

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at <u>www.unido.org</u>

20863

21 November 1994 Original: English **97**р. 136-й 1-244-й

ASSISTANCE TO BELIZE ELECTRICITY LIMITED TO IDENTIFY AND ASSESS STRATEGIES TO CONTROL ELECTRICITY DEMAND AND PLAN THE SUPPLY

SI/BZE/92/803/11-51/J13317 BELIZE

Technical Report Vol. 3: Final Report including Hardware and Software Report, Commissioning Report, Second Mission of Consultant

Prepared by

Dipl.-Wi.-Ing. Bernhard Bösl Institute for Energy Economics and the Rational Use of Energy (IER) University of Stuttgart Pfaffenwaldring 31 70550 Stuttgart Germany

United Nations Industrial Development Organization, Vienna, Austria

EXPLANATORY NOTES

Currency exchange rate (October 1994):

i Belize Dollar BZ\$ = 0.5 US\$ 1 US\$ = 2 BZ\$

BZ\$ linked to the US\$ since May 1976.

ABSTRACT

This is the final report of the UNIDO project "Assistance to Belize Electricity Limited to identify and assess strategies to control electricity demand and plan the supply", project no. SI/BZE/92/803, contract no. 93/265.

The report reflects the outcome of the second mission of Mr. Bernhard Bösl to Belize. The main objectives of this mission were to assist Belize Electricity Limited (BEL) to analyze the data retrieved from a nation wide household energy survey and to assess the influence of demand side strategies on the electricity demand of the household sector.

In addition, this report contains information about the purchase and commissioning of the computer hardware and software to Belize Electricity Limited.

For further information about the first phases of the project, please refer to the following reports:

Bernhard Bösl, "Technical Report Vol. 1: First Mission of Consultant", UNIDO Project No. SI/BZE/92/803, Institute for Energy Economics and the Rational Use of Energy (IER), University of Stuttgart, November 1993.

Bernhard Bösl, John Mencias, José Armando Moreno, "Technical Report Vol. 2: Training Program", UNIDO Project No. SI/BZE/92/803, Institute for Energy Economics and the Rational Use of Energy (IER), University of Stuttgart, April 1994.

TABLE OF CONTENTS

EXPLANATORY NOTES	2
ABSTRACT	3
TABLE OF CONTENTS	4
INTRODUCTION	6
I. HARDWARE AND SOFTWARE REPORT	7
A. Computer Hardware and Commercial Software	7
B. Energy Planning Software - MESAP	
II. COMMISSIONING REPORT	10
A. Computer Hardware and Commercial Software	10
B. Energy Planning Software - MESAP	10
1. Training on MESAP II and MESAP III	10
2. Installation of MESAP II - System	11
3. Installation of MESAP III - System (NETWORK, PlaNet)	12
III. SECOND MISSION OF CONSULTANT	15
A. Objectives	15
B. Tasks	16
IV. ANALYSIS OF THE CURRENT ENERGY SITUATION	18
A. National Energy Survey - Household Sector	18
1. Sample Design	18
2. Questionnaire Design	19
3. Survey Performance	19
4 Data Input and Consistency Checks	20
5. Data Analysis and Aggregated Results	21
6. Electricity Consumption of Households in 1994	21
B. National Energy Survey - Industry and Services Sector	23
V. ANALYSIS OF THE FUTURE ELECTRICITY DEMAND	24
A. Objective	24
B. Modelling Framework	24
C. Reference Energy System (RES)	24
D. Regions	25

E. Scenarios and Strategies	25 27
VI. CONCLUSIONS	28
VII. RECOMMENDATIONS	29
ANNEX 1: SPECIFICATION OF DELIVERED COMPUTER EQUIPMENT	30
ANNEX 2: PRELIMINARY PROJECT TIME SCHEDULE	31
ANNEX 3: FINAL PROJECT TIME SCHEDULE	32
ANNEX 4: JOB DESCRIPTION	33
ANNEX 5: NUMBER OF HOUSEHOLDS	35
ANNEX 6: HOUSEHOLD ENERGY SURVEY - STATISTICS	36
ANNEX 7: HOUSEHOLD ENERGY SURVEY - QUESTIONNAIRE	37
ANNEX 8: HOUSEHOLD ENERGY SURVEY - INPUT FORM	55
ANNEX 9: HOUSEHOLD ENERGY SURVEY - AGGREGATED RESULTS 1 .	64
ANNEX 10: HOUSEHOLD ENERGY SURVEY - AGGREGATED RESULTS 2	66
ANNEX 11: ASSESSMENT OF END USE TECHNOLOGIES	69
ANNEX 12: ELECTRICITY CONSUMPTION OF HOUSEHOLDS IN 1994 -	
BY REGION	70
ANNEX 13: ELECTRICITY CONSUMPTION OF HOUSEHOLDS IN 1994 -	
SUMMARY	73
ANNEX 14: CROSSCOUNTRY COMPARISON OF HOUSEHOLD ELECTRICITY	
END-USES	74
ANNEX 15: REFERENCE ENERGY SYSTEM (RES)	75
ANNEX 16: RES-STRUCTURE	76
ANNEX 17: LIST OF COMMODITIES	78
ANNEX 18: LIST OF EQUATIONS	80
ANNEX 19: RESULT TABLES	83
ANNEX 20: RESULT GRAPHICS	86
BIBLIOGRAPHY	93

INTRODUCTION

This is the final report of the UNIDO project "Assistance to Belize Electricity Limited to identify and assess strategies to control electricity demand and plan the supply", project no. SI/BZE/92/803, covering the equipment purchase and commissioning, the second mission of Mr. Bösl, the performance of the household energy survey, and the household electricity demand analysis.

In the hardware and software report in Chapter I the computer hardware, commercial software and the energy planning software, delivered within this project, is described in detail.

The **commissioning report** in Chapter II summarizes the training and the installation procedure of the energy planning system MESAP.

Chapter III gives an overview on the objectives and tasks of the **second mission** of Mr. Bernhard Bösl to Belize. Mr. Bösl spent 6 weeks on site, from September 19 to November 1, 1994. Together with Mr. José Armando Moreno from the Planning Department of Belize Electricity Limited (BEL), Mr. Bösl carried out a household energy survey and a household electricity demand study, using the MESAP energy planning software.

The performance of the nation wide **energy survey** in the residential sector, from the sample design to the analysis of the electricity consumption in 1994, is described in Chapter IV.

The results obtained from the household energy survey were used for an **electricity demand study**, analyzing the impact of different scenarios on the trend of the residential electricity demand in Belize. The objective, the underlying assumptions and the results of this study are illustrated in Chapter V.

Further information, detailed tables, and graphics are attached to this report in the annexes.

7

I. HARDWARE AND SOFTWARE REPORT

A. Computer Hardware and Commercial Software

As recommended in the "Technical Report Vol. 1: First mission of consultant" the computer hardware and commercial software was purchased directly in Belize. The purchase and configuration of the computer equipment in Germany and the later shipment to Belize, as suggested in the UNIDO Project Document (12. April 1991), would have been a needless loss of money, since the counterpart has already broad experience with modern computer techniques.

Belize Electricity Limited ordered the computer equipment at Flamingo Export Company, United States, following the hardware and software specification in the Technical Report Vol. 1, Annex 7. The detailed specification and prices of the computer equipment delivered is given in the invoice, attached to this report in Annex 1. After receiving the original invoice, the University of Stuttgart reimbursed the expenses of Belize Electricity Limited up to the budget limit of US\$ 30,000.

B. Energy Planning Software - MESAP

The energy planning software applied within this project, is the Microcomputer based Energy Sector Analysis and Planning System MESAP. MESAP was developed by the Institute for Energy Economics and the Rational Use of Energy (IER), University of Stuttgart. The MESAP System combines on one computer a set of energy analysis and planning tools. Actually two versions of the MESAP System were transferred to Belize Electricity Limited: MESAP Version II and MESAP Version III.

The **MESAP Version II** runs under the DOS operating system and contains the widely used energy planning models MADE, MESSAGE, INCA, WASP:

The energy demand model MADE (Model for the Analysis of the Demand for Energy) provides in a flexible format several methodological options on how to calculate useful energy requirements and the final energy demand. A simulation algorithm calculates the secondary and primary energy consumption. In the demand part, econometric as well as engineering techniques are optionally available.

The **energy supply system model MESSAGE** is based on the LP (Linear Programming) approach. It is flexible in terms of the fuels considered, the sectors analyzed and with respect to the model size. It is a network oriented model. The objective function can be defined by the user.

INCA is an acronym for Investment Calculation, a program which calculates the present value of alternative investments. Based on the present value method, the dynamic power generation costs, cash flow, amortisation time and other economic key parameters are determined.

The **power plant expansion module WASP** (Wien Automatic System Planning) model uses the dynamic programming technique for the expansion planning of electricity generation units. The model has been applied in many case studies all over the world.

For a detailed description of MESAP Version II see Technical Report Vol. 1, Annex 3.

Further, the NETWORK-Database and the Energy Demand Analysis and Supply Simulation model PlaNet of the recently developed **MESAP Version III** were delivered to Belize Electricity Limited. MESAP III is developed for PC's with a "Windows" based graphical user interface.

NETWORK, the new central database of MESAP, is based on the relational database concept. This database fulfills two main functions: it is a case study information system which offers all retrieval features of current information management tools and it serves as a standardized database for process-engineering oriented energy and environmental planning models. Standardization of the data structure is achieved through the representation of any energy and environmental system as a network diagram the so called "Reference Energy System (RES)". The RES consists of different fuels and other material flows being converted in a chain of processes. The only restriction in the design of NETWORK is that the energy and environment system must be represented as a network of commodities, flows and processes. This approach allows the planner to specify the level of detail in the analysis and creates a model independent database structure which is no longer acapted to the algorithms. Since different models can use the same standardized NETWORK database format, data sharing and exchanging is improved. The planner is supported by a state of the art user interface and strong analysis tools, now being shared between the models.

The Energy Demand Analysis and Supply Simulation model **PlaNet** is the successor for the demand model MADE. PlaNet is fully integrated into the NETWORK database concept. PlaNet allows to model the demand side as well as the supply sector by using any form of the "Reference Energy System (RES)". PlaNet has similar features to his predecessor MADE, but offers more flexibility concerning the simulation equations. It allows any number of equations for processes with multiple inputs or outputs and thus simulates technologies such as co-generation better. PlaNet allows to define any flow of a process or any quantity of a commodity in the RES exogenously. It includes the possibility to use product shares for technology inputs in addition to market shares for technology outputs and it will check for violations of user defined bounds and constraints. Units can be transferred automatically and an online unit calculator is available.

Future versions of PlaNet will allow higher time resolution in order to integrate load aspects in the energy demand analysis and the simulation of the supply system. Based on the calculation of all energy flows within the network, a user defined energy balance will be calculated for any time period. According to these flows the needed capacities of the energy conversion technologies will be determined. A detailed cost analysis will be available not only to determine total costs of the energy supply system, but also to calculate levelized production costs (per unit costs) for each commodity. A detailed evaluation of the environmental impacts will help find major emission sources and their abatement costs.

II. COMMISSIONING REPORT

A. Computer Hardware and Commercial Software

After the delivery of the computer hardware and commercial software to Belize Electricity Limited (BEL), at the end of July 1994, the equipment (computer, printer, UPS) was installed at the planning department of BEL, at the main power plant in Eelize City, Magazine Road. The installation of the hardware and commercial software was carried out by the Data Processing Department of BEL. The PC's were linked to the existing NOVELL-PC-Network to make data exchange and communication easier.

B. Energy Planning Software - MESAP

1. Training on MESAP II and MESAP III

During the training phase of the project, taking place at the University of Stuttgart, Germany, from February 28 to March 25, 1994, two employees of BEL (Mr. Moreno and Mr. Mencias) were trained on the installation and application of the MESAP II and MESAP III system (see Technical Report Vol. 2: Training Program). During the second mission of consultant one of these employees (Mr. Moreno) was trained again in depth on the PlaNet model. Starting with a simple example, finally a comprehensive case study was implemented, analyzing the electricity demand of the residential sector in Belize.

Installation diskettes, installation descriptions and user manuals were delivered by the IER. The MESAP manuals are listed in the bibliography attached to this report. In the case of the PlaNet model a user manual is not yet available, but due to the high user-friendliness of WINDOWS-applications PlaNet can be handled without manual after an introduction.

2. Installation of MESAP II - System

MESAP can only be installed on a hard disk. It requires about 10 MB of hard disk space. The execution of the module MESSAGE requires the DOS-EMM device driver to be installed. Your CONFIG-SYS should include the following command:

device = c:\dos\emm386.exe auto 2048 ram

Please modify the command, if your DOS-System files are in another directory then specified above [C:\DOS\].

The directory structure of the MESAP system looks as follows:

D:.	MESAP-Drive, in this case drive D:
LMESAP	MESAP main directory
INCA	Module INCA (Investment calculation)
│	INCA default data
LEXE	INCA programs
├KERNEL	MESAP kernel system
EXE	MESAP kernel executable program
├──LOTUS	Lotus 2.01
└WK1	Lotus default worksheet directory
HMADE	Module MADE (Energy Demand Analysis)
DATA	MADE default data sets
└───EXE	MADE programs
├───MAINMENU	MESAP main menu system
LEXE	MESAP mainmenu executable program
├───MESSAGE	Module MESSAGE (Energy system optimization)
DATA	MESSAGE default data
	MESSAGE programs
	DOS-extender
├───SYS	MESAP utilities
L	Install user subdirectories here!
├BEL	User directory BEL
└───CS	User directory CS

User Management:

Every user that has a subdirectory in the USERS directory can use the MESAP system. His identification is identical to his directory name. When a new user starts

a module for the first time, the default data sets will be copied into his user directory so he can start working on the default examples.

3. Installation of MESAP III - System (NETWORK, PlaNet)

This installation description refers to the PlaNet Version of 16.9.1994. All directory names in this installation description are examples and may be modified to customize installation.

1) Select a drive and home directory for PlaNet, eg.

drive c: directory planet

In this installation procedure we will always refer to the c:\planet as the PlaNet home directory. If you select a different drive and directory please modify the commands with your drive and directory.

- Insert the diskette in drive a:. Type the following command: a:\install c: planet
- 3) The files from three diskettes will be copied

This should result in the following directory structure:

C:PLANET

-----DATA

GB\pl_case.mdb (case study tables of NETWORK)

EXE*.exe, *.dll, *.rpt, planet.ini, etc.

------SYSTABLE\pl_sys.mdb (system tables of NETWORK)

⊢—xx

4) Edit the file c:\planet\exe\planet.ini as follows:

[Planet]	
SysTablePath	= C:\planet\systable
SysTableBackupPath	= (make your selection)
NewCaseStudyPath	= (make your selection)

Indicates, where the directories for the system table, the system backup and the new case studies is.

5) If this is not yet the case, issue the following command at the DOS-prompt and add it to your autoexec.bat:

SHARE /L:500 (DOS Share command)

- 6) Start Windows
- 7) Create a new program group "PlaNiet 1.1" with Windows command "File-New".
- 8) In this group create a new program item with the command "File-New":

Description:PlaNet 1.1Command line:C:\planet\exe\planet.exeWorking directory:C:\planet\exe

The installation is finished!

- 9) Click the Planet-Icon to start Planet
- 10) Login as Manager, the password is "kentucky". Since you start with our System Tables and the userlist from IER Stuttgart, you have to make some modifications.
- 11) In the File-Supervisor menu choose USERLIST and add your account, i.e. XX. The default access levels is used, when no explicit access rights are granted for a case study. Choose "none". As home directory select C:\planet\user\XX. Delete all other existing users from IER.
- 12) Now login as XX. The default is no password. Select File-Import to import a case study from disk 1. The case studies are stored in A:\data*.plt. Assign a home directory for the case study, preferably c:\planet\data\case_xy. In the Import-Form

14

click both "Find-by-ID" buttons. Then click ok.

12) Open the case study with File-Open.

Finished! You are already working with PlaNet.

If you want to clean up the case study list, login as supervisor. Select the File-Supervisor menu choose CS_LiST (Case study list) and delete all case studies except the ones you just imported.

Installation of the PlaNet Update from 18.9.1994:

- 1) Copy all files from the update diskette to the directory C:\PLANET\EXE.
- 2) You have to insert two new parameters in the parameter list. Therefore login as supervisor and in the File-Supervisor menue choose PARAMETER LIST.
- Insert a new parameter:
 ID: MKT_SPLIT
 Name: Market Split (sum <> 1)
 Related Specifier: prod_alloc_2
 The other entries are similar to the parameter MKTA.
- 4) Insert an other parameter:

ID:PKT_SPLITName:Product Split (sum <> 1)Related Specifier:cons_alloc_2The other entries are similar to the parameter PKTA.

III. SECOND MISSION OF CONSULTANT

A. Objectives

Originally, the objective of the second expert mission to Belize within the overall project was to refine the electricity demand calculations. Based on the data collected by BEL and on the model setup of the case study, different scenarios and strategies for the development of the activities and behavior of the economic sectors and their influence on the electricity demand should have been calculated. For more details on the original workplan see "Technical Report Vol. 1: First Mission of Consultant", Chapter III.D.4. The preliminary and the final time schedule of the overall project are attached in Annex 2 and 3. The UNIDO-Job Description for this mission is attached in Annex 4.

Due to serious personal bottlenecks in the Planning Department, BEL was not able to finish the data collection and the model setup before the second mission. Currently there are several major projects going on which are supervised and performed by the Planning Department of BEL: construction of Belize's first hydro power plant and it's connection to the main load centers Belmopan and Belize City, and the construction of a transmission grid connecting the five largest power systems of Belize ("Power 2 Project"). For more information on these projects see "Technical Report Vol. 1: First Mission of Consultant", Chapter II.F. Therefore, only one employee of BEL (Mr. Moreno) was able to continue working on this project.

Considering these constraints the consultant Mr. Bösl and Mr. Moreno agreed to concentrate during the second mission on the residential sector and to perform all steps of a electricity demand analysis for this sector, from the data collection to the graphical presentation of the results. Thus, the objective of this second mission was to assist 'BEL in the design, realization, and analysis of a nation wide household energy survey, and to estimate the electricity demand of the residential sector following different scenarios. The detailed tasks are described in the following chapter.

B. Tasks

Following, the working plan of the second mission, taking place from September 19 to November 1, 1994. For a more detailed description of the tasks and their results see Chapter IV an V in this report.

- 1) Current Energy Situation, Data Analysis
 - 1.1) National Energy Survey Household Sector
 - 1.1.1) discussions on sample design, calculation of survey statistics
 - 1.1.2) programming the database tables for the raw data, using PARADOX FOR WINDOWS
 - 1.1.3) programming the forms for the data input
 - 1.1.4) manual consistency checks of completed survey questionnaires
 - 1.1.5) training of auxiliary employees for data input and supervision of data input
 - 1.1.6) programming and running of automatic consistency check routines
 - 1.1.7) programming and running of automatic data analysis routines
 - 1.1.8) aggregation, presentation and discussion of survey results
 - 1.1.9) technical assessment of end use technologies used by the residential sector
 - 1.1.10) calculation of the electricity consumption in the baseyear 1994
 - 1.2) National Energy Survey Industrial and Services Sector
 - 1.2.1) discussions about sectoral aggregation and sample design
 - 1.2.2) setup of survey questionnaire
- 2) Modelling and Analysis of the future Electricity Demand
 - 2.1) setup of the reference energy system (RES)
 - 2.2) detailed definition of scenarios and strategies
 - 2.3) Energy Demand and Supply Simulation Model PlaNet
 - 2.3.1) installation and introduction
 - 2.3.2) definition of the RES-structure
 - 2.3.3) definition of equations
 - 2.3.4) definition of regions and hypothesis (scenarios and strategies)

- 2.3.5) input of data
- 2.3.6) consistency checks
- 2.3.7) calculation of results
- 2.4) aggregation and graphical presentation of results
- 2.5) discussion of results with BEL.

IV. ANALYSIS OF THE CURRENT ENERGY SITUATION

A. National Energy Survey - Household Sector

1. Sample Design

The sample for the Household Energy Survey was selected by the Central Statistical Office (CSO), Ministry of Finance, Belmopan, Belize. Following, the description of the sample design delivered by CSO:

"The sample chosen for the National Energy Survey (NES) is a sub-sample of the grand sample from the Continuous Labour Force Survey (LFS). The LFS grand sample was a two-stage cluster sample, equally divided into 3 sub-samples. Each district was treated as an independent domain and divided into urban, rural divisions. Each district was assigned a number of clusters proportional to the number of households as at the 1991 Population Census. At the first stage was the selection of the primary units, the enumeration areas. The enumeration areas are chosen proportional to size, the size being the number of clusters assigned. Sizes of clusters are uniform within districts and vary slightly between districts. At the second stage, clusters of households within selected enumeration areas are chosen inversely proportional to the size of the enumeration area. This results in an equal sampling fraction in each domain. The grand sample is selected with a probability of 1 in 8. In the LFS, 2 of the 3 sub-samples are selected and interviewed per round. This yields approximately 3000 households to be interviewed per round. This fairly large household sample is necessary to ensure that an adequate number of persons aged 14 years or older are selected for interview. Since the unit of measurement for the NES is the household, a smaller sample of households would be adequate. It was decided that one of the three sub-samples be chosen. This yielded 1576 households or approximately 4 % of households to be interviewed."

This percentage is based on 39,832 households in the year 1991. The annual average growth rate in the number of households between the census 1980 and 1991 was about 3.2 % (see Annex 5 for more information on household statistics). Considering the same ongoing growth rate, the number of households was estimated on 43,937 in 1994. Out of the 1576 questionnaires 1283 were completed, the other households were vacant or refused to answer. Thus, the household survey covered 2.92 % of the total households of Belize in 1994.

In the statistics available from CSO the households are classified by 6 districts and by urban and rural (see Annex 5). For the electricity demand analysis a different classification is of interest. The households are divided into those areas that are closed to the proposed transmission grid (GRID) and those that will not be affected by the grid at least in the foresecable future (NON GRID). The households living closed to the grid are further divided into urban (URBAN GRID) and rural (RURAL GRID), because of different consumption patterns. The NON GRID households are considered to have a more homogenous and rural consumption behavior and are not further subdivided. For more details on this classification see Report Vol.2, Chapter X.C.3. For the analysis of the results of the survey it is required to know the number of households in each of the three categories (URBAN GRID, RURAL GRID, NON GRID) in the year 1994. Therefore, it was necessary to classify each of the approximately 260 enumeration areas and add up the number of households within the enumeration areas for each category and district. Again, the values for 1994 were calculated based on the growth rates observed between 1980 and 1991. The detailed survey statistics are given in Annex 6.

2. Questionnaire Design

The questionnaire used for the Household Energy Survey was designed by Mr. Moreno (BEL) with assistance from Mr. Bösl (IER) and CSO. It contains 70 questions in 7 sections. The questions cover all uses and forms of energy in the residential sector, though in the later case study the focus is on the use of electricity. Therefore, the results of this survey are not merely valuable for this analysis, but also for numerous other studies, e.g. the influence of the use of firewood on deforestation, the potential of solar water heating, or the LPG consumption of the households. The questionnaire was tested and improved in a small pilot survey. A copy of the questionnaire is attached to this report in Annex 7.

3. Survey Performance

The survey was conducted by the Central Statistical Office (CSO) of Belize. The data was collected by 67 interviewers from September 14 to September 30, 1994, and later checked by 7 editors and 7 supervisors of the CSO. Since quality of the gathered data mainly depends on the skill and empathy of the interviewer, all interviewers were prepared for the survey in an one-day training. Each interviewer was responsible for

at least on of the 84 enumeration areas selected in the sample. From each enumeration area about 20 households were interviewed. Out of the 1576 households selected for the survey, about 293 (19 %) questionnaires were not completed.

4. Data Input and Consistency Checks

For the input, storage and analysis of the data from the Household Energy Survey the relational database system PARADOX FOR WINDOWS was selected. Modern database systems like PARADOX allow to define in an easy and user friendly way

- tables to store the data,
- forms to input and view the data,
- queries to analyze and modify the data, and
- reports to present the data.

For the storage of the input data three tables were defined, file $raw_hh1.db$ for question 1 to question 20, $raw_hh2.db$ for question 21 to 35, and $raw_hh3.db$ for question 36 to 70. The tables contain automatic validity checks to avoid obviously absurd data entries. For the input of the data a user-friendly input-form was designed (file $hh_raw.fsl$). To simplify the data entry the design of this input-form is similar to the questionnaire design. The screen print of the input form is attached to this report in Annex 8. The 1283 questionnaires have been entered into the data base by three typists within two weeks from October 3 to October 14, 1994. Due to many inconsistencies, all questionnaires had to be checked again manually by Mr. Moreno and Mr. Bösl, before processing. For every enumeration area a separate set of database files was used, and named according to the code of the area (e.g. the files $r1_3102.db$, $r2_3102.db$, and $r3_3102.db$ for the enumeration area no. 3102). After completion of the data entry all data files were joined to one data table, containing all questions and all households (file $tot_bel.db$).

To find further inconsistencies, not discovered by the previous manual checks, and to detect typing errors, a set of automatic consistency checks have been programmed using the "query by example"-tool of PARADOX (files *check1.qbe* to *check18.qbe*). All mistakes that have been noticed by these consistency queries have been checked with the original questionnaire and corrected in the *tot_bel.db*-table.

5. Data Analysis and Aggregated Results

To retrieve information out of the database a set of analysis routines were implemented, using "query by example" (files *ana_1.qbe* to *ana_18.qbe*). The results of these data queries have been transferred to a QUATTRO PRO FOR WINDOWS spreadsheet (file *surv_res.wb1*). The aggregated results of the Housenold Energy Survey for total Belize as well as for the three categories (urban grid, rural grid, non grid) are attached in the Annex 9 and Annex 10.

The result table in Annex 9 shows the fuel use of the residential sector. About 80 % of the households of Belize are using electricity for lighting. Kerosene is used by about 26 % and candles by about 23 % of the households as single light source or as backup for electric lighting in case of a brownout. The major fuel for cooking in Belize is butane gas, used by about 76 % of the households. Firewood is used by 37 % of the households, 13 % in the urban grid but about 60-65 % in the rural grid and non grid areas. The share of households using electricity for cooking is less than 1 % and can be neglected. To be able to compare this result with other fuels, only electric stoves but no microwave ovens, kettles, toasters, or rice cookers are considered. About 50 % of the households have electric refrigerators or freezers, while the number of gas or kerosene refrigerators is negligible. Water heating and room cooling are only of small importance in the residential sector.

In Annex 10 the detailed results of the survey are presented. For every fuel the total number of appliances and the average usage of the appliances are listed. The absolute figures were first retrieved from the sample size and then estimated for the total number of households. As far as possible, the figures were compared to other statistics, e.g. the results of the 1991 census and the sales statistics of BEL. These comparisons showed only small variations and therefore proved the quality and reliability of the survey results.

6. Electricity Consumption of Households in 1994

Based on the results of the household energy survey the electricity consumption for different end use purposes in the year 1994 was calculated. Therefore, the end use technologies used by the residential sector in Belize have been assessed, in order to find out their average efficiencies, power ratings, or specific consumptions. Most of these values have been retrieved from literature and from previous studies, but some were gathered in a market survey in Belize. In Annex 11 the results of this technical

assessment of household appliances are shown in detail. Further, Annex 11 lists the technical values that have been finally selected for the electricity demand study, for each appliance.

Using the results of the technical assessment and the total number of appliances with their average usage, as retrieved from the household survey, it is possible to calculate the total electricity consumption per year for each appliance. These calculations for each region (urban grid, rural grid, non grid) are attached in Annex 12. In the case of refrigeration, water heating and laundry a slightly different calculation procedure was chosen. Since refrigerators usually run day and night, their total number was directly multiplied by the average electricity consumption per unit. For water heating the energy content of the required amount of hot water was calculated based on the physical energy content of water, and then multiplied with the efficiency of the heating appliance in the case of laundry the number of loads per year were multiplied by the average electricity consumption per load.

The results in the summary sheet in Annex 13 show that based on these calculations the total electricity consumption in 1994 of the residential sector is estimated to be about 57 GWh. After deducting the households with private generation, an electricity demand from Belize Electricity Limited of about 54.8 GWh was estimated. Since the reference month of the survey was August 1994, this value was compared to the sales statistics of BEL from the same month. According to the sales statistics the electricity consumption of the residential sector has only slight seasonal fluctuations and the month August was close to the average monthly sales within the last few years. Therefore, the total electricity consumption in 1994, based on the sales in August, is estimated to be about 54.5 GWh. Thus, the results of the survey lay within an error margin of less than 1 %, which again indicates the high quality and reliability of the survey results.

The results show that about 18 % of the residential electricity consumption is used for lighting and almost 36 % for reirigeration. Again, cooking is only of low importance, with about 3 %. Among the other electrical appliances the fans (12.6 %) and the iron (9.8 %) play an important role for the residential electricity use. There are only moderate variations of these shares among regions.

Annex 14 shows a crosscountry comparison of the residential electricity end-use. This comparison demonstrates that the consumption pattern of Belize is considerably close to the values of other Central American countries, except for cooking. While in other Central American countries about 20 % of the residential electricity consumption is used for cooking, in Belize this share is negligible. This is mainly caused by the

comparatively high electricity prices in Belize. People prefer to cook with the cheaper butane gas, though it is less comfortable (handling of cylinders). The comparison with the electricity end-use in the United States and Germany shows a typical difference between industrial and developing countries. The share of electricity used for lighting and refrigeration is smaller in higher developed countries, while water heating, air conditioning, and in the case of Germany room heating (considered among "Others") is of higher importance.

B. National Energy Survey - Industry and Services Sector

During the second mission of consultant the sectoral aggregation, the sample and the questionnaire design for the industry and services sector were discussed. With the experiences gathered during the residential electricity demand study Mr. Moreno from BEL will continue the electricity demand analysis for these sectors.

The **industry sector** is divided into sugar, citrus, bananas, food processing and light industry. All industrial sectors, except the light industry, consist only of a very small number of companies. Therefore all companies of these sectors will be surveyed. In the case of light industry a survey sample has to be selected with the help of the Central Statistical Office. For the industry sector a separate questionnaire was designed.

The **service sector** is further disaggregated into tourism, commerce, Belize Defence Forces (BDF), WASA (Water and Sewage Authority) operations, and Government/ statutory bodies/ streetlighting. Again, in the case of BDF, WASA and the government a complete survey, and in the case of tourism and commerce a sample survey will be undertaken.

V. ANALYSIS OF THE FUTURE ELECTRICITY DEMAND

A. Objective

It must be pointed out again that the objective of an energy demand analysis is not to predict a detailed figure about the energy demand in a certain year in the future. Nobody knows what will happen in future and all we know we have only learned by observing the past. But since decisions that have to be taken today have long term effects it is necessary to analyze these intertemporal aspects, in order to find a basis for rational and robust decisions. Therefore, the objective of a demand study in general is not to forecast the electricity demand, but to evaluate different strategies with regard to their influence on the electricity demand. The underlying criterias for this evaluation depend on the objectives of the counterpart involved in the study. In case of a government this objective may be e.g. energy conservation in order to reduce the import of fossil fuels. In the case of a private utility the objective is to maximize profits, by reducing the costs and/or increasing the sales.

B. Modelling Framework

For the estimation of the influence of various scenarios and strategies on the future electricity demand of the residential sector in Belize, the energy demand and supply simulation model PlaNet of the MESAP III System was applied (see Chapter I.B). As baseyear for the calculations the year of the Household Energy Survey, 1994 was chosen. A 20 year estimation period divided into steps of 5 years was used to show the impact of the trend in the long run. Thus, the results were calculated for the years 1999, 2004, 2009, and 2014.

C. Reference Energy System (RES)

The **Reference Energy System (RES)** of the electricity demand study for the residential sector is attached to this report in Annex 15. The RES displays the structure of the analyzed system and thus the sequence of calculations from the activities (e.g. number of electrified households) on the right side to the final energy demand for electricity on the left side. A PlaNet-Report listing the processes and their input and output commodities is given in Annex 16. Further, a report listing the

.

commodities and their units is shown in Annex 17. The equations of the resulting linear equation system are presented in Annex 18. This equation system is solved by PlaNet for each region, for each hypothesis, and in each modelling year.

D. Regions

As described in Chapter IV.A.1 the residential sector is sub-divided into 3 categories, namely URBAN GRID, RURAL GRID, and NON GRID. PlaNet offers the possibility to define different regions. Regions are characterized to have the same RES structure, but it is possible to define different input values for each region. Since in our case the types of end use appliances are the same in every household category (same RES) and only the intensities, usages etc. vary from region to region (different input values), each category is modelled as one region in the PlaNet model. This reduces the modelling effort drastically. The RES as shown in Annex 15 was defined only once, but is used for all three regions. Common data for all regions are entered only once and automatically inherited to all regions, while the specific data for a region must be entered separately and is only valid for this region.

E. Scenarios and Strategies

To cover likely trends in the electricity consumption, resulting out of the overall demographic and economic development, that can't be influenced by BEL, three **scenarios** were considered. The scenarios for the residential sector are characterized by different growth rates in the number of households and in the number of appliances per household or per person (intensities). The light intensity (lumenhours per room), the usage of the appliances (hours) and the technical values of the end use technologies (efficiencies, power ratings, specific consumptions) are assumed to stay constant in all scenarios. They could be influenced by BEL and therefore are subject of the strategies.

- Stagnation Scenario (STAG)

Low growth rate in the number of households of about 1 % per year in urban grid and of about 2 % per year in rural grid and non grid. The number of appliances per household or per person remain on their level of 1994.

Reference Scenario (REF)

The number of households grow with the same rate as between the census 1980 and 1991: 2.79 % per year in the case of urban grid and 3.7 % in the case of rural grid and non grid. The intensities are assumed to grow at 1 % per year.

- Prosperity Scenario (PROS)

High growth rate in the number of households of 3 % in the urban grid and 4 % per year in the rural grid and non grid region. High growth rate of 2 % per year in the intensities.

Scenario Table, Residential Sector											
Scenario Parameter	Stagnation	Reference	Prosperity								
No. of Households											
urban grid	+ 1 % per year	+ 2.79 % per year	+ 3 % per year								
rural grid, non grid	+ 2 % per year	+ 3.7 % per year	+ 4 % per year								
Intensities	constant	+ 1 % per year	+ 2 % per year								

To analyze and compare the impact of measures of BEL on the electricity demand of the residential sector, various **strategies** are considered:

- Business as Usual Strategy (BAU)

No measures are taken. This "doing nothing" case is used to evaluate the other strategies.

- Market Increase Strategy (INC)

This strategy analyzes the impact of various measures to increase the penetration of existing markets and the growth of new markets, thus finally the increase of the sales. Possible measures considered by this strategy are:

- Extension of the grid into new areas (shift from non grid to grid).
- Connection of more customers to existing grid (increase electrification rate).
- Encouraging the use of electricity for end uses like e.g. cooking, water heating.

Load Management Strategy (LOAD)

This strategy contains measures that are supposed to flatten the load curve and thus finally reducing specific generation costs:

- Promoting the use of more efficient appliances, especially in the case of lighting.
- Encouraging the use of appliances with constant or equal distributed load during the day, like e.g. refrigerators.

A more general description of the scenarios and strategies for all economic sectors, is given in Report Vol. 2, Chapter X.D and Annex 3.

Every combination of a scenario and a strategy will be modelled as a so called **hypothesis** in the PlaNet model. The combination REF/BAU is considered as the reference hypothesis. In PlaNet, the input values of the reference hypothesis are automatically inherited to each hypothesis in case there is no other value specified for this hypothesis. So far, only the combinations with the business as usual strategy were calculated. The results of these calculations are presented in the following chapter.

F. Results

During the second mission of consultant for each of the three regions (urban grid, rurai grid, non grid) three hypothesis have been calculated (STAG/BAU, REF/BAU, PROS/BAU). The detailed results of these 9 model calculations are presented in Annex 19 in tabular form and in Annex 20 in graphical form.

In case of the Stagnation / Business as Usual hypothesis the electricity demand of the residential sector in total Belize is estimated to increase from about 57 GWh per year in 1994 to about 75 GWh in 2014. This is equal to an average growth rate of approx. 1.4 % per year. In the REF/BAU hypothesis the electricity demand increases with about 4 % per year and is estimated to approx. 125 GWh in the year 2014. Finally, in the PROS/BAU hypothesis the residential demand for electricity reaches the level of about 155 GWh in 2014 with an annual average growth rate of 5.1 %.

VI. CONCLUSIONS

Concluding, the objectives of the second mission of consultant and of the project in general, have been reached.

The essential backbone and main objective of the overail project was to train and familiarize local staff with computer-based energy planning methods. Within the project two employees of Belize Electricity Limited (Mr. Moreno and Mr. Mencias) were trained on the basics and principles of energy planning in an intensive one month course, taking place at the University of Stuttgart, Germany, from February 28 to March 25, 1994. During the second mission of Mr. Bösl to Belize, taking place from September 19 to November 1, 1994, Mr. Moreno from Belize Electricity Limited (BEL) was further trained in depth in the field of survey analysis and electricity demand analysis. Thus, within the project the local capability to create and analyze energy planning models was built.

Beside the educational part, a comprehensive case study for Belize was set up. Though the personal bottlenecks on behalf of BEL during the final phase of the project, a detailed electricity demand analysis of the residential sector was done. The specifications, assumptions and results of the household electricity demand study are described in Chapter IV and V of this report. The results attained so far are very promising and from the extension of the study on the other economic sectors interesting outcomes may be expected.

VII. RECOMMENDATIONS

During the National Household Energy Survey a huge amount of data was gathered, covering all residential energy uses and all energy carriers. The results of this survey are not merely valuable for the actual electricity demand study by BEL, but also for numerous other studies and organizations.

Therefore, it is recommended that the results are made accessible for the Central Statistical Office (CSO) and the proposed "Energy Unit" of the Government of Belize.

Further, it is recommended to update this micro survey on a regular base every 3 to 5 years and to incorporate the main energy related questions into the census, carried out by the CSO every 10 years (last census: 1991). This would enable the planning department of BEL to build up a continuous energy data base and thus to improve the quality of future studies and decisions.

So far, a detailed electricity demand analysis of the residential sector, covering all steps from the data collection to the graphical presentation of the results, was performed. After the intensive training on energy planning methods of some BEL staff members, they should be in the position to carry on working in this field on their own and to extent the existing study.

As a first step, it is recommended to incorporate additional strategies into the residential electricity demand study and to analyze their impact on the electricity consumption, as described in Chapter V.E.

Further, it is recommended to extent the analysis on other economic sectors. In order to get a reliable data base it is recommended to conduct an energy survey for the industrial and services sector, as specified in Chapter IV.B.

ANNEX 1: SPECIFICATION OF DELIVERED COMPUTER EQUIPMENT

Ship To:

TEL:011-501-2-77141

FAX:011-501-2-75838 STORES

FAX:011-501-2-31905 COMPUTER

I hereby certify that this involce is true and corpect and that no other invoice exists 26. 周194 Flamingo Export Co. 009059 IMPORTS ţ

INVOICE 673 7/12/94 DATE

Bill To: BELIZE ELECTRICITY LIMITED 115 BARRACK ROAD BELIZE CITY BELIZE CENTRAL AMERICA

TEL:305/887-5884/FAX:887-7605

FLAMINGO EXPORT COMPANY

MEDLEY, FLORIDA, 33178

P.O Number REG _279/0347DP	Terms 30 DAYS	INVOICE:	C.I.F.BEL	IZE/AIR &	SEA 7/15/94	F-0
2 H743Cl H147234 H147234 H127H3L 1 200044 2 200044 2 200044 2 200044 2 200044 2 200044 2 200044 2 200044 2 200044 2 200044 2 200044 2 200044 2 200044 2 200044 2 200044 2 200044 2 2 2 2 2 2 2 2 2 2 2 2 2	DOS VERSION COMPAQ MINI ACTON ETHER COLORADO JU AMERICAN PO HEWLETT/PAC COMPAQ CONT DATA CARTRI TONERS H/PO PRINTER CAE WINDOWS (V3. PARADOX (V4. WORDPERFECT FREELANCE (V QUATTRO PRO	COMPUTERS NET COMBOS MBO TAPE / WER(2000VA) KARD LAZERJ URA NOTEBOO DGES(DC6250 4M+) / SLES / 11) / SW) / r(V6.0) / y2.01/W) / O(V5.0/W) / A MONITERS(1	, G ET (4M+) G KS / G G G G G G G G G G G G G G G G G G G	228.00 3833.00 90.00 250.00 1335.00 2423.00 3850.00 33.00 120.00 102.00 102.00 150.00 318.00 326.00 1050.00 1050.00 Subtot, FREIGHT	456 7,666 180 250 1,335 4,846 7,700 240 14 306 300 310 653	0.00 - 0.00 -
	*	K.N3 /	GR	AND TOTAL:	<i>¥</i> 30,00 <i>2</i> .	~ ~

51 51 94

	Oct 93	Nov 93	Dec 93	Jan 94	Feb 94	Mar 94	Apr 94	May 94	Jun 94	Jul 94
1. Initialization Phase 1. Mission Technical Report Contract Jegotiations]					
2.Training Phase Energy Planning, MESAP-Modules Energy Demand Model Exercises Setup of Survey Questionaire MESAP-Adaption										
3. Implementation Phase Purchase Equipment Data Collection Survey Conduction Survey Analysis Setup of Case-Study										
4. Analysis Phase 2. Mission Final model runs, result analysis Policy Formulations Final Report										

Activity in Belize

Activity in Germany

٠.

	Oct 93	Nov 93	Dec 93	Jan 94	Feb 94	Mar 94	Apr 94	May 94	Jun 94	Jul 94	Aug 94	Sep 94	Oct 94	Nov 94
1. Initialization Phase 1. Mission Technical Report Contract Negotiations														
2. Training Phase Energy Planning, MESAP-Modules Energy Demand Model Exercises Setup of Survey Questionaire MESAP-Adaption														
3. Implementation Phase Purchase Equipment Data Collection Survey Conduction Survey Analysis Setup of Case-Study														
4. Analysis Phase 2. Mission Final model runs, result analysis Policy Formulations Final Report														

32

Activity in Belize

Activity in Germany

۰.

33

ANNEX 4: JOB DESCRIPTION

UNIDO

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION

JOB DESCRIPTION

Request from the Government of Belize

May 1994

SI/BZE/92/803/11-51

Post title	:	Consultant on computer-based energy system modeling and analysis
Duration	:	9 weeks:
		a) 3 weeks home-base b) 5 weeks mission in Belize in September 1994
Date required	:	July 1994
Duty station	:	Belize and home base
Purpose of the proje	ect:	To assist the Belize Electricity Board to identify and assess strategies to control electricity demand, and to provide reliable and low-cost supply.
Duties	:	The consultant will be expected to:
		a) At the home-base: Revise the MESAP module PlaNet and prepare it for Belizean application. PlaNet is a combined energy demand analysis and supply simulation model, with menue-guide and GUI.
		b) In Belize:
		 Install and commission the complete computer system.
		 Assist counterpart in building and solving the electric power system models.
		 Based on the model solution results and their analysis, give advise to formulate alternative supply planning and demand management, strategies with optimization models, input/output routines and operating procedures.
		Train counterpart personnel.
P	rojeći	s and communications regarding this Job Description should be send to: Personnel Recruitment Branch, Department of Industrial Operations), Vienna International Centre, P.O. Box 300, A-1400 Vienna, Austria

 Qualifications
 : A university degree, preferably in engineering or science; practical experience in computer applications and programming; specific experience in optimization software and modeling in connection with the utility operations, resource assessment, energy technologies, and energy planning/programming.

Language : English

Background information:

The dependence of Belize on imported equipment and fuel has placed an obvious burden on the entire economy. Moreover, this burden is likely to increase because of growth in electrical demand and inevitable increases in the prices of equipment, and possibly of fuel. Ultimately, this dependency reduces national income, increases unemployment, and slows the rate of social development.

The annual expenditure will grow as electricity demand rises due to economic expansion and social development. Until new, the potential for reducing these costs has not been systematically examined. Certainly there are some areas where generation practices or technologies may be changed with relatively little investment to produce substantial savings. This situation must be addressed in order to better allocate national resources and to prevent future economic hardship.

By identifying electricity demand management and supply planning opportunities suitable for Belize, the current energy situation can gradually be transformed into a more seli-sufficient, cheaper energy future. Use of these different energy planning tools can minimize the economic problems associated with dependency on imported oil. This proposal outlines an immediate assistance to identify and adopt an integrated planning framework that can be used to assess the effectiveness of various policies and technologies which contribute to a sustainable energy future in the are of electricity generation for Belize. **ANNEX 5: NUMBER OF HOUSEHOLDS**

Belize National Energy Survey - Household Sector

Number of Households BEL / IER / CSO October 1994

	TOTAL			URBAN			RURAL		
DISTRICT	1980	1991	Growth	1980	1991	Growth	1980	1991	Growth
CORGZAL	4056	5518	2.84%	1322	1498	1.14%	2734	4020	3.57%
ORANGE WALK	4003	5750	3.35%	1485	2206	3.66%	2518	3544	3.16%
BELIZE	10659	13530	2.19%	8437	11094	2.52%	2222	2436	0.84%
CAYO	4196	7299	5.16%	2103	3429	4.54%	2093	3870	5.75%
STANN CREEK	2934	4140	3.18%	1371	1546	1.10%	1563	2594	4.71%
TOLEDO	2289	3595	4.19%	509	815	4.37%	1780	2780	4.14%
TOTAL	28137	S9832	3.21%	15227	20588	2.78%	12910	19244	3.70%

Source:

.

2

1980 figures extracted from the 1980 census, Central Statistical Office (CSO) 1991 figures are based on the 1991 census, updated for the National Laborforce Survey 1993

. .

Belize National Energy Survey - Household Sector Survey Statistics BEL / IER / CSO October 1994

[(To	tal			Grid	Urban			Grid	Rural			Non	Grid	
	# of HH	# of HH	# of HH	% of HH	# of HH	# of HH	# of HH	% of HH	# of HH	# of HH	# of HH	% of HH	# of HH	# of HH	# of HH	% of HH
District	1991	1994	surveyed	surveyed	1991	1994	surveyed	surveyed	1991	1994	surveyed	surveyed	1991	1994	survayed	surveyed
1. Corozal	5518	6015.6	212	3.52	1498	1549.9	52	3.47	3520	3910.3	160	4.55	500	555.4	0	0.00
2. Orange Walk	5750	6347.7	215	3.39	2206	2457.4	110	4.59	2967	3256.9	105	3.54	577	633.4	0	0.00
3. Belize	13530	14451.9	390	2.70	11094	11954.1	341	3.07	1860	1907.2	39	2.10	576	590.6	10	1.74
4. Cayo	7239	8485.9	234	2.76	3642	4161.5	99	2.72	3433	4059.5	116	3.38	224	264.9	19	8.48
5. Stann Creek	4140	4575.8	109 1	2.38	1546	1597.5	48	3.10	1022	1173.4	10	0.98	1572	1804.9	51	3.24
6. Toledo	3595	4059.8	123	3.03	0	0.0	0	0.00	0	0.0	0	0.00	3595			3,42
Total	39832	43936.7	1283	2.92	19986	21720.4	650	3.25	12802	14307.3	430	3.36	7044	7909.0	203	2,88

Values for 1994 are estimated based on the growth rates estimated from 1980 to 1991 census figures as shown on Table "Number of Households"

ANNEX 6: HOUSEHOLD ENERGY SURVEY - STATISTICS

36

37

ANNEX 7: HOUSEHOLD ENERGY SURVEY - QUESTIONNAIRE

QUESTIONNAIRE NO: _____

۰.

BELIZE ELECTRICITY LIMITED

PLANNING DEPARTMENT

NATIONAL ENERGY SURVEY

HOUSEHOLD SECTOR

SEPTEMBER 1994

GENERAL

	District Number	
	Area	
	ED Number	
	Household Number	
1.	Name of Head of Household:	•••••
2.	District:	
3.	City/Town/Village:	
4.	Telephone No:	

5. Classification:

1 URBAN GRID 2 RURAL GRID 3 NON GRID

Major towns connected to the future BEL grid system are to be considered as Urban Grid together with communities that form part or are very close to the major population centers e.g. Ladyville in the case of Belize City; Santa Elena in the case of San Ignacio, etc. All other villages or communities that are to be connected to the future Bel grid system shall be considered Rural Grid. Systems to be left isolated and shall not make part of the grid system e.g. Punta Gorda, Maskall, Sarteneja shall be considered Non Grid.

6. Interview status:

- 1. Complete
- 2. Partially complete
- 3. Refusal
- 4. Vacant
- 5. No contact

CONTROL

7.	Date of Interview
8.	Time of Interview from to(AM/PM)
9.	Total time of interview
10.	Interviewer's Signature
11.	Checked Supervisor's Signature
	Date:(DD/MM/YY)

12. Punched and Verified:

Date:(DD/MM/YY)

SECTION I

General Household Information

- Total number or rooms (include outside kitchen and veranda with permanent fixtures; exclude toilets, stores and other outside buildings).....
- 14. Approximate size of house ... ft. X ... ft. X... levels.
- 15. For how many people not necessarily living in household are following meals prepared.


MEALS	WEEKDAYS	SATURDAYS	SUNDAYS
Breakfast			
Lunch			
Evening Meal			

16. Information on use of hot water Bathing purposes:


DESCRIPTION	1 2	1	USERS WEEK	GALS. HOT WATER/USER
Bath (exclude shower)				
Shower				

39

17. Does the household undertake small scale farming (as a major activity) on the land on which their house is located? (Indicate with a \checkmark)

18. Is any carpentry, electronic repairs, garages or other such energy consuming activities undertaken on the premises of the household for commercial purposes findicate with a \checkmark)

- 19. What fuel do you presently use for the following activities? Indicate with the following:
 - 0 Not in use -
 - Only fuel use 1 -
 - 2
 - 3
 - About 1/4 in use
 About 1/2 in use
 More than 1/2 in use
 Rarely used
 Not applicable 4
 - 5
 - 9

			E						S	
			1						0	
			е						1	н
			с		к	с	F		a	е
			t		е	h	:	С	r	a
			r	i	r	a	r	a		t
			i		0	r	е	n	W	i
			с		s	с	w	đ	a	n
			i	G	e	0	0	1	t	a
			t	a	n	a	0	е	e	
			У	S	е	1	đ.	ទ	r	
1.	Lighting						纖			
2.	Cooking									調整
3.	Water Heating	*						数		
4.	Refrigeration					삁		黐		
5.	Room Cooling	**				潜	貅	1	155 191	
*	Exclude for co	sking nu	rnoge	DC						

Exclude for cooking purposes

Air Conditioning

20. FILL IN THE FOLLOWING TABLE WITH THE REQUIRED HOUSEHOLD INFORMATION.

	LIST OF ALL PERSONS PE LIVING IN HOSEHO		,	APPLIES TO PERSONS AGED 14 YEARS AND OVER					
No.	. Nane	Sex (M/F)	Age (Years)	Occupations or Type of Vork	SECTOR M	Туре жж	Net Income (\$Bz/month)	Remarks	
1				······································		•			
S									
З									
4									
5					· · · · ·				
6									
7					• .				
8									
9									
10									
11									
12									
13									
14			_					•	
15									
16									

DUTGDING PAYMENTS /MONTH

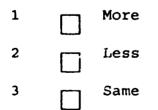
LOAN Gross income of household (\$Bz/month) RENT Total number of people permanently living in the household OTHER LIVING EXPENSES 1. Government 1. Fulltime 黒 жж SAVINGS 2. Semi-Government 2. Partime/seasonal TOTAL 3. Private 3. Not employed

SECTION II ELECTRICITY USE

21.	Do you use electricity in this household?(Indicate 1. YES	e with a √)
	2. NO	
	IF NO, DO 22 THEN GO TO 36	
	IF YES, SKIP TO 23	
22.	What is your reason for not using electricity? (In with a \checkmark)	dicate
	(i) Price of electricity too expensive	1.
	(ii) Connection and wiring is too expensive	
	(iii) Electrical appliances are too expensive	
	(iv) Electricity supply not available	
	(v) Electricity not suitable for our needs	1. П
	(vi) Other (Specify)	
23.	Do you have your own generator(s)?(Indicate with a 1. YES	√)
	2. NO	
	IF NO, GO TO 30	

24. What is the size of your generator? (add all units to get total generating cpacity in KW if more than one unit).....

25. What fuel do you use for this generator?(Indicate with a √)1. DIESEL



- 26. How many gallons of fuel per month do you use for this generator?.....
- 27. How much do you pay per gallon of this fuel? (BZ\$).....
- 28. How many hours per week do you operate this generator?.....
- 29. What is your average monthly fuel bill(BZ\$)?.....
- 30. Are you connected to BEL supply? (Indicate with a √)
 1. YES

2. NO

IF NO, GO TO 33

- 31. What was your last electricity bill (From BEL in BZ\$)?.....
- 32. What was your last month electricity consumption in kWh (From BEL)?.....
- 33. Are you using more or less electricity than a year ago (Indicate with a ✓)

8/18

34. Inventory of household electrical appliances.

(i) Lighting

	APPLIANCE	UNITS IN USE	AVG. USAGE H/DAY PER UNIT *
1.	Incandescent Buib (40 watts)		
2.	Incandescent Bulb (60 watts)		
3.	Incandescent Bulb (75 watts)		
4.	Incandescent Bulb (100 watts)		
5.	Flourescent Tube (20 watts)		
6.	Flourescent Tube (40 watts)		
7.	Other:		

* If usage/day less than an hour, state in minutes e.g.30 mins.

.

(ii) Cooking

	APPLIANCE	POWER RATING (W)	UNITS IN USE	AVG. USE PER DAY (H/DAY) PER UNIT
1.	Electric Stove with:			
1.1	Plates			
1.2	Grill			
1.3	Oven	光いいない。		
2	Microwave Oven			
3	Kettle			
4	Toaster			
5	Rice Cooker			

46

(iii) Refrigeration

	APPLIANCE	UNITS	IN	USE	AGE	IN	YEARS	SIZE	*
1.	Fridge with Freezer		•	·					
2.	Deep Freeze								

* Indicate as follows:

- 1 small: refrigerators or freezers less than 3 feet in height
- 2 medium: refrigerators or freezers 3 to 5 feet in height
- 3 large: refrigerators or freezers with more than 5 feet
 . in height or length

(iv) Water Heating

	APPLIANCE	UNITS IN USE	POWER RATING (W)	SIZE OF STORAGE TANK (GALS)
1.	Shower Head			
2.	Storage			

(v) Laundry (by Washing machine)

	TEMPERATURE	AVG. NO OF LOADS PER WEEK	GALS. HOT WATER/WASH
1.	Cold		
2.	Warm		
3.	Hot		

10/18

(vi) Other Electric Appliances

	APPLIANCE .	UNITS USED	SIZE **	POWER RATING (W)	AVG. USAGE (H/DAY) PER UNIT*
1.	Air Conditioner				
2.	Fan				
3.	Television				
4.	Video				
5.	Hifi				
6.	Radio (electric)				
7.	Iron		57.5		

* If usage is less than an hour indicate length in minutes.
** Indicate the following:

- s small: screen smaller than 6"
- m medium: screen 7-20"
- 1 large: screen larger than 20"
- 35. What alternative energy form is used in the absence of electricity (Indicate with a \checkmark)

(i)	Standby Generator	1.	
(ii)	LPG (Butane)	1.	
(iii)	Firewood	1.	
(iv)	Kerosene	1.	
(v)	Charcoal	1.	
(vi)	Candles	1.	
(vii)	Other (Specify)		· · · · · ·

ł

SECTION III

LPG (BUTANE GAS) USE

36.	-	ou us		tane gas	in this	househo:	ld?(Indicate	with	a	√)
	2.		NO	IF YES,	SKIP TO	38				
		·	IF	NC DO 37	THEN GO) TO 44				

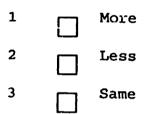
37. If no, what is your reason for not using LPG (Butane Gas)? (Indicate with a ✓)

• •

.

	Fuel is too expensive	1.	L
	Cylinders and regulators are too expensive		
(iii)	Appliances (e.g. stoves) are too expensive	1.	
(iv)	Gas not easily available	1.	
(iv)	Unsuitable for our needs	1.	

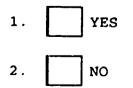
	APPLIANCE	UNITS IN USE	USAGE HRS/WEEK/UNIT
1.	Gas Stove with:		
1.1	Burners		
1.2	Oven		
1.3	Grill		
2	Gas Refrigerator		
3	Gas Water Heater		2
4	Gas Lantern		

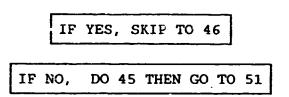

38. Which of the following gas equipment do you have IN USE?

39. What size of gas cylinders do you buy? (Indicate with \checkmark)

- 1.
 25 lbs. (small)
 1

 2.
 50 lbs. (medium)
 2


 3.
 100 lbs.(large)
 3
- 4. Other (Specify).....
- 40. How much do you pay per cylinder including delivery (size as identified above in BZ\$).....
- 41. What is the average duration of the size of cylinder you normally buy (weeks)?.....
- 42. What is your average monthly gas bill (BZ\$)?.....
- 43. Are you consuming more or less LPG (Butane Gas) than a year ago? (Indicate with ✓)



SECTION IV

KEROSENE USE

44. Do you regularly use kerosene as a main energy source in this household? (Indicate with a \checkmark)

- 45. What is your reason for not using kerosene in this household? (Indicate with ✓).
 - (i) Kerosene is too expensive

	• ·	
(ii)	Apliances are too expensive	¹
(iii)	Poor availability of kerosene	٦Ľ
(iv)	Inappropriate for our needs	¹ [
(iv)	Other (Specify)	•

- 46. How much do you pay for a gallon (1 gallon is equivalent to 4 quarts) of kerosene? (BZ\$).....
- 47. What is your monthly kerosene bill(BZ\$)?.....
- 48. How much kerosene do you buy per month (gallons)
- 49. Are you using more or less kerosene than a year ago? (Indicate with a ✓).

1		More
2		Less
3		Same

14/18

	APPLIANCES	UNITS IN USE	UNITS AVERAGE USAGE (HOURS/WEEK/UNIT
1.	Kerosene Stove		
2.	Kerosene Lamp		
3.	Coleman Pressure Lamp		
4.	Kerosene Refrigerator		
5.	Other: (specify)		

50. Inventory of kerosene appliances in use

SECTION V CHARCOAL USAGE

51. Do you use charcoal in this household? (Indicate with a $\sqrt{}$ 1. YES

2. NO IF YES, SKIP TO 53 IF NO, DO 52 THEN GO TO 58

۰.

52. What is your reason for not using charcoal in this household? (Indicate with \checkmark).

(i)	Charcoal is too expensive	1.	
(ii)	Charcoal appliances are too expensive	1.	
(iii)	Poor availability of charcoal	1.	
(iv)	Not appropriate for our needs	1.	
(iv)	Other (Specify)		

15/18

53.	What is the price of charcoal? (\$/lb or equivalent)				
54.	How much do you spend on charcoal? (\$/month)				
55.	What quantity of charcoal do you use per month? (lb/month equivalent)				
56.	What percentage of charcoal do you use for the following:				
	(i) Cooking*				
	(ii) Ironing*				
	(iii) Water Heating*				
57.	What type of charcoal do you mostly use in this household? (Indicate with \checkmark).				

1	Local
2	Imported

SECTION VI

FIREWOOD USE

58. Do you use firewood in this household? (Indicate with a \checkmark)

- 1. YES
- 2. NO.

IF NO, GO TO 65

59. What is your total weekly firewood consumption (pieces)

16/18

۰.

14

52

. . .

or

60. Of your total firewood needs what percentage do you buy? (%)

IF 0% GO TO 63

61. How much do you pay per piece firewood(BZ\$)?.....

62. What is your monthly bill for firewood(BZ\$)?.....

63. Specify the times per week and the average hours each time the following members of the family spend collecting firewood.

FAMILY MEMBER	TIMES PER WEEK	AVERAGE HOURS EACH TIME
Father		
Mother		
Children (No.)		
Other		

64. What percentage of firewood do you use for the following:

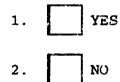
SECTION VII

OTHER DOMESTIC FUEL USE

- 65. How many candles do you buy per month?.....
- 66. How much do you spend per month on candles? (BZ\$)

17/18

67. Indicate the number of the following dry batteries do you normally use per month?


BATTERY SIZE:	PIECES CONSUMED/MONTH	PRICE/PIECE (BZ\$)
Small (AA 1.5 V)		
Medium (C 1.5V)		
Large (D 1.5 V)		
6 Volts		
9 Volts		
Other:(Specify)		

68. What uses do you have for dry batteries? Tick (\checkmark) appropriate box.

...

(i)	Flash light	1.	
(ii)	Radio	1.	
	Television		
(iv)	Emergency lighting	1.	
(v)	Other (Specify)		

69. Do you use 12 volts car batteries in this household? (Indicate with a \checkmark)

70. If yes:

(i) How many units do you have?.....

(ii) How many times per month do you charge them?.....

(iii) How much do you pay per charge? (BZ\$).....

18/18

55

ANNEX 8: HOUSEHOLD ENERGY SURVEY - INPUT FORM

<u> </u>					٦
		NATENAL ELECTROPIE		ED. PLANNING DEPARTMENT &	
	Succession Constraintication	chie statorstratics:			
		District Number :			
		Area :			
		ED Number :			
		Household Number :			
	1. Head of Household :				
	2. District :		s.ž	(choose from list or type in)	
	3. City/Town/Village :		ž,ž	(choose from list or type in)	
	4. Telephone No. :				
	5. Classification :	Virber Orti Viruna Catt Viron Graf			
					J

Meals	Weekdays		Sundays]	wing meals prepar
Breakfast					
Lunch					
Evening Meal					
	a of hot water	for bathing p	urposes:		
Description	Users/V		al gals, hot	water per Week	
nformation on us Description Bath			il gals , hot	water per Week	

18. Small business ?

٠

19. What fuel do you presently use for the following activities?

Use Fuel	Elect.	Gas	Keros.	Joal	Wood	Candle	Solar
1. Lighling					j		
2. Cooking							
3. Water Heating							
4. Retrigeration							, .
5. Room Cooling				· · · ·			

Gross income :	
Number of people living in household :	
Loan :	
Rent :	
Other living expenses :	
Savings :	
Total :	

21. Do you use electricity ? 22. If NO, what is your reason for not using electricity ? (click none, one, or several) (i) Price of electricity too expensive (ii) Connection and wiring is too expensive (iii) Electricial appliances are too expensive (iv) Electricity supply not available (v) Electricity not suitable for our needs	Section 12 Sectricity 13 ag	
22. If NO, what is your reason for not using electricity ? (click none, one, or several) (i) Price of electricity too expensive (ii) Connection and wiring is too expensive (iii) Electricial appliances are too expensive (iv) Electricity supply not available		
(i) Price of electricity too expensive Image: Connection and wiring is too expensive (ii) Connection and wiring is too expensive Image: Connection and wiring is too expensive (iii) Electricital appliances are too expensive Image: Connection and wiring is too expensive (iv) Electricity supply not available Image: Connection and wiring is too expensive	21. Do you use electricity ?	
(ii) Connection and wiring is too expensive	22. If NO, what is your reason for not using electric	city ? (click none, one, or several)
(ii) Electrical appliances are too expensive	(i) Price of electricity too expensive	
(iv) Electricity supply not available	(ii) Connection and wiring is too expensive	<u>1</u>
	(iii) Electrical appliances are too expensive	2
(v) Electricity not suitable for our needs	(iv) Electricity supply not available	<u>100</u>
	(v) Electricity not suitable for our needs	2

23. Do you have your own generators ?	
24. Total generating capacity (KW) :	
25. What fuel do you use for this generator?	esel Isoline
26. How many gallons of fuel per month do you use fo	this generator ?
27. How much do you pay per gailon ? (BZ\$) :	
28. How many hours per week do you operate this ger	erator ?
29. What is your average monthly fuel bill (BZ\$) ?	

i

30. Are you connected to BEL supply ?	∭YES ∰NO	
31. What was your last electricity bill from	BEL (BZ\$) ?	
32. What was your last month's electricity	consumption from BEL (kWh) ?	
33. Are you using more or less electricity t	han a year ago ?	More Less Same

(i) Lighting	APPLIANCE	Units in Use	Avg. Usage H/DAY
	1. Incandescent Bulb 40 W		
	2. Incandescent Bulb 60 W		
	3. incandescent Buib 75 W		
	4. Incandescent Bulb 100 W		
	5. Flourescent Tube 20 W		
	6. Flourescent Tube 40 W		
(ii) Cooking	APPLIANCE	Units in Use	Avg. Usage H/DAY
	1.1 El. Stove / Plates		
	1.2 El. Stove / Grill		
	1.3 El. Stove / Oven		
	2. Microwave Oven		
	3. Kettle		
	4. Toaster		
	5. Rice Cooker.	I	

	APPLIANCE		Units in Use	Age in years	Size
	1. Fridge with Freezo	91			
	2. Deep Freezer				
iv) Water Heating	APPLIANCE		Units in Use	Size of storage (g	als)
	1. Shower Head				
	2. Storage				
(v) Laundry (by Wasi	L	AVG. NO	D. OF LOADS / W	EEK Gis hot wate	r/wash
(v) Laundry (by Wasi	hing Machine)	AVG. NC	D. OF LOADS / W	EEK Gis hot wate	r/wash
(v) Laundry (by Wasi	hing Machine) TEMPERATURE	AVG. NC	D. OF LOADS / WI	EEK Gis hot wate	r/wash

	APPLIANCE	Units Used	Avg. Usage H/DAY
	1. Air Conditioners		1
	2. Fans		
	3. Television		
	4. Video		
	5. Hifi		
	6. Radio (electric)		
	7, Iron		
Ann allowething an arms for	we to used in the shares of sta	abdath A fallalana	
(i) Stanctby Generator	orm is used in the absence of ele	ectricity? (click no	ne, one, of several)
i) Standby Generator ii) LPG (Butane)		octricity ? (click no	ne, one, or several)
		ictricity ? (click no	ne, one, or several)
(i) Stanctby Generator (ii) LPG (Butane) (iii) Firewood		nctricity ? (click no	ne, one, or several)

FILMER CONTRACTOR	
36. Do you use LPG (Butane Gas) ?	
37. If NO, what is your reason for not using I	LPG (Butane Gas) ? (click none, one, or several)
(i) Fuel is too expensive	2
(ii) Cytinders and regulators are expension	wo 💹
(iii) Appliances (e.g. stoves) are too exp	versive 🔣
(iv) Gas not easily available	
(v) Unsuitable for cur needs	1

	APPLIANCE	Units in Use	Avg. Usage H/WEEK		
ſ	1.1 Gas Slove / Burners				
	1.2 Gas Stove / Oven				
Γ	1.3 Gas Stove / Grill				
Γ	2. Gas Retrigerator				
ſ	3. Gas Water Heater]	
Γ	4. Gas Lantern			7	
39. V	hat size of gas cylinders do y	ou buy (lbs.) ?		(choose from list or type) ir
40. H	ow much do you pay per cylin	der including deliv	/ery (BZ\$) ?		
41. W	hat is the average duration of	the size of cylind	lər (weeks) ?		
42. V	/hat is your average monthly g	as bill (BZ\$) ?			
43. A	re you consuming more or les	is LPG (Butane G	as) than a year ago ?	More	
				2 Less	

Jursun	1 W. Sondano (1. 100		
44. Do y	vo⊔ regularly use Kerosene ?		
45. lf NC), what is your reason for not u	ing Kerosene ?	(click none, one, or several)
6)	Kerosene is too expensive	121 121	f
(ii)	Appliances are too expensive	<u>M</u>	<u>B</u>
(111)	Poor availability of Kerosene	2	
(īv)	Inappropriate for our needs		
46. Hov	w much do you pay for one galle	n of kerosene (B	BZ\$) ?
47. Wh	at is your monthly kerosene bill	(8Z \$) ?	
48 Hou	w much kerosene do you buy pe	r month (callond	a 2 []

			汉Less ②Same	
Inventory of Kerosene appliances	in use Units in Use	Avg. Us	ege H/WEEK	
1. Kerosene Stove				
2. Kerosene Lamp				

ECCOLUMN CONTRACTOR	
51. Do you use Charcoal ?	
52. If NO, what is your reason for not using Cha	arcoal ? (click none, one, or several)
(i) Charcoal is too expensive	Ø
(ii) Charcoal appliances are too expensive	
(iii) Poor availability of Charcoal	
(iv) Not appropriate for our needs	
53. What is the price of Charcoal (BZ\$ / Ib) ?	
54. How much do you spend on Charcoal (BZ\$	\$ / month) ?
55. What quantity of Charcoal do you use (ib / i	(month) ?

56. What percentage of Charcoal do you use for the following:
(i) Cooking (%)
(ii) Irening (%)
(iii) Water Heating (%)
57. What type of Charcoal do you mostly use ?
콄imporied
· · · · · · · · · · · · · · · · · · ·

۰,

58. Do you use Firewood ?				
59. What is your total weakly	frewood consumpti	on (pieces) ?]	
60. Of your total firewood ne	eds what percentage	do you buy (%) ?	Ĵ	
61. How much do you pay p	er piece frewood (BZ	\$)?		
62. What is your monthly bill	for firewood (BZ\$) ?			
63. Specify the times spend	for collecting firewoo	d:		
FAMILY MEMBER	Times / Week	Avg. Hours each time		
Father				
Mother	1			
Children, No.:				
Other				
54. What percentage of firew	ood do you use for th	e following:	1	
(i) Cooking (%)		•		

i5. Ho	w many candles	do vou buv o	er month ?	[]		
		,,,		L!		
56.Hov	w much do you s	pend per mor	nth on candles (B	Z\$) ?		
57. Inc	icate the number	r of the follow	ring dry batteries y	Nu normally use p	er month.	
E	BATTERY SIZE	PCS. CONS	SUMED / MONTH	I PRICE / PIEC	E	
S	mali (AA 1.5 V)					
м	edium (C 1.5 V)				_	
L	arge (D 1.5 V)					
6	Volts					
9	Volts					
68. W	hat uses do you l	have for dry l	batteries ? (click	none, one, or seve	eral)	
(i)	Flash light		22			
(ii)	Radio		22			
(iii)	Television		22			
ſω	Emergency ligh	tina	2014 - C			

.

69. Do you use 12 Volt car batteri	83 2	
70. If yes :		
(i) How many units do	you have ?	
(iii) How many times pe	r month do you charge then	n?
(iii) How much do you p	ay per charge (BZ\$) ?	

ANNEX 9: HOUSEHOLD ENERGY SURVEY - AGGREGATED RESULTS 1

Belize National Energy Survey - Household Sector

Aggregated Results BEL \ IER \ CSO October 1994

Number and percentage of Households using a certain Fuel for a certain Use

To	tal	Belize	

Fu	el Electr	icity	LPG		Keros	ene	Coal		Wood		Candl	e	Solar	
Use	#	%	#	%	#	%	#	%	#	%	#	%	#	%
Lighting	1027	80.0	14	1.1	329	25.6					290	22.6		
Cooking	10	0.8	977	76.1	56	4.4	8	0.6	475	37.0			•	
Water Heat.	64	5.0	1	9.1	1	- 1 j.	-	×7					26	2.0
Refrigeration	632	49.3	2	0.2	8	0.6	, , ,				•			
Room Coolin	g 16	1.2			and the									
Wash. Mach.	419	32.7		· · · · ·		* *								

Urban Grid

I I	Fuel	Electr	icity	LPG		heros	ene	Coal		Wood		Candl	e	Solar	
	Use	#	%	#	%	#	%	#	_%_	#	%	#	%	#	%
	Lighting	619	95.2	11	1.7	53	8.2			-		135	20.8		
	Cooking	8	1.2	588	90.5	20	3.1	7	1.1	83	12.8				
	Water Heat.	41	6.3	0	0.0						. * 7. s		•	7	1.1
	Refrigeration	423	65.1	0	0.0	0	0.0						•		
	Room Cooling	14	2.2		1		` ,	· · · ·			· .				*
	Wash. Mach.	263	40.5	-			S			• •		ر ۲			•

Rural Grid

Fuel	Elect:	icity	Lrg		Keros	ene	Coal		Wood		Candl	е	Solar	
Use	#	%	#	%	#	%	#	%	#	%	#	%	#	%
Lighting	226	75.8	2	0.5	150	34.9	· · · · ·				105	24.4		
Cooking	2	0.5	304	70.7	19	4.4	1.0	0.2	261	60.7		,		· · · · ·
Water Heat.	17	4.0	1	0.2				4					12	2.8
Refrigeration	159	37.0	0	0.0	1	0.2				÷ 🖌 👌		•	. 8	· · · ·
Poem Cooling	U	0.0			1				*	·				4,
Wash. Mach.	142	33.0			+ ,			an a	•			, .		

Non Grid

	Fuel	Electr	icity	LPG		Keros	ene	Coal		Wood		Candl	6	Solar	
	Use	#	%	#	%	W	%	_#	0%	#	%	#	%	#	%
	Lighting	82	40.4	1	0.5	126	62.1			Sec.		50	24.6	- 1. je	
	Cooking	0	0.0	85	41.9	17	8.4	0	0.0	131	64.5		•		
1	Water Heat.	6	3.0	0	0.0	•	• 	• ••		·				7	3.4
	Reirigeration	50	24.6	2	1.0	7	3.4		1 41 - 3				•		
_	-											سارچ			
	Wash, Mach.	14	0.1			•	÷. •	na in sin si Na 🎍 21 S			i i A.			•	

ANNEX 10: HOUSEHOLD ENERGY SURVEY - AGGREGATED RESULTS 2

Belize National Energy Survey - Household Sector Aggregated Results BEL \IER \CSO Odober 1994

4

	(absolute figures related to sample size)					(absolute figures related to total number of households)				
		Urban Grid		Non Grid	Total Belize		Rural Grid	Non Grid		
1.1 General Survey Information										
# of HH	43936	21720	14307	7909	43936	21720	14307	7909		
a of HH surveyed	1283	650	430	203	1283	650	430	203		
% of HH surveyed	2.32%	2.99%	3.01%	2.57%	2.92%	2.99%	3.01%	2.57%		
1.2 General Household Information										
a of rooms	5540	3154	1743	643	189715.85	105392.12	57993.26	25051.66		
Avg. rooms/HH	4.32	4.85	4.05	3.17	4.32	4.85	4.05	3.17		
Avg. size of HH (sq ft)	738.51	850.84	624.60	648.82	738.51	850.84	624.60	648.82		
# of persons	6331	3020	2271	1040	216803.44	100914.46	75560.92	40519.01		
Avg. persons/HiH	4.93	4.65	5.28	5.12	4.93	4.65	5.28	5.12		
Avg. income/HH	803.57	1021.20	664.64	538.45	803_57	1021.20	664.64	538.45		
* of HH doing small scale farming	90	13	39	38	90,00	13.00	39.00	38.00		
% of HH doing small scale farming	7.01%	2.00%	9.07%	18.72%	7.01%	2.00%	9.07%	18.72%		
# of HH doing small scale business	70	34	28	8	70.00	34.00	28.00	8.00		
% of Hrl doing small scale business	5.46%	5.23%	6.51%	3.94%	5.46%	5.23%	6.51%	3.94%		
1.2.1 Electricity Use										
General characteristics										
# of HH using electricity	1029	620	327	82	35237.84	20717.54	10879.97	3194.77		
% of HH using electricity	80.20%	95.38%	76.05%	40.39%	80.20%			40.39%		
Reasons for nut using electricity.						ol using electri	icity)			
- price of electricity too expensive	61	14	41	6	24.02%	46.67%	39.81%	4.96%		
- connection and wiring to expensive	65	11	45	9	25.59%	36.67%	43.69%	7.44%		
- electrical appliances too expensive	43	8	34	1	16.93%	26.67%	33.01%	0.83%		
- electricity supply not available	129	3	27	93	50.79%	10.00%	26.21%	81.82%		
- not suitable for our needs # of HH with private generation	17 75	÷	9	3	6.69%	16.67%	8.74%	2.48%		
i % of HP! with private generation	5.85%	6 0.92%	44 10.23%	25 12.32%	2568.36	200 49 0.92%	1463.97	974.01		
# of HH connected to BEL	962	618	286	12.32%	5.85% 32943,44	20650.71	10.23% 9515.82	12.32% 2259.71		
% of HH connected to BEL	74.98%	95.08%	66.51%	28.57%	74.98%	95.08%	66.51%	2259.71		
Avg. Electricity consumption/HiH (kWh in 8/94)		165.78	57.76	110.40	134.78	165.78	57.76	110.40		
Avg. Electricity bill (BZ\$ in 8/94)	49.56	61.29	26.27	45.58	49.56	61.29	26.27	45.58		
Avg. Electricity price (BZ\$/kWh)	0.36	0.37	0.35	0.39	0.36	0.37	0.35	0.39		
Lighting eppliances										
# of 40 W incandescent bulbs	1396	945	277	174	47805.66	31577.54	9216.37	6779.14		
Avg. usage of 40 W incandescent bulbs (h/d)	3.84	3.61	4.34	3.91	3.84	3.61	4.34	3.91		
# of 60 W incandescent bulbs	896	626	211	59	30683.29	20918.03	7020.41	2298.67		
Avg usage of 60 W incandescent bulbs (t/d)	3.77	3.99	3.42	2.89	3.77	3.99	3.42	2.89		
# of 75 W incandescent bulbs	102	51	42	9	3492.96	1704.18	1397.43	350.65		
Avg. usage of 75 W incandescant bulbs (IVd)	3.91	3.78	4.01	4	3.91	3.78	4.01	4.00		
# of 100 W incandescent bulbs	242	96	123	23	8287.23	3207.88	4092.47	896.09		
Avg. usage of 100 W incandescent bulbs (h/d) # of 20 W ficurescent tubes		4.81	2.30	6.21	3.81	4.81	2.38	6.21		
Avg. usage of 20 W flourescent tubes (h/d)	2571 4.43	1560	865	146	88043.22	52128.00		5688.25		
# of 40 W flourescent tubes	361	4.25 205	4.69 129	4.51 27	4.43 12362.35			4.51 1051.94		
Avg. usage of 40 W flourescent tubes (h/d)	4.06	4.07	4.16	3.45	4.06	4.07	4292.10	3.45		
Cooking appliances										
# of electric plates	21	18	3	0	719.14	601.48	99.82	0.00		
Avg. usage of electric plates (h/d)	1.65	1.32	2.5		1.65	1.32	2.50	0.00		
# of electric grills	6	6	0	0	205.47	200.49	0.00	0.30		
Avg. usage of electric grills (h/d)	0.33	0.33			0.33	C.33	0.00	0.00		
# of electric ovens	4	3	1	0	136.98	100.25		0.00		
Avg. usage of electric ovens (h/d)	0.13	0	0.5	_	0.13	0.00		0.00		
# of microwave ovens	98	75	20	3	3355.98	2506.15	665.44	116.88		
Avg. usage of microwave ovens (h/d) # of kettles	0.23	0.2	0.32	0.32	0.23			0.32		
Avg. usage of kettles (h/d)	22 071	17 0.71	3 0,5.+	2	753.38	568.06		17.92		
# of toasters	162	124	34	1	0.71 5547.65	0.71 4143.51	0.54	1.00 155.84		
Avg. usage of toasters (h/d)	0.28	0.28	0.26	0.54	0.28	4143.51	1131.25 0.26	155.84		
	23		0.20	0.34	787.63					
# of rice cookers		1.4	-				133.09	0.00		

.1. .

Belize National Energy Survey - Household Sector Aggregated Results BEL \IER \ CSO October 1994

	(absolute ficur	es related to sa	mole size)		(absolute firm	es related to to	a number of t	iouseholds)
	Total Belize	Urban Grid	Rural Grid	Non Grid	Total Belize		Rural Grid	Non Grid
Retrigeration								
# of fridge with freezer	628	427	147	54	21505.70	14268.37	4891.00	2103.87
If of fridge with freezer < 5 years old	476	314	120	42	16300.50	10492.43	3992.65	
# of tridge with freezer >= 5 years old	152	113	27	12	5205,20	3775.94	898.35	467.53
Avg. age of fridge with freezer (years)	3.56	3.68	3.38	3.1	3.56	3.66	3.38	3.10
# of deep freeze	· 71	27	38	6	2431.38	902.22	1264.34	233.76
# of deep freeze < 5 years old	53	16	31	6	1814.97	534.65	1031.43	233.76
# of deep freeze >= 5 years old	18	11	7	ō	616.41	367.57	232.90	0.00
Avg. age of deep treeze (years)	3.08	3.55	2.97	1.8	3.08		2.97	1.80
					0.00	0.00	2.00	1.00
Water heating								
# of shower heads	44	28	11	5	1506.77	935.63	365,99	194.80
Hot water heated by shower heads (gal/week)	9720	6535	2065	1120	332858.86	218369.54	68706.87	43635.86
# of storage water heater	25	17	7	1	856.12	568.06	232.90	38.96
Hot water heated by storage (gal/week)	6210	3825	2205	180	212659.83	127813.85	73364,97	7012.91
Avg. storage size (gal)	22.21	20.14	28		22.21	20.14	28.00	0.00
						20.14	20.00	0.00
Laundry by washing machine								
# of cold loads/week	2076	1164	857	55	71092.08	38895.51	28514.18	2142.83
# of warm loads/week	231		230	1	7910.53	0.00	7652.58	38.96
# of hot loads/week	174	18	154	2	5958.58	601.48	5123.90	77.92
				۲	2000.00		5125.50	.,
Other electric appliances								
# of air conditioners	25	23	o	2	856.12	768.55	0.00	77.92
Avg. usage of air conditioners (h/d)	7.04	5.27	Ŭ	15	7.04	5.27	0.00	
# of fans	1867	1291	486	90	63934.93	43139.26	16170.24	3506.45
Avg. usage of fans (h/d)	7.73	8.62	6.17	6.55	7.73	8.62	6.17	6.55
# of TVs	1020	721	247	52	34929.63	24092.49	8218.21	2025.95
Avg. usage of TVs (h/d)	4.84	4.95	4.73	4.07	4.84	4.95	4.73	4.07
# of Videos	193	135	42	16	6609.23	4511.08	1397.43	623.37
Avg. usage of videos (h/d)	1.33	1.17	1.4	2.55	1.33	1.17	1.40	2.55
# of Hifis	238	192	35	11	8150.25	6415.75	1164.52	428.57
Avg. usage of Hifis (h/d)	3.38	3.14	4.29	3.94	3.38	3.14	4.29	3.94
# of radios	800	471	264	65	27395.79	15738.65	8783.83	2532.44
Avg. usage of radios (h/d)	4.5	4.64	4.14	5.05	4.50	4.64	4.14	5.05
# of irons	915	589	276	50	31333.94	19681.66	9183,10	1948.03
Avg. usage of irons (h/d)	0.5	6.5	0.51	0.45	0.50		0.51	0.45
			•	0.00	0.00	0.00	0.01	0.45
1.2.2 LPG Use								
General characteristics								
# of HH using LPG	979	589	304	86	33525.50	19681.66	10114.72	3350.61
% of HH using LPG	76.31%	90.62%	70,70%	42.36%	76.31%	90.62%	70.70%	42.36%
Reasons for not using LPG:							10.1070	-2.00 /
- fuel is too expensive	105	16	57	32	34.54%	26.23%	45.24%	27.35%
- cylinders and regulators to expensive	107	17	63	27	35.20%	27.87%	50.00%	23.08%
- appliances too expensive	160	14	83	63	52.63%	22.95%	65.87%	53.85%
- not easily available	36	1	6	29	11.84%	1.64%	4.76%	24.79%
- not suitable for our needs	73	38	23	12		62.30%	18.25%	10.26%
Avg. LPG consumption/HH (Its/month)	34.56	34.63	34.4	34.96	34.58	34.63	34.4	34.96
Avg. LPG bill (BZ\$/month)	17.33		16.56	22.28	17.33	16.98	16.56	
							10.00	
Appliances								1
# of gas burners	3508	2063	1133	312	120130.54	¢d935.94	37697.28	12155.70
Avg. usage of gas burners (Nweek)	16.67	16.23	17.31	17.49		16.23	17.31	
# of gas ovens	784	468	242	74		15638.40	8051.85	
Avg. usage of gas evens (:viveek)	2.08	1.64	2.2	2.09	2.08	1.64	2.20	2.09
# of gas grills	532	312	157	63	18218.20	10425.60	5223.72	2454.52
Avg. usage of gas grills (h/week)	0.48	0.46	0.52	0.46	0.48	0.46	0.52	
# of gas refrigerators	2	0.40	0.52	0.40	68.49	0.40	0.52	
# of gas water heaters	1	0	1	ء 0	34.24	0.00	33.27	
# of gas lanterns	14	11	2		479.43			
			6			301.37	00.04	38.96
Avg. usage of gas laniems (t/week)	17.34	12.68	50	0	17.34	12.68	50.00	0.00

. .

Belize National Energy Survey - Household Sector Aggregated Results BEL \ IER \ CSO October 1994

00000	1334	

•

	(absolute figur	es related to sa	ample size)		(absolute figur	es related to to	tal number of h	ouseholds)
	Total Belize	Urban Grid	Rural Grid	Non Grid	Total Belize	Urban Grid	Rural Grid	Non Grid
1.2.3 Kerosene Use								
1.2.3 Relosene use								
General characteristics				•				
# of HH using Kerosene	359	62	156	141	12293.86	2071.75	5190.45	5493.44
% of HH using Kerosene	27.98%	9.54%	36.28%	69.46%	27.98%	9.54%	36.28%	69.46%
Reason: for not using Kerosene:								
- fuel is too expensive	2	0	2	0	0.22%	0.00%	0.73%	0.00%
 appliances too expensive 	2	0	1	1	0.22%	0.00%	0.36%	1.61%
- poor availability	8	4	3	1	0.87%	0.68%	1.09%	1.61%
 not suitable for our needs 	844	552	234	5	91.34%	93.88%	85.40%	8.06%
Avg. Kerosene consumption/HH (gal/month)	2.54	3.03	2.13	2.77	2.54	3.03	2.13	2.77
Avg. Kerosene bill (BZ\$/month)	7.99	7.72	6.52	9.71	7.99	7.72	6.52	9.71
Avg. Kerosene Price (BZ\$/gal)	3.21	2.61	3.19	3.5	3.21	2.61	3.19	3.5
Appliances								
# of kerosene stoves	64	21	20	23	2191.66	701.72	665.44	896.09
Avg. usage of kerosene stoves (h/week)	18.26	13.11	19.42	24.58	18.26	13.11	19.42	24.58
# of kerosene lamps	493	59	231	203	16882.66	1971.51	7685.85	7909.00
Avg. usage of kerosene lamps (h/week)	23.81	19.93	22.91	26.53		19.93	22.91	26.53
# of coleman pressure lamps	6	0	1	5	205.47	0.00	33.27	194.80
Avg. usage of coleman press. lamps (h/week)	16.5		28	12.67	16.50	0.00	28.00	12.67
# of kercsene refrigerators	9	C	2	7	308.20	0.00	66.54	272.72
1.2.4 Charcoal Use								
# of HH using Charcoal	8	7	1	0	273.96	233.91	33.27	0.00
% of HH using Charcoal	0.62%	1.08%	0.23%	0.00%	0.62%	1.08%	0.23%	0.00%
Reasons for not using Charcoal:]			
Charcoal is too expensive	17	0	7	10	1.33%	0.00%	1.63%	4.93%
 appliances too expensive 	4	0	3	1	0.31%	0.00%	0.70%	0.49%
 poor availability 	46	2	27	17	3.61%	0.31%	6.29%	8.37%
 not suitable for our needs 	1206	620	405	181	94.53%	96.42%	94.41%	89.16%
Avg. Charcoal consumption/HH (lbs/month)	7.22	6.88	10	0		6.88	10.00	0.00
Avg. Charcoal bill (BZ\$/month)	5.92	6.04	5	0	5.92	6.04	5.00	0.00
Avg. Charcoal price (BZ\$/lbs)	0.96	1.02	0.5		0.96	1.02	0.50	0.00
1.2.5 Firewood Use								
# of HH using Firewood	475	83	261	131	16266.25	2773.48	8684.02	5103.84
% of HH using Firewood	37.02%	12.77%	60.70%	64.53%	37.02%	12.77%	60.70%	64.53%
Avg. firewood consumption/HH (pieces/week)	97.21	59.06	96.11	123.90	97.21	59.06	96.11	123.90
Avg. firewood price (BZ3/piece)	0.12	0.14	0.1	0.07	0.12	0.14	0.10	0.07
1.2.6 Other Domestic Fuel Use								
Candles								
# of HH using candles	290	135	105	50	9930.97	4511.08	3493.57	1948.03
% of HH using candles	22.60%	20.77%	24.42%	24.63%	22.60%	20.77%	24.42%	24.63%
Avg. consumption of candles/HH/month	5.58	3.76	1.85	12.04	5.58	3.76	4.85	12.04
Car batteries								
# of HH using car batteries	55	12	21	22	1883.46	400.98	698.71	857.13
% of HH using car batteries	4.29%	1.85%	517	10.84%	4.29%	1.85%	4.88%	10.84%

ANNEX 11: ASSESSMENT OF END USE TECHNOLOGIES

Belize Electricity Demand Study, BEL/IER, October 1994 Assessment of End Use Technologies Efficiencies, Power ratings, and specific consumption of applainces

Appliance	Unit	Literature	Survey in Belize	Applied for study
lo W bulb	lm/W	11 - 12		11
60 W bulb	lm/W	12 - 14.3		12
75 W bulb	lm/W	13 - 15.7		13
00 W bulb	lm/W	14.5 - 17.5		15
20 W flou.	lm/W	43 - 55.6	43	
40 W flou.	lm/W	48 - 70	57	57
Plate	w	600 - 2000		1000
Grill	W	1200 - 1650		1400
Oven	W	1230 - 8000		1500
Nicrowave	W	975 - 1575		1400
Kettle	w	1000 - 1080	1500	1500
Toaster	W	300 - 1600		1000
Rice cooker	W	-		1500
Fridge w/ Freezer	kWh∕y	356 - 1450		900
Deep Freeze	kWh/y	140 - 1500		600
Showerhead	Efficiency			0.95
Storage	Efficiency			0.8
Washing Machine	kWh/load	0.3 - 0.8		0.4
Air conditioner	W	800-2500		1000
Fan	W	40 - 200		40
elevision	W	50 - 300		50
VCR	W	30 - 54		30
Hifi	W	25 - 109		30
Radio	W	5 - 100		10
liron	W	938 - 1100		1000

ource:

Baur J., Voss A., et.al.: "Rationelle Stromanwendung bei den Haushalten", IER, Universitaet Stuttgart, Mai 1994 ajardo M., Fajardo L.: "Electrical Layout and Estimate" Philippines, 1987 eneral Electric: "Calendar 1994", New York, 1993 each G., Gowen M.: Household Energy Handbook - An Interim Guide and Reference World Bank, Technical Paper No. 67, Washington, 1987 OECD/IEA: "Electricity End-Use Efficiency", Paris, 1989 las van der R., Graaff de A.B.: "A Comparison of Lamps for Domestic Lighting in De World Bank, Washington, 1988 akulin M., Dell G.: "Energiesparpotential elektrischer Haushaltsgeraete, Oesterreich Institut fuer Elektrische Anlagen, Technische Universitaet Graz, Schlenzig Ch.: "Planification Energetique Regionale pour la Region Nord-Ouest de M. Tome IV: Analyse Energetique de l'Enquete Socio-Economique IER, Universitaet Stuttgart, December 1992 chueler D.: "Energy Masterplan for Rural Development in Nigeria, Vol. V: Analysis o IER, Universite J. Pruttgart, December 1092

ANNEX 12: ELECTRICITY CONSUMPTION OF HOUSEHOLDS IN 1994 -BY REGION

Belize Electricity Demand Study, BELAER, October 1994 Electricity Consumption of Households in 1994 based on the Belize National Energy Survey Region: Urban Grid

Lighting

•

,

# of Appliancas	Avg. use	Power Rating	El. Cons. per unit	Total EL Cuns.	Efficiency	Useful Energy	Market Share
	(hid)	(W)	(1(14:3.1/)	(2.1Wh/y)	(Mimh MWh)	(Mimb/y)	(%)
31578	3.61	40	52.71	1664.35	51	18307.85	12.74
20918	3.99	50	87.38	1627.84	12	21934.03	15.26
1704	3.78	75	103.48	176.32	13	2292.23	1.59
3206	4.81	100	175.57	563.21	15	84/8.19	5.88
52128	4.25	20	31 01	1617.27	43	69542.66	48.39
6850	4.07	40	59.42	407.54	57	23201.32	16.14
1				6256.04		143726.28	100.007
	31578 20918 1704 	(hid) 31578 3.61 20918 3.90 1704 3.78 3208 4.81 52128 4.25	(h/d) (W) 31578 3.61 40 20918 3.93 80 1704 3.78 75 3206 4.81 100 52128 4.25 20	(ħ/d) (₩) (₩₩) 31578 3.61 40 52.71 20918 3.90 60 67.38 1704 3.78 75 103.48 3206 4.81 500 17.34 52128 4.25 20 31.01	(h/d) (W) (KW3/y) (3.1Wh/y) 31578 3.61 40 52.71 1664.35 20918 3.99 60 67.38 1627.94 1704 3.78 75 103.48 176.32 3206 4.81 100 17.57 563.21 52128 4.25 20 31 03 1617.27	(h/d) (W) (KVE/y) (3/Wh/y) (Memb14/Wh) 31578 3.61 40 52.71 1664.35 11 20918 3.99 60 67.36 1827.94 12 1704 3.78 75 103.48 176.32 13 3206 4.81 100 175.57 563.21 15 52128 4.25 20 31 03 1617.27 43 6850 4.07 40 59.42 407.94 57	(hid) (W) (KM:N/) (Mimh/MWh) (Mimh/MVh) 31578 3.61 40 52.71 1664.35 11 18307.85 20918 3.99 60 87.38 1627.94 12 21934.03 1704 3.78 75 103.48 176.32 13 2292.23 3208 4.81 100 175.57 563.21 15 8448.19 52128 4.25 20 31.03 1617.27 43 69542.66 6850 4.07 40 59.42 407.34 57 23201.32

Cooking

Appliance	# of Appliances	Avg. use	Power Rating	El. Cons. per unil	Total El. Cons.
		(1/10)	(W)	(KWhy)	(WIW)
Plate	602	1.32	1000	431.80	290.04
Grill	201	0.33	1490	168.63	33.89
Oven	100	0	:500	0.00	0.00
L'icrowave	2506	0.2	1400	102.20	256.11
Kettie	563	0.71	1500	388.75	220.80
Toaster	4144	0.28	1000	102.20	423.52
Aice cooker	635	0.67	1500	36ō.83	232.93
TOTAL					1457.30

Retrigeration

Appliance	# of Appliances	El. Cons. per unit	Electricity Cons.
		(KWh.Y)	(MWh/y)
Fridge w/ Freezer	14268	900	12841.2
Oeep Freeze	902	600	541.2
TOTAL			13382.4

Water Heating

Appliance	Hot water	Hot water	Energy contern	Ethiciency	Total EL Cons.
	(gals/week)	(gals M)	(KWhAy)	(kWh/kWh)	(MWaAy)
Showerhead	218370	11355240	14095/2.99	0.95	1576.501
Storage	127814	6F46328	8777:4.06	0.8	1097.14
TOTAL		18001568			2675.64

Hot water may be defined as water which is heated up by 30 K.

The spacific energy content of water is exclusional to 4.402 Wh/(gat'K). For 30 K It is 0.13206 KWh/gat.

Laundry				
Appliance	Loads/week	Loads/year	El. Cons. per load	Total El. Cors.
			(kWh/lead)	(MWhy)
Washing Machine	39497	2053844	0.4	. 821.54

Other Electrical Appliances

Appliance	# of Appliances	Avg. use (h/d)	Power Rating (W)	EI. Cons. per unit (KWh/y)	Total El. Cons. (MWhy)
Air conditioner	769	5.27	1000	1923.55	1479.21
Fan	43139	8 62	40	125.85	5429.13
Television	24093	4.95	50	90.34	2176.50
VCR	4511	1.17	30	12.01	57.79
Hili	5416	3.14	30	34.38	220.60
Radio	15739	4.64	10	16.94	266.56
iron	19682	0.5	1000	182.50	3591.97
TOTAL					13221.76

Summary

Use	Electricity Consumption	ก
	MWMM	%
Lighting	6256.04	16.54%
Cooking	1457.30	3.85%
Befrigeration	13382.40	35.39%
Water Heating	26/5.64	7,08%
aundry	821.54	2.17%
Other electric appliances	13221.75	34.96%
TOTAL	37814.67	100.00%
% of HH w/ private generation	0.92%	
Estimated demand from BEL	37465.60	

elize Electricity Demand Study, BEL/IER, October 1994 Electricity Consumption of Households in 1994 based on the Belize National Energy Survey Rural Grid

ighting

Appliance	# of Appliances	Avg. use	Power Rating	El. Cons. per unit	Total EL Cons.	Elliciency	Useful Energy	Market Share
		(1/d)	(W)	(KWhy)	(MWh/y)	(Mimh/MWh)	(Mimh/y)	(%)
40 W bulb	9216	4.34	40	63.36	583.96	11	6423.59	8.31%
50 W buib	7020	3.42	60	74.90	<u>525.78</u>	12	6309.41	8.16%
S W bulb	139~	4.01	75	109.77	153.35	13	1993.F/0	2.58%
OO W bulb	4093	2.38	100	86.87	355.56	15	5333.38	6.90%
20 W flou	28780	4.69	20	34.24	985.34	43	42369.66	54.82%
40 W flou.	4292	4.16	40	60.74	260.68	57	14858.70	19.23%
TOTAL					2864.68		77268.34	100.00%

Cooking

Appliance	# of Appliances	Avg. use	•	EI. Cons. per unit	
		(1/4)	(W)	(kWhA)	(MWh/y)
late	100	2.5	1000	912.50	91.25
Srill	0	0	1400	0.00	0.00
Dven	33	0.5	1500	273.75	9.03
Microwave	665	0.32	1400	163.52	108.74
Kettle	100	0.54	1500	295.65	29.57
oaster	1131	0.26	1000	94.90	107.33
lice cooker	133	1	1500	547.50	72.82
TOTAL					418.74

Retrigeration

ppliance	# of Appliances	El. Cons. per unit	Electricity Cons.
		(kWh/y)	(MWh/y)
ridge w/ Freezer	4891	900	4401.9
Deep Freeze	1264	600	758.4
OTAL			5160.3

ater Heating

Appliance	Hot water	Hot water	Energy content	Efficiency	Total EL Cons.
	(gais/week)	(gais M)	(KWhAy)	(KWh/KWh)	(MWhy)
Showerhead	68707	3572764	471819.21	0.95	496,65
lorage	73365	3814980	503006.26	0.8	629.76
OTAL		7387744)		1126,41

Hot water may be defined as water which is heated up by 30 K. The specific energy content of water is equivalent to 4.402 Wh/(gal*K). For 30 K it is 0.13266 kWh/gal.

aundry

	ds/week	Loads/year		
Washing Machine	41291	2147132	(kWh/load)	(MWh/y) 858.85

ther ElectricsI Appliances

ppliance	# of Appliances	Avg. use	Power Rating	El, Cons. per unit	Total El. Cons.
		(h/d)	(W)	(KWh/y)	(MWh/y)
Air conditioner	0	0	1000	0.00	0.00
Fa n	16170	6.17	40	90.08	1456.63
elevision	8218	4.73	<u> </u>	86.32	709.40
CR Hifi	1397	1,4	30	15.33	21.42
Hini	1165	4.29	30	46.98	54.73
Radio	8784	4.14	10	15.11	132.74
ipn .	9183	0.51	1000	186.15	1709.42
DTAL					4064.32

Summary

1 0	Electricity Consumption	20
	(MWhy)	%
ahling	2864 68	19.74%
Cooking	418.74	2.89%
Refrigeration	5160.30	35.56%
ater Heating	1126.41	7,76%
undry	858.95	5.92%
ther electric appliances	4084.32	28.14%
TOTAL	14513.30	100.00%
% of HH w/ private generation	10.23%	
limated demand from BEL	13028.21	

Belize Electricity Demand Study, BEL/IER, October 1994 **Electricity Consumption of Households in 1994** based on the Belize National Energy Survey Region: Non Grid

Lighting

Appliance	# of Appliances	Avg. use	Power Rating	El. Cons. per unit	Total El. Cons.	Efficiency	Useful Energy	Market Shar
		(N/d)	(W)	(KWhAy)	(MWhy)	(Mimh/MWh)	(Mimh/y)	(%)
40 W bulb	6779	3.91	40	57.09	386.99	11	4256.85	20.64*
60 W bulb	2299	2.89	60	63.29	145.51	12	1746.07	8.4
75 W bulb	351	- 4	75	109.50	38.43	13	499,65	2.4
100 W bulb	896	6.21	100	226.67	203.09	15	3046.38	14.7
20 W flou.	5688	4.51	20	32.92	187.27	43	8052.44	39.057
40 W flou.	1052	3.45	40	50.37	52.99		3020.39	14.65
TOTAL					1014.27		20621.77	100.0

Cooking

Appliance	# of Appliances	Avg. use	Power Rating	El. Cons. per unit	Total EL Cons.
		(h/d)	(W)	(KWhy)	(MWb/y)
Plate	0	0	1000	0.00	0.00
Grill	0	0	1400	0.00	0.00
Oven	0	0	1500	0.00	0.00
Microwave	117	0.32	1400	163.52	19.13
Kettie	78	1	1500	547.50	42.71
Toaster	156	0.54	1000	197.10	30.75
Rice cooker	0	0	1500	0.00	0.00
TOTAL					92.58

Retrigeration

Appliance	# of Appliances	El. Cons. per unit	Electricity Cons.
		(KWDAY)	(MWh/y)
Fridge w/ Freezer	2104	900	1893.6
Deep Freeze	234	600	140.4
TOTAL			2034

Water Heating

Appliance	Hol water (gals/week)	Hot water (gals./y)	Energy content (kWh/y)	Efficiency (kWh/kWh)	Total EL Cons. (MWh/y)
Showerhead	43636	2269072	299653.65	0.95	315.42
Storage	7013	364676	48159.11	08	60.20
TOTAL		2633748			375.62

Hot water may be defined as water which is heated up by 30 K. The specific energy content of water is equivalent to 4.402 Wh/(gat*K). For 30 K it is 0.13206 kWh/gat.

Laundry				
Appliance	Loads/week	Loads/year	El. Cons. per load (kWh/load)	Total EL Cons. (MWh/v)
Washing Machine	2260	117520		47.01

Other Electrical Appliances

Appliance	# of Appliances	Avg. use	Power Rating	EI. Cons. per unit	Total El. Cons.
		(1/d)	(W)	(kWhy)	(MWh/y)
Air conditioner	78	15	1000	5475.00	427.05
Fan	3506	6.55	40	95.63	335.28
Television	2026	4.07	50	74.28	150.49
VCR	623	2.55	30	27.92	17.40
Hili	429	3.94	30	43.14	18.51
Radio	2532	5.05	10	18.43	46.67
kon	1948	0.45	1000	164.25	319.96
TOTAL					1315.35

Summary

Use	Elect.icity Consumption	n n
	(MWIN/)	%
Lighting	1014.27	20.79%
Coolding	92.58	1.90%
Refrigeration	2034.00	41.69%
Water Heating	375 62	7.70%
Laundry	47.01	0.96%
Other electric appliances	13:5.35	26.96%
TOTAL	4878 84	100.00%
% of HH w/ privalc generation	12.32%	
Estimated demand from BEL	4277.77	_

ANNEX 13: ELECTRICITY CONSUMPTION OF HOUSEHOLDS IN 1994 -SUMMARY

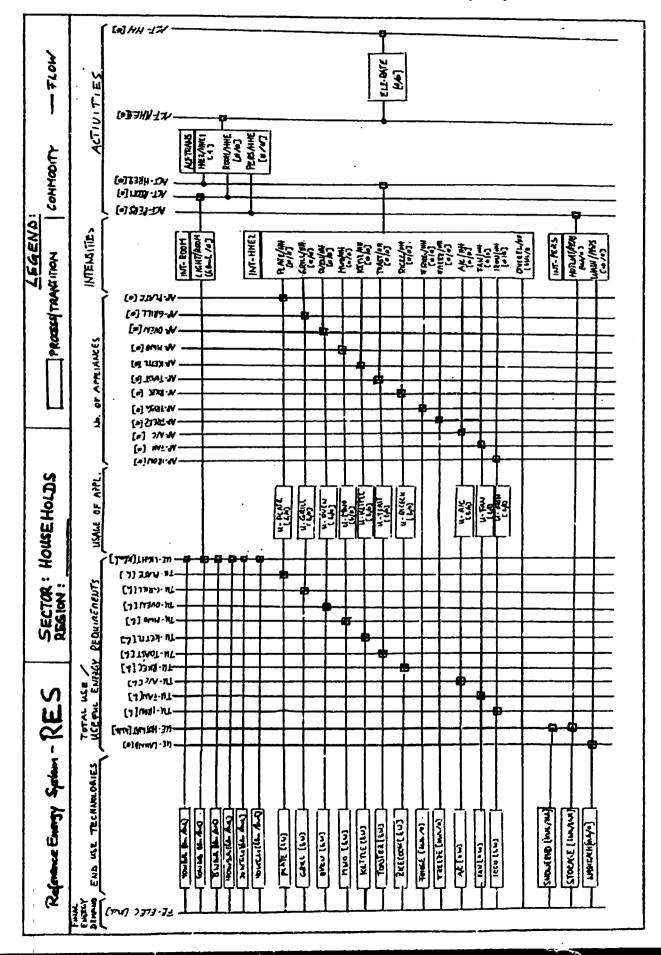
Belize Electricity Demand Study, BEL/IER, October 1994 Electricity Consumption of Households in 1994 based on the Belize National Energy Survey Summary

Regio	n Total Beliz	e	Urban Grig	j	Rural Grid		Non Grid	
Use	(MWh/y)	%	(MWh/y)	%	(MWh/y)	%	(MWh/y)	%
Lighting	10134.99	17.72%	6256.04	16.54%	2864.68	19.74%	1014.27	20.79%
Cooking	1968.62	3.44%	1457.30	3.85%	418.74	2.89%	92.58	1.90%
Refrigeration	20576.70	35.97%	13382.40	35.39%	5160.30	35.56%	2034.00	41.69%
Water Heating	4177.67	7.30%	2675.64	7.08%	1126.41	7.76%	375.62	7.70%
aundry	1727.40	3.02%	821.54	2.17%	858.85	5.92%	47.01	0.96%
Other electric appliances	18621.42	32.55%	13221.76	34.96%	4084.32	28.14%	1315.35	26.96%
TOTAL	57206.80	100.00%	37814.67	100.00%	14513.30	100.00%	4878.84	100.00%
% of HH w/ private generation			0.92%		10.23%		12.32%	
Estimated demand from BEL	54771.58		37465.60		13028.21		4277.77	
Total Sales of BEL 1994	54466.85	(Estimated	d, based on	the sales	in August 1	994 * 12)		

ANNEX 14: CROSSCOUNTRY COMPARISON OF HOUSEHOLD ELECTRICITY END-USES

Belize Electricity Demand Study, BEL/IER, October 1994 Crosscountry Comparison of Household Electricity End-Uses

Country	Belize 1994 (%)	Central America 1992 (%)	United States 1989 (%)	Germany 1989 (%)
Lighting	17.72	15.6	11.7	7
Cooking	3.44	19.69	6.3	8.8
Refrigeration	35.97	31.2	20.7	18.8
Water Heating	7.3	5.63	15	19.2
Air conditioning	3.33	3.84	11.8	0
Other electric appliances	32.24	24.04	34.5	46.2
Total	100	100	100	100


Sources:

Belize:

Belize National Energy Survey - Household Sector, BEL/IER/CSO, October 1994

Central America (Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama): Aguinaga-Diaz J., Vieira de Carvalho A., Poveda M.: "OLADE's Central American DSM Project: A Model for International Cooperation", Proceedings of the Second International Energy Efficiency & DSM Conference, September 1993, Stockholm, Sweden

United States, Germany: OECD/IEA: "Electricity End-Use Efficiency", Paris, 1989

ANNEX 15: REFERENCE ENERGY SYSTEM (RES)

ANNEX 16: RES-STRUCTURE

10/28/94

RES Structure of Casestudy BEL_HH

Page 1

		RES Structure of Casestudy BEL_HH					
Process			<u>Commodity</u>	<u>.</u>			
ele-rate	Electrification Rate	Output: Input:	ACT-HH ACT-HHE1	Activity, No. of households Activity, 1. No. of electrified HH			
ACT-TRAN	Activity Transformation	Output: Input:	ACT-HHE1 ACT-HHE2 ACT-ROOM ACT-PERS	Activity, 1. No. of electrified HH Activity, 2. No. of electrified HH Activity, rooms in electrified HH Activity, persons in electrified HH			
INT-ROOM	Intensities rei, to rooms in ei. HH	Ouiput: Input:	ACT-ROOM UE-LIGHT	Activity, rooms in electrified HH Useful energy, lighting			
INT-HHE2	Intensities rel. to elec. HH	Output: Input:	ACT-HHE2 AP-PLATE APP-GRIL AP-OVEN AP-WWO AP-KETTL AP-TCAST AP-RICE AP-FRIDG AP-FREEZ AP-A/C AP-FAN AP-IRON FE-ELEC	Activity, 2. No. of electrified HH No. of electric plates No. of electric grills No. of electric ovens No. of electric ovens No. of electric kettles No. of electric toasters No. of electric rice cookers No. of electric refrigerators Nc. of electric refrigerators Nc. of electric freezers No. of air conditioners No. of electric fans No. of electric irons Final Energy, Electricity			
INT-PERS	Intensities rel. to persons in el. HH	Input: Output: Input:	TU-LAUNF ACT-PERS UE-HOTWA	Total loads, washing machine Activity, persons in electrified HH Useful energy, hot water			
U-PLATE	Avg. use of plates	Output: Input:	AP-PLATE TU-PLATE	No. of electric plates Total use, plates			
U-GRILL	Avg. use of grills	Cutput: Input:	APP-GRIL TU-GRILL	No. cf electric grills Total use, grill			
U-OVEN	Avg. use of ovens	Output: Input:	AP-OVEN TU-OVEN	No. of electric ovens Total use, oven			
U-MWO	Avg. use of microwave overis	Output: Input:	AP-MWO TU-MWO	No. of microwave ovens Total use, microwave oven			
U-KETTLE	Avg. use of kettles	Oułput: Input:	AP-KETTL TU-KETTL	No. of electric kettles Total use, kettle			
U-TOAST	Avg. use of toasters	Output: Input:	AP-TOAST TU-TOAST	No. of electric toasters Total use, toaster			
U-RICEC	Aug. use of rice cookers	Output: Input:	AP-RICE TU-RICEC	No. of electric rice cookers Total use, rice cooker			
U-A/C	Avg. use of air conditioners	Output: Input:	AP-A/C TU-A/C	No. of air conditioners Total use, air conditioner			
U-FANS	Avg. use of fans	Oulput: Input:	A.P.FAN TU-FAN	No. of electric fans Total use, fan			
U-IRON	Avg. use of irons	Oulput: Input:	AP-IRON TU-IRON	No. of electric irons Total use, iron			
EULB-40W	40W Incandescent bulb	Input: Output:	FE-ELEC UE-LIGHT	Final Snergy, Electricity Useful energy, lighting			

RES Structure of Casestudy BEL_HH

10/28/94

1:14:13 PM

٠.

Page 2

Process			Commodity	
BULB-60W	60W Incandescent butb	Input:	FE-ELEC	Final Energy, Electricity
		Output:	UE-LIGHT	Useful energy, lighting
BULB-75W	75W Incandescent butb	input:	FE-ELEC	Final Energy, Electricity
		Output:	UE-LIGHT	Useful energy, lighting
BULB-100	100W Incandescent bulb	Input:	FE-ELEC	Final Energy, Electricity
		Output:	UE-LIGHT	Useful energy, lighting
FLOU-20W	20W flourescent lamp	Input:	FE-ELEC	Final Energy, Electricity
		Output:	UE-LIGHT	Useful energy, lighting
FLOU-40W	40W Flourescent lamp	Input:	FE-ELEC	Final Energy, Electricity
		Output:	UE-LIGHT	Useful energy, lighting
PLATE	Electric plate	Input:	FE-ELEC	Final Energy, Electricity
	•	Output:	TU-PLATE	Total use, plates
GRILL	Electric grill	Input:	FE-ELEC	Final Energy, Electricity
		Output:	TU-GRILL	Total use, grill
MWO	Microwave oven	Input:	FE-ELEC	Final Energy, Electricity
		Output:	TU-MWO	Total use, microwave oven
OVEN	Electric oven	Input:	FE-ELEC	Final Energy, Electricity
- · ····		Output:	TU OVEN	Total use, oven
KETTLE	Electric kettle	input:	FE-ELEC	Final Energy, Electricity
		Output:	TU-KETTL	Total use, kettle
TOASTER	Electric toaster	Input:	FE-ELEC	Final Energy, Electricity
		Output:	TU-TOAST	Total use, toaster
RICEC	Electric rice cooker	Input:	FE-ELEC	Final Energy, Electricity
		Output:	TU-RICEC	Total use, rice cooker
FRIDGE	Electric refrigerator	Input:	FE-ELEC	Final Energy, Electricity
	-	Output:	AP-FRIDG	No. cf electric refrigerators
FREEZE	Electric freezer	Input:	FE-ELEC	Final Energy, Electricity
		Output:	AP-FREEZ	No. of electric freezers
AVC	Air conditioner	Input:	FE-ELEC	Final Energy, Electricity
		Output:	TU-A/C	Total use, air conditioner
FAN	Electric fan	input:	FE-ELEC	Final Energy, Electricity
		Output:	TU-FAN	Total use, fan
IRON	Electric iron	Input:	FE-ELEC	Final Energy, Electricity
		Output:	TU-IRON	Total use, iron
SHOWERH	Electric showerhead	Input:	FE-ELEC	Final Energy, Electricity
- •		Output:	UE-HOTWA	Useful energy, hot water
STORAGE	Electric storage water heater	Input:	FE-ELEC	Final Energy, Electricity
	-	Output:	UE-HOTWA	Useful energy, hot water
WASHM	Washing machine	Input [.]	FE-ELEC	Final Energy, Electricity
_ · · · · · ·	- ··· · ································	Output:	TU-LAUND	Total loads, washing machine

ANNEX 17: LIST OF COMMODITIES

Commodities of Casestudy BEL_HH

10/28/94 1:14:06 PM

	Son iD	Name	<u>Unit-ID</u>	Unit-Name
	1 ACT-HH	Activity, No. of households	No	Number
	2 ACT-HHE1	Activity, 1. No. of electrified HH	No	Number
	3 ACT-HHE2	Activity, 2. No. of electrified HH	No	Number
	4 ACT-ROO	Activity, rooms in electrified HH	No	Number
	5 ACT-PERS	Activity, persons in electrified HH	No	Number
	6 AP-PLATE	No. of electric plates	No .	Number
	7 APP-GRIL	No. of electric grills	No	Number
	8 AP-OVEN	No. of electric ovens	No	Number
	9 AP-MWO	No. of microwave ovens	No	Number
	10 AP-KETTL	No. of electric kettles	Nc	Number
	11 AP-TOAST	No. of electric toasters	No	Number
	12 AP-RICE	No. of electric rice cookers	No	Number
	13 AP-FRIDG	No. of electric refrigerators	No	Number
	14 AP-FREEZ	No. of electric freezers	No	Number
	15 AP-A/C	No. of air conditioners	No	Number
	16 AP-FAN	No. of electric fans	No	Number
	17 AP-IRON	No. of electric irons	No	Number
	18 UE-LIGHT	Useful energy, lighting	kimh	Kilolumenhour
	19 TU-PLATE	Total use, plates	h	Hours
	20 TU-GRILL	Total use, grill	h	Hours
	21 TU-OVEN	Total use, oven	h	Hours
	22 TU-MWO	Total use, microwave oven	h	Hours
	23 TU-KETTL	Total use, kettle	h .	Hours
	24 TU-TOAST	Total use, toaster	h	Hours
	25 TU-RICEC	Total use, rice cooker	h	Hours
1	26 TU-A/C	Total use, air conditioner	h	Hours

Page 1

	10/28/94 1:14:06 PM	Commodities of Casestudy BEL_HH				
	Sort ID	Name	<u>Unit-ID</u>	Unit-Name		
,	27 TU-FAN	Total use, fan	h	Hours		
	28 TU-IRON	Total use, iron	h	Hours		
	29 UE-HOTW	Useful energy, hot water	kWh	Kilowatthour		
	30 TU-LAUND	Total loads, washing machine	No	Number		
	31 FE-ELEC	Final Energy, Electricity	kWh	Kilowatthour		

•

ANNEX 18: LIST OF EQUATIONS

10/28/94	Equations of Casestudy BEL_HH	Page
1:15:52 PM		-

Seq-# Eq-# Type Equation

3	(1)	TR	I_ELE-RATE_ACT-HHEI	= Electrification rate * O_ELE-RATE_ACT-HH
5 6	(1) (2)		I_ELE-KATE_ACT-RET	= Rooms per HH * O_ACT-TRAN_ACT-HHEI
7	(2) (3)		I_ACT-TRAN_ACT-PERS	= Persons per HH * O_ACT-TRAN_ACT-HHEI = Persons per HH * O_ACT-TRAN_ACT-HHEI
8	(2) (4)		I_ACT-TRAN_ACT-FERS	= Persons per HIT * O_ACT-TRAN_ACT-HHET = Dummy (1) * O ACT-TRAN_ACT-HHET
15	(5)	TR	I_INT-HHE2_AP-PLATE	= Intensity * 0 INT-HHE2 ACT-HHE2
15	(5) (6)		I_INT-HHE2_APP-GRIL	= Intensity * 0_INT-HHE2_ACT-HHE2 = Intensity * 0_INT-HHE2_ACT-HHE2
17	(0) (7)		I_INT-HHE2_AP-OVEN	= Intensity * O INT-HHE2 ACT-HHE2
18	(8)		I_INT-HHE2_AP-MWO	= Intensity * 0_INT-HHE2_ACT-HHE2
19	(9) (9)		I_INT-HHE2_AP-KETTL	= Intensity * O_INT-HHE2_ACT-HHE2
20	(<i>>)</i> (10)	TR	I_INT-HHE2_AP-TOAST	= Intensity * 0_INT-HHE2_ACT-HHE2
20	(10)		I_INT-HHE2_AP-RICE	= Intensity * 0_INT-HHE2_ACT-HHE2
22	(12)	TR	I_INT-HHE2_AP-FRIDG	= Intensity * 0_INT-HHE2_ACT-HHE2
23	(12)		I_INT-HHE2_AP-FREEZ	= Intensity * O_INT-HHE2_ACT-HHE2
24	(13)		I_INT-HHE2_AP-A/C	= Intensity * O_INT-HHE2_ACT-HHE2
24 25	(15)	TR	I INT-HHE2 AP-FAN	= Intensity * 0_INT-HHE2_ACT-HHE2
25 26	(15)	TR	I_INT-HHE2_AP-IRON	= Intensity * O INT-HHE2 ACT-HHE2
20 27	(10) (17)		I_INT-HHE2_FE-ELEC	= Intensity * 0 INT-HHE2 ACT-HHE2
65	(17)		I_U-PLATE_TU-PLATE	= Avg. Use * O_U-PLATE_AP-PLATE
66	(19)		I_U-GRILL_TU-GRILL	= Avg. Use * O U-GRILL APP-GRIL
67	(20)	TR	I_U-OVEN_TU-OVEN	$= Avg. Use * O_U-OVEN_AP-OVEN$
68	(21)	TR	I_U-MWO_TU-MWO	$= Avg. Use * O_U-MWO_AP-MWO$
69	(22)	TR	I_U-KETTLE_TU-KETTL	= Avg. Use * O_U-KETTLE_AP-KETTL
70	(23)	TR	I_U-TOAST_TU-TOAST	= Avg. Use * O_U-TOAST_AP-TOAST
71	(24)	TR	I_U-RICEC_TU-RICEC	$= Avg. Use * O_U-RICEC_AP-RICE$
72	(25)	TR	I_U-A/C_TU-A/C	$= Avg. Use * O_U-A/C_AP-A/C$
73	(26)	TR	I_U-FANS_TU-FAN	= Avg. Use * O_U-FANS_AP-FAN
74	(27)		I_U-IRON_TU-IRON	= Avg. Use * O_U-IRON_AP-IRON
28	(28)	TR	I_INT-ROOM_UE-LIGHT	= Intensity * O_INT-ROUM_ACT-ROOM
75	(29)	TR	O_BULB-40W_UE-LIGHT	= Luminous efficacy * I_BULB-40W_FE-ELEC
76	(30)		O BULB-60W UE-LIGHT	= Luminous efficacy * I_BULB-60W_FE-ELEC
77	(31)		O_BULB-75W_UE-LIGHT	= Luminous efficacy * 1_BULB-75W_FE-ELEC
78	(32)	TR	O BULB-100 UE-LIGHT	= Luminous efficacy * I_BULB-100_FE-ELEC
79	(33)	TR	O FLOU-20W UE-LIGHT	= Luminous efficacy * I_FLOU-20W_FE-ELEC
106	(34)	TR	O_FLOU-40W_UE-LIGHT	= Luminous efficacy * I_FLOU-40W_FE-ELEC
107	(35)	TR	I_PLATE_FE-ELEC	= Power rating * O_PLATE_TU-PLATE
108	(36)	TR	I_GRILL_FE-ELEC	= Power rating * O_GRILL_TU-GRILL
109	(37)	TR	I_OVEN_FE-ELEC	= Power rating * O_OVEN_TU-OVEN
110	(38)	TR	I_MWO_FE-ELEC	= Power rating * O_MWO_TU-MWO
111	(39)	TR	I_KETTLE_FE-ELEC	= Power rating * O_KETTLE_TU-KETTL
112	(40)	TR	I_TOASTER_FE-ELEC	= Power rating * O_TOASTER_TU-TOAST
113	(41)	TR	I_RICEC_FE-ELEC	= Power rating * O_RICEC_TU-RICEC
80	(42)	TR	I_FRIDGE_FE-ELEC	- Consumption • O_FRIDGE_AP-FRIDG
81	(43)		I_FREEZE_FE-ELEC	= Consumption * O_FREEZE_AP-FREEZ
			- , -	

10/28/94 1:15:52 PM

Seq-# Eq-# Type Equation

114 (44) TR $I_A/C_FE-ELEC$ = Power rating * $O_A/C_TU-A/C$ 115 (45) TR $I_FAN_FE-ELEC$ = Power rating * O_FAN_TU-FAN 116 (46) TR $I_IRON_FE-ELEC$ = Power rating * $O_IRON_TU-IRON$ 82 (47) TR $I_WASHM_FE-ELEC$ = Consumption * $O_WASHM_TU-LAUND$ 29 (48) TR $I_INT-PERS_TU-LAUND$ = Intensity * $O_INT-PERS_ACT-PERS$ 30 (49) TR $I_INT-PERS_UE-HOTWA$ = Intensity * $O_INT-PERS_ACT-PERS$ 83 (50) TR $O_SHOWERH_UE-HOTWA$ = Efficiency * $I_SHOWERH_FE-ELEC$ 117 (51) TR O_ACT-HH = quantity * I 4 (52) EX Q_ACT-HH = LIEP D_ACTD_ACTD_ACTD_ACTD_ACTD_ACTD_ACTD_ACT	
115(45)TRI_FAN_FE-ELEC= Power rating * O_FAN_TU-FAN116(46)TRI_IRON_FE-ELEC= Power rating * O_IRON_TU-IRON82(47)TRI_WASHM_FE-ELEC= Consumption * O_WASHM_TU-LAUND29(48)TRI_INT-PERS_TU-LAUND= Intensity * O_INT-PERS_ACT-PERS30(49)TRI_INT-PERS_UE-HOTWA= Intensity * O_INT-PERS_ACT-PERS83(50)TRO_SHOWERH_UE-HOTWA= Efficiency * I_SHOWERH_FE-ELEC117(51)TRO_STORAGE_UE-HOTWA= Efficiency * I_STORAGE_FE-ELEC1(52)EXQ_ACT-HH= quantity * I	
116(46)TRI_IRON_FE-ELEC= Power rating * O_IRON_TU-IRON82(47)TRI_WASHM_FE-ELEC= Consumption * O_WASHM_TU-LAUND29(48)TRI_INT-PERS_TU-LAUND= Intensity * O_INT-PERS_ACT-PERS30(49)TRI_INT-PERS_UE-HOTWA= Intensity * O_INT-PERS_ACT-PERS83(50)TRO_SHOWERH_UE-HOTWA= Efficiency * I_SHOWERH_FE-ELEC117(51)TRO_STORAGE_UE-HOTWA= Efficiency * I_STORAGE_FE-ELEC1(52)EXQ_ACT-HH= quantity * I	
29 (48) TR I_INT -PERS_TU-LAUND = Intensity * O_INT -PERS_ACT-PERS 30 (49) TR I_INT -PERS_UE-HOTWA = Intensity * O_INT -PERS_ACT-PERS 83 (50) TR $O_SHOWERH_UE$ -HOTWA = Efficiency * $I_SHOWERH_FE$ -ELEC 117 (51) TR $O_STORAGE_UE$ -HOTWA = Efficiency * $I_STORAGE_FE$ -ELEC 1 (52) EX Q_ACT -HH = quantity * !	
30(49)TR I_INT-PERS_UE-HOTWA = Intensity • O_INT-PERS_ACT-PERS83(50)TR O_SHOWERH_UE-HOTWA = Efficiency • I_SHOWERH_FE-ELEC117(51)TR O_STORAGE_UE-HOTWA = Efficiency • I_STORAGE_FE-ELEC1(52)EX Q_ACT-HH= quantity • I	
83 (50) TR O_SHOWERH_UE-HOTWA = Efficiency * I_SHOWERH_FE-ELEC 117 (51) TR O_STORAGE_UE-HOTWA = Efficiency * I_STORAGE_FE-ELEC 1 (52) EX Q_ACT-HH = quantity * !	
117 (51) TR O_STORAGE_UE-HOTWA = Efficiency * I_STORAGE_FE-ELEC 1 (52) EX Q_ACT-HH = quantity * !	
1 (52) EX Q_ACT -HH = quantity * !	
4 (53) CC Q_ACT -HHEI = I_ELE -RATE_ACT-HHEI	
9 (54) CC Q_ACT -ROOM = I_ACT -TRAN_ACT-ROOM	
10 (55) CC Q_ACT -PERS = I_ACT -TRAN_ACT-PERS	
11 (56) CC Q_ACT -HHE2 = I_ACT -TRAN_ACT-HHE2	
31 (57) CC Q_AP -PLATE = I_INT -HHE2_AP-PLATE	
32 (58) CC Q_APP -GRIL = I_INT -HHE2_APP-GRIL	
33 (59) CC Q_{AP} -OVEN = I_{INT} -HHE2_AP-OVEN	
34 (60) CC Q_AP-MWO = $I_INT-HHE2_AP-MWO$	
35 (6i) CC Q_AP -KETTL = I_INT -HHE2_AP-KETTL	
$36 (62) CC Q_AP-TOAST \qquad = I_INT-HHE2_AP-TOAST$	
37 (63) CC $Q_AP-RICE$ = $I_INT-HHE2_AP-RICE$	
$38 (64) CC Q_AP-FRIDG \qquad = I_INT-HHE2_AP-FRIDG$	
$39 (65) CC Q_AP-FREEZ \qquad = I_INT-HHE2_AP-FREEZ$	
$40 (66) CC Q_AP-A/C \qquad = I_INT-HHE2_AP-A/C$	
41 (67) CC Q_{AP} -FAN = I_{INT} -HHE2_AP-FAN	
$42 (68) CC Q_AP_IRON \qquad = I_INT_HHE2_AP_IRON$	
43 (69) CC $Q_UE-LIGHT$ = $I_INT-ROOM_UE-LIGHT$	
$85 (71) CC Q TU-GRILL \qquad = I U-GRILL TIJ-GRILL$	
$86 (72) CC Q_TU - OVEN \qquad = I_U - OVEN_TU - OVEN$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
$89 (75) CC Q_TU-TOAST \qquad = I_U-TOAST_TU-TOAST$	
90 (76) CC Q_TU -RICEC = I_U -RICEC TU-RICEC	
$\begin{array}{l} 91 (77) CC Q_TU-A/C \\ (10) QC Q_TU-A/C \end{array} = I_U-A/C_TU-A/C \\ \end{array}$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
93 (79) CC Q_TIJ -IRON = I_U -IRON_TU-IRON	
118 (80) CC Q_FE-ELEC = I_INT-HHE2_FE-ELEC + I_BULB-40W_FE-ELEC + I_BULB-60W_FE-ELEC + I_BULB-75W_FE-ELEC + I_BULB-100_FE-ELEC + I_FLOU-20W_FE-ELEC + I_FLOU-40W_FE-ELEC + I_FLATE_FE-ELEC + I_ + I_OVEN_FE-ELEC + I_MWO_FE-ELEC + I_KET J_TOASTER_FE-ELEC + I_RICEC_FE-ELEC + I_FAN I_FREEZE_FE-ELEC + I_A/C_FE-ELEC + I_FAN I_BON_FE_FLEC + I_WASUA_FE_FLEC + I_FAN	+ - _GRILL_FE-ELEC TTLE_FE-ELEC + FRIDGE FE-ELEC

+ I_FREEZE_FE-ELEC + I_A/C_FE-ELEC + I_FAN_FE-ELEC + I_IRON_FE-ELEC + I_WASHM_FE-ELEC + I_SHOWERHI_FE-ELEC + I_STORAGE_FE-ELEC

10/28/94 1:15:52 PM			Equations of Casestudy BEL_HH		
<u>Seq-</u> #	<u>Eq-#</u>	Туре	e Equation		
44	(81)	сс	Q_TU-LAUND	= I_INT-PERS_TU-LAUND	
45	(82)	CC	Q_UE-HOTWA	= I_INT-PERS_UE-HOTWA	
2	(83)	СР	Q_ACT-HH	= O_ELE-RATE_ACT-HH	
5	(84)	СР	Q_ACT-HHEI	= O_ACT-TRAN_ACT-HHEI	
12	(85)	СР	Q_ACT-ROOM	= O_INT-ROOM_ACT-ROOM	
13	(86)	СР	Q_ACT-PERS	= O_INT-PERS_ACT-PERS	
14	(87)	СР	Q_ACT-HHE2	= O_INT-HHE2_ACT-HHE2	
46	(88)	СР	Q_AP-PLATE	= O_U-PLATE_AP-PLATE	
47	(89)	СР	Q_APP-GRIL	= O_U-GRILL_APP-GRIL	
48	(90)	СР	Q_AP-OVEN	= O_U-OVEN_AP-OVEN	
49	(91)	СР	Q_AP-MWO	= O_U-MWO_AP-MWO	
5 0	(92)	СР	Q_AP-KETTL	= O_U-KETTLE_AP-KETTL	
51	(93)	СР	Q_AP-TOAST	= O_U-TOAST_AP-TOAST	
52	(94)	СР	Q_AP-RICE	= O_U-RICEC_AP-RICE	
53	(95)	СР	Q_AP-FRIDG	= O_FRIDGE_AP-FRIDG	
54	(96)	СР	Q_AP-FREEZ	= O_FREEZE_AP-FREEZ	
55	(97)	СР	Q_AP-A/C	$= O_U - A/C_A P - A/C$	
56	(98)	СР	Q_AP-FAN	= O_U-FANS_AP-FAN	
57	(99)	СР	Q_AP-IRON	= O_U-IRON_AP-IRON	

= O_PLATE_TU-PLATE

= O_GRILL_TU-GRILL

= O_OVEN_TU-OVEN

= O_MWO_TU-MWO

= O_KETTLE_TU-KETTL

= O_RICEC_TU-RICEC

 $= O_A/C_TU-A/C$

= O_FAN_TU-FAN

= O_IRON_TU-IRON

= O_WASHM_TU-LAUND

= C_TOASTER_TU-TOAST

= O_BULB-40W_UE-LIGHT + O_BULB-60W_UE-LIGHT +

= O_SHOWERH_UE-HOTWA + O_STORAGE_UE-HOTWA

O_BULB-75W_UE-LIGHT + O_BULB-100_UE-LIGHT + O_FLOU-20W_UE-LIGHT + O_FLOU-40W_UE-LIGHT

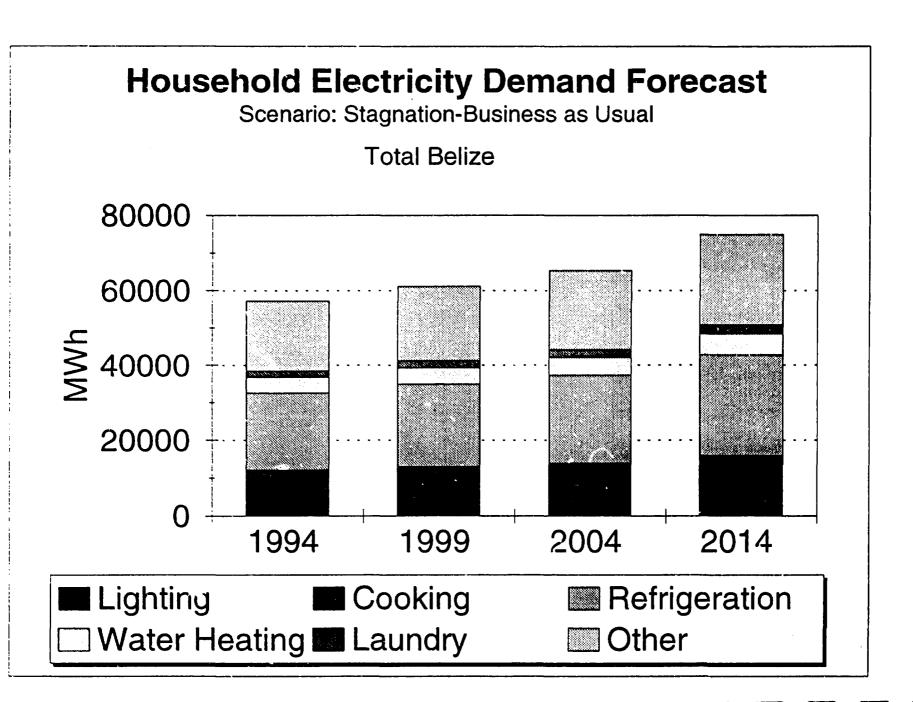
- (100) CP Q_UE-LIGHT 94
- CP Q_TU-PLATE (101)95 (102) CP Q_TU-GRILL 96 97 (103) CP Q_TU-OVEN 98 (104) CP Q_TJ-MWO (105)CP Q_TU-KETTL 99 (106) CP Q_TU-TOAST 100 CP Q_TU-RICEC (107) 101 CP Q_TU-A/C (108)102 103 (109) CP Q_TU-FAN (110) CP Q_TU-IRON 104
- 58 (11)CP Q_TU-LAUND 105 (112)CP Q_UE-HOTWA (113) AL O_BULB-40W_UE-LIGHT 59
- = mkta * Q_UE-LIGHT (114) AL O_BULB-60W_UE-LIGHT = mkta ~ Q_UE-LIGHT 60 AL $O_BULB-75W_UE-LIGHT = mkta \bullet Q_UE-LIGHT$ (115) 61
- AL O_BULB-100_UE-LIGHT 62 (116) ≈ mkta * Q_UE-LIGHT (117) AL $O_FLOU-20W_UE-LIGHT = mkta * Q_UE-LIGHT$ 63
- AL O_SHOWERH_UE-HOTWA = mkta * Q_UE-HOTWA (118) 64

Page

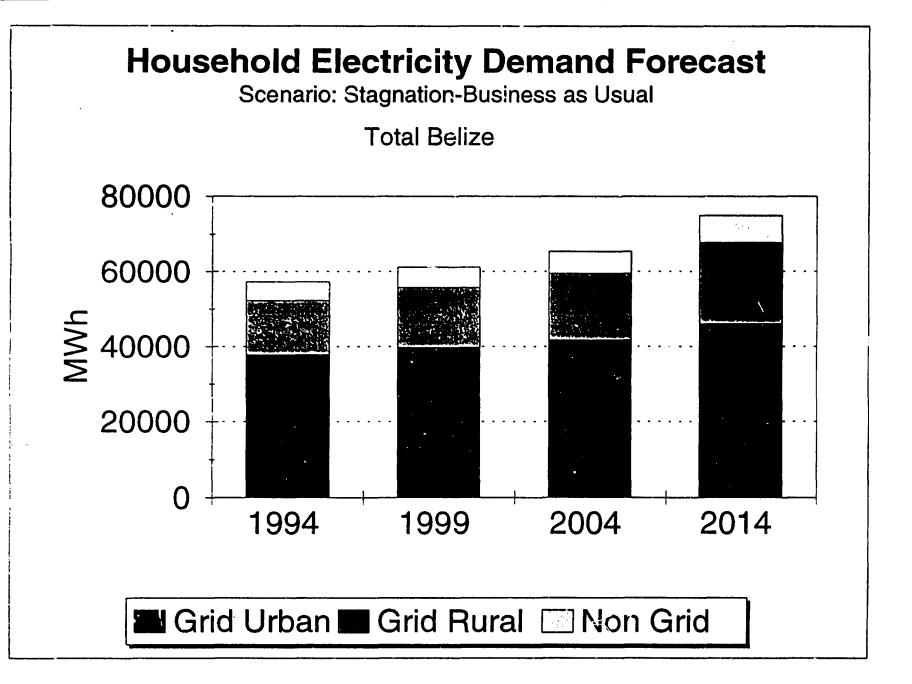
ANNEX 19: RESULT TABLES

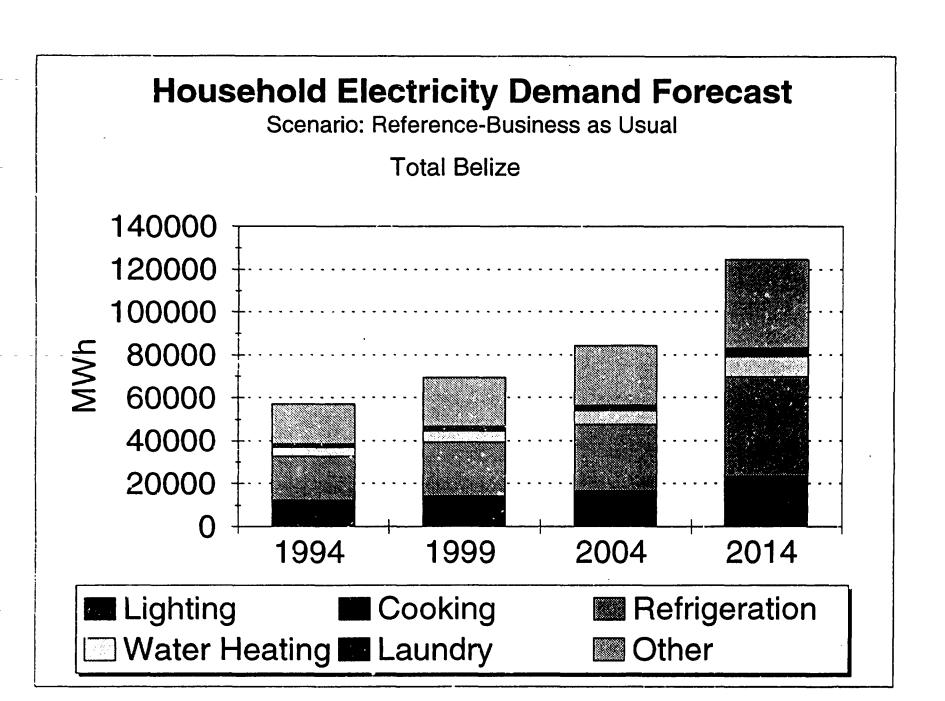
Belize Electricity Demand Study, BEL/IER, October 1994 Household Electricity Demand Forecast 1994-2014 Scenario: Stagnation - Business as Usual

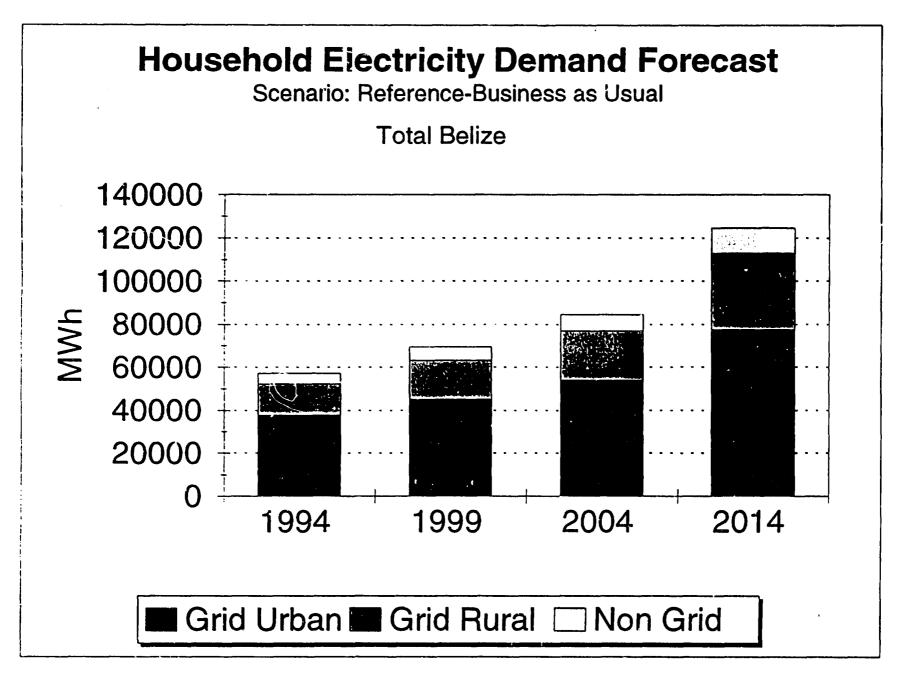
legion	End Uses	1994	1999	2004 2014	2014	growth rate	
		(MWh/y)	(MWh/y)	(MWh/y)	(MWh/y)	(% per year)	
Total Belize	Lighting	10134.60	10857.41	11638.51	13396.92	1.41%	
	Cooking	1968.11	2095.63	2232.48	2537.31	1.28%	
l	Refrigeration	20577.14	22008.58	23552.79	27019.95	1.37%	
_	Water Heating	4177.70	4470.52	4785.58	5496.77	1.38%	
	Laundry	1727.40	1863.59	2011.73	2348.50	1.55%	
	Other	18620.32	19856.69	21185.95	24155.24	_1.31%	
	Total	57205.27	61152.43	65408.04	74954.69	1.36%	
Grid Urban	Lighting	6255.93	6575.04	6910.44	7633.42	1.00%	
	Cooking	1456.94	1531.26	1609.37	1777.75	1.00%	
•	Refrigeration	13382.89	14065.55	14783.03	16329.66	1.00%	
	Water Heating	2675.66	2812.15	2955.60	3264.82	1.00%	
	Laundry	821.54	863.45	907.49	1002.44	1.00%	
8	Other	13221.00	13895.41	14604.21	16132.14	1.00%	
	Total	<u>37813.9</u> 7	39742.86	41770.15	4614 23	1.00%	
irid Rutal	Lighting	2364.45	3162.58	3491.75	4250.42	2.00%	
	Cooking	418.67	462.25	510.36	622.12	2.00%	
	Refrigeration	5160.50	5697.61	6290.62	7668.23	2.00%	
	Water Heating	1126.41	1243.65	1373.09	1673.79	2.00%	
	Laundry	858.85	948.24	1046.94	1276.21	2.00%	
-	Other	<u>4084.3</u> 6	4509.46	4978.81	6069.14	2.00%	
	Total	14513.25	16023.80	17691.57	21565.92	2.00%	
on Grid	Lighting	1014.22	1119.78	1236.33	1507.08	2.00%	
	Cooking	92.49	102.12	112.75	137.44	2.00%	
	Refrigeration	2033.75	2245.43	2479.13	3022.05	2.00%	
	Water Heating	375.63	414.72	457.89	558.16	2.00%	
	Laundry	47.01	51.90	57.30	69.85	2.00%	
	Other	1314.96	1451.82	1602.93	1953.96	2.00%	
	Total	4878.06	5385.77	5946.33	7248.54	2.00%	

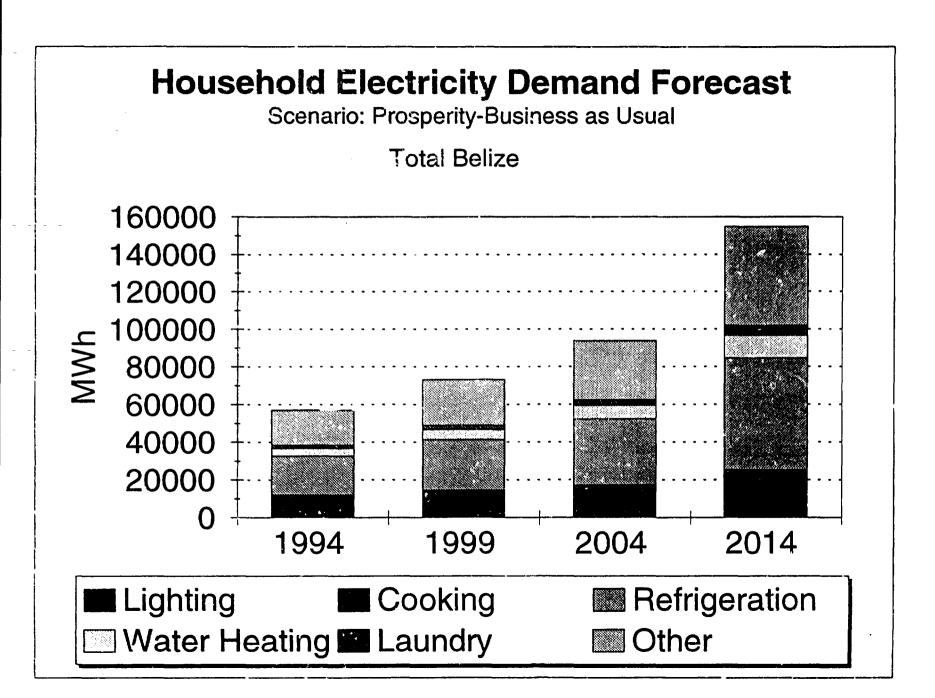

Belize Electricity Demand Study, BEL/IER, October 1994 Household Electricity Demand Forecast 1994-2014 Scenario: Reference - Business as Usual

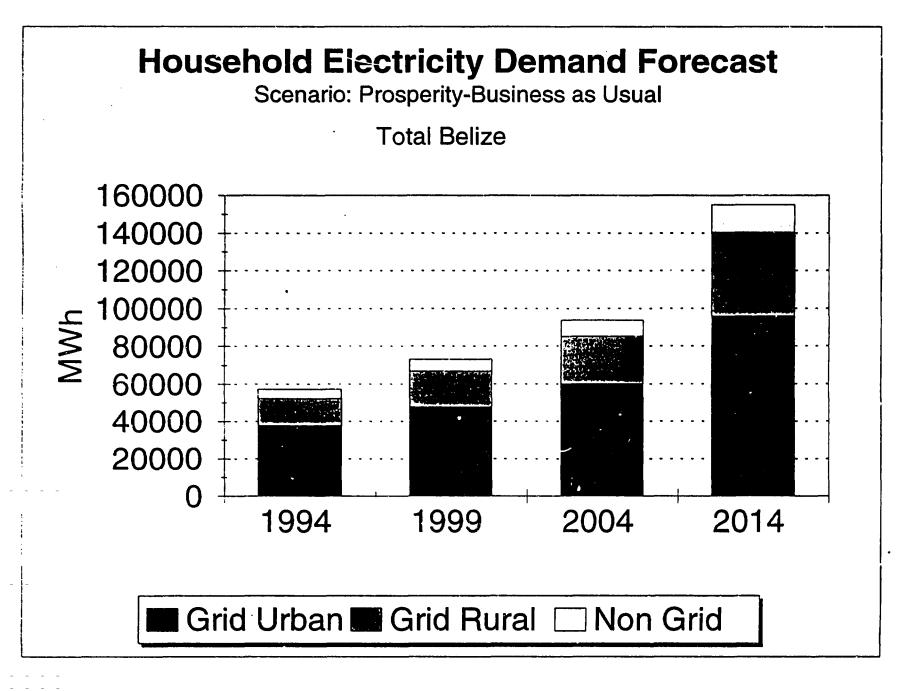
.

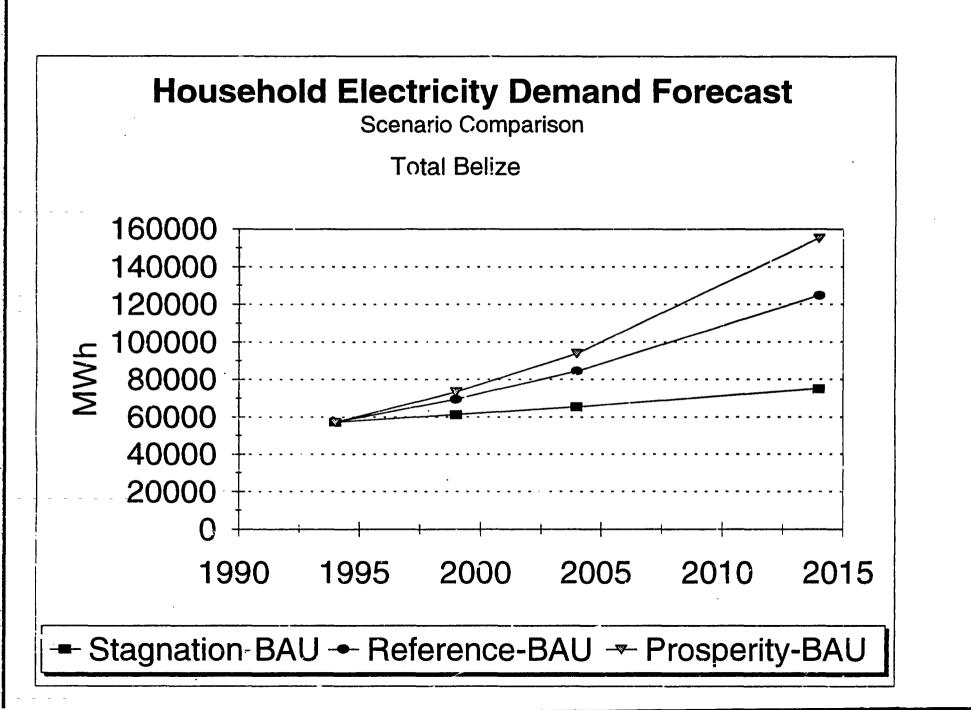

Region	End Uses	1994	1999	2004	2014	growth rate
•		(MWh/y)	(MWh/y)	(MWh∕y)	(MWh/y)	(% per year)
Total Belize	Lighting	10134.60	11826.54	13807.48	18847.44	· 3.15%
	Cooking	1968.11	2400.53	2929.12	4366.32	4.66%
	Refrigeration	20577.14	25199.90	30875.31	46413.20	4.15%
	Water Heating	4177.70	5118.52	6274.11	944C.17	4.16%
	Laundry	1727.40	2132.06	2632.80	4020.66	4.31%
	Other	18620.32	22742.47	27788.73	41541.87	4.09%
	Total	57205.27	69420.02	84307.55	124629.64	3.97%
Grid Urban	Lighting	6255.93	7175.21	8229.58	10825.90	2.78%
	Cooking	1456.94	1756.28	2117.11	3076.40	3.81%
	Refrigeration	13382.89	16132.43	19446.87	28258.53	3.81%
	Water Heating	2675.66	. 3225.39	3888.05	5649.78	3.81%
	Laundry	821.54	990.33	193.79	1734.72	3.81%
	Other	13221.00	15937.29	19211.64	27916.71	3.81%
	Total	37813.97	45216.92	54087.03	77462.03	3.65%
Grid Rural	Lighting	2864.45	3435.06	4119.35	5924.02	3.70%
	Cooking	418.67	527.68	665.08	1056.52	4.74%
	Refrigeration	5160.50	6504.18	8197.72	13022.50	4.74%
	Water Heating	1126.41	1419.70	1789.36	2842.49	4.74%
	Laundry	858.85	1082.48	1364.33	2167.31	4.74%
	Other	4084.36	5147.83	6488.21	10306.86	4.74%
	Total	14513.25	18116.95	22624.06	35319.71	4.55%
Non Grid	Lighting	1014.22	1216.26	1458.55	2097.53	3.70%
	Cooking	92.49	116.58	146.93	233.40	4.74%
	Refrigeration	2033.75	2563.30	3230.72	5132.16	4.74%
	Water Heating	375.63	473.43	596.70	947.89	4.74%
	Laundry	47.01	59.25	74.67	118.62	4.74%
	Other	1314.96	1657.35	2088.88	3318.30	4.74%
	Total	4878.06	6086.16	7596.45	11847.91	4.54%


Belize Electricity Demand Study, BEL/IER, October 1994 Household Electricity Demand Forecast 1994-2014 Scenario: Prosperity - Business as Usual


Region End Uses		1994	1999	2004	2014	growth rate
		(MWh/y)	(MWh/y)	(MWh/y)	(MWh/y)	(% per year)
Tota! Belize	Lighting	10134.60	11971.33	14148.82	19797.54	3.40%
P	Cooking	1968.11	2551.43	3309.15	5574.42	5.34%
	Refrigeration	20577.14	26793.11	34905.58	59340.53	5.44%
	Water Heating	4177 70	5442.33	7093.64	12071.39	5.45%
	Laundry	1727.40	2268.35	2980.42	5154.23	5.62%
	Other	18620.32	24174.80	31401.58	53061.96	5.38%
	Total	57205.27	73201.34	93839.19	155000.07	5.11%
Grid Urban	Lighting	6255.93	7252.34	8407.44	11298.90	3.00%
	Cooking	1456.94	1864.79	2386.80	3910.12	5.06%
	Refrigeration	13382.89	17129.19	21924.20	35916.80	5.06%
	Water Heating	2675.66	3424.67	4383.35	7180.91	5.06%
	Laundry	821.54	1051.52	1345.87	2204.84	5.06%
	Other	13221.00	16921.99	21659.00	35482.35	5.06%
	Total	37813.97	47644.49	60106.66	95993.94	4.77%
Frid Rural	Lighting	2864.45	3485.04	4240.08	6276.36	4.00%
	Cooking	418.67	562.39	755.45	1363.15	6.08%
	Refrigeration	5160.50	6932.01	9311.56	16802.04	6.08%
	Water Heating	1126.41	1513.09	2032.51	3667.47	6.08%
	Laundry	858.85	1153.68	1549.72	2796.34	6.08%
	Other	4034.36	5486.45	7369.85	<u>13298.24</u>	6.08%
	Total	14513.25	19132.57	25259.28	44203.60	5.73%
Hon Grid	Lighting	1014.22	1233.95	1501.29	2222.28	4.00%
	Cooking	92.49	124.24	166.89	301.15	6.08%
	Refrigeration	2033.75	2731.90	3669.72	6621.68	6.08%
	Water Heating	375.63	504.57	677.79	1223.00	6.08%
	Laundry	47.01	63.14	84.82	153.05	6.08%
	Other	1314.96	1766.36	2372.73	4281.37	6.08%
	Total	4878.06	6424.18	3473.24	1 1802.53	5.71%




ANNEX 20: RESULT GRAPHICS



BIBLIOGRAPHY

[Aguinaga/Vieira/Poveda 1993]

Aguinaga-Diaz J., Vieira de Carvalho A., Poveda M., "OLADE's Central American DSM Project: A Model for International Cooperation", Proceedings of the 2nd International Energy Efficiency & DSM Conference, Stockholm, Sweden, September 1993

[Baur/Voss 1994]

Baur J., Voss A. et al, "Rationelle Stromanwendung bei den Haushalten", IER, University of Stuttgart, May 1994

[BEL 1992]

Belize Electricity Limited, "Offer for Sale Relating to Shares and Debentures", Prospectus, Belize City, October 1992

[Bösl/Reuter/Schmid 1993]

Bösl Bernhard, Reuter Albrecht, Schmid Günter, "Cost Effectiveness Analysis in the Energy-Environmental Sector - Tools and Experiences", Presentation on the Energy Conference of Latin America and the Caribbean ENERLAC93, SantaFe de Bogota, June 15-18 1993

[Bösl 1993]

Bösl Bernhard, "Technical Report: First Mission of Consultant", UNIDO Project No. SI/BZE/92/803, Institute for Energy Economics and the Rational Use of Energy (IER), University of Stuttgart, November 1993

[Bösl/Mencias/Moreno 1994]

Bösl Berni ard, Mencias John, Moreno José Armando "Technical Report Vol. 2: Training Program", UNIDO Project No. SI/BZE/92/803, Institute for Energy Economics and the Rational Use of Energy (IER), University of Stuttgart, April 1994

[CBB 1991]

Central Bank of Belize, "Tenth Annual Report and Accounts 1991", Belize City, April 1992

[CIPS 1990]

Canadian International Power Services Inc., "Renewable Energy Study", Ontario, March 1990

[CSO 1992]

Central Statistical Office, "Abstract of Statistics 1992", Ministry of Finance, Belmopan, March 1993

[DSM 1993]

"Second International Energy Efficiency & DSM Conference: Customer Focus", Stockholm, September 21-23 1993, Conference Proceedings published by Conference Connection Inc., Pennsylvania, 1993

[ELKRAFT 1993]

"Situation Analysis for Integrated Resource Planning in the Danish Electric Utilities", published by IRP project, ELKRAFT, Ballerup/Denmark, April 1993

[Fajardo/Fajardo 1987] Fajardo M., Fajardo L, "Electrical Layout and Estimate", Philippines, 1987

[GE 1994] General Electric, "Calendar 1994", New York, 1993

[Hanselmarin]

Hanselmann Martin, "PROFAKO - A Computer Aided Planning and Optimizing Tool for Cogeneration Systems", short description, IER, University of Stuttgart

[Hyman 1983] Hyman Eric L., "How to Conduct a Rural Energy Survey in a developing Country", in: Renewable Sources of Energy, Vol. 1, No. 2, 1983

[IEA/OECD 1992]

"International Energy Conference on Demand-Side Management: A Current and Future Resource", Copenhagen, 23rd-24th October 1991, Conference proceedings published by IEA/OECD, 1992

[Laing 1992]

Laing Richard, "CAREAIR - Computer Aided Analysis of Reduction Strategies for Emissions and Ambient Air Pollution", Presentation on the International Workshop on "Environmental Monitoring and Impact Assessment" and "Energy Masterplan for Rural Development", Ile-Ife, Nigeria, April 6-10 1992 [Laing 1993] Laing Richard, "CAREAIR - Emission Model User Guide", IER, University of Stuttgart, March 1993

[Lazarus/Von Hippel/Talbot 1993]

Lazarus Michael, Von Hippel David, Talbot Neil, "Integrated Energy-Environment Planning: Experiences from the U.S. and Costa Rica", Paper presented on the Energy Conference of Latin America and the Caribbean ENERLAC93, SantaFe de Bogota, June 15-18 1993

[Leach/Gowen 1987]

Leach Gerald, Gowen Marcia, "Household Energy Handbook - An Interim Guide and Reference Manual", World Bank Technical Paper Number 67, 1987

[Leeders/Stassen 1993]

Leeders M.E.T., Stasseen H.E.M, "Household Fuel Substitution and Conversation in Honduras", Presentation on the Energy Conference of Latin America and the Caribbean ENERLAC93, SantaFe de Bogota, June 15-18 1993

[Leitman 1988]

Leitman J., "Some considerations in collecting data on household energy consumption", The World Bank, March 1988

[MESAP II 1994]

MESAP II Manuals: MADE II - Concept MADE II - User's Guide MESSAGE III - Concept MESSAGE III - User's Guide for the Matrix-Generator Part I MESSAGE III - User's Guide for the Matrix-Generator Part II MESSAGE III - User's Guide for the Post-Processor WASP III - Training Sessions ENPEP / WASP III - Documentation and User's Manual IER, University of Stuttgart, 1994

[OECD/IEA 1989] OECD/IEA, "Electricity End-Use Efficiency", Paris, 1989 [OLADE 1992]

"SUPER/OLADE-BID, Investment Policies in Electric Generation and Transmission", OLADE, Quito, October 1992

[OLADE 1993] "Energy-Economic Information System (S!EE)", short description, OLADE, Quito, 1993

[Plas/Graaff 1988] Robert van der Plas, A. B. de Graaff, "A Comparison of lamps for Domestic Lighting in Developing Countries", The World Bank, June 1988

[Reuter 1994]

Reuter Albrecht, "Methodologies used in other models and relevance in SAFIRE project", Presentation on the SAFIRE Project Modelling Workshop, Brussels, 11 February 1994, at DG 12, European Union

[Sakulin/Dell 1991]

Sakulin M., Dell G., "Energiesparpotential elektrischer Haushaltsgeräte, Österreich Stand 1990", Institut für Elektrische Anlagen, University of Graz, Austria, April 1991

[Schlenzig 1992]

Schlenzig Christoph, "Planification Energetique Regionale pour la Region Nord-Ouest de Madagascar, Tome IV: Analyse Energetique de l'Enquete Socio-Economique de Menages", IER, University of Stuttgart, December 1992

[Schlenzig/Reuter 1993]

Schlenzig Christoph, Reuter Albrecht, "Tools for Energy Planning and Environmental Management", Presentation on the International Workshop on Operations Research and Environmental Management, Geneve, November 10-12 1993, published in the proceedings

[Schlenzig 1994a]

Schlenzig Christoph, "Collecting Information and Designing Surveys for Energy Planning in Developing Countries", IER, University of Stuttgart, March 1994

[Schlenzig/Voss/Reuter 1994b]

Schlenzig Christoph, Voss Alfred, Reuter Albrecht, "MESAP III: A Tool for Energy Planning and Environmental Management - History and New Developments", paper presented at the STE-Seminar, KFA Jülich, 6. September 1994 [Schüler 1992]

Schüler Doris, "Energy Masterplan for Rural Development, Vol. V: Analysis of the Useful Energy Demand", IER, University of Stuttgart, December 1992

[StaBit 1989] Statistisches Bundesamt, "Länderbericht Belize 1989", Metzler Poeschel Verlag, Stuttgart, July 1989

[UNIDO 1991]

United Nations Industrial Development Organization, Special Industrial Services, "Assistance to the Belize Electricity Board to identify and assess strategies to control electricity demand and plan the supply", Project Document SI/BEL/91/xxx, Vienna, April 1991

[UNDP 1982] United Nations Energy Project, Ministry of Energy, "Belize - National Energy Plan - An Exercise in Basics", Draft, Belmopan, Sept. 1982

[WB 1990]

World Bank, Jose R. Escay, "Summary Data Sheets of 1987 Power and Commercial Energy Statistics for 100 Developing Countries", p. 7, Washington, 1990

[WB 1992] World Bank, Caribbean Division, Country Department III, "Belize - Country Economic Memorandum", Report No. 10403-BEL, April 14, 1992

[WB 1993] World Bank, "Belize, Project II Project", Draft, Sept. 28, 1993