4-dichloraniline
- Cyanuric chloride
- ethylamine and isopropylamine
- methyl chloride
- methylamine
- ethylene diamine

4.4. CENTRAL AMERICA

Table 4.4. lists the pesticide production plants in Central America, the estimated plant capacities and the estimated production in 1978.

Points relevant to production include:

- Sintesis import Camphene for their Toxaphene (Strobane, since this is the old Tenneco plant, which was dismantled and brought to Guatamala), and in 1980 plan to produce 4000 tons on this plant.
- Hercules contract to draw all the Camphene produced in Honduras.
- in 1979 Sintesis produced near 150 tons Trifluralin from imported intermediates.
- the original rated capacity for the Dequisa Chlordimeform plant was 1000 tons, but it has been found that by producing a 84/865 material the throughput to each reactor can be doubled, hence the stated capcity now of 1800 tons, which is served by imported intermediates.

Table 4.4.1. lists the chemical intermediates, which are suitable for pesticide production, which are made in Central America, with their local selling prices.

The Fertica plants in Guatamala and Salvador for Sulphuric acid are closed now, but while they operated all product was used captively by Fertica. 4.5. CHILE

Table 5.4. lists the pesticides which are made in Chile, and the estimated plant capacities and actual production. No plant extensions or new plants are known to be planned.

Both Copper and Sulphur are available locally in Chile.

No other suitable intermediates for pesticide production are known to be available locally in Chile, although low density polyethylene and PVC are produced.

4.6. COLOMBIA

Table 6.4. lists the pesticide production plants in Colombia, the estimated plant capacities and the estimated production in 1978.

Local Propanil production is dependent upon imported 3,4-DCA and propionic acid. Celamerk are reported to possess a local Propanil production facility, but have not operated it, preferring to purchase technical material from Rohm and Haas. Crystal, contrary to some reports, do not produce Propanil locally, but import a 50% concentrate from the USA. It is not clear if Bayer have actually produced Propanil in Colombia in 1979, or if they imported Propanil technical and merely formulated it locally.

No plans are known to extend these plants, or to erect new pesticide production plants.

The Colombian Government prefers the operation of free market conditions, in support of the local important agricultural interests. For this reason, while they are a party to the Bolivian production project, they oppose its operation with any greater protection than 10% ad valorem, although it is clear that the Bolivian project would be viable only with a minimum 35% protection.

Table 6.4.1. lists the chemical intermediates, which are suitable for pesticide production, which are made in Colombia, with their local selling prices.

There are projects to produce both phenol and Maleic anhydride in Colombia.

4.7. ECUADOR

٠.

No pesticides are manufactured in Ecuador.

A company named Fitochim, registered in Quito, reported to have connections in Madrid and associated with Hungarian interests, have applied for an industrial licence to produce Carbofuran and Trichlorfon. No such licence is known to have been granted.

No intermediates suitable for the production of pesticide technical materials are known to be available locally in Ecuador. 4.8. <u>MEXICO</u>

Table 8.4. lists the pesticide production plants in Mexico, the estimated plant capacities and the estimated production in 1978.

Points relevant to pesticide production include:

- both Hoechst and Retzloff possess production facilities for Propanil, but neither company makes it. Hoechst possess production facilities for 3,4-dichloraniline but their cost of production is unattractive to local buyers who continue to import it.
- Fertimex plan to extend the capacity of their ethyl Parathion plant by 750 tons.

It may be seen from Table 8.4. that many pesticide production plants exist in Mexico, many of which operate at a fraction of capacity, or not at all. This is due in part to the fact that the high cost of local intermediates and production precludes their competitiveness on the international market.

Table 8.4.1. lists the chemical intermediates, which are suitable for pesticide production, which are made in Mexico, with their local selling prices.

Pemex, the Government owned chemical producer, makes most of the chemical intermediates which are manufactured in Mexico, and sets the prices for them. Therefore, normally, most sources of information indicated similar purchase prices for the locally produced intermediates, except for two materials, where one substantial buyer reported purchasing at the following prices, which are lower than those shown in Table 8.4.1., which may be due to their buying in volume:

- No 17. Acetone at US \$390 ton
- No 62. Methanol at US \$170 ton.

4.9. PARAGUAY

No pesticides are manufactured in Paraguay, nor are any plans known to do so in this small market.

No intermediates suitable for production of pesticide technical materials are known to be available locally in Paraguay.

-.

4.10. PERU

Table 10.4. lists the pesticides which are made in Peru, the estimated plant capacities and the 1978 actual production. No plans are known to extend any of these plants.

Copper sulphate is produced mainly by:

- Sulfato de Cobre S.A.
- Sulfaco Productos Químicos S.A.

as well as by six other small producers. All Copper sulphate is exported.

Both Copper and Sulphur are mined in Peru. Lead oxide, Arsenic anhydride and Calcium chloride are reported as available in Peru.

Recently Government have attempted to persuade local industry to erect:

- another plant to produce Copper oxychloride, using local copper, for export, to earn foreign exchange, so far without success.
- another plant to produce Calcium and Lead arsenates, using local materials (as above) for export, to earn foreign exchange, with no success as yet.
- a plant to produce 2,4-D to supply the Andean Pact countries, using Chlorine and Acetic acid which are reported to be available locally from the Government owned Paramonga company. No headway is known to have been made with this project.

No other intermediates are known to be available in Peru.

4.11. URUGUAY

Table 11.4. lists the pesticides which are made in Uruguay, the estimated plant capacities and the 1978 actual production. A new project is reported, which plans to produce Copper oxychloride of a quality similar to the imported product.

Both Copper and Sulphur are available locally in Uruguay.

No plans for plant extensions, or other new plants, are known.

No other suitable intermediates for pesticide production are known to be available locally in Uruguay.

4.12. VENEZUELA

Table 12.4. lists the pesticides which are made in Venezuela, the estimated plant capacities and the 1978 actual production. No plans are known to extend any of these plants. PENCO's Propanil plant capacity was more than tripled in 1978.

Government controls pesticide selling prices, rigidly. Because the level of retail prices was so low in 1979, local production yielded no sales margin, so that local Propanil and Atrazine production virtually ceased, and these products were imported. The pesticide industry has made renewed proposals to Government in early 1980 to lift the retail selling prices of some pesticides in an effort to restart local production on a profitable basis.

No new production plants are known to be planned at present.

Table 12.4.1. lists the chemical intermediates which are suitable for pesticide production, and their selling prices in the local market. Most of these intermediates are produced by the Government controlled Petroleos de Venezuela C.A., and sold domestically at prices reported to be much in excess of the international market price. Some exports are made at international prices, with Government subsidising the shortfall below cost.

5. FORMULATION OF PESTICIDES

In this Section may be found a list of pesticide formulators in each country, and their estimated capacities by type of product and formulation.

Additionally, the locally available fillers and solvents for agricultural pesticide formulation, are listed, by country, as well as their local selling prices in US dollar equivalent per ton/1000 litres. Where emulsifiers are produced locally, this fact is noted as well as their price.

5.1. ARGENTINA

Table 1.5. lists the pesticide formulators in Argentina, and their formulation capacities, by type of product and formulation, operating on a ten hour shift for 300 days annually.

There is no duty now on either imported technical materials or on imported formulated products, except on those made in Argentina. Nevertheless, the majority of insecticides and herbicides are imported as technical materials, and formulated locally.

The total reported formulation capacity of near 90000 tons is three times the required capacity.

Hoechst started formulating liquid insecticides in 1979.

Table 1.5.1. lists the additives for pesticide formulation which are produced locally in Argentina.

In addition to the alcohol solvent listed, the following alcohols are produced locally:

- ethyl
- methyl
- isopropyl
- butyl

but their selling prices are not known.

Cyclohexanone is not made locally, and is imported.

No suitable emulsifier for agricultural pesticide formulation is wholly made in Argentina. Those emulsifiers used are sophisticated emulsifiers and are all locally formulated from a mixture of locally produced and imported raw materials, designed for specific purposes, and sell at an average price of \$3636 ton.

The locally produced benzene sulphonate wetting agents of 75% purity, are atomised, and are of good quality.

The fillers are all milled to 325 mesh. The Kaclin is suitable for pesticide formulation, is the most important filler used in Argentina, and the price listed is the delivered price from Mendoza.

The dolomite is too alkaline, and therefore antagonises organophosphates, and is not often used.

The diotomaceous earth is a Sodium and Magnesium silicate, and is of good quality.

5.2. BOLIVIA

All pesticides are imported into Bolivia ready formulated. There is no local formulation of any pesticide.

No formulation facility is known to exist in Bolivia.

No suitable materials for pesticide formulation are known to be available locally in Bolivia. 5.3. BRAZIL

Table 3.5. lists the pesticide formulators in Brazil, and their formulation capacities, by type of product and formulation.

Increasingly patent lapsed products are imported as technical materials, since less import licences are issued for formulated products.

The formulation capacity reported to exist of near $\frac{1}{2}$ million tons is vastly in excess of that required.

Table 3.5.1. lists the additives for pesticide formulation which are produced locally in Brazil.

Wetting agents are not made in Brazil.

The non-ionic polyoxyethylated emulsifiers made locally are of inferior quality, and most formulators import their requirements. It was not clear if the sulphonated emulsifiers are produced locally or not, however formulators import their requirements.

5.4. CENTRAL AMERICA

Table 4.5. lists the pesticide formulators in Central America, and their formulation capacities, by type of product and formulation, operating on a ten hour shift daily 300 days annually. However, normally these plants, particularly those for formulating liquid insecticides are operated only 175 days annually.

The large volume patent lapsed insecticides are all imported as the technical materials, and formulated locally.

The total reported formulation capacity of near 140000 tons is more than twice the required capacity.

The Fertica formulation plant in Salvador has closed, as has that of Quinonez in Salvador.

Table 4.5.1. lists the additives for pesticide formulation which are produced locally in Central America.

Points relevant to local production of formulation additives, include:

- aromatic type H.H.A., which is similar to xylene, is produced by Essochem in Nicaragua.
- Atlas (ICI) in Nicaragua make Sulphonic acid, and mix it with imported alcohols and imported non-ionic emulsifiers to produce some emulsifiers locally.
- Sintesis, using Retzloff technology, produce alkylated benzene sulphonate emulsifiers.
- Quimicas Dinant in Honduras, using Stephan technology, make Sulphonic acid, and mix it with imported materials to produce emulsifiers.
- Calcium carbonate and pumice are used to produce granules.
- Diatomaceous earth is used to formulate dusts and wettable powders.

5.5. CHILE

Table 5.5. lists the pesticide formulators in Chile, and their capacities, by type of product and formulation. No satisfactory wettable powder facility exists.

A large proportion of pesticides are imported ready formulated, even of liquid formulations, since no real incentive exists to formulate locally as a 10% import duty is levied on both formulated pesticides and on the technical materials.

Emulsifiers and wetting agents are imported.

Usually the phenoxy herbicides are imported ready formulated.

Local fillers are available, of which several are reported to be suitable for formulation purposes. It is not known if suitable local solvents are available.

5.6. COLC.BIA

Table 6.5. lists the pesticide formulators in Colombia, and their formulation capacities, by type of product and formulation.

Most patent lapsed pesticides are imported as the technical material and formulated locally, since an import duty of 1% is levied on technical materials and 10% on formulated products.

Cyanamid no longer formulate locally, and their products are formulated and distributed by Proficol.

Velsiccl no longer formulate locally, and their products are formulated and distributed by BASF.

In 1979 both Shell and Ciba-Geigy are reported to have increased their formulation capacity by 50%.

The total reported formulation capacity of near 110000 tons is near three times that required.

Table 6.5.1. lists the additives for pesticide formulation which are produced locally in Colombia.

Kaolin is the most important local filler.

All wetting agents are imported.

5.7. ECUADOR

All pesticides are imported into Ecuador ready formulated. There is no local formulation of pesticides. No import duty is levied on either formulated or technical pesticides.

Nevertheless, the following formulation facilities exist, but are not utilised:

- Kruger possess a facility of an estimated 500 tons for liquid insecticides and 2000 tons for granular insecticides annual capacity.
- Agripac possess a facility of an estimated 1000 tons for liquid insecticides (which is occasionally used for filling domestic packs) and 1000 tons for granular insecticides annual capacity.

Fitochim (see Section 4.7.) have applied for an industrial licence to formulate insecticide ECs, but without any known success. Another newly formed company named Fitosan have applied for a licence to formulate Propanil and Paraquat, but without any known success.

No suitable materials for pesticide formulation are known to be available locally in Ecuador.

5.8. MEXICO

Table 8.5. lists the pesticide formulators in Mexicc, and their formulation capacities, by type of product and formulation.

Almost all pesticides which are imported are as the technical materials, for formulation locally.

The total reported formulation capacity of over 200000 tons is near three times the capacity required.

Table 8.5.1. lists the additives for pesticide formulation which are produced locally in Mexico.

Heavy naptha is produced in Mexico, but is not used in pesticide formulations.

It is unclear if Cyclohexanone is made in Mexico.

Hoechst, Retzloff and ICI make emulsifiers locally.

Dupont have a small local production of wetting agents, but they are all used captively in Dupont's local plants.

Locally available kaolin and talc are used for formulating wettable powders and dusts, and the silica sand for producing granules.

5.9. PARAGUAY

All pesticides are imported ready formulated.

An import duty of 10.5% is levied on formulated pesticides, and the same duty would be imposed on any technical materials imported.

Both Shell and Estrella possess small insecticide liquid formulating facilities, as shown in Table 9.5., which are not utilised.

No suitable materials for pesticide formulation are known to be available locally in Paraguay.

5.10. <u>PERU</u>

Table 10.5. lists the pesticide formulators in Peru, and their formulation capacities, by type of product and formulation, on a one shift basis operating 300 days annually.

Some 15000 ton capacity exists, mainly for insecticides, which is under utilised because most products are imported ready formulated, since duty on imported pesticide:

- technical materials in 50%
- formulations is nil.

No fungicides are formulated locally except the locally produced Copper and Sulphur products, where the milling and mixing is undertaken by the producers (see Section 4.10.).

Emulsifiers and wetting agents are imported.

Local fillers are available, of which several have been found to be suitable. It is not known if suitable local solvents are available, at a cost competitive with the solvent content of imported formulations.

5.11. URUGUAY

No import duties are levied on either formulated pesticides now, nor on technical materials, nor does any preference exist for pesticides imported from LAFTA countries. Now, almost all pesticides are imported ready formulated, with the exception of the phenoxy herbicides, which are imported as the dry acid, and mixed locally with imported dimethylamine.

Table 11.5. lists the pesticide formulators in Uruguay, and their formulation capacities, by type of product and formulation. These facilities are now much under utilised. Some doubt was expressed as to the reliability of the wettable powder facility.

Emulsifiers and wetting agents are imported.

Local fillers are available, some of which are reported to have been found suitable. It is not known if suitable solvents are available locally.

5.12. VENEZUELA

Table 12.5. lists the pesticide formulators in Venezuela, and their formulation capacities, by type of product and formulation.

Virtually all patent lapsed insecticides and herbicides are imported as technical materials, since only 1% import duty is levied on technical materials but 50% duty is paid on formulated products.

No fungicides are formulated locally except the locally produced Sulphur products, for which the milling and mixing is undertaken by the producers (see Section 12.4.).

The capacity reported to exist of 88000 tons is vastly in excess of that required.

Both Kaolin and Talc, milled to 325 mesh, are produced in Venezuela, and sell locally at US \$46.50 ton.

Bayer report these locally produced fillers as being suitable for formulation purposes, but Shell prefer to import their fillers.

Shell maintain the only locally produced solvent is their odourless kerosene (named Maruven) which is suitable only for formulation of domestic insecticides, and that all solvents for agricultural pesticides must be imported.

It is reported that Alkylated benzene and fatty alcohol sulphonate emulsifiers are produced in Venezuela by both Hoechst and Diamond Shamrock, and sold at internationally competitive prices. Non-ionic polyoxyethylated emulsifiers, and wetting agents are imported.

6. POTENTIAL INTER-COUNTRY COOPERATIVE SCHEMES

Probably the most publicised attempt at cooperation on a pesticide production plant is within the Andean Pact countries, on the Bolivian insecticide project. The main insecticide market within this group of countries is Colombia, who is opposed to granting any more than 10% preference to production from this plant, yet a minimum 35% protection is obligatory to ensure project viability.

This project is at an apparent standstill, and the varied interests involved, highlight the problem of cooperative, and even complimentary production schemes, anywhere in this region.

There exists now, sufficient installed and planned capacity within the region to more than satisfy forecast demand for the whole region for most of the major volume pesticides, including:

- virtually all the organochlorines, the Parathions, Malathion, Monocrotophos, DDVP and Trichlorfon, and 70% of the Dimethoate.
- the phenoxies, the triazines, Diuron, Trifluralin, Propanil and Paraquat.
- all the inorganic fungicides and dithiocarbamates, PCP and Quintozene

yet substantial volumes of these materials are imported into the region.

The cost of intermediates and of production is higher within the region, than in the industrialised countries, with the result that the products made within the region are not normally competitive on the open market, nor in other countries within the region in spite of some preference granted to products from countries within the region. It may be seen from the use and production tables in this report that there are candidate pesticides for production within the area. These include:

- the carbamate insecticides, of which some are reported to be in patent, and difficulty could be encountered in securing the intermediates.
- Benthiocarb, Bentazone, Metribuzin, Alachlor, Metolochlor, Glyphosate and Dalapon, of which most are in patent.
- Chlorothalonil, Captafol and perhaps Benomyl, of which all three are reported as being in patent, with Dupont having recently stopped compet tive Benomyl imports to Brazil.

From this list, the only product without any known commercial strings is Dalapon, with the main market being Brazil. This possibility could be examined, as well as the patent position (and compulsory licencing) and availability of the required intermediates.

No obvious answer is apparent to the problem of utilising as much of the existing production capacity within the region. Most of the producing countries have their own definite policies with local manufacturers insulated with protective tariffs and the import licencing policy. While those without local production seek to purchase at the best price, which normally is to be found outside the region.

Unless a serious attempt has been made recently to resolve this very difficult problem, it is suggested that agreement be sought, within the region, at first in principle, for a system of transfer prices of pesticides made within the region between member countries, on a contra account basis.

Such a proposal would lead to discussion as to which other products (possibly chemical and/or agricultural) and credits/ debits could be the subject of such contra accounting. In the present circumstances, and except within centrally planned economies, no other complimentary scheme for production is likely to be practicable. The exceptions are the sales which are already taking place, which are:

- transfers between a production plant owned by a multinational to another subsidiary owned by the same multinational in another country within the region. Examples are Cyanamid with Malathion, Rohm and Haas with dithiccarbamates and Propanil, and Dupont with Diuron.
- sales by the producer, on the free market, at competitive international prices where their costs permit them to do so. Examples are Hercules, Nicaragua in the past with Toxaphene, and now Sintesis with Propanil and Toxaphene, and sometimes Peru with copper products.

This type of action can easily be encouraged by export rebates, which are already used by Brazil, Venezuela and others, but are under review because of the wish to permit free market conditions to prevail, and to persuade local industry to be self supporting.

Formulated pesticides already flow in volume from:

- Argentina to Uruguay
- Brazil to Paraguay
- Colombia to Ecuador

However, with the exception of the small countries in the region, all countries have already near three times the formulation capacity required.

Local formulation can readily be encouraged or discouraged by maintaining a differential between the import duties on technical and formulated pesticides. However, there are hazards in invoking this policy. The most practicable method of encouraging the flow of formulated product from one country to another is for the manufacturing countries to ensure that the quality of their formulations are above repreach, especially of the wettable powders, which facilities require substantially more capital expenditure than the easier to produce liquid formulations.

No cooperative or complimentary marketing schemes can be suggested that are likely to be mutually attractive to all countries within the region, and economically practicable.

At a recent meeting of the Andean Pact countries, with selected members of industry, no agreement was reached on pesticide production. However, agreement was reached on areas where cooperation was feasible, and these were:

- identifying the problems associated with formulation, especially good formulation.
- labelling and transportation of pesticides.
- application of pesticides, particularly in the exchange of experience regarding the performance of individual pesticides and ecological considerations.

7. TABLES

The Tables which follow are referred to in the text in Sections:

- 3., which deals with the 1978 use of pesticides, and 1988 forecast.
- 4., which deals with the production of pesticides, and of chemical intermediates and their local selling prices.

.

- 5., which deals with pesticide formulation, and the local production of formulation additives and their local selling prices.

GUNHARY - TABLE 1

ľ

Н

ESTIMATED 1978 INSECTICIDE USE AND PORECAST 1988 - TONS ACTIVE

INSECTICIDE	ARGENTINA		BUL	BOLIVIA		BRAZIL		CENTRAL AMERICA		CHILR		COLONHIA		ECHADOR		NEXTCO		PARAGUAY		PERU		NAY	AENE	ZUELA	TOTAL	
	1978	1 × B	1978	1988	1978	1988	19 78	1988	1978	1988	1978	1988	1978	1988	1978	1988	1978	1988	1978	1988	1978	1988	1978	1988	1978	1988
OF 14NOCH1201CINES																										
11.14	45	40			4500	3500	5000	3000	50	60	353	250			4930	4000			210	255	100	100	800	400	15988	11605
141C 16 C	130	100			2650	2500	ľ	-							2060	2000	10	13	70	85					4920	4648
ALDRIN	20	10			780	700	50	40			163	50	20	32					40	48	60	40	10	5	1143	925
ITRADIENE					4800	3600	9000	5000			1048	300			2290	2000							200	100	173 18	11000
SHUSSILEAN	325	400	60	98	485	500	100	20	8	10	84	140	20	32	136	200	8	12	20	24	10	16	30	50	1286	16/12
ENDRES	- 93	60	15	24	960	900	200	100		5	36	10	16	26	127	80	15	20	10	12	40	40	200	100	1716	1177
BEPTACHEDR	220	150			210	230	50	20				•••		-	255	150		-	20	24					75%	574
																							1			714
OF TANOFHING PHATES																							[
N-PAPATHION			140	\$30	2420	2600	6000	8000	60	80	1926	2500	58	94	2970	3200	30	40	20	24	50	80	600	1000	14274	1784B
E-PAPAINTON	1030	1200			190	300	4000	5000	40	48	287	200			1515	1800	40	60	46	56	40	65	200	300	7 388	9029
MALATELION	730	Acu:	5	8	1450	1500	70	100	70	10	290	300	- 13	21	170	150			ڌ	j	15	25	40	40	2856	3017
DINECTION DE	200	250	10	16	1075	1200	60	100	10	12	120	150	20	32	340	370	10	13	5	3	20	40	40	60	1907	2246
PL:OFFORM					243	250					1 7	5			21	20							5	8	276	283
EX.N.I. LEADER FOR	15	20			640	700	100	80			1		10	16			2	2	5	6				1	772	824
NOROGEORINOPHOS	244	300	30	48	1620	2500	600	800	30	36	142	200	45	73	425	600	8	12	40	48	10	30	90	120	3284	4467
PHOLEARTION					152	150	40	30	15	18	48	30	20	35	4	5							10	20	289	285
OTTOP PYRTEDS		· ·	10	16	640	600	100	100		[19	20	5	8	30	25			10	12				i i	814	78 1
TRECHLORPON	20	60	15	24	260	100	100	100	20	24	235	300	40	64	106	150			105	128			300	400	1201	1550
Hi-M.M.	2110	250									59	40	5	8	80	100	5	6							318	404
A2 ENTROS	67	15	łO	48			50	30	60	70	21	20	5	8	255	200	2)	Ĵ	6	10	20	100	130	615	610
NP THAN TROPHOS			10	16	161	180	850	1100	18	23	74	90	50	80	225	300			70	85			[1488	1874
PROFILMETER							500	600															ľ		500	600
DTA2.1NON	18	20			- 133	120					- 28	20			76	60									255	220
CARDANATES										5													ļ			
CARBARYL	140	200	30	48	1410	1600	150	200	10	12	143	180	30	· 48	1275	1300	20	25	105	128	30	60	120	200	3463	4001
NETHONY L	10	10	2	5	130	180	300	350			49	30	5	8	297	300			20	24			50	80	863	1007
CARBOFURAN	47	60			265	300	100	100			103	70	55	100	68	70	5	7	10	12	2	5	30	40	680	764
ALDICARB					147	150		1															-		147	150
																										140
ARIFNATES - Ca + Pb.				_							154	50							80	90				6	234	140
PYREINROLDS	1	4	0.5	2	N1L	10	10	50	NTL	0.5	5	20	0.5	3	20	50	0.2		1.5		114	0.5	0.5		39.2	(ا ر ۱
OTHER INSECTICIPHS	170	150			2611	2270	240	290	72	86	218	170	1(8)	144	805	600			27	н	10	13	80	100	4333	1856

- 60 -

. .

SUMMARY - TABLE 2

ESTINATED 1978 HERBICIDE USE AND POHECAST 1988 - TONS ACTIVE

HERBICIDE	ANGE	NT T N A	BOL	1714	BRA	21L	CFINT ANE	RAL RICA	CHI	L I	CO10	MBTA	RCUA	DOR	NEXI	c 0	PARA	TAL	PE	RU	นสม	(UAY	VENE	ZUELA	TOT	A L.
	1978	1988	1978	1988	1978	1988	1978	1988	1978	1988	1978	1988	1978	1988	1978	1988	1978	1988	1978	1988	1978	1988	1978	1988	1978	1988
LICS-DNBP/DNOC	2	2			30	10			25	30		10			30	30					12	5	30	20	140	107
NUTROFIN								ļ							42	40			1	1			60	50	103	91
<u>(155)</u> - 214-D	1400	1700	30	42	1100	2000	700	750	90	120	1546	2000	60	80	1200	1450	30	60	60	13	40	120	1100	1460	7356	9855
ROPA	200	250			74	40			130	170			5	7		Į –	5	15		{	5	13	80	110	499	605
NATES - ASULAN					70	50									3	5	{		70	85					143	140
RPIC	65	50	· ۱								4	2			25	20	1							{	94	12
NOLINATE	40	40			490	400	10	10	10	12	4	8			4 :	2	[3	3	5	11			556	488
BENTHTOGARB				1	230	290	10	10			274	250			2	4			5	6					521	560
DDIREAS - DIDRON	15	25	10	14	900	1600	1600	170	10	12	167	170	25	- 33	255	310	5	15	20	24	15	19	60	70	1642	2482
FILICHETORON			10	14		}	20	20			40	50	15	20	17	20			5	6	5	13	50	75	162	218
LINTRON	5	5	2	2	18	10	5	5	5	6	10	10			34	40			8	8			40	55	127	141
NES - BROWACTI.	8	8	'	1	220	100	5	5			2	2			4	5	1				2	5		1 }	241	125
8ERTASONE	60	80		[310	550					24	40			25	. 35					5	13		1	444	718
INSE - ATRAZINE	30	35	10	14	180	200	100	110	15	18	342	350	12	16	340	410	5	15	30	36	5	13	250	400	1319	1607
ANFTRYNE	12	15	15	21	1240	1600	170	190			145	150	40	- 54	319	390	5	15	40	48	10	26	60	100	2056	2609
STHAZTHE]	420	400	30	ંગ્ર	5	6	}				3	3			2	2			50	80	510	521
METROBUSTN	6	6	5	7	610	1200	10	20			6	10			a	20									645	1263
T - PHOPANEL	15	20	1 ⁸	24	1070	1700	500	580	20	24	1230	1400	110	140	250	325			32	40	10	26	700	1100	3955	5379
ALACHLOH	31	35			2240	3600	80	80			14	10			6	۰ ا	Į :						10	10	2381	3740
NETOLACILOR					815	1320																			815	1320
BUTHACHLOR			10	14	170	150	10	10	5	6	56	60	9	12	1				20	24	10	26	35	40	315	142
ANN PARAQUAT	33	35	12	16	225	1000	230	250	15	18	58	70	36	48	85	105			12	15			90	140	796	1697
DINES - TRIFLURANN	812	1400	35	49	3740	6100	200	240	10	12	91	130			340	400	20	60		}	15	39	30	50	5293	8500
PHENOXALINE					65	100					26	ю.				ľ									91	130
	1.20		10			700	40	40	30	36	45	45	30	40			1		10	10	10	26	95	100	851	1221
<u>s</u> - DALATON	120	150	10	14	440	, nut	40 20	20		18	6	45 5	30	40	51	60			10	["			, ,,		80	88
DICARBA	18	20							15	10 R		· ·			21	25]		2					1 }	572	917
GLYPHOSATE	37	50	1	5	475	770	25	40	6	D .	23	40	20						6				60	50	804	807
MS MA	105	100			490	500		40			16	30		77	65		^	3	l °	Ι ΄				[_ [125	490
PICLORAM	48	03			190	300	50	60			26	55			11	15	(l		l i	l	1	14	4.0
OXYDTAZON	•D.(ľ	м Т	50											l .			1					257	304
TCA	18%	250			70	50					 						2	4								, , , , , , , , , , , , , , , , , , ,
HERBICIDES	153	105			610	610	35	50			976	400	16	27	150	390	2	3	18	25			40	80	2200	1685

- 61 -

SUMMARY - TABLE 3

2

ESTIMATED 1978 FUNGICIDE INE AND PORECAST 1988 - TONS ACTIVE

- 62 -

orighter Lus		'N'''' NA	BOLTVIA		8RAZ11.		CENTRAL AMERICA		сн	1.8	0100	MBTA	BOUADOR		NEXICO		PARAG	UAY	PER	HI	URUC	UAY	VENEZ	UELA	TOT	Г А Ц
	1978	1988	1978	1988	1978	1988	1978	1/ 38	1978	1988	1978	1988	1978	1988	1978	1988	1978	1988	1978	1988	1978	1988	1978	1988	1978	1988
INORGANICS-COPPER SULPHATE	915	900			1200	1000									935	1000							80	90	3130	2990
OTHER COPPERS	1500	1700	20	27	2990	3400	330	100	160	200	119	100	50	74	640	700	10	20	50	50	260	200	30	35	6159	6606
SULPHUR DUST	2500	2000	40	- 54	1900	1000			5900	6000			60	89	1020	1100			12 0 0	1100	130	160	500	500	13250	12003
SULPHUR WP	1500	2200			2210	2500	40	50	- 55	60	15	15					10	40	140	150	120	150	20	40	4110	5205
CHIMMATED PHENOIS - PCP	15	15			40	40	30	30	3				,	4	110	120	3	3	3	3	5	8	5	5	217	232
PINOCAP	3								1				-		3	3	3	3	4	3	1				14	13
CHICHOPHALONIL	3	5			72	90	75	500			15	15			21	23				1		{	10	15	196	648
OUTNICKENE	32	25			182	160	25	25			18	10			425	450			43	40	6	9			731	719
DTTH INCARDAMATES - MANES	165	180	20	27	2930	3200	210	200	20	25	1988	2000	180	266	765	860	15	30	65	70	55	90	320	380	6733	7328
NANCHZEB	435	480	35	47	2740	2700	1440	1300	50	65	1793	1800	130	192	85	100	40	65	140	130	25	40	100	160	7013	7079
METTRAN	53	50			6	5	40	20	15	20			25	37					90	100	30	50	100	120	359	402
PROPINED	28	40	25	34	600	660	140	140	30	40	112	135	80	118	4	5	10	20	70	70	30	55	170	200	1299	1517
EN I RAM	25	20	-		140	140	Ś	5	3		12	10	2	2	85	100			4	2	17	25			293	308
21NH29	515	400	5	7	85	70	25	15	10	13			15	22	340	350			20	10	50	80	10	10	1075	977
7.1 k 4 M	10	30			180	150	1													I	40	65			230	245
FITTALANIDES - CAPTAN	60	40		[90	60	25	25	35	47	30	35	5	6	110	130	ļ				20	32	14	15	189	390
CAPPADU.	8	20			342	340	50	20			9	15	6	12	8	10					1	i ii			432	428
FO LP*T	5	5		ļ		1	Ĺ		2	3					1 13	10	1		ł]	8	8			28	26
MERCURTALS	2	2		1	Ι,	Ι,		Í	Ι,	0.5			0.5		ļ	ļ	0.5	0.5		1					5	4
			Ι.					_		10		~		10	25	30	2	16	10	16	,	6	12	20	240	305
APTNE DERIVED - DENORYI.	6	15	1	2	120	140	35	20 8	5	"	16	20	5	10	9	10	ſ	l "	6	5	'	ľ			32	29
THEABENDAZOLE	5	5				1	11	 °				'					1					1			1 1	i
CARROX IN /OX YCAIRDOX IN	1	1			15	15		1	1		ר	5).		7	5		1	12	10		ļ			41	¥0
DEFORMATE-MEDICY E	19	50		l	157	180				[4	10	5	16	6	8	4	6	ł		192	250
THEFS - EDIPENHIOS		·	2	2	12	15	20	25			94	120	4	7	4	8			24	25	!	1	{		160	202
ETHIRIDOL		Į .	l		62	75			1						ł		ł	1			1	1	2	4	64	79
DODENE				ł .					25	ы					•	1	}		1	ł		1			28	34
FEMPEN COMPOUNDS	4	2			35	20					17	10			3	1		ļ	[4	6	{		63	39
X 241 4 251			5	7	98	110	5	5	1				1		ł		I.	l	4	5	1	1			112	127
TREADERED					35	55					12	20			19	25	1		1			1			66	100
1116 J. EXHIBIT (1012)					65	-75										1	1	10	8	6					74	91
HCB	60	50															1			1	2	3			6?	53
MHER PUNGTOTHES	1051	1051			64	41	40	15	77	- 13	61,	75	25	37	14	15	0.5	,	R	10	1	1	30	45	1325.5	1 3 4 6

~

. .

•

ARGENTINA - TABLE 1.1

.

ESTIMATED 1978 INSECTICIDE USE AND FORECAST 1988

	Tons Act	i v e
Product	Estimated Actual 1978	Forecast 1988
ORGANOCHLORINES - DDT	45	40
BHC	130	100
ALDRIN	20	10
ENDOSULFAN	325	400
ENDRIN	93	60
HEFTACHLOR	220	150
ORGANOPHOS PHATES		
-E-PARATHION	1030	1200
MALATHION	730	800
DIMETHOATE	200	250
FENITROTHION	15	20
MONOCROTOPHOS	244	300
TRICHLORFON	20	60
DDVP	200	250
AZINPHOS	67	7 5
DIAZINON	18	20
ETHION	100	100
CARBAMATES - CARBARYL	140	200
METHOMYL	10	10
CARBOFURAN	47	60
OTHER INSECTICIDES	. 70	50
PYRETHROIDS	1	4

ARGENTINA - TABLE 1.2

ESTIMATED 1978 HERBICIDE USE AND FORECAST 1988

Product	Tons Active	
Product	Estimated Actual 1978	Forecast 1988
PHENOLICS - DNB?	2	2
PHENOXIES - 2,4-D	1400	1700
NCPA	200	250
CARBAMATES - EPTC	65	50
MOLIMATE	30	40
SUB. UREAS - DIURON	15	25
LIBURON	5	5
NONURON	10	10
DIAZINES - BROMACIL	8	8
BENTAZONE	60	80
NALEIC HYDRAZIDE	. 5	5
TRIAZINES - ATRAZINE	30	35
ALEURINE	12	15
METRIBUZIN	6	6
ANIDES - DINITRAMINE	43	10
PROPANIL	15	20
ALACHLOR	31	35
QUAT. ANN PARAQUAT	33	35
TOLUIDINES - TRIFLURALIN	812	1400
OTHERS - ATA	45	20
DALAPON	120	150
DICAMBA	18	20
GLYPHOSATE	37	50
ANA	105	100
. PICLORAN	48	60
TCA	185	250
OTHER HERBICIDES	50	60

٨

ARGENTINA - TABLE 1.3

•

.

•

Product	Tons Active	
Product	Estimated Actual 1978	Forecast 1988
INORGANICS-COPPER SULPHATE	915	900
OTHER COPPERS	1500	1700
SULPHUR DUST	2500	2000
SULPHUR WP	1500	2200
CALCIUM POLYPHOS PHATE	1000	1000
CHLORINATED PHENOLS-PCP	15	15
DINOCAP	3	3
CHLOROTHALONIL	3	5
QUINTOZENE	32	25
DITHIOCARBAMATES - MANEB	165	180
MANCOZEB	435	480
METIRAN	53	50
PROPINEB	28	40
THIRAM	25	20
ZINEB	515	400
ZIRAN	10	30
PHTALAMIDES - CAPTAN	60	40
CAPTAFOL	8	20
FOLPET	5 ·	5
MERCURIALS	2	2
AMINE DERIVED-BENONYL	6	15
CARBENDA2.M	5	15
THIABENDAZOLE	5	5
CARBOX_IN/OXYCARBOXIN	3	3
THIOPHANATE - METHYL	19	30
OTHERS - FENTIN CMPDS.	· 4	2
TCMTB	3	3
нсв	60	50
CHLORONEB	3	3
OTHER FUNGICIDES	40	30

BOLIVIA - TABLE 2.1

Product	Ions Active	
rouuci	Estimated Actual 1978	Forecast 1988
ORGANOCHLORINES - ENDRIN	15	24
ENDOSULFAN	60	98
ORGANOPHOS PHATES		
M-PARATHION	140	230
MALATHION	5	8
DINETHOATE	10	16
NONOCROTOPHOS	30	48
THORPTRIFOS	10	16
TRICHLORFON	15 ·	24
AZINPHOS	30	48
NETHANIDOPHOS	10	16
CARBANATES		
CARBARYL	30	48
METHONYL	2	5
PYRETHROIDS	0.5	2

BOLIVIA - TABLE 2.2.

Product	Tons Active	
	Estimated Actual 1978	Forecast 1988
PHENOXIES - 2,4-D	30	42
SUB. UREAS DIURON	10	14
FLUCMETURON	10	14
LINURON	2	2
TRIAZINES - ATRAZINE	10	14
ADETRYNE	15	21
METRIBUZIN	5	7
AMIDES - PROPANIL	18	24
BUTACHLOR	10	14
QUAT. AMM PARAQUAT	12	16
TOLUIDINES - TRIFLURALIN	35	49
OTHERS - DALAPON	10	14
GLYPHOSATE	4	5

BOLIVIA - TABLE 2.3

Product	Tons Active	
rrouuet	Estimated Actual 1978	Forecast 1988
INORGANICS - COPPER PRODUCTS	20	27
SULPHUR DUST	40	54
DITHIOCARBAMATES		
MANCZEB	35	47
MANEB	20	27
PROPINEB	25	34
ZINEB	5	7
AMINE DERIVED		
BENOMYL	1	2
OTHER ORGANICS		
EDIFENPHOS	2	2
KITAZIN	5	7

BRAZIL - TABLE 3.1

ESTIMATED 1978 INSECTICIDE USE AND FORECAST 1988

Product	Tons Active	
	Estimated Actual 1978	Forecast 1988
ORGANOCALORINES - DDT	4500	3500
BHC (16%)	2650	2500
ALDRIN	780	700
TOXAPHENE	4800	3600
ENDOSULFAN	485	500
ENDRIN	960	900
HEPTACHLOR	210	230
OTHERS	34	60
ORGANOPHOS PHATES	2420	2600
E-PARATHION	190	300
MALATHION	1450	1500
DIMETHOATE	1075	1200
DISULFOTON	243	250
FENITROTHION	640	700
NONO CROTOPHOS	1620	2200
PHOSPANIDON	152	150
CHLORPYRIFOS	640	600
TRICELORFON	260	300
NETHANIDOPHOS	161	180
DIAZONON	133	120
DICROTOPHOS	463	550
OTHERS	1092	960
CARBAMATES - CARBARYL	1410	1600
METHONYL	130	180
ALDICARB	147	150
CARBOFURAN	265	300
ACARICIDES	1022	700
PYRETHROIDS	Nil	10

٩

BRAZIL - TABLE 3.2

Product	Tons Act	; i v e
	Estimated Actual 1978	Forecast 1988
PHENOLICS - DNBP	30	10
PHENOXIES - 2,4-D	1100	2000
MCPA	74	40
<u>CARBAMATES</u> - ASULAN	70	50
KOLINATE	490	400
BENTHIOCARB	230	290
SUB.UREAS - DIURON	900	1600
LINURON	18	10
DIAZINES - BROMACIL	220	100
BENTAZONE	330	. 550
TRIAZINES - ATRAZINE	180	200
AMETRYNE	1240	1600
SIMAZINE	420	400
METRIBUZIN	610	1200
AMIDES - PROPANIL	1070	1700
ALACHLOR	2240	3600
METOLACHLOR	815	1320
BUTACHLOR	170	150
QUAT.AMM PARAQUAT	225	1000
DIQUAT	78	110
TOLUIDINES-TRIFLURALIN	3740	6100
PHENOXALINE	65	100
OTHERS - DALAPON	440	700
GLYPHO3 ATE	475	770
MSMA	490	500
PICLORAM	190	300
OXYDIAZON	34	50
TCA	70	50
OTHER HERBICIDES	532	500

BRAZIL - TABLE 3.3

ESTIMATED 1978 FUNGICIDE USE AND FORECAST 1988

Product	Tons Active	
	Estimated Actual 1978	Forecast 1988
INORGANICS-COPPER SULPHATE	1200	1000
COPPER OXYCHLORIDE	1340	1500
CUPRONS OXIDE	1650	1900
SULPHUR DUST	1900	1000
SULPHUR WP	2210	2500
CHLORINATED PHENOLS-PCP	40	40
CHLOROTHALONIL	72	90
QUINFOZENE	182	160
DITHIOCARBAMATES-MANEB	2930	3200
MANCOZEB	2740	2700
METIRAM	6	5
FERBAN	32	10
PROPINEB	600	660
THIRAM	140	140
ZINEB	85	70
ZIRAM	180	150
MERCURIALS	1	1
PHTALANIDES-CAPTAN	90	60
CAPTAFOL	342	340
AMINE DERIVED-BENONYL	120	140
CARBON/OXYCARBOXIN	12	15
THIOPHANATE-METHYL	157	180
OTHERS - EDIFENTHOS	12	15
ETHIRIMOL	62	75
FENTIN ACETATE/ HYDROX.	35	20
KITAZIN	98	110
TRIADIMEPON	35	55
TRI DEMORPH	65	75
OTHER FUNGICIDES	32	34

1 I I

.

CENTRAL AMERICA - TABLE 4.1

Product	Tons Active	
	Estimated Actual 1978	Forecast 1988
ORGANOCHLORINE -DDT	5000	3000
ALDRIN	50	40
TOXAPHENE	9000	5000
ENDOSULFAN	100	200
HEPTACHIOR	50	20
ENDRIN	200	100
ORGANOPHOSPHATES		
-M-PARATHION	6000	8000
E-PARATHION	4000	5000
MALATHION	70	100
DIMETHOATE	60	100
FENITROTHION	100	80
MONOCROTOPHOS	600	800
PHOSFAMIDON	40	30
CHLORPYRIFOS	100	100
TRICHLORFON	100	200
AZ IMPHOS	50	30
METHAMIDOPHOS	850	1100
PROFENOFOS	500	600
ACEPHATE	50	40
CARBAMATES-CARBARYL	150	200
METHOMYL	300	350
CARBOFURAN	100	100
PYRETHROIDS	10	50
OTHER INSECTICIDES	190	250

CENTRAL AMERICA - TABLE 4.2

ESTIMATED 1978 HERBICIDE USE AND FORECAST 1988

Product	Tons Active	
	Estimated Actual 1978	Forecast 1988
PHENOXIES - 2,4-D	700	750
CARBAMATES-MOLINATE	10	10
BENTHIOCARB	10	10
SUB.UREAS - DIURON	160	170
FLUOMETURON	20	20
LINURON	5	5
DIAZINES - BROMACIL	5	5
TRIAZINES- ATRAZINE	100	110
AMETRYNE	170	190
SIMAZINE	30	30
METRIBUZIN	10	20
AMIDES - PROPANIL	500	580
ALACHLOR	80	80
BUTACHLOR	10	10
QUAT. AMMPARAQUAT	230	250
TOLUIDINES - TRIFLURALIN	200	240
OTHERS - DALAPON	40	40
DICAMBA	20	20
GLYPHOS ATE	25	40
PICLORAM	50	60
OTHER HERBICIDES	35	50

2

CENTRAL AMERICA - TABLE 4.3

	Tons Active	
Product	Estimated Actual 1978	Forecast 1988
INORGANICS-COPPER PRODUCTS	330	100
SULPHUR WP	4C	50
CHLORINATED PHENOLS-PCP	30	30
CHLOROTHALONIL	75	500
QUINTOZENE	25	25
DITHIOCARBAMATES-MANEB	210	200
MANCOZEB	1440	1300
METI RAM	40	20
PROPINEB	140	140
THIRAM	5	5
ZINEB	25	15
PHTALAMIDES-CAPTAN	25	25
CAPTAFOL	50	20
AMINE DERIVED-BENOMYL	35	20
CARBENDAZ IM	10	5
THIABENDAZOLE	11	8
OTHERS-EDIFENPHOS	20	25
KITAZIN	5	5
OTHER FUNGICIDES	30	30

CHILE - TABLE 5.1

Product	Tons Active	
	Estimated Actual 1978	Forecast 1988
ORGANOCHLORINES - DDT	50	60
LINDANE	10	12
ENDOSULFAN	8	10
ENDRIN	4	5
ORGANOPHOS PHATES		
-M-PARATHION	60	80
E-PARATHION	40	48
MALATHION	70.	70
DIMETHOATE	10	12
MONOCROTOPHOS	30	36
PHOSPAMIDON	15	18
TRICHLORFON	20	24
AZINPHOS	60	70
METHAMIDOPHOS	18	23
DEMETON-S-METHYL	12	14
METHIDATHION	20	24
CARBAMATES		
-CARBARYL	10	12
PIRIMICARB	10	12
OTHERS		
TETRADIFON	10	12
DICOFOL	10	12
PYRETHROIDS	0	0.5

CHILE - TABLE 5.2

Product	Tons Active	
	Estimated Actual 1978	Forecast 1988
PHENOLICS - DNOC	25	30
PHENOXIES - 2,4-D	90	120
MCPA	130	170
CARBAMATES-NOLINATE	10	12
SUB. UREAS-DIURON	10	12
LINURON	5	6
TRIAZINES-ATRAZINE	15	18
SINAZINE	5 ·	6
AMIDES-PROPANIL	20	24
BUTACHLOR	5	6
QUAT. AMNPARAQUAT	15	18
TOLUIDINES-TRIFLURALIN	10	12
OTHERS - DALAPON	30	36
DICAMBA	15	18
GLYPHOS ATE	6	8

CHILE - TABLE 5.3

Product	Tons Active	
	Estimated Actual 1978	Forecast 1988
INORGANICS-COPPER PRODUCTS	160	200
SULPHUR DUST	5900	6000
SULPHUR WP	55	60
CELORINATED PHENOLS		
-PCY	3	4
DINOCAP	1	1
DITH IOCARBAMATES		
-FERBAM	4	5
MANCOZEB	50	65
MANEB	20	25
METIRAM	15	20
PROPINEB	30	40
THIRAM	3	4
ZIMEB	10	13
PHTALAMIDES		
-CAPTAN	35.	47
FOLPET	2	3
MERCURIALS	1	0.5
AMINE DERIVED		
-BENOMYL	5	10
OTHER ORGANICS		
-DODINE	25	33
FENAMINOSULF	23	28

COLOMBIA - TABLE 6.1

ESTIMATED 1978 INSECTICIDE USE AND FORECAST 1988

Product	Tons Active	
Product	Estimated Actual 1978	Forecast 1988
ORGANOCHLORINES-DDT	353	250
LINDANE	25	30
ALDRIN	163	50
TOXAPHENE	1048	300
ENDOSULFAN	84	140
ENDRIN	36	10
ORGANOPHOSPHATES		
-M-PARATHION	1926	2500
E-PARATH ION	287	200
MALATHION	290	300
DIMETHOATE	120	150
DISULFOTON	7	5
MONOCHROTOPHOS	142	200
PHOSFAMIDON	48	30
CHLORPYRIFOS	19	20
TRICHLORFON	235	300
DDVP	28	40
AZ INPHOS	21	20
METHAMI DOPHOS	74	90
DIAZINON	28	20
DICROTOPHOS	17	10
CARBAMATES CARBARYL	143	180
METHOMYL	49	30
CARBOFORAN	103	70
LEAD ARSENATE	154	50
PYRETHROIDS	5	20
OTHER INSECTI IDES	176	130

4

5

COLOMBIA - TABLE 6.2

•

.

	Tons Active	
Product	Estimated Actual 1978	Forecast 1988
PHENOLICS-DNBP	11	10
PHENOXIES-2,4-D	1546	2000
2,4,5-T	772	200
CARBAMATES-EPTC	4	2
MOLINATE	4	8
BENTHIOCARB	274	250
SUB.UREAS - DIURON	167	170
FLUOMETURON	40	50
LINURON	10	10
DIAZINES - BROMACIL	2	2
BENTAZONE	24	40
TRIAZINES-ATRAZINE	342	350
AMETRYNE	145	150
METRIBUZIN	5	10
AMIDES-PROPANIL	1230	1400
ALACHLOR	14	10
BUTACHLOR	56	60
QUAT.AMMPARAQUAT	58	70
TOLUIDINES-TRIFLURALIN	91	130
PHENOXALINE	26	30
OTHERS-DALAPON	45	45
DICAMBA	6	5
GLYPHOSATE	23	40
MSMA	36	30
PICLORAM	26	55
OTHER HERBICIDES	204	200

COLOMBIA - TABLE 6.3

Product	Tons Active	
	Estimated Actual 1978	Forecast 1988
INORGANICS-COPPER PRODUCTS	119	100
SULPHUR WP	15	15
CHLORINATED PHENOIS		
-CHLOROTHALONIL	15	15
QUINTOZENE	18	10
DITHIOCARBAMATES-MANEB	1988	2000
MANCOZES	1793	1800
PROPINEB	112	135
THIRAM	12	10
PHTALAMIDES-CAPTAN	30	35
CAPTAFOL	9	15
AMINE DERIVED-BENONYL	16	20
THIABENDAZOLE	1	1
CARBOXIN/OXYCARBOXIN	7	5
OTHERS-EDIFENPHOS	94	120
FENTIN CMPDS.	17	10
TRIADIMEFON	12	20
OTHER FUNGICIDES	66	75

ECUADOR - TABLE 7.1

Product	Tons Active	
	Estimated Actual 1978	Forecast 1988
ORGANOCHLORINES-ALDRIN	20	32
ENDOSULFAN	20	32
ENDRIN	16	26
ORGANOPHOSPHATES		
N-PARATHION	58	94
MALATHION	13	21
DIMETHOATE	20	32
FENITROTHION	10	16
MONOCROTOPHDS	45	73
PHOSFAMIDON	20	32
CHLORPYRIFOS	5	. 8
TRICHLORFON	40	64
DDVP	5	8
AZINPHOS	5	8
METHAMIDOPHOS	50	80
PRIMIPHOS	85	120
CARBAMATES		
CARBARYL	30	48
METHOMYL	5	8
CARBOFURAN	55	100
PYRETHROIDS	0.5	3
OTHERS	15	24

ECUADOR - TABLE 7.2.

ESTIMATED 1978 HERBICIDE USE AND FORECAST 1988

5

Product	Tons Active	
rrouuet	Estimated Actual 1978	Forecast 1988
PHENOXIES - 2,4-D	60	80
MCPA	5	7
SUB. UREA DIURON	25	33
FLUOMETURON	15	20
TRIAZINES-ATRAZINE	12	16
AMETRYNE	40	54
AMIDES-PROPANIL	110	140
BUTACHLOR	9	12
QUAT.AMMPARAQUAT	36	48
OTHERS-DALAPON	30	40
MSMA	20	27
OTHER HERBICIDES	16	22

ECUADOR - TABLE 7.3

ESTIMATED 1978 FUNGICIDE USE AND FORECAST 1988

	Tons Active	
Product	Estimated Actual 1978	Forecast 1988
INORGANICS-COPPER PRODUCTS	5°	74
SULPHUR DUST	60	89
CHLORINATED PHENOLS		
PCP	3	4
DITHIOCARBAMATES		
MANCOZEB	130	192
MANEB	180	266
METIRAM	25	37
PROFINEB	80	1 18
THIRAM	2	2
ZINEB	15	22
PHTALAMIDES		
CAPTAN	5	6
CAPTAFOL	8	12
MERCURIALS	0.5	NIL
AMINE DERIVED		
BENONYL	5	10
OTHER ORGANICS		
EDIFENPHOS	4	7
OTHER FUNGICIDES	25	37

·

MEXICO - TABLE 8.1

Product	Tons Active	
	Estimated Actual 1978	Forecast 1988
ORGANOCH LORI NES-DDT	4930	4000
BHC	2060	2000
TOXAPHENE	2290	2000
ENDOSULFAN	136	200
ENDRIN	127	80
HEPTACHLOR	255	150
ORGANOPHOSPHATES		
M-PARATHION	2970	3200
E-PARATHION	1515	1800
MALATHION	170	150
DIMETHOATE	340	370
DISULFOTON	21	20
MONOCROTOPHOS	425	600
PHOSFANIDON	4	5
CHLORPYRIFOS	30	25
TRICHLORFON	106	150
DDVP	80	100
AZINPHOS	255	200
METHAMIDOPHOS	255	300
DIAZINON	76	60
CARBAMATES-CARBARYL	1275	1300
METHOMYL	297	300
CARBOFURAN	68	70
PYRETHROIDS	20	50
OTHER INSECTICIDES	805	600

MEXICO - TABLE 8.2

Product	Tons Activ	7 e
	Estimated Actual 1978	Forecast 1988
PHENOLICS-DNBP	30	30
NITROFEN	42	40
PHENOXIES - 2,4-D	1200	1450
CARBAMATES-ASULAM	3	5
EPTC	25	20
MOLINATE	4	2
BENTHIOCARB	2	4
SUB.UREAS-DIURON	255	310
FLUOMETURON	17	20
LINURON	34	40
DIAZINES-BROMACIL	4	5
BENTAZONE	25	35
TRIAZINES-ATRAZINE	340	410
AMETRYNE	319	390
SIMAZINE	3	3
METRIBUZIN	8	20
AMIDES-PROPANIL	250	325
ALACHLOR	6	5
QUAT.AMMPARAQUAT	85	105
TOLUIDINES-TRIFURALIN	340	400
OTHERS - DALAPON	51	60
DICAMBA	. 21	25
MSMA	85	90
PICLORAM	11	15
OTHER HERBICIDES	350	390

MEXICO - TABLE 8.3

1

۵

	Tons Active	
	Estimated Actual 1978	Forecast 1988
INORGANICS-COPPER SULPHATE	935	1000
OTHER COPPER CMPDS.	640	700
SULPHUR DUST	1020	1100
CHLORINATED PHENOLS-PCP	110	120
CHLOROTHALONIL	21	23
DINOCAP	3	3
QUINTOZENE	425	450
DITHICCARBAMATES-MANEB	765	860
MANCOZEB	85	100
PROPINEB	4	5
THIRAM	85	100
ZINEB	340	350
PHTALAMIDES-CAPTAN	110	130
CAPTAFOL	8	10
FOLPET	13	10
AMINE DERIVED-BENOMYL	25	30
THIABENDAZOLE	9	10
CARBOXIN/OXYCARBOXIN	7	5
THIOPHA NATE-METHYL	4	10
TRIFORINE	4	5
OTHERS - EDIFENPHOS	4	8
DODINE	3	1
FENTIN CMPDS.	3	1
TRIADIMEFON	19	25
OTHER FUNCICIDES	10	10

PARAGUAY - TABLE 9.1

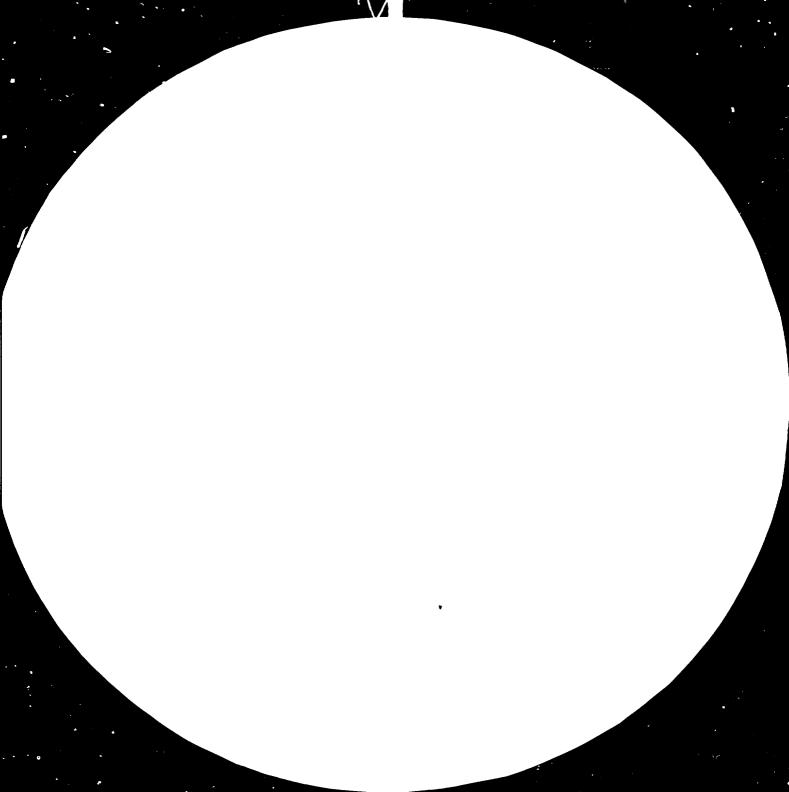
d

Product	Tons Active	
	Estimated Actual 1978	Forecast 1988
ORGANOCHLORINES - BHC	10	13
ENDOSULFAN	8	12
ENDRIN	15	20
ORGANOPHOSPHATES		
M-PARATHION	30	40
E-PARATHION	40	60
DIMETHOATE	10	13
FENITROTHION	2	2
MONOCROTOPHOS	8	12
DDVP	5.	6
AZINPHOS	2	3
CARBAMATES		
-CARBARYL	20	25
CARBOFURAN	5	7
PYREIHROIDS	0.2	1
		<u> </u>

PARAGUAY - TABLE 9.2

ESTIMATED 1978 HERBICIDE USE AND FORECAST 1988

Product	Tons Active	
FFOULET	Estimated Actual 1978	Forecast 1988
PHENOXIES - 2,4-D	30	60
MCPA	5	15
SUB. UREAS-DIURON	5	15
TRIAZINES-ATRAZINE	5	15
AMETRYNE	5	15
PROMETRYNE	2	3
TOLUIDINES-TRIFLURALIN	20	80
OTHERS - MSMA	2	3
TCA	2	4


1

5

PARAGUAY - TABLE 9.3

d

Product	Tons Active	
	Estimated Actual 1978	Forecast 1988
INORGANICS-COPPER PRODUCTS	10	20
SULPHUR WP	10	40
CHLORINATED PHENOLS		
-DINOCAP	3	3
PCP	3	3
DITHIOCARBAMATES		
-MANCCZEB	40	65
MANEB	15	30
PROPINEB	10	20
AMINE DERIVED		
-BENOMYL	2	16
THIOPHANATE-) METHYL)	2	16
MERCURIALS	0.5	0.5
OTHER ORGANICS		
-Pyrazophos	0.5	1
TRI ADIMEFON	1	10

2.0

yan ayan tiyan tana an

PERU - TABLE 10.1

	Tons Active		
Product	Estimated Actual 1978	Forecast 1988	
ORGANOCHLORINES-DDT	210	255	
BHC	70	85	
ALDRIN	40	48	
ENDOSULFAN	20	24	
ENDRIN	10	12	
EEPTACHLOR	20	24	
ORCANOPHOS PHATES-			
M-PARATHION	20	24	
E-PARATHION	46	56	
MALATHION	3	3	
DIMETHOATE	2	3	
FENITROTHION	5	6	
MONOCROTOPHOS	40	48	
CHLORPYRIFOS	10	12	
TRICHLORFON	105	128	
AZINPHOS	5	6	
METHAMIDOPHOS	70	85	
DEMETON-S-METHYL	15	18	
CARBAMATES			
CARBARYL	105	128	
METHOMYL	20	24	
CARBOFURAN	10	12	
ARSENATES-CALCIUM + LEAD	80	90	
PYRETHROIDS	1.5	3	
OTHER INSECTICIDES	12	15	

PERU - TABLE 10.2

ESTIMATED 1978 HERBICIDE USE AND FORECAST 1988

.

Product	Tons Active	
~ roauct	Estimated Actual 1978	Forecast 1988
PHENOLICS -NITROFEN	1	1
PHENOXIES -2,4-D	60	73
CARBANATES-ASULAN	70	85
NOLINATE	3	3
BENTHIOCARB	5	6
SUB. UREAS-DIURON	20	24
FLUOMETURON	5	6
LINURON	8	8
TRIAZINES-ATRAZINE	30	36
AMETRYNE	40	48
SIMAZINE	2	2
ANIDES-PROPNIL	32	40
BUTACHLOR	20	24
QUAT. AND PARAQUAT	12	15
OTHERS - DALAPON	10	10
GLYPHOSATE	2	4
MS MA	6	7
OTHER HERBICIDES	18	25

PERU - TABLE 10.3

Product	Tons Active	
	Estimated Actual 1978	Forecast 1988
INORGANICS-COPPER PRODUCTS	50	50
-SULPHUR DUST	1200	1100
-SULPHUR WP	140	150
CHLORINATED PHENOLS		
DINOCAP	4	3
QUINTOZENE	43	40
DITHIOCARBAMATES		
MANCOZEB	140	130
MANEB	65	70
METIRAM	. 90	100
PROPINEB	70	70
THIRAM	4	2
ZINEB	20	10
PHTALAMIDES		
AMINE DERIVED		
BENOMYL	10	16
THIABENDAZOLE	6	5
CARBOKIN/OXYCARBOXI	12	10
THIOPHANATE-METHYL	6	8
OTHER ORGANICS		
EDIFENPHOS	24	25
KITAZIN	4	5
TRIDEMORPH	8	6
CHLORONEB	3	2
PYRAZOPHOS	3	4
OTHER FUNGICIDES	2	4

URUGUAY - TABLE 11.1

.

•

Product	Tons Active	
rrouuct	Estimated Actual 1978	Forecast 1988
ORGANOCHLORINES - DDT	. 100	100
LINDANE	5	8
ALDRIN	60	40
ENDOSULFAN	10	16
ENDRIN	40	40
ORGANOPHOS PHATES		
M-PARATHION	50	80
E-PARATHION	40	65
MALATHION	15	25
DIMETHOATE	20	40
MONCCROTOPHOS	10	30
AZINPHOS	10	20
DEMETON-S-METHY L	5	5
CARBAMATES		
CARBARYL	30	60
CARBOFURAN	2	5
PYRETHROIDS	-	0.5

URUGUAY - TABLE 11.2

Peedwat	Tons Active	
Product	Estimated Actual 1978	Forecast 1988
PHENOLICS - DNCC	12	5
PHENOXIES - 2,4-D	40	120
MCPA	5	13
CARBANATES-MOLINATE	5	13
SUB. UREAS-DIURON	15	39
FLUOMETURON	5	13
DIAZINES-BROMACIL	2	5
BENTAZONE	5	13
TRIAZINES-ATRAZINE	5	13
AMETRYNE	10	26
AMIDES-PROPANIL	10	26
BUTACHLOR	10	26
TOLUIDINES-TRIFFURALIN	15	39
OTHERS - DALAPON	10	26
	L	L

URUGUAY - TABLE 11.3

Product	Tons Active	
	Estimated Actual 1978	Forecast 1988
INORGANICS-COPPER PRODUCTS	260	200
SULPHUR DUST	130	160
SULPHUR WP	120	150
CHLORINATED PHENOLS		
-PCP	5	8
QUINTOZENE	6	9
DITHIOCARBAMATES		
-MANEB	55	90
MANCOZEB	25	40
METIRAM	. 30	50
PROPINEB	30	55
THIRAM	17	25
ZINEB	50	80
ZIRAM	40	65
PHTALAMIDES		
-CAPTAN	20	32
CAPTAFOL	7	11
FOLPET	8	8
AMINE DERIVED		
-BENOMYL	3	6
THIOPHANATE-METHYL	4	6
OTHER ORGANICS		
-FENTIN ACETATE	4	6
HCB	2	3

VENEZUELA - TABLE 12.1

	Tons Active		
Product	Estimated Actual 1978	Forecast 1988	
ORGANO CHLORINES-DDT	800	400	
ALDRIN	10	5	
DIELDRIN	20	10	
TOXAPHENE	200	100	
ENDOSULFAN	30	50	
ENDRIN	200	100	
ORGANOPHOSPHATES			
M-PARATHION	600	1000	
E-PARATHION	200	300	
MALATHION	40	40	
DIMETHOATE	40	60	
DISULFOTON	5	8	
MONOCROTOPHOS	90	120	
PHOSFANIDON	10	20	
TRICHLORFON	300	400	
FENTHOATE	25	30	
AZINPHOS	100	130	
CARBAMATES			
CARBARYL	120	200	
NETHONYL	50	80	
CARBOFURAN	30	40	
PYRETHROIDS	0.5	6	
OTHER INSECTICIDES	35	60	

VENEZUELA - TABLE 12.2

Product	Tons Active	
	Estimated Actual 1978	Forecast 1988
PHENOLICS-DNBP	30	20
NITROFEN	60	50
PHENOXIES-2,4-D	1100	1460
NCP	80	1 10
SUB. UREAS-DIURON	60	70
FLUOMETURON	50	75
LINURON	40	55
TRIAZINES-ATRAZINE	250	400
AMETRYNE	60	100
SIMAZINE	50	80
ANIDES-PROPANIL	700	1100
ALACHLOR	10	10
BUTACHLOR	35	40
QUAT.AMMPARAQUAT	90	140
TOLUIDINES-TRIFLURALIN	30	50
OTHERS-DALAPON	95	100
NS XA	60	50
OTHER HERBICIDES	40	80

VENEZUELA - TABLE 12.3

ESTIMATED 1978 FUNGICIDE USE AND FORECAST 1988

	Tons Ac	tive
Product	Estimated Actual 1978	Forecast 1988
INORGANICS-COPPER SULPHATE	80	90
OTHER COPPERS	30	35
SULPHUR DUST	500	500
SULPHUR WP	20	40
CHLORINATED PHENOLS		
CHLOROTHALONIL	10	15
PCP	5	5
DITHIOCARBAMATES		
-MANCOZEB	100	160
MANEB	320	380
METIRAM	100	120
PROPINEB	170	200
ZINEB	10	10
PHTALAMIDES-CAPTAN	14	15
AMINE DERIVED-BENOMYL	12	20
OTHERS-ETHIRIMOL	2	4
OTHER FUNGICIDES	30	45
	L	l

.

ARGENTINA - TABLE 1.4

PESTICIDE PRODUCTION IN 1978

		TONS ACT	TONS ACTIVE 1978	
PRODUCT	PRODUCER	ESTINATED CAPACITY	ESTINATED PRODUCTION	
2,4-D ACID	ATANOR	2500	2500	
NCPA ACID	ATANOR	1200	200	
2,4-DB ACID	CIA. QUINICA	600	350	
2,4-D ESTER	CIA. QUINICA	1000	700	
2,4-D ESTER	SINTESIS QUINICA	700	500	
TRIFLURALIN	ESTRELLA	1000	40	
TRIFLURALIN	QUINEL	2000	START UP AUGUST 1979	
SULPHUR DUST + WP	BASSO Y TONNELIER	5000	2000	
SULPHUR DUST + WP	CIA. QUINICA	1000	700	
CALCIUN POLYSULPHATE	CIA. QUIMICA	2000	1000	
COPPER SULPHATE	CIA. QUINICA	600	200	
TRIBASIC COPPERSULPHATE	CIA. QUINICA	500	200	
PCP	SINTESIS QUIMICA	50	CLOSED DUE POLLUTION	
HCB (15%)	CIA. QUINICA	100	80	
COPPER SULPHATE	TORT VALLS	1200	900	
COPPER OXYCHLORIDE	TORT VALLS	1000	300	
TCA	ATANOR	1000	400	
BHC (16%)	DUPERIAL	1000	500	
DDVP	CIBA GEIGY	200	200	
METHYL BRONIDE	RHODIA	300	CLOSED IN 1978	
NIMIDANE	CYANAMID	200	50	
MEPHOSFOLAN/PHOSFOLAN	CYANAMID	500	200	
TRICHLORFON/DDVP		17	11	
PHOSFANIDON	ESTRELLA	1000	130	
CHLORDIMEFORM				
COPPER OXYCHLORIDE	ALBITE	1000	400	
COPPER SULPHATE	ALBITE	1000	500	
THIRAM	PROTOQUIM	500	300	

ARGENTINA - TABLE 1.4.1

CHEMICAL INTERMEDIATE PRODUCTION

THE FOLLOWING CHEMICAL INTERMEDIATES ARE PRODUCED IN ARGENTINA, AND THEIR LOCAL SELLING PRICES ARE NOTED BELOW IN US \$/TON

REFERENCE TO SECTION 8. WILL INDICATE IN WHICH LOCAL PESTICIDE PRODUCTION PLANT EACH OF THESE LOCALLY PRODUCED INTERMEDIATES ARE USED.

c	HENICAL INTERMEDIATES	SELLING PRICE IN ARGENTINA US \$ PER TON
2.	PHENOL	1550
3.	CHLORINE	360
4.	ACETIC ACID	1500
17.	ACETONE	NOT KNOWN
25.	FORMALDEHYDE	400
26.	N-BUTANOL	1700
33.	SODIUM HYDROXIDE	400
35.	AMMONTA	576
36.	SULPHUR	LOCAL MINE NOW CLOSED
37.	COPPER SCRAP	2500
44.	HYDROGEN PEROXIDE	1400
	PTHALIC ANHYDRIDE	1200
49.	CHLORAL	PRODUCTION STOPPED 1976
50.	BENZENE	625
51.	SULPHURIC ACID	130
53.	VINYL CHLORIDE	1200
62.	METHANOL	280
65.	ETHANOL	580
77.	NITRIC ACID	730
78.	ANILINE	VARIOUS GRADES - \$10,000 - 30,000 TON
80.	TOLUENE	NOT KNOWN
81.	O-DICHLOROBENZENE	1700
83.	HYDROGEN FLUORIDE	NOT KNOWN
85.	TRICHLOROETHYLENE	10 30

- 100 -

BRAZIL - TABLE 3.4.

PESTICIDE PRODUCTION IN 1978

		TONS ACTIVE 1 9 7 8		
PRODUCT	PRODUCER	ESTIMATED CAPACITY	ESTIMATED PRODUCTION	
	HATARAZZO	6000	c7.0	
BHC (16%)	-		2738	
TOXAPHENE	MATARAZZO (HERCULES)	7200	5125	
DDT	HOECHST	8000	4898	
MALATHION	CYANAMID	6800	1775	
MONOCROTOPHOS	SHELL	1700	1048	
DICROTOPHOS	SHELL	300	266	
N-PARATHION	BAYER	2500	2520	
E-PARATHION	BATE?	500	195	
MANEB/MANCOZEB	DUPONT/ROHN AND HAAS	11000	6283	
COPPER OXYCHLORIDE	CUILINI/SANDOZ	3000	1356	
CUPROUS OXIDE	SANDOZ	3000	1700	
THIRAM/ZIRAM	C.N.D.A. (BHODIA)	1800	339	
PARAQUAT	CIA. IMPERIAL (ICI)	1000	155	
PROPANIL	C.N.D.A.	1200	1151	
TRIFLURALIN	ELANCO	6000	2000	
TRIFLURALIN	MORTOX	6000	1880	
<u>.</u>				

• •

.

.

BRAZIL - TABLE 3.4.1.

PLANNED PRODUCTION PLANTS

PRODUCT	PRODUCER	RATED PLANT CAPACITY TONS	YEAR PLANNED FOR PLANT START UP
TRICHLORFON DIMETROATE	BAYER	500 1000 - 1500	1979 PRODUCTION 1980 PLANNED
BAYER	FENITROTHION	180	
BAYER	FENTHION	80	1980 PLANNED
BAYER	COUMAPHOS	140	
PROPANIL	BAYER	1000	1979 PRODUCTION
PROPANIL	ROHM AND HAAS	1000	1979 PRODUCTION
DIURON	DUPON	2000	1979 PRODUCTION
DIURON	C.N.D.A. (RHODIA)	1000	1980 PLANNED
2,4-D	DOW	9000	1979 PRODUCTION
TRT AZ IMES	CIBA-GEIGY	4500	1980 PLANNED
TRIAZINES	C.M.D.A. (RHODIA)	3500	1980 PLANNED

BRAZIL - TABLE 3.4.2.

CHEMICAL INTERMEDIATE PRODUCTION

THE FOLLOWING CHEMICAL INTERMEDIATES ARE PRODUCED IN BRAZIL, AND THEIR SELLING PRICES IN BRAZIL ARE NOTED BELOW IN US \$ TON

	CHENICAL INTERNEDIATE	SELLING PRICE IN BRAZIL US \$ PER TON
2.	PHENOL	856
3.	CHLORINE	154
4.	ACETIC ACID	811
17.	ACETONE	695
25.	FORMALDEHYDE	307
26.	N.BUTANOL	347
33.	SODIUM HYDROXIDE	262
35.	ADIONIA	234
36.	SULPHUR	41 - 70
38.	NITROBENZENE	1096
40.	CARBON DISULPHIDE	NOT KNOWN
42.	MANGANESE SULPHATE	NOT KNOWN
44.	HYDROGEN PEROXIDE	1510
45.	MALEIC ANHYDRIDE	1254
46.	BUTADIENE	432
49.	CHLORAL	126
50.	BENZENE	382
51.	SULPHURIC ACID	52
53.	VINYL CHLORIDE	458
62.	METHANOL	304
65.	ETHANOL	246 (K LITRES)
77.	NITRIC ACID	191
80.	TOLUENE	358
85.	TRICHLOROETHYLENE	332

- 103 -

- --

CENTRAL AMERICA - TABLE 4.4.

PESTICIDE PRODUCTION IN 1978

		TONS ACT	IVE 1978
PRODUCT	PRODUCER	ESTIMATED CAPACITY	ESTIMATED PRODUCTION
PROPANIL	SINTESIS QUINICA. G.	400	350
TOXAPHENE	SINTESIS QUINICA G.	8000	START UP 1979
TRIFLURALIN	SINTESIS QUINICA G.	500	START UP 1979
TOXAPHENE	HERCULES N.		4000
CHLORDINEFORM	DEQUINSA G.		START UP 1979

N.B. G. DENOTES GUATAMALA

N. DENOTES NICARAGUA

CENTRAL AMERICA - TABLE 4.4.1

CHEMICAL INTERMEDIATE PRODUCTION

THE FOLLOWING CHEMICAL INTERMEDIATES ARE PRODUCED IN CENTRAL AMERICA AND THEIR LOCAL SELLING PRICES ARE NOTED BELOW IN US \$ TON

CHEMICAL INTERMEDIATE		SELLING PRICE IN CENTRAL AMERICA US \$ TON	
3.	CHLORINE	370 FOB MANAGUA	
33.	SODIUM HYDROXIDE 50% SOLN.	210 (100% BASIS)	
51.	SULPHURIC ACID	PLANT CLOSED	
52.	CAMPHENE	ALL CONTRACTED TO HERCULES	
65.	ETHANOL	1000 (K LITRE)	

CHILE - TABLE 5.4

PESTICIDE PRODUCTION

		TONS ACTIVE 1 9 7 8		
PRO DUCT PRO DUCER		ESTINATED CAPACITY	ESTIMATED PEODUCTION	
COPPER OXICHLORIDE COPPER SULPHATE THIRAN SULPHUR DUST SULPHUR DUST	QUINETAL QUINETAL QUINETAL SOC. AZUFRERA BORLANDOY dia CARRASCO	1000 5000 20 1C200 2000	250 350 8 6500 1100	

V.B. COPPER AND SULPHUR ARE AVAILABLE LOCALLY

•

COLOMBIA - TABLE 6.4.

PESTICIDE PRODUCTION IN 1978

		TONS ACTIVE 1978	
PRODUCT	PRODUCER	ESTIMATED CAPACITY	ESTINATED PRODUCTION
PROPANIL PROPANIL MANEB MANCOZEB MANCOZEB DIURON SULPHUR DUST COPPER OXYCHLORIDE 43%	ROHM AND HAAS BAYER ROHM AND HAAS/DUPONT ROHM AND HAAS DUPONT DUPONT DERIVADOS DE AZUFRE M.I. QUIMICOS	1 300 1000 3000 3000 3500 500 1000 500	1 100 START UP IN 1979 2500 1950 START UP IN 1979 400 20 220

I T

COLOMBIA - TABLE 6.4.1

CHEMICAL INTERMEDIATE PRODUCTION

THE FOLLOWING CHEMICAL INTERMEDIATES ARE PRODUCED IN COLONBIA, AND THEIR LOCAL SELLING PRICES ARE NOTED BELOW IN US \$ TON

CH	ENICAL INTERMEDIATE	SELLING PRICE IN COLOMBIA US \$ PER TON
3.	CHLORINE	650
4.	ACETIC ACID	NOT KNOWN
17.	ACETONE	NOT KNOWN
25.	FORMALDEHYDE	2625 (PUREGRADE) 900 (ADDITIVE TO GLUE)
33-	SODIUM HYDROXIDE	62
35-	ADDONIA	1 18
36.	SULPHUR (EXTRACTED)	100
40.	CARBON DISULPHIDE	NOT KNOWN
44.	HYDROGEN PEROXILE	KWCKEN TOR
50.	BENZENE	427
51.	SULPHURIC ACID	125
62.	NETHANOL	NOT KNOWN
65.	ETHANOL	1.12 PER US GALLON
77.	NITRIC ACID	200
80.	TOLUENE	375

. '

Ý

_ .

2

MENICO - TABLE S.4.

PESTICIDE PRODUCTION IN 1978

		TONS	ACTIVE 1973
PRODUCT	PRO DUCER	ESTIMATED CAPACITY	ESTIMATED PRODUCTION
CAPTAN	QUINICA ORGANICA	273	'40
CUINTCZENE	SUINICA ORGANICA	1020	420
THIRAN	QUINICA ORGANICA	100	90
PROPANIL	QUINICA ORGANICA	500	CLOSED 1978/1979
-BCP	QUINICA ORGANICA	1044	450
SULPHUR JUST	PENDE	10000	1000
NANEB/COPPER	ROEDN AND HAAS	180	NIL
PROPANTL	RORIN AND HAAS	600	200
XANEB/ZINEB	DUPONT	1500	NIL
DIURON	JUPONT	500	28C
KANEB/ZINEB	ZINC HAL	300	NIL
KANES	QUINICA POTOSI	1000	900
ZINEB	QUINICA POTOSI	500	380
CUPROUS OXIDE	QUINICA POTOSI	130	130
	QUINICA POTOSI	130	130
CUPRIC HYDROXIDE	QUINICA POTOSI	150	120
COPPER OXYCHLORIDE		1600	840
COPPER SULPHATE	QUINICA POTOSI	300	140
TRI BASIC COPPER SULPHATE	QUINICA POTOSI	2300	150
ENDRIN	QUINICA POTOSI	1	NIL
COPPER SULPHATE	QUINICA AGRICOLA INDUSTRIAL	3600	120
TRIBASIC COPPER SULPHATE	QUINICA AGRICOLA INDUSTRIAL	400	
COPPER OXYCHLORIDE	CUPROQUIN	800	JIL
2,4-D	POLAQUINIA	2000	1200
PCP	POLAQUINIA	1000	270
XSHA	POLAQUINIA	650	85
ATRAZINE/AMETRYNE	CIBA-GEIGY	600	600
SINAZINE/PROMETRYNE	CIBA-GEIGY	ļJ]]
MONOCROTOPHOS	CIBA-GEIGY (ATOQUIN)	1000	START UP 1979
TRIFLURALIN	HOECHST	400	360
DD VP	POLAQUINIA/PRODUCTOS	420	80
	BASICOS/QUINICA LUCAVA]]	
DDT	DIAMOND/FERTINEX	8000	6000
BEC	DIAMOND/PERTINEX	2300	1900
TOXAPHENE	PERTINEX	2000	2300
E-PARATHION	PERTINEX	1500	815
N-PARATHION	FERTINEX	6000	3000
MALATHION	QUINICA LUCATA	900	200
NALED	QUINICA LUCAVA	50	20
TRICHLORFON	QUINICA LUCAVA	600	100
NEVINPHOS	PRODUCTOS BASICOS/VINSA	200	FIL
NALED	PRODUCTOS BASICOS	25	JII.
TRICELORPON	PRODUCTOS BASICOS	100	20
CARBARYL	PRODUCTOS BASICOS	400	START UP 1980
DBCP	QUINICA AGROSANO	1000	TIL
FOLINAT	BAYER	200	17
AZINPROS	BAYER	350	START UP 1979
FENTHION	BAYER	150	JIARI UP 1717
ASUNTOL	BATER	150	
			[J

- 111 -

MEXICO - TABLE 8.4.1

CHEMICAL INTERMEDIATE PRODUCTION

THE FOLLOWING CHEMICAL INTERMEDIATES ARE PRODUCED IN MEXICO, AND THEIR LOCAL SELLING PRICES ARE NOTED BELOW IN US \$ TON

	CHENICAL INTERMEDIATE	SELLING PRICE IN MEXICO US \$ PER TON
1.	BUTYLENE	918 (K LITRE)
2.	PHENOL	1476
3.	CHLORINE	262
4.	ACETIC ACID	700
5.	O-CRESOL	437
11.	DIETHYLANINE	1968
15.	BROMINE	525
17.	ACETONE	1662
19.	ETHYLAMINE	1749
20.	ISOPROPYLANINE	1530
21.	METHYL MERCAPTAN	3061
22.	PROPIONIC ACID	2842
23.	CHLOROACETYL CHLORIDE	2624
25.	FORMALDEHYDE	350
26.	H-BUTANOL	656
28.	SODIUM	306
29.	METHYL CLLORIDE	743
31.	DIPROPYLAMINE	1968
32.	ARSENIC TRIOXIDE	1749
33.	SODIUM HYDROXIDE	284
35.	AIMONIA	131
36.	SULPHUR-EXTRACTED	130
37.	COPPER	612
38.	NITROBENZENE	787
39.	ETHYLENE DIAMINE	1750
40.	CARBON DISULPHIDE	2186
41.	SOLUBLE ZINC SALT	1312
41.	SOLUBLE ZINC SALT	1312

.../Cont'd.

CONTINUATION:	MEXICO -	TAB LE	8.4.1

0	HENICAL INTERNEDIATE	SELLING PRICE IN MEXICO US \$/TON
42.	MANGANESE SULPHATE	875
44.	HYDROGEN PEROXIDE 50%	875 (X LITRE)
45.	MALEIC ANHYDRIDE	1000
46.	BUTADIENE	525
49.	CHLORAL	CAPTIVE USE
50.	BENZENE	328
51.	SULPHURIC ACID	57
52.	CYCLOPENTADIENE	2626
53.	VINYL CHLORIDE	424
59.	PENTANES	437
61.	PARA-NITROPHENOL	2186
62.	METHANOL	262
63	PHOSPHORUS PENTASULPHIDE	2624
64.	BUTETHANOL	787
65.	ETHANOL	197
67.	HETHYLAMINE	1530
69.	ETHYLACETOACETATE	732 (K LITRE)
70.	PHOSPHORUS TRICHLORIDE	1750
76.	CALCIUN SALT	306
76.	LEAD SALT	394
77.	NITRIC ACID	262
78.	ANILINE	1750
80.	TOLUENE	284
82.	CROTONIC ACID	1093
83.	HYDROGEN FLUORIDE	525
85.	TRICHLOROETHYLENE	1749
88.	META-CRESOL	656

- 112 -

PERU - TABLE 10.4

PESTICIDE PRODUCTION

		TONS ACTIVE 1978				
PRODUCT	PRODUCER	ESTIMATED CAPACITY	ESTIMATED PRODUCTION			
PROCESSED SULPHUR SULPHUR POWDER PURE SULPHUR SULPHUR 80 WP	RAYON Y CELANESE PERUANA S.A. PERUANA S.A. PERUANA S.A.	5000	1320 88 504 615			
COPPER OXYCHLORIDE	INDUSTIAS QUINICAS OMICRON INDUSTRIA PERUANA de	100	90			
	METALES y DERIVADOS S.A.	20(1	160			
LEAD ARSENATE	S.U.L. Co. S.A.	1000	500			
CALCIUM ARSENATE	S.U.L. Co. S.A.		200			
COPPER OXYCHLORIDE	S.U.L. Cia. S.A.	300	260			
COPPER SULPHATE	EIGHT SEPARATE PLANTS	10000	6000			

2

53

-

URUGUAY - TABLE 11.4

PESTICIDE PRODUCTION

		TONS ACTIVE 1978			
PRODUCT	PRODUCER	ESTIMATED CAPACITY	ESTIMATED PRODUCTION		
COPPER SULPHATE COPPER OXYCHLORIDE 50 SULPHUR DUST SULPHUR WP	FANABROQUI RESYPLAST QUINUR QUINUR	500 500 500 500	350 60 210 240		

•

N.B. COPPER AND SULFIUR ARE AVAILABLE LOCALLY.

VENEZUELA - TABLE 12.4.

PESTICIDE PRODUCTION

	BDODUGUD	TONS ACTIVE 1978			
PRODUCT	PRODUCER	ESTINATED CAPACITY	ESTIMATED PRODUCTION		
PROPANIL	INICA	1000	600		
PROPANIL	PENCO	350	80		
PROPANIL	INQUIPORT	i000	300		
ATRAZINE	PENCO	500	250		
2,4-D ESTER	RESIMON	2 ,00	1200		
SULPHUR DUST	PETROLECS DE VENEZUELA	500	500		
SULPHUR WP	PENCO	300 ·	30		

N.B. ALL INTERMEDIATES WERE IMPORTED EXCEPT LOCALLY AVAILABLE SULPHUR AT US \$ 100 TON. THE 2,4-D ACID IS IMPORTED FOR LOCAL ESTERIFICATION. ę.

VENEZUELA - TABLE 12.4.1

CHEMICAL INTERMEDIATE PRODUCTION

THE FOLLOWING CHEMICAL INTERMEDIATES ARE PRODUCED IN VENEZUELA, THE SELLING PRICES OF THESE INTERMEDIATES IN VENEZUELA ARE NOTED BELOW IN US \$ TON

	CHENICAL INTERMEDIATE	SELLING PRICE IN VENEZUELA US \$ PER TON
		(20)
3.	CHLORINE	600
4.	ACETIC ACID	800
33.	SODIUM HYDROXIDE	60
35.	AMMONIA	110
36.	SULPHUR	100
51.	SULPHURIC ACID	120
53.	VINYL CHLORIDE	460
59•	PENTANES (ONLY AL L.P.G.)	NOT KNOWN
65.	ETHANOL (ONLY AS RUM)	NOT KNOWN
77.	NITRIC ACID	200

ARGENTINA - TABLE 1.5. - PESTICIDE FORMULATION CAPACITIES

TONS/K LITRES

BODINU INOD	INSE	ECTICII	NES I		HERBICIDES				FUNGICIDES		
FORMULATOR	Liquid	WP	Dust	G	Liquid	WP	Dust	G	Liquid	WP	Dust
ATANOR	1000	1000	1000		5000	1000				1000	1000
CIA. QUINICA	2000		1000	1000	3000			1000	1000	1000	1000
CIBA-GEIGY	1000	1000			1000	1000					500
REPOSA	2000	1000	1000	1000	2000	1000		1000	1000	1000	1000
DUPERIAL (ICI)	1000	1000	1000		1000						1000
BAYER	1000		1000	1000	1000			500			500
PUNCE	1000	1000	1000	1000							
ICONA	1000	1000	1000	1000							
SINTYAL	1000				1000						
KREGLINGER	1000		1000		1000						500
RANCO	1000				1000						500
VINELLI	1000				1000						500
VELSICOL	1000				1000						
GYLER	1000				1000		}				
SINTESIS QUINICA	1000				2000					ł	
BASSO Y TONNELIER		2000	ł	1000						1000	5000
QUINICA ESTRELLA	1000	1000			1000						

٢.

ARGENTINA - TABLE 1.5.1.

LOCAL PRODUCTION OF PESTICIDE FORMULATION ADDITIVES

THE FOLLOWING ADDITIVES FOR PESTICIDE FORMULATION ARE PRODUCED IN ARGENTINA AND THEIR LOCAL SELLING PRICES ARE NOTED BELOW IN US \$ TON/K LITRE.

FORMULATION ADDITIVE	SELLING PRICE IN ARCENTINA US \$ PER TON/K LITRE
HEAVY NAPTHA-HICH FLASH - S.G. 0.873	600 (K LITRE)
XYLENE - S.G. 0.865	634 (K LITRE)
KEROSENE - S.G. 0.9	220 (K LITRE)
ALCOHOL - ISOBUTANOL	1400
BENZENE SULPHONATE WETTING AGENTS 75%	2900
TALC	100
KAOLIN	194
DOLOMITE	112
DIATOMACEOUS EARTH	240
BENTONITE	180

Σ

BRAZIL - TABLE 3.5.

PESTICIDE FORMULATION CAPATICIES

TONS/K LITRES

	INSECTIO	IDES -	- TONS/K	LITRE	HERBICIDES		FUNCICIDES		
FORMULATOR	Liquid	WP	DUST	G	Liquid	ЯР	Liquid	ЯР	Dust
BAYER	10000	5000	20000	1000	10000	1000	1000	1000	2000
CIBA-GEIGY	10000	5000	15000	1000	4000	5000		1000	Į
SHELL	10000	5000	15000		4000	5000	Í	1000	1
DUPONT		1000	2000		1000	5000		5000	Į
HOECHST	5000	100 0					1000	1000	
CNDA (RHODIA)	5000	5000			2000	3000			
BASF	5000		5000		1000	2000			
ELANCO					6000	2000			
CIA. IMPERIAL (ICI)	5000	1000	5000		1000	l		1000	
DOW	5000		ļ		20000	l			
ROHM AND HAAS					5000		1000	5000	ł
CYANAMID	5000	2000	5000	ł	5000	1000		1000	
SANDOZ	5000		5060	2000				5000	ļ
MONSANTO					20000	ł			1
VELSICOL	5000		5000	2000	5000			Į –	[
STAUFFER	2000	1			2000			{	
IHARABRAS	5000	2000	5000	2000	5000	2000	1000	1000	
CUILINI			{				2000	3000	{
BENZENEX	5000		10000		2000				
COCITO	2000 /		2000		1000	1		1	ĺ
BUSHLE + LEPPE	2000		5000		1000				
AGROCERES	5000	2000	5000	2000				1	
UNION CARBIDE		5000		5000	1				1
DIAMOND	2000	1000	5000		1000	1000	1000	1000	1
NORTOX	5000	2000	6000		5000				

۲.,

BRAZIL - TABLE 3.5.1.

LOCAL PRODUCTION OF PESTICIDE FORMULATION ADDITIVES

THE FOLLOWING ADDITIVES FOR PESTICIDE FORMULATION ARE PRODUCED IN BRAZIL, AND THEIR SELLING PRICES IN BRAZIL ARE NOTED BELOW IN US \$ TON/K LITRE

FORMULATION ADDITIVE	SELLING PRICE IN BRAZIL US & PER TON/K LITRE
XYLENE	568
HEXTLENE GLYCOL	795
CYCLOHESANONE	591
NON IONIC POLYOXYETHYLATED EMULSIFIERS	18 18
KAOLIN (325 MESH)	34.10
TALC (325 NESH)	22.73

CENTRAL AMERICA - TABLE 4.5.

PESTICIDE FORMULATION CAPACITIES

TONS/K LITRES

	IN	SECTIC	IDES		HERBICIDES			FUNGICIDES	
FORMULATOR	Liquid	WP	Dust	G	Liquid	WP	G	Liquid	WP
BAYER N.G.S.	5000	1000	2000	1000	2000	1000			
NORSANTO N.G.S.	10000				2000		ļ		
SHELL N.G.S.	5000		2000		2000		ĺ		
ICI N.	2000				5000				
FERTICA N.S.	10000	1000	2000		2000	1000	Į		
ORTHO CR.	10000	2000	3000	2000	2000	1000	1000		
GURDIAN CR.	2000				1000		l		
GURDIAH N.	5000		ł		1000				
ROHM AND HAAS CR.	2000	4000		3000	5000	1000	ł	2000	3000
TECUN G.	2000				2000			ł	
AGROQUIMICAS DE G.	5000				2000				
AVELAR G.	2000				1000			ł	
MELO P.	2000		{		1000				
RAPPACCIOLI N.	2000				1000	[
AGROQUINICAS DE H.	2000				2000			ł	
HERCULES N.	10000]	{		1000	j	l		
VALENZUELA G.	1000								

N.	DENOTES	NICARAGUA
G.	**	GUATIMALA
s.	24	SA)_/ADOR
CR.	**	COSTA RICA
P.	n	PANAMA
Н.	**	HONDURAS

- 121 -

CENTRAL AMERICA - TABLE 4.5.1

LOCAL PRODUCTION OF PESTICIDE FORMULATION ADDITIVES

THE FOLLOWING ADDITIVES FOR PESTICIDE FORMULATION ARE PRODUCED IN CENTRAL AMERICA, AND THEIR LOCAL SELLING PRICES ARE NOTED BELOW IN US \$ TON/K LITRE

FORMULATION ADDITIVE	SELLING PRICE IN CENTRAL AMERICA US \$ PER TON/K LITRE				
H. H. A. (AROMATIC TYPE) AIKYLATED BENZENE SULPHONATE EMULSIFIERS	502 (K LITRE) 1500 (60% ACTIVE)				
CALCIUM CARBONATE 10-20 MESH U.S.	26-46				
PUNICE 10-20 MESH U.S.	79-38				
DIATOMACEOUS EARTH 100 MESH	77–18				

CHILE - TABLE 5.5

PESTICIDE FORMULATION CAPACITIES

ONE SHIFT - 300 DATS/TEAR OPERATION

	INSECTICI	ies tons	HERBICIDES - K LITRES	
FORMULATOR	Liquids	Dasts	Granules	Liquids
BAYER	1000	500	500	500
CIBA-GEIGY	1000			
SHELL	500			
ANASAC	500			
QUINETAL		1000	300	

COLOMBIA - TABLE 6.5

PESTICIDE FORMULATION CAPACITIES

TONS/K LITRES

FORMULATOR	INS	ECTICI	DES		HERBI	CIDES		FUNGIC	IDES	
FORMULATOR	Liquid	WP	Dust	G	Liquid	WP	G	Liquids	WP	Dust
BAYER	5000		1000	1000	3000					
HOECHST	5000	2000	2000		1000	1000	I			
CELLISTIC	1000	2000	2000	1000	2000	1000				
CIBA-GEIGY	2000	1000			2000	1000				
PROFICOL	5000		2000		3000					
SCHERING	5000	2000	}	1000	2000	1000				
DOW	1000				2000					
BASF	2000		2000		2000					
ROHM AND HAAS					3000			1000	3000	1000
DUPONT	1000				1000	1000	1000		5000	
ELANCO		1			3000					
SHELL	5000				2000					
NONSANTO	2000				1000					
UNION CARBIDE	2000	2000		1000						ł
QUINOR	2000	2000	2000		2000					

COLOMBIA - TABLE 6.5.1

LOCAL PRODUCTION OF PESTICIDE FORMULATION ADDITIVES

THE FOLLOWING ADDITIVES FOR PESTICIDE FORMULATION ARE PRODUCED IN COLOMBIA, AND THEIR LOCAL SELLING PRICES ARE NOTED BELOW IN US \$ TON/K LITRE

FORMULATION ADDITIVE	SELLING PRICE IN COLONBIA US \$ PER TON/K LITRE
XYLENE	362
KEROSENE	2350
CYCLOHEXANONE	2275
FATTY ALCOHOL SULPHONATE EMULSIFIERS	2825 (AVERAGE PRICE)
KAOLIN	43.75 (200 MESH) 46.25 (325 MESH)
DOLONITE	NOT KNOWN
CALCIUN CARBONATE	60 (200 MESH)
CYCLOHEXANONE FATTY ALCOHOL SULPHONATE EMULSIFIERS KAOLIN DOLOMITE	2275 2825 (AVERAGE PRICE) 43.75 (200 MESH) 46.25 (325 MESH) NOT KNOWN

MEXICO - PABLE 8.5

PESTICIDE FORMULATION CAPACITIES

TONS/K LITRES

FORMULATOR	INSI	CTICI	DES		HERBI	CIDES		FUNG	ICIDES	
FORROLATOR	Liquid	WP	DOST	G	Liquid	WP	G	Liquid	WP	Dust
DUPONT	5000	2000	2000	1000	2000	2000	1000		2060	1000
RCHIL AND HAAS					2000					
QUINICA ORGANICA	2000							1000	2000	2000
CIBA-CEIGY	5000	2000	5000	1000	2000	3000	1000			1000
BAYER	5000	3000	2000	2000	2000	1000	1000		2000	1000
UNION CARBIDE	3000	3000		2000						
SHELL	2000				2000					
ICI	2000			,	3000					1000
CYANAMID	2000	1000	2000	2000	1000				1000	
FERTIMEX	10000	5000	5000							
VIMSA	2000		5000		2000					
DOW	2000				5000					
DIAMOND	2000			2000	3000			2 000	2000	
HOECHST	3000				3000			1000	1000	
LUCAVA	5000	3000		{	2000					
CALVILLO	3000	3000		[3000					1000
PALSA	5000		{		5000	1				
QUINICA POTOSI	2000							1000	1000	1000
POLAQUINIA	2000				5000			2000	1000	1000
PRODUCTOS BASICOS	5000	2000	2000							

r -

MEXICO - TABLE 8.5.1.

LOCAL PRODUCTION OF PESTICIDE FORMULATION ADDITIVES

•

ר ר THE FOLLOWING ADDITIVES FOR PESTICIDE FORMULATION ARE PRODUCED IN MEXICO, AND THEIR LOCAL SELLING PRICES ARE NOTED BELOW IN US \$ TON/K LITRE

FORMULATION ADDITIVE	SELLING PRICE IN MEXICO US \$ PER TON/K LITRE
XYLENE	295 (K LITRE)
KEROSENE	175 (K LITRE)
ALCOHOLS	525 (K LITRE)
NON IONIC POLYOXYETHYLATED AND ALKYLATED BENZENE SULPHONATE EMULSIFIERS	2055 (AVERAGE)
KAOLIN (325 MESH)	86
TALC (325 MESH)	87.50
SILICASAND (20-40 MESH US)	65.60

PARAGUAY - TABLE 9.5.

PESTICIDE FORMULATION CAPACITIES,

ONE SHIFT - 300 DAYS/YEAR OPERATION

FORMULATOR	INSECTICIDE LIQUIDS K LITRES
SHELL	300
ESTRELLA	300

PERU - TABLE 10.5.

PESTICIDE FORMULATION CAPACITIES,

ONE SHIFT - 300 DAYS/YEAR OPERATION

INSECTIC	IDES -	HERBICIDES - K LITRES		
Liquids	WP	Dust	Granule	Liquids
1000				
500				
1000		3000	2000	500
1000		2000		
1000				
1000	2000			
	Liquids 1000 500 1000 1000 1000	Liquids WP 1000 500 1000 1000 1000	Liquids WP Dust 1000 500 300C 1000 2000 1000 0	1000 500 1000 300C 2000 1000 2000

÷

• •

URUGUAY - TABLE 11.5.

PESTICIDE FORMULATION CAPACITIES,

۰

ĵ

4

ONE SHIFT - 300 DAYS/YEAR OPERATION

	Liquids -	Fungicides-Tons	
FORMULATOR	Insecticides	Ferbicides	ŵP
QUIMUR	300	500	500
BASF	300	300	
BATER	300	300	
DUPERIAL	300	300	
SHELL	300	300	

•

VENEZUELA - TABLE 12.5.

PESTICIDE FORMULATION CAPACITIES

Liquids	T				HERBICIDES-TONS/K LITRES			
	WP	Dust	G	Liquids	WP	G		
10000	2000			5000	1000			
5000	1000	2000	1000					
5000	2000	2000		2000	1000			
10000	3000	2000	3000	2000	1000			
				2000	ĺ			
5000	3000	2000	3000		1000	2000		
	5000 5000 10000	5000 1000 5000 2000 10000 3000	5000 1000 2000 5000 2000 2000 10000 3000 2000	5000 1000 2000 1000 5000 2000 2000 1000 10000 3000 2000 3000	5000 1000 2000 1000 5000 2000 2000 2000 5000 2000 2000 2000 10000 3000 2000 3000 2000 2000 2000 2000 2000 2000	5000 1000 2000 1000 5000 1000 5000 1000 <th< td=""></th<>		

N.B. BASF AND HOECHST HAVE CEASED LOCAL FORMULATION OF PESTICIDES

•

- 132 -

8. INTERMEDIATES REQUIRED FOR PESTICIDE PRODUCTION

The more important insecticides, herbicides and fungicides which are used in volume in Latin America, are noted in List B below.

The important chemical intermediates which are normally required in the production of these pesticides are noted in List A, and each intermediate is numbered.

The numbers which follow each pesticide on List B refer to the chemical intermediates (as numbered on List A) required for the production of that pesticide.

In this way, it may be seen which chemical intermediates are required for the production of each pesticide noted on List B, some of which are produced in Latin America, and so noted in the Tables, prefixed 1.4. up to 12.4., which may be found in Section 7.

The countries where some chemical intermediates are produced are Argentina, Brazil, Central America, Colombia and Venezuela. The intermediates which are produced locally are noted in Tables 1.4.1. up to 12.4.1. in Section 7.

Thus, by referring to the appropriate country tables and to Lists A and B, it may be noted which of the intermediates required to make the pesticides produced locally are available locally, and which intermediates must be imported.

Pesticide producers were unwilling to divulge their intermediate requirements, their source or their production technology.

•,

- 133 -

List A. Raw materials for basic production of pesticides

Raw materials for herbicide production (inter alia)

- 1. Butylene
- 2. Phenol

۱

- 3. Chlorine
- 4. Acetic acid
- 5. o-cresol
- 6. 4-amino-benzene sulphonamide (78 + 79)
- 7. Methyl chloroformate (9 + 62)
- 8. Ethyl mercaptan
- 9. Phosgene
- 10. Hexamethyleneimine
- 11. Diethylamine
- 12. 4-chlorotoluene (40 + 44 + 80)
- 13. Dimethylamine
- 14. 3,4-dichloraniline (81 + 77)
- 15. Bromine
- 16. 3-sec-butylamine
- 17. Acetone
- 18. Cyanuric chloride
- 19. Ethylamine
- 20. Isoprorylamine
- 21. Methyl mercaptan
- 22. Propionic acid
- 23. Chloroacetyl chloride
- 24. 2,6-diethylaniline
- 25. Formaldehyde
- 26. 1-butanol
- 27. Pyridine
- 28. Sodium
- 29. Methyl chloride

- 30. 1-chloro-4-trifluoromethyl benzene (80 + 3 + 83)
- 31. Dipropylamine
- 32. Arsenic trioxide
- 33. Sodium hydroxide
- 34. 🗙 picoline
- 35. Ammonia

Raw materials for fungicide production

36.	Sulphur deposits or extraction
37.	Copper ore or scrap
38.	Nitrobenzene (77 + 50)
39.	Ethylene diamine
40.	Carbon disulphide
41.	Soluble Zinc salt (viz. sulphate)
42.	Manganese sulphate (or chloride)
43.	Propylene-bis-dithiocarbamate (84 + 40 + 33)
44.	Hydrogen peroxide
45.	Maleic anhydride
46.	Butadiene
47.	Tetrahydrophthalic anhydride (45 + 46)
48.	1,1,2,2,-tetrachloroethane-sulphenyl chloride (85 + 86)
Raw	materials for insecticide production
49.	Chloral
	Benzene
	Sulphuric acid
<u>.</u> .	

49.	Chiorai
50.	Benzene
51.	Sulphuric acid
52.	Cyclopentadiene
52.	Vinyl chloride
54.	Camphene (fraction of gum turpentine)

4 6 1

•

•

- 55. Hexachloropentadiene (59 + 3)
- 56. 1,4-diacetoxybut-2-ene (87 + 4)
- 57. Thionyl chloride
- 59. Pentanes
- 60. Fullers earth
- 61. Para-nitrophenol (3 + 50 + 77 + 33)
- 62. Methanol
- 63. Phosphorus pentasulphide
- 64. Butethanol
- 65. Ethanol
- 67. Methylamine
- 68. Nitrometacresol (77 + 88)
- 69. Ethylacetoacetate
- 70. Phosphorus trichloride
- 71. Sulphuryl chloride
- 72. Acetoacetic acid diethylamide (69 + 11)
- 73. Trimethyl phosphite (70 + 62)
- 74. 1-naphol
- 75. Arsene pentoxide
- 76. Calcium (or lead) salt
- 77. Nitric acid
- 78. Aniline
- 79. Chlorsulphonic acid
- 80. toluene

•

•

- 81. 0-dichlorobenzene (3 + 50)
- 82. Crotonic acid
- 83. Hydrogene fluoride

- 136 -

- 84. Propylenediamine
- 85. Trichloroethylene
- 86. Sulphurdichloride
- 87. 2-butane-1,4-diol
- 88. meta-cresol

4

List B. Pesticide technical materials used in volume in Latin America

The pesticides listed below are used in volume in Latin America, and are therefore those chosen as being possible candidates for local production in Latin America.

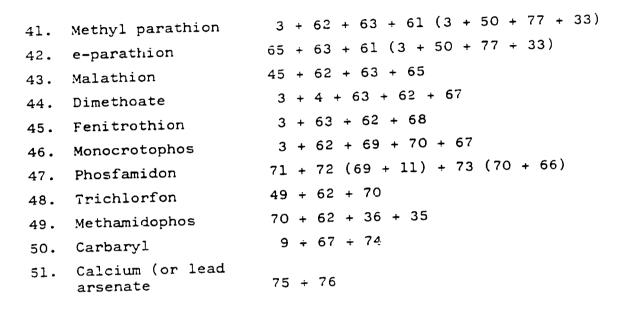
The numbers noted against each pesticide refer to the raw materials (intermediates) required for the manufacture of that pesticide.

The actual raw materials required in the production of any pesticide are noted below only by their appropriate number. These raw materials may be identified by reference to the attached List A, which shows all the raw materials required for pesticide basic production, by both number and name.

Herbicides

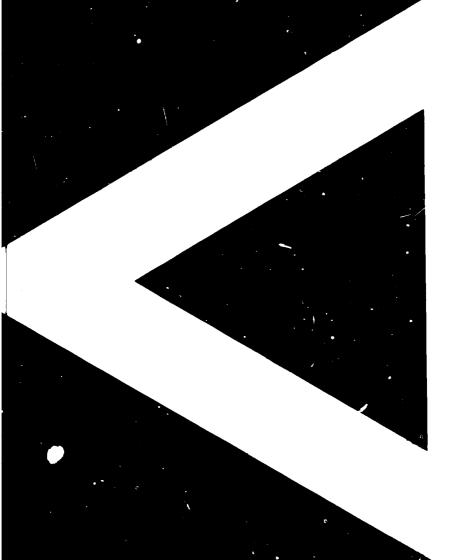
1.	DNBP	1 + 2 + 36
2.	2,4-D	2 + 3 + 4
з.	МСРА	3 + 4 + 5
4.	Asulam	6 (78 + 79) + 7 (9 + 62)
5.	Molinate	8 + 9 + 10
6.	Benthiocarb	3 + 11 + 40 + 80 + 44
7.	Diuron	9 + 13 + 81 (3 + 50) + 77
8.	Bromacil	15 - 16 - 82 + 9 + 35
9.	Atrazine	18 + 19 + 20
10.	Ametryne	Atrazine + 21
11.	Simazine	18 + 19
12.	Propanil	22 + 14 (81 + 77)
13.	Alachlor	23 + 24 + 25
14.	Butachlor	23 + 24 + 25 + 26
15.	Paraquat	27 + 28 + 29
16.	Trifluralin	31 + 36 + 30 (80 + 3 + 83)
17.	Dalapon	3 + 22

18.	MSMA	29	÷	32	÷	33	
19.	Picloram	3	÷	34	÷	35	
20.	TCA	3	÷	4			


Fungicides

21.	Sulphur dust/WP	36
22.	Copper	37
23.	PCP	2 ÷ 3
24.	Quintozene	3 + 38 (77 ÷ 50)
25.	Mancozeb	33 + 39 + 40 + 41 + 42
26.	Maneb	33 + 39 + 40 + 42
27.	Metiram	39 + 40 + 41
28.	Propineb	41 + 43 (84 + 40 + 33)
29.	Thiram	13 + 40 + 44
30.	Zineb	39 + 40 + 41 + 33
31.	Ziram	13 + 40 + 41
32.	Captan	3 + 40 + 45 + 46 + 35
33.	Captafol	35 + 47 (45 + 46) + 48 (85 + 86)

Insecticides


34.	DDT	3	+	49	+	50	+	51						
35.	внс	3	+	50										
36.	Aldrin	3	+	52	+	53	+	55	(59	÷	3)			
37.	Toxaphene	3	÷	54										
38.	Endosulfan	55	÷	56	+	5 7								
39.	Endrin	3	+	53	+	52	+	55	(59	+	3)	+	44	
40.	Heptachlor	3	+	59	+	60	+	55	(59	+	3)			

- 138 -

\$

