

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

21110

UNIDO UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION

REPORT OF THE EXPERT GROUP MEETING ON

TYPE APPROVAL PROCEDURES FOR NEW VEHICLES IN THE ASIA - PACIFIC REGION

organized by UNDP, UNIDO and Directorate General of Land Transportation, Ministry of Communications, Republic of Indonesia

Jakarta, 8-10 June 1993

TABLE OF CONTENTS

		Page
I.	Introduction	1
II.	Agenda	
III.	Participants	
IV.	Opening Addresses	2
v.	Presentation of the consultant's paper	2
VI.	Presentation of the country papers	
711.	Discussions on selected topics	
VIII.	Review of the draft "Guidelines"	
	and adoption of its terms	
IX.	Venue of the next meeting	11
x.	Recommendations	
Annex	1. Agenda	13
Annex	2. List of participants	15
Annex	3. National focal points	21
Annex		24
Annex		34
Annex		56
Annex		
Annex		122
Annex		
Annex		
Annex	11. Country paper of India	157
	12. Country paper of Iran	
	13. Country paper of Thailand	
	14. Country paper of Indonesia	

I. INTRODUCTION

In accordance with Project Document DP/RAS/89/057 "Regional Network on Control and Regulatory Measures Concerning Motor Vehicle Emissions" UNDP/UNIDO in cooperation with Directorate General of Land Transportation, Ministry of Communications, Republic of Indonesia organized an Expert Group Meeting on Type Approval Procedures for New Motor Vehicles in the Asia-Pacific Region. The Meeting was held on June 8 - 10, 1993 in Jakarta.

The Meeting was the second in the series of four meetings to be held under the project DF/RAS/89/057. This one was devoted to the subject of establishing standards and procedures related to the emission control of new motor vehicles.

The main objectives of the meeting were as follows:

1. Development objectives

- a) To initiate, develop and promote the cooperation among countries of the Asia-Pacific Region in the area of motor vehicle emission control and to set up the nucleus of the regional network for the development and promotion of recommendations concerning emission-related standards and policy measures,
- b) To lay down terms for the introduction of common standards and control procedures for motor vehicle emission control for the Region.

2. Immediate objectives

- a) To provide a forum for exchange of experience and information among countries of the Region in the area of new vehicle emission control,
- b) To identify common issues of new vehicle emission control to be dealt with on regional levels and specific issues to be dealt with on country levels,
- c) To assess options for common test procedures and common limit values for individual vehicle categories and to select those which are most appropriate for the Region,
- d) To review the draft "Guidelines for New Motor Vehicle Emission Control in the Asia-Pacific Region" and to adopt its terms.

II. AGENDA

The agenda of the meeting is enclosed in Annex 1.

III. PARTICIPANTS

Participants were:

- representatives of the following countries which have declared their participation or their interest in the project: China, Hongkong, India, Indonesia, Iran, Republic of Korea, Malaysia, Philippines, Singapore, Sri Lanka, and Thailand,
- UNDP/UNIDO staff,
- technical consultants.

The full list of participants is given in Annex 2. The updated list of the national focal points for the project is enclosed in Annex 3.

IV. OPENING ADDRESSES

The Meeting was inaugurated by the Secretary General of the Ministry for Communications, Republic of Indonesia. Introductory speeches were delivered by the Chairman of the Organizing committee, the UNDP Deputy Resident Representative and the UNIDO Country Director.

V. PRESENTATION OF THE CONSULTANT'S PAPER

The UNIDO consultant in Vehicle Exhaust Emission Control presented a paper based on his draft "Guidelines for New Motor Vehicle Emission Control in the Asia-Pacific Region". The presentation was composed of two parts.

The first part included:

- the status of new motor vehicle emission control around the world.
- the status of new motor vehicle emission control in countries of the Region participating in the project,
- detailed information about emission standards and control procedures used in countries leading in the area of motor vehicle emission control: ECE/EC, USA, Japan.

In the second part of his paper, the consultant presented:

- an outline of the motor vehicle emission control system recommended for countries participating in the project, comprising general description of the system and functions of its main components, in particular new motor vehicle control,
- terms for regional cooperation in the area of new motor vehicle emission control,
- actions to be taken on regional levels including common emission standards, common type-approval procedure and reciprocal recognition of type approval granted in

participating countries,

- actions to be taken on country levels,

 detailed proposals for common emission standards for cars and light-duty vehicles, for diesel medium/heavy-duty vehicles as well as for motorcycles,

- prerequisites for the implementation of new motor vehicle emission control in the Region based on the proposed terms, preconditions for the introduction of low-emission standards and impact of the control on the cost.

STATUS OF NEW MOTOR VEHICLE EMISSION CONTROL AROUND THE WORLD

Emission control systems for new motor vehicles currently used around the world are based on standards and procedures developed in the USA, Japan or Europe. These standards and procedures are continually modified and amended in order to adopt them to requirements of environment protection and development of emission reduction technologies.

The standards and procedures used around the world differ in many respects but at the same time have some common points. The main differences lie in applicability, control procedures, severity of emission standards and driving cycles. Common points are usually some elements of test procedures, except driving cycles, e.g. analytical methods and equipment, gas sampling systems.

The current standards lay down requirements with regard to emissions from all main vehicle sources, i.e:

- a) exhaust systems (exhaust emissions), the following pollutants being controlled:
 - gaseous emissions (carbon monoxide (CO), total hydrocarbons (HC) and oxides of nitrogen (NO_v)),
 - particulate emissions (PM),
 - smoke (visible emissions),
- b) crankcase (crankcase emissions),
- c) fuel system (evaporative emissions or losses).

Exhaust emissions of lead and sulphur compounds are controlled by limiting lead and sulphur content in fuels.

The current emission standards fall into two broad categories. They are applicable:

- to new vehicles, or
- for vehicle useful life.

The severity of requirements laid down in individual countries varies very much. An exact comparison is difficult or even impossible because of differences in test procedures. It is to note that the severity of requirements does not depend only on standards. Other factors play also a very important role, e.g. the manner in

which the requirements are enforced (control procedure).

The existing control procedures are formed from the following main elements:

- a) vehicle certification or type approval,
- b) verification of conformity of production (COP),
- c) recall programme.

For many years, emission reduction programmes in the leading countries concentrated on cars equipped with SI engines. They contributed to very fast advances in emission technologies, which, in turn, resulted in the considerable reduction of emissions. Since the end of the seventies the dominant technology for exhaust emissions has become that of three way catalyst combined with electronic engine management.

As a result of continual amendments of exhaust emission legislation in order to adopt it to the progress in technology and vice versa, a current new "high-tech" vehicle emits on the average under test conditions only 5-15% of CO, HC and NO, amounts exhausted to the atmosphere by its uncontrolled predecessor from the sixties. The progress in terms of the exhaust emission reduction under real driving conditions is lower, but still spectacular.

While the considerable progress in the field of cars has been achieved, it has become more and more evident that the reduction from these vehicles alone is not sufficient to solve the air pollution problems in many areas. Therefore, another main category, medium/heavy-duty diesel vehicles, has been receiving increased attention as a significant source of NO, and particulates. Up till now no dominant technology has emerged for this category.

TERMS FOR REGIONAL COOPERATION IN THE AREA OF NEW VEHICLE EMISSION CONTROL

Experiences of many countries have shown that the best efficiency of the emission reduction can be achieved if all measures taken up for this purpose are not conducted separately but form a comprehensive and uniform motor emission control system. In such a system the vehicle emission control consists in:

- new vehicle control,
- in-use vehicle inspection,
- fuel quality control.

The system is formed by the following elements:

- legislation empowering competent authorities to carry out control and to introduce emission standards,
- standards (regulations) for new-and in-use vehicles, and standards for fuel quality, specifying limits and test methods,

- control procedures for new-and in-use vehicles, as well as for fuel quality,
- network of test centres and inspection stations,
- supportive and enforcing elements.

In the majority of countries participating in the project, motor vehicle emission reduction programmes do not include all required elements. It applies in the first place to the new vehicle control which is effectively conducted only in a few countries. The most comprehensive and effective is the programme carried out in Korea. As a whole, the Korean programme can be held up as a reference for all countries participating in the project.

It is possible to considerably reduce the emissions by upgrading the current programmes. The control system to be aimed at should be implemented:

- a) partly on regional levels in the framework of the cooperation among countries participating in the project,
- b) partly on country levels.

The regional cooperation in the area of new motor vehicle emission control should be based on the following common elements of the control programmes:

- common, harmonized emission standards,
- uniform conditions of approval,
- reciprocal recognition of approval granted in other participating countries.

The cooperation among the participating countries based on the above terms will have many advantages for the Region as a whole and for individual countries. In this respect much can be learned from experiences of ECE. Countries applying ECE Regulations, like those of the Asia-Pacific Region, differ very much with regard to conditions affecting emissions. Despite these differences, it has been possible to set up a harmonized control system, including common limit values, test procedures and conditions of approval.

The actions on country levels include the following elements:

- conformity of production verification,
- control of vehicles which are not subject to type-approval,
- other elements if their application is deemed necessary for the reduction of emissions in individual countries.

Two kinds of common standards differing in terms of severity are recommended for the first phase of implementation of regional cooperation:

- a) reduced-emission standards,
- b) low-emission standards.

The ultimate goal is, however, to introduce low-emission standards for vehicle categories which account for the considerable share of emission in a given country at earliest convenience.

ACTIONS ON REGIONAL AND COUNTRY LEVELS

Irrespective of differences in vehicle population, scope of coverage of current standards etc. priority in all countries participating in the project should be given to the control with regard to emissions from the following categories:

- a) vehicles equipped with SI engines:
 - cars,
 - light-duty,
- b) diesel vehicles:
 - light-duty,
 - medium/heavy-duty.

Moreover, common standards for motorcycles are of interest for a small group of countries as well.

The Region should not develop its own standards, but use existing ones. It is recommended to adopt the following standards:

Reduced-emission level

- cars and light-duty vehicles: ECE Regulation 83/01 Approval
 A or US 1973 standards.
- diesel medium/heavy-duty vehicles: ECE Regulation 49/01,

Low-emission level

- cars and light-duty vehicles: ECE Regulation 83/01 Approval B and C or current US standards,
- diesel medium/heavy-duty vehicles: ECE Regulation 49/02,
- motorcycles: current Swiss standards (test method specified in ECE Regulation 40/01) or current US standards.

The following common conditions of type approval in the Region are recommended. The vehicle manufacturer or his representative apply to the competent authority (administrative department) for the approval of a vehicle type with regard to limitation of emissions. The technical service prepares a test report and, if all the requirements, both formal and technical, are met, the competent authority grants the type approval and issues an approval certificate. Every modification of the vehicle type should be notified by the holder of type approval to the authority which approved the type.

The cornerstone of the recommended new vehicle control is that the vehicle should be physically tested in accordance with the agreed procedure in one of the participating countries. The competent authority of such a country communicates the approval (or refusal of approval) to the concerned authorities in all other countries participating in the cooperation. The approval of modifications or the extension of approval should also be communicated in a similar way. Any country participating in the cooperation should not refuse the registration, permit for sale or entry into service of new vehicles on grounds relating to their

emission levels if they are covered by a valid certificate of approval issued in another participating country.

The type approval procedure alone is insufficient to ensure that vehicles entering into traffic comply with the construction requirements. Therefore, all countries are recommended to conduct the verification of conformity of vehicles with the approved type. The procedure specified in ECE Regulations is recommended for this purpose.

PREREQUISITES FOR THE IMPLEMENTATION OF NEW MOTOR VEHICLE EMISSION CONTROL

To implement the effective control of emissions from new motor vehicles, irrespective of whether they are reduced- or low-emission ones, it will be necessary for the majority of countries of the Region to develop:

- administrative services,
- technical services (test centres).

The number one precondition for the introduction of the state of the art emission technologies is the availability of suitable fuels, in particular, but not only, unleaded petrol. This problem will be presented in separate guidelines and reviewed at the next meeting.

Experience with low-emission vehicles collected up till now shows that the potential of the state of the art technology is taken full advantage of if the enhanced in-use inspection is introduced parallelly with the introduction of such vehicles into service. The enhanced inspection is particularly important in the transition period when two grades of petrol, leaded and unleaded, are parallelly available in the market.

The cost of implementation of the new vehicle emission control in line with the recommendations of the present "Guidelines" results from:

- a) the setting up and operation of the control structure,
- b) increase of fuel production cost,c) increase of vehicle production cost.

In spite of low-emission technological advances, many countries in the world have only been able to make limited progress in reducing vehicle emission. The main reason for it is the high cost of such technologies. The cost increase is dependent on the initial technological state of a given vehicle. It is to note that in order to meet the current low-emission standards for petrol vehicles, not only the introduction of catalytic converter and λ -probe, but also modifications of the engine itself (e.g. the replacement of carburetors with electronic fuel injection, electronic engine

management) and sometimes even a modification to vehicle body are required. On the average, the introduction of the state of the art technology adds about 5 - 15% to the production cost of vehicles depending on their size. On the other hand, however, the above modifications not only reduce emissions, but give better overall vehicle performances, lower fuel consumption included, better reliability and higher durability of components and vehicle as a whole.

The consultant's paper is not enclosed to this report as it was distributed to the participating countries in April, 1993.

VI. PRESENTATION OF THE COUNTRY PAPERS

The country papers were presented by country representatives. They were concentrated on the following topics:

 current status of particular countries with regard to new vehicle emission control and future plans in this area,

traffic conditions in their countries and representative-

ness of existing driving/operating cycles,

 views on regional cooperation in the area of new vehicle emission control, its advantages and precondition for implementation.

The country papers are listed below in the order in which they were presented, all papers being enclosed as Annexes.

1. China

Title:

The Vehicle Emission Control in China.

Presented by: Mr. Song Nai Yang Beijing Automotive Research Institute.

(Annex 4)

2. Hong Kong

Title:

Vehicle Emission Control in Hong Kong

Presented by: Mr. Kong Ha Vehicle Emission Control Section Hong Kong Environmental Protection Department.

(Annex 5)

3. Malaysia

Presented by:
Radzuan Nong
Assistant Director
Technical Division
Road Transport Development

(Annex 6)

4. Korea

Presented by: Mr. Ju-Sop Cho Deputy General Manager Engineering Center Ssangyong Motor Company

(Annex 7)

5. Philippines

Presented by: Mr. Juan A. Magarro Jr. Executive Director, LTO Region V

(Annex 8)

6. Singapore

Title:

Vehicular Exhaust Emission Standards and Certification System in Singapore.

Presented by: Mr. Ng Yook Koong Head, Vehicle Engineering Division Registry of Vehicles

(Annex 9)

7. Sri Lanka

Presented by:
T.L. Peiris
Assistant Commissioner
of Motor Traffic Sri Lanka

(Annex 10)

8. India

Presented by: Mr. N. Bagchi Director, Ministry of Environment Government of India New Delbi

(Annex 11)

9. Iran

Title:
General View of Motor Vehicle Inspection for Emission
Control in Teheran/Iran.

Presented by:
Ms. P. Hasteh
Pollution Control Division
Teheran Traffic Control Center

(Annex 12)

10. Thailand

Presented by: Mr. Suvidh Voravisuthikul Director, Transport Engineering Division Land Transport Department

(Annex 13)

11. Indonesia

Presented by: Mr. Sutarno Djojo Head of Sub Directorate General of Land Transportation Ministry of Communications

(Annex 14)

VII. DISCUSSIONS ON SELECTED TOPICS

The Meeting selected for discussion the following topics concerning the new motor vehicle emission control:

1. Operating cycles and test procedures for diesel medium/heavy-duty vehicles applied around the world and their suitability for the Asia-Pacific Region.

 Driving cycles and test procedures for cars and lightduty vehicles applied around the world and their suitability for the Asia-Pacific Region.

3. Conditions of motor vehicle type approval with regard to emissions and reciprocal recognition of type approval on the basis of bilateral and multilateral agreements.

It was generally agreed that countries of the Region should adopt one of the existing operating/driving cycles and test procedures and should not develop special ones as any cycle can not fully represent the real driving conditions. A view was shared that the harmonization of emission standards for new vehicles has many advantages for participating countries. The common standards for the above mentioned vehicle categories were identified as the cornerstone for regional cooperation in the area of motor vehicle emission control.

The outcome of the discussions was used for the review of the draft "Guidelines for New Motor Vehicles Emission Control in the Asia-Pacific Region".

VIII. REVIEW OF THE DRAFT "GUIDELINES" AND ADOPTION OF ITS TERMS

The Meeting reviewed in great detail the draft "Guidelines for New Motor Vehicle Emission Control in the Asia-Pacific Region" prepared under the project. The particular attention was paid to the following topics:

 terms for the regional cooperation in the area of new motor vehicle emission control,

- actions to be taken on regional and country levels,

 proposals for common emission standards for different vehicle categories,

- prerequisites for the implementation of comprehensive new motor vehicle emission control in the Region.

The Meeting recommended to introduce to the draft "Guidelines" several amendments of editorial character. Moreover, some countries (Korea, Thailand, Malaysia) updated information concerning their standards. The Meeting adopted the amended version of "Guidelines".

IX. VENUE OF THE NEXT MEETING

The next meeting to be held under the project will be devoted to motor fuel and lubricant specifications for low emissions. This Meeting was informed that the possibility of hosting the next meeting in Beijing in March 1994 is now under consideration at the national focal point for China. The venue of the next meeting will be confirmed at a later date.

The Meeting was informed that in order to strengthen the cooperation within the regional network on motor vehicle emission control set up in the framework of the project, the main focal

point, Korea Institute of Science and Technology (KIST), would issue a newsletter devoted to activities in the Region in the area covered by the project. In this connection, all national focal points are requested to inform KIST about activities in their respective countries with regard to motor vehicle emission control, e.g. changes in regulations, new standards for new- and in-use vehicles or for fuels, new test methods, works on alternative fuels, setting up of emission laboratories, new equipment for emission measurement, changes in vehicle taxation, incentives for the introduction of low-emission vehicles etc.

X. RECOMMENDATIONS

- 1. The "Guidelines for New Motor Vehicle Emission Control in the Asia-Pacific Region" prepared under the project should form a basis for the implementation of increasingly stringent new motor vehicle emission standards and comprehensive control procedures in the Asia-Pacific Region.
- 2. It is desirable to considerably reduce the emissions by upgrading new vehicle emission control. To this end, the regional cooperation in the area is required. The cornerstone of the cooperation should be common, harmonized emission standards.
- 3. A number of technical centers capable of full type approval testing should be upgraded to act as centers of excellence for the training and proliferation of expertise in the area of motor vehicle emission control.
- 4. Communication within the regional network between the main focal point and individual national focal points as well as between the national institutions dealing with motor vehicle emission control should be strengthened.

AGENDA OF EXPERT GROUP MEETING ON TYPE APPROVAL PROCEDURES FOR NEW VEHICLES

Tuesday

June 8, 1993

- 1. Registration
- 2. Opening Session
 - a. Introductory speech by National Organizer, Mr. M. Yusuf.
 - b. Address of UNDP Deputy Resident Representative, Mr. Anders O. Frismark.
 - c. Address of UNIDO Country Director, Mr. Fernando Z. Vicente.
 - d. Inauguration of the Meeting by the Secretary General for the Ministry of Communication, Mr. Muchtarudin Siregar.
- 3. a. Election of Chairman and Raporteur
 - b. Adoption of Agenda
- Presentation of draft "Guidelines" by 4. UNIDO Consultant
 - Part I: Status of new motor vehicle

emission control.

Part II : New motor vehicle emission control system for the region.

5. Presentation of country papers by participants

Wednesday

June 9, 1993

- Presentation of Country papers by participants (cont'd)
 - 2. Discussion on selected topics.
 - 3. Review of the draft guidelines and adoption of their terms.
 - 4. Venue of the next expert group meeting and its agenda.
 - 5. Review of recommendations and conclusions for the final report of the meeting.

Thursday

June 10, 1993

1. Technical visit

Visit to motor vehicle inspection center, Bekasi - Indonesia

2. Closing session

Closing Remarks by:

- Chairman of the meeting.
 Mr. Hans Seidel
- UNIDO Country Director, Mr. Fernando Vicente
- Director General for Land Transport, represented by Director of Land Transport Safety and Means Engineering, Mr. Muhammad Yusuf

LIST OF PARTICIPANTS

CHINA

- (1) Mr. Xu Bamin
 Deputy Chief Engineers of
 China Automotive Technology and
 Research Center
 P.O. Box. 59 Tianjin
 P. R. China 300162
- (2) Mr. Wen Zhen Gang Highway Research Institute 48 Bei San Huang Zhong Rd. Beijing 100088, P. R. China
- (3) Mr. Song Nai Yang
 Director, Research Department
 Beijing Automotive Research Institute.
 c/o UNDP China

HONG KONG

- (4) Mr. Hin-wing Hung Environment Protection Officer Vehicle Emission Control Section 33/F, Wanchai Tower 3 5 Gloucester Road Wanchai, Hong Kong
- (5) Mr. Kong Ha Sen. Environment Protection Officer Head of Vehicle Emission Control Section. 33/F, Wanchai Tower 3 5 Gloucester Road Wanchai, Hong Kong

INDIA

(6) Mr. N. Bagchi Director, Min. of Environment and Forests 703 Paryavaran Bhavan C.G.O. Complex, "B" Block, Lodhi Rd. New Delhi

IRAN

- Mr. Mojtaba Ghasemi (7) Mayor 13TH District of Tehran c/o UNDP Tehran, Rep. of IRAN
- Mr. Mohammad Ali Aalami (8) Managing Director Tehran Vehicles Technical Inspection Bureau Behest St. Tehran Municipality Central Bldg Tehran Iran : (21) 5608176 Tel : (21) 5636027 Fax P.O. Box 11365-9169
- Ms. P. Hasteh (9) Head of Pollution Control Division Tehran Traffic Control Co. Management Bldg No. 37, Mehrdad St. Ostad Motahani Ave., Tehran 15759 Tel : (9821) 8804285 - 7 Fax : (9821) 8809701
- K O R E A, REPUBLIC OF (10)Mr. Kyu-Hong Ahn Senior Researcher, Environment Research Center KIST 39-1 Hawolgok-Dong, Sungbuk-Gu, Seoul Rep. of Korea.
 - (11)Mr. Ju-Sop CHO Leader of Homologation Team Ssangyong Motor Company Engineering Center 448-2, Togok-dong, Kangnam-gu Seoul, Rp. of Korea. Tel : (02) 526-1480 : (02) 592-4538 Fax
 - (12) Mr. Ki-Won KOH Manager of Vehicle Certification Department, Daewoo Motor Co. 199 Chung Chun Dong Pukku Inchom, Korea : 32-520-2440 Tel

: 32-524-8245 Fax

(13) Dr. Kang-Rae Cho
Director, Motor Vehicle Emission
Research Laboratory,
National Institute of Environmental
Research.
280-19 Bulkwang-dong
Eunpyong-gu, Seoul, Korea
Tel: 822-389-8926
Fax: 822-524-8245

MALAYSIA

- (14) Mr. Marzuki Mokhatar
 Environmental Control Officer
 Dept. of Environment
 Ministry of Science, Technology
 and Environment.
 12th + 13th floors
 Wisma Sime Darby
 Jalan Raja Laut
 50662 Kuala Lumpur.
- (15) Mr. Radzuan Nong
 Asst. Director
 Technical Division,
 Road Transport Department.
 c/o UNDP Malaysia

PHILIPPINES

- (16) Mr. Juan A. Magarro, Jr.
 Executive Director, LTO Region V,
 Legaspy City.
 Land Transportation Office,
 DOTC East Areme Quezon City
 Manila, Philippines
 Tel : 921-9073
 Fax : 921-0293
- (17) Mr. Heriberta C. Domingo
 Sr. Transportation Dev. Officer
 Land Transportation Office
 East Avenue, Quezon City
 Manila, Philippines.

SINGAPORE

(18) Mr. Lee Kheng Seng
Executive Engineer
Strategic Planning and Research
Department.
Ministry Of Environment
Environment Bldg 11th
Storey, 40 Scotts Rd.
Singapore.

(19) Mr. Ng Yook Koong
Head, Vehicle Engineering Div.
Registry of Vehicles.
Sin Ming Drive
Singapore 2057

SRI LANKA

- (20) Mr. D.D.J. Wijesundara
 Commissioner of Motor Traffic.
 Ministry of Transport and Highway
 Dept. of Motor Traffic
 Elvitagala Mawatha
 Colombo 05, Sri Lanka.
- (21) Mr. T.L. Peiris
 Asst. Commissioner of Motor Traffic.
 Ministry of Transport and Highway
 Dept. of Motor Traffic
 Elvitagala Mawatha
 Colombo 05, Sri Lanka.

THAILAND

- (22) Mr. Suvidh Voravisuthikul
 Director, Transport Engineering
 Division, Land Transport Dept.
 Bangkok, Thailand.
- (23) Mr. Jumpol Siriswasdi
 Pollution Control Department
 Ministry of Science, Technology,
 and Environment.
 c/o UNDP
 Bangkok, Thailand.

UNIDO

- (24) Mr. Hans Seidel
 Acting Head,
 Engineering Industries Branch
 P.O. Box 300
 A-1400 Vienna, Austria
- (25) Mr. Fernando Z. Vicente
 UNIDO Country Director
 c/o UNDP
 Jl. Mh. Thamrin 14
 P.O.Box 2338
 Jakarta 10001
- (26) Mr. Stanislaw Radzimirski International Consultant in Vehicle Exhaust Emission Control c/o UNIDO, Vienna Austria
- (27) Mr. Timothy Berryman
 International Consultant in
 Fuels and Lubricants
 c/o UNIDO Vienna, Austria

INDCNESIA

- (28) Mr. M. Yusuf
 Director of Land Transport Safety
 and Means Engineering,
 Directorate General of Land Transportat
 Ministry of Communications.
 Jl. Jend. Sudirman 77
 Jakarta 12190
- (29) Mr. Dwi Wahyono Syamhudi
 Head of Sub Directorate of Motor
 Vehicle Technology and Roadworthiness,
 Directorate General of Land Transportat
 Ministry of Communications.
 Jl. Jend. Sudirman 77
 Jakarta 12190
- (30) Mr. Sutarno Djojo
 Head of Sub Directorate of
 Land Transport Safety, Directorate
 General of Land Transportation,
 Ministry of Communications.
 Jl. Jend. Sudirman 77
 Jakarta 12190

- (31) Mr. M. Tamzil
 Motorvehicle Inspection Centre for
 Type Approval and Certification,
 Directorate General of Land
 Transportation,
 Ministry of Communications.
 - (32) Mr. Nawolo Widodo
 Director of Land Transport Vehicle
 and Aircraft Industry,
 Ministry of Industry.
 Jl. Jend. Gatot Subroto
 Jakarta

NATIONAL FOCAL POINTS

CHINA

Mr. Piao Zhongxuan Deputy Director Highway Research Institute Ministry of Communications 48 Bei San Huan Zhong Road Beijing 100088 Tel: 201 3399 (Ext. 2903)

Fax: 201 4130

HONG KONG

Mr. Kong Ha
Senior Environmental Protection Officer
Vehicle Emission Control Section
Environmental Protection Departement
Air Service Group
33/F., Wanchai Tower 3
5 Gloucester Road
Wanchai, Hong Kong
Tel: (852) 594 6414
Fax: (852) 827 8040

INDIA

Mr. N. Bagchi
Director
Ministry of Environment and Forest
703 Paryavaran Bhavan
C. G. O. Complex, "B" Block, Lodhi Road
New Delhi - 110 003
Tel: (911) 436 2663
Fax: (911) 436 0678

INDONESIA

Mr. M. Yusuf
Director of Land Transport Safety
and Means Engineering
Directorate General of Land Transport
Jl. Jend. Sudirman 77 - Jakarta Selatan
Indonesia 12190
Tel : (62-21) 5706667
Fax : (62-21) 5706624
Telex : 44723 DJPD IA

•

IRAN

Ms. P. Hasteh Head of Pollution Control Division Tehran Traffic Control Co. Management Bldg No. 37, Mehrdad St. Ostad Motahani Ave., Tehran 15759

: (9821) 8804285 - 7 Tel : (9821) 880970' Fax

KOREA

Mr. Kyu-Hong Ahn Environment Research Center Korea Institute of Science and Technology 39-1 Hawolgok-Dong, Sungbuk-Gu Seoul 136-791 : (822) 962 8801 Ext. 4642

Tel : (822) 969 0230 Fax

Telex: KISTROK K27380

MALAYSIA

Mr. Tan Meng Leng Dept. Director General (Operation) Dept. of Environment of Science, Technology and Ministry Environment 13th Floor, Wisma Sime Darby Jalan Raja Laut 50662 Kuala Lumpur, Malaysia

Tel: (603) 2938955 : (603) 2931480 Fax

PHILIPPINES

Mr. Percival A. Cendana Office of Head Executive Assistant, Assistant Secretary Vice-Chairman, LTO Task Force on Legal Affairs Dept. of Transportation and Communication East Avenue Quezon City

Tel : (632) 921 9071 : (632) 921 9072 Fax

SINGAPORE

Mr. NG Yook Kong Head of Vehicle Engineering Division Sing Ming Drive Singapore 2057 Tel: 4505260 fax : 4522661

SRI LANKA

Mr. D. D. J. Wijesundara Commissioner of Motor Traffic

Dept. of Motor Traffic

Elvitigala Mawatha

Colombo 05

Tel : (941) 698 717 Fax : (941) 694 547

THAILAND

Mr. Suvidh Voravisuthikul

Director of Transport Engineering Division

Lard Transport Department Phaholyothin Rd. Bangkhen

Bangkok 10900

Tel : (662) 271 3053 Fax : (662) 271 3037 Expert Group Meeting on Type Approval Procedures for New Vehicles

Country Paper

The Vehicle Emission Control in China

1. The review of the current status of Chine with regard to new vehicle emission control and future plans

The emission from motor vehicle had not been paid attention to until 1970s in China. The domestically manufactured automobiles in China was emission uncontrolled. Two important components, which significantly influence the emission level, carburetor and distributor are of bad quality. The air/fuel ratio and ignition timing are dispersed. So both the fuel consumption and idle exhaust concentration are very high.

In 1980s, China began to import several types of automobiles from developed countries, such as Santana, Cherokee, Daihatsu etc.. These types of automobiles, either emission uncontrolled or cuntrolled one, are not installed emission control devices because there are no emission regulations in China. However since these imported models of automobiles have good production quality and good combustion efficiency, both the fuel consumption and emission concentration at idle speed of those vehicles are quite low.

Thus it can be seen that to control vehicle emissions in China those domestically manufactured automobiles should either improve the basic performance and production quality, or give up those old automobile models—22-222- the first step emission—centrol—22quirement, i.e. Exhaust Emission Standard at Idle Speed.

The second step, both domestically made and imported models of vehicles must meet the Crankcase Emission Standard and the Evaporative Emission Standard.

The third step, light-duty vehicles must meet the limits from ECE 1503 Regulation by using the measurement method from ECE 1504 Regulation. Then we will basically put the vehicle under the emission regulation control.

After this, we will make the emission standard more stringent step by step, and import relevant mature control technology from developed countries, from simple to complecated according to the principle of being reasonable in both technology and economy.

For gasoline vehicle the control measures we will take are as follows:

- (1) Improve the basic performance and quality of carburetor and distributor. If necessary we will import the carburetor from developed countries, and make the accuracy of air/fuel ratio within 8%. This measure will make the fuel consumption and emissions decrease 30 percent, so it is very important one.
 - (2) Remove the crankcase pollutants by PCV system.
- (3) Reduce the evaporative pollutants from fuel supply system by evaporative emission control system.
- (4) Install emission control devices or components on carburstor, such as automatic choke, fast idle mechanism, throtle positioner, etc..
- (5) Develop ignition systems which are either contact-assisted with low amperage, or contact-less with high amperage, and a reasonable ignition timing.

- (6) Introduce EGR for decreasing the NOx when the road condition improved and vehicle average speed increased.
 - (7) Introduce the fuel injection technology.
 - (8) Introduce three-way catalystic converter technology.

For automobiles with diesel engine the control measures we will take are as follows:

- (1) Decrease the smoke measured by filter smoke-meter at free acceleration and full load.
- (2) Decrease the smoke measured by opacity smoke-meter at free acceleration and full load.
 - (3) Decrease the NOx.
 - (4) Decrease the particulates.

Most of the above technology is very mature in developed countries. In fact what we should do is to choose them reasonably according to the environmental requirement and economy condition of China.

- 2. The brief introduction about National Emission Standards of motor vehicle in China
- *From the end of 1970s, we began to set emission standard for motor vehicle. According to China's condition, we put forward a plan as follows:
- standard for controlling crankcase pollutants and evaporative

emissions. The third step is the emission standard for exhaust pollutants from light-duty vehicle with mass measurement method. If the condition permits, we will set the emission standard for exhaust pollutants from heavy-duty vehicles. Finally, transforming the only concentration measurement method into both concentration & mass measurement method.

As for vehicles with diesel engines, in an apropriate period we mainly control the smoke at free acceleration for vehicles and the smoke at full load for diesel engines.

According to this emission control technical line, we issued a number of emission standards in 1988. They are:

- (1) Emission standard for pollutants at idle speed from road vehicle with petrol engine.
- (2) Measurement method for pollutants at idle speed from road vehicle with petrol engine.
- (3) Emission standard for smoke at free acceleration from road vehicle with diesel engine.
- (4) Measurement method for smoke at free acceleration from road vehicle with diesel engine.
 - (5) Emission standard for smoke at full load from diesel engine.
 - (6) Measurement method for smoke at full load from diesel engine.

At the same time, we developed the relevant instruments and equipments, i.e. NDIR portable analyzer and filter type smoke-meter. Since these two kinds of instruments are not very complicated, now they are mass-produced and very popular in China.

At present, there are idle speed emission inspections at the ends of assembly lines for every gasoline vehicle and free acceleration smoke inspections at the ends of assembly lines for some of diesel engine vehicles.

The EPA system places the auto factories under surveillance by using idle speed emission standard and free acceleration smoke standard. The Ministry of Public Security places the in-use vehicles under serveillance at year inspection, road side inspection and spot check by using these two standards also. In China the EPA directly manages the auto factories in vehicle emission control field.

The results of implementation of these emission standards are as follows:

- (i) Force the auto factories to improve the basic quality of carburetors and distributors. Some factories even improved the backward combustion chamber.
- (2) Promote the auto user to take good care of their cars and trucks. Some local governments established a network for I/M program and keep the automobile in good conditions.

The implementation of the smoke standard has got the similar results:

- (1) Auto factories make great effort to improve the combustion chamber and fuel supply system.
- (2) More attention were paid to the maintenance and repair of the in-use vehicles.

We have made great progress through implementation of the standards mentioned above. In 1993 we changed the limits of these standards and made them more stringent.

In the revision of Measurement method of pollutants at idle speed from road vehicle with petrol engine, we entirely follow ISO 8929 adding a measuring point at raised idle speed. Our experiments have proved that is reprecing the emission of this point is very useful not only for the vehicles with the catalystic converter but also for the vehicles without catalystic convertor. Specially for in-use vehicle the test at

raised idle speed point can show the reason of high emission at low and midle speed when the fuel orifice wired seriously. Through the measurement of the emission at the raised idle speed point (the position of throttle edge is just at the transfer port, and the air/fuel ratio can not be adjusted at this point) we can judge if the fuel orifice wired seriously or not. This work is very useful for solving severe emission problem in the urban area, the significance of which is more than of the idle speed point.

As we analyzed above, we think that these two abort tests are very important for the developing countries like China.

In 1989, we issued a mass emission standard for light-duty vehicle, i.e. "Emission standard and measuring method for exhaust pollution from light-duty vehicle". This standard adopts the measuring method of ECE 1504 Regulation and the limits of ECE 1503 Regulation(multiply the limits of HC by factor 1.83). The instruments and equipments which this standard uses are too expensive and too complicated, therefore until now this standard have not been put into practice. In 1993 we are going to issue another emission standard, i. e. Evaporative emission standard from road vehicle with petrol engine and its measurement method by trap. The limit for LDV will be 2 g/test after July 1, 1996. A test includes 1 hour diurnal breathing losses plus 40 minutes running losses plus 1 hour hot soak losses.

Considering the chassis dynamometer is too expensive and not very popular in China (even a lot of auto factories haven't had it), our standard stipulates that the test may be done on an engine bench instead of chassis dynamometer. In that case, it is necessary to connect the fuel supply system talling with actual vehicle situation. We can get the came: effect—on—an—engine bench as on a chassis dynamometer:

(1) The fuel tank must be sealed and be able to stand certain

pressure, so we will remove the evaporative losses from fuel tank.

(2) The carbureter must remove the hole on the float chamber, through which the vapor passes into the air. This is the best way to decline the evaporative emissions from float chamber. If we introduce the fuel injection system there will be no evaporative emissions from fuel supply system.

According to the Evaporative Emissions Standard, on July 1, 1996 the problem of evaporative emissions will be solved thoroughly, so the HC will be declined about 20 percent. We think that the SHED method is not suitable for developing countries since the equipments are too expensive and too complicated specially for heavy-duty vehicles.

In order to put the mass emission standard into practice, we have bought several measuring instruments & equipments recent years having spent plenty of foreign exchange. It is impossible for developing countries to buy a lot of so expensive measuring equipments spending much foreigh exchange. So we imagine that on one hand, we make a management system which can only use a few measuring equipments to control all auto factories, on the other hand we develop a simpler measuring equipments conforming with the EPA or ECE Regulations. Then we will progressively make them more automatically and more scientifically. In this field we hope to have a coorperation with other developing countries.

Mass emission measuring method is the most difficult but the most important. Without it we can not know how the matter stands, and how the air pollution contributed from vehicle, therefore we can not set reasonable emission standards, and can not evalue the emission level of the vehicle either. In this respect we just start the work and have no mature experience so we hope to have a wide coorperation with other countries.

3. Communications in China and the driving cycles of the vehicle

The status of China's communications is that: the roads are not enough, and all kinds of vehicles and people travel mixedly on the roads, so the average speed of the vehicle is very low. Along with the vehicle population increasing rapidly, the average speed of vehicle in the urban area is going to decrease day by day. So we should use a driving cycle with low average speed. We think ECE 1504 15 mode maybe is a suitable one (its average speed is about 19 km/h).

Based on the reason above, as first step, we decided to use ECE 1504 15-mode. In recent years, the road traffic construction is developing very fast along with the economy reform and the open door. It is the key point to develop separated super highway in the urban area, and express highway between cities. As a result, the average speed of vehicles will increase year by year. We plan to take EPA FTP75 as the driving cycle when the average speed reaches 35 km/h. The main reasons that we take the ECE or EPA driving cycles are:

- (1) Any driving cycle can not represent the real driving conditions of any cities.
- (2) It will be very convenient for international exchange, when most of the countries harmoniously take the same driving cycle.
- (3) In fact most of the countries in the world have taken these two driving cycles.

4. The formulation and practice of national emission standards of motor vehicle

According to China's experience, we must pay great attention to several points as follow. When we work out the emission standards and make them into practice.

(1) The formulation of the emission standards must be done by the government department, which can represent the benefit of nation and environment. This work must not be done by a department or a group, which mainly stands for the economic benefit of auto factories.

In China, the amount of emission standards of motor vehicle are not complete and the limits of these standards are quite lenient, because the automotive manufacture system dislikes any emission standards and made influence on them. As a result, for many years, the emission condition of the vehicle produced in China are improved quite slowly. At present, this situation is being changed, through the effort of EPA of China.

- (2) In China, The EPA is the authority of the emission control of motor vehicle. Without powerful EPA, the vehicle emission control in China is very difficult into a right way. So we hope there will be a lot of exchange among EPA of China and the government department (which manage the vehicle emission affairs) from other countries. Specially, we hope the United Mation support the EPA of China on this field.
- (3) In China the local EPA are in charge of actual practice of the vehicle emission control. So we must strengthen the training to them that they could make the practice correctly. In the past we did a lot of the training work, but still we ought to do more.
- (4) The environment is a global problem. The cooperation among countries is very important. We sincerly hope that there will be an

organization in Asia-pacific area, similar to ECE in Europe, which will be very convenient & beneficial for exchanging experiences, promoting vehicle emission control affairs each other, simplifying the procedure of trade.

5. Conclution

- (1) For effectively controlling the emission from motor vehicle, it is necessary to set a complete emission standards by the EPA of China(noted: not by others).
- (2) For making the standards reasonable, it is necessary to research on the contribution to the air pollution from motor vehicle.
- 3) For making the emission control technology reasonable, it is necessary to work out a series scientific technical policy and line.
- (4) For monitoring and evaluating the emission level from motor vehicle, it is necessary to establish emission laboratories.
- (5) For incorporating other countries' experience in controlling vehicle emission, it is necessary to strengthen the exchange and cooperation among internations.

COUNTRY PAPER VEHICLE EMISSION CONTROL IN HONG KONG

UNIDO United Nations Development Programme

Presented to the Expert Meeting on Type Approval Procedure for New Vehicles 8-10 June 1993, Jakarta, Indonesia

Presented by : Mr. Kong Ha Vehicle Emission Control Section Hong Kong Environmental Protection Department

1 -	Summary
2.	National Focal Point
3.	Organisation Chart
 4.	Control of Air Borne Emission from
5.	Vehicle Classifications in Hong Kong
6.	Status of Control of Vehicular Emission
7.	Emission Limit and Test Procedures for 6 Individual Vehicle Categories
8.	Enforcement Procedures for New Vehicle
9.	Some Background of Air Quality in Hong Kong 8
10.	Fleet Population and Vehicle-kilometre 8 Travelled
11.	Estimated Tonnage of Emission from
12.	Short, Intermediate & Long Term Solutions 9 to Tackle Vehicle Emission
13.	The Way Forward
14.	Comments on the Guidelines for New

Attachments:

- Charts and tables

1. Summary

This country paper briefly describes the vehicle emission related air quality problems experienced in Hong Kong.

The current control status, both regulatory and enforcement issues, are also described. Special emphassis will be put on present and future new vehicle emission standard and type approval requirements.

The most pressing problems of particulate and NOx pollution are identified. Short, intermediate and long terms draft strategies are laid out in this paper. Draft 1995 and 1998 emission standards are proposed to tackle the problems.

2. National Focal Point

In relation to the matters of vehicle emissions with respect to legislations, policies and controls, the national focal point for Hong Kong is:

Mr. Kong HA
Senior Environmental Protection Officer
Environmental Protection Department
33/F, Revenue Tower,
5 Gloucester Road,
Wan Chai,
Hong Kong.

Country code: 852

Tel: 594 6414 Fax: 827 8040

3. Organisation Chart

The Vehicle Emission Control Section of the Hong Kong Environmental Protection Department is responsible for the matters of formation of policies, development and introduction of control technologies and implementation of emission control program. The section is headed by a Senior Environmental Protection Officer, and assisted by 3 Environmental Protection Officers and a team of 15 technical and clerical supporting staff.

The work of the section is divided into three major areas:

1) Policy and development of emission control strategies and legislation, including standards on fuel properties and vehicle emission;

- 2) Technical services and introduction of new technologies in vehicle emission control, including applications on new and in-use vehicles;
- 3) Enforcement of in-use diesel vehicle smoke regulation.

The senior officer reports to the Principal Environmental Protection Officer, head of the Air Se ices Group, who reports to the Assistant Director of the Air and Noise Division, AD(AN). AD(AN) is held responsible by the Director of Environmental Protection.

Draft policies will be put forward to the Policy Branch of Planning, Environment and Lands for decision making.

(See attachment chart 1)

4. Control of Air Borne Emission from Motor Vehicles - List of Related Ordinances and Regulations

Automotive Fuels

Fuel <u>Type</u>	Effective Date	Regulations/Ordinance	
Unleaded Petrol	Apr 1991	Air Pollution Control (Amendment) Ordinance 1991	*
Diesel	Proposed 1995 & 98	Draft proposed specifications	

Emission Standards (Newly Register Vehicles)

Present: Air Pollution Control (Vehicle Design Standards)

(Emission) Regulations 1991

1995 : Draft Emission Standards for Heavy Duty Vehicles,

1st phase

1998 : Draft Emission Standards for Heavy Duty Vehicles,

2nd phase

Emission Standards (In-use Vehicles)

Present: Road Traffic (Construction and Maintenance of

Vehicles) Regulations

1995 : Draft In-use Emission Standards for ALL Vehicles

Inspection of In-use Vehicles

Present: Road Traffic (Amendment) Ordinance 1991

*(These documents in gazette form are available from the nation focal point)

Our regulations reflect that the approach we are taking is technology complying, not forcing. However in future EPD will not be too far behind from the most advance applicable technology.

5. Vehicle Classifications in Hong Kong

(Ref: Road Traffic (Construction & Maintenance of Vehicles) Regulations

Class	Maximum Passenger Seating Capacity	Maximum Gross Vehicle Weight (kg)
Passenger Carrying	Vehicles :	
Private Car	7	3,000
Taxi	5	3,000
Public/Private Light Bus	16	4,000
Public/Private Bus	17+	24,000
Goods Carrying Vehi	cles:	
Light Goods Vehicle	5	5,500
Medium Goods Vehicle	5	24,000
Heavy Goods Vehicle	5	38,000

6. Status of Control of Vehicular Emissions in Hong Kong

Petrol engined vehicles (new)

Under the Air Pollution Control (Vehicle Design Standards) (Emission) Regulations 1991, Cap. 311 of Law of Hong Kong, all petrol engined vehicles registered on or after 1.1.92 must use unleaded petrol.

The regulations also lay down the design standards of passenger cars and light duty vehicles below 2500kg GVW to conform to the US and/or Japanese emission standards.

2) Diesel engined vehicles (new)

Under the aforementioned regulation the design standards of passenger cars and light duty vehicles below 2500kg GVW are required to conform to the current US and/or Japanese emission standards.

The aforementioned regulations are being amended to incorporate the emission standards of the EEC directive 91/441/EEC.

3) Unleaded petrol specifications

Unleaded petrol of Hong Kong, as defined in the Air Pollution Control Amendment Ordinance, is of minimum RON and MON of 95 and 85 respectively. Lead content is limited to maximum of 0.013 g/L.

4) Diesel Fuel specifications

There is no specific regulation for automotive diesel but under the Air Pollution Control (Fuel Restriction) Regulation 1990, Sulphur is limited to 0.5% by weight for industrial diesel. Since only one grade of diesel fuel is available in Hong Kong, the automotive diesel in the market is similar to the industrial specification. In general the sulphur content is between 0.3% to 0.4%.

5) In-use vehicles

Under the Road Traffic (Construction and Maintenance of Vehicles) Regulations of Hong Kong, vehicle emitting excessive smoke is illegal. The regulation defined excessive smoke as 60 HSU as tested by Hartridge Mark 3 smoke meter.

Hong Kong Environmental Protection Department is running a spotter program where some 450 trained volunteers will report smoky vehicles spotted to the enforcement agency. In 1988 the program started to test smoky vehicles by one testing centre operated by Environmental Protection Department alone. The testing capacity was then expanded by adding designated private testing centers in 1991. Currently there are 20 such private centres.

Data of the reports received from spotters would be verified by comparing with the vehicle register via a computer link. Incorrect data or vehicles under action by the authority would be screened out. Typically the wastage rate is about 40%.

An emission testing notice would then be issued according to the actionable reports. The notices are sent to the registered owners of vehicles concerned by registered mail. At the same time a computer code will be added to the vehicle register to prevent vehicles under action from licence renewal or transfer. The notice will require the vehicle owner to correct any defect of the vehicle and have it presented to any one of the 20 designated centres for emission testing.

A limited time period (currently 18 days from the date of notice) would be given to the owners to obtain an emission certificate of compliance from the testing centres. Owners whose vehicle failed to comply to the HSU 60 standard or fail to present the vehicles for testing, would result in the vehicle licences being cancelled.

For 1992, 68,974 reports were processed, resulted in 46,132 Emission Testing Notice being issued and 45,926 vehicle tests.

7. Emission Limit and Test Procedure for Individual Vehicle Categories

Emission standards for motor vehicles registered in Hong Kong on or after 1 January 1992.

Vehicle Class	Emis	ssion li	imits (g/km	2]	Test Method
Class	СО	HC	NOx	PM	neemod
Cars/Taxi (Petrol)	2.10 2.70	0.26 0.39	0.63 0.48		US FTP 75 Japanese 10-mode
Cars/Taxi (Diesel)	2.10 2.70 2.70	0.26 0.62 0.62	0.63 0.72(a) 1.26(b)	0.12	US FTP 75 Japanese 10-mode
Light bus or goods vehicle 1700kg or less (Petrol)	6.20 2.70	0.50 0.39	0.75 0.48		US FTP 75 Japanese 10-mode
Light bus or goods vehicle 1700kg or less (Diesel)	6.20 2.70	0.50 0.62	0.75 1.26	0.16	US FTP 75 Japanese 10-mode
Light bus or goods vehicle 1700-2500 kg (Petrol)	6.20 17.00	0.50 0.70	1.10		US FTP 75 Japanese 10-mode
Light bus or goods vehicle 1700-2500 kg (Diesel)	6.20 0.80	0.50 6.70	1.10 3.50(c) 5.00(d)	0.28	US FTP 75 Japanese 10-mode (e)

Notes for the table:

- a) vehicle curb weight of not more than 1265 kg,
- b) vehicle crub wight exceeding 1265 kg,
- c) indirect injection engines,
- d) direct injection engines,
- e) limits expressed in ppm.

Motor vehicles above 2.5 tonnes are to conform to one of the following standards :-

 vehicles equipped with petrol engines: ECE regulation 15/00, EC Directive No. 70/220/EEC or 74/290/EEC, or Austrialian Design Rules No. 27 or 27λ. diesel vehicles (smoke level): British Standard BS AU 141a, 1971, ECE Regulation 24/00, EC Directive No. 72/306/EEC or Australian Design Rule No. 30.

8. Enforcement Procedures for New Vehicle Categories

In Hong Kong, no vehicle is allowed to run on a road unless it is registered and licensed.

Registration, which is normally a once-only operation, means giving the vehicle a registration mark and assigning it into appropriate class, e.g. private car, light goods vehicle, etc. Licensing, which is annually or four-monthly, conveys the right for a vehicle to be driven on a road. A local motor vehicle agent usually applies for registration and licensing of a vehicle on behalf of its client. However, if a person imports a vehicle, he has to do the job himself.

If a person wishes to register a vehicle which he has imported into Hong Kong, he must apply to the Transport Department on the prescribed form together with relevant documents. With respect to emission aspects, Transport Department will check against the vehicle emission standards laid down in the Air Pollution Control (Vehicle Design Standards) Emission Regulations 1991.

The provisions apply to vehicles first registered in Hong Kong on or after 1 January 1992, whether new or used. These vehicles must be either type approved or individually certified by Transport Department.

An application for type approval should comprise, among others, emission documentation including:

- certificate of compliance of vehicle emission standards,
- description of vehicle and engine,
- emission test report,
- diagrams of emission control system, exhaust system and additional anti-pollution devices.

Certificates of compliance issued either by an authorized motor vehicle emission testing laboratory or by an authority vested to grant the approval by a national or international body are accepted.

For vehicles, e.g. used imported ones, which have not been type-approved in Hong Kong, individual emission testing is required. A certificate of compliance issued by testing laboratory approved by Transport Department is accepted. This certificate should state the following:-

- make, model, vehicle identification number and engine number,
- method of testing (US FTP 75 or Japanese test),
- test resuslts.

There are no motor vehicle emission testing facilities in Hong Kong at present, therefore the documentary evidence issued by foreign laboratories or authorities must be produced.

On registration of a vehicle, the Transport Department will issue a registration mark and a registration document containing particulars of the vehicle to the registered owner.

9. Some Background of Air Quality in Hong Kong

Background of local air quality in relation to vehicular emissions

Ambient air quality objectives (AQOs) are being implemented in Hong Kong which are of similar stringency as in the US. (Table 2)

Among the pollutants being specified, the Total Suspended Particulates (TSP), Respirable Suspended Particulates (RSP) and Nitrogen Dioxide (NO2) are of concern. In urban areas, the TSP and RSP level are consistently exceeding their respective AQOs while the NO2 level is at the marginal level. It was estimated that vehicular emission contributed approximately 75% of both particulate and nitrogen oxides (NOx) emissions and, thus, are the major source of pollution.

Further information can be obtained from the Principal Environment Protection Officer of the Air Services Group of the Hong Kong Environmental Protection Department.

10. Fleet Population and Vehicle-kilometre Travel

(See attachment figures 3 & 4)

The city state of Hong Kong is a dense development comprising residential, commercial and industrial activities. In most places, situations of mixed goods and passenger transports can be found. The situation is even worse with the "old towns" where traffic flow volume, passenger and goods embarkment are difficult to manage in terms of minimizing emission from vehicles and its impact on people in the area.

The terrain of Hong Kong varies significantly, with high rise buildings along main roads, forming typical street canyons. Dispersion modeling on situations like this is difficult, and, although new town planning being exercised is improving the air pollution impacts on people, such benefit is not shared by the people living in the old towns.

11. Estimated Tonnage of Emission from Motor Vehicles

Trend of pollutant emission from motor vehicles

It is estimated that by 2010, there would be some 107% and 77% increase in particulate and NOx emission as compared with 1992 level due to the expected increase in traffic volume. (See figures 5 & 6)

Figures 7 & 8 shows the breakdown of the vehicular particulate and NOx pollutant contribution by class for 1992 and 2011. It can be observed that goods vehicles and buses are the major contributors and they are primarily Diesel engined vehicles.

With the expected growth in traffic volume, the situation will get worse and hence the "at source" control of vehicular emission is a must as a solution to improve air quality of Hong Kong. This requires stringent control on emissions from new and in-service vehicles.

Of course one should not ignore the important role of proper planning on transportation arrangements in the areas of demand, utilization, routing etc. not only to minimize the impact of emission on the environment, but also to emit as little pollutant as possible to assist the global environment.

12. Short, Intermediate and Long Term Solutions to Tackle Vehicle missions

Short, intermediate and long term control strating proposals See chart 9.

All the light duty petrol vehicles would be regulated using the most stringent standards feasible.

A program to upgrade the medium and heavy duty Diesel vehicle regulations is being formulated in the draft proposal aiming at US standards or equivalent of 0.6 g/bhp-hr particulate and 6 g/bhp-hr NOx standards by 1995 and 0.1 g/bhp-hr particulate and 5 g/bhp-hr NOx standards by 1998. The phase 1 and 2 of European

standard (91/542/EEC), commonly known as Euro 1 and 2, will also be adopted for 1995 and 1998. Feasibility of accelerated program for urban buses to advance the 98 standard to 96 is also being considered.

In parallel with the Diesel program, the required low sulphur Diesel fuel supply is under negotiation with the oil industry targeting at 0.2% by 1995 and 0.05% by 1998. The objective is to have low sulphur fuel standards set in parallel with the requirements of particulate emission standards.

The draft may also propose all new vehicles be required to carry emission warranty. The warranty may form the foundation of implementing in-use emission standards and inspection and maintenance programs.

13. The Way Forward

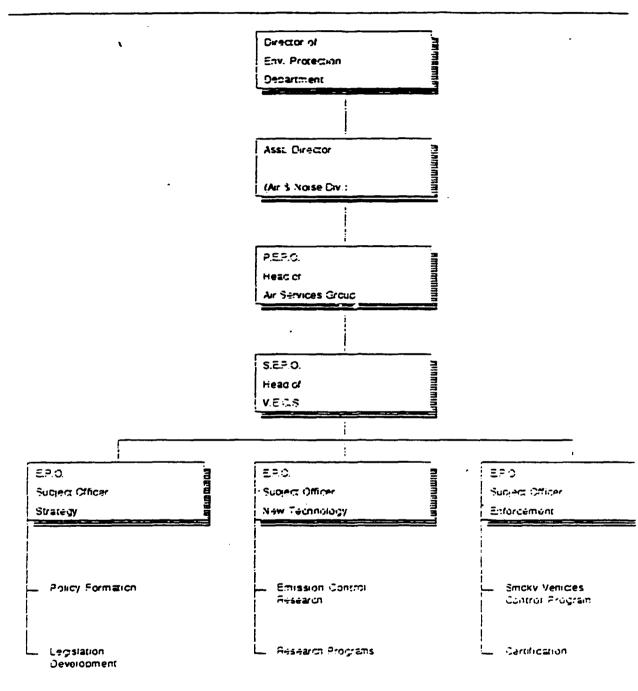
The discussion above had unfold the problems of smoke nuisance, particulate and NOx pollution in Hong Kong.

The analysis has en-visioned the primary objective of the Vehicle Emission Control Section to enact on the "at source" control of vehicular emissions.

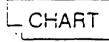
Heavy duty vehicles, whom were identified to has contributed majority of urban air pollutions, must relay on the medium and long term strategies in introducing the world most stringent emission standards and best available control technology for Hong Kong.

Standards for light duty petrol vehicles will be kept upgrading as long as it is required. The development in transitional low emission vehicles (TLEVs), low emission vehicles (LEVs) and the zero emission vehicles (ZEVs) would then become the backbone of our control tools.

An emission warranty would be required for all new cars, which would define the responsible parties and liabilities, coupling with an I&M program would keep—the deterioration of petrol vehicle to a minimum. Such approach would become the future shape of our in-use vehicle emission control.


While there is little development in light duty Diesel emission control technology worldwide, our targeting classes of vehicles such as taxis and light buses may have an unknown future. Until there is a clear indication or break through of real possibility of smokeless as well as odorless light duty Diesel vehicles, we will keep working on the strategy of reduce reliance on light duty Diesel vehicles, which may include a forced shift to alternative fuels.

14. Comments on the Guildelines for New Motor Vehicle Emission Control in the Asia-Pacific Region


Hong Kong Environmental Portection Department is proposing adoption of Euro 1 standard (approximately equivalent to US90) starting 1995. From 1998, adopting of Euro 2 standard (approximately equivalent to US94) is being considered.

END

Organisation Structure of Hong Kon Environmental Protection Departmental on Vehicle Emission Control

V.E.C.S. - Vehicle Emission Control Section
PEPO/SEPO - Principal/Senior Environmental Protection Officer
EPO - Environmental Protection Officer

Air Quality Objectives of Hong Kong

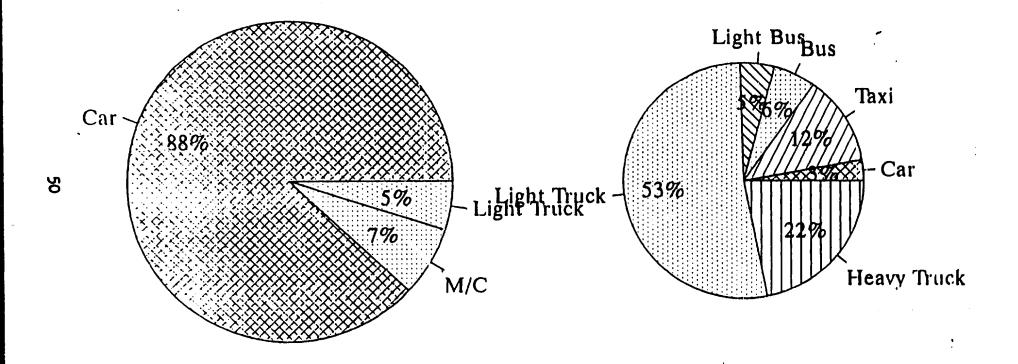

	Pollutant	1 hour	6 hours	24 hours	3 months	- 1 year
	-Sulphur Dioxide (SO2)	800	-	350	•	80
	-Total Suspended	-	-	260	-	80
	Particulates (TSP)					
4 8	-Respirable Suspended	. •	-	180	•	55
-	Particulates (RSP)					
	-Nitrogen Dioxide (NO2)	300		150	-	80
	-Carbon Monoxide (CO)	30000	10000	•	•	-
	-Ozone	240	-	-	•	•
	-I.ead	•	-	-	1.5	-

Table 2

All Units in micro gram per cubic metre

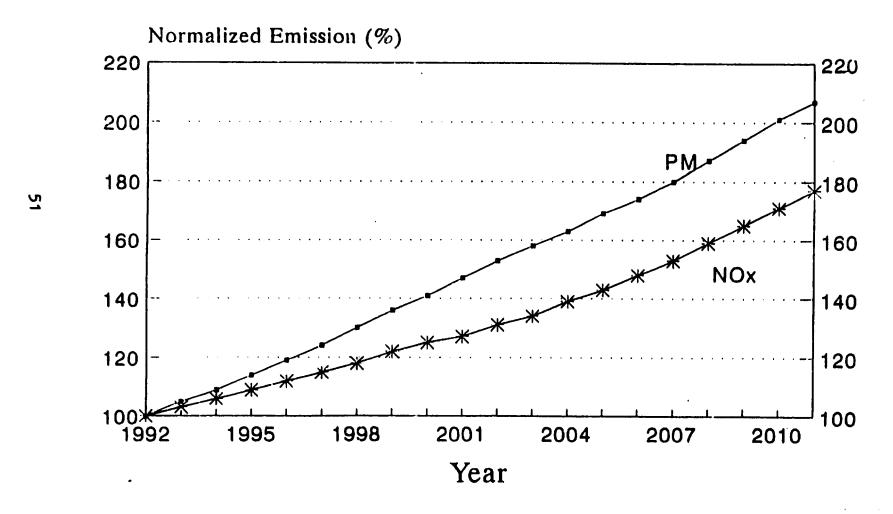
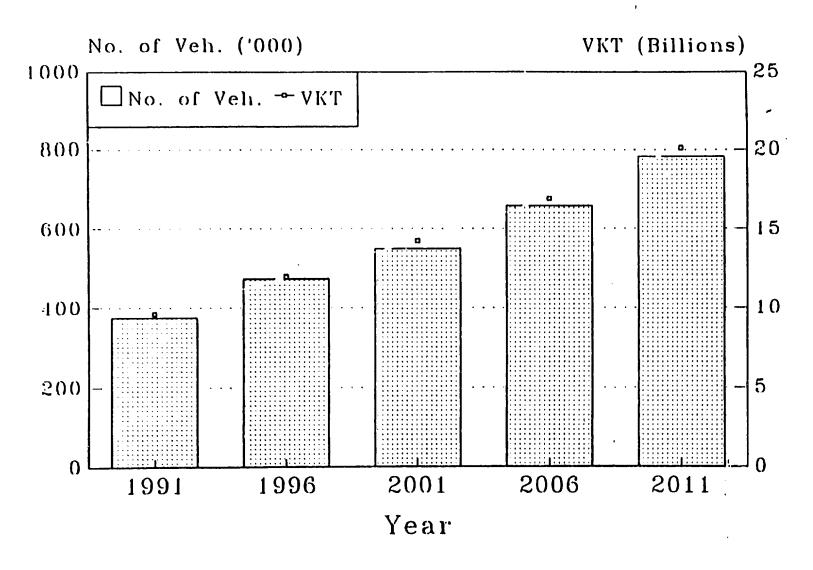
Total: 424,526 Figure 3

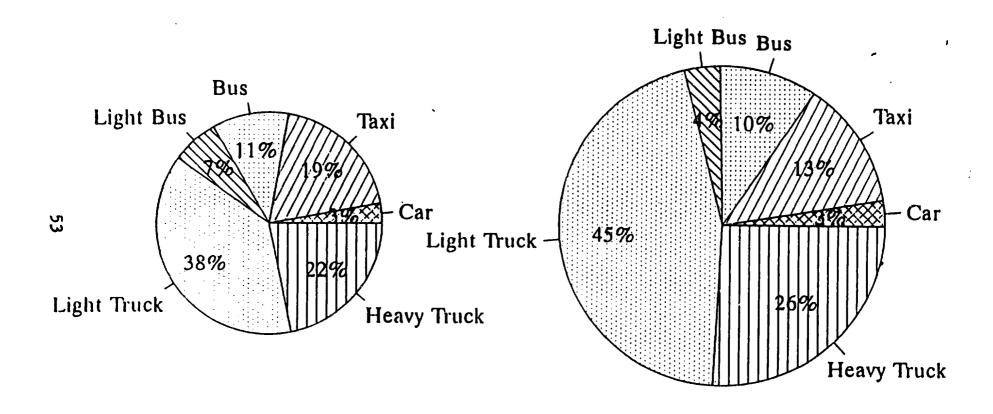
Number of Vehicle Licenced as of 1/1/93

Petrol Total : 264,671 Fuel consumption : 35% Diesel Total: 143,072 65%

Figure 4

Vehicle Emissions Growth (Particulates and Nitrogen Oxides)

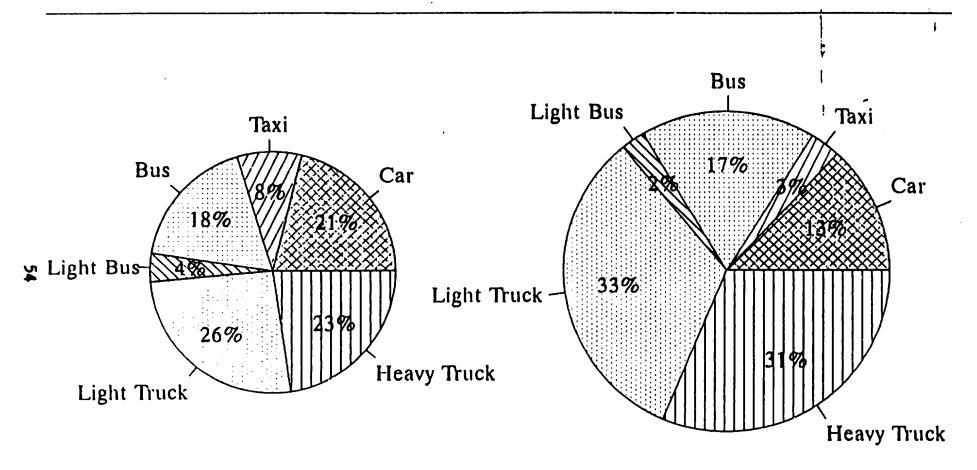




Figure 5

Vehicle and Kilometre Travelled Growth Projection

Firure 6

Particulate Contribution by Vehicle Class 1992 and 2011



1992 Total: 5723 Tons

2011 Total: 11873 Tons

Figure 7

Nitrogen Oxides Contribution by Vehicle Class 1992 and 2011

1992 Total: 30995 Tons

2011 Total: 54747 Tons

Figure 8

Proposed Motor Vehicle Emission Control Strategy for New Vehicles

Vehicle Class	Approx. Popu. as of 1.1.93	Short 92-95	Intermediate 95-98	Long 98 and after
Petrol				
Car	230000	ULP & TWC	TEM	LEV8/2EV
Light truck	13000	Ul'b & J.MC	16M	LEVs
Medium/heavy truck	minimal	-	-	-
Light bus	minimal	-	-	_1
Bus	minimal	-	-	-
H/C	18000	-	-	
Diesel				
Car	4300	ULP & TWC	I &M	LEVs
ľaxi	17000	Smoke Ctrl. Prog.	91/441/EEC + stringent I&M	ULP & TWC ?
Light truck	76000	Smoke Ctrl.	US 90, 91/441/EEC	US 98, 91/441/EEC
dedium/heavy truck	31000	- ditto -	- ditto	- ditto -
Light bus	7200	Smoke Ctrl.	91/542/EEC + stringent I&M	ULP & TWC ?
Bus	8600	Smoke Ctrl. + Retrofit	US94 or equv	US 98 or Equv.
Others	minimal	-	-	-

TWC - Three way catalyst ZEV - Zero emission vehicle

LEV - Low emission vehicle

COUNTRY REPORT OF MALAYSIA

-1

÷

CONTROL AND REGULATORY MEASURES
CONCERNING MOTOR VEHICLES EMISSION
1M ASIA-PACIFIC REGION

TYPE APPROVAL PROCEDURES FOR NEW VEHICLES

by

MARZUKI MOKHTAR
ENVIRONMENTAL CONTROL OFFICER
MOBILE SOURCES UNIT
DEPARTMENT OF ENVIRONMENT, MALAYSIA

and

RADZUAN NONG
ASSISTANT DIRECTOR
TECHNICAL DIVISION
ROAD TRANSPORT DEPARTMENT, MALAYSIA

JAKARTA 8-10 JUNE 1993

CONTROL AND REGULATORY MEASURES CONCERNING MOTOR VEHICLE EMISSIONS IN THE ASIA - PACIFIC REGION

TYPE APPROVAL PROCEDURES FOR NEW VEHICLES

Marzuki bin Mokhtar

٤.

Radzuan bin Nong

INTRODUCTION

- 1. Motor vehicle exhaust gas emission are the major contributor to air pollution problem in major town in Malaysia. Studies and prediction based on local conditions conducted by the Department of Environment (DOE) showed that pollution caused by mobile sources accounted for more than 70 % of the total pollution load emitted by fuel burning sources. The remaining air pollutants are emitted by industries and power generation.
- 2. A great number of vehicle travelling within the confines of a city and unefficient public transport system has caused air quality deterioration in city centres.

Environmental Control Officer Mobile Sources Unit Department of Environment, Malaysia

^{*}Assistant Director
Technical Division
Road Transport Department, Malaysia

3. As at 31st December 1992, there are about 5.6 millions registered vehicles in Malaysia, of which 5.2 millions' are petrol driven vehicles while the remaining 0.4 millions are diesel powered vehicles.(Table 1)

CURRENT AND PUTURE PLANS

٠.

- 4. Presently, emission from motor vehicles were controlled by Motor Vehicles (Control of Smoke and Gas Emission)
 Rules, 1977 and Environmental Quality (Control of Lead, Concentration in Motor Gasoline) Regulations, 1985.
 Kerbside smoke test and random sampling of petrol are activities carried out by Department of Environment and Road Transport Department to ensure compliance to the above regulations.
- 5. In order to effectively control the emission from motor vehicles, preventive measure need to be taken at source. For this reason, two sets of regulations has been proposed which are based on United Nations Economic Commission for Europe (UN/ECE) Regulations. For petrol engine, the proposed regulations are based on UN/ECE R 15.04 while for diesel engine, the proposed regulations are based on UN/ECE R 24 and R 49.

6. The implementation of the above regulations will be carried out in two phases:

Phase I

Starting from 1st July 1992, all new petrol and diesel powered vehicles has to comply to UN/ECE R 15.04 and UN/ECE R 24 and R 49 respectively.

Phase II

Beginning 1st July 1994 (proposed date), all new model of petrol driven vehicles introduced into Malaysia market shall comply to EEC 91/441 where the use of catalytic converter will be made compulsory.

7. Compliance to the above-mentioned regulations is through type approval inspection. In the absence of suitable local type approval facilities, the compliance is checked through certification. Manufacturer or the franchise holder has to submit a certificate of compliance stating that the type approval test is conducted in accordance with the relevant test procedures and the result meets the respective emission standards. The certificate has to be endorsed by either the vehicle manufacturer or an authorised emission testing laboratories.

- 8. As and when type approval facilities are available locally, the Government will determine the relevant test procedures to be used, select and type test engine and vehicle in accordance with the procedures and the specifications prescribed in the UN/ECE regulations.
- 9. In order to verify the vehicles manufactured by the manufacturer conform to the emission standard , the Department of Environment will conduct sample test on vehicles randomly drawn from assembly line.
- 10. At present, the percentage of compliance to UN/ECE 15.04 for petrol driven vehicle is 92 percent while for diesel vehicle the compliance to UN/ECE R 24 and R 49 is 91 percent.
- 11. The entire administration of the road transport is under the responsibility of the Director General of Road Transport. Under the Road Transport Rules of Malaysia, Director General of Road Transport Department has the power to inspect all motor vehicle at any time before registration.
- 12. The purpose of carrying out vehicle inspection is to check the road safety and worthiness of the vehicle concerned and compliance to the Malaysian Road Transport Act and Regulations.

- 13. Motor vehicle is considered roadworthy if it complies with the technical requirement (where applicable) stipulated under:
 - i) Motor Vehicle (Construction and Use) Rules
 1959 LN 170/59
 - ii) . otor Vehicle (Construction and Use) (Vehicles

 Carrying Petroleum Products) Rules 1965 LN

 405/1965
 - iii) Motor Vehicle (Construction, Equipment and Use)

 (Prohibition of Certain Types of Glass) Rules

 1978 P.U (A) 82/1978
 - iv) Motor Vehicles (Control of Smoke and Gas Emission) Rules 1977 P.U (A) 414/1977
 - V) Motor Vehicles (Construction, Equipment and Use) (Use of Liquified Petroleum Gas Fuel System in Motor Vehicles) Rules 1982 P.U (A) 392/1982.
 - vi) Motor Vehicles (Safety Seat-Belts) Rules 1978.
 - vii) Motor Vehicles (Taximeter) Rules 1959.
 - viii) Road Traffic (Weight of Timber) Rules 1981 P.U
 (A) 263/1981

The vehicle will be allowed for registration after initial inspection under the above rules has been carried out.

TAXES

- 14. Among the taxes that the vehicles owner has to paybefore registration are road tax, excise duty and sales tax.
 - i) Rold tax

The amount required are based upon engine capacity, type of vehicles, usage and weight. (Annex 1)

ii) Excise duty

For locally manufactured and assembled vehicles the excise duty and sales tax are calculated based on open market value (OMV). [Table 2 (a)]

iii) Import duty

For imported vehicles the import duty and sale tax are based on the value declared by the vehicle owner.

[Table 2 (b)]

CONCLUSION

15. Rapid development of manufacturing activities and urbanization are factors causing air pollution problem in Malaysia. Emission from motor vehicle is the major contributor of air quality deterioration especially in urban areas.

16. To reduce vehicles emission, the Government has taken several steps such as introducing stringent standard to control emission from motor vehicles, control of lead concentration in gasoline, unleaded gasoline and upgrading transportation system. Lately, the use of natural gas for vehicles has been introduced as alternative fuel. The response has been very encouraging especially from fleet owners in particular taxis.

Registered Vehicles In Peninsular Malaysia As At 31 December, 1992

			
l'ope of tahicles	No. of	Total	
	Gasoline	Diesel	
Motorcycles	3,255,927	-	3,255,927
Passenger cars	1,755,518	46,544	1,802,062
Buses	1,476	22,622	24,098
Taxis	15,113	19,123	34,236
Lorries/Truck	157,092	194,110	351,202
Other (Excluded Trailer)	12,737	145,079	157,816
Total	5,197,863	427,478	5,625,341

a) EXCISE DUTY

For the first	RM 7,000	25 %
For the next	RM 3,000	30 %
For the next	RM 3,000	35 🙎
For the next	RM 7,000	50 %
For the next	RM 5,000	60 - \$
For the balan	ce	65 %

Sale tax = (Excise duty + OMV) x 10 %

b) IMPORT DUTY

For	the	first	RM	20,000	140	t
For	the	next	RM	5,000	160	*
For	the	next	RM	5,000	185	*
For	the	next	RM	5,000	210	*
For	the	next	RM	5,000	250	*
For	the	balance			300	*

Sale tax = (import duty + declared value) x 10 $\frac{1}{2}$

Item No.	Description of Fee	Amount of Fee	JAM P.U.(A)
11.	For a MOTOR VEHICLE LICENCE as follows:		348/89/
	(1) (a) In respect of motor cycles with engine	capacity—	
		Per Annum	
	Not exceeding 75 cubic centimetres	\$ 50.00	
	exceeding 75 cubic centimeters but not exceeding 100 cubic centimetres	\$ 55.00	<i>i</i> -
	exceeding 100 cubic centimetres but not exceeding 150 cubit centimetres	\$ 65.00	
	exceeding 150 cubic centimetres but not exceeding 500 cubic centimetres	\$100.00	
	exceeding 500 cubic centimteres	\$130.00	
	(b) (A) In respect of motorcar saloon owned (i) If fitted with engines designed solely is subject to duty under heading No Customs Duties Order 1978 and us	to use a fuel which 27.10.211 of the	

(03.0		
Not exceeding 7 seating capacity (including driver)	With cylinder capacity of 1,000 cubic centimetre of test	Per Annum 13 sen per cubic centi metre (subject to a mini- mum of \$100)
	for the next 200 cubic continets	15 seu bet enere ceurs.
	For the next 300 cubic centimetre	20 sen per cubic centi- metre
	For the next 500 cubic centimetre	35 sen per cubic centi metre
	For the next 500 cubic centimetre	80 cm per cubic centi metre
	the the next some cubic	87 (b) per cubic centimetic
	continuetre e e gre baiznee	\$3.60 sen per cubic centi-
Exceeding 7 seating conseits cincluding drivers		Above rates plus twents in a percent of those rates

The fees for half a year are half of the rates stated above and the fees for a month or part thereof are one twelfth of the rates stated above to be calculated to the next 10 sen.

(ii) If not so fitted.

Four times the rates stated in sub-paragraph (A) (i) of this paragraph.

(B) In respect of motorcar saloon owned by a company-

(i) If fitted with engines designed solely to use a fuel which is subject to duty under heading No. 27.10.2!1 of the Customs Duties Order 1978 and using such fuel only:

Two times the rates stated in sub-paragraph (A) (i) of this paragraph.

(ii) If not so fitted:

Four times the rates stated in sub-paragraph (B) (i) of this paragraph.

(C) In respect of private passenger motor vehicles (other that motorcar saloon or motor cycle) owned by an individual or a company—

(i) If fitted with engines designed solely to use a fuel which is subject to duty under heading No. 27.10.211 of the Customs Duties Order 1978 and using such fuel only

		Per Annum
Not exceeding 5 seating capacity (including driver)	With cylinder capacity of 1,000 cubic centimetre or less	\$200 00
	For the next 200 cubic centurette	15 sen per cubic centi- metre
	for the next 50% calls, centimetre	20 sen per out to come metre
	For the next Sections of Continues	35 sin per cutic (1977) metre
	For the next 500 cable centimetre	80 sen per dubic centi- metre
	for the balance	\$1.60 sen per cubic centi- metre
Exceeding 7 seating capacity but not exceeding 15 seating capacity (including carver)		Above rates plus (went)- live percent of those rates
Exceeding 15 scatting capacity but not exceeding 20 seating capacity (including driver)		Above rates plus toris percent of those rates
Exceeding 20 seating aparents but not exceeding to seating capacity (including driver)		Action rates plus (0) the present of those rate
Exceeding 30 seating capacity (including driver)		Above rates plus severty percent of those rates

The fees for half a year are half of the rates stated above and the tees for a month or part thereof are one twelfth of the rates stated above to be calculated to the next 10 sen.

(ii) If not so fitted:

Four times the rates stated in sub-paragraph (C) (i) of this paragraph.

Item No.

Description of Fee

Amount of fee

- (c) In respect of private trailers drawn by \$10 per month private passenger vehicles and not used in connection with trade
- (d) In respect of trailers rented for hire or \$20 per month reward for the carriage of passengers and personal and household effects and drawn by private passenger vehicles

(2) In respect of limousine taxi cabs-

(a) If fitted with engines designed solely to use a fuel which is subject to import duty under heading no. 27.10.211 or no. 27.10.219 of the Customs Duties Order 1978 or to excise duty under item 5.1 or 5.2 of the Excise Duties Order 1978 and using such a fuel only:

Per Annum	Per % Year
12 sen per cubic centi-	6 sen per cubic centi-
metre of the cylinder	metre of the cylinder
capacity (subject to a	capacity (subject to a
minimum of \$40)	minimum of \$22)

Per Month or part thereof

I sen per cubic centimetre of the cylinder capacity (subject to a minimum of \$5:

(b) If not so fitted:

Per Annum

Per & Year

Fermions in personal services

sen per cubic centimetre of the cylinder capacity

Per Annum

1 "...

22 sen per cubic centimetre of the cylinde; capacity 4 sen per cubic centitictre of the cy under capacity

Per Monte a

(Any fraction of a ringest to be counted as one ringest)

(2A) In respect of hire cars and taxi cabs-

(a) If fitted with engines designed solely to use falls which is subject to import duty under heading no. 27.10.21 is one 27.10.219 of the Customs Duties Order 1978 or to excise a real result of the bacise Duties Order 1978 and using such that only

Per 1/4 Year

(b)	6 sen per cubic cents metre of the cylinder capacity (subject to 2 minimum of \$20)	is sen per cubic cent; metre of the cylinde; capacity (subject to a minimum of \$11)	ner Freez et no eut c'entr netre of the cylinder appear (subject to a momum of \$2 m)
	li not so fitted		
	Per Annum	Per V. Year	Per Montes or
	22 sen per cubic eenti- metre of the cylinder capacity	It sen per cubic cent, metre of the cylinder	2 sen per cubic centi- cuetre of the connection

(Any fraction of a ringgit to be counted as one imperio

(2B) In respect of hire-and-drive vehicles -

(a) If fitted with engines designed solely to use a fuel which is subject to duty under heading No. 20.10.211 or No. 27.10.219 of the Customs Duties Order 1978 or to excise duty under item 5.1 or 5.2 of the Excise I uties Order 1978 and using such fuel only:

Per Annum

With cylinder capacity of:	
Not exceeding 1,6 % cubic centimetre	12 sen per cubic centimetre
Exceeding 1,600 cubic centimetre but not exceeding 1,800 cubic centimetre	14 sen per cubic centametre
Exceeding 1,800 cubic centimetre but not exceeding 2,200 cubic centimetre	18 sen per cubic centimetre
Exceeding 2,200 cubic continuetre but not exceeding 2,600 cubic continuetre	22 sen per cubic centimetre
Exceeding 2,600 cubic centimetre	30 sen per cubic centimetre

The fees for half a year are half of the rates stated above and the fees for a month or part thereof are one twelfth of the rates stated above to be calculated to the next one ringgit.

(b) If not so fitted:

Three times the rates stated in subparagraph (i) of this paragraph.

- (3) In respect of charter buses, excursion buses, express buses, minibuses and stage buses, the following licence fee shall be charged per month or part thereof:
 - (i) If fitted with an engine designed solely to use a fael which is subject to duty under Heading No. 27.10211 of the Customs Duties Order 1988 and using such a fuel only:

	(a) not exceeding 2,000 c.c	\$ 5.60
	(b) exceeding 2,000 c.c	\$ 8.40
(ii)	If not so fitted:	
	(a) not exceeding 1.500 c.c	\$ 45,00
	(b) exceeding 1,500 c.c. but not exceeding 2,500 c.c.	\$ 50.00
	(c) exceeding 2,500 c.c. but not exceeding 3,500 c.c.	\$ 57.00
	(d) exceeding 3.500 and	\$123.00

(4) In respect of goods vehicles -

(i) If fitted with engines designed solely to use fuel which is subject to import duty under heading no. 27.10.221 of the Customs Duties Order 1978 and using such Tuel only, in the case of ngd motor vehicles (including rigid motor vehicles drawing pole type trailers) based on the maximum permissible laden weight in cwts and in the case of articulated vehicles, that is the drawing vehicles, based on the "kerb weight" in cwts as stated hereinder

	AMO	UNT OF	FEE		AMOUNT OF FEE		
Combined MPLW or Kerb Ueight (cwts.)	Per Annum	Per % Year	Per Month or pert thereof	Combined MPLW or Kerb Weight (cwts.)	Per Annum	Per K Your	Per Month or part thereo;
• •	\$	\$	\$		S	\$	S
1-5 6-10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 40 41 42 43 44 45 46 47 48 49 51 52 53 53 54 55 55 56 57 57 58 58 58 58 58 58 58 58 58 58 58 58 58	38 98 109 120 132 143 154 165 177 188 199 210 218 225 233 240 248 255 263 270 278 285 293 300 305 315 323 330 405 428 435 450 450 450 450 450 450 450 450 450 45	\$ 19 49 55 66 672 77 83 89 94 100 105 105 113 117 120 124 128 132 135 145 145 145 145 145 150 165 170 170 170 170 170 170 170 170 170 170	\$ 4 90 100 112 13 145 167 189 190 201 222 224 225 227 225 302 333 344 445 445 446 445 446	6667890123456778986123456789917999990001304567890111111111111111111111111111111111111	\$ 575 576 8 9 1 3 4 6 7 9 9 0 2 7 5 6 0 0 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	\$ 288 289 291 129 2 299 4 2996 297 2999 3001 2 303 303 303 303 303 311 2 2 7 1 1 1 2 7 1 2	\$ 48 49 49 49 49 49 49 49 49 49 49 500 501 11 11 12 12 12 12 12 12 12 12 12 12 12
56 57 58 59	548 552 555 559	276 278 260	46 47 47	113 114 115	647 648 650	324 324 325 326	54 54 56 44
60 61 62 63 64	563 567 570 571 573	282 284 285 236 287	47 48 48 48 48	116 117 118 119 120	651 653 654 656 657	327 327 321 324	\$5 \$5 \$5 \$5 \$5

Combined	AMOUNT OF FEE				AMO	AMOUNT OF FEE			
MPLW or Cerb Weight (cwts)	Per Annum S	Per % Year \$	Per Month or part thereof	Combined MPLW or Kerb Weigh! (CWIS.)	Per Annum	Per % Year S	Per Month or part thereo!		
121 122 123 124	359 660 662 663	330 331	55 55 56	184 185 186	753 755 756	377 378 378	') .3 (3		
125 126 127	665 666 668	332 333 333 334	56 56 56 <u>5</u> 6	187 188 189 190	758 759 761 762	379 380 381 381	64 64 64		
128 129 130 131	669 671 672 674	335 336 336 337	56 - 56 - 56 - 57	191 192 193 194	764 765 767 768	382 383 384 384	94 94		
132 133 134 135	675 678 680	338 339 339 340	57 57 57 57	196 197 198	77) 77) 773 774	385 386 387	62 63 63		
136 137 138 139	681 684 6°6	341 342 342 343	\$7 \$3 \$7 \$8	199 200 201 202	776 774	387 388 389 390	65 65 65		
140 141 142 143	63 ² 649 690	344 345 345 346	58 58 58 58	203 204 205	787 787 783 785	396 391 393	63 66 66 66		
144 145 146 147	695 696 696	347 348 348 349	56 58 56 56	206 207 208 209	766 757 769 76	393 394 395 396	66 66 60 66		
14 -24 -31 -31	Aya Tot Tag	350 351 351 352	19 10 10 10	210 231 212 213 214	- 14 - 1 - 2 - 1	209 248 246 246	6; 6;		
	Total Tea The	101 452 354 355	·	3.7 21	•	2 + 1 2 + 1 2 + 1 2	t.		
	214 214	356 357 357	nu nu nu 60	218 219 220 221	802 800 800	40 <u>2</u> 403 494 485	61 68 69		
::		359 360 360	(+1) (+1) (+1) (+1)	227 223 224 224	111	3114 3146 417 315	61		
.,	-TI	34.7 41.7 41.7	•••		• •	- · · · · · · · · · · · · · · · · · · ·	7.5 7.7 0.7		
	176	363 366 366 364	6.7	234 234 232 33	8	4 i i i i i i i i i i i i i i i i i i i	69 62 83		
151 158 176	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16.8 16.9 16.9	62	2 + 5 2 + 6 2 + 7	5 (4) 5 (4) 5 (4)	2 4 2 2 2 16 2 1	70 70 70		
	74) 14 1 14 2	370 371 372 372 373	62 62 63 63	238 239 240 241	434 836 87 87	417 418 	766 766 763		
12 *	14/ 11/ 14/ 16,	:74 :75 ?*:	6 ; 6 ; 6 ;	24.2 24.3 24.4 24.5	546 846 843 843 843	420 421 -12	76 1		
* *	• •	: ' / .	•. •	14,	***	•			

AMOUNT OF FEE		hamidmo)	3.3.4	JO INTO	MY		
124	هزئد	134	М74И Сотынка	างส์	هو	154	KPLW Combined
HOMEN	лоэд Ж	munnA	Meight or Ketb	hino hi 11 84 10	180 <u>)</u> %	wnuu y	ەد لادىپ
<i>(ολε</i> υγι	_	•	(cwis.)	(hereo)		-	Meight (cwts.)
2	s	\$	• • •	. 5	S	S	a 4
6L	14>	746	310	ΪĹ	424	272	LDZ .
6L šL	[L*	5+6 ++6	315 311	1 <i>L</i> 1 <i>L</i>	458 458	15 8 878	348
6L	767	L16	313	17	436	528	746 746
61	PLF	8>6	314	11	Lit	128	221
08	Sir	056	SIE	ii	138	558	757
08 Uñ	177	823 821	41£ 91£	i.	136 136	728 828	524 523
08	LLF	\$ \$6	815	<u>.</u> :	130	U98	\$\$ č
08	87:	956	611	::	131	138	987
US	621	- 56 	350	::	iir	198	181
98 80	180	556	775 171	:-	11.7	2-17	02C
98 18	181	796 1996	373	:-	71.F 15r	_98 494	341) 328
18	185	196	\$ (1)	: -	554	698	197
18	183	596	sti	::	55 F	1)18	797
18	181	996	975	1	136	i 18	₹9₹
12	585	746	งเเ เเ้า	: -	257	518	546 197
18 18	186	116 09 6	356 358		5: F 4: F	278 378	39E
18	186	:16	0.1	÷.	651	878	<u> </u>
ī 8	181	ti6	151	r_	376	619	292
žŝ	188	516	રેદેદ	7.	irr	188	69:
<u> </u>	186	:: 6 %:6	rii Sii	7. 7.	717 711	881 881	11 <u>2</u> 112
28 24	160 126	0×6	કદદ જોઈ	<u>-</u> -	113	.3%	111
<u>58</u>	161	186	955	7.	117	- 28	1.5
:3	ĩót.	: 46	288	٠.		333	7
13	io:	731) TYć.	N: i	·.	77.	280	7.1 7.1 8.1
. (€¥	767 162	136	6:1	•	_::: } ::		
. 4	557	55%	171		••	-43	• :
	561	·tit.	ζr:		• : •		
£ N	951	.116	11:		47.	. 5.	-387
: 8	26t	: 00	šri PPi	• .	115 F	098 009	39; 381
(8 (8	86: 86:	። የ	455	•. •.	150	706	. yī
18	166	466	121	<i>†•</i>		: 06	:45
:*	(3())	20%	NT:	1.	150	506	385
19	105	-04.1	681	•.		906	987
rr Kt	105	700 s	191 095	•	*\$7 \$\$7	かいか みひと	187 187
LN LA	1115 (1)5	700	. 51		•	: 6.	· ×:
18	*	1	: • •	•		710	
24	\$115	55-4-1	FSE			715	:67
	2115	1.10	">: ;>:	•	09F 59F	216	:67
. X	(115 4(15	: 10: 1 : 10: 1	251 95:	•	65 t	910 (14	141
5 K	LUS	ric I	d > E	• •	.45	07.6	·n.
- ¥	Mary	9.00	953		. 17	1;6	10.
\h.	605	144 1	444	-	195	176 175	.45 .45
7.H 7.H	015 015	Dia 1 Nati	14:	٧.	19¢	9 66	665
48	115	iiu t	: 'P:	₹:	494	276	(m)§
νX	715	179.1	+9 1	٧.	594	::6	701 106
אני אני	115	560 1	591	? .	,46	7:6 0:6	10:
98 5 8	115	860 1 960 1	. 71 79:	∢.	. Jt 195	116	fu?
'/X	515	670.1	No.	٠.	394	5: 6	508
*/%	915	456.1	6.41	×.	10.14	7.6	(4) (40 (
114	715	1101	4921	t ***	4.6 44.9	5:0 5:0	NO
1 N	217	2301	16:				3(10
18	S.	ep. 1	<i>::</i> :	tes	i e T	lte	આ

	AMO	AMOUNT OF FEE					
Combined MPLW or Kerb Weight (cwts.)	Per Annum	Per 15 Year	Per Month or part thereof	Combined MPLW or Kerb Weight (Cwts.)	Per Annum	Per % Year	Per Month or part thereof
100027	5	\$	\$	10	\$	5	5
373	037	519 .	87	413	1,097	549	92
374	1.038	519	87	414	1,098	549	92
375	1,040	520	87	415	1,100	550	92
376	. 041	521	87	416	1,101	551	92
377	1 43	522	87	417	1,103	552	92
378	,344	522	87	418	1,104	552	92
379	1,046	523	87	419	1,106	553	93
380	1,047	524	88	4 20	1,107	554	93
381	1,049	525	88	421	1.109	555	93
382	1,050	525	88	423	1,112	5.56	93
383	1,052	526	88	4]4	113	157	43
384	1,053	527	88	4 25	1.115	558	43
385	1,055	528	88	÷ 26	1,i 16	558	93
386	1,056	528	88	425	1,118	559	94
387	1,058	529	89	428	1,119	56 0	94
388	1,059	530	89	4 29	1.121	561	94
389	1,061	531	89	430	1.112	561	94
3 9 0	1.052	531	89	431	1,124	562	à1
3 9 I	1,064	532	89	432	1.125	563	94
3 9 2	1,065	533	89	435	1.127	564	94
393	1.067	534	89	4 3.4	1.128	564	94
394	1,668	534	89	4.75	1,130	565	95
395	1.070	535	90	4 <u>3</u> 6.	1.131	566	95
3 96	1,071	536	90	÷ ; *	1.133	567	95
397	1.097	537	90	234	1,534	567	35
398	1,074	537	90	27.	1.136	565	95
399	1.076	538	90	-1.	. : **	÷40	3.
400	1.077	534	₹,				
401	1.097	5=1)	90	i			
402	1,080	54.)	90	Cat.			
403	1,082	541	91	CM.:	1.3%	ti 75	
404	1.083	542	91	tnere-			
405	1,085	\$43	91	atte:			
406	1.086	543	9 i				
407	1,088	544	91	For			
408	1,089	545	91	EACE			0.74
409	1,091	S46	91	6 cw:,			0.75
410	1,092	546	91	ther			
4; !	1.094	527	٠:	±1.41			
412	1.095	54 8	92 -				

- (ii) (a) If not so fitted, in the case of rigid motor, motor vehicles (uncluding rigid motor vehicles drawing pole-type trailers), based on the maximum permissible laders weight in cwts as stated hereunder, or
 - (b) If not so fitted, in the case of a newlated vehicles drawing semitrailers other than those authorised and constructed for the carriage of containers, based on the kerb weight in cwts of the drawing vehicles as stated hereunder; or
 - (c) If not so fitted, in the case of articulated vehicles drawing semitrailers authorised and constructed for the carriage of containers, based on the maximum permissible laden weight in cwts of the drawing vehicles as stated hereunder.

	AMOI	UNT OF	FEE		AMOUNT OF FEE			
Comb ned MPL W	Per	Per %	Per Month	Combined MPLW or	Per Annum	Per %	Per Month	
or Kerb Weight	,innum	Yeer	or peri	Kerb Wenhi (Cwis.)		Year	or peri therco:	
(cwis.)	S	S	skereoj S'	[C ~ 13.]	\$	S	\$	
	-	135	23	64	1.688	844	1-1	
1-10 11	270 300	150	25	65	1,707	854	1 1	
12	334	167	28	66	1,725	863	14.	
iš	368	184	31	67	1.740	870 878	14,	
14	402	301	34	68	1,755 1,770	885	148	
ış	432	216	36 39	69 70	1,872	891	149	
16	462 495	231 248	37 42	71	1,793	89?	150	
17 18	525	263	44	?2	1.804	902	14:	
19	555	278	47	•	1515	òtrk	157	
	585	293	19	74	1.827	311		
ž:	612	306	Si	75	1.838	919	1 47	
22	630	315	53	76	1.849	925	155 155	
23	649	325	\$5	77	1.860	936	150	
24	668	334	56	7 8 ?9	1.872 1.883	942	157	
25	6 8 7 705	344 353	58 58	80	1.890	915	158	
26 25	705 732	366	61	81	1,901	951	1:0	
2×	747	374	63	8 2	1.913	45:	16-	
29	765	383	64	£3	1 928	ak ?	Ie:	
36	784	392	65	8-1	1,935	468	16.	
• .	818	409	69	8.5	1,950	975	16	
31 33	855	1 3%	72	\$6	1.958	979 055	164 165	
33	893	447	75	К ⁷	69¢ 1 Obe 3	96,1	10.5	
1.1	930	465	78 81	\$8 59		320	:••	
35	964 1 H12	5-11	£4	9(1		130.7		
in : :	1 035	18	87	9i	7018	1 (11)4	1 ***	
•			·2	0.1	1,491 1,483 1,418 1,437 1,437 1,437 1,437	1.34	, ~ •	
	•••	. 5 .		o;	: · · · · ·	11114	-	
:	4.,	• • •	34	31		: • :	٠	
÷,	: 1 h	524	ţi	95	2:159	0.0	i - i	
42 43	2:2	606	101	96 97	2.070	1,035	- 1	
43	1 249	6.25	165	98	2/0:	114	- 1	
1	1,375	454	107 109	99 34	2 60; 2 144 2 115	1 052		
4? 20	: 124	66.2	111	100	2 115	1.055	1	
	1 34?	t, *	113	101	2.123	1:002		
- 2	365	685	; 14	102	2.123	i ik9	1.5	
29	. 188	60:	: 16	103	3 119	1.075	180	
•••	107	702	118	104		1.680	18.	
• .	425	• • •	:13			114	17.	
• •	* • • }	,_	i 21 ; 23	107	2 183 2 194	1 132	187	
· · · · · · · · · · · · · · · · · · ·	. 40.	745	25	108	2.205	[103	182	
\$ \$ \$: 4 89 : 508	754	125	1:19	2 217	1 1419		
56	1.530	***	128	110	2 217 2 228 2 227	1114	1.86	
• 7	441	:	1 341	111	3.743	6.122	4.87	
٠,		18.5	111	11:	2.250	1 1 2		
. 4	1 :30	776			2,365	1133		
50	1613	MIT.	1.35	114	2.280	1 140		
61	: 628	414	136	115	2,286 2,295	1 144 1 148		
62	1.650	825	138	116 117	101	114		
63	i 665	833	137	117	2 W	. , •	•	

	AM	OUNT OF	FEE		AUOUNT OF FEE			
Combined			Per	Combined		Per	Per	
MPLW or Kerb	Per Annum	Per %	Mon.h	MPLW or Kerb	Per Annum	%	Month	
Weight		Year	or peri	Weight		Year	or part thereof	
(cwts.)	5	3	shercos	(CW15.)	5	S	507	
118	2.318	1.1.59	194	181	3.015	1.150	252	
119	2.329	1. 65	195	182	3.027	1.514	253	
1 20 1 2 1	2,340 2,352	1.170	195 1 96	183	3.03 8 3.053	1.519	154 255	
122	2.363	1.16 1.18	197	1 84 1 8 5	3.064	1.532	256	
i 23	2.374	1.187	198	186	3.079	1.540	257	
124	2,385	1.193	199	187	3.090	1,545	258	
125 126	2,397 2,40 8	1.199 1.204	200 201	188 189	3.102 3.150	1.551 1.575	259 263	
27	2.419	1.210	202	196	1 i 28	1.564	261	
1 28	2,430	1.215	203	191	3.139	1.570	262	
1 29	2,442	1 221	703	193	3 1 503	575	26.3	
130 131	2,453 2,460	1,227 1,230	<u> 205</u> 205	ju: ju:	i 165 180	1.583	264 265	
132	2,472	1 230	, le	29:	19.	: :26	266	
133	2.483	1.242	207	1 9 6	202.ذ	1.692	267	
134	2.490	1.245	208	197	3.218	1.609	269	
135 136	2,502 2,509	1,251 1,255	210 210	198 199	3.229 3.240	1.615	270 270	
137	2.520	1.260	210	2(6)	3,253	1.626	271	
138	2.528	1.264	211 212	201	3.263	1.632	272	
139	2.535	1.268		202	3.278	1 639	274	
140 141	2.547 2.554	1.274	213 213	203 204	3.2 89 3.300	1.645 1.650	275 275	
142	2.565	1.283	214	205	3.315	1658	277	
143	2.573	: 257	215	206	: 127	1.664	278	
144	2.584	1.291	21n	207	338	1 669	279	
145 146	2,592 2,599	1,20k 1,300	210	70 C	; ; ; ; ; ; ; ; ; ;	. e S.	280 281	
147	2.610	1.45			175	- 65	181	
146	2.615		•	: .	. ::	-0-	25	
14	2.62		::'	• • •		: -	P -2	
15:	2 6 4 4 2 6 4 4	• •	-	::- ::-	: 1.1 :42:	i÷	16: 18e	
152	2.655	1328	:::	211	19	1.720	287	
153	2,663	1 112	222	2:-	450	• • • • • • • • • • • • • • • • • • • •	288	
154	2.674	1 5.5	223	217	3.465	1.733	289	
155 156	2.685 2.700	1 147	324 338	118	: 477 : 485	1 30	290 291	
157	2,715	1.1			. 503	1 747	79.	
158	2,727	1.564	138	::	542	1 : 55	٠٠;	
159	2,738	1.366		` ;;;	4 525 526	1.2	. o.:	
160 161	1.757 2.764			::_	1.3.2		u,	
:62	2 775	3.5.	• • •	:::	.56.1	1 73:	:9-	
163	79:		:::	:::	. 5 - 5	1.754	109	
164	2.802	i,401 1409	234	211	589 56H)	1 795 1 See	300 300	
165 !66	2.817 2.82 5	1.407		• •		1.30	:00	
167	2.839	2.76	2::	:•	• •	. Ki÷	3013	
:68	2.854	• • • •		• •	678	1 6	101	
169 170	2.865 2.877	1 - 19	240 240	·	664	: 8. 1.832	202 306	
170	2.888	1.444	241	133 132 133	3 675	1.835	307	
172	2.903	1.452	242	25:	1 690	1.845	108	
173	2.918	1.459	244 245		702	1.85	309	
174 175	2,929 2,940	1.4n3 1.470	245	237 238 230 240	713 1128	1.8.1	310 311	
176	2.955	1 - 78	247	::0	: 1;9	1.875	313	
177	2.967	1 4 8 4	245	240	750	1.875	313	
178	2 978	1489	7.0	74. 24.2	1 765 1 777	1.85	3;4	
179 180	2.993 7.004	1.497 1.562	250 251		81.	1.859	110	
, ,,,,	,1-0-		•	•		1.0	•	

	AH	OUNT OF	FEE	AMOUNT OF FEE			
Combined MPLW	Per	Per	Per	Combined MPLW	Per	Per	Per
or Kerb	Annum	y, Year	Month or part	or Kerb Weight	Annum	Year	Month
Weight (cwts.)			thereof	(cwts.)	_		or part thereof
•	5	5	3		\$	\$	3
244 245	3, 8 03 3, 8 14	1,902 1,907	. 317 31 8	307 3 08	4,5 9 0 4,602	2, 29 5 2, 30 1	383 384
246	3,825	1.913	319	309	4,613	2,307	385
247	3.840	1,920	320	310	4,628	2.314	386
248 249	3,852 3,863	1,926 1,932	321 322	311 312	4,639 4,650	2,320 2,325	3 89 387
250	3.878	1,939	324	313	4,665	2,333	389
251	3,889	1.945	325 325	314	4,677	2,339 2,344	390 39i
252 253	3,900 3,915	1,950 1,95 8	323	315 316	4,6 88 4,703	2.352	392
254	3.927	1,964	328	317	4,714	2,357	393
255 256	3,938 3,953	1.969 1.977	329 330	318 319	4,725 4,740	2.36 ⁻⁵ 2.370	36? ?ñ1
257	3.964	1.982	331	320	4,752	2.374	394
258	3.975	1.988	332	321	4,743	2.362	3:7
259 260	3,990 4,002	1,995 2,001	333 334	322 323	4,778 4,789	2,3 8 9 2,3 9 5	399 400
261	4.013	2.007	335	32.	4.800	2.40:	4(6)
262	4,028	2,014	336	325	4,815	2 456	462
263 264	4,039 4,050	2,020 2,025	337 33 8	326 327	4,827 4,848	2.414	463
265	4.065	2.033	339	328	4.853	2.427	2:17
266	4.0?7	2.039	340	329	4,864	2.432	406
267 268	4,0 88 4,103	2,044 2,052	341 342	330 331	4,87 <u>5</u> 4,890	2.438 2.445	407 498
269	4,114	2.057	343	332	4.902	2,451	ور.:
270	4.125	2.863	344	333	4.913	2.45	3;6
27; 272	4,140 4,152	2,070 2,076	345 346	334 335	4.928 4.939	2 - 6 -	÷ : :
273	4.163	2.082	347	336	4,950	2 47:	•
274	178	2.087	-19	137	1.91.4	245	
	2 - 22 2 - 22	3 100 2 100 3 100 3 100 3 100	750 750	115 134	1 A88 1 6 3 1		
275		198	352	1411	5.00	2.2-1	
27h	- :::	117	353	341	5.014	3.5 -	• •
279 280	2.238 2.253	2,119 2,127	354 355	342 343	5,025 5,040	2.5.26 2.526	-71
28;	1 264	2.132	356	344	5.052	2.526	÷::
282	4.275	2 138	357	345	5.063	2.532	# 1 2 # 1 2
181 184	4 790 4 302	2.145 2.151	358 359	346 347	5.078 5.089	2 54	127
285	4 313	2.157	360	348	5.100	2 550	÷15
286 187	28	2 164 2 17	361 362	349 150	5.115 5.127	2 5 5 5	177
· .	• • • •	71-3	3e3	351	S i ta	4.,4	
184	·	1×:	141	1:1	4 1 4 2		
291. 291	4 188	1169	365 166	353 354	5 164 5 175	1.61	431
292	÷ 10 l	2 202	36.7	353	\$ 100	2.589 2.695	2
29	4 4 1 4	2.207	ing	356	€ 2012 € 21. 1	2 605	٤: د
) 1- 29	4 425	2.234	 	157 159	5 21 1 5 2 . a		
<u> </u>	4 452))).	379	150	12:7		: • *
29፣ 2ሃአ	4 463 4 47K	2,232	171 374	(61) 163	5,250	27.	2.10
298 299	1 1 1 1 1 1	2,239	375	361 362	5,265 5,277	2,639	341
300	a ś(it)	2.250	375	36.1	5 288	2.644	441
301 302	4 515	2,25x	377 374	364 365	5,30° 5,314	2,632	44] 44;
30:	4 3 3 K	2.264 2.269	179	366	5,325	2 nr	:44
101	2,551	7.277	340	167	5 3 411	2 (.70)	445
ιυ. :υ.	4 564 3 7 7 C	2 28 1 1 288	187	26 K 14-13	5 352	3 - 74	14e
	• •	200			* ***	• •	• •

C 1:		OUNT OF I	FEE	•	AMOUI	T OF SE	Έ
Combined		_	_	Combined		_	_
MPLW	Per	Per	Per	MPLW	Per	Per	Per
or .	Annur	×	Month	or	Annum	*	Month
Kerb		Year	or	Kerb		Year	or
Weight			pert	Weight			peri
(cwts.)	_		thereof	(cwts.)			thereof
	\$	S	\$	•=	\$	\$	S
370	5,3,9	2,689	449	410	5.877	2.939	490
371	5,38?	2,695	450	411	5.888	2.944	491
372	5,46√	2,700	450	412	5.903	2.952	492
373	5,415	2,708	452	413	5.914	2,957	493
374	5,427	2,714	453	414	5.925	2,963	
375	5,438	2.719	454	415	5,940	2.970	494
376	5,453	2,727	455	416	5.952	2,976	495
377	5,464	2,732	456	417	5.963		496
378	5.475	2.738	437	418	5,978	2.982	497
<u>379</u>	5,490	2.745	458	419	5.9 8 9	2.989	499
380	5,502	2.751	459	420	6,000	2.995	500
381	5.513	2,757	460	421		3.00C	500
382	5,528	2,764	461	422	6,015	3,008	502
383	5,539	2.770	462	423	6,027	3,014	503
384	5,550	2,775	463	424	6,038	3 01 9	504
385	5,565	2.783	464	425	6,053	3,627	505
386	5,577	2.789	465	426	6,064	3,032	506
387	5,588	2 794	466	427	6,075	3.038	507
385	5.603	2.802	467		5,090	3,045	508
389	5.614	2.807	468	428 429	6.102	3.051	509
390	5.625	2.813	469	430	6.113	3,057	510
391	5,640	2.820	47G		6.128	3,064	511
392	5.652	2.826	471	431	6,139	3,070	512
393	5.663	2,832	472	432	6,150	3,075	513
394	5.678	2.839	473	433	6.165	3,083	514
395	5.689	2.845	474	434	6.177	3.089	515
596	5.700	2.850	475	435	6,188	794	516
รีว์ร	5.715	2.7.5	7/2	456	6,203	5.102	5;7
394	5 727		273	437	6.214	5.107	518
iuç	3 7 3	2.8e=		436	6.225	1.147	519
	4 fg (430	6.224	•	5.24
40);	5,764	.88.	4.5	44.	6,252	1.126	521
402	5.775		48:				
403	5,790	2,655 2,695	4k.	_			
404	5.802		483	For			
405	5.813	2,90:	4 % 4	each			
406	5.828	2.907	÷85	CWI			
40;	3.828 3.839	2.914	436	MPLW.	12.4%	6.80	1.50
408		2.920	3 F -	:here-		-	• • •
409	5,850	2.925	48K	after			
407	5.865	2,933	4 R 9				

(i.i) Semi-trailers and policity pertrailers which are to be drawn ONLY by a motor vehicle which pays toes under (4) (i), based on the combined maximum permissible laden weights of the articulated vehicle and the semi-trailer, or the combined maximum permissible laden weights of the drawing vehicle and the pole-type trailer, in cwts, as stated hereunder.

	. CO IICICO	HUCI.						
Combined	AMOU	MOI	FEE	C 1	AMOUNT OF LEF			
APPI, he or Kerb Weight (CWIs;	Per Annum	Per % Year	l'a Montie Or part thereos	Combined MPI w or Kerb Weight	l'er An a um	Per % Year	l'er Month or part	
	5	5	5	tewis;			thercol	
1:13	38	14	i			`	2	
11		•	•	13	<u> </u>	27	5	
	45	-	4	14	5.7	29	5	
1.2	49	. · ·	<	15	61:	• •	ξ.	

Combined MPL Per Per Annum S Month New New		AMO	UNT OF	FEE	•	AMOUNT OF FEE		
Name		Par	Per	Per				
		Annum			Or	Annum	*	
			Year				Year	_
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$								
16 64 32 6 54 216 108 11/17 68 34 6 55 218 109 17/18 75 38 38 7 56 219 100 19 19 79 40 7 57 221 111 19 20 83 42 7 58 222 111 19 21 87 44 8 59 224 112 19 21 87 44 8 60 225 113 19 23 94 47 8 661 227 114 19 24 98 49 9 62 228 114 19 25 102 51 9 63 229 115 20 26 105 61 9 62 236 114 19 25 102 51 9 63 229 115 20 26 105 61 9 62 236 114 19 25 113 57 10 66 231 116 29 117 52 10 67 231 116 20 30 120 60 10 68 233 117 20 30 120 60 10 68 233 117 20 31 124 62 11 70 234 117 70 32 128 64 11 70 234 117 20 31 132 66 11 71 235 118 20 31 135 68 12 72 72 237 118 26 31 135 68 12 72 237 237 247 27 26 33 132 66 11 71 235 118 26 34 135 68 12 72 237 237 247 24 13 each 34 135 68 12 72 12 107 234 227 26 33 137 147 74 13 each 34 135 68 12 72 12 107 235 118 26 36 143 72 12 12 107 235 118 26 36 143 72 12 12 107 235 118 26 37 147 74 13 each 34 135 68 12 72 12 107 235 118 26 37 147 74 13 each 34 135 68 12 72 12 107 235 118 26 37 147 74 13 each 34 135 68 12 72 12 107 235 118 26 37 147 74 13 each 34 135 68 12 72 12 107 235 118 26 37 147 74 13 each 34 135 68 12 72 12 107 235 118 26 37 147 74 13 each 34 147 74 14 15 15 15 15 15 15 15 15 15 15 15 15 15	,,,,,,	2	2		(Light)	2	2	
17 68 34 6 55 218 109 17 18 75 38 7 56 219 100 19 19 79 40 7 57 221 111 19 20 83 42 7 58 222 111 19 21 87 44 8 59 224 112 19 22 90 45 8 60 225 13 19 23 94 47 8 61 227 114 19 24 98 49 9 62 228 114 19 25 102 51 9 63 229 115 20 26 105 51 6 62 230 115 20 27 109 25 10 55 231 116 20 28 113 57 10 66 231 116 20 29 117 52 10 65 231 116 20 30 120 60 10 68 233 117 20 31 124 62 11 69 234 117 20 32 128 64 11 70 234 227 26 33 132 66 11 71 235 118 20 34 135 68 12 72 72 236 118 26 35 139 70 12 12 70 234 227 26 36 143 72 13 64 11 70 234 227 26 37 158 73 14 52 72 236 118 26 38 150 74 13 626 40 158 73 14 52 72 236 118 26 41 162 \$1 14 52 72 12 12 12 12 12 12 12 12 12 12 12 12 12	16	•		-	54	-		
18								
19				7			100	
21 87 44 8 59 224 112 19 22 90 45 8 60 225 113 19 23 94 47 8 61 227 114 19 24 98 49 9 62 228 114 19 25 102 51 9 63 229 115 20 26 105 53 6 62 236 115 20 27 109 22 10 65 236 116 20 28 113 57 10 66 237 116 20 29 117 77 10 67 212 116 20 30 120 60 10 68 233 117 20 31 124 62 11 69 234 117 20 32 128 64 11 70 234 117 20 33 132 66 11 71 20 234 227 26 33 132 66 11 71 20 234 227 26 33 135 68 12 72 236 118 20 34 135 68 12 72 236 118 20 35 139 72 12 10 10 35 118 20 36 143 72 12 10 10 35 118 26 40 158 74 13 each 41 162 81 14	19	79						
22 90 45 8 60 225 113 19 23 94 47 8 61 227 114 19 24 98 49 9 62 228 114 19 25 102 51 9 63 229 115 20 26 105 53 9 64 230 115 20 27 109 25 10 55 231 116 20 28 113 57 10 66 231 116 20 29 117 57 10 67 112 116 20 30 120 60 10 68 233 117 20 31 124 62 11 69 234 117 20 31 124 62 11 69 234 117 20 32 128 64 11 70 234 227 26 33 132 66 11 71 235 118 20 34 135 68 12 72 237 118 26 35 139 70 12 12 10 235 118 26 36 143 72 12 10 235 118 26 37 147 74 13 each 38 150 75 13 cw 68 233 13 10 21 21 21 21 21 21 21 21 21 21 21 21 21								
23 94 47 8 61 227 114 19 24 98 49 9 62 228 114 19 25 102 51 9 63 229 115 20 26 105 53 0 64 230 115 20 27 109 25 10 65 230 116 20 28 113 57 10 66 231 116 20 29 117 57 10 67 11.1 116 20 30 120 60 10 68 233 117 20 31 124 62 11 69 234 117 20 31 124 62 11 69 234 117 20 32 128 64 11 70 234 227 26 33 132 66 11 71 235 118 20 34 135 68 12 72 237 118 26 35 139 70 12 12 10 13 13 14 20 36 143 72 13 15 15 15 15 15 15 15 15 15 15 15 15 15								
24 98 49 9 62 228 114 19 25 102 51 9 63 229 115 20 26 105 51 9 63 239 115 20 27 109 22 10 55 231 116 20 28 113 57 10 6c 231 116 20 29 117 29 10 67 112 116 20 30 120 60 10 68 233 117 20 31 124 62 11 69 234 117 20 32 128 64 11 70 234 227 20 33 132 66 11 71 235 118 20 34 135 68 12 72 237 118 26 35 139 70 12 72 237 118 26 36 143 72 12 10 10 10 37 147 74 13 each 38 150 77 13 there 40 158 73 14								
25 102 51 9 63 229 115 20 26 105 53 4 0 04 230 115 20 27 109 22 10 65 231 116 20 28 113 57 10 66 231 116 20 29 117 77 10 67 1.12 116 20 30 120 60 10 68 233 117 20 31 124 62 11 69 234 117 20 32 128 64 11 70 234 227 26 33 132 66 11 71 235 118 20 34 135 68 12 72 237 238 227 26 35 139 72 12 10 10 36 143 72 12 10 10 37 147 74 13 each 38 150 75 13 cw 68 12 70 234 227 26 40 158 74 14 after 41 162 81 14							• •	
26 105 13 0 02 230 115 20 1 27 109 22 10 05 231 116 20 28 113 57 10 6c 231 116 20 29 117 79 10 67 1.2 116 20 30 120 60 10 68 233 117 20 31 124 02 11 69 234 117 20 32 128 04 11 70 234 227 20 33 132 06 11 71 235 118 20 34 135 68 12 72 23 118 20 35 139 70 12 72 23 118 20 36 143 72 12 10 10 10 10 10 10 10 10 10 10 10 10 10								
27 109 25 10 65 231 116 20 28 113 57 10 6c 231 116 20 29 117 57 10 67 1.1 116 20 30 120 60 10 68 233 117 20 31 124 62 11 69 234 117 20 32 128 64 11 70 234 227 26 33 132 66 11 71 235 118 26 34 135 68 12 72 237 118 26 35 139 70 12 12 70 237 118 26 36 143 72 12 10 10 10 10 10 10 10 10 10 10 10 10 10								
28				į.	5.5	234	116	20
30	28	113	< 7	19	46	237		2
32 128 64 11 70 234 227 26 33 132 66 11 71 235 118 20 34 135 68 12 72 237 118 26 35 139 70 12 12 72 237 118 26 36 143 72 12 12 10r 37 147 74 13 each 38 150 75 13 cw 68 39 154 77 13 there 40, 158 73 14 after 41 162 81 14 42 165 63 12 10r 43 169 85 15 cach 44 173 87 18 2 cws 680 45 177 47 17 18 cach 46 188 77 17 18 18 200 47 188 77 18 2 cws 680 48 177 47 17 18 18 18 18 18 18 18 18 18 18 18 18 18				ju				
32 128 64 11 70 234 227 26 33 132 66 11 71 235 118 20 34 135 68 12 72 237 118 26 35 139 70 12 12 72 237 118 26 36 143 72 12 12 10r 37 147 74 13 each 38 150 75 13 cw 68 39 154 77 13 there 40, 158 73 14 after 41 162 81 14 42 165 63 12 10r 43 169 85 15 cach 44 173 87 18 2 cws 680 45 177 47 17 18 cach 46 188 77 17 18 18 200 47 188 77 18 2 cws 680 48 177 47 17 18 18 18 18 18 18 18 18 18 18 18 18 18				10		233		
35 139 To 12 To 12 To 13 To To 13 To To To To To To To T				!!		214		
35 139 To 12 To 12 To 13 To To 13 To To To To To To To T				• •		234		
35 139 To 12 To 12 To 13 To To 13 To To To To To To To T				• •		- 12		
36 143 72 12 10 10 13 13 147 374 13 each 37 147 74 13 each 38 150 75 13 ew 68 150 154 77 13 there. 40, 158 73 14 after 41 162 \$1 14				; ;	'-	- 3.	110	
37 147 74 13 each 38 150 74 13 ew 6.89 39 154 77 13 there 40, 158 73 14 after 41 162 81 14 42 165 63 13 lor 43 169 85 15 each 44 173 87 15 Cewis 6.80 45 177 44 17 there 45 188 74 17 there 47 186 75 17 there 48 192 86 17 17 there 49 203 1 1 17 each 50 210 1 8 12 ewt 51 212 168 18 there 52 213 107 18 after				ļ:	Lar	•		
38			7.4					
159 154 17 13 there- 40, 158 74 14 after 41 162 81 14			-:			58		
41 162 St 14 42 165 83 ta For 43 169 85 15 cach 44 173 87 15 Cowts 680 44 173 87 15 Cowts 680 45 177 44 17 there 45 192 46 17 there 45 192 46 17 there 45 192 46 17 there 50 110 Cowts 680 17 Cowts 680 18 192 18 17 Cowts 680 18 192 193 194 195 195 195 195 195 195 195 195 195 195				13	there.			
42 165 63 14 For 43 169 45 15 cach 44 173 87 18 2 cwts 0 80 44 173 87 18 2 cwts 0 80 45 17 47 17 17 17 17 17 17 17 17 17 17 17 17 17		158		14	after			
43 169 85 15 cach 44 173 87 18 2 cwts 0.80 45 177 43 17 there 25 188 17 18 17 there 45 192 56 17 17 cach 26 210 1 8 12 cwts 51 212 156 18 there 52 213 107 18 after				•				
44 173 57 15 2 cwts 0 80 48 177 44 17 there 49 180 7 17 17 17 17 17 17 17 17 17 17 17 17 1	43				•			
48 177 44 17 there 29 180 -								
20 180 2 2 200 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2							80	
27 [88] 48 [192] 56 [7] 1. 49 [203] 51 [7] each 50 [210] 5 [12 ewt. 51 [212] 156 [48] there. 52 [213] 107 [48] after		•	• •	: "				
48 192 56 17 1. 49 203 1.1 17 each 50 210 8 12 each 51 212 156 18 there: 52 213 107 18 after			•					
29 203 1 1 1 cach 50 210 8 12 cwt. 51 212 156 18 there- 52 213 107 18 after					1			
50 210 S 12 cut. \$1 212 166 18 there. \$2 213 167 18 after			. •	•	•			
\$1 212 106 18 there- \$2 213 107 18 after			:	`				
52 213 (c) 18 after			1.16	18				
53 215 108 18	52		1:00	18	atter			
	53	215	1:08	! P			- • •	• ·

(iv) Semi-trailers and pole-type trailers which are A1 ANY TIME to be orawn by a motor benicle which pays fees under (4) (ii) based on the combined make am permissible laden weights of the articulated vehicle and the contraction trailer, is the contract of cultimorn permissible laden weights of the drawing vehicle and the noise-type trailer, in cwts as stated hereinder.

4MOUNT 00 - 14					LOF CEE		
Ventured MPL w West Kerb Weight Jewis J	Per Annum	144 144 154	Fer Month or part thereof §	Commical MPI w or Kerb Weight ICWIS J	Pro-	Per S Year S	Fer Month or por: thereof
1-60 81 82 53	113 120 135 147	57 69 68 14	10 10 12 13	14 15 16 17	16.2 17.1 184 199	81 67 92	14 15 16 17

	AMO	OUNT OF I	FEE		AMOUNT OF FEE			
Combined		Per	Per	Combined MPLW	Per	Per	Per	
MPLW or Kerb	Per Annum	*	Month	or Kerb	Annum	% Yeer	Month or pari	
Weight		Year	or pert thereof	Weight (cwts.)			thereo (
(CWIS.)	\$	\$	5	-	S	S 381	\$ 64	
18	210	105	.9 18	81 82	762 765	383	64	
19 20	222 237	111 119	٥.	83	769	325	65	
20 21	244	122	21	84	773	36 390	65 65	
22	252	126 130	21 22	85 86 -	780 784	390 392	66	
23 24	259 267	134	23	87	788	394	e ś	
25	274	137	23	88	792 795	396 398	66 67	
26	282 285	141 143	24 24	89 90	803	402	67	
27 28	300	150	25	91	807	404	68	
29	308	154	26	9 <u>1</u> 9:	816 814	405 407	68 68	
30 31	315 327	164 128	27 28	93	Rip	409	69	
31	342	171	29	95	825	415	69 70	
33	357	179	и.	?: 97	S29 833	415 417	70 70	
34 35	372 387	186 194	3 i 33	95	83?	417	70	
3 <i>:</i> 36	402	201	34	\$9	346	420	?0 71	
37	413	207	35 36	100 101	846 852	424 426	71	
38 39	428 443	214 222	3° 3?	162	\$55	4.25	7 <u>2</u> 72	
40	458	229	39	103	863	432 434	72 73	
41	473	237 242	40 4!	102 103	867 870	435	73 73	
42 43	484 499	250	42	100	874	437	73	
44	510	255	42	167	878 882	17 l 1 jó	74 74	
45	532	261 265	4.2 4.5	ing iug	883	-4	7.4	
46 47	529 540	270		1	49:		- 6	
-35	548	274	±•	1::	89 - 4,	33. 31.	:	
34 31	555 307	275 282	<u>.</u>	1.7	- \	252	•	
	30. 570	285	<u>.</u> .	•	•	<u>-</u>	•	
•	578	299	1 ··	10	•	4 · .	-:	
53 54	585 597	293 299	4** 5**		923	÷6:	77	
55	604	302	\$:	118	92"	46.5 46.5	7 3 78	
34	612	300	51 52	120	ù 31! ù 34	200	79	
57 58	623 630	312 315	\$:	127	942	٠: د	29	
59	638	319	: ÷		-41 91-	473	÷ روع	
60	645 653	323 327	54 57	:	953	3	Řυ	
61 62	66G	3.30	4.		Up.	480	y) 6 ;	
t i	664	; <u>;</u> 4	\$0. 2.7	1.2¢	.eä 3 g. ≈	454	£!	
65 65	67: 68]	338 342	-	√ <u>ā</u> s	37:	445	82	
6 (-	690	345	۹>	20	979 98.,	490 491	82 32	
6.	698	351 351	2.7		4h -	141	# 3	
64 69	702 209	355	6.,	123	٠٠,.:	495	\$3	
70	713	357	60.	123 134	994 998	497 499	85 84	
71 72	717 724	359 362	er. eri	125	1.002	501	84	
7;	728	364	61	136	1 00 5	503 505	84 85	
74	732	366 368	62	137 138	1.009 1.013	507	85 85	
75 76	735 739	370	62	139	1.017	5(19	K5	
77	743	372	6.2 6.3	149	1 020	510 512	85 86	
7K 79	747 754	374 177	63	141 142	1.024 1.025	\$14	86	
h(i	758	379	7:D-1	43	1032	4 10	86	

1.44

	AMOUNT OF FEE				AMOUNT OF FEE		
Combined	0	Pct	Per	Combined MPLW	Per	l'er	l'er .
MPLW or Ke rb	Per Annum	%	Month	or Kerb	Annum	Y: Y car	Month or part
Weight		Year	or part thercof	Weight (cwts.)			thereof
(cwts.)	5	5	\$		\$	5	S
144	1.035	518	87	207	t ,335 1 ,343	668 672	112 112
145	1,039	520 522	- 87 87	208 209	1.347	674	113
146 147	1,403 1,047	524	88	210	1.350	675	113
148	1,050	525	88	211	1.358	679 681	114 114
149	1,054	527 529	88 89	212 213	1,362 1.363	683	114
150 151	1,058 1,062	531	89	214	1,373	687	115
152	1,065	533	89	215	1.377	689	115 115
153	1,069	\$35	90 90	216 217	1.380 1.388	690 694	116
154 155	1,073 1,077	537 539	90	218	1.392	696	116
156	1.080	541-	90	219	1.395	698	117
157	1.084	14	91	220	1,403	702 704	11" 11"
158	1.088	54÷	91 92	221 222	1,407 1,410	705	115
159	1.095 1.107	548 334	93	223	14:8	7119	
160 161	1.110	555	93.	224	1.422	711	i 1 9
162	1,118	559	94	225	1.425	213	117
163	1.122	561	94 94	226 227	1.433	717 719	120
164 165	1.125 1.129	565 565	95	228	1.440	?20	120
166	1.138	567	95	229	1.448	7.24	121
167	1,140	574	95	130	1.452	726 728	121
168	1.148	574 576	96 96	231 232	1,463	732	122
169 170	1,152 1,155	578	97	232	1.467	34	123
171	1.159	580	97	234	1.470	735	123
: 72	1.167	582	98	235	1.476	735 741	123
173	1 120	• • •	94 98	236 237	1.482 1.485		2-
174 175	1.152 1.152		77	238	14/3	747	125
: 74	133		75	239	1 27	- : :	
;	• • •		. ()	240	Şipi i Silk	: ; ; ;	
- 7 <u>4.</u>	1.37		1610 1 0 1	241 242	1 565	-	
i 19 180	1,294 1,208	** * * * ** * *=	101	243	1.527	⁷ n4	128
:81	1,212	ÉFFE	101	244	1.538	769	1.34
182	1.215	1. 10	102	245	1 549 1 560	175 780	} }(r 1
183	1.219		232 i02	246 247	1.56h	764	13;
i 8.≃ 185	1.223		103	248	1.575	788	; ; ;
186	230		103	249	1.58	10:	12:
187	2.3%		104	250 251	1 590 1 605	79 m	133
185 187	1,243 1,245		;1)4	252	1.620	3111	:35
190	1.253	4.1	105	253	:.62h	614	136
19 i	257	₹-	105	254	1.635	A ! .	. 5 5
192	1.206	4.2	105	255 256	1.647	624 829	130
193 194	1.268		106	257	667	833	5.44
195	1.275		107	258	1,680	840	140
196	1,263	6.2	107	259 260	1,686 1,699	844 850	; 13 142
:97 198	1,187 1,290	645	108	26 I	1.707	854	143
199	1.298	(47	109	262	1,718	859	144
200	1.302	ní i	109	263	1.729	865	145
201	1.305	/,	109 116	264 265	1,740 1,748	87ú 874	145 146
202 203	1,313 1,217	65 t	110	266	1,755	878	147
204	1.320	6612	110	267	1.76?	884	146
205	1.328	6n4	111	26 B	1,778	889 895	349 150
206	1.332	n/	111	269	ı ,789	67.3	150

	AMOUNT OF FEE			AMOUNT OF FEE			
Combined MPLW	Per	Per	Per	Combined MPL W	Per	Per	Per
or Kerb	Annun.	*	Month	or Kerb	Annum	*	Month
Weight (cwts.)		Yes	or part thereof	Weight (cwts.)		Year	or part thereof
10.010.7	\$	5	S	10-12/	\$	\$	\$
270	1,800	900	150	333	2,427	1,214	202
271	1,808	904	151	334	2,438	1,219	204
272 273	1,815 1.827	90 8 914	153 . 153 .	335 336	2,449 2,457	1,225 1,229	205 205
274	1.838	919	154	337	2,460	1,230	205
275	1,849	925	155	338	2,468	1,234	296
276 277	1.680	930	155	339	2,483	1,242	207
278	1, 868 1, 8 75	934 935	156 157	340 34 I	2,4 98 2,509	1,249	209 210
279	1,887	944	158	342	2,520	1,260	210
280	1,898	949	159	343	2.528	1.264	211
28 1 28 2	1,90 9 1,920	955 960	160	344	2.535	1.268	212 213
283	1.928	964	160 161	345 346	2 547 2 558	279	212
284	1,935	965	161	347	96ذ. 1	1.285	215
285	1,947	974	163	348	2.580	1.290	215
286 287	1,958 1,969	979 885	164 165	349 350	2.5 88 2,595	1,294	216 217
288	1.980	990	165	351	2.607	1.276	218
289	1.388	994	100	352	2,629	i.315	220
290	1,995	9.78	167	353	2.629	1 315	220
291 292	2.007 2.018	1.004 1.009	168 169	354 355	2.640 2.648	i.320 1.324	220 221
293	2,029	1.015	170	356	2.655	1.324	222
294	2.040	1.020	170	357	2.663	1,332	222
295	2.048	1,024	171	358	2.670	1.335	223
296 297	2.155 2.067	1,028 1,034	172	359 360	2.682	1,341 1 349	224 225
298	2.074	073		363 361	2.697 2.708	354	226
299	2,085	1.24	: 74	362	2.715	1 354	227
300	2,100	• • • •		33	2 127	-0-	223
30 (30 2	2.108 2.115			14.4 14.5	• • •		
301	2,127	1 :0		10	16.0	28.0	• •
304	2.134	13000	. ***	367	2.768	.54	251
305	2,149	1.0	151.	36¥	2 775	386	237
306 307	2,160 2,168	1,055	151	369 1711	1 757 2 978) 361 361	233 234
308		1 :84	147	371	2.809	1 377	235
309	2.175 2.187	1192	j.	37.7	2.817	± 19	235
310	2,138	ingo	182	123	2 614	-::	136
31! 312	2.209 2.220	1.172	185	174 174	871	4 1 6	237 238
313	2.228	11:4		•	1 84 K		• • • •
314	2.235	• :	. • •	: '			
315 316	2,247	: . 		1 K	N: 7	. . .	2.0
317	2.255 2.269	: : >:	199	3MJ	2 884 2 845	1444	24 i 24 2
318	2,280	1 12:	150	381	30.	1.454	245
319	2.288	114-	191	382	2.514	1 ***	243
320 321	2,295 2,307	1 148	:61	1X:	1974	• •	345 345
322	2.318			36 ·	94.	د مهد ر د د د	246
323	2,329	1.16.	10.	-80	2 95 .	1.8	247
324	2.340	1.1	125	387	96	1.452	24 *
325 326	2,348 2,355	1,174 1,178	190 197	388 983	3.970 2.982	1465	246 249
327	2,367	1.184	19k	190	2.467	1497	250
328	2,374	1.197	198	191	3-0(o)	1.504	25:
329 330	2,389	1.195	7111	392	1915	1.506	251 252 252
331	2,400 2,408	1,300	20g. 201	39 1 144	5 (c) 1 5 (c) 3 (c)	111	252 25
332	2.415	1,208	200	144	40.	137	254
	=		- •			•	• • •

	AMOUNT OF FEE			AMOUNT OF FEE				
Combined MPLW or Kerb Weight	Per Annum	Per % Year	Per Month or part thereof	Combined MPLW or Kerb Weight (cwts.)	Per Annum	Per % Year	Per Month or part the of	
(CWIS.)	5	5	S	10-127	. \$	5		
396	3,053	1,527	255	422	5,315	1,658	דיי	
397	3.064	1.532	256	423	3,327	1,664	2/9	
398	3,075	1,538	257	424	3,338	1,669	27	
399	3.087	1,544	258	425	3,345	1,673	2.9	
400	3.094	1.547	258	426	33د,ز	1,677	280	
401	3.105	1,553	259	426	3.364	1.682	281	
402	3,113	1,557	260	428	3,375	1.688	282	
403	3,135	1,568	262	430	3,398	1.699	284	
404	3,143	1,572	262	431	3,405	1.793	284	
405	3.143	1,572	262	431	3,405	1 .4:	384	
406	3.150	1.575	263	422	3.415	1.70.	Láš	
407	3,162	1.581	264	433	3,424	1.712	386	
408	3,173	1.587	265	434	3,435	: 7:8	257	
409	3,173 3,1 84	1.592	266	435	3,443	1,722	287	
410	3,195	1,598	267	436	3,454	1.727	288	
	3,173	1.602	267	437	4.46	1733	287	
411	3,203	1,607	268	438	3 477	1.739	. 290	
412		1,613	269	439	1.149	: 511	361	
413	3,225	1,617	270	440	3 445	3.38	242	
414	3,233	1.622	271					
415	3.144		272	For				
416	3,255	1,628	273	cach				
417	3,267	1.634			12.0			
418	3,274	1.637	273	çu:			_	
415	3.285	1.643	274	tuete.				
4 20	3.297	1.649	275	4 757.				
421	3,308	1.654	276					

(iv) Trailer other than semutiancis or pone (\$7) and (\$7) maximum permissible laden weights in

	MOUNT O	F FLE			; : • •	17 11 11 11 1	
Combined MPL w or Kerb Wegelit 'CW12')	Per Annum	Per 3 Year	Per Month or Fari (nerve)	Combined MPLN or prefe Weight Color	Per Annorn	to ter	Ter Manta Ser 27
	•	•	•				
1. Jin 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	3h 49 57 66 75 83 90 98 105 113 124 132 143 150 154 165 165	19 25 36 37 42 44 49 55 75 66 72 75 79 83 87	6 5 5 5 7 7 8 7 9 10 11 11 12 11 11 11 11 11 11 11 11 11 11	100 100 100 100 100 100 100 100 100 100		1 T	
29 30 31	177 180 184	89 90 92	15 15 16	\$1 52 53	263	1 143	:

	AMO	AMOUNT OF FEE			AMOUNT OF FEE			
Combined MPLW or Kerb Weight	Pcr Annum	Per % Year	Per Month or part thereof	Combined MPLW or Kerb Weight (cwfs)	Per Annum	Per ½ Year	Per Month or part thereof	
(cwts)	Ç	<u>\$</u>	Ş	(6413)	,5	۲	S	
54	293	147	25	110	548	274	46	
55	297	149	33	111	552	276	46	
56	300	150	25	112	555	278	47	
57	304	152	26	113	563	282	47	
88	308	154	26	114	567	284	48	
59	312	156	34	115	570	285	48	
60	315	158	37	116	574	287	48 49	
16	123	162	_?	117	582	291 293	49	
62	330	165	28	811	585	293 295	50	
63	334	167	28	119	5 89 593	293	50	
64	338	169	34	1 20	597	294	50	
6.5	342	17:	14 14	121 122	600)	300	50	
60	345	173	1.0	123	608	3114	51	
6-	340	177	 ະບ	123	612	30o	51	
68	353	180	30	125	615	308	52	
69 70	360 364	182	31	1 26	623	312	52	
71	368	184	3;	127	630	315	53	
72	375	188	3.2	125	630	325	55	
7.3	5.79	190	33	1 29	634	317	53	
*4	383	192		131	642	321	54	
75	387	194	: 1	132	645	323	54	
76	390	195	33	133	649	325	55	
;-	398	199	34	134	657	3.29	55	
78	402	201	j.	135	660	330	55	
79	41)5	203	14	1.36	668	• • •	56	
89	4514	2:15	. :	; ; ·	672	F 34	5(
8:	413	207	19	138	673	3 3 6	i *	
8.	4.20	210	:•	134	6.9	: :	÷-	
٠.	: 14	242	:•	! - **	48 ⁷	:41	٠.	
٠-	- 32	214	• •	14	c 6 9	• •	24	
• •	- i.	216	• 7	· # .	640	723	4.F	
41	: : •	248	••	i ÷	692	346	38	
S:	447	222		144	693	347	55	
88	447	224	3,6	; 4 4	695		58 58	
89	4.50	225	3.	:46	696	114	? ? 59	
911	453	:::	14	. = -	698 699	14.1		
7.		231	: :	1	201 255		59	
97	46.5 46.5	233	4	15.	יטי	3.:	٠,	
9.1 9.1	177	235 237			144	3.5	54	
ų.	•	• •	•	•			• 1	
u,	• • • •	1,00		:				
o-	488	24.4	4:	ra. T				
9>	244	245	: :					
úş	26.0	250	- :	5447.55	1.50	• :		
100	7,	253	<u>.</u>	ne :				
101	507	254		414				
17.1	6 j 4	255	4					
i e i	. 9	750	44	1 + +				
104	522	26-1	4.	Cath				
105	5.25	263	4-	6.781				
106	120	26.5	4 '	PPEW			•, •,	
10.1	5 - 3	26.7	7 ·	Pict				
108 .	540	270	4.5	after				

(vi) Semi-trailers authorised and constructed for the corriage of containers as stated hereunder:

Per Annum	AMOUNT OF FEE Per ½ Year	Fer Month or part thereor
\$ 90	\$	\$ 7.50

For the purpose of this sub-item -

- (a) a motor vehicle constructed or adapted for use and used for the conveyance and no other load except articles used in connection with the machine or contrivance shall, notwithstanding that the machine or contrivance is built in as part thereof, be chargeable with fees on the maximum permissible laden weight of the vehicle.
- (b) where a goods vehicle is licensed but is not an authorised vehicle under Part V of the Ordinance of a vehicle to which the exemption under paragraph (g) of subsection (2) of section 98 of the Ordinance applies, the above fees shall be reduced in the case of a vehicle not exceeding 40 cwts. In maximum permissible laden weight by a sum of \$5 per month and in the case of a vehicle exceeding 40 cwts, in maximum permissible laden weight by a sum of \$100 per month.
- (c) for licences issued under items 11 (1) (b) (i) and 11 (1) (b) (ii) for periods of less than six months but more the one months the less shall be calculated as a multiple of the one months rate, and
- (d) in the case of a goods vehicle to which the exemption under paragraph (g) of subsection (2) of section of the conditional applies and the maximum permissible laden weight of which exceeds 18 cwts there shall be added to the above free them in \$10 per month on part thereof.

	p ·	Atther	•	Por Month ; Part (nereo)
		§	*	•
:53	In respect of invalid corriages	:		,
(6)	In respect of school buses - (a) not exceeding 20 passen- gers authorised scatting capacity	52.50	24 28 24 28	4.59
	(b) exceeding 20 passengers but not exceeding 30 passengers authorised scar- ing capacity	75	; · •.	5 ⁵⁸

. •	Per Annum	Per 1/2 Year	Per Month or Part thereof
	S	S	\$
(c) exceeding J passengers authorised scatting capacity	105	52.50	9

- (7) En respect of motor vehicles which are -
 - (a) Land tractors (whether or net authorised under Part V of the Ordinance),
 - (b) Mobile machinery, and
 - (c) Road making machinery.

not exempted from hieraccifee under rule 28 and which in the case of vehicles falling within (a) or (b) are designed and used primarily for work on land and are used on a road only wherpreseeding to and from the site of such work and when so used real nothing other than land implies ents and which in the case of vehicles falling within (c) are used solely for the construction or repair of roads.

(8) In respect of goods vehicleregistered in Singapore and
authensed to operate in the
States of Malaya under 2 licenses
issued under Part V of the Ordinance, or in respect of goods
vehicles registered in Singapore
and in relation to which a motor
vehicle licence under Part II or
1912 Ordinance is granted for pur
poses of operating in the States
of Malaya

(9) In respect of public service vehicles licensed in Singapore and authorised to operate in the

ton to Ex

The rates applicated under the other transport of the per paid or hable to be a controlled per per in texture of vehicles in Singapore in texture of the period or the accency applied for

			Per Arnum	Per 1/2 Year	Per Month or Part thereof
		States of Malaya under a licence issued under Part V of the Ordinance —			
		Hire Cars, Self Drive Cars and	24		,
	•	Taxi Cabs	24	12 30	5
		Other public service vehicles	Οđ	.10	·
A ,	(94)	In respect of excursion bases Licensed in Thailand and outlio- rised to operate in West Malaysia under a licence issued under the Commercial Vehicles Licensing Board Act 1987	νij	36	5
	(10)	Vehicles other than road rollers which are not fitted with pneumatic tyres:	under	the foreg of this iter	s chargeable going provi- n in respect the workled
(4). In respect of a factory working heence fee shall be charged our if		zako zarodorek Nigito ozeki	els 🤲 the
	(1)	It fitted with an engine which is to duty under Heading No. 2". Customs Duties Order 1978 and a	1:12	Nes (T. 12) Mes (T. 12)	May the
		(a) not exceeding 2,000 d c (b) exceeding 2,000 d	<u>\$!</u>		is \$2.00 respect
	(n)	If not so fitted			senge:
		(a) not exceeding 1,500 c.			thorised he
		(i.) exceeding 1.500 cm fig. in exceeding 2.500 cm			tne hicle by
		(c) exceeding 2,500 c/o/but no exceeding 3,500 c/c.		. որ 📒 🖎	e licence ajed iud:
		(d) exceeding 3,500 c.		3 00 ± P.	iri V (the rdinans)
41	(114)	In respect of a goods vehicle and a bus, the unfuden weight of which /exceeds 2,000 kg, owner by a driving school for purpose of giving driving instruction.	: d •	, 4 '	
		or fixing ourning instruction	·		

12. In respect of a MOTOR TRADE LICENCE:

	Per Annum	Per ½ Year	Per Month or part thereof
(a) For use or all wehicles	700.00	350.00	60.00
(b) For use only on invalid carriages, motor cycles	240.00	125.00	22.00
and pedestrian controlled vehicles	Plus a non-r in respect o plates issue	of each pair	of trade
13. In respect of a VISITOR'S LICENCE	-		7.5 ů

PART II - SABAH

PRESCRIBED FEES

Ite	n No Description of Fee	Amount of Fee S sen
1.	(2) On the REGISTRATION of a motor vehicle other than an invalid carriage a motor bicycle, a motor tricycle or a triule.	with the
	(b) On the REGISTRATION of a trader	20.00
2.	On the REGISTRATION of a motor vehicle which is a motor bicycle or a motor tricycle.	5 00
3.	On the REGISTRATION of an invalid carriage	Nil
4.	(Omuted)	
5.	(Omitical)	
6	On the RE-REGISTRATION of a value of which the legistration has been cancelled.	60 00
7.	On the TRANSFER of a motor vehicle	
	(a) other than an invalid carriage, a motor bicycle or a motor tricycle	40.00
	(b) a motor bicycle or a motor tricycle	40 00
	(c) an invalid carrriage	Nil
	(d) a traffe;	
		20 00

COUNTRY REPORT OF KOREA

EXPERT GROUP MEETING ON TYPE APPROVAL PROCEDURES FOR NEW VEHICLES

by Kang-Rae Cho Director Motor Vehicle Emission Research Laboratory National Institute of Environmental Research Kyu-Hong Ahn, Ph.D Environment Research Center Korea Institute of Science and Technology Ju - Sop Cho Deputy General Manager Engineering Center Ssangyong Motor Company Ki-Won Ko Manager Technical Center Daewoo Motor Company

Presented

at

Expert Group Meeting on Type Approval Procedures
for New Vehicles
Organized by

United Nations Industrial Development Organization (UNIDO)
in co-operation with
Directorate General of Land Transport
Jakarta, Indonesia
8-10 June 1993

Table of Contents

1.	Introduction	4
	-	
2.	Analysis of traffic condition	
2.1	Increasing number of vehicles	
2.2	Status of roads	
2.3	Traffic conditions of large cities in Korea	
2.3.I	Status	:
2.3.2	Expansion of the subway network —————	• 7
3.	Emission control of new vehicles	
3.1	General	
3.2	Emission standards	8
3.3	Control measures	
3.3.1	Certification	13
3.3.2	Selective enforcement audits (SEA or COP)	19
3.3.3	Recall program	20
3.3.4	Inspection and maintenance program for in - use vehicles	21
3.3.5	Fuel quality control	23
3.3.6	Other control measures	24
3.4	Test procedures	26
3.5	Test equipments	27
4	Look through on the draft guidelines	
4.1	General	29
4.2	Discussion	29
Refere	nces	31
Annex	•	
1. Moi	or vehicle related tax system	32

List of Tables and Figures

- Table 1. Transportation share by mode in major cities
 - 2. Average daily driving distance
 - 3. Average vehicle speed in Seoul
 - 4. Trends of the shares of transportation model split in Seoul
 - 5. Emission standards for new gasoline and LPG vehicle
 - 6. Emission standards for new diesel vehicles
 - 7. Emission standards for motor cycle
 - 8. Certification systems of Korea, Japan, U.S. and Europe
 - 9. Flow chart of homologation (Exhaust emission & noise) in Korea
 - 10. Waranty period of automotive emission control system (Useful Life)
 - 11. Assigned DFs for diesel powered vehicles
 - 12. Assigned DFs for gasoline powered vehicles
 - 13. Sampling plan for SEA of light duty vehicles
 - 14. Emission standards for in use vehicles
 - 15. Types of motor vehicle subjected to inspection and the interval of inspection
 - 16. Penalty provision of roadside inspection program
 - 17. Standards for automotive fuel and additives
 - 18. Test equipments classified by the region and regulation
 - Figure 1. Increasing trend of number of vehicles
 - 2. Ir cre using trend of vehicle kilometer traveled
 - 3. New and in use vehicle emission control system
 - 4. Schematic diagram for exhaust emission test system
 - 5. Relation-basswara_common or harmonized regulation and national_____
 regulation

1. Introduction

The vehicle population in Korea has increased at a rapid rate since the beginning of the 1980's, reached to over 5 million in year 1992 from 0.5 million in 1980. In addition, most of them (about 80%) are passenger cars and are concentrated in such large cities as Seoul.

Motor vehicles are one of the major sources of air pollution in Korea. To solve these air pollution problems, the government strengthened vehicle emission standards in 1987. To meet these new emission standards, many new models of passenger cars using gasoline and LPG were required to install catalytic converters as an exhaust purification systems, and to use unleaded fuel starting July 1987. From January 1988, this new emission standard was applied to all new passenger cars. Korea, thus became the fourth country in the world to require the mandatory use of low emission vehicles and unleaded gasoline.

The Ministry of Environment established a five year master plan for environmental improvement (1992 ~ 1996) in 1991 and revised the motor vehicle emission standards in 1991 and in 1992 in accordance with this plan.

The following are the main contents of the revisions:

- increase of the number of low emission passenger cars and expansion of recall program,
- lower emission standards.
- measures for reducing diesel vehicle smoke,
- establishment of low pollution fuel,
- development of clean cars,
- study of a monetary penalty system

2. Analysis of traffic condition

2.1 Increasing number of vehicles

• Motor vehicle population

The number of motor vehicles has increased sharply from the beginning of the 1280's (see Figure 1). Korea has a vehicle population of more than 5 million as of Dec. 1992; 64.0% are cars, 25.7% are trucks and 10.1% are buses.



Figure 1. Increasing trend of number of vehicles

Motor vehicle growth rate

The number of the motor vehicle population in Korea increased continuously from 528,000 in 1980 to over 5 million in year 1992. The number of automobiles was increased more than 2700 vehicle per day (annual inc. rate 23.2%) in 1992. The motor vehicle growth rate for last decade was 30.4% (annual inc. rate) for PC (my car only) and 23.2% for total vehicles. If the current tendency is maintained, the projected motor vehicle number in 2000 is up to 13 million.

Mile into according

2.2 Status of roads

For last decade, the road construction was very insufficient compared with the sharp increasing number in vehicle population.

Sum of national expressway (1597km) and national highway (1212km) are only 23.6% out of total roads (58094km), and 90% of national highway are 2-lane roads. Accordingly, these roads are lack of a function as an arterial road.

National expressways newly countructed from 1981 to 1991 are only 352km and total length causing a bottleneck reach to 1320km. Especially, the trraffic congestions of the Kyung—Tm Expressway (Seoul—Incheon) and the Kyung—Soo (Seoul—Soowon) are serious. If this trend of road traffic congestion is maintained, it is expected that total length causing a bottleneck reach to 4020km (natronal expressway: 1130km, national highway: 2890km) in 1996.

Campared the motorization and the road density with those of developed countries, we can see that m/vehicle and m/person are very low and serious.

To solve the traffic congestion owing to the lack of roads, especially in Seoul, expansion of the subway network is underway as shown in 2.3.2.

2.3 Traffic conditions of large cities in Korea

2.3.1 Status

The number of vehicles of large cities has increased rapidly compared with those of nation wide. In case of Seoul, the transportation share of city buses is 39%, which is higher than that of other foreign cities such as Tokyo (6%), New York (14%) and London (9%). On the other hand, the transportation share of subway is 25%, which is lower than that of other foreign eities—such as Tokyo (76%), New York (72%) and London (74%) (see Table 1).

(Table 1) Transportation share by mode in major cities

City	Seoul	Tokyo	New York	London
Bus	39%	6%	14%	9%
Subway	19%	76%	72%	74%

One of the main cause of traffic congestion in large cities is the high average daily driving distance. The average daily driving distance of a passenger car is 62.4 km which is higher than that of Japan (24.1 km) and that of U.S.A (45.2 km) (see Table 2 and Figure 2).

(Table 2) Average daily driving distance

(Unit: km)

Countryy	Austria (81)	Denmark ('81)	W.Germany ('81)	Japan (85)	Holland (82)
Average Daily Driving Distance	30.1	38.2	32.6	24.1	, 33.2
Norway : ∃ten ('81):		65 U.K.,(1) (81)	t:rU.S.A · i.↓ (87)	Sweden (81)	Korea - ('90)
31.5	18.6	41.4	45.2	···'32.9	62.4

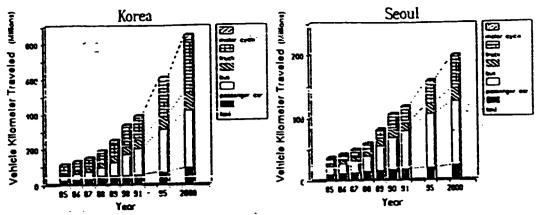


Figure 2. Increasing trend of vehicle kilometer traveled

Especially, the high concentration of vehicles in large cities causes the average vehicle speed drop (see Table 3), so does energy inefficiency and more exhaust emission.

<Table 3> Average vehicle speed in Seoul

Year	'83	'8 5	'89	92
Average vehicle speed KPH	31	31.9	22.9	20

2.3.2 Expansion of the subway network

A distinguished feature of Korea's transportation system is its high dependence on buses. In Seoul, buses transport accounts for almost 39% of total passenger transportation, which cause tremendous congestion and air pollution.

The most effective way to tackle these problems would be the large scale expansion of the subway network. In order to alleviate the everworsening traffic and vehicle emission problem, the second phase of the subway construction project will be completed by 1996 and the third phase by 1999.

Upon completion of the third project, the Seoul subway system will be widely used by means of public transportation carrying 23 million passengers per day and handling 75% of the total traffic population. At present the Seoul subway system handles 19% of the total transportation, carrying 4.63 million passengers a day (see Table 4).

<Table 4 > Trends of the shares of transportation model split in Secul

Mode of Transportation	1983	1990	1996	1999
Buses	64.3	43.3	26.2	10.0
Subways (Total length, km)	10.0 (7.8)	18.8 (118)	50.0 (278)	75.0 (400)
Taxies	17.0	12.8	5.0	4.0
Cars & others	8.7	25.1	18.8	11.0

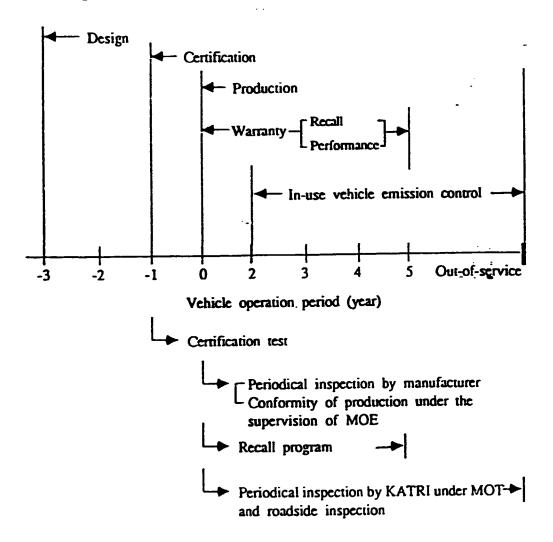
3. Emission control of new vehicles

3.1 General

A comprehensive and effective control system has been set up in Korea in order to check that motor vehicles comply with roadworthiness standards being in force. The control procedure consists of two, separately conducted parts:

- a) control with regard to safety and performance carried out by the Ministry of Transportation (MOT),
- b) environment related control carried out by the Ministry of Environment (MOE).

The environment - related control includes the following items:


- poilutant emissions,
- noise.

New and in - use vehicle emission control system is shown in Figure 3.

3.2 Emission standards

Since the establishment of Environment Administration of Korea in 1980, emission standards for new vehicle were amended several times. Especially, the strict control over exhaust emission has been implemented to gasoline and LPG – powered vehicles (new model only) similarly to U.S.A and Japan from July 1, 1987, and extended to all gasoline and LPG – powered vehicles (new and existing model) since Jan. 1988.

Figure 3. New and in-use vehicle emission control system

Test agencies

- Certification test: NTER and/or car manufacturer under the supervision of NIER
- · Periodical inspection: Car manufacturer (E/M and noise only)
- · COP: Car manufacturer under the supervision of MOE
- · Recall program: NIER
- --- Periodical-impection: KATRI
 - Roadside inspection: Regional environment offices, city and the provincial authorities

MOE: Ministry of Environment

NIER: National Institute of Environmental Research

MOT: Ministry of Transportation

KATRI: Korea Automobile Testing & Research Institute

As this strict standard, emission controllers, 3 – way calalytic converter and EGR etc. are equipped to passenger car and 90% of emissions compared with conventional passenger car are reduced. Unleaded gasoline has been used in all new gasoline – powered vehicles.

As it is shown in Table 5, 10-mode test procedures were adopted for passenger cars and light-duty trucks from 1980 to June 1987, and CVS -75 test procedures from July 1987, which are similar to those of FTP-75 test procedures in US. With the adoption of CVS-75 test procedures, evaporative emi-ssion control was initiated.

Recent amendments (called the Air Quality Control Law) to the Environment Conservation Act call for gradually more stringent standards for diesel vehicles (see Table 6) according to which Korea will be able to meet U.S 1996 standards by the year 2000.

<Table 5> Emission standards for new gasoline and LPG vehicle

Type of	Model	Test				НС
Vehicle	Ycar	Procedure	СО	NOx	Exh- aust	Evaporative (g/test)
Small Size Car (1)	1987.7.1 2000.1.1	CVS 75 (g/km) CVS 75 (g/km)	8.0 2.11	1.5 0.62	2.1 0.25	4.0 2.0
Passenger Car	1980.1.1 1984.7.1 1987.7.1 2000.1.1	10 – Mode (g/km) 10 – Mode (g/km) CVS – 75(g/km) CVS – 75(g/km)	26.0 18.0 2.11 2.11	3.0 2.5 0.62 0.25	3.8 2.8 0.25 0.16	- - 2.0 2.0
Light - Duty Truck (GVW≤3ton)	1987.7.1 2000.1.1	CVS – 75(g/km) CVS – 75(g/km) ② CVS – 75(g/km) ③	6.21 2.11 6.21	1.43 0.62 1.43	0.50 0.25 0.5	2.0 2.0 2.0
Heavy - Duty Vehicle (GVW > 3ton)	1980.1.1 1987.7.1 - 1994.2.1 2000.1.1	6 - Mode (ppm) Transient (g/b.hp-hr) G - 13 Mode (g/KWH) G - 13 Mode (g/KWH)	1.6% 15.5 33.5 33.5	2200 10.7 11.4 5.5	520 1.3 1.3	- 4.0 - -

¹ Less than 800cc of engine displacement

² LDTs—which have gross vehicle weight of 2.0 ton-or less and are constructed primarily for the carriage of persons

³ Light duty truck except 2

Diesel emission standards for new vehicle are different from those of the gasoline car. Especially the diesel emission standard is very important for air pollution prevention in Korea, because Korea has more diesel vehicles in percentage than any other developed countries. However, diesel passenger cars should meet the same standards as those of current gasoline passenger cars from 1993.

The contribution rate of air pollutants by the diesel vehicles is higher than that of other types of vehicles. Buses and trucks using diesel fuel are mainly responsible for NOx, SOx and particulate.

Upon this reason, the Ministry of Environment strengthened emission standards of diesel vehicles. Recent amendments, the Air Quality Control Law, established a new timetable which required, for example, the after treatment devices for smoke to be equipped to the city bus by the year 2000.

The followings are the main contents of amendments in 1991.

a) Substantial reduction in NOx:

- (1) the reduction of emission limits for NOx from diesel-powered vehicles by 61 to 65 percent from current levels by providing three-phase target values,
- (2) the unification of standards for both direct and indirect injection type diesel powered motor vehicles,
- (3) the reduction of future diesel vehicles NOx emission targets to the same levels as for gasoline fueled motor vehicles.

b) Introduction of particulate matter standards:

- (1) the introduction of particulate matter standards from diesel vehicles to reduce current levels by 50 to 89 percent by providing two phase target values.
- (2) the reduction of diesel smoke emission levels by half from current levels by providing two-phase target values.

c) Revision of exhaust emission measurement methods:

(1) 6-Mode → CVS-75 Mode (PC: from 1993, LDTs: from 1996) Emission standards for diesel passenger cars and light duty trucks are changed the current concentration standard to the weight standard (g/ km) in accordance with the change in measurement method from the current Japanese Diesel 6 Mode to the CVS-75 Mode.

(2) $6 - \text{Mode} \rightarrow \text{ECE} - 13 \text{ Mode}$

The emission standards for heavy duty vehicles were revised to regulate emission weight (g/KWH) with ECE – 13 Mode test as opposed to the current standards which indicate levels of concentration for various emissions.

In the developing countries visible smoke is one of serious problems in general. Accordingly ECE – 13 Mode can be considered more efficient than Japan Diesel – 13 Mode in order to control visible smoke and particulate simutaneously.

<Table 6> Emission standards fc new diesel vehicles

Type of Vehicle	Model Year	Test Procedure	co	NOx	нс	Parti- culate	Smoke (%) ⁽⁵⁾
Passenger	1980.1.1	Full Load	-	_	_	_	50%
Car	1984.7.1	6Mode (ppm)	980	1000/590 ①	670	-	50%
	1988.1.1	6Mode (ppm)	980	850/450 ①	670	-	50%
ľ	1993.1.1	CVS - 75 (g/km)	211	0.62	0.25	0.12	-
1	1996.1.1	CVS - 75 (g/km)	2.11	0.62	0.25	0.08] - [
	2000.1.1	CVS - 75 (g/km)	2.11	0.62	0.25	0.05	-
Light	1980.1.1	Full Load	_	-	-	_	50%
duty	1984.7.1	6Mode (ppm)	980	1000/590	670	-	50%
Truck	1988.1.1	6Mode (ppm)	980	850/450	670	-	50%
(GVW≤	1993.1.1	6Mode (ppm)	980	750/350	670	-	40%
3ton)	1996.1.1	CVS - 75 (g/km)	6.21	1.43	0.5	031@	-
				:		(0.16)	
İ	2000.1.1	CVS - 75 (g/km)	2.11	0.75	0.25	0.12	-
ł		CVS - 75 (g/km)	6.21	1.06	0.5	0.16	-
		3					
Heavy	1980.1.1	Full Load	-	-	-	-	50%
Duty	1984.7.1	6Mode (ppm)	980	1000/590	670	-	50%
Vehicle	1988.1.1	6Mode (ppm)	980	850/450	670	-	50%
(GVW>	1993.1.1	6Mode (ppm)	.980	750/350	670	-	40%
3ton)	1996.1.1	D-13Mode	4.9	11.0	1.2	0.9	40%
	·	(g/KWH)					
l	2000.1.1	D-13Mode	4.9	6.0	1.2	0.25 ①	25%
		(g/KWH)				(0.10)	

Note: (1) Direct Injection/Indirect Injection

- ② LDTs which have gross vehicle weight of 2.0 ton or less and are constructed primarily for the carriage of persons
- 3 Light duty truck except 2
- () City Bus
- (5) Smoke is measured according to 3 Mode

The emission standards for motor cycle are shown in Table 7.
The exametards which had been relieved of restraint except that relating to noise, were prepared for IIC and CO begining Aug. 1991, and for strick requirements in 1993 and 1996.

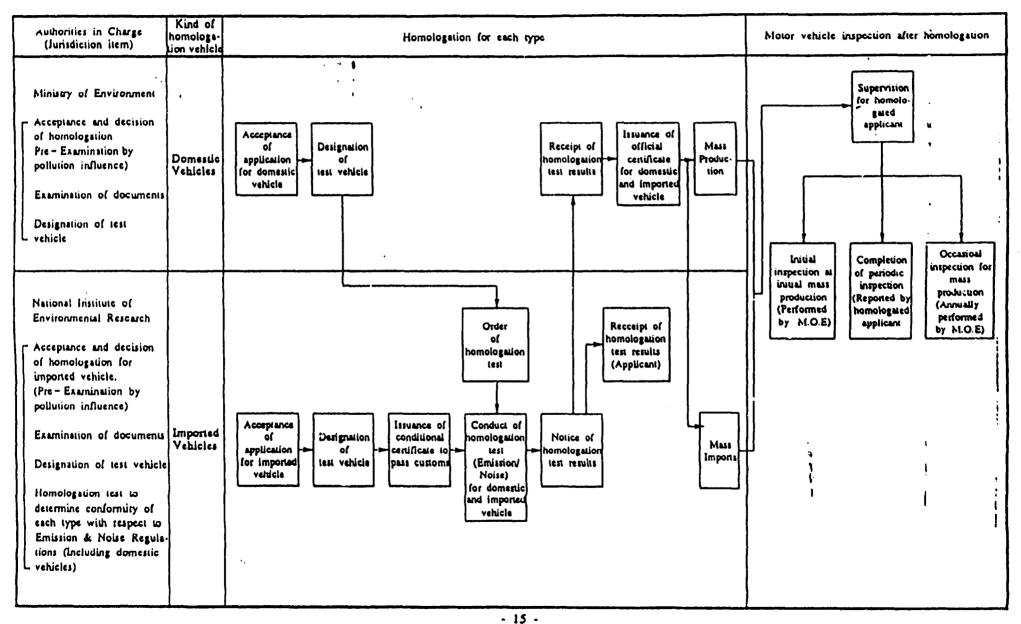
<Table 7 > Emission standards for motor cycle

Engine Displacement	Engine Type	Model Year	CO (%)	HC (%)	Test Procedure
displacement 125cc	2 stroke	1991.8.1 1993.1.1 1996.1.1	5.5 4.5 4.0	1.10 1.10 0.70	Idling
	4 stroke	1991.8.1 1993.1.1 1996.1.1	5.5 4.5 4.0	0.45 0.45 0.40	
125cc < displ – acement 500cc	- 2 stroke	1991.8.1 1993.1.1 1996.1.1	5.5 4.5 3.6	1.10 0.78 0.45	i
	4 stroke	1991.8.1 1993.1.1 1996.1.1	5.5 4.5 3.6	0.45 0.45 0.25	 i
displacement > 500cc	2 stroke	1991.8.1 1993.1.1 1996.1.1	5.5 4.5 3.0	i.10 0.45 0.30	
	4 stroke	1991.8.1 1993.1.1 1996.1.1	5.5 0.12 2.5	0.45 2.5 0.12	

3.3 Control measures

3.3.1 Certification

Every motor vehicle subject to certification should be covered by a certificate of conformity stating that emission requirements provided for in the standards are complied with. The certificate is issued by MOE for engine family—vehicle configuration combination. Actual emission tests are conducted by National Institute of Environmental Research (NIER). Certification system and certification flow chart are shown in Table 8 and 9 respectively.


In order to determine whether vehicles manufactured by the manufacturer, who has obtained the certificate, conform to the emission standards in respect to which the certification was conducted. MOE is empowered to conduct surveillance tests on samples of vehicles randomly drawn from the

Comparison of Certification Systems

: (PRE - PRO	DUCTION	400514514 1115	IN - USE	
	TESTING	CERTIFICATEEE	ASSEMBLY - LINE	114 - 03E	
KOREA	Official Laboratory and/or Manufacturer	Issued by Government	 TPI COP (at the start of production and on occasion) Periodic inspection by manufacturer (monthly) 	Periodic Inspection (MOT) and Maintenance (MOE) and Recall Program by Government and Road - Size Inspection	
JAPAN	Official Laboratory	Issued by Government	Sampling Emission Testing by Manufacturer	Periodic Inspection and Main- tenance by Government or Authorized Service Shop	
USA	Official Laboratory and/or Manufacturer	Issued by Government	Selective Audit Testing under the order of Government	Emission Testing of Privately Owned Vehicle by Government	
EEC/ECE	Official Laboratory	Issued by Government		:	
AUSTRALIA	Manufacturer	Issued by Government	Test Facility Inspection (TFI) Conformity of Production (COP)	Emission Testing of New Vehi cle by Some State Government	
EFTA SWEDEN & SWITZERLAND)	Manufacturer and/or Official Laboratory	Issued by Government		Emission Testing of Stabilized Vehicle by Government	
CANADA	Manufacturer	Self Certificate		Emission Testing of stabilized Vehicle by Government	

- 14 -

<Table 9> Flow Chart of Homologation (Exhaust Emission & Noise) IN KOREA

manufacturer's line. 1-2 samples are usually drawn every year for each engine family. A sample is composed of 3-5 vehicles. If a sample fails the tests, the certificate of conformity may be suspended or revoked.

Methods to determine the same "engine family", to clarify emission control system, and to classify the same "evaporative emission family" are similar to those of U.S.A which are described well in Annex 3 of "Guidelines for New Motor Vehicle Emission Control in the Asia – Pacific Region."

The aforementioned exhaust and evaporative emission standards apply to the emissions of vehicles for their useful life. The term "useful life" means one of the following values shown in Table 10 whichever first occurs:

< Table 10 > Waranty period of automotive emission control system (Useful Life)

Fuel 1	Model Year	Feb. 2, '91 - Dec. 31, '92	Jan. 1, '93 ~ Dec. 31, '95	After Jan. 1, '96
Gasoline	Passenger Car	5 years or 80,000km	5 years or 80,000km	5 years or 80,000km
	Light — Duty Truck	10,000km	20,000km	20,000km
Gas	Passenger Car Light - Duty Truck	80,000km 10,000km	100,000km 20,000km	120,000km 40,000km
Diesel	Passenger Car Light - Duty Truck	-	5 years or 80,000km	5 years or 80,000km 40,000km

The emission values to be compared with the standards are the official emission results for each emission – data vehicle adjusted by applying the appropriate deterioration factors. For light duty vehicles the deterioration factors are determined on the basis of durability – data vehicle tests:

a) for exhaust emissions—deterioration factors are equal to emissions interpolated to 50000 miles divided by emissions interpolated to 4000 miles; the emission—data vehicle results are multiplied by the respective factors.

b) for evaporative emissions – deterioration factor is equal to emission level at 50,000 miles minus emission level at 4000 miles; the factor is added to the emission – data vehicle results

According to the Circular Notice No. 92-28 (revision 5/13/92) of the Korean Ministry of Environment, the durability run could be exempted for the vehicles that the projected sales are less than 10,000 yearly, then the assigned deterioration factors have to apply to those vehicles tested acc. to the FTP-75 test procedure.

The assigned deterioration factors (DFs) valid in such countries of which certificates are accepted by the Korean MOE (i.e. Austria, Germany, Sweden, Switzerland) are as shown in the Table 11 below.

<Table 11 > Assigned DFs for Diesel powered vehicles

Course	DFs					
Country	нс	со	NOx	PM		
Austria	1.0	1.1	1.0	1.2		
Finland	1.0	1.1	1.0	1.2		
Germany	1.0	1.1	1.0	1.2		
Norway	1.0	1.1	1.0	1.2		
Sweden	1.0	1.1	1.0	1.2		
Switzerland	1.0	1.1	1.0	1.2		
Korea (1)	1.2	1.2	1.2	1.2		

⁽¹⁾ Valid for sales volume less than 10,000 units per veil model and per year.

The DFs for Diesel powered vehicles in the Korean exhaust emission regulation as revised with Circular Notice No. 92 – 28 are unrealistically high for the emission control system of Diesel vehicles and are therefore disadvantageous to accept as an option to the manufacturer.

Also for Gasoline powered vehicles the option to use assigned DFs instead of performing a 80,000 km durability run exists in the Korean exhaust emission regulation. Since this regulation accepts the use of 'foreign certificates, the assigned DFs valid in those countries (i.e. Austria, Germany, Sweden, Switzerland) as shown in Table 12, should also be accepted and implemented into the Korean exhaust emission regulation.

< Table 12 > Assigned DFs for gasoline powered vehicles

Compte	DF's _				
Country	нс	СО	NOx		
Austria	1.3	1.2	1.1		
Finland	1.3	1.2	1.1		
Germany	1.3	1.2	1.1		
Norway	1.3	1.2	1.1		
Sweden	1.3	- 1.2	1.1		
Switzerland	1.3	1.2	1.1		
Korea (1)	1.3	1.3	1.2		

(1) Valid for sales volume less than 10,000 units per vehicle model and per year

Taking for above mentioned into consideration and with regard to the international harmonization, it is requested:

- a) to accept for diesel powered vehicles as well as for gasoline powered vehicles the same assigned deterioration factors for gaseous emissions (HC, CO, NOx) like applicable in Austria, Germany, Finland, Norway, Sweden and Switzerland and to implement these deterioration factors also into the Korean exhaust emission regulation,
- b) to implement for particulate emissions an assigned deterioration factor of 1.0, that the deterioration factor of the particulate matters is below 1.0.

Any motor vehicle/engine covered by a certificate of conformity should be marked with a legible label containing, among others, the following information:

- name or trade mark of manufacturer,
- certificate No.
- engine family identification,
- engine tune up specifications,
- engine specifications
- fuel economy (km/l)
- statement "This vehicle (engine) conforms to ROK MOE regulation applicable to 19..., Model Year".

Most of the actual conduct of the certification process is usually done by the manufacturer. The approval authority monitors the process and tries to maximize the confidence level in the data and information which are the basis for issuance of a certificate of conformity. MOE may require that test vehicles be submitted to MOE, without charge, for purposes of conducting emission tests. Such tests may be conducted at the manufacturer's facility.

3.3.2 Selective enforcement audits (SEA or COP)

The conformity of production of vehicles covered by a certificate of conformity may be checked by MOE in the beginning of production and on ocasion. The verification process is called Selective Enforcement Auditing (SEA). The testing is required by means of SEA test order addressed to the manufacturer in which, among others, the vehicle/engine configuration to be selected for SEA is specified. In principle, tests are conducted by the manufacturer under MOE supervision. However, MOE is empowered to conduct tests on its own.

SEA tests are carried out in accordance with the procedure used in the process of certification for emission—data vehicles i.e. no durability tests are conducted. The final SEA test results are determined by multiplying the values obtained on test vehicles by the appropriate deterioration factors derived from the certification process.

The vehicles comprising the test sample are tested until a pass decision or a fail decision is reached. The pass or fail decisions are taken on the basis of the cumulative number of failed vehicles. The criteria depends on the annual sales. An example of sampling plan is given in Table 13.

A failed vehicle is defined as one whose final test results exceed the emission standard for at least one pollutant. A pass decision is reached when the cumulative number of failed vehicles for each pollutant is less or equal to "pass number" (see Table 13). A fail decision is reached when the cumulative number of failed vehicles for one pollutant is greater than or equal to "fail number".

<Table 13 > Sampling plan for SEA of light duty vehicles (EX.: annual sales of 50 - 99)

Stage	Pass No.	Fail No.	Stage	Pass No.	Fail No.
1	(1)	(2)	16	6	11
2	(1)	(2)	17	7	. 12
3	(1)	(2)	18	7	12
4	0	(2)	19	8	13
5	Ö	(2)	20	8	13
6	ĭ	6	21	9	14
7	i	7	22	10	14
8	2	7	23	10	15
9	2	8	24	11	15
10	3	8	25	11	16
11	3	9	26	12	16 :
12	4	9	27	12	- 17 -
13	5	10	28	13	17
14	5	10	29	14	17
15	6	11	30	16	17

- (1) Test sample passing not permitted at this stage
- (2) Test sample failure not permitted at this stage

The certificate of conformity may be suspended for a vehicle/engine configuration which does not pass SEA. Once it has been suspended, the manufacturer must take, among others, the following steps for the failed configuration:

- to remedy the non-conformity,
- to demonstrate that the configuration conforms to the standard by retesting vehicles.

3.3.3 Recall program

The aforementioned emission standards for cars and light duty vehicles apply to the emissions of vehicles for their useful life which is set to 80,000 km or 5 years. In order to guarantee required performance for the useful life the recall programmes were introduced in 1990. The following procedure is used for this purpose:

- a sample for the recall tests consists of 5 vehicles of the same engine family,

1 ...

- vehicles are randomly selected from the register file,
- vehicle owners are requested by mail to submit their vehicles for testing.
- technical condition of selected and submitted vehicles is checked,
- emission tests are usually conducted at NIER facilities and arithmetical average is taken as the test results,
- if the sample fails the tests, the vehicle manufacturer may request a repetition of recall tests,
- if the sample fails the tests, components affecting emissions to be replaced/repaired are listed in the test report,
- MOE decides whether and which components should be replaced in the in-use vehicles.

3.3.4 Inspection and maintenance program for in - use vehicles

To control exhaust emissions for in – use vehicles, permissible emission standards, set as they are shown in Table 14, are applied through periodic and roadside inspections.

As they are shown in Table 15, safety performance and exhaust emission for in—use motor vehicle are tested once in every 6 month to 2 years depending on the types and ages of motor vehicles in periodic inspection.

In addition to periodic inspection, to make sure of the post inspection and maintenances, random roadside inspection are carried out by inspection teams organized between city or provincial administrative and prosecuting authorities. In inspection, vehicles that exceed the standards are subject to maintenance order with accusation. The driver of the accused vehicle is fined to the maximum of \text{W500,000} for it. In case of a company owned vehicle, the owner of the vehicle are fined to the maximum of \text{W500,000} for it. Penalty provision of roadside inspection pro-gram is shown in Table 16.

In addition to these inspections, drivers and mechanics are fully informed of the effects of exhaust emissions to air pollution and adverse effects of air pollution to human health and they are advised to make through jobs of the inspection and maintenance of vehicles.

<Table 14> Emission standards for in - use vehicles

Type of Ve	Pollutants	ထ	нс	Smoke	Remark_
Gasoline and LPG	1979 - 1984.6	4.5%	_	-	.
Cars	1984.7 - 1987.7	4.5%	1200 ppm		
	As of July 1987.	4.5%	1200 ppm		Old model car (Small size car, LDTs and HDVs)
	-	1.2%	220 ррт	-	New model gaso- line car
		1.2%	400 ppm	_	New model LPG car
Diesel	1979 – 1990	-	_	50%	
Cars	AS of Jan. 1991	-	_	40%	

Test Method: CO/HC: Idling (NDIR)

Smoke: Free Acceleration (opacity)

<Table 15> Types of motor vehicle subjected to inspection and the interval of inspection

a	Classification			
Private Passenger Cars and Trailers	2 years 1 Year			
Passenger Cars for Bus	Passenger Cars for Business Use			
Light Duty Trucks	Aged less than 10 years Aged more than 10 Years	l year 6 months		
Vehicles	Aged less than 10 years Aged more than 10 Years	l year 6 months		

<Table 16> Penalty provision of roadside inspection program

Pollu-	Model	Kind of	Model	Stand-		Panalty Provision	
tant	Ycar	Fuel	Ycar	ards	Maint- enance Order	Suspension of Operation	Finc
Smoke	All Model	Diesel Fuel	All Vehicles	40%	41%	60-70% : Iday 70-80% : 2days Min. 80% : 5days	41%
ထ	87 Model year or Old	Gasoline and LPG	All Vehicles	4.5%	4.6%	Excess % of standards	9.1%
	88 Model year or	Gasoline and LPG	Passen- ger Cars	1.2%	1.3%	- 400-500% :	4.5%
·	New	•	Others	45%	4.6%	- min. 500% :	9.1%
НС	87 Model year or Old	Gasoline and LPG	All Vehicles	1200ppm	1201ppm	3days	4800ppm
	88 Model year or	Gasoline	Passen- ger Cars	220ррт	221ppm		881ppm
	New	LPG	Passen- ger Cars	400ppm	401ppm		1601ppm
		Gasoline and LPG	Others	1200ppm	1201րրա		4801ppm

3.3.5 Fuel quality control

The normal performance of automobiles relies heavily on the quality of fuel, and so does the exhaust of automotive emission. New standards for aromatic compounds, benzene and oxygen in gasoline have been established (see Table 17). Those for lead will not be contained in gasoline from 1993; and those for phoshphorous that the catalytic function of catalytic converter equiped passenger cars are affected have also been introduced.

For diesel fuel, 10% of residual carbon and sulphur are regulated. The sulphur content, which directly relates to the emissions of particulate and sulphur oxide, will be reduced to the present level of 0.4% to 0.2% in 1993, and to maximum 0.1% in 1996.

<Table 17 > Standards for automotive fuel and additives

Fuel	Model Year	Feb. 2, '91 Dec. 31, '92	Jan. 1, '93 Dec. 31, '95	Jan. 1, '96
·	Aromatic Compound (Vol. %)	-	Max. 55	Max. 50
Gaso- line	Benzine (Vol. %)	-	Max. 6	Max. 5
	Lead (g/liter)	Max. 0.013	Max. 0.013	Max. 0.013
	Phosphorous (g/liter)	Max. 0.0013	Max. 0.0013	Max. 0.0013
	Oxygen (Weight %)	-	Min. 0.5	Min. 1.0 1
Diesel	10% Residual Carbon (%)	Max. 0.20	Max. 0.15	Max. 0.15
	Sulphur (Weight %)	Max. 0.4	Max. 0.2	Max. 0.1

3.3.6 Other control measures

- a) Increase of the number of low emission passenger cars, expansion of recall program and lower emission standards are already explained in 3.2 and 3.3.3.
- b) Measures for reducing diesel smoke
 - (1) Fuel switch over for light duty diesel vehicles

 The big difference of oil price between gasoline and diesel makes consumers prefer the diesel vehicles to the gasoline ones, and the small buses and trucks are mostly designed to use diesel fuel. To overcome this, the Ministry of Environment is trying to switch over diesel to gasoline or LPG.
 - (2) Increasing horsepower of city bus

 The excessive smoke from the diesel buses are partly caused by the overloading for the underpowered engines.

The city buses are mostly equipped with engines of about 180 to 185 horse power, and carry about 150 to 200 passengers (nominal capacity

: 80 to 85 passengers) during rush—hours. Accordingly, the buses usually run seriously short of the required power, generating smoke and becoming worn—out earlier than they are designed for, which lead to the some vectous cycle.

Therefore, the engine of city buses and seating—only buses increased their power from 185 HP to 230 HP to solve the problem encountered with the under powered engines.

(3) Research works for diesel particulate control

The uncontroled diesel engines emit approximately 30 to 70 times more particulate than the current gasoline – powered engines equipped with the catalytic converters.

In addition, 34% of total vehicles are diesel vehicle and the smoke emission rate caused by diesel vehicle is very high in Korea. So we are gathering the knowledge reducting the smoke from diesel vehicle.

Emission control technology of diesel vehicles has not been fully developed even in develoed countries unlike that of gasoline vehicle. This technology is still in a rudimentary stage in Korea.

Since gasoline vehicles equipped with the three – way catalytic converter have been produced in Korea, gaseous pollutant emission from gasoline vehicles such as carbon monoxide, hydrocarbon, and nitrous oxides have been greatly decreased. Whereas particulate and nitrous oxides, however, have been increasing every year probably due to emission from the diesel vehicles.

Engine makers have much efforts to modify an engine to reduce the emission of diesel particulate. The use of alternative fuel such as methanol, LPG, CNG etc. as well as the various kind of post—treatment system was widely studied by many investigators. Treatment system is a very effective measures and large scale fleet tests using this system have been conducted in U.S and Europe. Ceramic monolith filter of the wall flow—type have been widely used in the aftertreatment system beacuse of its low flow resistance and high trapping efficiency.

The already known regeneration techniques can be divided into two major categories: techniques aiming at raising exhaust temperature by means of burner, electric heater etc. and techniques aiming at reducing the activation energy of the in-trap oxidation process by means of catalyst impregnation of the trap or fuel additives etc. The trap system of a new regeneration technique, was used with diesel exhaust gas throttling to increase exhaust temperature. Organometallic compound of cerium was also used as a fuel additive in order to maintain safe and reliable regeneration at relatively low temperature.

Motor Vehicle Emission Research Lab. is conducting a trap retrofit demonstration project with the Ministry of Science and Technology. The trap system consists of a ceramic wall flow filter with regeneration by means of exhaust throttling and fuel additive. The system was successfully tested on an engine dynamometer and installed on a City Bus.

c) Development of clean cars

Clean cars are now under intensive study worldwide and these include electric car, hydrogen car, solar car, etc. It is hard to classify the alcohol car in the same category, although it is probably a lower emission car than petroleum – used cars.

Research on electric car in Korea has been started CNG and alcohol engines are under development and lean – burn engine is also under deve-lopment.

3.4 Test procedures

Test methods for each of the vehicle categories are shown in Table 5 and 6. The test procedure currently used for cars and LDV emission testing is sissilar to US FTP-75 (CVS-75). As regards heavy-duty vehicles, the test procedure is similar to that specified in ECE 13-mode test for HDDE. These are explained in Annex 2 and 3 of the guidelines well, so I would like to omit a explanation on the test procedures.

3.5 Test equipments

< Table 18 > Test equipments classified by the region and regulation

Γ	T			T		REGION	3			
	FACILIT	nes	EQUIPMENTS	NAS (KO	OREA)		EU	KOPE		REMARKS
·				REG.	VEIL CAT.	R	EG.		Ы. .Т	
		СОМ	ENG. DYNAMO. (IIDE)	COM.	СОМ	CO	VL.	8	M.	
	<u> </u>		CILASSIS DYNAMO.]						
			DRIVER'S AID]
		CZZ	CA2 (C2T)	40 CFR (REG.	ALL.	91/4 R#3		MI.	•	
			GAS A/Z (GSL)	OF CAA)		}				
	EXHAUST		METILANE A/Z							
	En. TEST (HC, CO,		FUEL CONDITION CART (G)						-	- -
1	NOx, CH4, Particulate)	DSL	CA2 (D2T)	40 CFR - (REG.	ΑЦ					PC: 1993 LDT: 1996
5m	,		GAS A/Z (DSL)	OF CAA)					м2	IIDDE : 1996
FÆ			FUEL CONDITION CART (D)						мз	
			DILUTION TUNNEL		٠		R49		Nı	
			SMOKE METER			72/306		ATT.	N2	
			OPACIMETER			R24				
	Evapo. TEST	CSL	SHED	40 CFR (REG.	ИL	91/4	41	МІ		
			GAS A/Z (HC)	OF CAA)						
	DURA. TEST	СОМ	MACD	40 CFK (REG.	ALL	91/4	(1	М		COMPLETE
			AUTO PILOT	OF CAA)						ग्डा टा
	ENV. TIST	СОМ	HIGH ALTITUDE TEST ROOM	40 CFR	יים ו דיסה	NA		NA	-	

: EMISSION **GSL** : GASOLINE : DIESEL F/E DSL : FUEL ECONOMY : EVAPORATIVE EMISSION TEST CHASSIS : CHASSIS DYNAMOMETER Evopa TEST DURA. TEST : DURABILITY TEST DYNAMO. : CONSTANT VOLUME SAMPLER CVS env. Test : ENVIRONMENT TEST ENG. : ENGINE DYNAMOMETER GAS AZ : GAS ANALYZER DYNAMO MACD : MILAGE ACCUMULATION DYNAMOMETER : REGULATION COM. REG. : COMMON NAS -- - " NORTH' AMERICAS VEIL CAT.: VEHICLE CATEGORY LDV (1) : LIGHT DUTY VEHICLE (TRUCK) REG. OF CAA: REGULATION OF CLEAN AIR : NOT APPLICABLE NA ACT IN KOREA

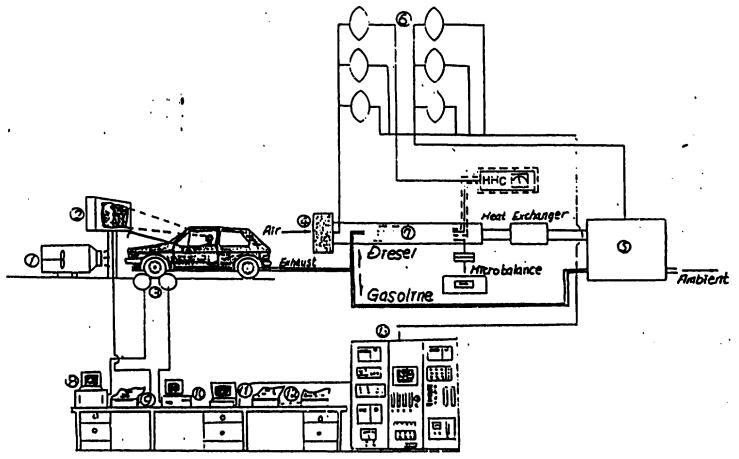


Figure 4 Schematic diagram for exhaust emission test, system

- 1. Cooling fan
- 2. Driver's aid
- 3. Chassis dynamometer
- 4. Air filter trap
- 5. Constant volume sampler
- 6. Sample bag
- 7. Dilution tunnel

- 8. System computer
- 9. Printer
- 10. Driver's aid control system
- 11. Exhaust emission analyzing system control computer
- 12. Printer and plotter
- 13. Exhaust emission analyzer

4. Look through on the draft guidelines

4.1 General

The standards and procedures used in the Asia – Pacific Region differ in many respects, it in applicability, control procedures, severity of emission standards and driving cycles. At the same time common points lie in some elements of test procedures, except driving cycles, e.g. analytical methods, test equipments and gas sampling systems.

A part of these countries participating in the project has already started some sort of effective control developed in EC, US and Japan.

Pursuant to the purpose of the project, it is necessary to scrutinize the status of new motor vehicle emission control in the countries particiting in the project and to analyze the procedures and standards developed in the USA, Europe or Japan.

Fortunately, the "Draft Guidelines" analyzed aforementioned respects very well. However, we must be very careful in the choice of procedures and standards in order to solve the air pollution problems more wisely in this region.

Experiences of many countries have shown that the best efficiency of the emission reduction can be achived if a comprhensive and uniform motor vehicle emission control system taken up for this pupose are conducted.

As mentioned in the introduction and chapt 3, a comprehensive and effective program is carried out in Korea.

4.2 Discussion

There is a room and need for genuine regional cooperation in the area of new motor vehicle emission control.

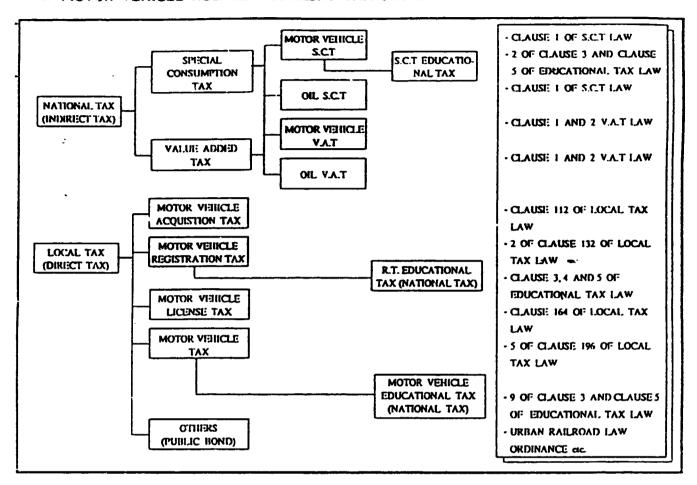
The recommended cooperation and harmonization of the emission control is conducted on a purely voluntary basis. The cooperation among the participating countries based on the

- common, harmonized emission standards,
- uniform conditions of approval,
- reciprocal recognition of approval granted in other participating countries, will have many advantages for the region as a whole. In this respect much can be learned from experiences of ECE.

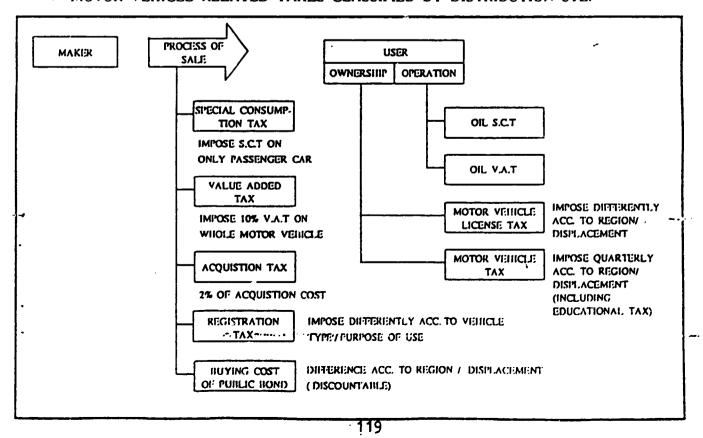
Like can tries applying ECE Regulations, those of the Asia – Pacific region can set up a harmonized control system, including common limit values, test procedures and conditions of approval.

Despite much differences with regard to conditions affecting emissions, we agree with the "Guideline" basically and we would like to propose an idea aiming at smooth implementation. It is shown in Figure 5.

Figure 5. Relation between common or harmonized regulation and national regulation


For reciprocal recognition of approval granted in other participating countries, it will be necessary to set up administration services and technical services (test centers) empowering competent authorities to handle the task.

References


- UNIDO. Guidelines for new motor vehicle emission control in the Asia Pacific region. March 1993.
- UNIDO. Report of the expert group meeting on control and regulatory measures concerning motor vehicle emissions in the Asia Pacific region. Seoul, 21 24 august 1990.
- 3. UNIDO. Report of the expert group meeting on in use motor vehicle inspection for emission control in the Asia Pacific region. Seoul, 20 22 October 1992.
- 4. Guidelines for in use vehicle inspection for emission control in the Asia Pacific region. August 1992.
- 5. Report of the symposium on motorization and the environment and energy issues in Asian countries. Tokyo, 8 December 1992.
- 6. UNDP. Report of the workshop on reducing energy consumption and air pollution in the transportation sector: developing country cases): Korea Transport Institute, Seoul, 6-8 February 1992.
- 7. M. S. Ahn: Automotive air pollution control program in Korea. September 1991, MOE.
- 8. K.R. Cho: Motor vehicle emission standards and control technology. Motor vehicle exhaust emission and urban air pollution. Internation serninar on emerging issues and control strategies for the improve-ment of air quality, NIER/MOE, KAPRA, 4 June 1992.

MOTOR VEHICLE RELATED TAX SYSTEM

■ MOTOR VEHICLE RELATED CURRENT TAX SYSTEM

MOTOR VEHICLE RELATED TAXES CLASSIFIED BY DISTRIBUTION STEP

■ MOTOR VEHICLE RELATED TAXES

TAX	TEMS	T	CLASSIFICATION	TAX R	ATES (TAX /	AMOUNT)	REMARKS	
	S.C.T		Displacement≤1500cc/Jeep (4WD) Two – Whoeled Motor Vehicle	10% of M:				► [Special Consumption Tax Law]	
Included in Sales		-	1500cc <d≤2000cc< td=""><td>15% of Ma</td><td>mulactu</td><td>rine C</td><td>DIST.</td><td>► Educational Tax → 30% of S.C.T Amount</td></d≤2000cc<>	15% of Ma	mulactu	rine C	DIST.	► Educational Tax → 30% of S.C.T Amount	
Price		-	O<2000cc / Camping Motor Vehicle	 	25% of Manufacturing Cost			X Tax - Free for Private Passenger	
	VA.T	╂	All Motor Vehicle		10% of (M.C+S.C.T+ET)			Car not less than 800 ec	
	A.T	1.	General Motor Vehicle	2% of Veh	icle Pri	De .		► [Clause 112 of Local Tax Law]	
		1.	Deluxe Passenge Car	15% of Ve	hicle Pr	ice		: '90. 12	
Registra-	R.T	an	SSIFICATION	NEW / TRANS FER	CREA	TION	• OTHER	► [Clause 132 of Lucal Tax Law]	
Process			Passenger Car (For Private)	5%	3	٤.	₩7.500	: 90. 12 ► Educational Tax → 20% of R.T.	
		1.0	Commercial Vehicle (For Private)	3%	2	L	(91, 12)	Amount Remark: Transfer / Structure Change	
		· \	Vehicle for Business	2%	1	E.			
Ower- ship	LT	GRA	DE	•		9	<u>©</u>	► [Clause 164 of Local Tax Law]	
Process			Group: Passenger Car over sales orice 70 million won	₩15,000	· ₩30	, 00 0	₩18,000		
			Group: Private-Passenger Car tot less than 1600cc	₩36,000	₩22		₩12,000	► Tax Amount for 1 Year : '90. 12	
		•	II Group: Private-Passenger Car not less than 1400cc	W27,000	₩15		₩8,000	► ② Region with population over	
		C	V Group : Private - Passenger ar less than 1400cc Private -	W18,000 W10,000 W6,000		W 6,000	500,000 (a) Others city		
		. 1	ommercial Veh./Bes / Group : Owner-Driver Taxi/ Owner-Driver Delivery Truck	₩12,000	₩5.	000	0 00,€₩	© Сомину	
	M.V.T	-	MOTOR VEHICLE TYPE	PRIVAT	E	BI	USINESS	▶ [5 of clause 196 of Local Tax Law]	
		PC	- Displacement < 3000cc	₩630 (#1	9)/œ		₩24 / cc	► Tax Amount For I Year →	
	•	a a	- 2500cc <d≤3000cc - 2000cc<d≤2500cc< td=""><td>₩410 (53 ₩250 (32</td><td></td><td></td><td>₩24 / cc ₩19 / cc</td><td>Divided Payment</td></d≤2500cc<></d≤3000cc 	₩410 (53 ₩250 (32			₩24 / cc ₩19 / cc	Divided Payment	
l		s	· 1500cc <d≤2000cc< td=""><td>₩220 (28</td><td></td><td></td><td>₩19 / cc</td><td>► Educational Tax (For Private)</td></d≤2000cc<>	₩220 (28			₩19 / cc	► Educational Tax (For Private)	
		n n	· 1000cc <d≤1500cc< td=""><td>₩160 (20</td><td></td><td></td><td>₩18 / cc</td><td>→ 30 % Of Tax Amount → (): Tax Amount included</td></d≤1500cc<>	₩160 (20			₩18 / cc	→ 30 % Of Tax Amount → (): Tax Amount included	
1		g	· 800 cc < D ≤ 1000cc · 800 cc < D	₩120 (15 ₩100 (13			WIE/cc	Educational Tax	
]		c	- 800 CC D	W100 (13	σ,,α		₩18/cc	► Tax Annunt Limit:	
		ļ	- Others (Jeep)	W100,000(136),000) /ycar	W2	0,000 / year	₩3,000,000/Y car	
ł		_	- Pay-load≤10	W157,500			5,000 / Year	► For Pay load over 10 km	
		Com-	· P≤8 · P≤5	₩130,500 / ₩79,500 /	1		5,000 / Year 2,500 / Year	① Private	
		cial	· PS4	W63,000			3,000 / Year	→ Tax For Pay kad below 10 km + W 30,000 / km	
1			י צ≥ין •	W48,000	Year	WI:	3,500 / Year	② Business	
1		Vch.	· P≤2 · P≤1	₩34,500 / ₩28,500 /	. 1		0,600 / Year 5,600 / Year	→ Tax For Pay had below 10 ton + W 10,000 / ton	
ĺ			· Express Bus		-),000 / Year	► Large - Sized Bus : not less	
1		Sus	Large - Sized Chartered Bus Small - Sized Chartered Bus),000 / Year),000 / Year	than 40 Seating Capacity	
1		1505	Large - Sized General Bus	₩115,000 /	Year		1,000 / Year	► General Bus: Local Bus,	
			· Small - Sized General Bus	₩65,000	. 1		5,000 / Year	Cross - Country Bus, Private Bus	
Ī			· Large - Sized Special Motor	₩157,500	Year	₩:	5,000 / Year	► Large - Sized Special : more than	
		Others	Vehicle ・ Small ~ Sizeかのpocial Motor Vehicle	₩58,500	Year	WE	3,500 / Year	Payload, 4 tog or corresponding	
			· Small Motor Vehicle of Less Than 4-Wheel	₩18,000 /	Yes	₩.	3,300 / Year	► Small - Sized Special : not more than Payload 4 km	

cf : 1 \$ = 800 W

MOTOR VEHICLE RELATED TAXES ----

TAX I	TEMS	CLASSIFICATION		TAX RATES (TAX AMOUNT)	REMARKS :
		CA FOLING	LEAD	130%	► [SPECIAL CONSUMP-
	OIL	- GASOLINE	UNLEAD	109%	TION TAX LAW]
OPERA -	s.c.T	• DIESEL	DIESEL 9%		
PROCESS		- LPG		1%	
	V.A.T		(M.C+S.C.T) . 10% OF DISTRIBUTOR MARGIN . 10% OF STATION MARGIN		
отн	IERS	COST OF SAFETY ASSOCIATION / COST OF STAMP / COST OF CERTIFICATION / COST OF LICENSE NUMBER PLATE / COST OF VARIOUS TEST			

■ MOTOR VEHICLE RELATED TAXES

No.	OR VEHICLE TYPE	CI ASSIGNATION	-REGION	NEW REG	ISTRATION	TRANSFER REGISTRATION	
Moto			NO.	PRIVATE	BUSINESS	PRIVATE	BUSINESS
	FOREIGN - MADE VEHICLE	IMPORTED VEHICLE	NATION WIDE	0	995,000	0	330,000
	DELUXE VEHICLE	. 2000∝≤	SEOUL BUSAN (OF())	20%	3%	6%	3%
		DISPLACEMENT	OTHERS	1,300,000	435,000	. -	145,000
	GENERAL VEIICLE	1500cc <d<2000cc< td=""><td>SEOUL, RUSAN (OF (0)</td><td>12%</td><td>3%</td><td>6%</td><td>3%</td></d<2000cc<>	SEOUL, RUSAN (OF (0)	12%	3%	6%	3%
PASSEN-	(A GRADE)	130303 (13 (13.00)	OTHERS	910,000	305,000	←	100,000
GER CAR	GENERAL VEHICLE	1000cc <d≤1500cc< td=""><td>SEOUL, BUSAN (OF (3)</td><td>9%</td><td>3%</td><td>6%</td><td>3%</td></d≤1500cc<>	SEOUL, BUSAN (OF (3)	9%	3%	6%	3%
	(B GRADE)	10005 (D213005	OTHERS	325,000	110,000		30,000
	GENERAL VEHICLE	1000cc≤D	SEOUL, BUSAN (OF (0))	4%	3%	6%	3%
	(C GRADE)	1000025	OTHERS	260,000	85,000	←	30,000
	JEEP TYPE	4WD	SEOUL, BUSAN (OF (0)	2%	+	←	-
	Jeer I Tre	4	OTHERS	155,000	50,000	155,000	50,000
	LARGE-SIZED	SEATING CAPACITY≤26	NATION WIDE	1,300,000	435,000	6	145,000
nus	MEDIUM - SIZED	16≤S.C≤25	- .	650,000	215,000	-	70,000
	SMALL - SIZED	7≤S.C≤15	. •	390,000	130,000	1	45,000
	LARGE - SIZED	PAY LOAD≤4.6 ton	•	650,000	215,000	-	70,000
COMMER-	COMMERCIAL	2.5≤P.L<4.5 ton	•	390,000	130,000	1	45,000
VEHICLE	SMALL - SIZED COMMERCIAL	2.5 ton < P.L	•	195,000	65,000	← ·	20,000

⁽a) FOREIGN-MADE VEHICLE SEEMS TO SAME AS DOMESTIC-MANUFACTURED VEHICLE (ON BASIS OF DISPLACEMENT)
(b) STANDARD OF ASSESSMENT

■ OTHERS

TAX ITEMS	CO	REMARKS				
TRAFFIC NOCTION TRAMTOLIA	MORE THAN TOTAL ARE O CALCULATED AMOUNT O	WINCI INDUCING TRAFFIC COMPLEX AND N TOTAL AREA 1000m' FED AMOUNT OF ALLOTMENT ACII FLOOR AREA × BASIC ALLOTMENT (3.3m') ×				► FURBAN TRAFFIC MAINTENANCE PROMOTION ORIDINANCE, → ISSUED ON 26, SEP. 90 → TAX AMOUNT FOR LYFAR
	CLASSIFICATION	90	791	92	793	
TARIFF :	MASS TRANSPOTATION VEIL PASSENGER CAR / *OTHERS COMMERCIAL VEHICLE SPECIAL - PURPOSE VEHICLE TWO - WHEELED VEHICLE	20 20 20 13	1 1 1 1 1	17 17 17 11	15 15 15 9	► Unit (%) ► STANDARD : C.I.F * OTHERS : STATION WAGON / RACING CAR

REPUBLIC OF THE PHILIPPINES DEPARTMENT OF TRANSPORTATION & COMMUNICATIONS LAID TRANSPORTATION OFFICE East Avenue, Quezon City

COUNTRY REPORT

Presented to the

Expert Group Meeting on Type Approval Procedures for New Vehicles in the Asia-Pacific Region

08-10 June 1993 Jakarta, Indonesia

- I.1.0 CURRENT STATUS OF THE PHILIPPINES WITH REGARD TO THE NEW VEHICLE EMISSION CONTROL AND FUTURE PLANS IN THIS AREA:
 - To this date, the control system for emissions 1.0.1 from new motor vehicles is specified in "Rules and Regulations for the Prevention, Control, and Abatement of Air Pollution from Motor Vehicles (1979)" issued by the National Pollution Control pursuant Commission, tο the provisions of Decree No. 1181. (National Presidential Pollution Control Commisssion was renamed Environmental Management Bureau). As such, the Philippine smoke emission level for gasuline and diesel powered vehicles, as discussed and presented in the "GUIDELINES" distributed íur each participant, is still in place.

other hand, the Department a f On the Transportation and Communications, iΛ with the Japan International collaboration Cooperation Agency (JICA) has introduced motor vehicle inspection system. mechanized the Land Transportation Office is wherein implementing government agency. At present, there are four (4) Motor Vehicles Inspection Stations (MVIS) operational in the country. (2) of these MVIS's are stationed in Metro Manila, one (1) in Region III (San Fernando, Pampanga), and one (1) in Region IV (Lipa City). The inspection line consists of a fully computerized and automatic inspection equipment such as wheel alignment, brake, headlight, speedometer, HC/CO diesel smoke testers. It is envisioned that with this system, traffic accidents caused by motor vehicle mechanical failure, pollution contributed by mobile sources and even carnapping would be reduced.

As regards to the exhaust emission test of the mechanized inspection system. Nondispersive infrared analyzer (NDIR) type tester is employed to measure the volumentric concentrations of CO

and HC emissions at Idling condition. The standards are as follows:

CO: up to 6%

HC: up to 1200 ppm for vehicles with a 4-stroke engine; 7800 ppm for vehicles with a 2-stroke engine; and 3300 ppm for vehicles with a rotary and specialized engine.

With respect to the exhaust emission from the exhaust pipes of diesei-fueled motor vehicles, the black soothe content shall not exceed 2.5 m-1 light absorption coefficient or 66% hartridge smoke limit or 48% in the Bosch type smoke meter. The diesel smoke is sampled while the accelerator is pressed and tested with diesel smoke tester.

The standard for diesel-fed vehicles under no load and fully accelerated conditions should not be more than 48%.

Under the present scenario, the mechanized system of inspection covers only in-use forhire motor vehicles such as jeepneys, buses, and taxis due to the limited number of Motor Vehicle Inspection Stations in the country.

1.0.2 Future Plans:

- i. 6.2a Expansion of mechanized inspection stations at the regional level and the planned accreditation of 3, 4, and 5 star car repair shops and gasoline stations to serve as an aiternate motor vehicle inspection stations, ultimately to cover all types and classes of motor vehicles.
- 1.0.2b Revision of P.D. 1181 by the Environmental Management Bureau is under process, in cooperation with the Department of Energy.

Department of Trade and Industry, National Science and Development Board, and Land Transportation Office, amending/modifying certain rules and regulations of the P.D., particularly on the allowable emissions of specific air pollutants from new and inuse motor vehicles.

- i.O.2c Formulation of motor vehicles parts' standards by the Bureau of Products Standards under the Department of Trade and Industry is underway, in coordination with the Land Transportation Office, car manufacturers/assemblers, and National Steel Corporation.
- 1.0.2d Adoption of Asian Development Bank's comprehensive package geared towards pollution control:

-a mandatory inspection/mainte nance program, requiring each
vehicle to pass an emission test
annually as a condition for
licensing. High mileage vehicles
will require testing at least
twice per year;

-tighter motorcycle standards to either phase out 2-cycle motorcycles or require them to achieve the same level as less polluting 4-cycle motorcycles;

-a program to reduce lead and sulfur content in fuels by 1995 at the latest;

-encouragement of owners of small diesel vehicles such as jeepneys and taxis to gradually convert to

gasoline engines through a package of measures including gradually tightened smoke standards, imposition of measures to equalize the prices of the two fuels, and economic incentives to purchase gasoline rather than the diesel engines; and

-application of modern emission controls to new gasoline and diesel vehicles.

1.2.0 ANALYSIS OF TRAFFIC CONDITIONS:

backgrounder, a the Department ωí Transportation and Communications through the Planning Service is incharged of the Nationwide Traffic Counting Program (NTCP) in 15 covering 59 seasonal stations, 115 control stations, and 1,222 coverage stations and 174 automatic traffic recorders (traffic recorders are located at seasonal and control stations) for a total of 1,396 counting stations.

All stations are located on national roads in such a way to allow observations, analysis and evaluation of traffic demand between regional and provincial capitals, highly populated cities/municipalities, important transport terminals and important political, social, economic, cultural, and administrative centers, or any combination of the centers.

As regards to Philippine traffic conditions, for purposes of reporting, it shall be limited only to Metro Manila's major thoroughfares. As per latest survey in 1991 (conducted by the Traffic Engineering Center), the average annual daily traffic (AADT) in all circumferential and radial roads of Metro Manila

is presented in Table I below. For specific name of street, please refer to "Annex I", page 9.

TABLE I. AVERAGE ANNUAL DAILY TRAFFIC (AADT)
METRO MANILA, 1991

			VEHICLE	COMPOSITION	·
	CAR	PUJ	BUS	TRUCK	TOTAL
C-1	31130	31203	343	431	63107
C-2	26772	4426	406	1586	33190
C-3	67289	18769	285	3397	69740
C-4	358269	3450	51532	12419	425670
R-1	144581	9179	7869	1761	163390
R-2	34716	33862	5738	414	74730
R-3	259309	22630	17823	10208	299762
R-4	54988	2828	626	898	59340
R-5	46482	22133	744	13806	83165
R-6	73389	34153	1267	791	109600
R-7	9788i	56867	759	1593	157100
R-6	30569	17567	2180	2364	52600
R-9	41613	20390	1034	1273	64310

Source: Traffic Engineering Center

It could be gleaned from the given table that among the vehicle compositions, the most number of traffic counts is accounted for cars (private and for-hire), followed by public utility jeepneys (FUI) and buses. The density of traffic occurs during peak hours in the morning, 6:00 to 10:00, and in the afternoon is from 4:00 to 9:00; hence, trucks are banned during this period.

1.3.0 POSSIBILITY OF, PRECONDITIONS FOR, AND MECHANICS OF IMPLEMENTATION OF THE RECOMMENDED NEW MOTOR VEHICLE EMISSION CONTROL PROCEDURES AND STANDARDS

An in-depth study and consideration on the recommended new new motor vehicle emission control and procedures shall be taken, since the Philippine government at present, is formulating standards for

motor vehicle parts, and revising P.D. 1181, providing for the prevention, control, and abatement of pollution from motor vehicles.

The "GUIDELINES" shall be distributed to the concerned authorities, the Environmental Management Bureau and the Bureau of Products in particular to serve as a substantial input in their current undertakings. It is hoped that the formulated control procedures and standards shall be implemented by the Department of Transportation and Communications, Land Transportation Office, if provided with the state of the art equipment and skilled manpower.

- 11.1.0 LIST OF RULES/REGULATIONS, ETC. WHICH ARE ENFORED IN THE PILIPPINES WITH REGARD TO VEHICLE TAXATIOM (KINDS OF TAXES, AMOUNTS, ETC.)
 - 1.0.1 Section 6 of Administrative Order No. 3 dated 24 September 1990, re: Rules and Regulations on New System of Registration Pursuant to Batas Pambansa Bilang 43 and 74 Amending Related Provision of Republic Act 4136, otherwise known as the Land Transportation and Traffic Code; and pursuant to the provisions of Sec. 2 of Executive Order No. 43 dated 22 August 1986, re: Restructuring the Motor Vehicle Tax, the owners of motor vehicles upon every annual registration pay a motor vehicle Tax in accordance with the attached schedule marked as "Annex 2", page 10.

In cases of new or initial registration, the collectible registration fee shall be in proportion to the quarterly portion of the year when the application for registration is made.

1.0.2 Motor vehicles which are exclusively used and operated on private roads regardless of type and/or denomination, shall be subject to an annual recording fee of ONE HUNDRED PESOS (P100.00) only, for which stickers in lieu of regular plates shall be issued corresponding to the year of recording. Such motor vehicle

shall not be required to be brought to the Land Tansportation Office (LTO), and neither shall the same be covered by computsory vehicle insurance as ordinarily required for registration purposes.

- 1.0.3 Delivery of motor vehicles from the assembly line to the dealers thereof, or to the Constabulary Highway Patrol Group for clearance, or those from one place to another place for one (1) day, two (2) or three (3) days, but not to exceed seven (7) days, shall be done through a conduction permits for which feen of TEN PESOS (Pl0.00) per day shall be collected by LTO.
- 1.0.4 A fee of FIFTY PESOS (F50.00) shall be collected for every anotation of mortgage, attachment and other encumbrances or cancellation thereof.
- 1.0.5 Motor vehicle sought to be placed under storage to LTO shall pay a fee of FIFTERN PESOS (P15.00) provided all the previous and outstanding collectible fees have been paid.
- 1.0.6 Science Tax contemplated under Republic Act No. 5448 shall be collected on MOPEDS and Motorcycles, provided that they shall not be imposed on "for hire" vehicles. Amount to be collected is as follows:

New - \$15.00
i yr. old - i3.50
2 - i2.00
3 - i0.50
4 - 9.00
5 - 7.50
6 and below - 4.00

1.0.7 Sec. 149. of the National Internal Revenue Code of the Philippines. There shall be levied, assessed and collected an ad valorem tax on automobiles based on the manufacturer's or importer's selling price net of excise and valued added tax, in accordance with the following schedule:

Engine Displacement (in cc):

Gasuline	Diesel	Tax Rate
1600 & below	1800 å below	15%
1601 - 2000	1801 - 2300	35%
2001 - 2700	2301 - 3000	50%
270i - above	3001 - above	100%

Provided, that in the case of imported automobiles not for sale, the tax imposed herein shall be based on the total value used by the Bureau of Customs in determining tariff and customs duties, including customs duty and all other charges, plus 10% of the total thereof. (As amended by Executive Order NO. 273).

Annotations

Automobiles are now subject to excise taxes; formerly, they were subject to sales taxes, advance sales tax or compensating tax. Now they are subject to ad valorem tax above based on manufacturer's or importer's selling price net of excise and value-added tax. the last part, below the rates, applies if automobiles are imported for one's own use (the counterpart of the compensating tax).

- 1.0.8 Value Added Tax collected from manufacturers of trucks, light, medium and heavy commercial vehicles. (10% of the seiling price).
- 1.0.9 Withholding Tax (2% of acquisition cost)collected on transfer of motor vehicles.

ANNEXES:

- Annex I Average Annual Daily Truffic
- Annex 2 Schedule of Motor Vehicle Registration Fee
- Annex 3 Philippine Vehicle Population, 1992

						יכו	ı									
į	707 A.L	0 0 0	74440	0	347 90	00.08	- 11 11B	0.10	001	01.	0.0	•		-		
_	THULK	: :	303.0	=	1848	:	- 215 - 4		*	71	123		٠.	ر		
SITION	2	***	14.5	*i	7 7	•	1 27	•	=	2	100	V	TRAFFI	<u>.</u>		••
COMPOSITION		****	. 25.61	**	344	***	7888	24.76			20100	AREA	MAP Y T	: :	-	•
r	870	=	11.11	7556	4122	•	=		 -	**	1	LA I	L o D o D o	_	••	
VEHICLE	R-2 TAFT AVENUE BET GIL PUTAT B SAN JOHNAT	FORT VITO CAUS	Section 1709	A VENT OF THE PERSON OF THE PE	ACACIA LAME PACT: O SACRIMO ALINOSA BLUCO FEE: ACACOMA	201 F004 B 201 F004 B 201 ABANGTA AVG & PASSTAN	4-7-80/25% 91/86-	A ANAMETA AVE 2 E SCHIA : BY A MODELLE S A MODELLE S	P-8: 4 BONIFACE AVE	A BIRAL AVENUE	CKTENSION	METRO MAN	AGE ANN	l661	· · · · · · · · · · · · · · · · · · ·	92
		BOULE	200.5			333		MEST	AVE	Transfer of the contract of th		•	AVER	Ave C	TRUCKS & BINES AND SANTOLAN ONLY	HAGTAHANY A MENDOZA, BETWEEN G TUASCA. LEGEND
39 11	ROXAS	BOULE		179		-	••0	67 60			=		20.		.	•
110	9 0.40	1014		000	33180		0.753		02.	13 2 80	0510	9:030	0140		2	
`		TAUCA	- :	¥ \$. 2	<u> </u> ;	- \$	22.20	, i		2	Ã	. 20	:		
	COMPOSITION	3		` <u> </u>		- 1	8	2	25.25			200		·		
	COMP	3		110	**	5327		60		N		·£	2304	,,,		
	VEHICL.E	CAB	13.500	1) 364	86773	248.8	2.2	7		36.		: 1	ž į	2242		
	VEI	HANE OF STHEET	THE MISSI AVE	# BIZAL AVENUE	INCT CSPANA	PULLSTONEN TO	A AURONA BIVO	INCTINUES VET	TATE STATES AND THE STATES	ANGUE AND	X.	E E E E A A A A A A A A A A A A A A A A	Outline Ave	PHE SUCE.		

MAGTAHAN A MENDUZA, BETWEEN G. TVAZCA LESEND B NAGTAHAN BR. CLOSED OUG TO CONSTRUCTION OF FLYOVER.

THE PARTY OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF

TTTTT DATA NOT AVAILABLE

REGISTRATION FEES

					1 101		
	BASIC	REGIS	TRATI	ON FEE '	PLATE	STICK	F LRF
CARS-PRIVATE	CURR, YR, to 3YRS	6 10	28Y 2	OVER 5 YRS			1
(LIGHT) 0-1600 cc	P 1,000.00	P 1, 0	700.00		P 43.90	P 3.00	P10.00
(HEDIUH) 1601 − 2800 cc	P 3,000.00	P 2,4	00.00	P1,200.00	P 43.90	P 3.00	P 10.00
(HEAYYI 2801 - A bove	₽ 6, 000.00	₱ 6, 0	00.00	P 2,500.00	P 43.00	P 3.00	P 10.60
CARS-FOR HIRE	GAS			DIESEL]]	
(LIGHT)- 0-1600 cc	* P 450.00		1	P 400.00	P 43,80	P 3.00	F 10.00
#EDIV#1: 160% 2800 cc	₱ 900.00			800.00	P 43.00	- 3.00	P 10.00
HOTORCYCLES	PRIYA	TE		FOR HIRE			j
50 cc - Above	WITH SIDE CAR	W/0 SI	DE CAR	P 240.00	P 6.00	₽ .50	P 10.00
. j.				in the second		<u> </u>	<u>. </u>
49 cc-Below		P 60	.00		P 8.00	P .50	₽10.0e
WILITY VEHICLES	-CURRENT YR. 1.	· -					
(UV-PRIVATE) 2700 GW-Below	*** 1,000.00)	P	900.00	P 43.00	P 3.00	P 10.00
2701-4500 GW	GAS 01E \$1,000.00 + \$1,0 1EXCESS GWx201EXCE		G Å S 7 9 0 0 . 0 0 IEXCESS G	+ + 900.00 ·	P 43.90	P 3.00	P 19.00
(UY-FOR HIRE)	GAS		·	DIESEL			
2100-Above	-7º 30.00 (PER 100 Kg≤. G	WI		7 15.00 R 100 Kg≤ GWI	P 43.00	P 3. 00	P 10,00
TRUCK	GAS			DIESEL			
(PRIVATE) 4501 - Above	GVW x .20	•		GYW x,12	P 43.00	P 3.00	P 10.99
TRUCK	GYS			DIESEL			
JFOR-HIRE) 4501 Above	GVW x.30		(3YW x.15	P 43.00	ዮ 3.00	P 10 00
	PRIVATE		F	OR HIRE			
TRAILER	P 10.00			12.00	P 21.50	r .S0	P 10.00
	1 PER 100 Kgs.	GWI	(PER	100 Kqs GW1]
<u> СОУЕЛИМЕНТ/</u>	P 3000		L.	MOTORCYCLES	P 8.00	F .50	P 10.00
SOVT, CURPORATION	I REGARDLESS O	F GROSS	WI1	OTHER MY	P 43.00	P 3.00	P 10.00

MOTE: COLLECT OTHER HISCELLANEOUS LIBANSPER OF OWNERSHIP, CHANGE OF ENGINE, etc.)
FINCS AND PEHALTIES IF THESE TRANSACTIONS ARE EFFECTED SIMULTANEOUSLY
WITH THE RENEWAL.

LRF -Lagal Research Fund

Number of Motor Vehicles in 1992

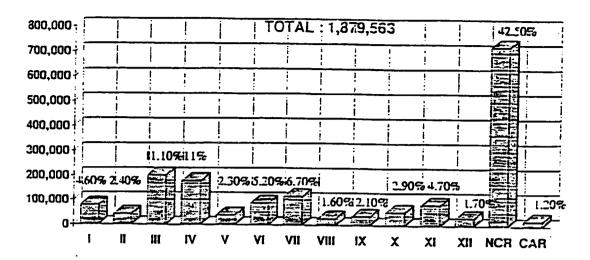


Chart I : Number of Motor-Vehicles Registered by Region

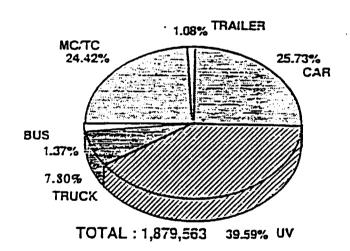


Chart II: Share of Motor Vehicles Registered by Type

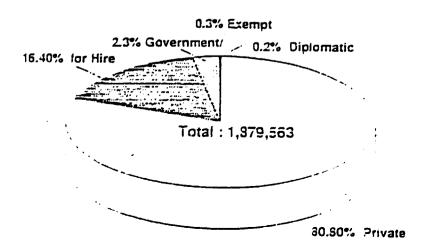


Chart III: Share of Motor Vehicles Registered by Denomination

Number of Motor Vehicles Registered, by Region, by Type of MV and Type of Fuel Used 1992

		CAR UV			TRUCKS BUSES					MC/TC			TRAIL-	GRAND	Share			
Region	Gas.	Die.	S.Total	Gos.	Dle.	S. Total	Gas.	Die.	S.Total	Gas.	Die.	S.Total	Gas.	Die.	S.Total	ERS	TOTAL	
1	8,733	80	8.013	12,530	16,761	29,291	81	5,679	5,760	296	2,068	2,364	39,440	372	39,012	601	86,644	4.6%
ļi .	3,248	76	3,324	5,236	9,119	14,355	105	6,470	6,575	26	984	1,010	18,450	0	18,458	771	44,493	2.4%
111	35,441	685	36,129	49,047	49,509	98,556	951	14,959	15,910	64	2,931	2,995	52,101	13	52,114	3,281	208,985	11.1%
ΙV	27,581	655	28,236	43,604	67,458	111,062	545	11,747	12,292	24	2,900	2,924	50,530	396	50,926	1,179	206,619	11.0%
٧	3,857	104	3,961	5,511	8,247	13,758	135	2,996	3,131	4	1,048	1,052	20,891	254	21,145	100	43,147	2.3%
VI	14,730	1.342	16,072	17,663	17,779	35,442	3,160	11,076	14,236	25	870	895	29,776	23	29,799	732	97,176	5.2%
VII	22,830	703	23,613	25,109	12,296	37,405	1,189	10,094	11,283	81	915	996	51,901	266	52,167	1,329	126,793	6.7%
VIII	1,626	36	1,662	5,072	4,323	8,395	281	2,577	2,858	7	573	500	14,536	90	14,626	192	29,313	1.6%
IX	2,155	8	2,163	7,620	4,216	11,836	234	2,650	2,884	14	567	581	22,305	0	22,305	122	39,891	2.1%
X	6,174	94	6,268	8,763	9,821	18,584	344	5,976	6,320	8	673	681	21,687	175	21,862	347	54,062	2.9%
XI	11,118	467	11,585	12,704	15,762	28,466	1,083	7,776	8,859	37	855	892	37,886	663	38,549	894	89,245	4.7%
XII	3,216	42	3,250	5,458	5,407	10,865	270	2,402	2,672	8	254	262	12,927	1,370	14,305	100	31,470	1.7%
HCR	311,674	21,539	333,213	157,240	155,948	313,180	5,132	47,030	52,162	513	9,693	10,206	79,850	529	00,307	10,590	799,754	42.5%
CAR	5,011	314	5,325	4,475	7,512	11,987	72	1,675	1,747	9	380	389	2,340	143	2,483	40	21,971	1.2%
TOTAL	457,397	26,225	403,622	360,032	384,150	744,190	13,502	133,107	146,689	1,116	24,711	25,027	154,636	4,302	450,938	20,297	1,879,563	100%
Share			25.73%			39.59%			7.80%		• • •	1,37%		• • •	24.42%	1.08%	100%	
G : D	94 6%	5.4%	100%	48.4%	51.6%	100%	9.3%	90.7%	100%	4.3%	95.7%	100%	99.1%	0.9%	100%		•••	}

į	'91 Total	436,775	19,831	456,606	338,177	332,671	670,848	15,692	122,446	138,130	885	19,805	20,690	405,753	4,374	410,127	18,957	1,715,360
	'91/'92	104 7%	132 2%	105 9%	106.5%	115.5%	110.9%	86.6%	108.7%	106.2%	126.1%	124.8%	124.8%	112.0%	98.4%	111.9%	107.1%	109.57%

CAR: Cordillera Autonomous Region S.Total: Sub Total

HCR : Hallonal Capital Region

Gas. : Gasoline

Die. : Diesele

VEHICULAR EXHAUST EMISSION STANDARDS AND CERTIFICATION SYSTEMS IN SINGAPORE

PRESENTATION AT EXPERT GROUP MEETING ON TYPE APPROVAL PROCEDURES FOR NEW VEHICLES

JAKARTA, INDONESIA

8 - 10 JUNE 1993

VEHICULAR EXHAUST EMISSION STANDARDS AND CERTIFICATION SYSTEM IN SINGAPORE

INTRODUCTION

- 1.1 Singapore consists of the main island of Singapore and some 58 islets within its territorial waters. It is approximately 140 kilometres north of the equator. The total land area is 639 square kilometres.
- 1.2 It has a uniformly high daily average temperature and relative humidity, but moderated by the influence of the sea. The average daily temperature ranges from 23°C to 31°C. The average daily relative humidity is 84.5%. Rain falls throughout the year, but tends to be heaviest in November, December and January.
- It became independent on 9 August 1965 and has a population of about 2.8 million, who are largely descendants of immigrants from the Malay Peninsula, China, the Indian subcontinent and Sri Lanka. About 78% of the population are Chinese, 14% are Malays and 7% are Indians. The different ethnic groups have gradually acquired a distinct identity as Singaporeans while retaining their traditional cultures, customs and festivals.
- 1.4 The standard of living in Singapore is high.

 Its per capita Gross National Product had grown rapidly from S\$8,343 in 1980 to S\$20,031 in 1991.

VEHICULAR EXHAUST EMISSION STANDARDS

- 2. Singaporeans have a relatively wide range of choice of maker and models of vehicles for their transport needs. There are no import restriction and the vehicles in Singapore are mainly imported from Europe and Japan. However, all vehicles must be registered with the Registry of Vehicles (ROV) before they can be used on the roads. For this purpose, they must comply with certain rules and regulations and meet technical requirements which are set out and administered by the ROV.
- 3. The main purpose of these rules and regulations is to ensure that all vehicles are built to acceptable international standards and are safe for use on the roads. This will indirectly assist our efforts to keep our roads as free flowing as possible (as roadworthy vehicles are less likely to breakdown) and will ensure that the vehicles will not damage the roads or overstress the bridges. Our focus is on public safety and well being and we are also particularly interested in the need for more stringent noise and exhaust emission standards to better protect public health and the environment.
- 4. Environmental issues relating to vehicular emissions are important as they affect our health. In Singapore, efforts have been made to maintain the good air quality. The Ministry of the Environment (ENV) sets vehicle emission standards for all vehicles, including diesel and petrol driven

vehicles while ROV assists ENV in implementing them. These standards are incorporated into the Road Traffic (Motor Vehicles, Construction and Use) Rules.

Petrol-driven vehicles

- 5. Singapore's first legislation on emission limit was introduced on 1 Oct 84. From that date, all petrol-driven vehicles except motorcycles and scooters are required to comply with the UN/ECE R15.03. This legislation ensured that the emissions from petrol-driven vehicles on the road are within acceptable standards. The UN/ECE R15.03 was replaced by the more stringent emission standard, UN/ECE Regulation 15.04, on 1 Oct 86 in Singapore.
- 6. With the introduction of unleaded petrol in Singapore since early 1991, we have, with effect from 1 Jul 1991, required all petrol-driven vehicles, including motorcycles and scooters, to be able to use unleaded petrol before they can be registered for use in Singapore. The present maximum allowable level of lead content in petrol available in Singapore are as follows:

Type of petrol	Max. lead content
Leaded petrol	0.15 g/l=
Unleaded petrol	0.013 g/l.

- vehicles (excluding motorcycles and scooters) must comply with the exhaust emission standards in accordance with the UN/ECE Regulation 83 or the Japan Safety Regulations for Road Vehicles, Article 31 before they can be registered for use in Singapore. Smaller fuel tank opening of not more than 21.3mm in diameter is also required for vehicles registered on or after this date. This is to ensure that only unleaded fuel is used.
- 8. A more stringent revised version of the ECE 83 standard known as the Consolidated Emissions Directive (CED) or EC Directive 91/441/EEC is currently being adopted in the European Community (EC) countries. We have also announced plans to replace the ECE 83 standard with the Directive 91/441/EEC with effect from 1 Jul 94.
- 9. The following table summarises the exhaust emission requirements and test methods used for petrol-driven vehicles in Singapore, excluding motorcycles and scooters.

Effective d	<u>late</u>	<u>Test</u>	me	the	<u>od</u>	
1.10.1984		ECE	15.	. 03		
1.10.1986		ECE	15	. 04		
1.7.1992		~a ·∽ECE	83	or	Japan	78

The emission limits of the current emission standards for petrol driven vehicles are detailed in the Appendix.

Motorcycles and scooters

10. With effect from 1 Oct 1991, all motorcycles and scooters to be registered in Singapore must comply with the USEPA 40 CFR Section 86.410-80 emission standard.

Diesel-driven vehicles

11. With effect from 1 Jan 1991, all diesel-driven vehicles to be registered in Singapore must comply with the UN/ECE Regulation 24.03. In addition, the vehicles must also pass the smoke density of 50 Hartridge Smoke Units (HSU) tested at free acceleration.

CERTIFICATION SYSTEM

meet the technical and registration requirements set by the Registry of Vehicles (ROV). In the case of exhaust emission, the ROV in consultation with the Ministry of the Environment, requires every unit of used vehicles imported by a self-importer to be tested by an approved test laboratory or the appropriate vehicle manufacturer, which must certify that the exhaust emission requirements are complied with. In the case of a new vehicle, one unit of the production batch must be tested to comply with the requirement. This is embodied in the type approval procedure which is an international practice.

For local agents

- It is an international practice that the vehicle 13. certification authority of a country demands type approval of a vehicle model before a vehicle can be offered for sale. There are a whole lot of safety and environmental standards to comply with, for example, braking systems, exhaust emissions, noise levels, impact protection and so on. approval inspection is only available for local vehicle manufacturers or exclusive agents in the country for the vehicle manufacturers abroad. Type approval is a way of making sure that vehicles are safe for use on the road and do not pollute the environment, without having to inspect and test every single one. Under the type approval system, a prototype vehicle is tested. If it passes the tests and the production arrangements also pass inspection, then vehicles of the same type are approved for production and sale, without further testing.
- Although Singapore is not a vehicle manufacturing country, it has been our practice that for vehicles imported by local agents, we would accept certificate of compliance with the emission standard issued by the manufacturer or reputable test laboratories. The ROV does not conduct mechanical inspection of the prototype vehicles. For new vehicles, the first unit of a vehicle model imported into Singapore must be physically tested to comply with the exhaust emission standard. The local agent must submit the necessary document and produce the test vehicle for a mechanical

inspection at the ROV. If the documents are in order and the test vehicle passes the inspection, the ROV issues a letter of approval to the agent. The vehicle can then be offered for sale and be registered for use on the roads. Subsequent units of the similar model are allowed to be registered without emission tests and mechanical inspection on each unit.

For self-importer

- 15. The ROV requires every second-hand or used vehicle for registration in Singapore to be tested <u>individually</u>. We do not accept certification for prototype.
- 16. The reason why we do not accept the manufacturer's certificate for a used vehicle is that it merely certifies that the vehicle meets the emission standards at the <u>time of production</u>. The conditions of the vehicle would deteriorate over time and, due to wear and tear, may not meet the standards any more at the time of importation into Singapore. Hence, we have to require that a vehicle to be tested by an approved emission laboratory before it can be allowed for registration.
- 17. For new vehicles, we require that every vehicle

 -imported by any self-importer be tested individually for
 compliance with the exhaust emission standard unless the
 importer can produce documentary proof from the manufacturer
 that all the vehicles imported come from the same production
 batch. If there is documentary proof from the manufacturer,

the importer would only be required to send one unit from the batch of the vehicles for the exhaust emission test.

CONCLUSION

- 18. The automobile industry has an increasing responsibility to the community and the environment. It faces the challenges to adapt and co-exist with the environment. Much of what control does is to direct industry to meet acceptable standards.
- 19. Pollution prevention is better than pollution control. In trying to find a possible panacea to environmental problems, we need to recognise that industry, consumers and government must all cooperate in a united effort to find a fundamental solution. We should never stop and wait.
- Vehicular standards must be constantly reviewed and upgraded to meet changing circumstances and to keep abreast with advances in vehicle manufacturing technologies. We will continue our search for better vehicle standards for Singapore.

dks/ws93/nykindo

EMISSION LIMITS FOR PETROL DRIVEN VEHICLES

(1) ECE 15.04 emission limit

In the ECE 15.04, the specified maximum emission rates for carbon monoxide and hydrocarbons depend on the weight of the vehicle.

Type of vehicles	CO (g/test)	HC+NOx (g/test)	•
RW <= 1020 kg	58	19.0	
1020 <rw<=1250 kg<="" td=""><td>67</td><td>20.5</td><td></td></rw<=1250>	67	20.5	
1250 <rw<=1470 kg<="" td=""><td>76</td><td>22.0</td><td></td></rw<=1470>	76	22.0	
1470 <rw<=1700 kg<="" td=""><td>84</td><td>23.5</td><td></td></rw<=1700>	84	23.5	
1700 <rw<=1930 kg<="" td=""><td>93</td><td>25.0</td><td></td></rw<=1930>	93	25.0	
1930 <rw<=2150 kg<="" td=""><td>101</td><td>26.5</td><td></td></rw<=2150>	101	26.5	
RW>2150 kg	110	28.0	

^{*} RW = Reference weight

(2) ECE 83 emission limit for unleaded petrol

In the ECE 83, lower limits were set, related to the engine capacity rather than the weight of the vehicle.

Type of vehicles	CO (g/test)	HC+NOx (g/test)	NOx (g/test)
C>2000	25	6.5	3.5
1400<=C<=2000	30	8.0	-
C<1400	45	15.0	6.0

^{*} C = Engine capacity (cc)

(3) US "EPA cycle" emission limit

The ECE 83 allowed manufacturers the alternative of certification according to the US "EPA" cycles for engine capacity =>1400 cc and fuelled with unleaded petrol.

Type of vehicles	(g/km)	HC (g/km)	NOx (g/km)
Passenger cars	2.11	0.25	0.62

The limit values are deemed to be met if they are not exceeded by the results of tests when masses of each pollutant are multiplied by the appropriate deterioration factor.

Emission Control	Deteri	oration	factor
System	со	нс	NOx
Oxidizing Catalytic Converter	1.2	1.3	1.0
Without Catalytic Converter	1.2	1.3	1.0
Three-way Catalytic Converter	1.2	1.3	1.1

(4) Japan Safety Regulations for Road Vehicles

The Japanese Safety Regulations for Road Vehicles (Article 31) employs three different mode of operation.

The drive cycles require the vehicles to perform relatively simple acceleration and ...deceleration patterns which are repeated. The pollutant limits are as follows:-

(a) 10-mode six cycles for hot start test;

Type of vehicles	(g/km)	HC (g/km)	NOx (g/km)
GVW<=1.7t or pax<=10 1.7t <gvw<2.5t< td=""><td>2.7</td><td>0.39</td><td>0.48 0.98</td></gvw<2.5t<>	2.7	0.39	0.48 0.98

(b) 11-mode four cycles for cold start test

Type of vehicles	CO	HC	NOx
	(g/test)	(g/test)	(g/test)
GVW<=1.7t or pax<=10	85.0	9.5	6.0
1.7t <gvw<2.5t< td=""><td>130.0</td><td>17.0</td><td>8.5</td></gvw<2.5t<>	130.0	17.0	8.5

(c) 6-mode operation

Ty 3 of vehicles	(ppm)	HC (ppm)	NOx (ppm)
GVW>=2.5t or pax>10	1.6	520	850

(5) US EPA 40CFR Section 86.410-80 emission limit (For Motorcycles and Scooters only)

The emission limit shall not exceed:

- (a) Hydrocarbons: 5.0 grams per vehicle kilometre;
- (b) Carbon monoxide: 12 grams per vehicle kilometre.

dsk/ws93/nykindo

TABLE 1 MOTOR VEHICLE POPULATION 1983 - 1992

										•
ITEM	tand	1984	1985	1986	1987	1988	1989	deel	leel	1992
CARS										
f) Private cars & station wagons	182,120	195,873	200,032	200.163	201,651	215,928	234,438	247,808	261,050	268,435
ii) Company care & station wagons	16,992	18,248	18,105	17,558	17,868	18,959	20,010	20,361	19,679	14,451
ii) Tuition care & station wagons	1,090	1,085	1,104	910	856	957	954	963	904	847
My Private hire care & station wagons	4,168	4,159	4,030	3,314	3,081	3,140	3,135	3,343	~ 3,665	3,879
Sub-Total	204 370	219,365	223 271	221,945	223.458	238,934	258 537	-272 475	285 298	287.612
MOTORCYCLES										
n Motorcycles and scooters	140,267	133,492	126,337	119,241	115,476	116,476	119,897	121,338	121,164	115,339
Sub-Total .	140.267	.133,492	128.337	119.241	115.478	116.476	119.897	121,338	121,164	115 339
BUSES										
i) Omnibuses	3,287	3,354	3,597	3,530	3,482	3,410	3,304	3.220	3,145	3,211
II) School buses	2,733	2,645	2,673	2,427	2,345	2,207	2,047	2,011	1,959	1,922
III) Private buses	866	1,062	1,232	1,271	1,354	1,475	1,615	1,796	1.916	1,985
M Private hire buses	616	687	779	862	944	1,039	1,174	1,208	1,234	, 1,259
v) Excursion buses	338	356	356	383	458	657	855	₹,063	1,088	1,127
Sub-Total	7 840 €	8.104	8 537	. 8 473	8 583	8 768	8 995	7,298	9 342	9 50 1
TAXIS								į		
1) Public teds	10,668	11,058	10,938	10,677	10,552	10,473	10,652	14,239	12,705	13,445
ii) School taxls	5	4	3	0	0	0	0	1 0	0	,
Sub-Total	10 673	11.062	10 941	10.677	10,552	10 473	10.652	12 239	12705	13 445
GOODS AND OTHER VEHICLES								i		
Goods-cum-passenger vehicles	8.757	8,959	8,781	8,634	8,562	8,525	8.468	8,344	8,202	7,780
l) Ught Goods Vehicles	59,206	59.940	57,915	55,442	54,211	53,933	53,825	53,065	52,272	50,959
ll Heavy Goods Vehicles	33,196	38,436	39,296	38,241	38,756	43,183	48,491	52,941	56,573	59,410
M) Others	4,061	4,042	3,711	3,445	3,519	2.940	2.989	3,294	3,755	3,860
Sub~Total	105 224	111 377 :	100 705	105 762	105 048	108 581	113 773	117.644	120 602	122 033
TAX EXEMPTED VEHICLES										
Care and station wagons	1,890	1,913	2,038	1.935	2,112	1,957	1,969	2.042	2,113	1,767
ii) Motorcycles and scooters	1,302	1,201	1.227	1,146	1,068	1,094	1.099	1,187	1,246	1,193
i) Buses	164	179	180	165	150	136	131	150	136	154
M Goods Vehicles	1,370	1,296	1,152	1,112	1,114	1,202	1,156	1,166	1,162	V 1,186
Al) Others	3,188	3,333	3,372	3,203	3,565	4,117	4,328	4,793	5,336	5,375
Sub-Total	7.914	7.922	7.989	7.561	8.009	B 506	8.683	9.358	9.993	" 9675
ALL MOTOR VEHICLES (TOTAL)	476,288	491,322	486,760	473.659	471,124	491,808	520,537	542,352	559,304	957,584
7:14 H 0 2 0 2 0 1/2 2 1 1 0 H 22 2 H 0 2 2 2 1 0 1 1 1 1 1 1 1 1										

TABLE 2 MOTOR VEHICLE ANNUAL GROWTH RATE 1983 - 1992

Type of Vehicles	*•	1983 .	1984	1985	1986	1987	198	1989	beel	1991	1992
Care		12.1%	7.3%	1.8%	-0.6%	0.7%	6.9%	8.2%	5.4%	4.7%	0.8%
Motorcycles		3.6%	~4.8%	-5.4%	-5.6%	-3.2%	0.9%	2.9%	1.2%	-0.1%	-4.8%
Busos		5.4%	3.4%	5.3%	-0.7%	1.3%	2.4%	2.4%	3.4%	0.5%	1.7% أ
Texis		3.8%	3.6%	-1.1%	-2.4%	-1.2%	-0.7%	1.7%	14.9%	3.6%	5.8%
Goode & Other Vehicles		8.5%	5.8%	-1.5%	-3.6%	-0.7%	3.4%	4.8%	3.4%	2.7%	1.0%
Tax Exempted Vehicles		-0.6%	0.1%	0.6%	-5.1%	5.9%	6.2%	2.1%	7.8%	6.8%	-3.2%
All Motor Vehicles (Total)		8.2%	3.2%	~ 0.9%	-2.7%	-0.5%	4.4%	5.8%	4.2%	3.1%	-0.3%

TABLE 3 MOTOR VEHICLES BY TYPE OF FUEL USED 1983 - 1992

Year	. Cars Petrol Diesel	Buses Petrol Diesel	Coods & Other Vehicles Petrol Diesel
1983	204,385 5	671 7,169	67,260 37,964
1984	219,362 3	819 7,285	70,117 41,260
1965	223,269 2	948 7,589	68,552 41,153
1986	221,943 2	996 7,477	66,222 39,540
1987	223,454 2	1,060 7,523 .	65,447 39,601
1986	238,980 4	1,159 7,629	66,346 42,235 _[
1989	258,535 2	1,252 7,743	67,549 46,224
1990	272,474 1	1,350 7,948	67,872 49,772
1991	285,294 4	1,398 7,944	67,952 52,850
1992	287,608 4	1,419 8,065	66,440 55,569

Note : Exclude motorcycles, taxls and tax exempted vehicles.

TABLE 8 REGISTRATION OF NEW AND USED MOTOR VEHICLES 1983 - 1992

Types of Vehicles		1983	1984	1985	1986	1987	1988	1989	beet	1991	1992
Normal Cars	New Used	30,211 931	22,245 169	14,021 47	8,142 63	12,676 55 ·	26,445 38	35,402 214	31,872 241	26,823 591	26,581 902
	Total	31,142	22,414	14,068	8,205	12,731	26,483	35,616	32,113	27,414	27,483
Weekend Cars	New Used	1								1, 869 20	2,956 27
	Total						•			1,889	2,983
Motorcycles & Scoolers	New Used	17,198 234	13,352 192	6,392 74	4,842 78	5,834 357	6,352 1,623	5,965 4,079	4,111 3,960	4,312 3,847	6,420 33
	- Total	17,432	13,544	8,466 .	4,920	6,191	7,975	10,044	8,071	8,159	6,513
Buses	New Used	701 35 1	391 221	767 177	336 155	473 114	625 147	755 155	904 101,	854 97	€87 34
	Iotal	1,052	- 612	944	491	587	772	910	1,0051	951	921
Goods & Other Vehicles	New Used	10,606 1,315	10,102 1,394	6,117 257	3,252 78	3,730 206	6,889 344	8,046 573	7,081 574	6,666 802	7,462 18
	Total	11,921	11,496	6,374	3,330	3,936	7,233	8,621	7,655	7,468	7,430

Note: Exclude taxis and exempted vehicles

EXPERT GROUP MEETING ON TYPE APPROVAL PROCEDURES FOR NEW VEHICLES

8th to 10th June 1993

COUNTRY PAPER

PREPARED BY

D. D. J. WIJESUNDARA COMMISSIONER OF MOTOR TRAFFIC SRI LANKA.

T. L. PEIRIS
ASST. COMMISSIONER OF MOTOR TRAFFIC SRI LANKA.

Emission Standards for new Vehicles

Presently Sri Lanka does not have any vehicle emission standards or eminent air quality standards. Air pollution in Sri Lanka is much lower than that of the other countries of the region. If fact it is in the urban areas of Sri Lanka like the city of Colombo that the air pollution is greater than in the suburbs. Hence city dwellers in the urban areas of the country would be exposed to unhealthy and dangerous levels of automotive air pollution from petrol and diesel vehicles before the end of the century at the present rate of vehicle imports unless preventive measures are taken to curb air pollution.

After the import liberalization policy the vehicle population in the country has increased three-fold during the past decade from 300,000 to 1 million. Of these nearly 50 per cent comprise motor cycles, 20 per cent motor cars, 5 per cent buses. 10 per cent agricultural land vehicles and the rest cover motor lorries and dual purpose vehicles. Accordingly, there has been a rapid growth in the import of motor cycles the most popular of which are those having an engine capacity between 50 and 100 CC, the two-stroke and four-stroke types.

All vehicle registrations are done in the Department of Motor Traffic, Colombo. Most of the vehicles running on the highways are re-conditioned ones. Nearly 30 per cent are brand new vehicles and operated at maximum efficiently. Ordinarily the re-conditioned motor cars imported into the country are less than 3 years old. In 1990 the number of vehicles using gasoline and diesel was as much as 88 per cent and 12 per cent respectively.

Super, regular petrol and auto-diesel are the types of fuel available in Sri Lanka. Grude Oil is imported from the Middle East and refined locally at the Sapugaskanda Refinery. The Sulphur content in refined petrol and diesel is maintained at below 0.1 per cent. Tetraethyl lead is added on to petro: to acrease the octane value of fuel. Super and regular petrol have an octane count of 30 and 30 respectively. As Sri Lanka does not manufacture any type of motor vehicles, all vehicles are imported into one occane.

There has meen a growing awareness among the people of Sri Lanka with regard to air-pollution. The venicular emission control campaign is promoted by the Metropolitan environmental Improvement Programme in collaboration with -

Ministry of Transport and Highways
Police Department
Department of Motor Traffic
Ministry of Environmental and Parliamentary Affairs
Central Environmental Authority and
Ceylon Petroleum Corporation

with regard to the motor vehicle emission control, the situation varies from country to country. Where air pollution is concerned up-grading of new vehicles for emission control is considered necessary in the region as a whole. Our country is presently. going ahead with a programme to introduce new regulations and emission standards for all motor vehicles both gasoline and diesel operated and motor cycles as well. Discussions are already being conducted to determine ways and means of introducing standards for emission control. It has been accepted that pollutants like carbon monoxide (C.O), hydro-carbon (H.C.) Oxide of Nitrogen (N.O.) particulate emission (F.M.). smoke emissions), crankcase emissions and fuel system (evaporative emissions) should be controlled. In the case of diesel vehicles, the particulate and smoke have to be controlled. For this purpose the Government of Sri Lanka is going ahead with a programme of introducing smoke meters. This control procedure will have to be implemented in all new vehicles that will be manufactured. As Sri Lanka does not manufacture motor vehicles the countries which manufacture vehicles in the region should lay down common rules to a group of countries with regard to vehicle certificatation or type approvals. Vehicles manufactured by all such countries should have similar emission characteristics. It may also be necessary to have a certificate of conformity on type approvals for new vehicles, before putting up for sale. It may be mentioned that there are differences between the European. Japanese and American type approvals. These type approvals should comprise emission documentation including certificate of compliance of vehicle type, description of vehicle and engine, emission test report. diagrams of emission control system, exhaust system, and additional anti-pollution devices. There are different standards in India, Philippines and certain other countries.

Sri Lankan roads, such as those in the city of Colembo and major cities like Kandy. Galle are always congested with traffic. The fuel used in gaspline vehicles is leaded petrol. Vehicles imported to Sri Lanka (new or used) are not equipped with catalytic converters. Air pollution has a significant impact on health causing respiratory diseases. In order to control this state of emission from gaspline vehicles, catalytic converters could be ordered when new or used vehicles are imported. For this purpose it is necessary that the fuel supplied should also be non-leaded.

Discussions have been conducted regarding a programme of Clean Air 2000 - Action Plan. It may be mentioned that the Sri Lanka refineries would be in a position to supply non-leaded petrol by 1995 if the necessary funds are made available to do so. Similarly the Garages which are authorized to inspect vehicles for the issue of annual Fitness Certificates should have appropriate equipment to check engines for emission level.

Availability of smokemeters in these garages should be a requirement to test emission level both in petrol and diesel vehicles.

In the city of Colombo traffic planning is controlled by the Ministry of Transport & Highways, Urban Development Authority and the Colombo Municipal Council. Road transport in Sri Lanka is estimated to be nearly 8 - percent of the mode of transportation. Presently the network of the roads in most of the major cities is old and therefore unable to accommodate the traffic volume or the weight of vehicles. The roads are also not maintained regularly and properly due to various reasons. This is a main cause of road accidents, and air pollution. Fortunately some of the trunk roads have been re-constructed, widened and reinforced for heavy traffic and smooth flow. Because of the present road congestion and too many vehicles running on the same roads, vehicles have to be stopped many times on the journey thereby causing air pollution by vehicle emission.

The Department of Motor Traffic in collaboration with the Police Department has initiated a programme of road checks at random to prohibit the use of unroadworthy vehicles and to cancel their registrations. The Department is also taking stricter measures by these means to curb the use of unroadworthy belching vehicles on roads as the vehicle population is expected to double itself within the next 10 to 15 years.

It is considered necessary to eliminate the use of two-stroke motor cycles from highways and permit four-stroke ones whose air pollution is said to be less. In the present circumstances it is considered essential to stop the import of vehicles used for more than 3 years as an action plan to maintain clean air by the year 2000. At present this limitation is effective only for motor cars. The Department of Motor Traffic has already taken action to discourage the increasing conversions from petrol to diesel engines by way of increasing the conversion fee from Rs.50/ to Rs.35,000/.

The Police Department on the other hand imposes heavy penalties on unauthorised conversions of motor vehicles from petrol to diesel, and on owners of excessive belching vehicles.

Action is being taken by the Department of Motor Traffic to establish a fully automatic Vehicle testing Centre in the vicinity of Colombo initially and to have such Centres in all major cities subsequently for the purpose of inspecting vehicles properly for the issue of annual Fitness Certificates, which is presently done by authorized Garages, once this Testing Centre is established there is a possibility of testing all vehicles for fuel emission. According to present regulations a vehicle should be free of grit and smoke. Stricter regulations should be laid down after the installation of the Testing Centre.

SUCCESTED AMENDMENTS TO THE MOTOR TRAFFIC ACT.

It is suggested that the amendments to the Motor Traffic Act should include the following in order to mitigate the pollution caused by vehicle exhaust fumes.

1. STANDARDS FOR EXHAUST EMISSIONS FOR EXISTING DIESEL DRIVEN VEHICLES.

Exhaust emissions from all diesel driven motor vehicles should conform to specified standards. These standards could be made by regulation/by order, etc. under the Motor Traffic Act.

The standards may be made effective from a specified date or upon publication.

2. STANDARDS FOR EXHAUST EMISSIONS FOR EXISTING PETROL DRIVEN VEHICLES.

Exhaust emissions from all petrol driven motor vehicles should conform to specific standards. These standards could be made by regulation/by order, etc. under the Motor Traffic Act.
The standards may be made effective from a specified date or upon publication.

3. STANDARDS FOR EXHAUST EMISSIONS FOR EXISTING MOTOR CYCLES SCOOTERS AND THREE-WHEELERS.

Exhaust emissions from every motor cycle, scooter or three-wheeler should conform to specific standards. These standards could be made by regulation/by order, etc. under the Motor Traffic Act.

The standards may be made effective from a specified date or upon publication.

4. FINES FOR NON-COMPLIANCE WITH EXHAUST EMISSION STANDARDS.

The appropriate authority/Department of Motor Traffic, Traffic Police/Central Environmental Authority should be empowered to specify and impose fines for non-compliance with the standards for exhaust emissions by motor vehicles as indicated under 1, 2, and 3 above.

- 5. STANDARDS FOR EXHAUST EMISSION FOR PETROL DRIVEN VEHICLES TO BE REGISTERED FOR THE FIRST TIME IN SRI LANKA.
 - a) All petrol driven motor vehicles to be registered for the first time in Sri Lanka should be made to comply with relevant standards for exhaust emissions specified under the Motor Traffic Act.

 The standards could be made by regulation/by order, etc. and may be made effective from a specified date or upon publication.

; .

- 5. b) Applications for registration of petrol driven vehicles should be approved only after the Department of Motor Traffic has been satisfied that the petrol driven motor vehicle has been tested for compliance with the specified standards. A certificate issued by the Manufacturer of the vehicle or by a registered Garage in Sri Lanks should be made acceptable for this purpose.
- 6. STANDARIS FOR EXHAUST EMISSION FOR DIESEL DRIVEN MOTOR WEHICLES TO HE REGISTERED FOR THE FIRST IN SHI LANKA.
 - a) All diesel driven mofor vehicles to be registered for the first time in Sri Lanks should be made to comply with relevant standards for exhaust emissions specified under the Motor Traffic Act.

 The standards could be made by regulation/by order, etc. and may be made effective from a specified date or upon publication.
 - b) Applications for registration of diesel driven vehicles should be approved only after the Department of Motor Traffic has been satisfied that the diesel driven motor vehicle has been tested for compliance with the specified standards.

 A certificate issued by the Manufacturer of the vehicle or by a registered Garage in Sri Lanka should be made acceptable for this purpose.
- 7. STANDARDS FOR EXHAUST EMISSION FOR MOTOR CICLES AND SCHOOLERS TO BE REGISTERED FOR THE PIRST TIME IN SRI LANKA.
 - a) All motor cycles, scooters and three-wheelers to be registered for the first time in Sri Lanka should be made to comply with relevant standards for exhaust emissions specified under the Motor Traffic Act.

 The standards could be made by regulation/by order, etc. and may be made effective from a specified date or upon publication.
 - b) Applications for registration of all motor cycles, scooters and three-wheelers should be approved only after the Department of Motor Traffic has been satisfied that the petrol driven motor vehicle has tested for compliance with the specified standards.

 A certificate issued by the Manufacturer of the vehicle or by a registered Garage in Sri Lanka should be made acceptable for this purpose.

8. UNLEADED PETROL.

a) All petrol driven motor vehicles to be registered for the first time in Sri Lanka should be capable of running on unleaded petrol with effect from a specified date.

HEGULATIONS

Since smoke-meters for the measurement of smoke emissions from diesel vehicles are already in the process of being purchased we may also Gazette the Regulations under the Motor Traffic Act for this purpose. A draft is given below:

HEGULATIONS UNDER THE MOTOR TRAFFIC ACT FOR SMOKE EMISSIONS FROM DURSEL VEHICLES.

- 1. Any officer not below the rank of Sub-Inspector of Police, who has reason to believe that a vehicle is emitting excessive or other pollutants which are likely to cause environmental pollution, endangering the health or safety of any other user of the road or the public, may direct the driver of any other person in charge of the vehicle, to submit the vehicle for undergoing a test to measure the standard of black smoke or the standard of any of the other pollutants specified by these regulations.
- 2. The moke level measurements from diesel vehicles shall be carried out by a * by means of a smoke meter approved for that purpose by the Department of Motor Traffic and the Central Environmental Authority.
- j. The driver or any person in charge of the vehicle shall upon demand by any officer referred to in (1) above, submit the vehicle for testing for the purpose of measuring the standard of smoke or the levels of other pollutants or both.
- 4. Smoke density for all diesel driven vehicles shall be as follows:

Method of Test	Maximum Smoke Density Hardridge Unit
Running with free acceleration method from idle speed to 60 per cent of the maximum rotating speed.	60

* To be specified in consultation with the Commissioner of Motor Traffic and Director/Traffic, Police Headquarters,

CONTROL OF EMISSION FROM NEW VEHICLES JAKARTA, JUNE 8 - 10, 1993 COUNTRY PAPER I N D I A

CONTROL OF EMISSION FROM NEW VEHICLES

JAKARTA, JUNE 8 - 10, 1993

COUNTRY PAPER

INDIA

N. Bagchi
Director, Ministry of Environment
Government of India
New Delhi

The growth of vehicles in the metropolitan cities in India is at 13 percent. The rate of growth is at about 3 percent.

This has caused an increase in the problem of air pollution.

While emissions from industries are is being effectively controlled through compliance of the prescribed standards and permit for location of new industries, the large number of vehicles being registered each day is causing a deterioration of air quality. Vehicles contributed 100 tons per day in 1973 in the city of New Delhi, this has gone up to 500 Tons per day of pullutionts in 1993 and is about 70 per cent of the total emissions. The situation is similar in other cities.

There is a network in the country of nearly 350 ambient air quality station which monitor suspended particulate matter, oxides of nitrogen and sulphur dioxide. The data shows that air quality is mostly within the prescribed standards. There are excursions in particulate levels from natural dust and addrese meteorological conditions.

The standards for new vehicle at present are as per ECE: 15-04. The standards notified for 1995 and indicative standard for 2000 are given in the Annexure. The driving cycle is based on actual data collected in 1987. This cycle is more demanding than the ECE cycle and is based on Indian cities, owning to their peculier mix.

The Government has initiated epidemeological studies in 18 critically polluted areas. This would show the effect of air pollution on the health of the people. The data would be used in setting standards for the future.

The pattern of fuel consumption shows that diesel is three times that of petrol. Within the SI engines, the two and three wheelers use 65 percent of the petrol. The price of petrol is more than twice that of diesel.

The analysis of the air quality data indicates that hydrocarbons and particulates are the major problem. The technical pathway for the future, demands strict control for two and three wheelers and public transport.

Compressed Natural Gas for public vehicles is proposed for the future.

Trials for substitution with CNG have already been taken up.

The standards notified on the basis of the technical pathway that has been adopted is awaiting public comments.

The use of CNG and lean - burn technology are the options that are being seriously considered.

Government has approved four laboratories to test vehicles for 'type approval and conformily of production.

New vehicles, at present, are being certified by these four laboratories which are equipped with chassis dinamometer required for such tests. One of these is being upgraded through UNDP support. Two other laboratories also have the basic facilities for such tests. These can be upgraded when required.

- A) MASS EMISSION STANDARD FOR PETROL DRIVEN VEHICLES EFFECTIVE FROM 1.4.1995.
- I TYPE APPROVAL TESTS

i) Passenger cars

Reference mass R(Kg)	CO g/km	HC + NO _X g/km
R < 1020	5.0	2.0
1020 < R < 1250	5.7	2.2
1257 < R < 1470	6.4	2.5
1470 < R < 1700	7.0	2.7
1700 < R < 1930	7.7	2.9
1930 < R < 2150	8.2	3.5
R > 2150	9.0	4.0

Note

- 1. The test will be as per Indian driving cycle with cold start.
- There should be no cranckcase emission. (To b implemented from 1.1.1994)
- Evaporative emission should not be more than 2.0 g/test.
 (To be implemented from 1.1.1994)

ii) Two wheelers (For all categories)

CO - 3.75 g/km

 $HC - 2.40 \, g/km$

Note

The test will be as per Indian driving cycle with cold start.

iii) Three wheelers(For all categories)

CO - 5.6 g/km

HC - 3.6 g/km

Note

The test will be as per Indian driving cycle with cold start.

II CONFORMITY OF PRODUCTION TESTS

- i) Passenger Cars (For all categories)
 A relaxation of 20% for CO & 25% for combined HC+NO x for the corresponding values of Type Approval Test given above would be permitted.
- ii) Two & Three Wheelers (For all categories)
 A relaxation of 20% for CO and 25% for HC for the values of Type Approval Test given above would be permitted.

Annexure II (Page 1 of 2 Pages)

MASS EMISSION STANDARD FOR DIESEL VEHICLES EFFECTIVE FROM 1.4.1995.

I TYPE APPROVAL TESTS

Vehicle category	HC* (g/KWH)	CO* (g/KWH)	no_ (g/kwh)	Smoke	
Medium & Heavy over 3.5 Ton/GVW	2.4	11.2	14.4	**	
Light diesel upto 3.5 Ton GVW	2.4	11.2	14.4	***	
		OR			
Reference mass R(Rg)		CO** g/km	HC + NO _x ** g/km		
TR < 1020		5.0	2.0		
1020 < R < 1250		5.7	2.2		
1250 < R < 1470		6.4	2.5		
1470 < R < 1700		7.0	2.7		
1700 < R < 1930	•	7.7	2.9		
1930 < R < 2150		8.2	3.5		
R > 2150		9.0	4.0		

Note

- The test cycle is as per 13 mode cycle on dynamometer.
- **1) The test should be as per Indian driving cycle with cold start.
- *** The emissions of visible pollutants(smoke) shall not exceed the limit values to smoke density, when expressed as light absorption coefficient given at Page 2 of Annexure II for various nominal flows when tested at constant speeds over full load.
- I . CONFORMITY OF PRODUCTION TESTS A relaxation of 10% for the values of Type Approval Test given above would be permitted .

Annexure II (Page 2 of 2 Pages)

¥.	
Nominal Flow G(1/s)	Light Absorption Coefficient (K(m ⁻¹)
42	2.00
45	1.91
50	1.82
55	1.75
60 65	1.68
70	1.61
70 75	1.56
75 80	1.50
85	1.46
90	1.41
95	1.38
100	1.34
105	1.31
110	1.27
115	1.25
120	1.22
125	1.20
130	1.17 1.15
135	
140	1.13 1.11
145	1.09
150	1.07
155	1.05
160	1.04
165	1.02
170	
175	1.01
180	1.00 0.99
185	
190	0.97
195	0.96
200	0.95
200	0.93

Annexure III

MASS EMISSION STANDARD FOR PETROL DRIVEN VEHICLES EFFECTIVE FROM 1.4.2000

- I TYPE APPROVAL TEST
- i) Passenger cars(for all categories)

co - 2.72 g/km

 $HC + NO_x - 0.97 g/km$

Note

- 1. The test should be as per Indian driving cycle with cold start.
- ii) Two wheelers(for all categories)

CO - 2.0 g/km

HC - 1.5 g/km

Note

- 1. The test should be as per Indian driving cycle with cold start.
- iii) Three wheelers(for all categories)

CO - 4.0 g/km

HC - 1.5 g/km.

Note

- 1. The test should be as per Indian driving cycle with cold start.
- II CONFORMITY OF PRODUCTION TESTS
 - i) Passenger Cars (For all categories)
 A relaxation of 16% for CO & combined HC + NO for corresponding values of Type Approval Test given above would be permitted.
 - ii) Two & Three Wheelers (For all categories)
 A relaxation of 20% for CO as well as HC for the values of Type Approval Test given above would be permitted.

MASS EMISSION STANDARD FOR DIESEL VEHICLE EFFECTIVE FROM 1.4.2000

I TYPE APPROVAL TESTS

Vehicle category	HC*	CO* (g/KWH)	мо _ж *	PM*	\$=0	ke
Medium & Heavy over 3.5 ton GVW	1.1	4.5	8.0		0.36	***
Light diesel upto 3.5 ton	1.1	4.5	8.0		0.61	***

OR

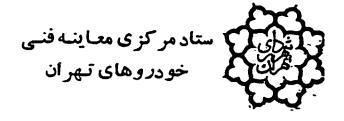
CO ** .	HC + NO_**	PM = =
g/km	g/km ^	

2.72	0.97	0.14

Note

- * The test should be as per 13 mode cycle.
- **1) The test should be as per Indian driving cycle with cold start.
- The emission of visible pollutants (smoke) shall not exceed the limit values of smoke density, when expressed and light absorption coefficient given at Page 2 of Annexure IV for various nominal flows when listed at constant speed, over full load.
- I CONFORMITY OF PRODUCTION TESTS

 A relaxation of 10% for the values of Type Approval Test
 given above would be permitted for Conformity Of Production
 Test for all vehicles.


	:	_
تاريخ		
شماره		
ىبوست		

Annex 1	24
ستاد مرکزی معاینه فنی خود <i>ر و</i> های <i>ت</i> هران	

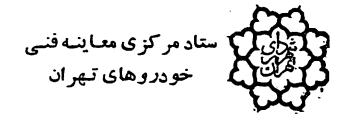
GENERAL VIEW OF MOTOR VEHICLE INSPECTION FOR EMISSION CONTROL IN TEHRAN / IRAN

THE MUNICIPALITY OF TEHRAN
TEHRAN MOTOR VEHICLE TECHNICAL INSPECTION BUREAU

•	 		تاريخ
	 	_	شماره
_		_ 、	بيوست

INTRODUCTION

The city of Tehran with an area of eight hundred square meter is one of the most polluted cities of the world. With the start of new management of the municipality of Tehran towards the end of 1989, the major problems which were not given enough attention to in the previous years because of the crisis caused due to the imposed war, they were once again seriously evaluated.


One of the main reasons for Tehran's pollution is due to the traffic of more than one million motor vehicles which contribute to 60-70 % of the over all pollution.

THE HISTORY OF THE FOUNDATION OF TEHRAN'S VEHICLES TECHNICAL INSPECTION BUREAU

The municipality of Tehran started to establish the bureau of Tehran's vehicles technical inspection in 1990 so that to make sure that the private and public transportation vehicles get inspected twice and four times a year respectively.

This bureau through proper selection and implementation of one hundred and fifty equipped stations throughout the city of Tehran started the inspection of vehicles and by the end of the first year, 350000 vehicles were throughly inspected. The points looking for during inspection are listed in attached appendix 1. Some of the projects carried out or in the process of being carried out by this bureau are as following.

تاريخ	
شماره	
بيوست	

CARRIED OUT PROJECTS:

1- THE PROJECT OF SUPPORTING THE INSPECTION LOCATION WITH ADVANCED FACILITIES SUCH AS ADVANCED ENGINE ADJUSTMENT EQUIPMENT AND EMISSION ANALYSERS FOR THE ANALYSIS OF THE EXAUST EMISSIONS OF VEHICLES.

At the begining of technical inspection of vehicles for monitoring the emission of gases, it was sufficient enough to just look for vehicles which did not give out any soot, thus the non-oil burning vehicles were certified and issued an inspection sticker. However with the improvement of technical inspection and the necessity to reduce air pollution, the need for modern facilities and advanced gas emission monitors were strongly felt.

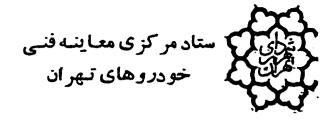
Because of this need the municipality of tehran processed purchasing one hundred and fifty engine adjustment equipment and gas emission analysers from sun electric corporation. These equipment in addition to detecting faults within the electrical system of the vehicle, they can also search for and measure four different types of emission (co, co2, Hc, o2) and provide complete data before and after adjustment with the help of a printer, these results together with an inventory list from each vehicle will be sent to the data processing department of the bureau in order to gather and provide complete statistics and data of the vehicle fleet.

2- MAKING DATA BANK AND STATISTICS FOR TEHRAN'S VEHICLE FLEET.

Due to not having access to accurate statistic of current status of tehran's vehicles, the need to make an informative data bank was felt, and thus this bureau by the end of 1992-started-making which bank and therefore it is hoped that a good statistic and data of all current existing vehicles to be gathered by the end of 1993.

 تاريخ
شماره
 سوست

3- GIVING THE NECESSARY AWARENESS TO CITIZENS AND GIVING SUFFICIENT TRAINING TO PEOPLE IN CHARGE OF THE INSPECTION LOCATIONS.


Since air pollution reduction is not possible but with the cooperation of all the citizens, therefore this inspection bureau through runing great advertising project throughout the city provided the citizens with the necessary awareness of the need to act.
FUTURE PROJECTS

1) USING ADDITIVES IN DIESEL FUELS.

With consideration to traffic of approximately 3000 buses in the city and the pollution caused due to the traffic of these sort of vehicles, N I O C (National Iranian oil company) agreed to provide these vehicles with new types of fuels with added additives. THE PRELIMINARY RESULTS OF THE TRIAL TEST OF USING FUELS WITH ADDED ADDITIIVES.

- a) Reduction of fuel density and consequently reduction of soot to at least 50%.
- b) Reduction of fuel consumption 15 to 18%.
- c) Reduction of CO to approximately 15%
- d) Other results: reduction of pollutants and hydrocarbons and as a result reduction of repairs and maintenance of diesel engines.

تاريخ	•
شماره	

2) CONVERSION OF PUBLIC VEHICLES TO GASEOUS FUEL SYSTEMS.

Due to less pollution caused through consuming gaseous fuels than gasoline, conversion of public vehicles from gasoline system to gaseous system was looked over, and it is predicted that by the begining of 1994, 2000 more taxi with gaseous fuel system to be added to the current existing 4000 taxi already converted to gaseous systems and approximately 1250 garbage pick up vans to be converted to gaseous fuel systems.

3) GASEOUS FUEL CONVERSION OF URBAN PUBLIC TRANSPORTATION.

The urban public transportation company, at present has purchased ten new benz model 302 buses with OM 360 engines which have been converted to three gaseous fuel systems (LPG, CNG, DAVAL FUEL). It is forseen that this number to be increased to one hundred at the present year and finally one thousand of them to be converted to gaseous fuel systems.

Parallel to other actions. NIOC has suggested the followings for better improvement of fuel.

- A) To decrease the lead content of leaded gasoline to less than 1/2 of gram in every liter.
- B) To decrease the benzen content of leaded gasoline to less than 5% of its volume.
- C) The sulphur content in diesel fuel must not exceed over \mathcal{I} 7 of the weight of fuel.

IEMKAN Technical Inspection of vehicles Date of Issue Center code Public 🗆 Motor cycle Private 🗀 Vehicle Heavy \square Kind of vehicle Licence plate Serial No System Engine Number Chassi No Model Speed Omitter Digit General characteristics 0 O 1 Number plate 2 Chassi no Fail 4 Color **Pass** 3 Engin no ಹ ົວ 5 Correctness of Documentation General Items 6 Body 🗂 7 Paint work 🗀 8 Engine 🗀 9_Glass 10 Mirrors □ 11 Lights ☐ 12 Horn ☐ 13_Tires 14 Wippers ☐ 15 Sits □ 16_Breaks □ 17 Exhaust □ 18 Steering wheel 19 Front end Suspension 20 Shock obserbers 21 Clutch □ 22 Gear □ 23 Gages □ 24 emision gas □ Public service Vehicels COZ R CO 29 Bumpers 25 Badges 26 Luggage Compartment [] 27 Meter 28 Taxi sign Date of Issue Center code No Vehicle Private Public Motor cycle Heavy \square Kind of vehicle Licence plate Serial No System Engine Number Chassi No Model Speed Omitter Digit α General characteristics 0 C 1 Number plate 2 Chassi no Fail 4 Color Pass 3 Engine no LI Customer 5 Correctness of Documentation General Items 6 Body 🖵 7_ Paint work 💛 8_ Engine 🗀 9_Glass 10 Mirrors 11 Lights ☐ 12 Horn ☐ 13 Tiers 14_ wippers 15 Sits 1_1 16_ Breaks CT 17 Exhaust 18_Steering wheel 1 19 Front end Suspension 20 Shock obserbers _」22 Gear ___ 23 Gages 二 24 emision gas 21 Clutch Public service Vehicels C021-17. COL 25_ Badges 29_Bumpers 26 Luggage Compartment 27 Meter 28 Taxi sign *The number of this certificate must match your sticker number *Use the above form only when the vehicles pass, otherwise use this form. In case of failure you are repair—the fault immediatly and return to the save test station and obtain your certificate. #IThis_certificate is valid for 3 montris for H.S.V.S and P.S.V.S and 6 months for private case.

"The effect of service and tune-up on emission reduction in used and new vehicles"

Report from: Tehran Municipality

Project Done by: Air Pollution Control Co.

(P.Hasteh)

"In the name of God"

Introduction:

At the present the extremely polluted air of Tehran environment is its most intricated problem. According to the officials of World Health Organization (WHo), from the smoke concentration point of view, Tehran is the first polluted city and from SO2 – concentration view point it is the second polluted city of the world. The emissions of outomobiles, including those of the gasoline engines, gasoil engines, and motorcycles, are one of the most important source of air pollution in Tehran which make 60–70% of total air pollution in Tehran. According to the laterateristics, existing in the report of world Bank mission the amount of daily emission of major air pollutants of Tehran is as follows:

- HC. uncombusted Hydrocarbons (causing respiratory tract cancer), 610 tones.
- CO. carbon monoxide (causing reduction in O2-absorbtion by bo dy rissues), 4700 T.
 - -NOX, the family of nitrogen oxides (causing respiratory diseases), 500T.
- SO2, sulphur dioxide (its breathing in high amounts, causes repiratory diseases). 103 T.
- Pb. lead (causing hepatic, renal, digestive failures, and psychological effects in children), 5T.

Now there are many various and effective methods which are used in the field of reduction of pollution caused by cars, in the world, specially in industerial countries. Because of the limitations of the fuel kind and its cost. Applying these methods in our country at least in future years is impossible for example an equipment called "catalytic convertor" installed in the way of the exhaust of cars, reduces more than 90% of the pollution of emissions, but since this equipment needs free lead gasoline. There is no possibility for using it in the country at the present time. So, considering the acute present situation of the air in Tehran it seems that using of an effective and economical approach for reducing air pollutions is necessary. The following report is the result of a research done recently in the field of studying the amount of the reduction of the pollution caused by the exhaust emmissions through regulating engine and doing periodic services, by

the "unit of evaluation and control of air pollution", affiliated to "Tehran Traffic Control Company". The outcoming results are extremly considerable and can be used in the process of encountering with the pollution of cars.

Scope of the project:

The project has two parts. The fist part will assess the Technical safety of the gasoline cars of Tehran through sampling. The second part will test the 49 cars selected by statistical analysis for two times one before tune-up and required service (including changing spark plugs, points and air filter) and one, after the mentioned operation by analyzing oquipments existing in the combustion loboratory of oil research center. (The scope of the project and its caissification are enclosed.)

Results:

In the first part of this project the following results were obtained by assessment of the Technical saftery situation of the existing cars in Tehran.

A- 17% of the cars have oil burning, and 83% of them don't have this defect.

B- 12% of the cars have spark plugs with very good condition (the spark plug is new.)

40% of the cars have spark plugs with good condittion.(It is used for a short time.)

40% of the cars have spark plugs with bad condition.(It is out of

standard.)

C- 77% of the cars have regulated points.

23% of the cars have unregulated points.

D- The engine of 44% of the cars are repaired to tally the engine of 12% of the cars are repaired partially.

The engine of 44% of the cars arenot repaired.

E- 57% of the drivers pay little attention to engine regulation and service of their cars.

43% of the divers pay much attention to marintenance and service of their cars.

The best result that we can get from the first part of this project is that a low percentage of the cars in Tehran which has a very bad technical situation makes the emajor part of the pollution caused by cars.

In the second part of the project with evaluation of the amount of reduction of air pollutant gases (Co.Hc) under the eeffect of engine regulation and periodric services. (including changing of spark plug, points and air filter) some interesting results are obtained. Figures 1 to 7 which are enclosed indicate considerable reduction of pollution for some certain samples of cars. The characteristics of each car and the amount of pollution reaction are identified under each figure. The imposed driving cycle on car is the European cycle (04-15 ECE), and

all of the obtained amounts of test have been compared with the current. European standard in figure 8, the amount of fuel consumption reduction in manufactured cars in the decades of 60, 70, 80 and the years of 1990-1992 is identified, and if showes that the amount of fuel consumption reduction in old car, which include a higher percentage of existing cars, is at a high level.

The tested cars are selected through statistical onalysis and their characteristics are as follow:

- 1- They are selected from different decades, various types and models.
- 2- The above cars were the most numerous between their spevals.

The obtained results of tests are is follow:

- 1- Service and engine regulation in different age classes have reducted carbon monoxide about 20-58 percent and Hydrocarbones about 15-43 percent.
- 2- The overal statistics of cars from the view point of age class, show the following reductions:
 - 45% of reduction in Co: and
 - 40% of reduction in uncombusted HC

Using the obtained results of tests on cars befor regulating the engine, on the average the weight of the air pollutions or gasoline engines are as follow:

- Before regulating the engine and service. CO 57 g/Km and HC 4.6

g/Km.

- After regulating the engine and service, CO 2.8/gKm and HC 23 · g/Km.

Now, supposing that each car annualy covers a distance of 15,000 Km on the average, and considering the number of 1,000,000 cars and gasoline vans the amount of annual reduction of the pollutant gases of Carbon monoxide and uncombusted Hydrocarbones in Tehran will be as follow:

- Carbon monoxide reduction: 435,000 tones per year.
- Uncombusted hydrocarbones reduction: 34,500 Tones per year.

The results have also indicated that with regulating the engine the fuel use will be reduced about 13%.

According to the statistics, announced by the National oil company of Iran in 1991, 6 million liters of gasoline is daily consumed by cars in Tehran. So considering the average reduction of 13% in fuel consumption through regulating the engine and car service, we will save about 780,000 liters of gasoline each day.

Conclusion:

According to the estimations done in the project of studying the effects of engine regulation and periodic services of cars, the following results are obtained:

If we can provide the engine regulating facilities for the drivers of gasoline cars in economical way, a great number of cars will be regulated and serviced in a limited interval with a low cost.

Also, the studies indicate that the drivers training in different ways such as mass media can promote their knowledge about the effects of engine regulation on cars. Adopting the policy of regular service and regulation of car the following results are obtained.

- 1- The co production, which is one of the detrimental gases for human health and causes the reduction of O2 of absorbtion by body tissues, will be reduced by 435,000 Tones annualy.
- 2- The uncombusted HC production, which causes respiratory tracticancer in human, will be reduced by 34,500 tones annually.
- 3- The daily gasoline consumption in Tehran will be reduced by 13 percent: taking into consideration the amount of daily consumption of 6 million liters (The statistics of the national oil company oil Iran in 1370), we will save 780,000 liters of gasoline.
 - 4- Considering the amount of daily gasoline consevation in Tehran we can estimate that the annally production of lead in Tehran air will be reduced by 169 Tones.

Some various hygenic and cultural results have also been obtained by adopting this policy.

COUNTRY PAPER

:

FOR

EXPERT GROUP MEETING

ON

TYPE APPROVAL PROCEDURES
FOR NEW VEHICLES

(DP/RAS/89/057)

JAKARTA INDONESIA 8-10 JUNE 1993

Prepared by:
Suvidh Voravisuthikul
Director, Transport Engineering Division
Land Transport Department
THAILAND

COUNTRY PAPER OF THAILAND

Introduction

Thailand is naturally an agricultural country which is progressing rapidly in science and technology sectors. In the past decades, the rapid economic growth has increased air pollution gradually from industry, communication, transport, and other activities.

The major sources of air pollution in Thailand are motor vehicles and the industries. There are more than 3 million motor vehicles and more than 6 million motorcycles in 1992. The pollutants from motor vehicles include carbon monoxide, hydrocarbons, and suspended particulate matters (SPM). Lead from gasoline is also dangerous to public health.

The lead content in gasoline was reduced in 1984 from 0.84 g/litre to 0.45 g/litre and to 0.15 g/litre on September 1,1992.Unleaded gasoline was introduced to Thailand on May 1, 1991 in an effort to reduce the risk of people from lead toxicity. Even though air quality in Thailand is considered to be acceptable in general, there are still some problems in the congested streets and industrial plants. The problems can only be solved with strong coordination and implementation of various agencies concerned, especially the enforcement and control of standards. Public awareness can be a very important tool to help solving the problem. With mutual understanding between public and private sectors, the air and noise pollution problems may certainly be leading in a brighter direction.

Existing Vehicles Emission Control

Government has adopted many plans to address the air pollution problems caused by motor vehicles. Several measures which have been already taken under these action plans are the introduction of unleaded gasoline and reduced sulphur content in diesel fuel, and also the establishment of catalytic converter in new motor vehicles, beginning in 1993. Other planned measures include strengthening and reinforcing the existing annual safety and emission inspection programme for commercial vehicles, and the establishment of a similar annual inspection for motorcycles and private cars.

Land Transport Department had proposed a project, which had already approved by the Ministry of Transport and Communications to allow private sector in setting up the inspection stations (franchise stations) both in the Bangkok Metropolitan Area and provincial areas.

In the beginning of 1994, the inspection on private cars and motorcycles will begin within Bangkok and the vicinity which consist of 5 provinces in addition to Bangkok. This project will be expanded to other provincial areas and expected to cover every province by 1998. (17 provinces in 1995, 16 provinces in 1996, 21 provinces in 1997 and 13 provinces in 1998).

In 1994, which is in initial phase of this project, the inspection will be done on the private cars that has been registered for 10 years or more, 7 years or more for motorcycles.

In 1998, every private cars and motorcycle that has registered for 3 years or more must be inspected by the governmental authorized inspection centers. The effective terms of inspection are given in Annex I.

For more effective way to solve the pollution, the Sub-committee of Air and Noise Pollution, which is appointed by Pollution Control Committee, under the Environmental Promocion and Prevention Act. B.E. 2535 (1992) considered to reduce CO emitted from gasoline engine 6% by vol. at idle speed as follows:

- Any vehicle registered before January 1, 1983 must have CO not exceeding 6% by vol. at idle speed.
- Any vehicle registered from January 1, 1983 to October 31, 1993 must have CO not exceeding 4% by vol. at idle speed and must have HC not exceeding 600 ppm.
- Any vehicle registered from November 1, 1993 must have CO not exceeding 1% by vol. at idle speed and must have HC not exceeding 100 ppm.

However, the above standards are still under consideration and may change when ever the more information is available.

New Vehicle Emission Control

The new emission standards for motor vehicle and motorcycles that will go into effect in 1993 are based on ECE Regulations. These emission standard are established by the Technical Committee on Vehicle Emissions Standards of the Industrial Products Standard Act. B.E. 2511 (1968), which includes representatives of Land Transport epartment, Pollution Control Department and other agencies concerned, and will be enforced by the Ministry of Industry. The Technical Committee has been set up 6 emission standards, of which 4 emission standards have already been published in the Act al Gazzette, the other 2 emission standards still are circulated for public comments before

submit to the Industrial Product Standards Council for approval. The Technical Committee has further prepared another 4 draft standards and will cary out in 1993. (Annex II)

On March 10, 1992 the Cabinet resolved that the following passenger cars (gasoline engine) have to be equipped with catalytic converter;-

Engine displacement of 1,600 cc. or more

- 1 January 1993 for imported vehicles
- 1 March 1993 for local assembly

Engine displacement less than 1,600 cc.

- 1 September 1993 for imported vehicles
- 1 November 1993 for local assembly

Traffic Conditions in Bangkok

Bangkok's traffic conditions are among the worst is Asia, and have been steadily deteriorating in recent years. Severe congestion is the principal symptom, with long journey times, high fuel consumption, and high level of pollution. Rapid growth of the human and vehicle populations, divided responsibility among separate agencies with no coordinating authority, and inadequate investments have contributed to the growing seriousness of the situation over the past 10-i5 years. The problem is compounded as the city grows outward, and private land developers provides subdivision roads without relationship to an overall arterial road network. The result is a configuration of road space unable to cope with the existing traffic demands. As the vehicle fleet is expanding at about 10% annually (Annex III). The comparatively modest road building and traffic management measures that have been introduced have not been able to keep pace with the needs. Traffic congestion has reached the high levels that no "peak hours" are discernible as heavy traffic spread throughout most of the working day. Therefore the Government has to establish the Office Commission for the Management of Road Traffic, under the Office of the Prime Minister, in order to solve such traffic problems.

Conclusion

Government and various agencies have implemented many measures including amended a new pollution law in 1992. Such law has an effect on in-use vehicles and new vehicles to be more stringent. Therefore, it is expected that the ambienc air in Thailand will be better in the

next coming years.

The government has also implemented the additional measures to release traffic congestion by investing in many projects such as :

- 1. The elevated highway from Bangkok to Bangkok International Airport which will opened to traffic in 1994.
- The establishment of Metropolitan Rapid Transit
 Authority to be responsible for electric cars project.
- 3. The construction of the dual-track railway parallely to an existing track all ever the country (1993-1993). In the first phase, four routes of which the distance between 40-100 kms. from Bangkok are expected to be in service in 1996.
- 4. The construction of 1,891 kms. national highway to be four-lane divided highway will be constructed (1993-1999).
- 5. The project of Intercity Motorway from Bangkok to Chonburi.

These projects will not only helps the transportation in Thailand to be more convenient, more safe but also will also be more benefit to the quality of ambient air.

However, if the government is able to implement the vehicle periodical maintenance system by authorized the approved service shops to meet certain requirements, it will help the exhaust emission control devices to work more effectively and will be very fruitful for read worthiness of the vehicle as well.

Effective Term of Motor Vehicle Inspection

Effective Term	Category of Motor Vehicles	Effective Date
i year	l. Commercial motor vehicles (Except some motor vehicles prescribed by Ministerial Regulation)	
	2. Passenger cars for private use which have been used for more than 10 years	Coming years
	3. Motorcycles which have been used for 3 years	Coming years
2 years	 Passenger cars for private use, except new cars, which have been used for less than 10 years. 	Coming years
3 years	 New passenger cars for private use Commercial motor vehicles prescribed by Ministrial Regulation. Trucks, for private use, having the maximum mass not exceeding 3,500 kg. Bus, for private use, comprising not more than twenty seats in addition to the driver's seat New motorcycle 	Coming years Since 1979 Coming years

- TIS 1085-2535 (Royal Gazzette : Dated 19 Mar. 1992)
 Standard for Gasoline Engine Vehicles:
 Cafety Requirements: Emission From Engine.
 N.B. Equivalent to ECE R 15.04
- 2. TIS 1105-2535 (Royal Gazzette : Dated 25 Aug. 1992) Standard for Motorcycles : Safety Requirements; Emission From Engine, Level 1. N.B. Equivalent to ECE R 40.00
- 3. TIS 1120-2535 (Royal Gazzette : Dated 15 Oct. 1992) Standard for Gasoline Engine Vehicles: Safety Requirements; Emission From Engine, Level 2. N.B. Equivalent to ECE R 83 Approval B
- TIS 1140-2535 (Royal Gazzette: Dated 25 Mar. 1993)
 Light Duty Diesel Engined Vehicles:
 Safety Requirements; Emission From Engine, Level 1.
 N.B. Equivalent to ECE R 83 Approval C
- 5. TC 657 .0.5 (Circulated for Public Comments, Dated 12 Oct. 1992)
 Heav: Duty Diesel Engined Vehicles:
 Safety Requirements; Emission From Engine, Level 1.
 N.B. Equivalent to ECE R 49.01
- 6. TC 697 No.6 (Circulated for Public Comments, Dated 13 Oct. 1992)
 Standard for Motorcycles:

 Safety Requirements; Emission From Engine, Level 2.

 N.B. Equivalent to ECE R 40.01

Emission Standards Drafted by TC.697

1. TC 697 No.?

Standard for Gasoline Engine Vehicles:
Safety Requirements; Emission From Engine, Level 3.
N.B. Equivalent to EC Directive /91/441/EEC

2. TC 697 No.8

Light Duty Diesel Engined Vehicles:

Safety Requirements; Emission From Engine, Level 2.

N.B. Equivalent to EC Directive /91/441/EEC

3. TC 697 No.9

Heavy Duty Diesel Engined Vehicles:
Safety Requirements; Emission From Engine, Level 2.
N.B. Equivalent to EC Directive /91/542(A)/EEC

4. TC 697 No.10

Heavy Duty Diesel Engined Vehicles:

Safety Requirements; Emission From Engine, Level 3.

N.B. Equivalent to EC Directive /9!/542(B)/EEC

INDUSTRIAL PRODUCT STANDARDS ACT. B.E.2511 (1968)

Section 1 - 12 - omittted -

Section 13. The Minister has the power to appoint qualified persons whom the Council submits under section 8(5) members of one or several Technical Committees.

The Technical Committee has the duty to prepare a draft standard and carry out other technical matters concerning the standard and submit to the Council.

The Provisions of section 11 shall apply to the meeting of the Technical Committees mutatis mutandis.

Section 14. A member of the Technical Committee vacates office upon:

- (1) death;
- (2) resignation;
- (3) being bankrupt;
- (4) being an incompetent or quasi-incompetent person;
- (5) being imprisoned by a final judgment except for a petty offence or offence committed through negligence;
 - (6) being advised in writing by the Minister.

Section 15. For the benefit of industrial promotion, the Minister may determine, amend and revoke standards for industrial products according to the recommendation of the Council.

The determination, amendment and revocation of standards under paragraph one shall be published in the Government Gazette.

Section 16. - omitted -

Section 17. For the purpose of ensuring safety or preventing harmful effect which may befall the public, the industry or economy of the country, and particular kind of industrial products which shall conform with a standard may be determined.

The determination under paragraph one shall be made by a Royal Decree and the date of its coming into force shall not be less than sixty days from the date of its publication in the Government Gazette-

Section 18. Before the issuance of a Royal Decree under section 17, the following steps shall be taken:

- (1) the Institute shall publish, in the Government Gazette and at least in one Thai daily newspaper for a period of not less than seven days, an announcement stating the intention requiring any particular kind of industrial products to be manufactured in conformity with a standard, the place where the particulars are available and the period for a person vishing to protest to submit his protest to the Institute, which is not less tham thirty days from the date of the publication;
- (2) if no protest is received, the Institute shall report to the Council, and in such case, the Council shall proceed further;
- (3) in the case where a protest is received, the Institute shall refer the protest to the Council;
- (4) the Institute shall post a notice Institute specifying the date, time and place where a hearing of the protest will be held and inform the protestant of it in writing;
- (5) the council shall avail itself of the opportunity for all persons interested to attend and give their opinion in the hearing;
- (6) if the protestant does not show up within the specified time, the Council shall have the power to proceed as it thinks fit;
- (7) When a decision has been made by the Council, the Institute shall post a copy of the decision at the Institute and send one copy thereof to the protestant.

Section 19. A person having interest in the decision of the Council under section 18 has the right to appeal against such decision to the Minister within thirty days from the date of posting the copy of the decision at the Institute.

The decision of the Minister shall be final.

Section 20.-58 - omitted -

Number of Vehicles Registered in Thailand (31 December 1989)

		1	
Type of Vehicle	Total	Bangkok	Provincials
Grand Total	6,505,020	1,721,586	4,783,434
λ. Total Vehicles under			
Motor Vehicles Act	6,116,891	1,629,919	4,486,972
l. Sedan			
(Not more than 7 pass.)	637,243	470,927	166,316
2. Microbus & Passenger			
Pick up	363,177	232,689	130,488
3. Van & Pack up	787,028	236,082	550,946
4. Motortricycle	1,701	73	1,628
5. Interprovincial Taxi	444	370	74
6. Urban Taxi	16,424	13,493	2,931
7. Fixed Route Taxi	8,956	8,150	806
8. Motortricycle Taxi			
(Tuk Tuk)	18,204	7,406	10,798
9. Hotel Taxi	761	574	187
10. Tour Taxi	774	774	0
ll. Car For hire	522	522	0
12. Motorcycle	4,153,000	644,597	3,508,403
13. Tractor	53,779	9,669	44,110
14. Road Roller	2,193	1,508	685
15. Farm's vehicle	66,801	0	66,801
l6. Automobile's Trailer	5,884	3,085	2,799
B Total Vehicles under			
Land Transport Act	366,906	77,568	289,338
Bus : Total	67,627	19,528	48,099
- Fixed Route Bus	54,577	13,134	41,443
- Non Fixed Route Bus	- ' 8,081	3,190	4,891
- Private Bus	4,969	3,204	1,765
Truck : Total	277,153	58,040	` 219,113
- Non Fixed Route Truck	29,250	12,857	16,393
- Private Truck	247,903	45,183	202,720
Small Rural Bus	22.126	0	22,126
C Total Vehicles under			
Motorized Vehicle Act	21,223	14,099	7,124

Number of Vehicles Registered in Thailand (31 December 1990)

Type of Vehicle	Total	Bangkok	Provincial
Grand Total	7,592,085	2,245,814	5,546,271
A. Total Vehicles under			
Motor Vehicles Act	7,117,298	1,942,712	5,174,586
l. Sedan			
(Not more than 7 pass.)	777,345	598,223	179,122
2. Microbus & Passenger	ı		
Pick up	445,093	300,938	144,155
3. Van & Pack up	925,936	268,598	657,338
4. Motortricycle	2,222	300	1,922
5. Interprovincial Taxi	449	370	79
6. Urban Taxi	16,827	13,493	3,334
7. Fixed Route Taxi	8,823	8,150	673
8. Motortricycle Taxi			1
(Tuk Tuk)	19,614	7,406	12,208
9. Hotel Taxi	787	598	189
10. Tour Taxi	788	788	d
ll. Car For hire	539	538	1
12. Motorcycle	4,778,220	728,679	4,049,541
13. Tractor	59,091	9,955	49,136
14. Road Roller	2,217	1,570	647
15. Farm's vehicle	73,733	o	73,73
l6. Automobile's Trailer	5,614	3,106	2,508
B Total Vehicles under			
Land Transport Act	424,512	88,910	335,602
Bus : Total	71,680	20,923	50,757
- Fixed Route Bus	56,417	13,291	43.126
- Non Fixed Route Bus	9,896	4,153	5,743
- Private Bus	5,367	3,479	1,888
Truck: Total	330,541	67,987	262,554
- Non Fixed Route Truck	37,072	16,635	20,43
- Private Truck	293,469	51,352	242,117
- Small Rural Bus	22,291	0	22,29
			ļ
C Total Vehicles under		}	

Number of Vehicles Registered in Thailand (31 December 1991)

Type of Vehicle	Total	Bangkok	Provincial
Grand Total	8,481,025	2,112,518	6,368,507
A. Total Vehicles under			
Motor Vehicles Act	7,964,969	2,008,918	5,956,051
1. Sedan		j	
(Not more than 7 pass.)	796,807	594,078	202,729
2. Microbus & Passenger			
Pick up	482,455	324,517	157,938
3. Van & Pack up	957,365	156,136	801,729
4. Motortricycle	2 ,2 53	637	1,616
Interprovincial Taxi	527	370	157
6. Urban Taxi	16,351	13,493	2,858
7. Fixed Route Taxi	9,256	8,416	840
8. Motortricycle Taxi			
(Tuk Tuk)	20,492	7,406	13,086
9. Hotel Taxi	890	696	194
10. Tour Taxi	745	735	10
ll. Car For hire	495	494]
12. Motorcycle	5,521,391	887,289	4,634,102
13. Tractor	72,998	11,993	61,005
l4. Road Roller	2,674	1,926	748
15. Farm's vehicle	76,312	_	76,312
l6. Automobile's Trailer	3,458	732	2,726
B Total Vehicles under			
Land Transport Act	462,117	102,366	359,751
Bus : Total	76,359	23,199	53,160
- Fixed Route Bus	58,852	14,448	44,404
- Non Fixed Route Bus	11,552	4,779	6,773
- Private Bus	5,955	3,972	1,983
Truck : Total	363,089	76,167	283,922
~ Non Fixed Route Truck	42,017	21,544	20,503
- Private Truck	321,042	57,623	263,419
Small Rural Bus	22,669	-	22,669
C Total Vehicles under			
Motorized Vehicle Act	53,939	1,234	52,70

191

COUNTRY PAPER OF INDONESIA

EXPERT GROUP MEETING ON TYPE APPROVAL PROCEDURES FOR NEW VEHICLES

JAKARTA, REPUBLIC OF INDONESIA 8 - 10 JUNE 1993

BY:

MUHAMMAD YUSUF

DIRECTORATE GENERAL OF LAND TRANSPORT
MINISTRY OF COMMUNICATIONS
THE REPUBLIC OF INDONESIA

COUNTRY PAPER OF INDONESIA

1. INTRODUCTION

From the beginning of Five Year Development Plan, Indonesian Government has already considered that highways as an important element of its economic development effort since road is a dominant transport mode within the transportation system in the country. It is estimated that more than 50% of freight and more than 85% of passenger traffic are carried out by roads, and the rest is accommodated by sea and air transport.

In the early 1990's, there were more than 200,000 kilometers of road scaterred throughout the country which comprise:

- 12,000 kilometers of national network;
- 40,000 kilometers of provincial netrwork;
- 120,000 kilometers of local network.

In addition, there is a small but growing number of toll finance, limited expressways built and operated by state owned company of toll roads. Such expressways connect several parts of the major cities in Java and Sumatra islands, where there are enough traffic to support a toll finance expressway.

These all road networks carry a varied mix of vehicles, from domestically produced and imported passenger cars, buses, trucks to small motorized public transport vehicles. Although in the last few years many road networks have been built, it seems that such development is not yet enough to accommodate road traffic, particularly in big cities.

In Indonesia, there were approximately 10 million motor vehicles as of the early of 1992, and these transport mode are now indispensable for economic activities and improving the people's living standards. These number of motor vehicle ownership is estimated would be increased about 10%-15% per annum. On the other hand, such condition cause some serious social problems as traffic accidents and adverse effect on the environment such as atmospheric pollution, noise, metc. Therefore, there is now a strong need to ensure safety and prevent environmental pollution by applying some various countermeasures.

2. CURRENT CONDITION

Nost of motor vehicle in Indonesia use gasoline with octane number varies from 85 to 95. The special gasoline --so called premium has octane number more than 100, contends lighter hydro carbon (HC) or some kind of additive substances, such as tetraetil lead (TEL). The second largest fuel used in Indonesia is diesel fuel with cetane number between 30 and 60. Standard fuel for diesel vehicle / motor is classified into octane number. Its cetane 100 standard is n-heksaoctana ($C_{16}H_{34}$), sometimes called n-cetane and standard cetane 0 is alfa-metilnaf-talena ($C_{11}H_{10}$). Quality of the burning of diesel fuel can be determined by adding few certain chemical substance like organic nitrates and peroxide. Addition of $0.5\chi - 4\chi$ amylnitrate will rise cetane number 7 to 30 and addition of $0.5\chi - 4\chi$ acetoperoxide will rise cetane number 10 - 35.

Besides gasoline and diesel fuel, Compressed Natural Gas (CNG) has been introduced in Indonesia as automotive fuel in line with the government policy on conservation and diversification of energy as well as on air pollution. Although the current use of CNG as automotive fuel is still in a little amount, there is evidence that the government certainly intends to encourage the use of CNG in the near future. Since many government institutions are involved in this policy implementation, the government through the Ministry of Mines and Energy has established a Coordination Team for The Improvement of CNG Use. The institutions or agencies involved in this Team are Ministry of Mines and Energy, the Ministry of Communications, the Ministry of Finance, the state owned oil and gas company (PERTAMINA), and the Association of Automobile Manufacturer (GAIKINDO).

Although some efforts have been taken to cope with air pollution problems due to the operation of transport sector, there is still strong evidence that transportation sector contributes the highest percentage on air pollution. It might be illustrated by the result of a survey conducted in big cities of Jakarta, Bandung, Surabaya, and Semarang during the period of 1986-1990, as follows:

Pollutant	Transportation	Dwellings	Garbage	Industry
Jakarta				
CO	98.8%	0.1%	1.0%	0.17
NOx	73.4%	9.6%	1.1%	15.9%
HC	88.9%	2.2%	7.7%	1.2%
Bandung			•	
CO	97.4%	0.1%	2.4%	0.1%
NOx	56.8%	11.2%	3.0%	29.02
HC	78.5%	2.2%	17.5%	1.8%
Surabaya				_, _,
CO	96.8%	0.3%	2.6%	0.32
NOx	33.6Z	21.5%	1.7%	43.3%
HC	71.0%	7.4%	17.2%	4.47
Semarang				
CO	98.8%	0.1%	1.17	Not
NOx	82.5%	16.3%	1.2%	available
HC	87.6X	4.0%	8.42	data

3. AIR QUALITY STANDARD

In 1988, the State Minister for Population and Environment has issued the Decree concerning with the national ambient air quality standards for Indonesia, as follows:

- Sulfur Dioxide (SO ₂)	260 mg/s	n ³ (0.10 ppm) n ³ (20 ppm)
- Carbon Honoxide (CÖ)	22,600 mg/s	n ³ (20 ppm)
- Nitrogen Dioxide (NO ₂)	92.5 mg/1	n_2^3 (0.05 ppm)
- Oxidant as Ozone (03)	200 mg/s	n_2^3 (0.10 ppm)
- Suspended Particles (TSP)	260 mg/s	n ³
- Lead (Pb)	6 mg/1	
- Hydro Carbon (HC)	160 mg/1	$n_{\rm a}^{\rm 3}$ (30.24 ppm)
- Hydrogen Sulphide (H ₂ S)	42 mg/1	n_2^3 (0.003 ppm)
- Ammonia (NH ₃)	1,360 mg/s	n ³ (2 ppm)

In any places in the country are supposed to be below of the national ambient air quality standards. However, in some areas, especially in big cities, the parameters of air pollution were found as above of such air quality standards. For instance, the result of field measurement conducted in Jakarta during the period of December 1991 - February 1992 were indicated as follows:

Pollutant ;	Concentration	(mg/m ³) Standard ambient (mg/m ³)
co	28,000	22,600
HC :	350	160
NOx	145	92.5
TSP	250	260
РЬ	2	0.06

4. THE POLICY OBJECTIVE

By taking into account the whole previous descriptions, and in order to improve the air quality, especially in the big cities such as Jakarta, Bandung, Surabaya, and Semarang, the Government of Indonesia imposes an environmental policy for reducing exhaust gas emission from motor vehicles by 50% during the period of 1993-1995. To implement this policy, the Government takes the following actions programs:

- a. Coordination among the related agencies (e.g., State Kinistry of Population and Environment, Hinistry of Communications, Hinistry of Industry, Hinistry of Home Affairs, Traffic Police, and Local Government);
- Preparation on publicity, administration work, personnel, and air quality monitoring;
- c. Finalization and implementation of the Government Regualtion on Air, and other related Hinistrial Decrees;
- d. Trial Test;
- e. Field implementation affecting private motor vehicles and commercial motor vehicles through strengthening law enforcement and improving motor vehicle inspection.

To support the policy objective, in the long terms, the Government arranges the following tentative action programs, such as:

- a. Controlling the design of new model of automobiles;
- b. Controlling the exhaust gas emission of motor vehicle during manufacturing;
- c. Controlling and monitoring the exhaust gas emission of motor vehicle on the road;
- d. Introducing Unleaded Petrol;
- e. Introducing Catalytic Converter:
- f. Disclosure Requirement;
- g. Emission Taxation.

5. HOTOR VEHICLE INSPECTION

The Government realizes that the inspection of motor vehicles certainly plays an important role as one of measures to cope with the problems related to air pollution due to motor vehicles operated on the roads.

It is therefore, the new Traffic and Road Transport law No.14 of 1992 states that every motor vehicles operated on the road should be type approved. It means that before issuance of the type approval certificate, all motor vehicle should be tested through Motor Vehicle Test Centre for Roadworthiness and Certification which includes emission related checks such as:

- CO and HC concentrations for motor vehicles equipped with SI engines:
- Smoke for diesel motor vehicles.

In this respect, the Government imposes two kinds of motor vehicle inspections, i.e.:

- a. Type approval inspection; and
- b. Periodical inspection.

Type approval inspection is handled by the Directorate General of Land Transportation, Ministry of Communications and conducted in the motor vehicle inspection centre in Bekasi, about 30 kilometers from Jakarta. Such an inspection is intended to test the new type of all motor vehicles concerning with safety and exhaust gas emission. Any new type of motor vehicle does not pass the test is not allowed to be manufactured or assembled in mass production. For any new type of motor vehicle does pass the test, Director General of Land Transportation will grant a type approval certificate.

At a moment, all motor vehicles registered in Indonesia except private passenger cars must be inspected periodically twice per year. Similar to the type approval inspection, such a periodical inspection is intended not only for safety consideration, but also to control the smoke and exhaust gas emission. The periodical inspection is handled by Road Traffic and Transportation Office of the local government in every big city as well as in small city throughout the country.

Although the Government of Indonesia has enough regulation on motor vehicle periodical inspection, the objective in reducing air pollution due to motor vehicle

in use on the road is still far ahead since there is a fact that the local government are lack of motor vehicle inspection equipment. From the total number of motor vehicle inspection stations scattered throughout the country, only about 25% are equiped with a proper mechanical equipment. This condition suggests that the most of motor vehicles do not undergo the exhaust gas emission inspection.

In order to control a new motor vehicle with regard to emission, the Minister for Communications has already issued Decree Number KM.8 of 1989 which stipulates the exhaust gas emission standard, which states that:

- a. CO and HC contents of the motor vehicle exhaust gas emission using premium (>= 87 RON) have been determined as follows: maximum 4.5% for CO and 1,200 ppm for HC;
- b. Contents as stated above are measured at idling condition whilst gas condition is at unhappered position;
- c. Thickness of the diesel fueled (>= 45 cetane number) notor vehicle exhaust gas smoke is determined at 50% maximum;
- d. Similar to point (b) above the measurement of smoke thickness must be conducted in idling condition.

6. PROCEDURE OF HOTOR VEHICLE EMISSION INSPECTION

Director General of Land Transportation issued the Decree Number AJ.402/8/5 of September 1990, to provide guidelines on the procedure of roadworthiness inspection for motor vehicles, specially concerning with exhaust gas emission and smoke. This procedure is used for type approval inspection and periodical inspection, covering inspection procedure of Carbon Monoxide (CO), Hydro Carbon (HC), and thickness of smoke.

a. Procedure of Heasuring CO and HC

(1) Scope
This procedure covers the method to determine the carbon monoxide (CO) and hydro carbon (HC) content which are contained in exhaust gas of fire ignited internal combustion engines of motor vehicle in the position of idling rotation.

(2) Definition

(a) The concentration of CO is the ratio of the volume of carbon monoxide (CO) which is cantained in the exhaust gas and expressed in percents (%).

(b) The concentration of HC is the ratio of the volume of hydro carbon (HC) equalized with normal hexane (C6H14) in the exhaust gas and expressed in ppm.

(3) Test Condition

- (a) Surrounding condition (outside).

 The outside temperature for the testing vehicles and the measuring (testing) equipment should be around 25 +/- 5 °C. The testing equipment should not be exposed to direct heat of the sun, rain or wind.
- (b) Condition of motor vehicle.
 The tested motor vehicle should be on a flat place.
 - All additional equipment exept the standard operational accesories of the engine must be removed and be in aposition without load.
 - For motor vehicle with normal transmission, the position of the gears must be in neutral and the clutch must be at free position. For motor vehicle with automatic transmission, the transfer lever must be at neutral (N) or at position of parking (P).
 - The engine hood must be in proper close condition and an additional cooling fan should not be used.
- (c) Preparing the tested motor vehicle.
 - First, the propelling engine must be warmed up to the working temperature. The choke should not be in operation. The warming up of propelling engine should be conducted in line with the instruction from the manufacturing plant if such is available in the operating manual or other manuals. A thermometer or other measuring device should be used to measure whether the working temperature of the engine has been reached, which mean that the warming up is sufficient.
 - The idling rotation of the propelling engine must be stable and the ignition period must be in line with the specification from the manufacture.
- (d) Fuel oil.

 The fuel oil must fulfill the government requirements.

(4) Testing Equipment

- (a) The testing equipment must be capable of measuring the CO and HC content continuously at the tested motor vehicle in idling rotation.
- (b) The operation of the testing equipment must adhere to the procedure for operating the testing equipment.

(5) Testing procedure

- (a) Investigate whether there is a leakage at the propelling engine exhaust gas system and the testing equipment.
- (b) After the warming up has been completed, the rotation of the engine should be increased to the medium rotation during 15 minutes without load and then back to the idling rotation.
- (c) Immediately after the rotation of the engine has returned to the idling, attach the equipment (probe) into the exhaust gas disposal pipe as deep as 30 cm. After approximately 20 seconds, the measurement of the CO and HC content can be carried out in line with the SOP of the testing equipment.

If the motor vehicle has 2 or 3 exhaust gas disposal pipes, it should be arranged that the exhaust gas is discharged through 1 pipe. If the disposal cannot be made through 1 pipe, the measurement must be conducted at each disposal pipe, in this way, the connection must be calculated by way of finding the average value.

Notes:

- (a) In 4 stroke engine, the probe must be placed minimum 30 cm inside the exhaust gas pipe, in so far as the testing is not influenced by surrounding air.
- (b) If the probe can not be placed inside the exhaust gas pipe as required, then we must extend the exhaust gas pipe.
- b. Procedure of Measuring Smoke Thickness
 - (1) Scope
 This procedure explains the steps of testing the thickness of smoke content of diesel motor vehicle at a stationary rotation.

- (2) Testing condition
 - (a) Condition of the propelling engine and tested motor vehicle.
 - The seal on the engine must be in accordance with the factory specifications.
 - The exhaust gas system must not be leaking.
 - Before being warmed up until the working temperature in line with the specifications of the manufacturing factory, in particular, cooling water and oil must reach the working temperature determined by the manufacturing factory requirements. The warming up of the propelling engine should be carried out in with the instructions of the manufacturing manual or in another manual for propelling engine. The thermometer or other measuring equipment use for measuring whether the working temperature of the propelling engine has been reached, in the meaning of the warming up is sufficient.
 - (b) Fuel oil.

 The fuel oil used must fulfill the requirements set by the Government.
 - (c) Testing equipment.
 - The equipment is constructed in such away that it is capable of sucking exhaust gas as much as (330 ± 15) ml within 1.4 ± 0.2 seconds through a filter paper.
 - The installation of the probe in the exhaust gas pipe must be paralel to the axis of the pipe. If it is impossible for the probe to be paralel, an addition must be used.
 - The quality of the filter paper used must be in line with the class 5A filter paper shown at JIS P3601 or the equivalent.
 - To know the opacity of the filter paper and to ensure the reflection of the smoke tester in line with the type Bosch (JIS D8004). The calibration of the smoke meter is carried out in line with the requirements issued by the manufacturing factory of the equipment as an example of the deflection type.
 - (d) Condition of the testing place
 The absolute temperature of the testing place (T)
 expressed in degrees/kelvin and the atmospheric
 pressure H expressed in nm Hg must be measured and

the factor F can be calculated with the formula:

 $F = (750/H)^{0.65} \times (T/298)^{0.5}$

To measure the value of F as correcting factor of the testing place can be taken: 0.98 < F < 1.02.

- (3) Testing procedure
 - (a) The transmission transfer lever must be place at the neutral position, and the position of the clutch must be free.
 - (b) Before starting the measurements, clean the disposal system by pressing the accelerator 2 or 3 times without load.
 - (c) After the cleaning as mentioned above, leave the propelling engine at an idle rotation during 5 to 6 seconds, and then press the accelerator pedal slowly so that there will be maximum injection from the injection pump.

This condition is maintained 4 seconds so that a maximum rotation will be reached and governor will be working. After 4 seconds release the accelerator pedal and the engine will return to idle rotation and leave it untill the subsequent measurement.

The period of each measurement must be 15 second. The working of the gas collection by the equipment started— simultaneously with start of the working of the accelerator pedal so that the equipment will collect the exhaust gas when the accelerator pedal is pressed down.

- (d) The measurement is repeated 3 times and for each measurement must be used a new filter paper.
- (e) The squence of the exhaust gas measuring should be conducted.
- (4) Test results
 The opacity of the 3 pieces filter paper during the testing, the average value is taken and final result obatained by comparing it with the value limit.

7. CONHENT ON GUIDELINES

a. Regional Cooperation

Guidelines for New Hotor Vehicle Emission Control In the Asia - Pasific Region is certainly necessary to be decided by Expert Group Heeting of participating countries in order to cope with the problems related to motor vehicle emission.

Moreover, it is hoped to give some ideas in harmonizing of control system, actions to be taken on both regional and country level, as well as the adoption of any standards which have already been acceptable in many parts of the world.

From the experiences of many countries have advised us, that the best efficiency of the emission reduction can be achieved if all measures taken up for this purpose are not conducted separately, but form a comprehensive and uniform motor emission control system. It is, therefore, the system of vehicle emission control should not cover only in new vehicle control, in-use vehicle inspection, and fuel quality control, but also the use of advantageous emission technology.

Hotor vehicle emission control system which is described in figure 3 seems to be very desirable for all participating countries. However, in particular occasions, the system might not be very easy to implement in certain country in Asia - Pasific region.

For instance, in the recent time, in Indonesia the registration of motor vehicle is separate activity in the whole motor vehicle emission control system. At the same time, the verification of production conformity activity might not be yet implemented in some participating countries. Somehow, in the near future the system might be applicable since the government regulation draft concerning with motor vehicle emission control system is legalized.

b. Actions on Regional Levels

The guidelines states that irrespective of differences in vehicle population, scope of coverage of current standards, etc. priority in all countries participating in the project should be given to the control with regard to emission from the following categories:

- (a) vehicles equipped with SI engines:
 - cars,
 - light duty,
- (b) diesel vehicles:
 - light-duty,
 - medium/heavy duty.

For the above categories, two level (i.e. reduced - and low emission standars) harmonization including the majority of countries participating in the project is possible in the first place. Moreover, common standards for motorcycles seem to be interest for small group of countries as well.

In the respect of the description mentioned above, the control with regard to emission in Indonesia should cover both motor vehicles equipped with SI engine and diesel motor vehicles in the following categories:

- (a) Bus,
- (b) Goods vehicles.
- (c) Passenger vehicles,
- (d) Motorcycles,
 - (e) Special purpose vehicles.

As described in the guidelines draft, related to motorcycles, Indonesia has only specified requirements with regard to CO and HC concentrations at idle (different with regard to limits). For additional information, at the time being, the concentration of motorcycle emission is not yet inspected. However, in the near future, motorcycles might be a subject for such inspection.

To these all differences, it is necessary to discuss them among the Expert Group Meeting to point out the best way to find out the solutions in order to harmonize them.

c. Actions on Country Levels

Based on the experiences of many countries, it is easy to understand that the type approval procedure alone is insufficient to ensure that vehicles entering into traffic

comply with the construction requirements. It is therefore recommended to conduct the verification of conformity of vehicles with the approval type. In consequent of such recommendation, the manufacturer of the approved vehicle type should, among others:

- conduct functional tests with regard to emission affecting components and system,
- perform quality audit tests on a limited number of production vehicles,
- take all necessary steps to reestablish the conformity of production if vehicles have failed tests.

As mentioned previously, in the recent time in some countries, the activity of the conformity of production verification might not be implemented yet due to local condition and legislation. So that, these matters should be discussed more deeply among the Expert Group Heeting. After finding out a desirable solution of it, the competent authority which has granted the type approval is empowered to verify the conformity of production.

d. Prerequisites for The Implementation of New Motor Vehicle Emission Control

In order to implement the motor vehicle emission control effectively, it is necessary for majority of countries of the region to develop both administrative services and technical services (test centres). By setting up both the administrative services and technical services, in one side not only would be capable to handle effectively the control procedure, but also capable to handle some important task of technical matters.

It is to note, however, that the development of both administrative - and technical services may needs to fulfil some requirements, such as introducing changes to organizational structure of the authority in charge of vehicle emission programmes, redefining its function, etc. (for administrative service development), sophisticated equipment, skillful and competent personnel to conduct emission tests and operate the sophisticated equipment, etc. (for technical service development).

Based on the above description, it is important to note that the development of such both administrative - and technical services should also consider the specific local condition and legislation in each countries in the region.

8. CONCLUSION

- a. There is still strong evidence that transportation sector contributes the highest percentage on air pollution, particularly in some big cities.
- b. To minimize air pollution due to motor vehicles operated on the roads, there are many actions might be done, which need participation from all related persons.
- c. It is realized that the inspection of motor vehicles certainly plays an important role as one of measures to cope with the problems related to air pollution due to motor vehicles operated on the roads. It is therefore, every motor vehicles should be tested through Motor Vehicle Test Centre for Roadworthiness and Certification which includes emission related checks such as; Co and HC concentration for motor vehicles equipped with SI engines, and smoke for diesel motor vehicles.
- d. Minister for Communications has already issued Decree Number KM.8 of 1989 which stipulates the exhaust gas emission standard, therefore all motor vehicles operated on the roads must fulfil such limits.
- e. Guidelines for New Motor Vehicle Emission Control In the Asia-Pacific Region is certainly necessary to be decided by Expert Group Meeting of all participating countries. Generally, The guidelines draft seems to be very desirable for all participating countries. However, in particular reasons, the proposal of the guidelines might be not be very easy to implement in certain country in the Asia-Pacific Region. It is therefore, in order to harmonize the control system of New Motor Vehicle with Regard to Emissions in The Asia-Pacific Region should consider every local condition and legislation of each countries in the Region.