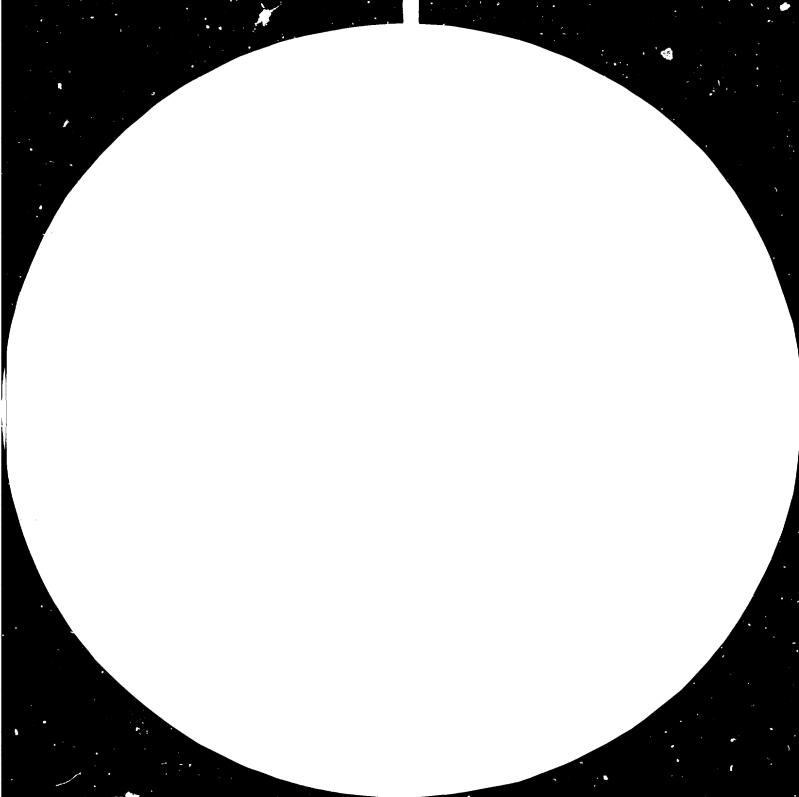


OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.


FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

RISTRICTED

09569

DP/ID/SER.B/224 16 April 1980 English

ECONOMIC MAPPING OF SPONTANEOUS FLORA (MEDICINAL AND ESSENTIAL OILS PLANTS)
OF A GEOGRAPHICAL AREA FROM MEPAL

N E P A L SI/NEP/78/802

Terminal report

Prepared for the H.M.Government of Nepal by the United Nations Industrial Development Organization executing agency for the United Nations Development Programme

Based on the work of Ovidiu Bojor, pharmaceutical scientist (The State Institute for Drug Control and Pharmaceutical Research - Bucharest)

United Nations Industrial Development Organization
Vienna

^{*} This document has been reproduced without formal editing

TABLE OF CONTENTS

	Page
Summary	2
Introduction	4
Findings	7
1. Activites in the field	
1.1. Economic mapping in Ganesh - Himal	7
1.2. Information concerning the medicinal herbs from .	
Narayani District	Ë
1.3. Collection of medicinal herb samples for	
analysis and processing	9
1.4. Preparation of a batch of a new essential oils	9
1.5. Collection of some informations about the medicinal	
herbs used in traditional medicine	LO
1.6. Preparation of a Herbarium	12
2. Methodological and Laboratory Activities in the	
Department of Medicinal Plants	
2.1. General quality requirements for the reception	
and delivery of medicinal and essential oils	
plants	12
2.2. Preparation of 50 new pharmaceutical products	
from indigenous raw-material	12
2.3. A new procedure for obtaining solasodine	1.4
2.4. Analytical methodology	14
2.5. Extraction. Processing	14
2.6. Training programme and research work	15
3. Others	
3.1. Development of a distribution system of the	
new drugs	17
3.2. Training form	17
3.3. Cooperation	18
4. Recommendations	19
Appendices	

APPENDICES

- Annex 1 Job description.
- Annex 2 Name and function of project counterparts.
- Annex 3 Code index used for Tiru Danda end Ganesh-Himal zone economic map.
- Annex 4 The map of Narayani zone and the list of plants identified in that zone.
- Annex 5 List of medicinal plants samples collected for analysis and processing.
- Annex 6 List of medicinal herbs and trees used in traditional medicine.
- Annex 7 The list of plants from Herbarium.
- Annex 8 The list of pharmaceutical products prepared in Nepal.
- Annex 9 General quality requirements for medicinal and aromatic plants with the aim of their industrial processing.
- Annex 10 Results of the analysis of some raw materials and pharmaceutical products prepared in Nepal.
- Annex 11 Procedure for obtaining solasodine.
- Annex 12 Semi-quantitative micromethod of determining total alkaloids.
- Annex 13 Phytobiological preliminary screening methodology of some extracts or active principles isolated from plants for testing the cytostatic effect.
- Annex 14 Therapeutic groups.
- Annex 15 List of pharmacological laboratory equipment, small-scale industry equipment and technical assistance (UNIDO-Experts) as follow-up activity of the present report in Nepal.

SUMMARY

The basis of the present Report is represented by the aspects concerning the implementation and Follow-up in the Kingdom of NEPAL of a medicinal plants and essential oils extractive industry.

At present, there are favourable conditions to start a small-scale industry which could be extended by 1985, enough to become a branch of the national industry in order to meet both domestic and export needs.

Spontaneus and cultivated flora of medicinal plants can provide the raw-material for the future industry.

In order to reevaluate the spontaneous flora, the economic mapping has already begun and the methodology presented.

The last UNIDO Mission (1979/80) in Nepal estimated that the economic mapping might be completed within 4-5 years, covering the whole medicinal plants zones of the country (see Annex 3).

As for the medicinal and oleo-etheric plant cultures, the positive results obtained by cultivating some species of the seven herbal farms by the Royal Drug Research Laboratory (R.D.R.L.) permit to extend the following cultures (Atropa celladonna, Claviceps purpurea, Datura stramonium, Chrysanthemus cinerariefolium, Cymbopogon citratus, a.s.o.).

As for the quality of the raw-material of the future industry it is of importance to standardize the main medicinal and oleo-etheric plants belonging to the spontaneous or cultivated flora. In this report we give the basic principles of the quality requirements for medicinal plants (see Annex 9). Standardization of the raw material will also provide the basic rules of collecting, drying and processing the raw material subsequently used in industry.

We have selected and prepared so far approximately 50 pharmaceutical products using local raw materials (See Annex 8). The products were obtained by weans of non-sophisticated methodology and procedures described in the international pharmacopoeias and simple apparatus, taking also into account the traditional Nepalese medicine.

New products can be easily added to the list of these

drugs for Nepal with minimum UNIDO technical assistance, so that about 40% of the imported pharmaceutical products should be replaced by indigenous drugs till 1985.

The extension of Cymbopogon cibratus culture and of other essential-oil plants in Nepal could offer this country to export immediately essential oils more especially as Nepal has already been solicited for them.

In the field of analytical drug control it is primarily important to give technical assistance for physical-chemical analysis of raw materials, of intermediate and finished products. The Laboratory of Pharmacology of R.D.R.L. needs also urgently suitable apparatus and basic methodology (See Annex 15)

The positive results of the staff from R.D.R.L. in obtaining liosgenin, the alkaloids from Rauwolfia serpentina and some extracts from Rheum emodi. Valeriana walichiland Ergot of rye afford to pass on from Laboratory stage to the Pilot stage of those products. For this project we take into consideration to equip urgently the R.D.R.L. with a crushing and grinding plant (See Annex 15, V/2). The products obtained from those raw-materials could be exported immediately.

With the aim of an indigenous revaluation of the pharmaceutical products obtained from plants by R.D.R.L., we recommen to set up in Kathmandu a Governmental pharmacy endowed with furniture, equipment and suitable personnel (pharmacists, a traditional physician and technical staff). Such pharmacies could be also created in other important towns. The central pharmacy in Kathmandu and eventually the other pharmacies could have rural branch offices ("Pharmaceutical points").

As industry will develop at a Pilot scale or even small industry, the processed products could provide raw material for a large-scale production by the Royal Drug Ltd. after 1985.

Finally, Subregional co-operation in this field with Sri-Lanka, Thailand, Buthan and Bangladesh is also recommended.

INTRODUCTION

The Chemical Industries Section from IOD/UNIDO has during the past few years attached a special importance to the possibility of processing in some developing countries from Africa and Asia a new pharmaceutical and essential oils industry from indigenous herbs.

The development of a small-scale industry in this field is based on the natural resources of raw materials, the classical and traditional data of medicine.

In February 1977, a group of Romanian experts, under the project RP/RAS/76/009 visited NEPAL to collect information and data concerning the available medicinal and essential oils plants which could be processed in this country with UNIDO assistance.

In May 1978 was draft a preliminary Project document for His Majesty's Government of Nepal by UNDP Kathmandu with the title: Primary Health support services programme NEP/78/009/A/25/14. The estimated starting date was proposed 1 September 1978. One of the development aims of this project is to increase the efficacy and production of Ayurvedic medicine to make Ayurvedic establishments provide therapeutic treatments and family planning service also. The Royal Drugs Limited (R.D.Ltd.) belonging to the Ministry of Forests has been indicated in the Long-Term Health Plan (1975-1990) as the institution to be developed for the supply of the total need in essential drugs for Health Services. The same Plan envisages the transfer of R.D.Ltd. under the Ministry of Health. At present (1979), R.D.Ltd. manufactures about 70 preparations.

In September 1978, a UNIDO-Vienna and Joint UNIDO Romanian Centre mission of 2 experts and 2 drivers with two

all-ground cars equipped with quality control laboratory crossed Nepal for two months under the project RP/RAS/78/012. The report of this project has the following title: "Mobile unit of pharmaceutical and essential oils industry to the least developed countries in Asia". This was the second phase of the UNIDO assistance programme for Nepal.

The present report refers to the activity between 5 October 1979 - 4 January 1980 of one expert in the third UNIDO mission in Nepal under the project SI/NEP/78/802/11-01/32.1.D.

The contribution of the host government consisted of research workers, local laboratory facilities, solvents, reagents and a driver with an all-ground car as well as a part of the field equipment and some porters and workers whose work and food were partly paid by the expert and partly by the Government.

The main objectives of the last mission and the programme of activities in the field, Herbal Farms and in the Royal Drug Research Laboratory (R.D.R.L.) of the Department of Medicinal Plants from ministry of Forests were established on the basis of Job description (see Annex 1) with Mr. John Melford the Resident Representative and Mr.Cadiravail Myl-Vaganam SIDFA from UNDT-Kathmandu and with Dr.S.B.Malla, Director General of R.D.R.L.

At present, the R.D.R.L. have quite all the facilities and specialists for research, drug control, laboratory and Pilot scale industry for processing the most important medicinal and essential oils plants from Nepal.

With UNIDO assistance in some technical and laboratory equipment and experts, the small-scale industry could be started by R.D.R.L. in the classic and traditional medicine using the medicinal herbs resources of Nepal.

After extension, one part of this activity can be transferred to R.D.Ltd. for industrialization.

The name and functions of project counterparts are listed in the Annex 2. The mission was supported also by the Staff of U.N.D.P.-Kathmandu.

In the present report are given the exemplifications of an economic mapping of medicinal and essential oil plants of Ganesh-mimal area, the problems concerning the standardization of raw-materials for industry, some methodological data in the laboratory control and processing of a lot of new medicines for Nepal.

The main short-term objectives are to stimulate the developing of R.D.R.L. activity in the Laboratory, Pilot and small-scale industry field.

For long-term objectives we consider necessary to develop the research programme of R.D.R.L. in practical field and to transfer the technology to the R.D.Ltd. for industrial processing. The new medicinal and essential oils plants industry could be extended for it to become a branch of the national industry of Nepal.

FINDINGS

1. Activities in the field

1.1. In the second part of Octobre and the first part of Novembre 1979 with the assistance of R.D.R.L. an expedition was organized in the Ganesh-Himal area in the Nord of the country.

In this trakking a more than 500 Km distance was covered, comprising 8 peak of mountains between 3000 - 3500 m alt. and 4 tops of more than 4000 m alt. from Tiru Danda and Ganesh-Himal zone.

During this trekking an area of approximately 800 sq.Km was investigated in which more 70 medicinal and essential oil plants were identified in large quantities between 250-20.000 Kg (expressed in dry raw-terial in each 25 sq.km. mapped concerning the protection of nature. In the same area, in each 25 sq.Km are available approximately 50 species till 250 Kg.

For this evaluation we used the methodology of economic mapping given in the Final Mission Report RP/RAS/78/012 (See Ref. 23).

The quantities available for industrialization from each medicinal plant are shown in the map from Annex 3 using the codification from the code index of the same annex.

A general survey of the Nepalese territory allows to see that approximately 50,000 sq.Km. are intended to be cultivated, that over 25,000 sq.Km. represent zones that cannot be mapped, with heights overtopping 5000 m,

and an area of approximately 70,000 sq.Km. covered by spontaneous medicinal or cleo-etheric plant cultures.

In the light of the experience we have had so far, we estimate that the mapping of that area with spontaneous medicinal plants of Nepal could take 4-5 years if 4 teams would work actually in the field for 6 (six) months every year simultaneously in different zones.

We think this activity to have priority in order to allow an industry on the vegetable raw material basis in Nepal to be created and developed.

At the same time we must point out that it is necessary that exportation of raw materials from Nepal should be regulated and concrete measures of protecting the nature and the genetic stock of some medicinal species of great importance should be adopted. In case such measures are not taken, some of the most important medicinal species of Nepal flora will completely disappear within the next 10 years.

Collecting and drying centres for medicinal plants organized under the control of the Department of Medicinal Plants from the Ministry of Forests and a central planning of collection of plants in different zones will promote rural development. Thus more manpower will be used and additional income will become available.

Thus the population of those zones will supply more manpower and will be able to make additional profits.

1.2. The second travel in the field was carried out in the Southern zone of the country i.e. the Makwampur and Chitwan Districts in Terai.

Although the trekking was not done in the optimum season, in that zone ecologically completely different from the high mountainous zones over 30 species of medicinal plants were identified (See List in Annex 4).

The number of the main medicinal and oleo-etheric plants in Terai, after a first estimating, is over 100 and the existent available amounts represent a strong supply basis for the future extracting industry. Exploitation of those natural resources in the respective zone is less difficult than in the high zones because of the existing or under construction roads.

On the whole, over 930 medicinal and oleo-etheric plants have been coded in view of future research.

1.3. Besides the economic mapping of the prospected zones in

Himalaya and Terai, samples of medicinal plants for analysis

and processing have been collected.

The samples are presented in Annex 5, each species having a species code and a therapeutical group code, following W.H.O. indications (See Annex 14).

1.4. During our investigations in the field, a special attention was given to the Eupatorium adenophorum species. Owing to its wide dissemination that species represents a real danger for the crops and the forests zone. For the time being, very large surfaces of productive soil or of forests zone are overgrown with Eupatorium adenophorum. After a first estimating, approximatively 10 tons of raw material could be collected from each square kilometer from the overgrown zones. In co-operation with R.D.R.L.-Hitaura Farm - a first batch of that species was distilled obtaining thus 1 Kg of essential oil. One sample of that essential

oil was testes in the Microbiological Laboratory of the State Institute for Prug Control and Pharmaceutical Research - Bucharest. The results of the preliminary microbiological screening are promising, the oil having a strong antifungal and antibacterial activity, as can be seen in Annex 10. At the same time, preliminary investigations carried out on vegetal cells and in mice with a flowers extract of that species resulted in a low toxicity and a mitodepressive effect.

A rirst practical application of the oil obtained from that species is its use - after a clinical trial - as a remedy in dermatological diseases caused by Trichophyton and Micosporium, both widely spread in man and animals. The investigations are still going on.

Thus, by collecting and valorizing in therapeutics E. adenophorum species, one could help the fight against that noxious plant in agricultural and forests zones.

1.5. Besides the collection of some information concerning the medicinal herbs used in the traditional medicine during the trip on the field in Ganesh-Himal zone in Kathmandu two Ayurvedic physicians were contacted.

The first, Dr. Kamdeo Jha - Ayurvedacharya of Tribhutan University, Institute of Medicine - Nardevi Ayurved Campus - Kathmandu - 1s a specialist in Practice of Herbal Medicine, Yoga, Meditation, Religious treatise and Physiotherapy. He has a consulting room in Northern Side of Durbar Square. He uses for therapy medicines prepared by himself and imported from India. He agrees with the idea of one Governmental Ayurvedic Pharmacy establishment in Kathmandu on the national raw-materials and production basis.

Dr. Kamdeo Jha has prepared a list of medicinal plants used in the traditional medicine (completed with other data in Annex 6).

The second, Dr. Vaidya Nath Bhatt from Yetkha 14/73

Kathmandu - Ayurvedic medicine has presented the results obtained in the treatment of Breast and Uterus tumours, gravellish complaints (Kidney and Liver), cardio-vascular and hypertensive diseases, palsy, a.s.o. The basis of Ayurvedic medicine consists of plant extracts and microelements from rocks and some animals.

He has also presented pharmaceutical products prepared in his laboratory: "Nepal Medicine Research Centre Syano Pokhara, HETAUNDA-2 Narayani zone". Some of these medicines are: "Leucorex" (prepared from Elettaria cardamomum, Crocus sativus, Shorea robusta etc.); "Parpatadi Caps" indicated in chronic fever, chronic headache, hyperacidity etc.; "Calcivit (from Nymphaea, Rhododendron, Trachispermum ammi, etc. and oxide of coral in syrup base); "Menavip" (from Tinospora cordifolia, Terminalia chebula, Piper longum, Emblica sp., Cinnamomum tamala, Elettaria cardamomum, etc.) recommended in hyperacidity, peptic ulcer, kidney and urinary bladder stone, etc.

The "Vita-Tona" in whose formula there are more of 30 medicinal plants is recommended to increase strength and vision power, to stimulate the memory being also useful in post delivery conditions.

A part of the medicinal herbs used in this traditional medicine products was introduced in the Annex 6.

We recommend to use the experience of this and other Ayurvedic physicians and help the developing of the traditional medicine data of Nepal.

1.6. During our trekkings various plants were collected for a

Herbarium in two copies. The plants herbarized are partly
listed in Annex 7 and partly are soing to be identified.

2. Methodological and Laboratory Activities in the Department of Medicinal Plants - R.D.R.L.

2.1. At the same time with the identification of availability of raw materials existing in the spontaneous flora of Nepal and the possibility of culture of some medicinal and essential oils plants we consider as opportune to elaborate quality requirements for the reception and delivery of medicinal and aromatic plants with the aim of their industrial processing or to the export.

The main aim in elaborating quality standards for medicinal plants is to delivery to the Industry first quality of raw material. The efficiency of this Industry depends on the quality of raw materials.

With this end in view on the basis of international Pharmacopoeas and in accordance with the existent realities in the field, in co-operation with the staff of R.D.R.L. a group of national quality standards was elaborated. These quality requirements for medicinal plants should be useful also for the future national Pharmacopoea. The basic criterion of standardization and some exemplifications are given in Annex 9.

2.2. Using the raw materials collected from Ganesh-Himal and Terai area and others existing in R.D.R.L. in co-operation with the counterparts almost 50 new pharmaceutical products were prepared at laboratory scale (tinctures, extracts, syrups, drops, tablets, ointments, etc.) and

others are in course of preparation.

In preparing these new pharmaceutical products for Nepal two fundamental aspects should be taken into account:

- a) The adaptation of the formulae and processing according to the pharmaceutical products existing in other national pharmacopoeas.
- b) The modification of the classic formulae on the basis of the data existing in the local traditional medicine after scientific investigation concerning the active principles of the concerning plants.

The name of syrups, tablets, capsules, oitments, drops - Nepalese name was adopted following the vernacular denomination of medicinal plants.

The majority of these pharmaceutical products can be safely used after analytical control without pharmacological investigations because they are already used in different countries. For all these new pharmaceutical products there is an analytical methodology which will be transferred to R.D.R.L. directly at the time of processing.

The new pharmaceutical products are presented in Annex 8. For each product are given the name of products, the name of plant, the processing, principal compounds, pharmacological activity and use in therapeutics, dosage, contraindications, availability of raw materials and the therapeutical group adapted following the W.H.O. indications. New products can be easily added to the list of these drugs for Nepal with UNIDO technical and material assistance, so that about 40% of the imported pharmaceutical products should be replaced by indigenous drugs till 1985.

- 2.3. As in the spontaneous flora of Nepal there are available some species of Solanum genera (Solanum xanthocarpum, S. aculeatissimum, S. glaucum a.s.o.) a new procedure was proposed and experimented for obtaining solasodine as a basis for steroid hormone synthesis. The procedure, a non-sophisticated one, is presented in Annex 11 and is applicable in small-scale industry.
- 2.4. In the field of analytical methodology, besides the data presented in Annex 9 concerning the general quality requirements for reception of raw materials, two new analytical procedures were added. The first, concerning the determination of the content of ergot alkaloids (Annex 12) is very useful for Claviceps purpurea project which was introduced with UNIDO assistance in Nepal.

The second analytical procedure is a new methodology for phytobiological preliminary screening of some extracts or active principles isolated from plants for testing the cytostatic or cytotoxic effects. The procedures are rapid, sensitive and economic. Details on these procedures are given in Annex 13.

We contemplate taking into account the development of a Pharmacological Laboratory belonging to R.D.R.L. for scientifical research and for the future Pharmaceutical Industry. The most important laboratory equipment and assistance are listed in Annex 15.

2.5. In the extraction field, besides the obtaining of essential oil from Eupatorium adenophorum and a small amount of solasodine, was examinated the possibility of a small-scale Industry for the Diosgenin project. The processing of Diosgenin and all the technical details for obtaining this

product from Dioscorea deltoidea are available in the R.D.R.L. The raw material for this project exists in large quantities. In order to start the processing of this very important intermediary product for the production of the steroid hormones it is necessary to provide as quickly as possible a mill and a grinding plant. The existence of such units and the small-scale industry equipment listed in Annex 15 could be used for obtaining other extracts and active principles from Rhemu emodii, Rauwolfia serpentina, Claviceps purpurea, Valeriana walichii a.s.o.

The positive results of the staff from R.D.R.L. in obtaining at laboratory level all these products give the possibility of starting a Pilot and small-scale Industry immediately with UNIDO assistance.

2.6. The training programme during the mission had an implementing nature. Thus in the economic mapping in the field practical demonstrations were carried out in the Tiru-Danda and Ganesh-Himal zones.

In order to standardize and elaborate the casic criteria for quality requirements of raw-materials, ll models of medicinal plant standards were developed.

In the analytical field, for a group of scientifical workers from R.D.R.L. the basic criteria for a new method of Phytobiological screening of some extracts or active principles were demonstrated. At the same time practical demonstrations on 5 vegetable extracts using the laboratory equipment existing in the R.D.R.L. were carried out.

During the processing of pharmaceutical products the theoretical and practical aspects concerning this processing

were examined as well as some aspects belonging to analytical problems of tinctures and extracts.

The results of analyses carried out in Nepalese and in Romanian laboratories and the processing methodology for the new pharmaceutical products are presented in the <u>Annexes 9</u> and 10.

Completion of the training programme is shown in the Annexes 9, 11, 12 and 13 from the present Report. We think these annexes to be useful for the future activity of R.D.R.L.

At the same time we think that a group of R.D.R.L. should be sent abroad as soon as possible in order to prepare the training programme organized by UNIDO (in progress). Some specialists of R.D.R.L. should be also given the opportunity of participating in different International congresses, for example, those from Paris in March 1980 and Bangkok in Septembre 1980, which would improve the scientifical level of the Institute workers.

In the scientifical research field for developing a new Pharmaceutical Industry on the medicinal and essential oil plants basis, we take into account the possibility or developing the already existing research small/group in R.D.R.L. With this end in view we consider useful to centre the short and long term projects of research on the Adaptation proceedings and Development research and later on the Applied and Basic research (in the advanced stage). The first necessity for Nepal is the quantitative and qualitative knowledge of raw material for industrialization. In a second stage investigations on medicinal and essential oil plants in different zones should by extended and adequate new medicinal herbs introduced. In addition it is important to develop the

analytical research in Pharmacology, Phytochemystry, Microbiological and Pharmaceutical technology field.

3. Others

3.1. Development of a distribution system of the new drugs obtained from plants and the medical information system.

In order to distribute the new drugs, we recommend to set up a specialized pharmacy in Kathmandi for products obtained from plants, more than 50% drugs manufactured in the country. The pharmacy should have a staff comprising an ayurvedic doctor at least, 1-2 pharmacists and adequate technicians.

There are at present in Nepal all the favourable conditions to develop Pharmaceutical Industry based on plants with UNIDO technical assistance and to provide the country with semi-industrial and laboratory equipment.

The length of time, from the moment the equipment is obtained until it is made use if, is estimated to be of 12 months in order that a range of at least 50 products should reach a normal output.

3.2. We consider that an important form of training the specialized personnel is to give the R.D.R.L. specialists the opportunity of becoming doctors, the Nepalese Government sending them abroad. Thus they could obtain Ph.D. diplomas in different fields: botany, agrotechnique fermentative analysis and technology.

We propose the subjects of their Ph.D. thesis should be centred on problems concerning closely the development of the extractive Nepalese industry. 3.3. During my mission I had a series of talks with the specialists from the Department of Medicinal Plants in Nepal with Dr. Cadiravali Myl-Vaganam, SIDFA from UNDP Kathmandu, and in Bangkok with: Mr.Christian A. Newman, SIDFA, UNDP, with Dr. Emilio Meneses, Pharmaceutical adviser (UN Asian and Pacific Development Institute) and with Mrs. Sasithorn Wasunat, from Applied Scientific Research Institute of Thailand.

Based on these talks we have come to the conclusion that a cooperation amongst specialists in medicinal and essential oil herbs from Nepal, Shri-Lanka, Thailand (in the future Bangladesh and Buthan as well) is of utter importance and use for the development of small scale pharmaceutical industry based on natural resources of the respective countries.

RECOMMENDATION

According to the present state of valorization of the medicinal and essential-oil plants in Nepal, the following recommendations are submitted for consideration:

- 1. To continue the economic mapping of natural resources of spontaneous medicinal plants in Nepal so that in the following 4-5 years the total surface of Kingdome be mapped.
- Claviceps purpurea, Dioscorea deltoidea, Rauwolfia serpentina, Atropa belladonna, Centella asiatica, Chrisanthemum cinerariefolium, Cymbopogon citratus, Foeniculum vulgare, Valeriana Walichii, Datura innoxia, Mentha arvensis a.s.o. and scientific investigations for the improvement of these species.
- 3. To elaborate quality standards for the vegetal raw materials and for the pharmaceutical products produced at small-scale industry.
- 4. To start the production of about 50 new pharmaceutical products and the processing of diosgenin, total alkaloids from Rauwolfia, Claviceps purpurea, Atropa belladonna, Datura stramonium, and some total extracts from Rheum emodi, Valeriana walichii, Dryopteris filix-mas, Centella asiatica and others.
- 5. To follow-up the positive results obtained with the Eupatorium adenophorum project till a new group human and veterinary drugs for external used are developed.
- 6. To set up of a Pharmacologycal and a Phytochemical laboratories for research and production. To develop the

existing basis of R.D.R.L. for follow-up of small-scale industrial projects. With this and in view we recommend the endowment with supplementary laboratory and Pilot Plant equipment as well as with technical assistance which are listed in Annex 15.

- 7. To regulate the collecting and export of the medicinal plants from the spontaneous flora of Nepal.
- 8. To begin a training programme for the local scientifical workers under UNIDO aegis in other countries having experience in research and processing of the medicinal and essential oil plants.
- 9. To assist the population with new drugs prepared by R.D.R.L. and set up new Pharmaceutical units in Kathmandu and in other 2-3 important towns in Nepal.

ANNEX 1

UNITED MATIONS INCUSTRIAL DEVELOPMENT OFGANIZATION

JOB DESCRIPTION

SI/NEP/78/802/11-01/32.1.D.

Post Title:

Expert in the economic mapping of spontaneous flora (medicinal plants)

Duration:

3 months

Date required:

1 December 1978

Duty Station:

Kathmandu and surroundings

Purpose of the

Project:

The establishment of this mapping will ensure more information and an overall view about the medicinal plants which are available in the country at different periods and for different uses. A programme of production for local use and for export purposes could be developed.

Duties:

The expert, i co-coperation with the local specialised institute, Royal Drugs Limited, will specifically be expected to:

- 1. Collect data and information about the different plants, their location, their availability and their traditional use.
- 2. Prepare an economic mapping for medicinal plants available in the country for local use or for export. Their possible use should also be indicated.

Qualification:

Botanist with extensive experience in medicinal plants, their cultivation, utilization and production.

Language:

English

Background Information: The development of traditional medicine based on available medicinal plants in developing countries is one of the very important programmes of UNIDO. Several programmes for different developing countries have been designed and some of them are already in the stage of implementation. The utilization of medicinal plants in developing countries has always been known and 50% of the population of these countries are using extract or dry herbs for curing many tropical and epidemic diseases.

> Due to the increase of demand of drugs in the world and in developing countries, it merits attention to explore the possibility of the production of drugs on a more economical basis such as utilization of medicinal plants which many developing countries are rich in.

> In February 1977 a group of Romanian experts, under the project RP/RAS/76/009, visited Afghanistan and Nepal to collect information and data on the available plants which could be utilized locally or for export purpose. A detailed report on this mission as well as some recommendations can be seen in the document UNIDO/IOD.104.

> The above mission recommends the preparation of an economic mapping of availabl medicinal plants in Nepal in order that the Royal Drug Institute can plan and develop a medicinal plant project, based on this information, in the interest of the local needs or for export purposes. Therefore the Government has requested

Background UNIDO to assist the Royal Drug Institute Information (ctd): in the preparation of this mapping.

In completing the Joo Description during my 3 months mission I also settled the following aspects described analytically in the present Final Report:

- 1. To settle potentialities of new oleo-etheric species excepting the Cympopogon species. For a profitable industrialization it is necessary to find new sources of plants containing volatile oils. It is necessary to cultivate some classic aromatic species too, so that the future distilling facilities should work to that full output all the year round.
- 2. To settle, technically assisted by UNIDO, the quality standard for receiving and delivering with priority medicinal plants of spontaneous or cultivated flora from the following species or raw materials: Centella asiatica, Catharantus roseus, Folium belladonnae, Radix belladonae, Herba Absinthi, Rhizoma Calami, Tubera Dioscorea, Rhizoma Rhei, Radix Valerianae, Fructus Juniperi, Fructus Cynosbati, Strobili Lupuli, a.s.o.

Without settling quality standards for raw material one could not reckon the industrial output and serious difficulties may arise in supplier-beneficiary relationship.

3. Obtaining new pharmaceutical products with indigenous raw material.

ANNEX 2

NAME AND FUNCTION OF PROJECT COUNTERPARTS

UNDP - Kathmandu

Mr. John Melford - Resident Representative.

Mr. Cadivarail-Myl-Vaganam, SIDFA.

Mr. Vaidya - Programme Officer.

Mr. Hussain, Adm. Officer, Miss. Shanta Khadga, Secretary and Staff of U.N.D.P.

His Majesty's Government of NEPAL:

Mr. Mir Suoba Prakash M. Singh - Secretary of Ministry of Forests.

Mr. Dr. S.B. Malla - Director General of Department of Medicinal Plants - Royal Drug Research Laboratory.

Mr. Dr. Pharm. P.N. Suwal - General Manager of Royal Drugs Ltd Mr. Amir Badur Shresta - Director of Drug Control Laboratory.

From Royal Botanical Garden:

Mr. Damodrr Prasad Joshi, Botanist, Botanical Survey and Herbarium Godawari;

From Royal Drug Research Laboratory the following scientists:

Dr. Asfaq Sheak, Dr.P.M.Adhikary, Dr.K.R.Amatya, Dr. Shresta, Dr.S.R.Adhikary, Dr.Aumitra Vaidya, Mr. Tirtha Ratna Sakya, Mr. Radha Raman Prasad and other counterparts from Royal Drug Research Laboratory.

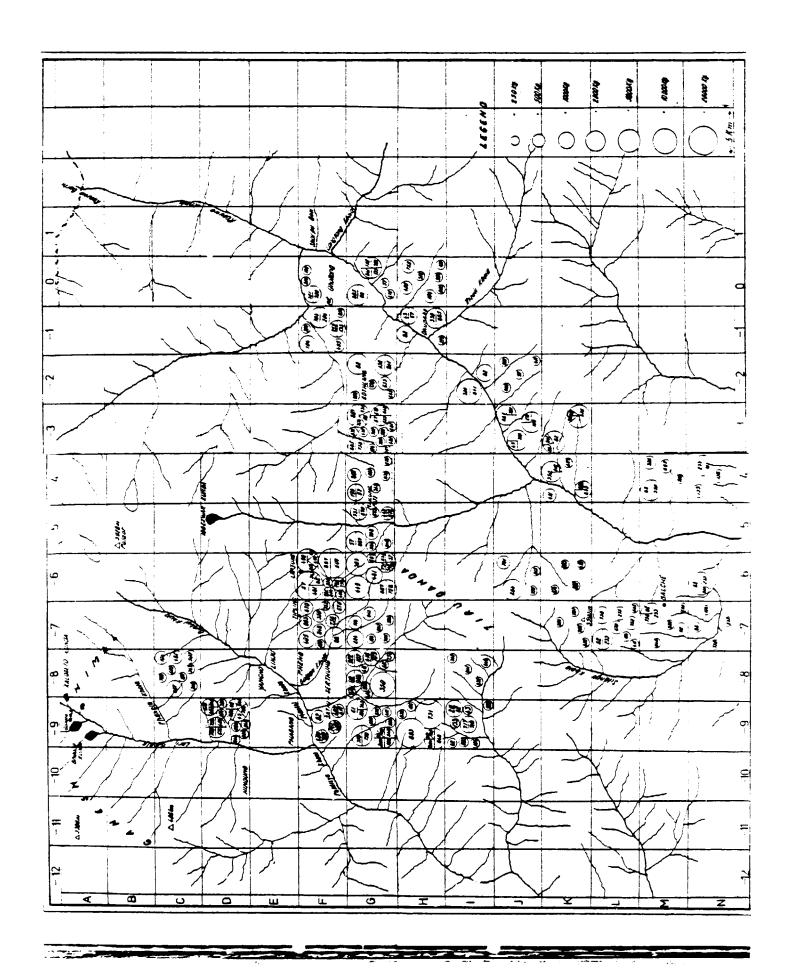
Dr. Kamdeo Jha (Ayurvedacharya) from Tribhuvan University, Institute of Medicine, Narvedi Ayurved Campus, Kathmandu. Dr. Vaidya Nath Bhatt, Yetkka 14/73, Kathmandu.

Code Index Used for Tiru-Danda End Ganesh-Himal Zone Economic Map*).

Code No.	Botanical name	Evaluated part of the Plant
43	Alnus nepalensis D. Don	Bark
57	Anaphalis nepalensis Spreng and	Plant
61	A.triplinervis (Sims) C.B. Clarke Anemone rivularis BuchHam.ex. DC.	Doob
		Root
62	Anemone vitifolia BuchHam.ex. DC.	Root
82	Artemisia vulgaris L.	Plant
104	Berberis asiatica Rox.ex. DC.	Bark
106	Berberis sp.	Bark
107	Bergenia ligulata (Wall.) Engl.	Root
132	Butea minor Buch.	Seed
133	Bidens pilosa L.	Flowers
153	Cassia fistula L. and C. laevigata Willd.	Pod
158	Cassia tora L.	Pod
194	Clematis acuminata DC.	Plant
195	Clematis buchananiana DC.	Plant
2 0 4	Colebrookea oppositifolia Sm.	Root
211	Coriaria nepalensis Wall.	Leaves
233	Cymbopogon citratus (DC.) Stap.	Plant
249	Daphne bholua BuchHam.ex. D.Don	Bark
275	Dioscorea deltoidea Wall.	Tubers
284	Dryopteris filix-mas (L.) Schott.	Rhizome
303	Ephedra gerardiana Wall.	Plant
321	Euphorbia royleana Boiss.	Plant
322	Euphorbia sp.	Plant

In the economic map only quantities exceeding 250 Kg which we recommend to be collected from each 25 sq.Km are shown.

Code No.	Botanical name	Evaluated part of the Plant
326	Eupatorium sp.	Plant
343	Fragaria nubicola Lindl. ex Lacaita and Fragaria sp.	Leaves
350	Gaultheria fragrantissima Wall.	Leaves
366	Gnaphalium luteo-album L.	Flowers
376	Gerbera maxima (D. Don) Bauv.	Flowers
387	Heracleum wallichii DC.	Rhizome
405	Hydrocotyle nepalensis Hook	Plant
4 66	Hydrocotyle podantha Molk	Plant
411	Hypericum uralum Buch - Ham.ex.D.Don	Flowering tops.
414	Hedera nepalensis K. Koch	Plant
416	Ilex sp.	Leaves
449	Juniperus recurva BuchHam.ex.D.Don	Berries (cones)
481	Lichen sp. (Parmelia furfuracea Ach.)	Plant
499	Locelia pyramidalis Wall.	Plant
50 0	Lobelia sp.	Plant
507	Lycopodium clavatum L.	Plant
520	Mahonia nepaulensis DC.	Berries
529	Meconopsis nepaulensis DC.	Root
653	Physalis peruviana L.	Plant
670	Plantago major	Leaves
676	Pogostemon amaranthoides Benth.	Plant
681	Polygonum molle D. Don	Plant
682	Polygonum sp.	Plant
693	Potentilla fulgens Wall	Rhizome
697	Prinsepia utilis Royle	Plant
703	Pteridium aquilinum (L.) Kuhn	Rhizome
704	Pteris sp.	Rhizome

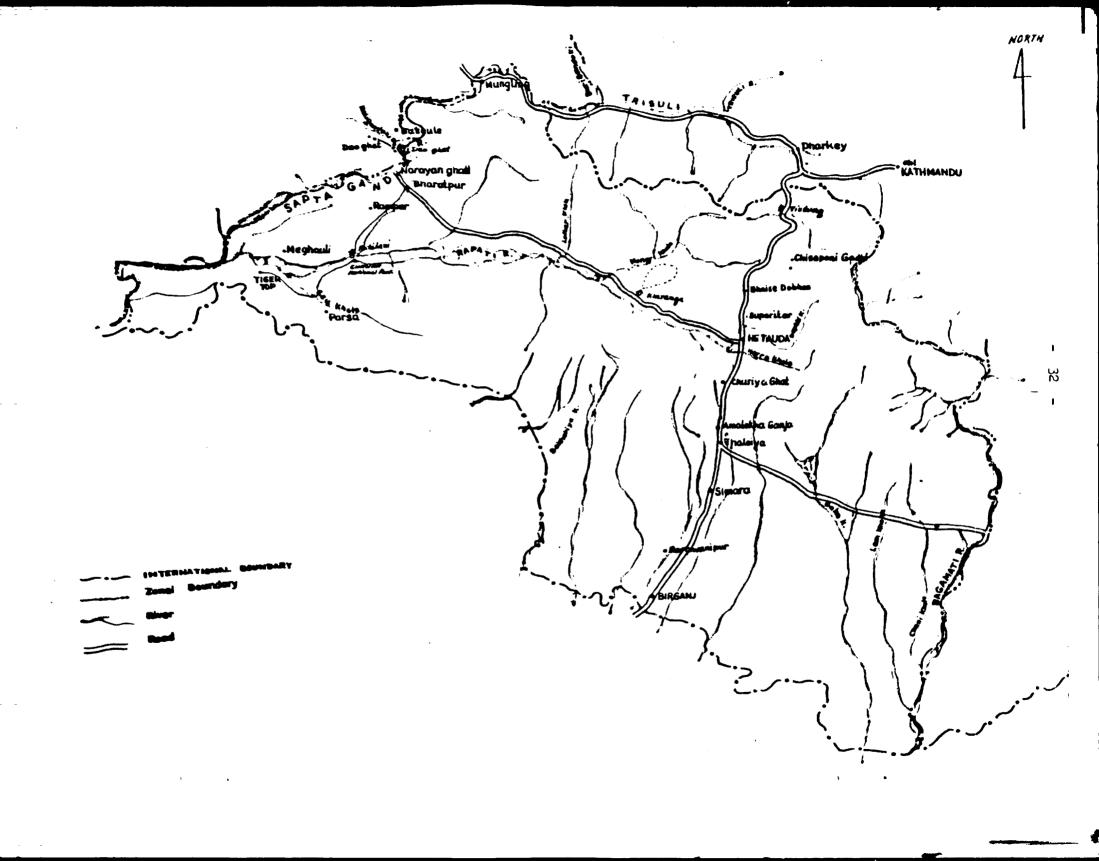

Code No.	Botanical name	Evaluated part of the Plant
714	Pteris quadriaurita Retz.	Rhizome
715	Primula sp.	Rhizome, Plant
718	Quercus lamelosa Smith.	Acorn
731	Rhododendron anthopogon D. Don.	Leaves
732	Rhododendron arboreum Sm.	Leaves
750	Rubia cordifolia L.	Plant
752	Rubus ellipticus J.E.Smith	Leaves
756	Rubus sp.	Leaves
758	Rumex nepalensis Spreng.	Rhizome
782	Saurauia nepaulensis DC.	Bark
793	Selinum tenuifolium Wall.ex C.B.Clarke	Plant
832	Swertia chirata Hamilt.	Plant
840	Senecio densiflorus Wall. ex DC.	Flowering tops
841	Senecio sp.	Flowering tops
848	Taraxacum officinale (L.) Vigg.	Root and Leaves
856	Thalictrum foliosum DC.	Plant
885	Urtica dioica L.	Plant
886	Urtica palmata	Plant
887	Usnea longissima, U. barbata Mot.	Plant
893	Valeriana hardwickii Wall.	Root, Rhizome
894	Valeriana wallichii DC.	Root, Rhizome
912	Viburnum coriaceum Bl.	Bark
913	Viburnum erubescens Wall.ex DC.	Bark
922	Zanthosylum alatum Roxb.	Bark and Seeds
928	Zingiber officinale Rosc.	Rhizome

Remarks

On the mapped territory there are very important amounts of the following arborescent species: Abies spectabilis, Acer campbelli, Alnus nepalensis, Listea umbrosa, Lindera pulcherrima, Michelia champaca, Pinus roxburghii, Pinus Wallichiana, Quercus lamelosa, Quercus semecarpifolia, Rhododendron arboreum, Rhododendron barbatum, Sorbus cuspidata, Tsuga dumosa, Tetracentron sinense, Viburnum sp., a.s.o.

Amounts up to 250 kg. of dried raw material of the following species easy to collect exist also in the same area:

Aconitum sp., Sectio Napellus, Cimicifuga foetida, Corydalis cashmeriana, Datura stramonium, Delphinium sp., Gentiana depresa et G.sp., Impatiens sp., Inula cappa, Jasminum nepalense, Leontopodium alpinum, Paris polyphylla, Primula denticulata, Primula glomerata, Primula periolaris, Primula sp., Prunella vulgaris, Rheum emodi, Sanicula elata, Smilax sp., Strobilanthes atropurpureus, Viola pilosa, Verbascum thapsus, a.s.o.


The map of Narayani zone

(Makawampur and Chitwan Districts) and the list of plants identified

in that zone

Code No•	Botanical name		Code of Therapeutic Group
7	Acacia catechu (L.f.) Willd. (Leguminosae)	XXI	V, XXXI, XL
	Artemisia dubia Wall. ex DC. (Compositae)	XX	
83	Artemisia Sp. (Compositae)	XX	
-	Bauhinia vahlii Wight et Arn. (Caesalpinaceae)	XXI	V
-	Blumeopsis falcata (D.Bon) Merrill. (Compositae)	•	
126	Bryonopsis laciniosa (L.) Naudin (Cucurbitaceae)	II,	XX
153	Cassía fistula L. (Caesalpinaceae)	XXI	I
158	Cassia Tora L. (Caesalpinoideae)	XXI	I
••	Conyza stricta Willd. (Compositae)		
-	Deòregesia Sp. (Urticaceae)		
277	Dioscorea peltata Sm. var.lunata(?) (Dioscoreaceae)		XXV
-	Duabunga grandiflora (Roxb) (Sonneratiaceae)	 	
319	Eupatorium adenophorum Spreng. (Compositae)	VII	·
340	Floscopa scandens Lour. (Cammeliaceae)	XXX	IX
-	Gonatanthus pumillus (D.Don) Engler (Araceae)	-	
370	Grewia asiatica L. (Tiliaceae)		
429	Ipomoea rederacea Jacq. (Convolvulaceae)	XXI	I
521	Mallotus phillipinensis Muell-Arg (Euphorbiaceae)	VII	i, xxi, xxii
•	Moghania bracteata (Roxb.) (Papilionaceae)	_	•

Code No•	Botanical name	Code of Therapeutic Group
-	Persicaria posumbus (D. Don) H. Gross (Polygonaceae)	XXIV (?)
-	Peristrophae speciosa Nees. (Acanthaceae)	-
-	Phoenix acaulis (Palmae)	-
657	Pimpinella archilleifolia (DC.) C.B. Clarke (Umbelliferae)	XL
682	Polygonum posumbu Buch-Ham. ex D.Don (Polygonaceae)	XXIA
694	Potentilla cryptotaeniae Maxim (Rosaceae)	XXIV
726	Reinwardtia indica Dum. (Linaceae)	XL
777	Sambucus hookeri Render (Caprifoliaceae)	I
-	Scurrula elata (Edgew) Danser (Loranthaceae)	-
794	Semecarpus anacardium L. (Anacardiaceae)	X (?)
806	Smilax ovalifolia DC. (Smilacaceae)	I, XL
835	Symplocos racemosa Roxb. (Symplocaceae)	XXIV
851	Terminalia bellirica (Gaertn.) Roxb. (syn. T.Bellerica C.B.Clarke) (Combretaceae)	XXIV
932	Zizyphus mauritiana Lam (Rhamnaceae)	I, XXIV

ANNEX 5

List of medicinal plants samples collected for analysis and processing

Code No.	Botanical name	Code of Therapeutic Group
7	Acacia catechu Willd.	XXIV, XXXI, XL
18	Aconitum sp.Sectio Napellus	I
19	Acorus calamus L.	XX, XXIII, XXX
54	Amonum subulatum Roxb.	XX
82	Artemisia vulgaris L.	XX
104	Berberis asiatica Rox ex DC.	V, XXIV
132	Butea minor Buch.	VIII
145	Capsicum annuum L.	I, XXXIX
147	Cardiospermum helicacabum L.	I, XXXIX
167	Gentella asiatica (L) Orban	XVII, XXXIX
183	Cinnamomum obtusifolium Ness	XX
191	Citrus limon (L) Burn	XX
190	Citrus aurantium L.	XX
233	Cymbopogon citratus (DC) Stapf.	XX, XXXIX
254	Datura stramonium L.	XX
275	Dioscorea deltoidea Wall.	XXX
284	Dryopteris filix-mas (L) Schott	VIII

Code No.	Botanical name	Code of Therapeutic Group
303	Ephedra gerardiana Wall.	XXXI
321	Euphorbia royleana Boiss.	VIII, X (?), XXI
319	Eupatorium adenophorum Spreng.	VII
350	Gaultheria fragrantissima Wall.	I, XXXIX
387	Heracleum wallichii DC.	XX
405	Hydrocotyle nepalensis Hook.	XVII, XXXIX (?)
40 6	Hydrocotyle podantha Molk.	XVII, XXXIX (?)
411	Hypericum uralum Buch-Ham. ex D. Don	XXIV, XXXIII, XXXIX
449	Juniperus recurva Buch-Ham. ex D.Don	XIX
-	Meconopsis nepaulensis DC.	XX (?)
681	Polygonum motte D. Don	XXIV
693	Potentilla fulgens Wall.	XXIV
729	Rheum emodi Wall.	XX, XXII
732	Rhododendron arboreum J.E.Smith	XXII
758	Rumex nepalensis Spreng.	-
794	Semecarpus anacardium L.	X (?)
813	Solanum xanthocarpum Schrad ex. Wendl.	XXV
840	Senecio densiflorus Wall ex DC.	XX, XXIX
832	Swertia chirata Hamilt.	XX

ANNEX 5

Code No.	Botanical name	Code of Therapeutic Group
848	Taraxacum officinale (L.) Vigg.	V, XXXVII
851	Terminalia bellerica (Gaertu) Roxb.	XXIV
885	Urtica dioica L.	XXIV, XXXIII
894	Valeriana wallichii DC.	XV, XXX
928	Zingiber officinale Rosc.	XX

List of the medicinal herbs and trees used in traditional medicine

Vernacular name, Botanical name.	Part used	Code of Therapeutic Group
Aduwa Zingiber officinale	Rhizome	XX
Agnimantha Trachyspermum ammi	Fruit, Root	XX, XXIV
Agasti Sesbania grandiflora	Bark	XXIV, VII
Ainselu Rubus ellipticus	Plant	VXXV
Ajeru Dendrophthoe falcata	Bark	XXIV, XXX XXXI
Akash beli Cuscuta reflexa	Seeds Plant	XXII
Alaichi Amonum subulatum	Seeds	IV, XX, XXVIII
Amala, Amal Emblica officinalis	Fruit (dried)	XXAIII XXIA
Amala jhar Cassia mimosoides	Roots	XX
Amba Psidium guajava	Leaves	XXIV, XXXIX
Amp Mangifera indica	Leaves, Ripe fruit, Unripe fruit, Seed	IV, XIX, XXII XXVIII
Amantamul Hemidesmus indicus	Root	I, IV, VII,XII,
Anar Punica granatum	Root bark Rind of fruit	XX, XXIV
Ander Ricinus communis	Seeds Oil from seed	XXII
Angeri Lyonia ovalifolia	Leaves	XVII, XXXIX
Ankhataruwa Heynea trijuga	Leaves, bark	Toxic.
Aparijita Clitoria ternatea	Seeds, Root	XXII

Vernacular name, Botanical name.	Part used	Code of Therapeutic Group
Apamarga Achyranthes aspera	Plant Root	XXIA XXII
Aphim Papaver somniferum	Opium	XXX
Arfu Acacia pennata	Leaf juice Juice of bark	IA XX
Arka Calotropis gigantea	Root bark Latex	XIX XXXIX, VIII
Ashoka Saraca indica	Bark	XXIV
Ashvatta, Pipal Ficus religiosa	Bark Fruit; Leaves	XXII
Asuro Adhatoda vasica	Leaves, Root	I, XX, XXXI
Aswagandha Withania somnifera	Root, Leaves, Fruit Seeds	XIX, XXX XXXIX
Atis Aconitum heterophyllum	Root	XXIV, XXXI
Atiwala Ipomoea sp.	Root and rhizome	XXII
Babul Acacia arabica	Bark Bark, leaves, pod, gum	XXIV
Badahar Artocarpus lakoocha	Seeds Bark	XXII VII, XXXIX
Badakatus Quercus pachyphylla	Bark and acorns	XXIV
Banlasun Allium wallichii	Plant	VII
Bar Ficus bengalensis	Milky juice Bark, Seeds	XXXIX-I XXIV, XL
Barhamase, Barakmase Nerjum indicum	Root	Toxic XXXIX-II
Barlikunda Pueraria tuberosa	Root	XXXIX-I
Barro Terminalia belerica	Fruit (half ripe) Fruit (fully ripe)	XXIA
Bayer Zizyphus jujuba	Fruit Root	XII, XXXI,

Vernacular name, Botanical name.	Plant used	Code of Therapeutic Group
Bethe Chemopodium album	Plant	VIII, XII
Bhalayo Rhus wallichii	Juice of leaves	XXXIX
Bhang Canabis sativa	Plant	XXX
Bhargi Clerodendrum indicum	Root Resin Juice of leaves	XXXI, I VII
Bhoj patra Betula utilis	Bark	VII, XXX
Bhringraj Eclipta prostrata	Plant Plant juice Root	V, XXI, XXII
Bojho Acorus calamus	Rhizome	XX, XXIV IV, XXXI
Chakramandi Cassia tora	Leaves, seeds Root	VIII, X,
Chambo, Chaba, Piper chaba	Fruit	XX, XXXI XXXV
Chameli Phool Jasminum arborescens	Leaves	VXIV
Champ Michelia champaca	Bark Dried root and root bark	I, XXXI,XXIV
Chamsur Lepidium sativum	Plant Root Leaves	XXXI VII XXXI
Chandan Santalum album	Wood	XXXIX-II
Chandmaruwa Rauwolfia serpentina	Root Juice of leaves	XIII, XXX XXVIII
Chemeli phool Jasminum arborescens	Leaves Juice of leaves	XX, XXIV XXXI
Chhatiwan Alstonia scholaris	Bark Milky juice	I, IV, XXIV XXIII
Chichindo Trichosanthes anguinia	Fruit	VIII, XXII

Vernacular name, Botanical name.	Part used	Code of Therapeutic Group
Chiraita Swertia chirata	Plant	I, VIII, XXIV
Chiraito Cmertia angustifolia	Plant	I, VIII, XXIV
Chitu Plumbago zeylanica	Root	XVII, XXIV
Chopechini Smilax aspera	Root	XII, XVII
Chutro Berberis aristata	Root bark and wood Plant	I, XVII, XXVIII
Chyuri Madhuca butyracea	Fat as ointment	I
Convolvulus pluri- caulis	Plant	XX,XXII
Daalchini Cinnamomum zeylanicum	Bark, Leaves	I, XX IV
Darba, Durbha Poa cynocuroides	Root Juice of Plant	XXIV
Daruhaldi Mahonia nepaulensis	Leaves	XX, XXIV
Deodar Cedrus deodara	Nood	I, XIX, XXXI
Dhaiaro Woodfordia fructicosa	Flowers	XXIV, XXXV
Dhanlys Coriandrum sativum	Fruit	XIX, XX
Dhaturo Datura stramonium	Plant, Leaves, Fruit, Juice of flowers	XX, XXX XXVIII
Dhupi Rhododendron anthopo- gon.	Leaves	XX
Dronapuspi Leucas cephalotes	Flowers Plant and fresh juice	XXXIX
Eklebir Lobelia pyramidalis	Leaves	XX
Ganja Cannabis sativa	Plant	XXX

Vernacular name Botanical name	Part used	Code of Therapeutic Group
Ghiu kumari Aloe barbadensis	Plant, juice	XXII
Ghod tapre Centella asiatica	Plant	XII, XIX,XVII,
Gokhur Tribulus terrestris	Fruit	XIX, XXXVIII
Gulab Rosa alba	Flower	XV, XVI
Guras, Gunrash Rhododendron barbatum	Leaves	Toxic
Gurip Tinospora cordifolia	Stem, root Juice of fresh plant	I, XX, XIX, XXXVIII
Hadachur Viscum articulatum, V. album	Plant, berry	XVI, XIX, XXII X, XXXVIII
Haledo Curcuma longa	Rhizome	XII, XX, XXVIII, XXXIX
Halonre Lannea coromandelica	Berk	XXXIX
Harro Terminalia chebula	Fruit	XXXIV-XXXIX
Hasta karni palas Butea monosperma	Seeds, Gum, Flowers, Bark	VIII, XXIV XIX
Hathikan Opuntia sp.	Fruit	XXII
Hathikane Kalanchoe spathulata	Plant	Toxic XXXIX
Hattipaila Eulophia campestris	Rhizomes	XV, XXXI XXXIX
Himalcheri Antidesma bunius	Leaves	IV Toxic!
Imali Tamarindus indica	Fruit Infusion of Fruits	V, XXII
Indrajow Holarrhena antidysenteri	Bark, Seeds ca	XXIV, I VIII

Vernacular name Botanical name	Part used	Code of Therapeutic Group
Isabgol Plantago major	Seeds, Leaves Root	I XXIA
Jamane mandro Mahonia nepaulensis	Berries	XIX, XXIV
Jangali bihin Solanum nigrum	Berries	XIX, XXII XXXX, IIIVXX
Jangali mewa Physalis peruviana	Juice of leaves Plant	XIX
Japa puspi Hibiscus rosa—sinensis	Root, Flower	XXXI
Jatamansi Nardostachis jatamansi	Root	VI, XXX XV, XIX
Jeera Cuminum cyminum	Fruit	XXIA
Jethi madhu Glycyrrhiza glabra	Root	XXII, XXXI
Jiwanti Desmotrichum fimbriatum	Plant	IV, XXXVIII
Jwanu see Agnimantha	-	-
Jyamir Citrus Limon	Juice of ripe fruit	I, XXIV
Jyotismoti Cardiospermum helicacabum	Plant Root	I, IV, XXX XIX, XXII
Kachur Curcuma zedoaria	Rhizome	XIX, XX
Kafal Myrica esculenta	Bark	I, VII, XXX
Kaka nasika Leea aequata	Tubers	XXIV
Kakad singhi Insect gall on Pistacia sp.	Gall	XXXI XXIV, IV
Kakoli Fritillaria cirrhosa	Bulb	XXXI

Vernacular name Botanical name	Part used	Code of Therapeutic Group
Kalo dhaturo Datura matel	Seeds, Leaves, Roots	I, XX, XXIV XXXI
Kalo haledo Curcuma longa	Rhizome	XII, XX, XXVIII, VIII
Kamal Nelumbium nucifera	Root	XXIV,
Kankro Cucumis sativus	Seeds	XIX
Kantakari, Kantkari Solanum xanthocarpum	Root, Juice of berries Leaves, Plant	XXXI, XIX, XXXIX
Kapas Gossypium arboreum	Root Seeds	I, VII, XIX
Kapur Cinnamomum camphora	Plant	VIII, XX XXXIX
Karela Momordica charantia	Juice of leaves Fruit and leaves Root	V, XXII, VIII, XXXV
Kause phool Cotoneaster affinis	Stolons	XXIX
Kauso Mucuna prurita, Mucuna nigricans	Seeds Pod, Root	I, IV, VIII, XXII, XXXI
Kesar Crocus sativus	Flowers	XXXVIII
Khas Andropogon muricatus	Root	I, XX
Khayer Acacia catechu	Bark Plant	XXXIX XXIA
Khursani Capsicum annuum	Fruit	IV, XXXIX
Khursani ajawan Hyoscyamus niger	Leaves	XXXI
Koeralo Bauhinia variegata	Bark Buds, Root	XXIV, XXXIX IV, VIII
Krishna jeerach Guizotia abyssynica	Oil from seed	1

Vernacular name Botanical name	Part used	Code of Therapeutic Group
Kuchila, Dalchini Strychnos nux-vomica	Root-bark, Leaves, Seeds, Wood	Toxic I, XX, XXIV
Kukurdaino Smilax macrophylla	Root	I, VII, XXIV
Kumkun Didymocarpus leucocalyx	Hero	XX
Kurkure ghas Equisetum debile	Plant	VII, XIX
Kuth Saussurea lappa	Root	XX, XXXI XXXIX
Kutki Picrorhiza kurroa	Root	I, IV, XX XXII
Labsi Spondias axillaris	Fruits	XL
Lali gurash Rhododendron arboreum	Leaves	Toxic XIII
Lazzabati Mimosa pudica	Root Leaves	XXXV
Lodh, Lodhra Symplocos paniculata	Bark	XXIII, XXIV XXVIII-XXXIX
Madesi souf Foeniculum valgare	Seeds Leaves, Root Oil	XX XIX, XXII VIII
Majitho Rubia cordifolia	Root Stem, Fruit	XXIV IV, XVII
Mamira Parnassia nubicola	Root and Rhizome	II
Mothe Cyperus rotundus	Tubers	VIII, XIX XX
Musali Curculigo orchioides	Rhizome	XIX, XXXI, XXXV, XXXIX
Musli, Siyah musali Aneilema scapiflorum	Root Root-bark	XXXAIII
Nagarmothe Cyperus scariosus	Tubers	XIX, XXIV
Nagebeli Lycopodium clavatum	Herb	I, XIX, XXXI

Vernacular name Botanical name	Part used	Code of Therapeutic Group
Nagesori Mesua ferrea	Flowers, Bark	XXIV, XXXI IV, XXXV
Narkat Phragmites maxima	Root	XIX
Nilokamal Nymphaea	Plant	XXIV
Nim Azadirachta indica	Bark, Root bark, Leaves, Gum, Cil	I, IV, VII, XX, XVIII
Nisotha, Niswanto Operculina turpenthum	Root	IV, XXII
Nutmegs = Ram patri, Jai patri Myristica fragrans	Seeds Oil	XX
Ole Amorphophallus campanu- latus	Tubers	I, XX, XXXI
Okhar Juglans regia	Bark, Leaves	VIII, XXIV
Paan Piper betle	Leaf, Fruits, Root, E. oil	IV, VII, XXXI
Padamchal Rheum emodi	Root and Rhizome	XXII
Paidram Chrysanthemum cinerari- aefolium	Flowers	Toxic XL
Paiyun Prunus cerasoides	Kernel	XIX
Palas Butea monosperma	Seeds, Leaves Gum, Flowers	VIII Toxic XXIV
Panch aunle Orchis latifolia	Tuber	XX
Parwal Trichosanthes dioica	Leaves, Root Fruit	I, XXI XL
Pashanved Bengenia ligulata	Root	I, XXIV, XXVIII, XXXI
Patha Stephania hernandifolia	Root	I, XXIV

Vernacular name Botanical name	Part used	Code of Therapeutic Group
Pipala Piper longum	Root, Fruit	IV, XX XXXI
Pitta papada Naregamia alata	Root, Leaves, Plant	I, V, XXIV, XXXI
Pudina Mentha arvensis	Plant	XX
Punarnava Boerhaavia diffusa	Root, Leaves	I, XII, XXXI
Purpure timur Zanthoxylum hamiltonianum	Fruit	XX
Raj briksha Cassia fistula	Root bark Fruit	
Rittha Sapindus mukorossi	Fruit	VI, XXXI
Rudilo Nyctanthes arbor-tristis	Leaves, Flowers	I, VIII, XX, XXII
Rudrakshya Eleocarpus sphaericus	Fruit	VI
Sajiwan, Sajiba Jatropha curcas	Nuts, Seeds Juice of plant	XXII-XXXIX
Salla Pinus roxburghii	Resin Wood	IV, XX, XXXI
Salparni Desmodium gangeticum	Roots	I, XIX, XXIV
Sano pipala see Pipala		
Sariba Ichnocarpus frutescens	Roots	I, XII, IV, XIX
Sarpaganda see Chandmaruwa		
Satavari Asparagus racemosus	Root Plant	I, XII, XIX, XXIV
Sathi Curcuma zedoaria	Rhizome	XIX, XX XXXIX
Seto dubo Cynodon dactylon	Root	XIX, XXIV XXVIII, XXXV

Vernacular name Botanical name	Part used	Code of Therapeutic Group
Shobhanjan Moringa oleifera	Root, Root bark Fruits	VI, XVI, XXX, XXXIX-I
Shrikhand, Chandan Santalum album	Tood	XVII, XXXIX
Sihundi Euphorbia royleana	Milky-juice	VIII, XXI
Sikakai Acacia concinna	Pod Leaves	A' XXI XXXI
Simal Salmalia malabarica	Root, Gum	XXXVIII
Sipligan Gataeva religiosa	Bark	XIX, XXII
Sisnu Urtica dicica	Root Plant	XIX VIII, XII, XXIV
Sivalingi Bryonopsis laciniosa	Plant	V, I
Somalata Ephedra gerardiana	Plant	XXXI
Soya Anethum sowa	Fruit	XX
Sugandhaval Valeriana wallichii	Root	XX, XXX
Sukumel Elettaria cardamomum	Seed	XIX, XX
Supari Areea catechu	Nut	VIII, XXIV XXXVIII
Surti Nicotiana tabacum	Leaves	XXX XX
Sutho see Aduwa		
Talis patra Abies spectabilis	Leaves	XXXI
Talmakhana Astercantha longifolia	Leaves, Root, Seeds	I, XIX
Tapre Cassia sophera	Leaves Plants	XXXI

Vernacular name Botanical name	Part used	Code of Therapeutic Group
Tateberi Dalbergia stipulacea	Bark and Roots	Toxic
Tatelo Oroxylum indicum	Root bark, Fruits, seeds	XXIV
Tej pat Cinnamomum tamala	Bark	XX
Thotne Polygonum molle	Plant	XXIA
Thulo bihin Solanum torvum	Fruits	XX
Thulo pipala Piper cubeba	Oil	VII
Timur Zanthoxylum armatum	Seeds Fruits	I, VII, XX XL
Tingir Saurauja napaulensis	Bark	XXXIX
Tissi Salix babylonica	Leaves Bark	I, VIII
Titepati Artemisia vulgaris	Herb Root	VIII, XX XXX, XXXI
Tori Brassica campestris	Roots	XXXIII
Tuki phul Taraxacum officinale	Root, Plant	V, XIX XXII
Tulsipatra Ocimum sanctum	Leaves, Seeds, Root, Plant	I, V, VII, XX, XXXI
Ukhu Saccharum officinarum	Stem Root	XIX, XXII
Utis Alnus nepalensis	Bark	XXIV
Yarsa gumba Cordyceps sinerisis	Plant	XX

List of Plants from Herbarium

Botanical name	Family	Code No.
I. Tiru Danda and Ganesn-Himal	: 3 = 3 3 3 4 4 5 ± 5 4 5 ± 5 ± 5 ± 5 ± 5 ± 5 ± 5 ±	
Abies spectabilis (D.Don) Spach.	PINACEAE	3
Achyranthes aspera L.	AMARANTHACEAE	12
Aconitum sp. Sectio Napellus	RANUNCULACEAE	18
Ageratum conyzoides L.	COMPOSITAE	31
Anaphalis triplinervis (Sims) C.B. Clarke	COMPOSITAE	57
Andropogon citratus D.C. syn.Cymbopogon citratus (DC) Stap.	GRAMINEAE	58/233
Artemisia vulgaris	COMPOSITAE	82
Aster albescens (D.C) HandMzt.	_ " _	•
Aster sp.	_ " _	•
Aster tricephalus C.B. Clarke	_ 11 _	•
Berberis concinna Hock.f.	BERBERIDACEAE	106
Berberis jaeschkeana Schneid	_ " _	106
Bergenia ciliata (Haw.) Sternb	SAXIFRAGACEAE	107
Betula alnoides Buch Ham .	BETULACEAE	110
Boenninghausenia albiflora (Hook) Meisn.	RUTACEAE	117
Bryonopsis laciniosa (L.) Naudin	CUCURBITACEAE	126
Butea minor Buch	LEGUMINOSAE	132
Campanula colorata Wall.	CAMPANULACEAE	-
Cassia floribunda Cav.	CAESALPINACEAE	-
Cassiope seleginoides Hook.f. et Thoms.	ERICACEAE	-
Cimicifuga foetida L.	RANUNCULACEAE	-
Clinopodium umbrosum (MBieb) C.Koch (syn.Calamintha umbrosa)	LABIATAE	-

	********	Code
Botanical name	Family	No.
Coleus forskohlii (Willd.)Briq.	LABIATAE	205
Colquhounia coccinea Wall.	_ 11 _	-
Coriaria nepalensis Wall.	CORIARIACEAE	211
Corydalis cashmeriana Royle	FUMARIACEAE	-
Delphinium sp.	RAN UNC ULA CEAE	261
Elsholtzia flava Benth	LABIATAE	297
Epilobium roseum Schreb.	ONAGRACEAE	-
Ephedra gerardiana Wall	GNETACEAE	303
Erigeron multicaulis Wall.ex.DC.	COMPOSITAE	309
Eugenia jambolana Lam.	MYRTACEAE	••
Euphorbia heterophylla L.	EUPHORBIACEAE	322
Gaultheria nummularoides D.Don	ERICACEAE	-
Gentiana depresa D.Don	GENTIANACEAE	355
Geranium grevilleanum Wall.	GERANIACEAE	360
Gerbera maxima (D.Don) Beauv	COMPOSITAE	376
Gynura nepalense DC.	_ " _	-
Hemiphragma heterophylium Wall.	SCROPHULARIACEAE	-
Holboellia latifolia Wall.	BERBERIDACEAE	399
Hydrocotyle podantha Molk	UMBELLIFERAE	406
Hydrocotyle nepalensis Hook	_ " _	4 0 5
Hypericum cordifolium Choisy	HYPERICACEAE	413
Hypericum uralum Buch Ham.ex. D.Don	HYPERICACEAE	411
Hypericum tenuicaule Hook.f. et Thom.	_ # _	413
Indigofera pulchella Roxb.	PAPILIONACEAE	-
Inula cappa DC.	COMPOSITAE	-
Jatropha curcas L.	EUPHORBIACEAE	445

Botanical name	Family	Code No•
Juniperus recurva BuchHam. ex.D.Don	CUPRESSACEAE	449
Kalanchoe spathulata DC.	CRASSULACEAE	. 454
Leontopodium alpinum Cass.	COMPOSITAE	472
Lobelia pyramidalis Wall	LOBELIACEAE	499
Luculia gratissima (Wall) Sweet	RUBIACEAE	504
Lycopodium clavatum L.	LYCOPODIACEAE	507
Martynia annua L.	MARTYNIACEAE	524
Peperomia tetraphylla (Forst.f.) Hook.f.et Arni (P. reflexa)	PIPERACEAE	-
Phyllanthus parvifolius Buch Ham	• ELLPHORBIACEAE	650
Physalis minima L.	SOLANACEAE	652
Physalis peruviana L.	_ " _	653
Pieris formosa (Wall.) D. Don	ERICACEAE	656
Plectranthus repens	LABIATAE	-
Plectranthus rugosus	_ # _	-
Polygonum polystachyum Wall ex. Meisn.	POLYGONACEAE	682
Potentilla fulgens Wall	ROSACEAE	693
Primula glomerata Pax.	PRIMULACEAE	715
Prunella vulgaris L.	LABIATAE .	
Pyrus pashia BuchHam.ex.D.Don	ROSACEAE	713
Reinwardtia indica Dum.	LINACEAE	726
Rhododendron anthopogon D.Don	ERICACEAE	731
Rhododendron barbatum Wall.	_ 17 _	733
Rhododendron campanulatum D.Don	10	=
Rhododendron lepidotum Wall.ex. D.Don	_ 11 _	-
Rhus javanica L.	ANACARDIACEAE	740
Rubus ellipticus J.E.Smith	ROSACEAE	752
Rubus fockeanus Kurz	_ " _	756

	:	土地公司双亚北西亚迪亚巴莱亚巴里
Botanical name	Family	Code No.
Sambucus hookeri Rehder	CAPRIFOLIACEAE	777
Sanicula elata BuchHam. ex. D.Don (syn.S.europaea L.)	UMBELLIFERAE	-
Scutellaria repens Buch Hame ex. D.Don.	LABIATAE	-
Senecio chrysanthemoides DC.	COMPOSITAE	841
Senecio densiflorus Wall.ex.DO	u _	_"_
Senecio scandens BuchHam. ex. D.Don	_ 11 _	-n-
Senecio Wallichii DC.	_ " _	_11_
Silene indica Roxb.	CARYOPHYLLACEAE	-
Smilax elegans Wall.ex.Hook.f.	SMILACACEAE	806
Solanum aculeatissimum Jacq.	SOLANACEAE	-
Solanum indicum L.	_ " _	807
Spermadictyon suaveolens Roxb	RUBIACEAE	816
Strobilanthes capitatus (Ness. T.Andors) ACANTHACEAE	-
Swertia chirata Hamilt.	GENT LANACEAE	832,
Thalictrum foliolosum DC.	RANUNCULACEAE	856
Tripterospermum volubile (D.Don) Hara	GENTIANACEAE	-
Valeriana hardwickii Wall.	VALERIANACEAE	893
Valeriana wallichii DC. (syn. jatamansi Jones)	_ #_	894
Viburnum coriaceum Blame	CAPRIFOLIACEAE	912
Zizyphus mauritiana Lam.	RHAMNACEAE	932

II. Narayani zone

Botanical name	Family	Code No.
Acacia catechu (L.f.) Willd.	LEGUMINOSAE	7
Bauhinia wahlii Wight et Arn.	CAESALPINACEAE	-
Blumeopsis falcata (D.Don) Merrill	COMPOSITAE	-
Bryonopsis laciniosa (L.) Naudin	CUCURBITACEAE	126
Calotropis gigantea (L) Dryand.	ASCLEPIADACEAE	137
Cassia fistula L.	CAESALPINACEAE	153
Centella asiatica L.	UMBELLIFERAE	167
Conyza stricta Willd.	COMPOSITAE	-
Debregesia sp.	URTICACEAE	
Duabanga grandiflora (Roxb.) Valp.	SONNERATIACEAE	-
Floscopa scandens Lour	CAMMELIACEAE	340
Gonatanthus pumillus (D.Don) Engl.	ARACEAE	-
Grewia asiatica L.	TILIACEAE	370
Mallotus phillipinensis Muell-Arg.	CONVOLVULACEAE	521
Moghania bracteata (Roxb.)	PAPILIONACEAE	-
Peristrophe speciosa Nees.	ACANTHACEAE	-
Potentilla cryptotaeniae Maxim.	ROSACEAE	694
Reinwardtia indica Dum.	LINACEAE	726
Semecarpus anacardium L.	ANACARDIACEAE	794
Symplocos racemosa Roxb.	SYMPLOCACEAE	835
Terminalia bellirica (Gaert.) Roxb.	COMBRETACEAE	851
Zizyphus mauritiana Lam.	RHAMNACEAE	932

The List of Pharmaceutical Products

Prepared in Nepal

(October - December 1979)

Mode of Presentation:

Name of Pharmaceutical Product.

Name of Plant, Family.

Part used.

Processing.

Principal compounds.

Pharmacological Activity and Use in Therapeutics.

Technological form.

Dos age.

Contraindications.

A.R.M. = Availability of Raw Material.

Abbreviations

(Part of the plant used)

В•	■ Bulbs	R.	= Root
₽•	= Bulbs	A.	= M000
Bc.	= Bark	Rb.	= Root bark
Be.	- Beans	Rh.	- Rhizome
Br.	- Berries	Rz.	= Resin
C.	- Capsules	s.	= Steam
Fl.	= Flowers	S.b.	- Steam bark
Fl.t.	= Flowering tops	Se.	= Seeds
Fr.	- Fruits	S.W.	= Stem wood
G.	= Gum	Tb.	- Tubers
J.	= Juice	W.p.	- Whole plants
L.	= Latex	A.R.M.	- availabilty of raw
if.	- Leaf		material (unlimited.
L.J.	= Leaf juice		satisfactory, limi-
L.p.	= Leaf and pods		ted, low)
P.	= Pods		

I XL = The number in Latin feature represents
the therapeutical group elaborated by
WHO for the essential drugs.
(See Annex 14).-

Procedure of extraction

- (M) = Maceration
- (P) = Percolation
- (T.B.) = Turboextraction
- (Ph.C.Ph.T.) = Physico-Chemical and Pharmaceutical Technology.

R - OH % = The concentration (%) in ethyl alcohol.(C - R - OH = Concentrated Alcohol)

Dp = Drops

(Fl.ex.) = Fluid extract

Pl. = Pils

P.c. = Pure compound

(D.ex.) = Dry extract

(S.ex.) = Selective extract

Tra. = Tincture

Tab. = Tablets

Ungv. = Ointment

Minctura Artemisiae

 \mathbf{x}

The plant: Artemisia vulgaris

(Compositae)

Part used: Fl.t.

Processing: (M) R-OH 55-69%

(20 p plant 80 p.R-OH)

Principal compounds: essential oil, (\propto and β - tujon, esters

with acetic, izovalerianic & palmitic acids

pinene cadinen, proazulens, etc.).

artamarin, artamaridin, artamaridinin (bitter part); one flavonol: artemetin,

vit.B₆, C.PP, sesquiterpens, etc.

Pharm.activ. & use: stimulation of gastro-intestinal secretions

antibiotic, antihelmintic and antispastic.

Teh form: Tra.

Dosage: 2-6 g daily for no more than 1 week.

(10-20 drops x 2-4 x daily).

Contraindications: Pregnancy.

A.R.M. : unlimited.

Tinctura Artemisiae composita

XX

("Tra.amara") Nr.1

Formula:

Processing: (M) or (P)

Principal compounds: complex.

Pharm.activ. & use: stimulation of gastro-intestinal secretions

antibiotic, anthelmintic, antispasmodic.

Teh form: Tra.

Dosage: 20-30 drops x 2-3 x/daily.

Contraindications: Pregnancy, hyperacidity.

A.R.M.: unlimited.

Extractum Artemisiae Spissum

XX

(Fl.ex.) Concentrated.

The plant: Artemisia vulgaris L.

(Compositae)

Part used: Fl.t.

Processing: Double (M) or (T.B.)

R-OH 17% 85 p.

Plant 15 p.

After maceration boil for 15' on a B.M. (water bath) - Filtra-

tion - Concentration to a soft extract.

Principal compounds: see Tra. Artemisiae.

Pharm.activ. & use : See Tra. Absinthii.

Teh-form: Pl., Tabl.

Dosage: 0.5 - 1.0 g/daily.

Contraindications: Pregnancy.

A.R.M.: unlimited.

Tinctura Amonum

XX

The Plant: Amonum subulatum Roxb.

Part used: Se.

Processing: (P) R-OH 70%

20 g seeds. + 80 ml. R-OH 70%.

Principal compounds: essential oil (cineol, terpineol, borneol,

sabinen, etc.).

Pharm.activ. & use: aromatic, stimulant-stomachic.

Tehn.form: Tra.

Dosage: 2-3 ml/daily.

Contraindications : hyperacidity.

A.R.M.: limited in Eastern Nepal.

ANNEX 8

Tinctura Aconiti

I

The Plant: Aconitum Sp. SECTIONAPELLUS*)

Fart used: Tb.

Processing: (P) R-OH 70%

10 g. Tubers (sieve V) ad.

190 ml R-OH 70% + 1 % HCl dil. (pH = 4,0-4,7).-

Principal compounds: aconitine, neopelin, napelin, mesaconitine, hipaconitine, picroaconitine, etc. (alkaloids).

Pharm. activ. & use: analgetic.

Tehn.form: Tra. containing 0,05 g % of total alkaloids.

Dosage: 0,30 g (30 drops) x 2 daily In 1 Day max. 60 drops (1 g).

In medicinal spontaneous flora of Nepal are growing up:
A.R.M.: satisfactory.

Aconitum balfourii and A. Spicatum (poisonous secies) and

A. palmatum & A. heterophylum (no poisonous).

A preliminary phyto-chemical study is necessary. $^{\prime\prime}$

Extractum Aconiti Siccum

I

D. ex.

The plant: Aconitum Sp. Sectio Napellus.

Part used: Tb.

Processing: (P) R-OH 70%

33 p Tubers

66 p R-OH.

Filtrations, concentrations - Dry Extract (Contains

0.50 g % of alkaloids).

Principal compounds; See Tra. Aconiti.

Pharm.activ. & use : See Tra Aconiti.

Obs. From dry extract it is possible to prepare Tra. Aconiti:

10 g Dry extract

90 g R-OH 25% + 3.0 ml HC dil. (pH = 2.5-3.0).

Dosage: 0.03 g dry extract to 0.06 g dry extract (for 24 hrs.)

Technolog.forms: Pl. and Bab.

Aconitum Juice

I

The plant : Aconitum sp.,

Sectio Napellus

Part used : Tb.

Processing: Press juice obtained from fresh tubers and preserved

with Na benzoate; 1 ml contains 0.5 mg of alkaloids.

Principal compounds: see Tra. Aconiti.

Pharm.activ. & use : See Aconitum Syrup.

Dosage: 3 x daily 5-10 drops.

Contraindications: See Aconitum Syrup.

A.R.M. : satisfactory.

Aconitum Symun

Ī

Formula:

Tra. Aconiti 5 g

Cane Sugar Syrup..... 95 g.

(Alkaloids content: 0.0025 g%).

Principal compounds: See Tra. Aconiti.

Pharm.activ. & use: analgetic, for neuralgias, rheumatism,

sciatica and in acute form of cough,

bronchitis.

Dosage: 3-6 tea spoon daily.

Contraindications: Cardio-vascular diseases.

Tinctura Aurantii Dulcis

XX

The plant: Citrus aurantium L.

var.dulcis Pers.

Fart used: Fr.Bc.

Processing: (M) R-OH 60%

20 p Fr.Be (dry) + 80 p R-OH

Principal compounds: essential oil (80.90 % d-limonen, n-decy-

clic aldehyde, d-linalol, n-nonilic alcohol n-caprilic acid, d-terpineol, methyl antranilat, aurapten etc.); hesperidoside (- 7 rutinoside of hesperetine) neohesperidin,

linolein, linolenin etc.

Pharm.activ. & use : correcting the taste of syrups with :

antibiotics, vitamins, sulphamides, antihistaminics, piperazine, Na-p-aminosalicy-

late, barbiturates etc.

In combination with other plants for stimulation of gastro-intestinal secretions.

Techn.Form : Tra.

Dosage: 1-6 g/daily.

Contraindications: Nil.

A.R.M. : unlimited.

Tinctura Citri Recens

XX

(Rutaceae)

The plant: Citrus medica var.limonum.

Plant used: Fresh Bc. of fruits.

Processing: (M) 8 days 100 g. fresh raw material (Bc) + 200 g.

R-OH 95 %.

Principal compounds: essential oil 0.25-0.40%. (citral, nerol,

geraniol) aldehyde, citronelal, terpenics alcohols(esterificated with acetic acid) methyl antranyl of methyl, n-methyl antranilic acid etc. flavonoids, eriodictiol

(glycoside).

Pharm. activ. & use: Stomachic, eupeptic, tonic and aromatic

for pharmaceutical preparations with sulpha-

mides, Vit.B1, barbiturals, antihistaminics

extr. valerianae etc.

Dosage: 1 dosis = 2.5 g.; 5-10 g/daily.

ASR.M.

Tinctura Catechu

XXIV XXXI XL

The plant: Acacia catechu Wild.

(Fam.Leguminosae)

Part used: Se.

Processing: Double (M) with R-OH 70%

(20 p.seeds + 80 p.R-OH)

Principal compounds: 30-50% cathehic tannin, 2-10% 1-catechin,

1-epicatechin, 20-30% mucilaginous subst.,

2-3% mineral salts.

Pharm.activ. & use: astringent, cough, diarrhoea, mouth and

gums pain.

Tech.Form: Tra.

Dossage: 2-3 g./daily.

Contraindications: constipation.

A.R.M.: 2

Tinctura Ephedrae

LXXX

The plant: Ephedra gerardiana Wall. (Gnetaceae)

Part used: Fl.t., Lf.

Processing: 25 g raw material + 1% HCl dil. + R-OH 70% (P) -

Titration Analysis.

1 ml. Tra. contains 3 mg. of total alkaloids.

Principal compounds: till 2% of alkaloids (1-ephedrine, d-pseudo-

ephedrine, d-N-methylpseudoephedrine, etc.) tannin,

catechine, resine, sugars.

Pharm.activ. & use: stimulant action on the cerebrum and the

respiratory centre.

Techn.form: Tra associated with other medicaments.

Contraindications: in organic heart disease and hyperthyroidism.

A.R.M.: limited.

Tinctura Calami

XXIII, XXX

The plant: Acorus calamus L.

(Syn. A.Aromaticus Gilib.)

(Araceae)

Part used: (Rh)

Processing: (M) or (P) 20 p.Rh + 80 p.R-OH 60%.

Principal compounds: essential oil (asarone till 82%, asarilic

aldehyde, eugenol, calamol, calameon, celamen etc)

acorine, tannin, choline etc.

Pharm.activ. & use: Antacid, sedative, psychotherapeutic, laxative.

Technologycal form: Tra, Tabl. of powder prep. from rhizome.

Dosage: Tra 1-3 g/daily.

Contraindications: Nil.

Tinctura Capsici

I. XXXIX

The plant: Capsicum annuum L.

(Solanaceae)

(Syn. C.fastigiatum Blume, C.frutesiens L.)

Part used: (Fr.)

Processing: (M) or (P) with R-OH 70% or 95% (10% plant)

Principal compounds: capsaicin, capsantin, capsorubin, zeaxan-

thin, criptoxanthine, vit.: B2,C,FP,E.

Pharm.activ. & use: external, revulsive, antirheumatic

rubefacient.

Techn. form: Tra.

Dosage: external, local applications.

Contraindications: dermatitis, skin diseases.

A.R.M.: satisfactory from culture.

Extractum Capsici Fluidum Concentratum

I, XXXIX

(Oleorezina Capsici)

The plant: Capsicum annuum L

(Solanaceae)

Part used: (Fr.)

Processing: (P) with acetone 1: 2 second (P) 1: 2;

(water wash)

Principal compounds: See Tra Capsici.

Pharm.activ. and use: See Tra Capsici.

Techn. form : Extract.

Contraindications: See Tra Capsici.

A.R.M. : satisfactory from culture.

Extractum Cardiospermi

I, YAXIX

The plant: Cardiospermum helicacabum L.

(Sapindaceae)

Part used: (Lf)

Processing: (4) 20 p. of leaf + R-OH 95% (80 p.)

Evaporation - till concentrated extract (95%).

Principal compounds: complex revulsive compounds.

Pharm.activ. & use: rubefacient, external in rheumatism.

Techn. form : associated with other extract, external, ointment.

Contraindications: dermatitis.

Tinctura Cinnamomi

XX

The plant: Cinnamomum Zeylanicum Blume
(Lauraceae) or C.obtusifolium Ness.

Part used: S.b.

Processing: (M) or (P) 20 g Pulv. bark (Siebe V) with 80 g R-OH 70%.

Principal compounds: 0.9-2.3% essential oil (conp. of cinamic aldehyde, eugenol, methyl-n-amyl-cetone, -pinen. phelandren, benzyl aldehyde, p-cimen, cariophilen, lindol etc. tannin

Pharm.activ. & use: digestion stimulant, carminative, oestrogen effects, aromatic for Pharm.prep. from:

Aloe, Cascane, Catechu, China, Hydrastis,
Lobelia, Ergot of Rye, sulphonamides,
amino-acids, antinistamines, etc.

Dosage: 1-1.5 til 3 ml/daily.

A.R.M. : limited.

Extractum Phizoma Filicis

IIIV

The plant: Dryopteris filix mas Schott.

Part used: Rh.

Processing: (P) with chlorophorm (1:12) Evaporation - Analysis
(After evaporation of chlorophorm the soft extract
contains 1.5-117% of crude filicine, when it is
more diluted with vegetable oil) (For homogenization
heat at 50°C, before use).

Principal compounds: fluoroglucinic compounds: filixic acid (mixture of 6 substances), flavaspidic acid, albaspidine, aspidinol cetofluoroglucinic derivatives, etc.

Pharm.activ. & use: Anthelmintic against oxyuris and tapeworms.

Dosage: As directed by the physician.

Tinctura Hyperici

XXIV, XXXIII, XXXIX

The plant: Hypericum uralum Ham ex D.Don (Hypericaceae)

(Hypericaceae

Part used: Fl.t.

Processing: (M) 20 p. Fl.t. + 80 p. R-OH 40%.

Principal compounds: essential oil, catechic tannin, leucocianidine, rutoside, hyperoside, quercetin, etc. antibiotics substances.

Pharm.activ. & use: Vit. P type action used in vascular permeability diseases; antiseptic: heals the wounds (external); astringens, antidiarhoeal and antispasmodic.

Techn.form: Tra & infusion from dry flowers tops (2%)

Dosage: 5-10 g x 3 /daily.

A.R.M. : satisfactory.

Tinctura Polygonii

VLIV

The plants: Polygonum mole D. Don*)

Polygonum chinense L.*

(Syn. Persicaria chinensis (1) Gross).

Part used: Rh. & R.

Processing: (M) R-OH 70% or (T.B.) (20 p.plant, 80 P.R-OH)

Principal compounds: tannin, galic acid, sugars, flobaphen etc.

Pharm.activ. & use: adstringeous antidiarrhoea.

Techn. form: Tra., Potion. Dosage: Tra. 2-3 g/daily.

Contraindications: in chronic constipation.

A.R.M. : unlimited.

The Foreign Pharmacopea use Polygonum bistortae with 15-20% tannin in Rhizom and Roots; It is necessary to analyse the indigenous species.

Extractum Polygonii

VIXX

The plant : see Tra. Polygonii

Part used: Rh. & R.

Processing: (M) R-OH 70% - (see Tra Polygonii) Filtration,

Concentration to a soft or fluid extract.

Principal compounds: tannin, golic acid, sugars, flobaphen, etc.

Pharm.activ. & use: adstringeous, antidiarrhoea.

Techn.form: Fluid or soft extract.

Dosage: Fluid extract 0.20-0.30 g. x 2-3 times/daily.

For children: 0.05 g/pro l year-age.

Contraindications : Nil.

A.R.M. : satisfactory.

Extractum Taraxaci Spissum

V, XXXIII, XXXVII

The plant : Taraxacum officinale (L) Wigg (Compositae)

Part used: (R).

Processing: (M) 20 g. R.Pulv. + 80 Aqua chlorophormii.

Concentration, precipitation of pectius with concentrated R-OH (96%). Concentration till a soft extract.

Principal compounds: triterpenics alcohols (-amirin, taraxerol (A,B,C and D) inuline, taraxacin (bitter part).

Pharm.activ. & use: choleretic and cholegogue, diuretic, diaphoretic and tonic.

Dosage : 0.70 - 2.00 g. per dosis.

Contraindications: Nil.

A.R.M.: unlimited.

Tinctura Rhei

XX, XXII

The plant: Rheum emodi Wall.

(Polygonaceae)

Part used: (Rh).

Processing: (M) 20 g Rh. + 80 ml R-OH 70%.

Principal compounds: anthracenic derivatives, (rheumemodine,

isoemodine, rheocrisidine, rheocrisin, rhein, crisophanol etc.) galotannins, resine, calcium oxalate, cinamic acid,

essential oil, enzymes.

Pharm.activ. & use: stomachic-tonic and purgative catharctic.

Techn. form : Tra.

Dosage: 0.25 - 1 g; stomachic-tonic, eupeptic;

1 - 2.5 g laxative;

5 - 15 g purgative.

Contraindications: pregnancy.

A.R.M. : satisfactory.

Extractum Rhei Fluidum

XX, XXII

Raw material : Extractum Rhei Siccum

Processing: dissolution: 35 p. dry extract + 65 p (water +

R-OH 95%: 25:40).

Principal compounds : see Tra. Rhei

Pharm. activ. & use : see Tra. Rhei

Techn.form: fluid extract.

Dosage: 0.03 - 0.logstomachic

0.15 - 0.25 g laxative

0.50 - 2.50 g purgative

Obs. Stability: 3 months.

Contraindications: see Tra. Rhei.

Extractum Rhei Siccum

XX, XXII

The plant : Rheum Emodi Wall.

(Polygonaceae)

Part used: (Rh).

Processing: (P) 20 g Rh. + 80-100 ml R-OH 35-70% Evaporation.

Principal compounds : see Tra. Rhei.

Pharm.activ. & use : see Tra. Rhei.

Techn. form: Dry extract which contains about 5-10% of OMA corresponding to raw material 1 p. extract to 2.5 p. of raw material (with lactose).

Dosage : 0.01 - 0.05 g. stomachic;

0.05 - 0.10 g. laxative;

0.25 - 1 g. purgative.

Contraindications: see Tra Thei.

A.R.M. : satisfactory.

Tinctura Phei Composita

$\mathbf{X}\mathbf{X}$

Formula:

Rhizoma Rhei 8 g.

Herba Swertia chir. 3 g.

Rhizema Calami 1 g.

Semen Amonum 2 g.

Fructus Coriandri 1 g.

Alcoholum (70%)100 g.

Processing: (M)

Principal compounds: complex.

Pharm.activ. & use : stomachic - bitter tonic.

Dosage: 2-4 m/daily.

Contraindications: see Tra. Rhei.

Tinctura Valerianae Stabilizata XV, XXX

The plant : Valeriana jatamansi Jones

Syn. V. Walichii D.C. (Valerianaceae)

Part used : Rh and R

Processing: Transfer Fresh Rh & R 200 g (washed) in a 2 l flask with refrigerant, ad. 1000 ml R-OH-96%. Boil for 20 minutes on a water wash. Allow to cool and then grind Rh and R. The fine Rh and R, the alcohol which is used for the first extraction is completed till a total weight of 2.000 g. Boil for 20 minutes on a

Filtration.

Principal compounds: essential oil (bornil isovalerianate,

bornil-formiate, butiratean acetate, etc.)

water wash. Decantation - Pressing - After 8 days:

- oxivalerianic acid, valepotriotes etc.

Pharm.activ. & use : sedative in hyperexcitability, neurosis

(cardiac and digestive).

Dosage: 5-10 g/daily (0.5 - 2.5 g per dosis).

A.R.M.: satisfactory. ~ 10 m = 6

Tinctura Valerianae aetherea

XXX, XXX

The plant: Valeriana jatamansi Jones

Syn. V. Walichii D.C.

Part used: Rh and R.

Processing: (M) 20 g plant to 80 ml C-R-OH + ethylic aether (75: 25)

Principal compounds: See Tra. Valerianae stabilisata.

Pharm.activ. & use : See Tra. Valerianae stabilisata.

Dosage: 1-4 g/daily (0.2-1 g per dosis).

AMMEX 8

Extractum Valerianae Sicum

XV, XXX

Processing: Concentration till evaporation of Tinctura
Valerianae Stabilisata.

69

Principal compounds : See Tra. Valerianae Stabilisata.

Pharm.activ. & use : See Tra. Valerianae Stabilisata.

Tablets in association with others

medicines.

Techn.form : Dry extract.

Solubility: 1 g dry extract to 4.5 g R-OH.

Extractum Valerianae Spissum

 $\underline{X}\underline{Y}$, $\underline{X}\underline{X}\underline{X}$

The plant : Valeriana jatamansi Jones

(syn. V. Walichii D.C.)

Part used: Rh and R.

Processing: (M) 3 days 100 g of raw material + 300 ml R-OH 70%

pressed, filtrated and evaporated till a soft extract

Principal compounds: See Tra. Valerianae Stabilisata.

Pharm.activ. & use : See Tra. Valerianae stabilisata.

Dosage: 0.5 - 5 g daily for adults.

o.lo g/year age for children/day.

Techn. form : soft extract.

Tinctura Semen Stramonii

X

The plant: Datura stramonium L.

(Solanaceae)

Part used: Se. (defated W. Petrol ether)

Processing: (P) - R-OH 70%.

10-15 g seeds + 85-90 g R-OH (cont.0.025-0.05 g.%). (total alkaloids)

Principal compounds: alkaloids (1-nyoscyamine, atropine, scopolamine, tannins, tanins, flovenoids

Pharm.activ. & use: antispasmodic, depressive, hypnotic.

Techn. form: Tra. containing 0.025 g % of total alkaloids.

Dosage: 10-20 drops/dosis (1 g = 50 drops)

Maximal dosis: 1 g/dosis;
2 g/daily

A.R.M. : limited. Possibility for cultivation.

Extractum Stramonii Fluidum

XX

The plant : Datum stramonium L.

(Solanaceae)

Part used : Lf.

Processing: (P) R-OH 45%, concentration - Alkaloids dosage Dilution with R-OH 45% to 0.25 g. % of total alkaloids.

Principal compounds: see Tra. Semen Stramonii.

Pharm.activ. & use : see Tra. Semen Stramonii.

Techn. form : Fluid extract.

Dosage: 1-2 drops per dosis (1 g = 50 drops) Maximal dosis:

O.l g /dosis

0.4 g/daily

A.R.M. : limited. Possibilities of cultivation.

Tinctura Serecionis

XX, XXIX

The plant : Senecio densiflorus Wall ex.DC.

(Compositae)

Part used : Fl.t.

Processing: (M) - R-OH 60% 20 g Fl.t + 80 g R-OH 60%.

Principal compounds: pirolizidinic alkaloids (senecionin, retrorsin, senecifilin etc.) senecic

acid.

Pharm.activ. & use: antispasmodic and emenagogue - oxytocics.

Dosage: 10-15 g/daily.

Contraindications: pregnancy.

A.R.M.: unlimited.

Extractum Urticae Fluidum

VIXX

The plant : Urtica dioica L

(Urticaceae)

Part used : Joung S with Lf.

Processing: (M) R-OH - 50%.

20 g plant + 80 p R-OH 50%.

Princ.compounds: the essential amino-acids (acetilcholine,

histamine, 5-oxi-triptamine, etc.) glucids,

chlorophyl, protoporphirine, carotenoids,

folic acid, vitamins : B2, C, K; etc.

Pharmactiva & use: depurative, antidiarrhoeal, in acute and

chronic diarrhoes of tuberculosis.

Dosage: 2-5 g/daily.

A.R.M. : unlimited.

Extractum Terminaliae

The plant : Terminalia belerica Roxb.

(Combretaceae)

Part used : ripe Fr.

Processing: fully ripe fruits and R-OH 60% (1:1) (M) pressed,

filtrated and evaporated till a dry extract.

Principal compounds: tannin, galic acid, sugar.

Pharm.activ. & use: astringent, in summer diarrhoea, enteric

disturbances.

Dosage: 0.20 g x 3 /daily

children 0.10 g x 3 /daily.

Contraindications: în chronic constipation.

A.R.M. : satisfactory.

Tinctura amara

XX

(Nr.2.)

Formula:

Pericarpum Aurantii (Fr.Bc.)	50	g.
Herba Trifolii Fibrini (W.p.)	25	g.
Herba Swertia Chir. (W.p.)	45	٤.
Herba Artemisiae vulg. (Fl.t.)	25	g.
Rhizoma Calami (Rh.)	25	g.
Cortex Cinamomi (s.b.)	10	g.
Rhizoma Zedoriae (Rh.)	15	g.
R-OH 70% q.s	000	ml.

Processing: (M).

Principal compounds: complex.

Pharm.activ. & use: stimulation of gastro-intestinal secretions

تخزم

Dosage: 0.25 ml/per age/children

For adults: 3-10 ml/daily.

Contraindications: pregnancy, hyperacidity.

A.R.M.: unlimited.

Tinctura Carminativa

XX

Formula:

Processing: (M)

Principal compounds: complex.

Pharmac.activ. & use : see Tra Calami and the activity of other plants.

Dosage: 1-2 g/daily.

Contraindications: Nil.

A.R.M. : satisfactory.

Ungventum Capsici

I, XXXIX

(Ungventum Antirheumaticum)

Formula:

Processing: ointment.

Principal compounds: rubefacient and revulsive comp. complex.

Pharm.activ. and use: antirheumatic: external use.

Techn. form :ointment.

Dosage : local applications.

Contraindications: dermatitis, skin diseases.

Berberine (alkaloid)

V, XXIV

The plant : Berberis asiatica Roxb. ex. DC.

Berberis aristata D.C. (+ 17 other species in Nepal) (Fam. Berberidaceae).

Part used: S.b. and the root (R.b.).

Processing: (Ph.C.Ph.T.)

Principal compounds: Berberine.

Pharm.activ. & use: The alkaloid berberine is used as a speci-

fic treatment of tropical diarrhoea

(dysenteria) and against Leishmania tropic.

Hepato and cholecystopathies.

Techn. form: Tablets, capsules prepared from HCl Berberine.

Dosage: $0.01 \text{ g} - 0.03 \text{ g} \times 3/\text{daily}$.

Contraindications: heart, respiratory diseases and hyperthyroidism.

A.R.M.: satisfactory till unlimited.

BOJHOSECALIN - Antihypertensive and Sedative Tablets.

Formula: 1 tablet contains: Extr. Secalis Cornuti Siccum, exgotoxin type (which contains 0.50% total alkaloids) about 50 mg, Pulvis Radix Calami 100 mg, Extractum Belladonnae siccum (which contains 1% total alkaloids) 15 mg, Pulvis Radix Rauwolfiae Serpentinae about 100 mg (2.0 mg total alkaloids), Extractum Hyperici Uralum about 100 mg, Excipient q.s. od 400 mg of total weight.

Pharma.activ. & use in therapeutics: hypotensive effects produced by Rauwolfia alkaloids, activation of cerebral vascularization produced by secalis cornuti alkaloids, antispasmodic and sedative effects produced by Belladonna alkaloids and Rad. Calami active principles and stimulation of the vascular permeability by Extr. Hyperici.

Dosage: 2-3 tablets/daily prophylactically and for long term therapy.

Contraindications: see SARPAGANDIN - A.R.M. : satisfactory.

SOMALATIN - Anti-asthmatic syrup.

IXXX

Formula: Tra. Semen Stramonii12 g., Tra. Aconiti 2g., Tinctura Ephedrae 30 g, Tra Auranti dulcis 10 g, Kalium bromatum 15 g, Cane sugar syrup 50 g.

Processing: solve the K.Br. in syrup, then add the tinctures.

Principal compounds: complex active principles from Datura stramonium, Aconitum and Ephedra gerardian

Pharm.activ. & use: general antispasmodic action, stimulant on the cerebrum and respiratory centre.

Antiasthmatic.

Dosage: 1-2 tea spoonfuls in an acute attack of asthm.

Contraindications: organic heart disease and hyperthyroidism.

A.R.M.: satisfactory.

SARPAGANDIN - Antihypertensive Coated tablets. XII

Formula: 1 drag. contains: Pulv.Radix Rauwolfiae Serpentinae about 150 mg (2.3 mg whole alkaloids), Extractum Valerianae Sicum 100 mg, Excipient q.s. ad 350 mg of total weight.

Plarmactiv. & use: hypotensive effect is produced by the total alkaloids from Rauwolfia serpentina.

The sedative effects is potentiated by the valepotriates from Valeriana jatamansi.

Dosage: 2-3 coated tablets /daily, or as directed by the physician.

Contraindications: bronchial asthma, ulcers, cholitis and gastroenteritis, epilepsia, depression, cardiac arrhythmia, myocardial infarction.

LALI_GURASHIN = Antihypertensive capsules. XII

Formula: l capsule contains: Extractum Fol.Rhododendroni arboreae (containing maxim 0.15 mg Andromedotoxin) about 100 mg., Extr.Rauwolfiae (containing 0.25 mg whole alkaloids) about 50 mg, Extr.Hyperici Uralum (prepared by Tra.Hyperici) about 150 mg. excipient q.s. ad 350 mg of total weight.

Pharm.activ. & use: hypotensive effect produced by total alkaloids from Rauwolfia serpentine and Andromedotoxin. Stimulation of the vascular permeability by the active principles from Hypericum uralum.

Dosage: 1-2 capsules, daily for long-term therapy.
Contraindications: see SARPAGANDIN

GANTTERIN - Antirheumatic ointment.

I

Formula: Ol.Gaultheriae 12.5 g., Ol. Eucalypti 1.5 g.
Ol.Pini roxburgii 2.5 g., Ol. Menthal 3.5 g.
Ol. Thymi 2.0 g., Extr.Cardiospermi 3.0 g.
Ol. Aurantii dulcis 20 g.
Ungventum basis q.s. ad 100 g.

Pharmac.activ. & use: Rubefacient action, causing a certain amount of increased vascularity, sensation of warmth, local anesthesia. For the relief of rheumatic pains.

Dosage: Massage with about 2 g of ointment and then cover with warm chlothes.

Contraindications: Dermatitis, eczema. It should be used with caution in small children.

"ITMARIN - Antihelmintic capsules.

VIII

Formula: Extractum Rhizoma Filicis 0.80 g., Extractum Artemisiae Spissum 0.20 g., Ol. Ricini l g. for one capsule (gelatine). Separate gelatine capsule contains l g ol.Ricini.

Pharm.activ. & use: antihelmintic against oxyuris and tape worms.

Dosage: As directed by physician. The first day: 4 capsules in the morning. Second day 6 capsules and after 1 hour 4 capsules. After 1 hour, 10 Ol. Ricini capsules.

Contraindications: Liver diseases, gastro-intestinal tract.

diseases, Cardiogene and nephrogene troubles
pregnancy.

A.R.M. : unlimited.

EXPECTASURO - Antibronchitis drops.

XXXI

Formula: 100 ml = Extr.alcohol (70°) from Adhatoda vasica (1:5)
70 ml., Ol.Foeniculi 0.3 ml., Ol.Eucalypti 0.05 ml.,
Ol.Menthae O.l ml., Ol. Pini roxburghii O.l ml., Tra.
Valerianae walichii stabilisata 5 ml., Tra Droserae
(1:1) l ml., Saccharum 12 g Watter 24 ml.

Principal compounds: complex active principles from Adhatoda vasica, essential oils and from Valeriana Walichii.

<u>Pharm.activ. & use</u>: antiseptic and reflex expectorant. Mild sedative, analgesic.

<u>Indications</u>: in the treatment of bronchitis, pneumonia and tuberculosis.

Dosage: Adults: $3 \times 20-30$ drops/daily. Children: $3 \times 10-15$ drops/daily.

Contraindications: Nil.

SUGANDHAWALI - Sedative Syrup.

XXX

Fromula: Tra. Valerianae aetherea 8 g. Tra. Senecionis 42 g.,
Tra Semen Stramonii 15 g., Tra. Hyperici 10 g., Tra.
Citri recens 10 g., Cane Sugar syrop 25 g.

Principal compounds: complex active principles form medicinal plants (see Tra. Valerianae, Tra Senecionis, Tra.Semer Stramonii and Tra.Hyperici).

<u>Pharm.activ. & use</u>: Sedative in hyperexcitability cardiac and digestive neurosis, antispasmodic.

Dosage: 2-4 spoons daily.

Contraindications: pregnancy, severe pulmonary insufficiency.
A.R.M.: satisfactory.

pARRO_STOP - Antidiarrheaes tablets. XXIV

Formula: 1 tablet contains: Dry extract from fully ripe fruit of Terminalia belerica (1:1) 0.20 g., Radix and Rhizoma Potentillae fulgens (pulvis) 0.15 g., Folium Belladonna-pulvis (contains 0.30 - 0.40% whole alkaloids) 0.05 g., Excipiens q.s. ad 0.45 g. of total weight.

Pharm.activ. & use: astringent, antidiarrhoeal, antispasmodic in biliary intestinal and urinary colic.

Dosage: Adults: 4-6 tablets per day in case of acut diarrhoea and dysentery.

Children: 2-4 tablets per day in acut or chronic diarrhoea and dysentery.

Contraindications: in chronic constipation, in severe cardiac disease and cerebral arterosclerosis.

PANACHALIN - Laxative and purgative tablets. XXII

Formula: 1 tablet contains: Extractum Rhei siccum 0.10 g., Rhizoma Calami pulvis 0.20 g., Excipiens q.s. ad 0.40 g. of total weight.

Pharm.activ. & use: the antracenic derivatives of Rh.Rhei
and the activ principles from Accrus
calamus to confer of this product laxative
sedative and purgative effects.

Dosage: laxative: 1 tablet, daily.

purgative: 2-4 tablets.

Contraindications: pregnancy.

A.R.M. : satisfactory.

XHAYERIN - Mouth-Wash

XXXX

Formula: Tra.Artemisiae 10 ml., Tra. Catechu, Tra.Cinnamomi aa.

10 ml., Tra. Hyperici 10 ml., Tra. Polygonii 20 ml.,

Extr. Urticae fluidum 30 ml., Ol. Citronellae O.10 g.,

Ol. Pini roxburghii O.10 g., Ol. Menthae O.10 g.

Pharm.activ. & use: astringeous, antibacterial, in mouth and gums pain.

Dosage: 1 spoon to 1/2 glass of water.

GENERAL QUALITY REQUIREMENTS FOR THE RECEPTION AND DELIVERY OF MEDICINAL AND AROMATIC PLANTS COLLECTED FROM WILD OR CULTIVATED FLORA WITH THE AIM OF THEIR INDUSTRIAL PROCESSING

Yď

Dr. Ovidiu Bojor

GENERALITIES

The present quality requirements refer to the specifications regulating the quality and purity control and the general method of analysis of medicinal and aromatic plants intended to be manufactured.

These requirements apply also to the export of the raw material when the beneficiary does not claim special conditions from the supplier.

The term of "vegetal raw material" must not be mistaken for "vegetal product" the latter being the result of a processed raw material.

By the term "raw material" or "drug" are meant the plants or parts of dry plants that must meet certain quality specifications concerning: external appearance, maximum percentage of impurities and foreign matter, moisture or other physico-chemical properties as well as the minimum amount of the active constituents or volatile oils. For industry, the crude (not dried) raw material may also be delivered on request but should comply with the quality specifications too.

Standardization of the raw material is very important for depends industry because on this factor the yield and efficiency of the product obtained, after its processing.

REQUIREMENTS FOR TESTING THE QUALITY

- 1. The quality of the vegetal raw material intended to become drugs or to be exported is tested on lots. By the term "lot" is meant an amount of the same raw material obtained in identical conditions and packed in one type of packaging.
- 2. The quality of a lot can be tested by examining its size, weight and external appearance, the organoleptic evaluation of raw material and laboratory tests. When the lot consists of several packing unities, a minimum of 10 per cent of the whole number of unities should be examined. When the lot consists of 10 or less number of unities, 2 unities at random are examined.

3. The organoleptic refers to evaluation by means of the organs sense and includes the macroscopic appearance of the drug, its odour and taste meeting the quality requirements for each raw material. The items characterizing the vegetal drugs are usually the following: aspect (shape and size), colour and external markings, fracture and internal colour (of rhizomes, tubers, bulbs and roots), odour, taste and the other items mentioned by the quality requirements for each drug.

The organoleptic evaluation consists of checking at random 3 packing unities of a lot, unities taken from the top, the center and the bottom of the lot without removing arbitrarily any foreing matter or impurities of the mouldy or browned plants. Those unities reunited, mixed and homogenized are considered representative sample of the lot.

4. When the raw material is packed in paper bags or sackcloth, approximately 20 g will be taken from the three levels of the packing by graduated emptying. Samples of seeds, small fruits or cut (minced) drugs may be taken by means of special sounds.

Amounts of about 50 g from ballots will be taken by opening or unsticking them in three different points.

5. The approximately necessary amounts for the organoleptic evaluation and for laboratory tests are the following:

a)	flowers,	seeds,	Rye	ergot,	hops	and	cut	(mine	ced)			
	raw mate	rial .	• •		• •	• •		• •	• •	•	160	g;

- d) big rhizomes (fern, rhubarb, etc.) 500 g;
- e) big seeds (chestnut) 1000 g;

The laboratory samples are introduced into parchment or grease-proof paper bags or other suitable material for keeping the moisture. Each bag will have labelled the name and organ of the plant (in Latin or a national or international language), the number of the lot, the date of its sampling, the date of collecting, the team that was performed the sampling (names) and the unity or corporation (legal entity) the merchandise belongs to. The laboratory samples should be sealed.

- 83 -

- 6. During the organoleptic evaluation and sampling one can immediately ascertain the following:
 - identity of the raw material;
 - high moisture content, presence of mouldiness or a foreign odour;
 - loss of the colour, of the characteristic odour;
 - appreciable excess of the admitted percentage of fcreign matter and impurities.

If these defects are visible during the sampling, the lot should be reassorted and checked again.

METHODS OF ANALYSING THE RAW MATERIAL

1. Checking of the dimensions

The measurements will be taken by means of a scale in mm or a calliper-square. For small seeds and fine fragments of plants, magnifying glasses provided with 1/10 mm scale should be used. The size of the fragments may be estimated by means of sieves whose mesh dimension is known. The result given per cent indicate the degree of the crumbling.

2. Checking of the colour

A sample of about 5 g, weighed, is spread on a mat, white paper. The colour will be examined following the quality requirements for each raw material. The fragments of different colour than that require should be removed and weighed. The result will be given in percentage.

3. Checking of the odour and taste

The same fragments of plants used for the colour checking will be rubbed with both hands and smelt. In case of doubt concerning the odour, transfer 10 g of raw material into a flask, add water at the boiling temperature and then cover the flask with a glassplate; after 2-3 minutes the cover is removed and the odour perceived.

The taste is characteristic for the majority of plants. In case the degree of bitterness is required, that is established by comparing it with a brucine standard of a determined strength.

4. Determination of impurities and foreign matter

By impurities are meant parts of the same plant which represent the aim of the analysis but others than those declared as the lot. Thus for "Herba" the roots represent impurities as well as for "Radix" the aerial parts. For "Folium" the remnants of branches and for seeds the remnants of fruits represent impurities. Foreign organic matter refers to any other species of plant than the declared one or to any other organic matter.

Foreign inorganic matter refers to earth, dust, sand, gravels.

In order to determine the impurities and foreign matters the following amounts of samples will be used:

- for very small fruits and seeds (Ø under 1.5 mm)... 2-5 g;
- for fruits and seeds (\emptyset between 1.5 4 ω m). 10 g:
- for galls, buds, flowers, leaves, herba 30 g

After separating the impurities and foreign matters (prganic and inorganic separately) each will be weighed and the results given as percentages.

5. Determination of moisture

From the samples of raw material meeting the previous requirements about 10 g will be weighed. They will be divided into fragments (minced) manually or by means of a laboratory electric mill until fragments of 1.5 mm are obtained. When the samples are under that size the grinding is not necessary. From the ground sample 5-10 g are weighed - with an accuracy of 0.002-0.01 g - and transferred into a graduate/bottle previously tared. The height of the sample in the tare-bottle should not exceed 5 mm. The sample is dryed by means of an electric dry-oven at 100-105°C for 4 hours, then cooled and weighed Drying and weighing operations are repeated until obtention of a constant mass.

Moisture
$$\% = \underline{m-m1}$$
 . 100

where: m = mass of the sample intended to be determined, in grams; $m_1 = mass$ of the sample after drying, in grams;

Determination of moisture in plants containing volatile oils is done taking into account the amount of volatile oil of the respective plant.

In that case, the formula will be:

Moisture
$$\% = \frac{(m - m_1) - v.D}{}$$
. 100,

where:

m = mass of the sample intended to be determined, in grams; m_1 = mass of the sample after drying, in grams;

 $V = \text{volume of the volatile oil, in cm}^3;$

D = density of the volatile oil at 20° C, in g/cm^{3} .

6. Determination of total asn

Necessary reagents:

- ethylic alcohol 96% vol.;
- concentrated nitric or sulphuric acids;
- 10% solution of ammonium nitrate;
- hydrogen peroxide.

Total ash is the residue obtained by burning some raw material or a vegetal or animal product.

To determine total ash, proceed as follows:

Weigh about 2g The sample with an accuracy of 0.001 g in a porcelain crucible, previously tared. In case the fragments of the sample exceed 1.5 m in diameter, proceed as at point 5. The sample is burnt cautiously with a flame so that nothing should be lost. Introduce the crucible in an electric oven and calcine at 600-700°C. After calcination weigh the crucible and after it cools add a small amount of water or alcohol. Evaporate the liquid on a water-bath and calcine again.

In case the residue after cooling contains still some particles of coal, add a few drops of hydrogen peroxide, concentrated nitric acic or ammonium nitrate solution. Evaporate in a water-bath and calcine again until the residue becomes white or uniformly coloured.

After the last calcination introduce the crucible into an exsiccator. Weigh after completely cooling. Calcination and weighing will be repeated until obtention of a constant mass (the difference between two weighs should not exceed 0.5 mg).

Total ash is calculated as follows:

Total ash $\% = \frac{m_1}{m}$. loo , where: m = mass of ash, in grams; $m_1 = mass$ of the sample introduced to be determined, in grams.

7. Determination of insoluble ash in 10% HC1

Necessary reagents:

- 10% Chlorhydric acid;
- 1% solution of silver nitrate;
- -10% nitric acid.

Over the ash found in the crucible after determining point 6, add 3 cm³ of 10% Chlorhydric acid. Cover the crucible with a glass plate and keep for ten minutes in a water-bath. Pipet 5 cm³ of hot water washing at the same time the glass plate. Filter by filter paper and wash the remnants from the filter paper with hot water until the filtrate gives no more the reaction for chlorine ion.

The absence of chlorine ion is checked in the washing water (in the fil trate) by means of silver nitrate in the presence of nitric acid.

No. to make

Dry the filter with the residue at 100-105°C. Transer again into the crucible and calcine as at point 6.

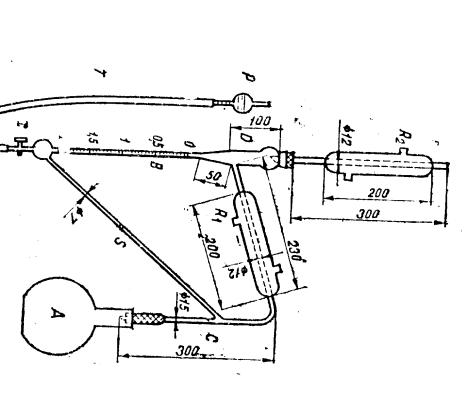
The insoluble ash in diluted HCl is calculated as follows: Insoluble ash in HCl% = $\frac{m_1 - m_2}{m}$. 100, where:

m, = mass of ash in the crucible, in grams;

m, = mass of ash in the filter, in grams;

m = mass of the sample intended to be determined, in grams (as at point 6).

8. Quantitative determination of volatile oils in plants


Quantitative determination of volatile oils is effected by steam distillation by means of a special apparatus.

The apparatus (Fig. 1) consists of:

- a flat bottomed glass flask (A) of 500-2000 cm³, with ground-glass stopper;
- an apparatus provided with a tube (C) whose inferior part should be ground-glass stoppered and fit perfectly to the glass flask (A), a syphon (S), a tube of 1-2 cm³ in length (B) graduated in divisions of o.ol-o.o2 cm³, a separator (D), a descending refrigerent (R₁);
 - an ascending refrigerene (R2);
 - a funnel (P) attached to the apparatus by a rubber tube (T);
- rubber tubes for joining up the refrigerents to the water source;
 - a heat source.

Quantitative determination is carried out on fresh or dried raw material, weighed with an accuracy of o.l g using suitable solvents.

Figure 1

NNEX

In Table 1 are given a few examples of raw materials containing volatile oils, the amount required for the determination and the solven used. Before weighing, the big parts of plants, herba, big fruits, some flowers, rhizomes or roots are minced.

Table 1

Denomination of raw material	Amount used for determination (in grams)	Solvent used to determine the volatile oil (in c.cm.)
Folium Eucalypti	25	250, water
Folium Menthae	50	500, water
Herba Gaultheriae	75	750, water
Herba Citronellae	75	750, water
Herba Absinthii	75	750, water + 1 c.cm of xylol
Herba Thymi	50	500, water
Flores Chamonillae (or Flores Millefolii)	75	a mixture of 400 c.cm. of glycerine + 600 c.cm of water + 1 g of as- corbic acid + 1 c.cm. of xylol
Fructus Foeniculi (or Fructus Anisi)	25	250 c.cm.water + 0.5c. xy1o1
Fructus Coriandri	100	1000, water
Fructus Juniperi	50	500, water
Sumitates Pini	75	750, water
Rhizoma Calami	50	500, water
Rhizoma Zingiberis	50	500, water
Radix Valerianae	100	1000 c.cm. water + 0.5 c.cm. xylol

After the raw material and solvents have been weighed, transfer them into flask A. For a uniform boiling add some pumice-stone. Generally, when water is used as a solvent for distillation, add an amount ten times higher than that of the raw material. Adjust then the flask to the distilling device.

By means of funnel P fill the graduated tube (B) with distilled water up to the upper level of syphon (S). Adjust the ascending refrigerent R₂ to the separator D, join the refrigerance R₁ and R₂ by rubber tubes, connect with water tap and let the cooling water running. Place the flask on an asbestos sieve heated by means of a gas burner or an electric heating mantle. Heat gently so that distillation be performed at a moderate rate.

After 4 hours of distillation stop the water to run within the refrigerents and let run the steam for 2-3 minutes, in order to wash the traces of volatile oil from the descendind refrigerent R_1 . Stop heating.

When refrigerents R₁ and R₂ become warm let run the water again. After cooling the whole apparatus (1-2 hours), when the oil reached room temperature, let descend slowly the volatile oil from separator D into the graduated tube B, opening the lower tap r and read its volume.

The amount of volatile oil is calculated thus: Volatile oil $\% = \frac{V.D}{m}$.100, where:

V = volume of oil read within the graduated tube B, in c.cm.;

D = density of volatile oil, in g/cm^3 ;

m = amount of the sample intended to be determined, in grams.

The amount of xylol added when oils are too viscous, of great density or in small amount is deduced from the total volume read in the graduated tube B.

ABSINTHII HERBA (Artemisia absinthium)

Description:

Both terminal aerial parts and terminal base leaves and the stems of the plant. Velvety leaves, grey-green on the upper epidermis and grey-silver on the lower one. Yellow flowers. Slight, characteristic ordour. Aromatic bitter, astringent taste.

Imp	ur	Έ	t	i	e	5	:

- maximum percentage of browned or yellowed leaves 3	
- maximum percentage of leaves thicker than 3 mm 3	
- maximum percentage of leaveless stems and flowers 1	
- maximum percentage of other plants	
Foreign matter:	
- maximum percentage of ash	
- maximum percentage of insoluble ash in HCl 3	
- maximum percentage of organic matter	. 5
- maximum percentage of inorganic matter	. 5
Moisture:	
- maximum percentage	
- minimum of essential oil containing azulene 0.	. 20

FOLIA BELLADONNAE (Atropa belladonna)

Description:

Leaves with petiole, green on the upper epidermis and light green on the lower one. The top of the stem with leaves 10 cm in length at most are admitted. Its taste is bitter and piquant.

Ir	purities	<u>:</u> :									
7	maximum	per	cent	of d	. ~kne	ed lea	ves		•		4
-	maximum	per	cent	of o	ther	parts	of	the	pl	ant	3
-	maximum	per	cent	of o	ther	plant	s.		•		0.5
-	maximum through								•		4
F	oreign ma	attei	<u>c</u> :								
-	maximum	per	centa	ge of	ash			•		•	1 6
-	maximum	per	centa	ge of	ins	oluble	ash	in	НC	1	3
-	maximum	per	centa	ge of	` orga	anic m	atte	r		•	0.5
-	maximum	per	centa	ge of	`ino	rganic	mat	ter	•	•	0.5
Me	oisture:	• •						•		•	10
M	inimum pe	ercei	ntage	of t	otal	alkal	oids	cai	lcu	lat	ed

RADIX BELLADONNAE (Atropa belladonna)

Description:

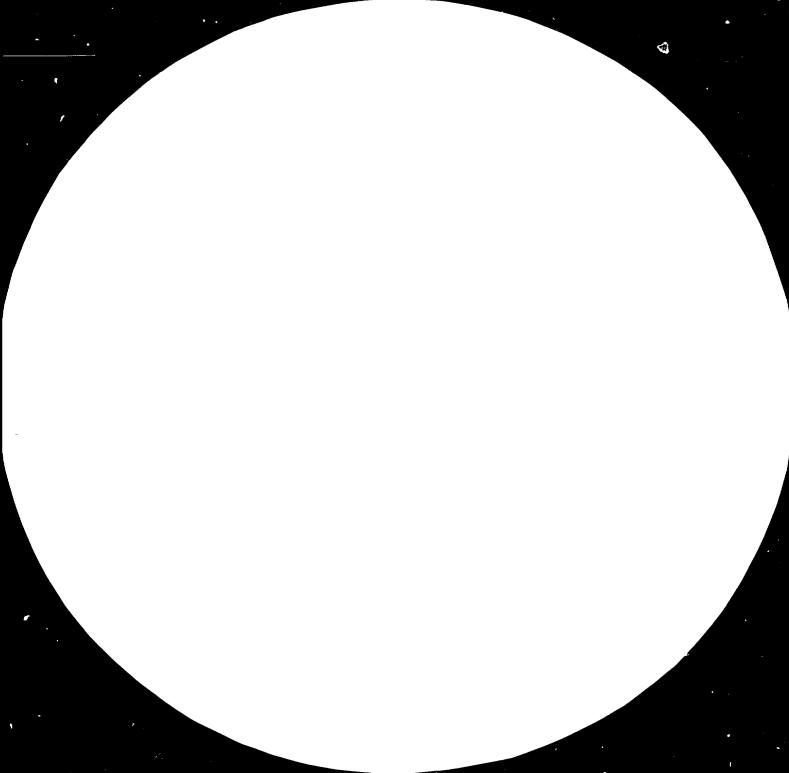
Portions of no lignificated roots of 5-20 cm in length, whole or cut. The inner surface is longitudinally striate, easily splitting and spreading, when split, a white powder. The outer surface is grey-brown and the inner one white-yellowish. Characteristic odour. Bitter, pungent, unpleasant taste.

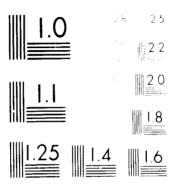
Impurities:

- ma	ximum	percentage	of	knotted, dry lignificated roots 5		
- ma	ximum	percentage	of	inner browned roots		
- ma	zimum	percentage	of	other plants 0.5		
Fore	ign me	atter:				
- ma	ximum	percentage	of	organic matter 0.5		
- ma	ximum	percentage	of	inorganic matter 1		
- ma	ximum	percentage	of	total ash 7		
- ша	ximum	percentage	of	insoluble ash in HCl 1		
Mosi	ture:	maximum per	c en	tage		
Minimum percentage of total alkaloids calculated as						

HERBA CENTELLAE (Centella asiatica (L) Urban)

Description:


Greenish herb with leaves of 1.5-3.5 cm in diameter, cordate, crenate, lobed petiole often up to 2-4 cm long. Prostate herb with stolons of 5-10 cm. in length. It has no specific odour, and the taste is astringent and bitter.


Impurities:

- maximum percentage of parts of the plant turning yellow or brown	2
- maximum percentage of roots	
Foreing matter:	
- maximum percentage of organic matter	1
- maximum percentage of inorganic matter	1
- maximum percentage of ash	J
- maximum percentage of insoluble ash in HCl	Z
Moisture:	
- maximum paraantaga	•

•

FRUCTUS CYNOSBATI

(Rosa Macrophylla)

Description:

Whole fruits, fusiform with smooth or (on request) wrinkled surface, longitudinally cut fruits without any seeds and hairless. Orange to red. Odourless, slightly acid, pleasant taste.

Impurities:

- Maximum percentage of red-brown or darkened fruits		•	. 3
- Parts of the plant (leaves, branches, petioles): - maximum per cent of whole fruits			
- Maximum per cent of fragments of fruits (cut) with traces of seeds and hairs	•		. 5
- Maximum per cent of immature yellow-greenish or yellow-grange fruits	•	•	. 3
Foreign matter:			
- Maximum percentage of organic matter	•	•	. 0.5
- Maximum percentage of inorganic matter	•	•	. 0.25
Moisture:			
- Maximum percentage of the whole fruits			.14
- Maximum percentage of the cut fruits	•	•	.13
Minimum percentage of ascorbic acid:			
- whole fruits			
- cut and cleaned fruits	•	•	. 2

FRUCTUS JUNIPERI (Juniperus communis)

Description:

Globe-like smooth fruits, dark blue or brown-violet, sometimes covered by a waxed layer. Aromatic resinous odour. Aromatic sweetish taste.

Impurities:

-		percentage of plant							0.5
-		percentage diameter.			_			•	5
-	Green, t	orown, whin	kie	d fruits .	• • •		. • .		5
	oreign ma maximum	atter: percentage	of	organic m	atter			•	0.5
		percentage							
-	maximum	percentage	of	insoluble	ash :	in HO	.1 .	•	0.5
M.	ni eture:	maximum ne	rce	ntage					20

FOLIUM MENTHAE (Mentha piperita L)

Description:

Leaves or fragments of leaves dark green, sometimes with violet-reddish shade. Aromatic, characteristic odour, more promounced when rubbing the leaves. Peppered, pungent taste, producing a cooling sensation when air is drawn into the mouth.

Impurities:	
- Maximum per cent of darkened leaves	5
- Maximum per cent of parts of the plant	5
- Maximum per cent of other plants	0.5
- Maximum per cent of fragments passing through a 1 mm sieve	4
Foreign matter:	
- Maximum percentage of ash	2
- Maximum percentage of insoluble ash in HCl	3
- Maximum percentage of inorganic matter (dust, earth, sand)	0.5
- Maximum percentage of organic matter	0.5
Moisture: maximum percentage	3

Volatile oil: minimum percentage

RADIX VALERIANAE

(Valeriana officinalis cr V. Wallichi)

Description:

Whole or irregular sectioned rhizomes, with cylindrical thin roots. The outer surface is brown and the inner one whitish. Strong, characteristic odour. Sweetish-eromatic, then bitterish taste.

Impurities:

TRIPUT TOTOS.	
	of rhizomes with traces of stems depassing
- maximum percentage	of other plants 0.5
Foreign matter:	
- maximum percentage	of organic matter 0.5
- maximum percentage	of inorganic matter 4
- maximum percentage	of insoluble ash in _HCl10
- maximum percentage	of ash

RHIZOMA CALAMI

(Acorus calamus)

Description:

rhizomes whose outer surface is light brown and the inner one whitepink; yellow-hued of no more than 20 cm in length. Aromatic pleasant odour. Aormatic, bitter taste.

Impt	rit	ii	05	3:

- rhizomes under 1 cm in diameter no admit	ted;
- maximum percentage of stem and roots traces	5
- maximum percentage of browned inner surface rhizomes	5
Foreign matter:	
- maximum percentage of organic matter	1
- maximum percentage of inorganic matter	1
Mositure: maximum percentage	4

RHIZOMA RHEI

(Himalayan Rhubarb, Rheum emodi, Rheum webbianum)

Description:

Sub-cylindrical or irregular segments of the root and rhizome, from 2 to 20 cm in length and from 1.5 to 8 cm in diameter. Externally, dark brown to purplish brown, or from yellowish brown to reddish brown particularly where the cork is abraded. The fracture is uneven and granular, the fractured surface having a dull orange to yellowish bronw colour. The odour is faintly aromatic, the tast bitter and astringent.

Impurities:	
- maximum percentage of browned roots and rhizomes 2	
- maximum percentage of empty roots and rhizomes 3 attacked by insects and lignificated	
- maximum percentage of roots or parts of other plants . 0.	. 5
Foreing matter:	
- maximum percentage of organic matter	. 5
- maximum percentage of inorganic matter	
- maximum percentage of total ash	
- maximum percentage of insoluble ash in HCl 2	
Moisture: maximum percentage of	

STROBULI LUPULI

(Humulus lupulus)

Description:
Oval- cone-shaped or globe-like flowers, whole or non-compressed,
green-yellowish. Characteristic odour, bitter taste.
Impurities:
- maximum percentage of browned cones 15
- maximum percentage of plant traces 2
Foreign matter:
- maximum percentage of organic matter 1
- maximum percentage of inorganic matter 0.5

Results of the analysis of some raw-materials and Pharmaceutical Products prepared in Nepal

Raw material or Product designation	Results	Observations	
rioduco designation			
Herba Artemisiae vulg. (Sample 1 from high altitude)	1.12 ml.% E.o.	u = 6.60 %	
Herba Artemisiae vulg. (Sample 2 from high altitude)	1.20 ml.% E.o.	u = 6.62 %	
Herba Artemisiae vulg. (Sample 3 from low altitude)	1.35 ml.% E.o.	u = 7 %	
Tubera Aconiti (Sample 1)	2.02 % total alkaloids	u = 9 %	
Tubera Aconiti (Sample 2)	2.05 % total alkaloids	u = 9.50%	
Cortex Aurantii dulcis	4 ml.% E.o.	u = 7.88%	
Cortex Berberidis asiaticae (Sample 1 - Young Bark)	2.06 g.% total alkaloids		
Cortex Berberidis asiaticae (Sample 2 - Old Bark)	2.59 % total alkaloids		

Abbreviations:

A = ash; A.B. = antibiotic activity; A-HCl = insoluble ash
HCl; A.F. = antifungal activity; A.S. = alcohol strengtn;
B.I. = bitter index; C.S. = cytostatic action; C.T. = cytotoxic action; D = density; E.o = essential oil; FeCl₃ = Ferric
chloride test; L.d.t. = limit dilution for taste; b.d.o. =
limit dilution for odour; O.M.A. = oxymethylanthraquinone;
R = residue on evaporation; u = moisture.

Raw material or	Results	Observations		
Product desi nation				
Fructus Juniperi recurvae	0.56 ml.% E.o.	$\overline{U} = 7.11\%$ $A = 4.55\%$		
Folium Daturae stram. Herba Ephedrae gerand	0.48 g.% total alkaloids 0.95 g.% total alkaloids	U = 9.33%		
Rhizoma Heracleii	0.90% E.O.			
wallichii				
Fhizoma Rhei	3.60% O.M.A.	A = 3.28%		
(Sample from Ganesh-Himal)		A-HC1 - 0.20%		
(2002)		U = 8.59%		
Dhigaga Dhai		0 = 00)		
Rhizoma Rhei	3.88% C.M.A.	A = 5.65%		
(Sample from Trisuli Bazar m arket)	7.0076 C.M.A.			
		A-IIC1 = 0.36%		
		U = 8.77%		
Rhizoma Potentillae fulgens	5.9% ratanhiae- tannius type	A = 3.49%		
1 at 8 cm	8.2% others tannins	U = 7.43%		
Rhizoma Zingioeris	2.56% E.O.			
Tubera Aconiti Extr. 2%	C.T. (Cytotoxic action)	Method from Annex 13		
Butea minor (seeds) 10%	Strong cytotoxic	- " -		
- " - " - 5%	Strong cytotoxic	_ # _		
- " - " - 2,5%	Strong cytotoxic	_ !! _		
- " - " - 0.25%	Cytotoxic action C.T.	_ " _		
Cortex Berberidis asia- Extr. 2% ticae	C.S. (Cytostatic action)	_ " _		
Epilobium alenophorum	antimitotic	- " -		
Flowers Extr. 5-10%				
Semecarpus anacardium	antimitotic	II		
Leaves Extr. 5-10%				

Raw material or Product designation	Results	Observations
Oleum Eupatorii (Antibiotic and antifunal activity)	Aspergilius niger + 2 Bacillus subtilis + 2 Escherechia coli + 2 Staphylococcus aure- us + 2 Saccharomyces cerevi- siae + 2 Sarcina lutea + 4 Mycobaterium phley + 4	A.B. A.F. Refrraction index = 1.501 D = 0.9017
	Trichophyton viola- coum + 2 Micosporium gypseum +2	
Tra.Artemisiae compo- sita	D = 0.900 B.I. = 800	L.d.t.= 1:800 L.d.t.= 1:400
Extractum Artemisiae spiss.	B.I. = 4000	
Tra.Aconiti	0.08 5.% total alkaloids	
Extractum Aconiti	0.60 g.% total alkaloids	
Tra. Aurantii dulcis	A·S· = 59% FeCl ₃ = + (brown) R = 3.80%	L.d.o. = 1:750
Tra. Calami	D = 0.900 FeCl ₃ = + (green) R = 4.20 %	
Tra. Capsici	D = 0.480 R = 2 %	L.d.t.= 1:1000
Tra. uatechu	A·S· = 69% FeCl ₃ = + (green-brown) R = 13%	
Tra. Cinnamomi	D = 0.902 FeCl ₃ = +blue-green R = 1.5%	

Raw material or Product designation	Results	Observations
Tra. Hyperici	D = 0.950 FeCl ₃ = + green R = 2.80%	
Tra. Amara (No.2)	A·S· = 59% B·I· = 1000 D = 0.908 R = 3.9%	
Tra. Rhei emodi	R = 5 % O.M.A. = O.4 8 %	
Tra. Semen Stramonii	0.04 g % total alkaloids	
Tra. Valeriana stabiliz.	0.15% valerianic acid R = 2.4 %	
Extr. Polygoni	0.9% tannin D = 0.800 R = 11%	
SOMALATIN Anti-asthmatic syrup	0.0096 g. total alkaloids from Datura stramonium; 0.0016 g. total alkaloids from Tubera Aconiti; 0.28 g. total alkaloids from Heroa Ephedrae %	
PADAMCHALIN	l tablet contains 0.0036 g 0.M.A.	
SUGANDHAWALI Sedative syrup	0.006 g total alkaloids from Datura stramonium	

Procedure for Obtaining Solasodine

Extract 1 kg. of dried, powdered leaves or fruits of Solanum Xanthocarpum by maceration for 24 hrs. with 20 1. of 2% acetic acid. After filtration, the extractive liquids are made alkaline with approximately 1 1. of concentrated ammonia water. A black-brown precipitate, containing glycoalkaloid in its free state as base and amount of worthless stuff is obtained. Wash the precipitate with water until a neutral reaction of the washings. After drying, the precipitate is powdered and extracted in a Soxhlet apparatus with methyl alcohol for 15 hrs. The methanol extracts are concentrated. Solascine is settled as a very fine white-nacreous precipitate, m.p. 264°.

The yield obtained was of 0.8 - 1.2 st asodine for 100 g of dried leaves or fruits.

Paper chromatography using a system of solvents of Chloroform, dioxan, butanol (7:2:5) and paper formamite-soaked following Pitra's technique produce only one spot of tomatin reacting with Dragendorff's reagent modified by Meurier, with a Rf = 0.293.

The main regions occurring in IR absorption spectrum with a KBr tablet are due to the OH or CH2 groups belonging to the glucidic part.

SEMI-QUANTITATIVE MICROMETHOD OF DETERMINING TOTAL ALKALOIDS

Reagents:

- Solution of methanol tartric acid
- 10% solution of Zn acetate
- Van Urke reagent
- Chloroform

Procedure

Weigh an amount of 0.0200-0.0600 g Ergot of Rye very finely and homogenously distributed amongst quartz sand. Place the weighed quantity into a test tube and add 2 ml. of methanol tartric acid. Heat the test tube 3 times for 1 minute each, on a water-bath at no more than 60°C, stirring continuously the content with a glass rod (stir for one minute on the water-bath and for 1 minute at room temperature and repeat this 3 times, homogenizing thoroughly with a glass rod).

Add to the warm solution from the test tube 2 ml. of 10% solution of Zinc acetate and stir thoroughly for still 1 minute. Allow to stand the solution until it becomes perfectly clear and a deposit is formed.

Take 1 ml. of the cleared solution and treat it with a double quantity of Van Urke reagent and read, after 20 minutes, the extinction of the coloured solution at Spekol against a blank containing 1 ml. of methanol tartric acid and the double quantity of the same reagent. Extinction is read at $\lambda = 570$ nm.

Calculate the percentage of alkaloids in ergotamine base using as reference standard a solution of 0.01% ergotamine tartrate. Readings will be made in 0.5 or 1 cm cells, depending on the intensity of colour.

For a chromatografic checking proceed as follows: add to the solution from the test tube a few ml. of methanol tartric acid solution, stir, allow to precipitate and, after decanting, transfer the solution thus obtained into a separating funnel; alkalize with concentrated ammonium hydroxide until a pH of 8 and extract three times each, with 5 ml. of chloroform (freshly washed). The chloroform solutions become anhydrous with sodium sulphate; then evaporate them to dryness on a water bath at no more than 40°C. The residue is taken out with 1 ml. of chloroform and placed on a chromatographic plate in order to perform a thin-layer chromato-

PHYTOBIOLOGICAL PRELIMINARY SCREENING
METHODOLOGY OF SOME EXTRACTS OR ACTIVE
PRINCIPLES ISOLATED FROM PLANTS FOR
TESTING THE CYTOSTATIC EFFECT

by Dr. Ovidiu BOJOR

GENERALITIES

Phytopiological research carried out over the last three decades has shown that the vegetal cell may serve as a test to ascertain the cytostatic effect of some active principles isolated from plants or synthetic products.

The method is based on the action these substances have on vegetal cells during mitosis.

Being quick, economical (cheap) and sensitive, the method has been applied lately in several institutes of research as a means of preliminary screening natural or synthetical substances supposed to be cytostatic. Without being a general method in this trend of research, it can provide in several cases valuable information on the cytostatic effect of some substance groups. When positive results are obtained, research may be carried out on tissue cultures, in animals or using other laboratory tests.

With the help of this method a large number of plants can be tested from whom extracts have been already obtained following the "Research Methodology of Vegetal Froducts" as shown within the Final Mission Report, UNIDO, Mobile Unit of Pharmaceutical and Essential Oil Industry to the Least Developed Countries in Asia, Phase II - Afghanistan and Nepal (RP/RAS/78/O12). Extracts or active principles isolated from vegetal and animal raw materials or obtained through synthesis may be also tested.

I. REAGENTS

- 1. As a biological reagent corn (Triticum vulgare Vill.) cariopse (grains) are currently used. Bulbs of Allium cepa L., seeds of Lupinus albus L. or other seeds of plants that germinate and grow quickly may be also used.
- 2. Carmin acetic method. In a flask of 200-250 ml. mix 45 ml. of concentrated nitric acid with 55 ml. of distilled water and 5 g of pure Carmin (Nacarat or Grübler). Connect an ascending refrigerent or cover the flask with a funnel having the stem towards the flask. Boil on an asbestos sieve with small-pointed flame for 30-40 minutes. After cooling, filter through a filter-paper and keep tightly closed the carmin acetic solution in a glass-stoppered flask.
- 3. Acetic orceine method. It uses orceine in an acid medium. Preparation of the colouring:
- orceine p.a. 2.2 g;
- glacial acetic acid p.a. 100 ml.

Orceine is dissolved in glacial acetic acid at toiling temperature after which boiling is continued for still 2-3 minute Filter after cooling.

From this stock solution, prepare a diluted solution, at moment of use:

- Stock solution 45 p;
- Distilled water. . . . 55 p.

To the standard solution of 1% acetic orceine thus obtained, add 10% of N/1 HCl solution.

PROCEDURE

1. Germination of corn caryopses

Soak caryopses in water for 4 hours, then let them germinate at a temperature of 23-25°C, in Petri dishes whose bottom is covered with two discs of filter-paper damped with tap water boiled and cooled. Caryopses are apt to be tested when their main root is as long as 1 cm.

An equivalent number of caryopses of Triticum vulgare, germinated in similar conditions represent the control.

2. Determination of minimum active concentration (CM_A)

A series of 11 Petri dishes (A series), high of 4-5 cm and with a diameter of 10 cm. will be pipeted each with the volumes of cytostatic solution, M/800 coffeine solution and tap water boiled and cooled in the amounts indicated in the following table:

Preparation of dilutions for A series

No. of the Petri dish	Cytostatic solution (ml.)	Coffeine solution M/800 (ml.)	Water boiled and cooled (ml.)	Total volume (ml.)
I II IV V VI VII VIII VIII VIII X X	1.00 2.00 3.00 3.50 4.00 4.50 5.00 5.50 6.50 7.50	7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50	6.5.5.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.	15 15 15 15 15 15 15 15 15

M/800 solution of coffeine is prepared taking into account that 1 ml. of solution contains 265 gramms of coffeine.

Transfer in each Petri dish 10 caryopses of germinated Triticum vulgare and keep for 24 hours at 23-25°C. After this interval examine under microscope the modifications of the mitosis produced by the cytostatic in the main roots of caryopses.

At the same time prepare a series B of Petri dishes numbered as series A and pipet into each the same concentration of cytostatic. Complete up to a total volume of 15 ml. with tap water boiled and cooled.

Microscopic examination should start with the higher dilution of cytostatic (dish No. 1) and note which Petri dish contains the first disturbances of mitoses at 80% at least of the top of examined roots.

3. Microscopical preparations

Changes brought about by alkylating cytostatics through the phytobiological method can be seen by means of:

- a) rapid staining (Schnellmethode)
- o) classic fixation and staining methods.

In B series of preparations the microscopical examination may show if the product has any activity when coffeine is absent. (Substances displaying C type mitotic activity bring about alterations even when coffeine is absent).

a) Microscopical preparations by rapid staining method (Schnellmethode)

Acetic carmin staining method

Take out at random from the Petri dish no. 1 five caryopses of Triticum vulgare, place them on some filter paper and cut each main root at about 3 mm from the respective tip. The cut tips are placed on a microscopical slide and 1-2 drops of acetic carmin solution are added. Heat gently the slide in a small flame until the liquid begins to boil; repeat this heating 2-3 times. Cover with a thin slide and press perpendicullary the finger on the thin slide until the root tips are crushed. Examine with the microscope each root tip, immersed; results are

considered satisfactory when at least four tips from the five examined give a positive answer. Repeat the procedure on the five caryopses left. in Petri dish; if once again neither of the minimum four from the five root tips present alteration of all mitotic patterns but a mixture of normal and alterated patterns, the tip of the following Petri dish will be examined until the anticipated result is obtained.

Acetic orceine method

Cut the tip of main roots from five caryopses, following the same technique as in the previous method, place them inco a porcelain crucible with a Ø of 2 cm where 3 ml of diluted acetic orceine solution have been already transferred. Heat the crucible on a sieve at a very small flame and boil for 90 sec. from the moment vapours appear over the crucible. Put out the flame, cover the crucible and allow it to cool for 10 minutes. Examine with the microscope as previously shown. The minimum active concentration is conventionally noted as CMA. To calculate CMA use following formula:

 $CM_A = C \times 6.666$, where

C = amount of cytostatic in Petri dish corresponding to the highest dilution that yielded alterations of all mitotic patterns.

The alterations must be characterized by: prolongation of the mitoses, retorted chromosomes, ana- and telophasic bridges chromatin blocks of available sizes and micronucleia.

b) Classic fixation and staining method

In order to check the results obtained by rapid methods, use the classic fixation and staining of ADN from the specimen.

The usual fixing agents are: Nevaquin, Carnov I and Helly solutions.

These methods may be found in any textbook of cytology.

The microscopical pieces obtained from the fixed specimen may be used to study the structure of cellular components by means of Heidenheim's staining method with hematoxylin prepared following Regaud, and for reactions on nucleus and nucleolus, following Feulgen Rossenbek, Unna-Pappenheim, D.Gr. Constantinescu, etc.

ANNEX 14

Therapeutic Groups

- I. Araesthetics, Analgesics, Antipyretics, Antirheumatics.
- II. Nonsteroidal, anti-inflammatory drugs and antigout drugs.
- III. Antiallergics (Antihistamines).
- IV. Antidotes, chelating agents.
- V. Cholagogue and choleretics.
- VI. Anti-epileptics (convulsants).
- VII. Anti-infective, Antiprotozoa (Antibacterials, Antiseptics
- VIII. Anthelmintics.
- IX. Anti-migraine preparations.
- X. Antineoplastics.
- XI. Antiparkinsonism drugs.
- XII. Blood and Haematopoetic System.
- XIII. Cardiovascular and antihypertensive.
- XIV. Cardiovascular antihypotensive.
- XV. Antiarrhytmics.
- XVI. Cardiotonic.
- IVII. Dermatologicals.
- IVIII. Diagnostics.
- XIX. Diuretics.
- XX. Gastrointestinal drugs, Antispasmodics.
- XXI. Cathartics.
- XXII. Laxatives, Purgatives.
- XXIII. Antacids.
- XXIV. Antidiarrheals.
- XXV. Hormones.
- XXVI. Immunologicals (Immunosuppressive).
- XXVII. Muscle relaxants and Antagonists (Peripherally acting)
 (Skeletal muscle relaxants).

XAVIII. Ophthalmologicals.

XXIX. Oxytocics.

Psychotherapeutic and Hypnotics (Psychostimulants sedatives).

XXXI. Drugs acting on the respiratory tract.

XXXII. Solutions correcting water, electrolyte and acid-base disturbances.

XXXIII. Vitamins and Minerals.

XXXIV. E.N.T. (Ear, Nose, Throat) preparations.

XXXV. Anti-hemorrhoidal preparations.

XXXVI. Anorexics.

XXXVII. Cholesterol reducers and antihyperlipidemics.

XXXVIII. Geriatrics.

XXXX. External Tratment.

XL. VARIAE.

LIST OF PHARMACOLOGICAL LABORATORY EQUIPMENT, SMALL SCALE INDUSTRY EQUIPMENT AND TECHNICAL ASSISTANCE (UNIDO EXPERTS) AS A FOLLOW_UP ACTIVITY OF THE PRESENT REPORT IN NEPAL._

_			
I			Approximate cost in U.S.\$
	SCI	reening.	
	l.	Physiopolygraph with transducers for	
		experimental work:	
		- Helighe-Schwarzer (F.R.Germany)	30,000
		- Nihon Kohden (Japan)	
	2.	Autoanalyser SMA-12, type S	
		(for Na, K, Ca, glucose, enzymes in blood)	,
		- Technicom (France)	72,000
		- Union Carbide	
	3.	Electrocardiograph	2,000
	4.	Electroencephalograph	5,000
	5.	Apparatus for studying the conditioned	
		reflexe. Ugo - Basile (Italy)	500
	6.	Animex activity meter.	
		- Farad Electronics - Stockholm - Sweden	
		(Apparatus for measuring the motor	
		activity)	500
	,	or Activity Cage for mice	
		'Ugo - Basile (Italy)	
	7.	Analgesy-meter for the rat paw	
		Ugo-Basile-Milanc (Italy)	300
	8.	Ect Unit Electro-convulsive Treatment	
		for small Mammals. Ugo-Basile-Milano	. 600
	9.	Apparatus for measuring volums and anti- inflamatory activity volum Differential-	
		meter, Ugo-Basile - Milano (Italy)	250

1.000

II. Necessary equipment for pharmacocinetic Approximate cost in U.S.\$

- 1. Apparatus for studying resorbtion
 (artifical stomach and intestine)
 Resorbtions Modell Komplett SM 16750
 Packungseinhei M.1 SM 15701
 Packungseinhei D.1 SM 15702
 Sartorius membranfilter (West Germany)....
- 2. Spectrospekord U.V.-V.I.S.-Zeiss Yena.... 8,000

III. Necessary equipment for studying biochemical

pharmacodynamics (second necessity) amount

about.... 15,000

- 1. Cooling Centrifuge (Kühlzentrifuge K 24 Janetzki D.R.G.).
- 2. Homogenizer
- 3. Refrigerator
- 4. Electric pH-meter
- 5. Warburg apparatus
- 6. Universal adjustable stand (Grösstes
 Universalstativ) E.Zimmermann Leipzig
 (D.R.G.).
- 7. Kymograph penholder and inscripting pens or Electric-Kymograph (Trommeleregistergerat Zimmermann Leipzig).
- 3. Baths for isolated organs (with accessories)
- 9. Synchronograph (E.Zimmermann Leipzig.)
- 10. Ultrathermostat. Metrimpex Typ LP 225.
- 11. Operation table for laboratory animals.
- 12. Pump for artificial respiration with variable rythm and amplitude.
- 13. Electric steriliser for instruments.
- 14. Biological pH-meter Tip OP-212 Avec electrode microcapillaire, Metrimpex, Budapest.......... 3,000

IV. Varia: Syringes, Surgical Scissors,	
Anatomic Clips, Hemostatic	cost in U.S.\$
Clips type Kocher, Pean, Divenwas	ek,
Lancets, Suture needles type	
Reverdin, Immobilization devices,	
Watching Cages (plexiglass, glass),
Cages etc Total:	200
V. Small scale industry equipment and	
technical assistance by UNIDO Experts	
1. The UNIDO assistance cost previous	
in Appendix XVIII Final Mission Report	
RP/RAS/78/012	342,100
2. Hammer mills - Condux-Werk	
(D-6450 Hanau ll - W - Germany)	
or : Special mills - Type W - 3 R	
or W - 45 R - Winicker & Lieber	
(Maschinenfabrik - 2930 Varel 1 -	
Hansastrasse 1 W - Germany)	50,000
3. Dryer, Tray Chamber Hareaus(WEST -	
Germany)	2,500
4. Filter Press 1/4 H.P. (West Germany)	1,200
5. Mill, Cutter 1/2 H.P. or Mill Fitz	
Patrick	8,800
 Blister packing machine (automatically) Bosch or Uhlmann - for capsules and 	
tablets	40,000
7. Semi-automatic Ointment filling,	
cumping and coding machine (Engl.)	10,000
8. One All-ground car with laboratory	
equipment	2,400

A. TECHNICAL ASSISTANCE:

Approximate cost in U.S.\$

- 1. Pharmaceutical adviser or expert,
 long experienced in medicinal plants
 and Phytotherapeutical products for
 24-48 m/m.
- 1 Agronomist (Agr.Eng.) 6 m/m.
- 1 Pharmacologist (Dr.Med.) 6 m/m.
- 1 Analyst for medicinal plant analyses and drugs control, 6 m/m.
- l Technologist for vegetal extraction and conditioning of pharmaceutical products for 6 m/m.

Total approximate cost: ... 250,000

B. TRAINING PROGRAMME:

GRAND TOTAL U-S.Dollars:..... 887,500.-

REFERENCES

(Bibliography)

- Notes on Flora of Majnikunj (Gokarna Forest).
 Bulletin No.1 H.M.G. of Nepal, Ministry of Forests,
 Department of Medicinal Plants, Thapathali, Kathmandu,
 Nepal, 1967 (55 p.).
- 2. Flora of Phulchoki and Godawari.

 Bulletin of the Dep. of Med.Plants, No.2.

 (Ed.idem No.1) Kathmandu, Nepal, 1969 (144 p.).
- 3. Medicinal Plants of Nepal.
 Bulletin of the Dep. of Med.Plants, No.3.
 (Ed.idem No.1) Kathmandu, Nepal, 1970 (153 p.).
- 4. Flora of Nagarjun.

 Bulletin of the Dep. of Med.Plants, No.4.

 (Ed.idem No.1) Kathmandu, Nepal, 1973 (93 p.).
- 5. Supplement to the Flora of Fhulchoki and Godawari.
 Bulletin of the Dep. of Med.Plants, No.5
 (Ed.idem No.1) Kathmandu, Nepal, 1974 (53 p.).
- 6. Flora of Langtang & cross section.

 Vegetation Survey (Central Zone).

 Bulletin of the Dep. of Med. Plants, No.6.

 (Ed.idem No.1) Kathmandu, Nepal, 1976 (269 p.).
- 7. Catalogue of Nepalese Vascular Plants.

 Bulletin of the Dep. of Med. Plants, No.7.

 (Ed.idem No.1) Kathmandu, Nepal, 1976 (211 p.).

- 8. Keys to the Dicot.Genera in Nepal.

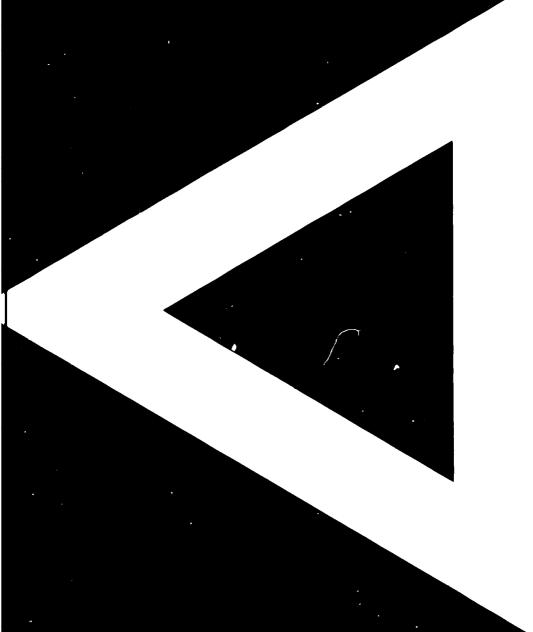
 (Part I Polypetalae) Dep. of Medicinal Plants,

 Kathmandu, Nepal, 1967, (98 p.).
- 9. Keys to the Dicot.Genera in mepal.

 (Part II Gamopetalae and Monochlamydeae).

 Dep. of Med.Plants, Kathmandu, Nepal, 1968 (71 p.).
- 10. Royal Botanical Garden Godawari.

 (Ed.idem No.1) Kathmandu, Nepal, 1975 (60 p.).
- 11. Majapuria C.T., Majapuria Indra, Sacred and useful Plants
 & Trees of Nepal.
 Ed. Sahayogi Prakashan, Tripureshwar,
 Kathmandu, Nepal, 1978 (200 p.).
- 12. Dorothy Mierow, Tirtha Bahadur Shrestha.


 Himalayan Flowers and Trees.

 Ed. Sahayogi Prakashan, Tripureshwar,

 Kathmandu, Nepal, 1978 (202 p.).
- 13. Journal of Nepal Pharmaceutical Association Vol. VI, 1978, Kathmandu (90 p.).
- 14. Vegetal Pharmaceutical Extracts
 by St.Ionescu Stoian and E. Savopol. Ed. Medicală
 București 1977.
- 15. Pharmacy of Nature
 by F. Crăciun, O. Bojor and M. Alexan
 I and II vol. Ed. Ceres, București, 1976-1977.
- 16. Prüfung von Drogenby Martin Luckner,VEB Gustav Fischer Verlag, Jena, 1966.

- 17. The Pharmacological Basis of Therapeutics Second Edition by L.S.Goodman and A. Gilman,
 Ed.Macmillan Company U.S.A., 1955.
- 18. Pharmakologie und Grundlagen der Toxikologie by Fritz Hauschild, VEB G. Thieme, Leipzig, 1956.
- 19. Matières Premières usuelles du Règne Végétal by
 En. Perrot, Masson et Cie Editeurs. Tom I et II Paris 1944.
- 20. Rote Liste Gmb.H. München 1975.
- 21. Normalisation UNIDO U.N. New-York, 1969.
- 22. Report of the Preparatory Mission to Nepal (RP/RAS/76/009) UNIDO 1977.
- 23. Mobile Unit of Pharmaceutical and essential oils Industry to the Least Developed Countries in Asia. Final Mission Report Phase II Afghanistan and Nepal (RP/RAS/78/012) Appendix IV, V and XIV by Ovidiu Bojor.
- 24. Belgian Pharmacopoea, V.
- 25. British Pharmacopoeia, 1963 and 1973.
- 26. British Pharmaceutical Codex, 1963.
- 27. Deutsches Arzneibuch, ed. 7., 1966. (DDR).
- 28. " " " (B.R.D.).
- 29. Pharmacopée Française, ed. VIII, 1965.
- 30. Pharmacopöea Hungarica, ed. V, 1954.
- 31. Farmacopea ufficiale della republica italiana, ed. VII, 1965.
- 32. Japanese Pharmacopoea.
- 33. Pharmacopoea Jugoslavica, ed. II, 1954.
- 34. Formulario magistrale di terapia.
- 35. Pharmacopoea Polonica, ed. III, 1954.
- 36. Portuguese Pharmacopoea, 1961.

- 37. Farmacopeea Română, ed. VIII, 1965, IX, 1975.
- 38. Farmacopeea S.S.S.R., ed.IX, 1961.
- 39. Formulae Normales.
- 40. National Formulary, ed.XII, 1965.
- 41. Östereichisches Arzneibuch, ed.9, 1960.
- 42. Pharmacopoea Helvetica, ed. V, 1934.
- 43. Pharmacopoea Bohemoslovenica, ed. II, 1954.
- 44. Pharmacopoea Danica, 1948.
- 45. Pharmacopoeia Nordica, 1963.
- 46. Pharmacopoea Svecica, ed.XI, 1946.
- 47. Pharmacopoeia of the Unites States, ed.XVII, 1965.

