

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION
Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria

Tel: (+43-1) 26026-0 · www.unido.org · unido@unido.org

OCCASION

This publication has been made available to the public on the occasion of the 50
th

 anniversary of the

United Nations Industrial Development Organisation.

DISCLAIMER

This document has been produced without formal United Nations editing. The designations

employed and the presentation of the material in this document do not imply the expression of any

opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development

Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its

authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or

degree of development. Designations such as “developed”, “industrialized” and “developing” are

intended for statistical convenience and do not necessarily express a judgment about the stage

reached by a particular country or area in the development process. Mention of firm names or

commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes

without additional permission from UNIDO. However, those who make use of quoting and

referencing this publication are requested to follow the Fair Use Policy of giving due credit to

UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

mailto:publications@unido.org
http://www.unido.org/

I

I

1111111111111111 111!1111

205L/-I _ .

Software lnlDtry
. CURRENT TRENDS AND IMPUl:ATIONS

FOR DEVB.OPING COUNTRIES

• UNITED NATIONS INDUSTR!AL DEVELOPMENT ORGANIZATfON

I I

I
I I I I I I I I I I I I I I I

General Studies Series

SOFTWARE INDUSTRY
CURRENT TRENDS AND IMPLICATIONS

FOR DEVELOPING COUNTRIES

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION

Vienna, 1993

All OIJleriJI in 1his publication m3y be frttly quo1eJ or rcprimcd. bul 3cknowledgemem is rcquesl<i.!.
toge1her with 3 copy of the publication containing the quot3tion or reprint.

The: design3tion:; employed and the preseot:uion of the m31eri3l in this publication do not imply 1!ie
expression of 3RY opinion wh3tsoever on the p:ut of the Secret3ri3t of the l!:Uted N3tions lndustri31 Development
Org3RiZ3lioo l UNIDO) concerning the legal status of 3RY country. territory. city or area, or of its authorities, or
concerning the delimit3tion of its frontiers or bound3ries.

Mention of the n:unes of finns and commerciJl products does not imply eodorsement by UNIDO.

1be views expressed in this paper are those of the authors and do not oeccssarily reflect the views of
UNIDO.

This publication bas oot been formally edited.

• • •

This study was compiled, and in part written. by R. N:tr:1Simh3o of CMC Limited, Bangaloie. India, under
the general direction of K. Fialkowski, Cllicf, Informatics Unit, and uodcr the supervi-;ioo of K. Vcokawaman,
Director. Technology Development and Promotion Division, UNIDO. The author gratefully acknowledges
assistance provided by the National Centre for Softwaie Technology, Bombay, and particularly P. Sadanaodan,
Associate Director, for the prepantioo of computer readable versions of the UNIDO docwneots included beie.

ID/SER.0/14

UNIDO PUBLICATION
UNI00.93.2.E

ISBN 92-1-106283-7

PREFACL

In the early 1980s lJNIDO recognized software production as an industry and began to

promote actions that developing countries could take to develop that industry. The concept
has been elaborated through studies dealing v.ith software development and applications for

developing countries. their approach to software production and ~uidelines for organizing

software houses. A selection from those studies. written mostly by l'NIDO consultants.

constitutes the content of this book.

The software that can be developed and deployed determines the :;peed with which

computing systems penetrate and transform industrial and service enterprise~ to increase the

quality and quantity of their outputs. The so~·are and services markets of developing

countries arc small in comparison to those of the Lnited States of America. Japan and
western Europe. These markets. however, are grO\\ing rapidly. particularly in Brazil. China
(Taiwan Province). India and Singapore.

Today, software production is an industry essential for the gmwth of the economies of
developing countries: launching programmes to promote strong endogenous sofrn·are

industries is a priority task.

Applications or microprocessors that radically enhance the capabilities and functions of

products depend on having software available In many applications the cost of n~icroproc­

essors is a negligible component of the product price. Functionally, a microprocessor-con­

trolled product is more versatile, has better performance and, in many cases. is more

energy-effective. Also significant. especially in the context of developing countries. is that a

complicaled microprocessor-controlled product needs fewer qualified operators at the
technician level Software. however. is a necessary component of microprocessor systems

as it practically enables the system to perform application functions. Therefore. both
microprocessor applications and software are also priority developmental tasks for develop­

ing countries

Comparing software production with other modern technology products that could be
manufactured in developing countries. the relatively low investment needed for software

production is a substantial advantage. The technological equipment required for the produc­

tion of software consists mainly of a computer system or systems, which in many cases may

be rented from the supplier. with the cost of rental even being offset by the income derived

from the sales of lhe software. \fore advanced sofLware tools. however. are more expensive,

at least at present

Pre_fi1ce ;,.

For the foreseeable furure, labour will remain a priority input to the software development
process. Therefore. developing countries may have a comparative advantage in this produc­

tion based on their lower costs of highly qualified manpower. This advantage will decrease
in time with increased automation of software production.

One substantial obstacle for software production in developing countries is ihe market for

the products. The reasons for this are as follows:

(a) The local market is usually limited by the narrow scope of computer applications in
developing countries. and it cannot create a broad demand for full-scale production;

(b) The export market. mostly in industrialized countries, is difficult to enter. It requires
proper marketing. a product dissemination network and a strategy to overcome unfounded
user prejudice concerning the quality of software originating in developing countries.

Observation of the computer market shows the possibility of introducing applications

systems in developing countries in an inexpensive way. These systems can support. in a
systematic manner. industry, commerce. public administration and banking and insurance
companies in the management of masses of data (text processing, database systems,
information systems. statistical computation), the control of processes (manufacturing,
quality control. optimization procedures) and governmental and industry planning (model
building. simulation. optimization).

To ensure appropriate software supply in developing countries, several objectives should be

met

(a) To establish self-supporting software production m developing countries, servmg
primarily the local and/or regional market;

(b) To establish the training oflocal staff in advanced programming technology;

(c) To create a basis for developing the local utilization of computers to solve optimization

problems. imc:r alia, those of small and medium-sized industries as well as other applica­
tions;

(d) To establish mechanisms for the export of software from developing countries.

In developing countries. special informatics applications requirements involving hardware
and software could be met by importing the hardware (or components of it. iflocal systems
integration etc. is appropriate) and developing the software locally. These special require­
ments cil!rivc from the following: high unemployment and resulting poverty levels; the small
scale of industry allied to the fact that most people live in villages; the lack of adequate
infrastructure to support large industrialized centres; and the need to concentrate on rural
development as a prer~quisite for industrial development so as to generate adequate
demand. The potential of foreign-produced hardware (when augmented with suitable
locally produced software) for innovative local applications can be best judged by persons

1." /'re.face

fully conversant with local conditions. Government:; can take a number of measures to
promote an endogenous software capacity, e.g. pro••iding finance for the acquisition of
computers. train!ng. etc.~ granting tax exemptions on reserves set aside by sottware houses
for use in connection with the inevitable modifications required on software as a result of
experience in the field or of material changes in circumstances; and making legislative
provision for the copyright of software.

Suitable institutional arrangements to manage and coordinate endogenous software produc­
tion (including supporting personnel training arrangements) to ensure that the software
produced is of a high quality and that it is fully compatible with national application
priorities are a prerequisite.

UNIDO efforts are aimed at the follo\\ing:

(a) Increasing awareness concerning endogenous software production as well as assisting
the developing countries in organizing software production. This element was underlined
during the discussions at both meetings of the Consultative Group on Informatics Technol­
ogy for Development held at Vienna, in March 1984 and December 1987. Several UNIDO
documents ("Problems of software development in developing countries"
(UNIDO/IS.383), '"Guidelil"!es for software production in developing countries"
(UNIDO/IS.440), "Software engineering: a survey" (UNIDO/IS.446) and ··software pro­

duction: organization and modalities" (UNIDO/IPCT.63)) were prepared. For countries less
advanced in the field of software, a special approach was worked out (.. The prospects for

software production in developing countries" (ID/WG.437/4)) and adopted at the National
Meeting on Applications of Microelectronics and Software, held at Nairobi, 18-23 February
1985. For applications of informatics in small and medium-scale industries, .. Guidelines for
the diffusion of informatics in small and medium companies (SMC)" (IPCT.81) was
prepared, and the Meeting of the Consultative Group on Informatics Technology for
De,·elopment. held 11-13 December 1989 at Buenos Aires. dealt with the subject, stressing
the importance of regional co-operation in informatics (Report of the Meeting of the
Consultative Group on Informatics Technology for Development (IPCT.109) and .. Si­
tuaci6n de la informatica en America Latina puntos de panida para una acci6n regional"
(IPCT. 111));

(b) Assisting iri the creation of national po[cies on software development "Guidelines for
software devciopment in developing countries" (UNiDO/IS.439) was prepared and dis­
seminated among decision-makers in the developing countries;

(c) Devoting attention to the acquisition and protection of software. ··Trends in commer­
cialization of softNare in developing countries" (UNIDO/IS.574), .. Recent trends in con­
tractual practice relating to acquisition of software in the United States of America and the
EEC" (IPCT.139) and the "UNIDO/REMLAC preparatory report on the elaboration of a
programme of action aimed at strengthening the negotiating capabilitie~ in the acquisition of
hardware and software" were prepared. Their recommendations influenced governmental

PrefaCt! ,.;

policies especially in the member countries of the Regional l'ernork for !\1icruelectronics
for Latin America and the Caribbean (RE~tLAC). (16countries from Latin America and the
Caribbean are participating in this programme) .. Informatica y desarrollo industrial en
America Latina""(IPCT l3b) was also prepared for REMLAC.

As a result of the experience gathered and the aniculated needs of developing countries,
C"'.'IDO now concentrates on assisting de,·eloping countries in the creation of an infrastruc­
ture and in working out modalities for endogenous software production \\ith export
possibilities to industrialized countries. The first phase of the regional programme ... Pre­
paratory Assistance for Regional Project for Strengthening Microelectronics Infrastructure
and Capabilities in Member Countries for a Regional ~etwork for ~ticroelectronics in the
ECLAC Region·· (DPIRL...\!Sb/003) has been implemented The second phase. ··cooper­
acion en informatica y microelectronica" (DPIRLA/921014). directed mostly to software

and applications in industry. is now under implemer.tation

There is a need for short- and long-term measures on the pan of developing countries
Short-term measures include the organization and'or strengthening of associations of
software producers. The most important requirement in the long term is that for skills. Four
types of skill are required:

(a) The first is the skill required for identifying and specifying applications of sofrware;

(b) The second type of skill, and the predominant one for development. is that for software
identification. adaptation and development

(c) The third type of skill is that for promoting the widespread adoption of c..->mputer systems
among local users;

(d) The final type is that for the service and maintenance of soft\\ are

The development of approj)riately qualified human resources constitutes a critical condition
for computer applications

In this context. L'~IDO attempts to identify the content and modalities of a possible
framework for a.:tion in the field of software production and applications The following
could fall within that fr:\mework:

(a) A set of government policies for the development of an endogenous capability in this

field:

(b) Spcci tic programmes of action. such as in the field of human resource development and
other relevant areas. preferably in the form of a plan of action to be implemented by the
concerned agencies and institutions,

(c) Possible institutional arrangements for developing cndogcncJs capability. such as
associations of software producers or a ccnrre for software application~ to industry

vii !'nface

In the scope of international cooperation. UNIDO provides technical assistance and advi­
sory services for the establishment of software production enterprises and associations and
for the development of human and institutional capabilities. in particular for applications of
software to industry. Applied research and development in the field of software related to
microelectronics and its applications may be the subject of cooperation. In the field of public
domain software, UNIDO prorn~tes the e.xchange of information among the countries and
provides advisory services as required. UNIDO also provides advisory services for policy
formulation. if requested. including the preparation of programmes and plans.

Now, in the early 1990s, software technology is being recogmzed as a new and important
sector deserving development in itself. However, in the context of UNIDO activities, not all
the elements of the new sector necessarily deserve attention. The most important elements
ofinformatics technology from the point of view of UNIDO may include the following:

(a) Industrial software applications;

(b) Software as a small-scale industry;

(c) New production technologies for software;

(d) Standardization and legal aspects in both hardware and software;

(e) Monitoring the development of software technology.

In many cases software applications brought to developing countries did not produce the
expected results. nor has the anticipated diffusion for development purposes been realized.
Therefore the elements of the UNIDO informatics programme attempt to identify more
precisely the areas and environments of industrial applications that are most crucial for
development. In the context of developing countries, the following applications seem to be
of special importance:

(a) Software applications designed to improve the efficiency of industry;

(b) Software applications designed for small and medium-scale industries;

(c) The production of software for export.

It is hoped that this book will contribute by bringing together information on the different
aspects of software development.

Contents

Preface ... iii

I. Overview

Software Industry: A Developing Country Perspective ... -3
R Narasimhan

II. Software: An Enginttring Industry

Software Engineering: A Survey31
W/adyslatt: M. Turslci

Impact ofTechnolC?gicl!1 Change on Software
Dev~~g~e~J!,r:;~1cat1ons for the LDCs and NI Cs ... 45

Software Technology: Trends ... 59
R Narasimhan

Ill. The Software Market

The Software Market: Emerging Trends ... 75
Hermann Kopetz

IV. Legal I Hues in Software Development, Procurement, and Distribution

Recent Trends in Contractual Practice and Jurisprudence

:r~~~!~e1r: t~~cun~~~ s'::t~!~e:t.ir:it~l ~~~~~~i-~~~~ ... 93
Stanislaw Soltysinski

The~~~ ~~~;:~ion of Software ... 133

Contents

V. lmplic:ations for Developing Countries

The Potential Role of Software in Enhancing the
Competitiveness of Developing Country Finns ... 157

Atul Wad

=E:~~~:;r~~;:f:gac~:e!>~~~~-~~~~~-i-~---·· 185 Antonio Jose J. Botelho
Caren Addis

Public Domain Software for Development .. 211
Robert SclnllOre

The Production of Intelligent Products
in Developing Countries _ ... __ .. 221

Hermann Kopetz

VI. Condusion

Conclusion ... 241

I

Overview

Software Industty: A Developing Country Perspective ___3
R. Narasimlrn

Software Industry: A Developing Country Perspective
• R. Narasimhan

I. Introduction

Software is the lifeblood of infonnatics. Without appropriate and efficient software, infor­
mation processing systems are so much lifeless hardware with only scrap-value. Software
availability, therefore, assumes strategic importance in the promotion and use of infonna­
tion technology (IT) in developing countries (DCs) for devdopment-catalyzing applica­
tions. As Correa (1990) notes: .. The establishment of a dynamic software industry has been
identified in many DCs as essential to meet the needs of a growing number of domestic users
of informatics systems. In some of these countries software has been viewed moreover as
opening up new and substantial export opportunities." As part of its Technology Develop­
ment and Promotion Programme, UNIDO has been promoting the use of software by, and
the development of software industry in developing countries. This book brings together a
selection of reports by experts for dissemination by UNIDO addressing a variety of issues
that arise in trying to promote software production and use in developing countries.

In this introductory chapter••. we shall try to set the stage for the chapters that follow. In the
first part of this chapter (sections 2 and 3), we shall discuss briefly the nature of the software
industry and the development and growth of this industry in the industrialized countries -
mostly in the United States of America. Can the developing countiies use the experience of
the developed countries as a model while trying to develop the industry in their own
countries?

Next, in Sections 4 and 5, our focus will be more centrally on the developing countries. We
shall discuss the issues that arise in meeting their internal software needs and also in
becoming successful exporters of software products and services. Can globalization (i.e.,
giving a predominantly export-orientation to the software industry) succeed as a methodol­
ogy for building a viable software industry in the developing countries? We shall argue that
the development of an infonned, diversified, and competitive domestic market is a prereq­
uisite to effectively meet the internal needs, and also to succeed in export. In fact, internal
use of software to support development-catalyzing applications is the greater need of the
developing countries. It would be a fatal mistake to treat the software industry in a
developing country as an island interacting with the outside world only in order to earn

• Professor of Computer Science, Computer Mainlenance Cooperation Limited. Bangalore, India

•• Portions of this chapter have been adapted from Narasimhan (1984) and Narasimhan (1992).

3

R .\"artJ.'itmhiur .'i.~/hnrrl• lndu.Hry: a /~·do;mzg (·ountry l't·n~·a1n~

foreign exchange This industry could. in fact. generate returns more effectively by contrib­
uting to the competitive advantage of other industries in the domestic, as \\ell as the global.
markets. (Atul Wad. in his paper included in this volume. develops this thesis in greater
detail)

In Section 6, we shall discuss some development-catalyzing applications which are intrinsi­
cally ~mportant to the developing countries and which. at the same time, offer opportunities
for innovative use ofJT We shall see that efforts along these lines are essential if a sizeable
domestic market for informatics industry in general. and software industry more particu­
larly. is to be developed.

In Section 7, in conclusion. we shall list some initiatives that would assist developing

countries in building up a viable software production base and a market for software goods

and services

2. Software: An Engineering Industry

A typical engineering industry is concerned with production in large quantities of a specific
item. This is true whether the concerned end item is a discrete hardware (automobile.
computer) or a bulk material (chemicals). Typically, a factory delimits a production
environment within \Vhich this quantity production takes place. To realize copies of the
identified end-product {or bulk quantities of it in the case of chemicals, etc.), various inpu~
materials :ire taken through a complex network of physical processes. Specific classes of
tools (machine tools. chemical processing equipment. and/or people with hand-tools) are
deployed appropriately to carry out the processing at the various stages

Technology transfer in such a situation can be summed up as consisting of transfer of
know-how and information concerning the followiilg facets:

I. Factory planning

1. Setting up production facilities, providing tools. plant machinery and equipment

3. Technical documentation

4. Manufacturing processes

5. Quality assurance and inspection methods

6. Manpower training.

At a later stage one may want to consider the transfer of know-how to create new engineered

products of the same type (a new automobile. new computer designs, new chemicals, etc).

and establish appropriate variants of the original production process so that quantity

production of this new item can be realized. The transferred know-how could, in the best of
cases, then be expected to go from

Local Manufactu.e ~Local Engineering~ Local Design

4

Softwart• bid1"·1n.·: a /Jt"l't•lopmg < 'ountry l't•rspi.•ctin'

or in other words ..

!\fa:mfacturing know-how~ Engineering know-how~ Design know-how.

Ir. the case of a software product. in contrast to the conventional engineering products as
discussed above, once a software product has been designed .. coded, tested and found to
work. making copies ofit is a trivial process if the copy is to run on an identical hardware. A
non-trivial conversion process has to be gone through if the same software routine has to be
made to run on a different hardware. Since hardware keeps changing all the timt, and
customers like to opt for improved hardware as these bee~~- available (through technologi­
cal innovation), already running software ; -roduc!s need to be convened to run on new
hardware The conversio, market is thus an ever present ar.d conceivably lucrative market

for a software production agency.

But the legitimate cbjective of software production cannot be either copying or convening.
but creating ah initio the first version of a software package. Smee the software package is
produced only once. a production facility set up for software productior. has more the
character of a design centre rather than that of a conventional factory. This design-intensive
character o1 software technology makes a software production facility resemble more
closely a microelectronics fabrication facility rather than traditional engineering factories.
This is because in both these cases, a produl Jn facility, once established, i~ much less tied
to the production of a particulur engineered ;tern than is the case with conventional
engineering factories. Hence. to be able to exploit the full potentials of a production facility
in these two cases. design know-how to design new products is an essential requirement.
From this it follows that technology tran~fer in the case of software technology has to be
necessarily at the level of transfer of design know-how. This is intrinsically a difficult task
and is, besides, predicated on the availability of appropriately qualified professionals who
are capable of absorbing the design know-how when this is transferred.

The early efforts at software generation were really small-scale R&D efforts. Software
packages were created U!i>mg tricks. clever stratagems, and ad hoc techniques, by clever
individuals or small teams of highly knowledgeable persons. This methodology was
acceptable so long as the software created was used by the designers themselves or by an
equally well-informed in-group. But as the complexity of the software products increased,
larger teams of persons had to be involved in creating them. Also, these products had to be
increasingly created for wide distribution, for use by a variety of persons with little or no

knowledge of the design process involved. Under these circumstances, the earlier informal,
ad hoc, production techniques could no longer work. These had to be replaced by more
fonnal and systematized design, coding and testing processes. Precise and detailed docu­
mentation assumed great importance both at the design and coding stage and, more
imponantly, for the continued maintenance of the software products. Also, when a produc­
tion team was concerned with designing and producing a wide variety of software products,

5

R .\"ara.,.1mhan Sojtwan: Indus~·- a Dn-elopmg Co11nlryr Perspedive

the problem of improving the productivity of the personnel began to assume increasing
importance. The incorporation of production tools (their design and their appropriate
development) became a necessity [Martin (1986). Chorafas(198-6). V arSl.>gi(1990)].

The software production process thus increasingly began to assume the character of an
organized engineering industry. The software industry as it currently flourishes in the
advanced countries. thus has many of the rarnificatit,ns of more conventional established
industries. Neve1 theless. its basic charaCt.er remains lfUite distinct from that of a factory­
based manufacturing activity. This is essentially due to the intrinsic design-l~el orientation
of the activity.

The software production process construed as an engineering activity is described in greater
detail by Turski in his paper induded in Part II of this volume. In a companion paper.
Schware discusses at some length the organizational and management aspects of software
production

Si nee software technology and engineering are still going through rapid developments even
in the advanced countries. it should be useful to acquire some appreciation of the historical
trends in this development. This would enable one to understand the kinds of pressures that
have given shape to the software activities as we find them in the developed countries today.
The products that arc being created and used in these countries, and the suuctures that have
evolved to create these products, may not all be immediately relevant to developing
countries. We must have a clear perception of the essentials and the accidentals. Future
trends in the developed countries are of some consequence to developing countries in the
context of export and trade. Hence. it is of importance to understand how things came to be
the way they are in the software sector in developed countries and where things are headed
in the immediate and foreseeable future.

J. Software Industry: Developed Country Experience

3.1 Historical Background

Computers in the developed countries had two distinct origins - one concerned with
sorting and tabulation of census data and the other concerned with the computation of
numerical tables. Hollerith in the United States and Babbage in the United Kingdom of
Great Britain and Northern Ireland were the founding fathers of these two motivated efforts.
The relevance and importan~ of Hollerith's ideas to commercial data processing applica­
tions were perceived fairly early on. and organizations like the National Cash Register Co.,
and, somewhat later, International Business Machines (IBM) were interested and involved
in suppon;ng and further developing these ideas into commercially viable products. Bab­
bage's ideas and early attempts, on the other hand. were far ahead of his time and eventually
had to be abandoned without realizing a working moJel But this motivation to build

•

.'W!fh•·llN Industry: a Dn·e/opmg (·ountry Perspect1w R .\-,utZ.nmhan

mechanical devices for computing numerical table~ acquired fresh impetus in the early days
of the Second World War and rapidly resulted first. in electromechanical, and later
electronic. computers.

These two streams of efforts continued to develop independently in the period 1940-1955;
one punchcard-based and mostly electromechanical. concerned \\ith business applications
and market and sales-oriented; the other papertape-based. using vacuum tubes, concerned
with scientific computations and academic- and research-establishment-oriented. But in
both these streams, there was not much difference between hardware efforts and software
efforts - the same people were more or less involved in both these areas In many cases,
end-users formed part of these teams and helped in writing the application programs.

Today, the whole picture has changed completely. Hardware manufacturers, software
manufacturers and end-users have become three distinct groups. The end-user does not
depend on the hardware manufacturer to supply all the software. application packages and
services that he is in need of. The software manufacturer, analogously. d~s not produce
software necessarily for one hardware manufacturer exclusively or for one class of end-us­
ers. This state of affairs assists the hardware manufacturer also, since it is not essential now

for him to invest in software and application development in order to be able to sell his
hardware to the end-users. No doubt. this is somewhat of an idealized picture: this is mostly
true in the case of microcomputers (PCs and workstations), r.nd to a large extent true in the
case of minicomputers. This is perhaps less tme in the case of mainframes, where a large

part of the software effort - certainly for system software, and in many cases also
application software - sti!l belongs to the hardware manufacturer. However, it is in the
context of this devolution of market responsibilities that software development has acquired
the characteristics of a self-contained industry.

It is important to realize that the software industrial profile that we currently see in western
Europe and the United States has not come about based on any planned growth or systematic
design. Various kinds of market pressures and demand pulls have provided impetus to the
growth of the industry and the particular kind of structuring one finds there. In the very early
stages, the hardware manufacturer provided all the system software and much of the
application software. All this software was not specifically costed, but sought to be absorbed
more or less in the total system price. Soon it became evident that software development and
maintenance costs had become equal to, and were beginning to exceed, the hardware cost. It
thus became essential to assign a commercial price to software and ·unbundle" the sale of
software and hardware. IBM's decision to adopt this strategy in 1969 contributed signifi­
cantly to the creation of a sepa1ate software sector since, in principle, unbundled software
did not have to be procured from the hardware supplier himself

In the 1960s, defence and space software needs in the United States opened up vast
opportunities for independent software groups to undertake to develop the specialized
software needed by these end-users on the basis of development contracts (mostly on a
cost-plus arrangement). Much of this software was extremely large, complex. and had to

7

Sojttt·an Industry: a Dn·eloptntt Coun"'.'· Perspecrn-e

meet stnngent reliability and real-time constraints. Opportunities to work on these develop­
ment contracts wew. of extreme value to the independent software contractors in evolving
software production methodologies to manage large. complex software projects. and ensure
quality and reliability of these products. These tested methodologies were then spun off to
the commercial market to form standard industry practices

Extremely rapid developments in hardware technology due to progress in microelectronics
technology resulted in keen competition among hardware manufacturers to come out with
newer and newer generations o~hardware -especially in the minicomputer and microcom­
puter categories. This "'idened the gap between hardware and software availability in the
market. Not being able to cope with the problem of bridging this gap, these hardware
manufacturers had no alteni'.1tive except to accept and even encourage the emergence of
indep~ndent software entrer:-eneurs. Forthese entrepreneurs, the ever widening information
servi~es market proved tc ..,e an ideal entry-level business because of its relatively low
entry-cost. high rates of return and profit margins. and the great diversity of software
requirements and the consequent impracticability of any one firm. or even a few firm~.
dominating the market. The ~ftware industry. as it exists now in the developed countries, ; s
thus a highly fragmented one spanning a very wide spectrum of products and services, and a
very "'ide range of sizes of units and incomes. Some idea of the diversity of pioducts and
services that make up the software industry may be obtained from Table 1. We shall
consider presently. in more quantitat!ve terms, the structure of the software industry. The
software market is discussed in greater detail by Kopetz in his paper that constitutes Part III

of this volume.

3.2 The Structure of the Software Industry

The Organisation for Economic Co-operation and Development (OECD) in The /111ema­
tio11ali:atio11 of Software and Computer Sen:ices (1989, p.16) defines the market segments
of the software and computer services industry as follows:

a) Sofnrnre that can be supplied in three different forms:
1. As packaged mainly considered as an intangible product,
2. As cu.'itomi:ed or created ad hex: for each client. considered as a service,
3. As turnkey .\)'.'item.'i !ioftware. or offered as pan of a turnkey system (hardware plus
~oftware) designed for specific clients. Providing turnkey systems is considered as a
service;

b) l'rofessio11al Services that include C\)nsultancy and liaining, normally this category
includes custom software development as well;

c) Proce.'ising Sen·ices that include all se:vices related to data treatment, both on-line and
stand-alone In the former case, VANS (value-added network services) and dat2-base
enquiry are included. Facilities management is included in this category.

I

.'\f>jhmre Industry: a L~·rloptn~ < "oun&:l· Perspectn·e R .\'tJTci.~:mlwn

Obtaining reliable data on the magnitude of the software and services market - either at the
level of individual countries. or globally - has proved to be extremely ditliC'.iit This is
because. apan from the software and services tha! are traded in the open market sizeable
software development activities take place in-house, and additionally. contract softv.1are
development is carried out and "'traded" within corporations and multinational companies.
These are, for the most part. unaccounted for. Market research firms that n(:anally collect
and publish data on the software market use methodologies that are often haphazard and
unsystematic. Schware (1989) cautions that .. market research repons. particularly in the
software and services industry, need to be treated with a healthy degree of skepticism."

Processing Services

Professional Services

1 Software Packages
r --

System Integration

Total (value)

Source: Kohli (1991)

Table I. World Market Revue

1988
%

30

34

30

6

USS 110 billion

1993
(Projected%)

21

34

36

9

USS 225 billion

In the absence of comprehensive and completely reliable data. rough estimates arrived at
through various ad hoc methods are widely quoted and made use of for purposes of
discussion. Keeping in mind the caveats made earlier, one such estimate of the market is
given below:

Concerning the global distribution of the software and services market, OECD (1989, p.10)
notes: "Few estimates exist of foreign penetration in country markets and almost all tend to
provide evidence of the strong position of United States firms (espec!ally in European
countries and Japan) as well as the high level of import dependence _ . At present. trade
mainly occurs inside the OECD area. but interest in other country markets is growing. as
demonstrated by the increasing number of joint ventures for software development, espe­
cially by Japanese firms " The OTA (Office of Technology Assessment) estimates - as
quoted in Watanabe (1989) - the world market share of United States software suppliers.
including the foreign affiliates of United States firms, at about 70 per cent in 1985. The
global revenues of United States suppliers of packaged and custom software is believed to
have grown to USSJ 1 billion by 1987. Foreign sales accounted for 40 per cent, having
increased faster than domestic sales. The contribution to the world trade of software finns
from nt:wly ;ndustrializing economies (NI Es) is negligible and their earnings are marginal.

9

R .\iuasimh(Uf

Today. the software industry. panicularly in the United States. is in a state of flux.

According to the OECD (1989. p 9): .. The strudure of the software and services industry is
dominated by buyouts and sell offs. Information on acquisitions is available for the

United States market only. but there is evidence ... that this activity has also been important
in European markets~ and it is occurring internationally ... Large firms like IBM - which

once considered itself strong enough to .. go it alone" - are recognizing the need to

cooperate with independent software vendors.

The software industty has traditionally been seen as fertile ground for innovation and

small-scale entrepreneurship. Fairly low barriers to entry in terms of capital requirements
facilitate busine!"s start-ups. However. as OECD (1989. p.9) cautions: .. It is not easy to

develop an activity to a meaningful size. A particularly sensitive area is that of packages.

which are products that require marketing ability and the availability of funds. Thus. despite

ease of entry. barriers in terms of managerial ability and funds availability may hamper
growth. For small niche companies and start-ups, the increasingly logical evolution seems

to be acquired. Large software developers grow by extending their line of offerings and
absorbing pioneering breakthroughs." Commenting on the increasingly uphill efTons faced
by stan-ups, the Economist (21 September 1991) observes: .. Even successful niche compa­
nies wi:I find it impossible to grow as big as giants like Lotus Development, Computer

Associates, or Microsoft without breaking out of their niche. Doing that is certainly harder

now than it was a decade ago. But that does not mean niche finns are not stable, profitable

businesses."

Welke (1980) in an early survey of the .. Origins of Software" identified the following as

factors contributing to tht ~henomenal success of the software market in the United States.

These factors remain as important today as a decade ago.

I. Leasing insteaci of selling: software is leased or licenced and not sold.

2. Pricing maintenance separately: continued maintenance of a package is separately
priced from the basic one-time sale price -it could be anywhere from l 0-15 per cent
of the basic sal~ price.

3. Long-term vendor-customer relationship: an end-user expects a long-term commit­
ment from the software vendor to keep the package updated a.'ld contemporary.

4. Designed to minimize installation costs: software package design must have built-in
features to minimize installation costs (which normally involve some special tailoring
to match the end-user's special constraints and needs).

5. Avoiding over-designing and over-selling: reliable operation and continued support
are more important for a successful market than producing an over-designed product
or mounting a hard-sell campaign.

10

SojlM·art lrulust~y.· a /)n~/opm1! < i.>Un&:\· Persprctmt

The development and growth of the software industry simultaneously prompted the devel­
opment of protection measures to guard against unlawful trade practices involving software
products In the early days. three basic protection methods were resoned to: trade secrecy.
patent law. and copyright law However. most countries have now come to accept the
copyright law as the most appropriate and enforceable method of protection. Copyright law

notwithstanding. software piracy - especie!lly of package software intended for use with
microcomputers (PCs) - continues to pose a major threat to the healthy gro\\1h of the

software market An anicle in Fi11a1:c.:ia/ Times (I 0 December 1991) estimates worldwide
annual losses suffered by software companies due to piracy to be USS 12 billion - half of

this attributable to software piracy in Europe. Illegally copied softw~re in the OECD
countries is estimated to range from 45 to 90 per cent. Legal issues relating to software

development. procurement. and distribution are discussed in great detail by Soltysinski and
Correa in their papers. which make up Part IV of this volume.

It is predicted that the software market is bound to maintain its phenomenal growth for the
following reasons [Welke. 1980):

I. The market is nowhere near saruration. New a?plications are all the time becoming
economical as the hardware and communication technologies advance and prices fall.
The volume of computing is continuing to grow.

2. The business office environment 1s becoming information-processing oriented with
the increased use ofintelligent office equipment and tele-informaiics.

3. The use of databases. both centralized and distributed. is increasing in business and
industry.

4. Analogous to office automation, factory automation is also advancing at a fast pace.
Robotics and the use of intelligent tools are lik~ly to become norms in the factories of
the future.

5. Integrated digital communication services (voice+ picrure +text• data) would widen
the base for software products and services.

While one does not see any limits to the demand for software products and services in the
foreseeable future. the shortage of manpower supply to produce all this software is already a

live issue in most of the developed countries. Watanabe (1989). quoting an OTA srudy of
1987 notes that 600 to 700 thousand programmers in the United States in 1983-1984 were
already unable to cope with the software demands of that country. Their salaries were
steadily rising at an annual rate of 10 percent from 1978. A Ministry of International Trade
and Industry (MITI) sponsored study published in 1987 anticipates a 'software crisis' in
.Japan as a result of the estimated growth of demand for software personnel from 430,000 to
2.15 million between 1985 and 2000. According to a Depanment of Trade and Industry
study (1987), of about 45,000 persons employed in the software and comi;uter services

11

R .\·ara.-.1mhan

industry in the United Kingdom, only about 1,000 are project managers with experience of
large software projects; half of them are managing companies rather than managing

projects.

This increasing shonage of qualified software professionals in the developed countries was
seen as providing opponunities for developing countries to make an entry into the global

softv.·are market. It was believed that their high quality surplus manpower resources could
pro ... ide a competitive advantage in the market provided adequate training and transfer of

know-how were arranged and appropriate trading channels were created Experience during
the past decade has. however. shown that people-availability in itself does not help very
much. As discussed earlier, software development is increasingly becoming an engineering
activity. To compete effectively in the global market appropriate technology support is
needed. Tooled environments have to be created and the software professionals have to be
trained to function efficiently in these environments. These are capital-intensive undertak­
ings not within the means of many of the developing countries We shall return to this topic
and discuss it at greater length in Section S below

4. The Software Needs of Developing Countries

In the previous two sections, we have considered in some detail the nature of the software
industry and the current status of this industry in the West stemming from its historical
origins. What are the implications of this picture to developing countries'7 Software technol­
ogy is of great importance to the developing countries to meet their internal development­
catalyzing application needs. How can they acquire the requisite know-how to deploy this
technology effectively to assist development" What can they learn from the experience of
developed countries in structuring the software industry in their own coumries" What
problems would they have to contend with if they wish to successfully penetrate the global

software market" These are some of the issues we shall address in this and the next section

Broadly the internal development-catalyzing needs of developing countries could be
grouped into four categories:

1. Applications that relate to socio-economic programmes concerned with basic needs
(primary health, literacy, rural employment, housing, transport, water, etc.) and the
agriculture sector;

2 Applications in the government sector;

3. Applications that assist in increasing productivity in the industrial sector (goods as
well as services); and

4. Applications relating to export and the international software market.

12

R .\·ara . .nmhan

We shall discuss in this section the nature of the applications in the first three categories. Our
emphasis will be in analyzing to what extent these applications are unique to the developing
countries. and hence require local initiatives to generate the requisite software In Section 5.
we discuss the problems that developing countries have to come to grips with before they
can hope to compete effectively in the international market.

Focussing no\~ on the internal application needs (i.e .. applications in the first three catego­
ries), we shall see that they require software support of two different kinds: (I) software
products (packages); (2) software-supported systems In the first case. if the needed
products are available. one could think in terms of obtaining them for immediate use -
through purchase or lease. Modifications would still be needed to existing products before
they become practically usable (Datamation 1980). But in general, this is the simpler of the
two cases to cope with. Software-supported systems, on the other hand, almost always have
to be tailor-made to ~mit the specific end-use environments. Even if similar systems are in
use elsewhere. transporting them, modi(ving them, and fitting them to match local needs,
may nor be easy. In fact, in many cases. creating systems ah initio taking into account, in the
design stage. local specificities may be a preferred solution. The structures and expertise
needed to create such systems may have to be dealt with on a case by case basis. Also
transfer of know-how in these system design areas is likely to be less straig:i~forward. But
precisely these application areas are the ones of great immediate importance to developing
countries. It is in meeting the needs in these application areas that available software
production models in the developed countries are likely to be oflittle relevance.

Existing models in the developed countries are likely to be more valuable and applicable in
the third category. But. even in these cases, local conditions and contexts may require the
creation and use of new structures Industrial production establishments in the DCs - even
in the more advanced ones - seldom have the level of informatics awareness that is usually
taken for granted in such establishments in the developed countries. Information processing
practices, and software packages created to implement such practices in the developed
countries cannot, therefore, be transported to developing countries and made to function
effectively in a straightforward way. Software practices, such as distributed processing and
word processing, assume new dim~nsions in countries where the telecommunication infra­
structure is undeveloped, or where the local script and mode of writing differ radically from
those in European countries.

Creating structures and transferring methodologies for software production are predicated
on the availability of manpower with the requisite training and background in software
engineering, knowledge of application areas. expertise. in consultancy and systems analysis
and, not the least, marketing skills. The methodologies for manpower creatiC'n, again,
cannot be directly transferred from the developed to the developing countries. Development
in the developed countries has been the result of a historical, evolutionary procesz. This
applies to skill and knowledge development also. The developing countries are trying to

a<.:hti:,·e den:lopmell/ 111 a hmadfrom .'iimu/1a11co11.'ily The n(·eded manpower also has to be

13

R Sarmimhan Softwan Industry: a JJn.-e/opmg Coun~· Perspednor

developed at many levels simultaneously. A variety of approaches would have to be
resorted to at the same time. It is therefore important to determine what are the varieties of
manpower development mechanisms needed to be created to achieve this skill and knowl­
edge development at many levels simultaneously and over a short period. It should then be
possible to identify the kinds of inputs from developed to developing countries that are
likely to have maxim..:m prac:tical value in the manpower development area

4.2 Basic Needs and Agriculture

The priority concern of a developing country is meeting the basic needs of that section of its
population, which for various reasons is poor, underprivileged and economically unable to
compete under open-market conditions to better its lot. In most developing countries this
section of the population tends to live in rural areas, in small, mostly economically unviable
and geographically isolated communities. Tradition-bound, lacking in formal education and
marketable skills. this population tends to eke out a subsistence by living off marginally
productive lands.

Developing countries committed to developing the human potentials of this section of the
population to the fullest extent possible and enabling them to contribute effectively to the
economies of their countries, have an extremely complex problem to tackle. These countries
have to plan and implement a coordinated programme of field-level activities that simulta­
neously address the following issues as they relate to this depressed section of the popula­
tion:

• provision of primary health-care &nd essential education

• provision of housing and water for drinking and cultivation

• improving the economic skills and nutrition

• provision of capital infrastructure to launch individuals and families on eco­
nomically remunerative activities

• integrating the communities with the institutionalized financial and market
structures of the country

and so on. While addressing these immediate and local issues. integrated rural development
plans must be oriented towards long-term improvement of the non-urba'l areas in order to
bring them into the mainstream of economic a~tivities and make them productive and
self-sustaining.

The implementation of integrated rural development programmes of this k:nd assume great
complexity because of the following factors:

I. the large size of the population to be serviced

2. the multiplicity of agencies involved in providing the services

3. the close coordination between the agencies that has to be maintainer{ and operated

14

Software Industry: a Dewlopmg (ountry Perspectl\"e R _\-arasunhan

4. the long time periods over which these integrated activities have to be maintained and
operated

5. the necessity for ensuring proper temporal sequencing of the varieties of subactivities
involved in the projects

6. the great geographical distances that have to be covered to bring a sizeable population
into the planned action .

It is precisely in coping with these complexities that informatics technology could play an
extremely effective role. As an instrument of management at the rural level, it could provide
an integrated framework of assistance to ~he government to plan, formulate, administer,
monitor and control the varieties of programmes that make up the integrated rural develop­
ment projects. Management information systems that can play this role have to be tailor­
made to meet the requirements of each country, and possibl, each subregion in a country. By
integrating computing and communication requirements of management in one framework,
such management information systems for the rural sector could radically transform the
style of government functioning in developing countries. Clearly, this application area is
specific to developing countries and models cannot be imponed from developed cour.tries
since cmalogous problem-areas do not in general exist there. Expenise in system analysis
and software development for coping with this application area must necessarily be indi­
genously grown within the developing countries themselves. There is much scope here for
cooperation between developing countries in the design and engineering of systems.

In the more developed agricultural sector, l variety of applications arise: in land use
planning, water management and irrigation control, weather monitoring and forecasting for
farmers, and so on. Several implemented accounts of these applications are discussed in the
published literature and specialized conference proceedings.

4.3 Government Sector Applications

Every government requires systematic maintenance of reccrds - of propeny holdings. of
transactions of all kinds, of productions and consumptions, exports and imports, and all
kinds of indicators of the status and functioning of the economy in general. Foreign
reserves, trade balances, educational statistics, consumer spending, price indexes and
similar information are essential to monitor and control the performance of the various
ministries and departments of the government.

Informatics technology can be readily deployed to service all such applications. Software
needs span tabulation, storage, retrieval, of large quantities of data; indexing, classifying,
and sorting; and statistical computations of various kinds. More sophisticated applications
such as modelling, planning and simulation would call for more complex software produc­
tion and computer usage. Graphics capabilities of various sorts would be needed in
surveying, map making, land-use planning and analysis, etc. Budget planning and control is
another vital area ofimportance.

15

R .\'arasmrhan Sojhmre Industry: a /Je\·eloping Country: Perspectn-e

4.4. Industrial and Service Sector Applications

Informatics technology c<.n be deployed to increase productivity in practically all areas of
industrial and service activity. Applications to serve this purpose are more or less well-de­
velc;ped and in active use in technologically advanced countries. Where the technology and
organizati3r.al set up supporting these activities in a developing country are identical to
those in developed countries, application packages should }\e directly transponable from the
latter to the former. Where the technology and/or the organizational set up differ, existing
p<'ckages rnay have to be modified more or less extensively.

Identifying priority areas for informatics suppon is the real issue that developing countries
have to face and resolve. They should then be able to profit from the experiences of the
developed countries in these areas.

4.5 Creating a Software Industry to serve Domestic Needs

The application needs identified in the earlier sections demonstrate that while genuine and,
from a developmental viewpoint, critical needs exist, they remain implicit and passive and
do not automatically result in the grow1h of a demand-driven market Market development,
therefore, is the real issue. The problem is to analyze how a viable domestic market can be
developed for software applications. The problems that arise here are not purely commer­
cial, economic, or technological, but also cultural in a deep sense. The cultural barriers are
more difficult to penetrate, the more traditional the occupational categories are. However,
precisely these sectors need to be made more informatics-conscious if a sustainable domes­
tic market is to be developed for information goods and services. This is so because the vast
majority of the population in the developing countries function within these sectors. In
Section 6 we shall discuss some initiatives that could help in opening up these sectors for
market penetration by IT suppliers. But before doing this we shall, in the next section,
analyze whether a viable software industry can be developed in the developing countries
primarily addressing the international software market.

5. The Export Sector

5.1 Problems of Globalization

We discussed briefly towards the end of Section 3.2 earlier that the increasing shortage of
qualified software professionals in the developed countries was seen by the developing
countries as an opportunity to make a successful entry into the global software market. The
comparatively low cost of professional manpower in the developing countries was seen as a
major competitive advantage in this context. During the last decade, many countries and
areas in Asia -including China, India, Republic of Korea, Singapore and Taiwan Provi .. .:e
of China- have been trying to formulate national level policies to actively promote the
growth of a software industry in their respective countries with a predominant expon-orien­
tation. Similar effons have been mounted by several of the Latin American countries such as

16

Sojhnzre Industry: a Dew:lopmg (·oun"'.l· />erspt•ctt\"f! R .\"11ras1111h11rt

Argentina. Brazil and Chile (see Correa. l 990. for details). However. the experience of
these countries over the years has shown that the availability of low-cost professional
manpower in itself does not provide a sustained advantage to succeed in the global software
market. As Correa (1990) notes: "Prices may be an element to consider when selecting bids.
But previous work and the nature of projects the bidding firm has executed ma~ actually be
more important in the final selection." Surveys of software producers in the developing
countries have repeatedly shown that constraints such as the highly circumscribed local
market. the lack of marketing strength. low availability of capital and the consequent
restricted potentials for R & D work. and so on. act as major impediments to effective
performance in the global market.

Two other reasons for the increasing difficulties faced by the developing countries are the

following: (I) increasing competition from the industrialized countries themselves; and (2)
the changing technology of software production. We have already considered briefly in
Section 2 earlier the changing technology trends in the software production process. We
shall discuss in this section some of the implications of these changing trends to successful
market penetration by the developing countries.

Mainframe vendors who earlier used to concern themselves only with system software
development are increasingly moving into application software development on perceiving
the vast market opportunities that are opening up. Application software backlogs are piling
up. The market opportunities created by such backlogs are inducing a growing number of
United States and west European software firms and non-software firms (such as aircraft
manufacturers and financial service providers) to set up off-shore facilities for application
software development using the low-cost skills available. or readily trainable, there. What
was earlier seen as an advantage to the software firms in the developing countries -
namely. the low cost of their professionals -is thus beginning to be exploited by sofavare
firms in developed countries taking advantage of their superior skills in management and
marketing supported by larger capital resources.

Secondly, as discussed earlier, software development is beginning to be seen as really an
engineering effort and. consequently, it is beginning to be appreciated that software

industry. to be viable, must be structured and managed as an engineering industry A major
assumption in the management of software development as an engineering effort is that the

quai1ty of a piece of software is largely governed by the quality of the process used to
develop and maintain it (see the paper by Turski included in this volume).

Automation, based on the use of tools, in the various stages of development of software is an
important aid to improve productivity and also the quality of the software produced
Software metrics for quality assurance of the software development process, rapid prototyp­
ing through the use of application generators, automated documentation procedures, and
other components make up the tooled environment providing competitive advantage in

17

R .\'ara.~imhan .~Jjtware Industry: a Develc>ping Country Perspecti\-e

software business (see the paper by Schware in Part II of this volume). As Schware (1989)
points out "As the software industry becomes less labour-intensive, the quality and
availability of skilled labour will become more important than labour costs."

What are then the options open to developing countries aspiring to build up export markets?
Schware (1989) suggests five options:

l. Try to position oneself in a knowledge-intensive niche market not easily penetrated
competitively by large firms

2. Modify existing application software

3. Acquire and adapt public-domain software

4. Acquire/develop and learn to use tooled environments for software development

5. Form alliances.

The opportunities offered by public-domain software for value-addition by firms in the
developing countries are discussed by Botelho and Schware in their papers in Part V of this
volume. The paper by Kopetz in the same part discusses some possibilities for the successful
development by developing countries of niche markets in one particular area - the
production of intelligent products.

The importance of the availability of a diversified, competitive, and informed domestic
market is not often realized in building up export capability. A variety of skills -
entrepreneurial, managerial and software engineering - are needed to successfully execute
software jobs in a highly competitive and technologically fast-moving global environment.
The learning involved in acquiring such skills is possible only by servicing an appropriately
structured and demanding domestic market. A large pool of highly trained and motivated
software professionals can be sustained only by deploying them to work on challengingjobs
in the home market. The ready availability of such a manpower resource pool is a
prerequisite for effectively competing in the foreign markets. A flourishing domestic market
is also a sine qua non for building up the capability to innovate, as we shall discuss in the
next section.

5.2 Innovation: the Key to Global Competitive Advantage

Michael Porter's (1990) impressive ten-countries study to determine the factors responsible
for the ~ompetitive advantage of countries is directly relevant to the issues we have been
discuss::1g to build up an export market in software by developing countries. The central
theme of Porter's study is that the right question to ask is not why some countries succeed
while others do not in a global competitive market, but why specific industries located in
some countries succeed while the same industries located elsewhere fail. What then are the
conditions for a software industry located in a developing country to succeed in the global
market according to Porter's analysis?

18

SojtM·are Industry: a Developing Cc•iln"'.'' Pers~<:tn-e R .\"arm1mhcm

Firstly. according to Poner' s definition an industry is competitive in a country provided it is
able to achieve high levels of productivity and increase it over time. This, he claims, is only
feasible if the economy allows the industry continuously to upgrade itself. The country's
finns must be moving into more and more sophisticated segments of that industry all the
time because that is where productivity increase-scan be maintained.

In the long term, two factors determine the success of a firm's products and services relative
to its competitors. They are: lower cost (for given functionalities) and improved functionali­
ties (i.e., impr~ved quality, better features, better after-sales service, and so on). It is this
second factor (which Poner calls ·nitTerentiation') that allows a firm to command premium
prices leading to superior profitability.

The most important prerequisite for a country's firms to gain competitive advantage is to
function in an aggressive and competitive demand-driven environment. Poner emphasizes:
••Among the strongest empirical findings from our research is the association between
vigorous domestic rivalry and the creation and persistence of competitive advantage in an
industry." He further notes that ••domestic rivalry is superior to rivalry with foreign
competitors if one recognizes that improvement and innovation, rather than mere static
efficiency, are the c:ssential ingredients of competitive advantage in an industry."

According to Poner's model, competitive advantage of countries depend on their capability
to make the following evolutionary shifts in their industrial profile:

factor-driven---+ investment-driven---+ innO\·ation-driven.

In a recent paper, Rappapon and Halevi (1991) endorse this view that innovation is the
prime determiner of success in the computer industry. Control over fabrication technology
no longer determines superior market performance in the computer industry, according to
them. What matters is ··who creates utility forusers?" And utility is a function of innovation
in the use of the new computers that advances in fabrication technology make available.
·'This means", according to them, "investment focus on software development, systems
integration, marketing, and training."

To summarize, the central message is: Innovate or perish. And to innovate, a highly
sophisticated, demand-driven, competitive domestic market is an essential prerequisite. An
informed and challenging domestic market is, thus, seen to be 3 critical requirement for
building up both expon capability and innovation capability. The question to answer. then,
is, ··How can developing countries go about growing a viable domestic markt.t for soft­
ware?"

19

6. Developing a Domestic !\1arket for Informatics Goods and Sen·ices

We have argued the imponance of developing and sustaining a vibrant domestic market for

informatics goods and services both from the viewpoint of meeting the development-cata­
lyzing application needs of developing countries (Section 4). and for promoting inno,;ation

and entrepreneurial capability to compete effectively in the global software market If we
could integrate the creation of opportunities for innovation "ith the task of tackling the
basic developmental problems. we would be able to solve two intrinsically difficult prob­
lems at the same time. We shall discuss the feasibility of such an integration through ~me

illustrative examples in this section. However, first it must be realized that the policy-level
and implementation-level issues involved in accomplishing this task are complex a'ld
solutions may well have to be very country-specific. Some general aspects of the task are
discussed by Atul Wad in his paper included in Part V of this volume As he notes there·
.. for the software industry the challenge is simple to describe and difficult to accomplish:
identify where domestic firms can gain the most from software applications: find the
relevant software technology wherever it is; adapt it to the local needs and deliver it speedily
and effectively to the users."

Deploying software technology to suppon basic needs applications pose additional difficul­
ties. Problems concerned with the feeding. clothing, educating. and otherwise caring of the
many millions of people who are outside the market economy becomes necessarily the
responsibility of the government If technology is to be deployed in meaningful and
innovative ways to tackle the"'..e problems, the innovators must be able to cut through the
inenia and rigidities of the governmental system at various levels. It is in general not easy to
get the governmental machinery to think and function along new lines The issues one is

confronted with here are not just economic or technological. but in a fundamental sense,

social and cultural. Again, solutions to tackle such issues would have to be country-specific.

Subject to the above caveats, we shall briefly look at three application areas in this Section,

which offer potentials for innovation and entrepreneurship

6.1 Informatics Supports to Crafts

Bhalla et al. (1984) is a compilation of several case-studies illustrating the possibility of
effectively blending new technologies with traditional economic activity One of the .. new
technologies" figuring prominently in this compilation is, of course. microelectronics
technology. As Bhalla et al. point out the introduction of a new technology in a traditional
socio-economic environment, which could have three kinds of effects: (I) the new technol­

ogy could completely sweep away the traditional occupations leading to a ·disintegrat;on'
of the traditional socio-economic framework; (2) the new technology may remain neutral

and have no impact on the traditional framework; or lastly, (3) the old and the new
technologies could be blended in a constructive way to revitalize and economically upgrade
the former.

20

R .\·ara.nmhan

As Bhalla et al note .. If traditional production can be upgraded by a marriage with newly

emerging technologies. while still maintaining much of the substance and form of the older

methods. gains in etliciency and competiti\eness can be achieved while preserving existing

human and physical resources·· (p 24) Some of the traditional economic activities in

developing countries. which are potential candidates for such blending. are to be found in

the agricultural and rural industry sector. the informal urban sector and among small- and
medium-sized urban enterprises

The case st.1dies included in Bhalla et al.· s book of successful blending of microelectronics

technology with traditional activities span a \\ide spectrum and include applications in
agricultural managemenl lives~ock developwent management. biogas plant management.

and so on. One of the most interesting set of case studies discussed in the book relates to the

successful blending of the old and the new technologies in the textile sector. Of the several

applications of microelectronics technology in this sector discussed. one concerned with
upgrading the crafts skills of weavers is not only novel but seeks to tackle successfully a

cmcial problem one faces in the upgrading of traditional crafts skills. It is this. In order to
modernize traditional crafts skills and make them more productive and marketable, the

craftspersons must be endowed "ith modem tools. and more importantly, with modem
design capabilities. In the example discussed in the book, an effort has been made to retain

weaving as a cottage industry. but to :.mderpin it "ith sophisticated computer-assisted
techniques

A firm located in California (A \"L Looms). has designed and is manufacturing a production

handloom that can be operated under computer control. It is possible to design new fabric
patterns using a personal computer, and then control the dobby head to reproduce that

pattern on the loom The computer can store the pattern for future use ... All this adds to the

productivity of the worker. the versatility of the loom, and the quality and marketability of

the end product." (p.93) .. Users of A \'L Looms include home and studio weavers. textile

design firms. schools and cottage industries ... One of the advantages of AVL Looms is that

even beginners are able to produce fabrics of professional quality within a few hours ...
Almost from the beginning. home-weaving on the loom can become a source of income
(p.94).

Clearly, analogous possibilities exist to upgrade skills in other traditional crafts (e g,
jewellery-making, wood and metal working, tailoring, etc.) through the use of modem tools

and appropriate computer support

6.2 Informatics Support to Vocational Education and Training

In d.e educational sector, one normally tends to associate high technology with tertiary and

advanced education in the case of developing countries. However, the potentials of a

technology such as informatics lend themselves ideally to enrich learning environments in

schools. "¥ocational training centres, and polytechnics. It is imponant, especially in the case
of developing countries, to train the trainers first before addressing the students directly. It

21

R .\"ara..,.imhan Sojh.-an Industry: a £No,-r/oping Co11ntry P~T¥divr

would be logical to first upgrade teacher-training institutes through information technology
(IT) and also to create IT-based environments in schools to enable teachers to prepare
classroom teaching material incorporating text. graphics, pictures, maps. etc. The technol­
ogy of desk-top publishing is moving in such a way that soon colour hardcopy-making
devices should become available at affordable prices.

There is also a good case to be made for linking schools into a national network of llll
"invisible college" by stages, that would progressively link up persons actively involved in
teaching at a/I /e1:e/s. School teachers. at least the more innovative and motivated ones.
would find themselves through this means as part of the main intellectual stream of the
country. Access to resource material available at the higher educational strata (e.g., library
reference material) would also be open to them in this way.

Analogously, IT can be effectively used to train teachers of the vocational training institu­
tions and polytechnics. In the latter case. multimedia technology can be effectively used to
enrich the learning emironment of students.

Multimedia, expen systems. intelligent tutoring systems, networking and computer graph­
ics. are some of the software technologies that have immediate applicability in the education
and training sector. Where developing countries have to cope with multiple languages and
multiple scripts. IT can lend a helping hand to make teaching and training more effective. If
imaginatively promoted and developed, the domestic software market in the educational
and training sector in developing countries should become a major one. Since education and
training are intrinsically culture-dependent. domestically developed software in this sector
should in principle have an edge over imponed software - especially those imponed from
developed countries.

6.3 Informatics Support for the Small - and Medium-scale sector

In trying to develop a viable domestic market for informatics goods and services in
developing countries, a critical task is to improve the information consciousness and
increase information utilization in the small- and medium scale sectors -both in manufac­
turing and services. There are several reasons for investing money and effon in enlarging
informatics activities in these sectors. One obvious reason is that in most developing
countries the major pan of business and trade transactions take place in these sectors. A
second, and more important, reason from the developmental viewpoint, has been well-sum­
marized by Botelho (1991): "The emerging conceptual framework sees SMES (small and
medium enterprises) as more economically efficient than their large-scale counterparts and
more attuned with integrated socio-economic development objectives of promoting em­
ployment and local capacity building. Funhermore, SMES provide a breeding ground for
indigenous entrepreneurs."

22

.'W.~P,.·art: lndu.~try. a Dew/oping < ·ounO'.\· !'t•rspt·c·t1re R .\"tuns1mhan

A World Bank Research study on small manufacturing enterprises (Little et al. 1987)
supports these views: .. When measured by employment size. finns in the medium-size range

of 50-200 workers have the highest capital productivity. and total factor productivity. in
most industries in all the countries examined •· (p 313).

A recent census of retail outlets in 195 small towns and 500 villages. carried out by a market

research organization in India (ORG 1991). tstimated their number as more than 3 million,

or 5. 7 shops per thousand population. The annual turnover of all the urban retailers was
estimated to be Rs.110 billion (approximately USS 7 billion at the exchange rate prevailing
then). Nearly half the urban outlets - 46 per cent - were found to be grocery stores~ 5. 6 per
cent were chemists shops; and J per cent were bakeries or confectionery shops. Even if a

reasonable percentage of the chemists shops and bakeries were to be made informatics
conscious and persuaded to underpin their acti.,,·ities Y.ith informatics technology (IT), the

market for informatics goods and services will increase significantly in India. Analogous
possibilities should exist in many other developing countries.

However, before a mass market can be developed for IT in develooing countries. the
environment in which small- and medium-scale business and trade transactions take place
must be analyzed and understood. It is important to take into account both the physical and

cultural aspects of the environment. Most of these transactions tend to take place outside
organized office environments Even a laptop computer may be unsuitable for easy use in

these environments. Culturally the most acceptable human-machine inter.ace may not be a
keyboard. An electronic notepad with a stylus may be a more user-friendly interface We
need a simple device, capable: of being held in the hand, battery-operated, inexpensive,
which can accept handwritten characters/numerals/other notational symbols, and with
enough intelligence built-in to cope with day-to-day transactions. For larger transactions
and bigger shops, facilities must be available to cumulate the outcome of daily transactions,

to compute monthly accounts, and other business management-related summaries and
projections.

There are several lessons to learn from this discussion. First, there are deep-rooted cultural

constraints that technology must adapt to in order to service the mass sector in developing
countries. Secondly, shaping of technology to suit cultural norms almost always requires the
deployment of leading-edge technology. He;·e is a state of affairs made to order for
innovative entrepreneurship.

7. Conclusion: A Summary of Initiatives Needed

The principal points made in this chapter can be summarized as follows: software develop­
ment is an engineering activity and so the software industry must be organized and run as an
engineering industry. However. this industry differs from other familiar engineering indus­
tries in being design-oriented and not manufacturing-oriented. The design activity is

becoming increasingly dependent on specialized design tools. The management of large

23

I< .\i.uasmrhan Softwarr /nd11stry: a Dn-rloping Co11ntry P~1~ctil;~

software projects also requires the assistance of software project management tools_ Struc­
turing suppon environments of this kind and training software professionals to function
etliciently in the~e environments demand capital-intensive investments. Since such invest­
ments are prerequisites to success in a highly competitive global market. developing
countries in general. should not try to promote a predominantly expon-oriented software
industry It is much more beneficial, both in the shon- and long-term, to develop a
demanding 2nd infoimed domestic market for software and suppon the development of a
domestic software industry to cater to the domestic needs and demands.

Software is a vital component of information technology (IT) and IT is a pervasive and
enabling technology with extensive potentials to modernize all aspects oflife in developing
countries (DCs)_ A strategic objective of developing countries should. therefore. be to
promote software industry to provide software goods and services, not only to improve
productivity, the quality of manufacturing and service inci•1stries and manpower skills. but
also to come to grips with problems of poverty and resource limitations. By increasing
operational efficiency through the use of IT, imports can be cut down in many sectors: the
energy and transport sectors are two prime examples. Balance of payments can be improved
not only through direct exports, but indirectly by cutting down on imports.

To build up and sustain a viable software industry in a developing country, closely
coordinated actions are needed on the part of the government and other end-users. aid-giv­
ing agencies and the software industry professionals_ Elsewhere in this volume, the initia­
tives that UNIDO has been taking to promote software as an industry in developing
countries are discussed in detail. Here we shall briefly list some additional suggestions. S~
also lJNDP (1991) for elaborations of these and other related suggestions.

7 .1 What Gonrnments and Gonrnment Agencies can do

Government departments and government agencies must become information conscious.
While there is general realization that planning must be based on information. it is not
always realized that information is even more important to implement approved plans
cost-effectively_ Cost overruns. time overruns, resource wastage and a variety of related ills
associa:ed with most plan implementations can ultimately be traced to inadequate availabil­
ity of information and inefficient management of available information. PTective develop­
ment of IT is indispensable to rectify these ills and software is the most crucial component of
IT in this context

Government organizations must realize that software development is a professionally
demanding task -and it is expensive_ They should be willing to pay for software products
and services. This requires awareness about what software is. what is involved in software
development and. most importantly, the understanding that without appropriate and high­
quality software computer hardware is useless.

24

SoftwOJT /nd11stry: a Dn-rloping Co11ntry Pl!!rspectn-r R .\"ara.~1mhan

Government organizations, in so far as they are bound to be major consumers of software
products and services, must acquire the knowledge and competence to draw up specifica­
tions for the software and services needed, tender for these products and services in a
competitive market, evaluate proposals received, and monitor and enforce good software
engineering practices on the part of the selected suppliers.

The government must. finally, play a major promotional role in the development of a
healthy, competitive, high-quality professional domestic market for software products and
services Education and training in appropriate professional knowiedge and skills; the
provision of suitable subsidies; fiscal incentives and venture capital; enforcing legal protec­
tion to intellectual property rights; assisting in the advertisement of internal market
strengths and accomplishments; promcung software expon and similar effons must con­
tinue to be the primary responsibility of the government.

7 .2 What tht Aid-giving Agencies can do

Aid-giving agencies (United Nations agencies and others) can play major and effective roles
to help developing countries build up viable production capabilities for software goods and
services. Wherever IT inputs are needed as pan of externally-aided project implementa­
tions, the first effort must be to purchase the needed products and services from local
vendors. If the ultimate objective c:f external aid is to assist the local development of
technological skills and competence, it is counterproductive to deny learning opportunities
to acquire such skills and competence to local groups.

Promoting regional cooperation among developing countries is very valuable. Equally
valuable is the identification of successful institutional models that could be transponed
from one developing country to another. Creation of appropriate forums for exchange of
information and experience among developing countries should yield rewards in the shon,

as well as long term.

7.3 What tht Software Industry Professionals can do

Two major issues that software industry professionals must be concerned with are:

1. Distinguishing between trading in software and building up a genuinely creative,
innovative and professionally managed software industry; and

2. Providing software products and services that genuinely cater to the needs of the
end-users.

The iiidu~try's concern must be to look at and understand the users' problems from the
users' viewpoint, and not just from the marketing viewpoint. Very often users need
assistance in the analysis and anicula!ion oftheirreal problems. In most cases, the solutions,
to be really cost-effective, must be implemented in phases. The functionalities must evolve
and grow in sophistication as the end-user organization adapts to the technology and learns
to use it to the best advantage of the organization. All these require an industry-customer

25

R .\"aras1mhan Software Industry: a Developing Country Perspective

relationship that is interactive. creative and enduring. It is worth noting that all these points
remain valid whether what is involved is system integration. custom software development.
or package software sale. For. even in the case of an off-the-shelf sale. much after sales
service by way of training. customization and continued assistance would be needed.

To play this kind of a role, the software industry must be driven by genuine professional
concerns for technology. tools. design and development. Quality assurance and pricing are
two critical factors that can either make or break the growth of a healthy and informed
market. The concern of a professionally-oriented industry must be technology-related
long-term growth of the market. and not short-term, high-profit. trade-oriented transactions.

Considerations of technology-related long-term growth immediately have implications for

manpower training. career development and interactions with R & D and academic commu­
nities. The industry-academia interactions must be consciously and viably built up to
mutually yield beneficial results.

Industry associations, through the use of newsletters and other means, must publicize
success stories as well as project opportunities. Publicizing success stories is important to
educate end-users on the value of software. This is a basic prerequisite to developing a
viable domestic market for software.

References

A. Bhalla, D. James, Y. Stevens (1984): Blending New and Traditional Technologies: Case
Studies. Tycooly International Pub. Ltd .• Dublin. Ireland.

A.J.J. Botelho (1991): "A Strategy for the diffusion of public domain software in sub-Saha­
ran Africa; .. UNIDO, Vienna. Austria.

Dimitris N. Chorafas (1986): Fourth and Fifth Ger1eration Languages (Volumes I and I!),
McGraw-Hill . 1986.

C.M. Correa (1990): "Software Industry: An Opportunity for Latin America?"; World
Development, Vol.18. No.11, 1587-1598.

Datamation (1980): "Picking and perfecting the packages"~ December 1980. pp. 139-148.

F.C. Kohli (1991): "Software: A Process"; in Software: An Engineering Industry-Need
for developing a Domestic Market, Proc. UNDP Seminar, New Delhi, India, 6 August
1991.

I.M.D. Little. D. Mazumdar. J.M. Page Jr. (1987): Small Manufacturing Enterprises: A
World Bank Research Publication, Oxford University Press. New York. USA.

James Martin with Joe Leben (1986): Fourth-Generation Languages (Volumes I, II and
III). Prentice-Hall. 1986.

26

Sojtwan Jndwslr)I: a Dew/oping Co11nlr)I PerspectM R .\'arasimhan

R. Narasimhan (1984): Guidelines for Software Development in Developing Countries;
UNIDO/IS.439. Vienna, Austria.

R. Narasimhan (1992): ··1s glcbalization the answer to our problems? The case of Indian
Software industry"; CMC National Fellowship Lecture.

OECD (1989): The lntemationali:ation of Software and Computer Services: OECD. Paris.

France.

M.E. Porter (1990): The Comparative Advalltage of Nations; Macmillan

A.S. Rappaport and S. Halevi (1991): ·The Computerless Computer company"; Harvard
Business Review; July-August 1991, pp. 69-80.

R. Schware (1989): ·The world software industry and software engineering: opportunities
and constraints for NIEs"; World Bank Technical Paper No.104.

Alex Varsegi (1990): Mainframe High Productivity Tools of the 90 's, John Wiley & Sons.
1990.

S. Watanabe (1989): .. International division oflabour in the software industry: employment
and income potentials for the third world", World Employment Programme Research.
Working Paper, ILO. Geneva, Switzerland.

L. Welke (1980): 'The origins of software"; Datamation, December 1980, pp. 127-130.

UNDP (1991): Software: An Engineering Industry - Need for Developing a Domestic
Marat; Proc. Seminar. New Delhi. India. 6 August 1991 (available from NCST. Bombay.
India).

27

II

Software:
An Engineering Industry

Software Engineering: A Survey .. 31
Wlaclyslaw M Turslci

Impact ofTechnol<?Si~ Change on Software
Development: lmphcattons for the LDCs and NI Cs ... 45

Robert Schware

Software Technology: Trends .. 59
R. Narasimhan

Sojtwan Engineenng: .·I Sun'f!y ff:\/ Tunki

Software Engineering: A Survey*
•• Wladyslaw M. Tunki

The term "software engineering" was coined at the same time and at the same conference
that brought into the open the deep concern with the growing software crisis. The confer­
ence was held in 1968. The chief symptoms of the software crisis were: software unreliabil­
ity, delays in meeting promised delivery time for software systems, difficulties in achieving
desired functionality and perfonnance of software, complexity of software systems and
their resistance to modification attempts, shonage of skilled programmers and -above all -
the alarming cost of software development and maintenance.

The last fifteen years saw a dramatic decrease in the cost of all imaginable units of raw
computing power: the dollar-per-KB and dollar-per-MIPS measures are falling in absolute
terms, let alone discounted for inflation. Parallel to this trend, although running in the
opposite direction, is a very rapid increase in hardware capabilities and availability. A fixed
amount of money buys not only much more hardware today than 15 years ago, it also buys a
much more sophisticated equipment Software difficulties, then, seen as a bottleneck in
computer applications, have become the most important limiting factor today. For all
practical purposes, the software costs are the foremost consideration when a new application
system is contemplated. The policy of buying hardware to run available software systems
has become almost the industry rule. The accumulated investment in software is already
staggering and grows world-wide by some I oIO - I oI I USS per year.

It should therefore come as no surprise that a very considerable effort is being put into
improved methods of software design, ;mplementation and maintenance. Qualified pro­
grammers being scarce the world over, assorted software tools, increasing the programmers
productivity by automation of the more routine aspects of their work, are considered a very
promising means of alleviating the software crisis.

In this report we shall survey the main directions of software engineering, a discipline for
producing better software more economically. (It is important to consider both aspects
simultaneously: making software cheaper at the expense of its quality is just as absurd as
improving its quality at a disproportionate increase in cost).

UNIDO/IS.4.J6, February 1984

•• Professor of Computer Science. Warsaw University, Poland.

31

H:\f Tursk1 Software Engineering: A Survey

The Change in Approach

Arguably the most imponant change in the whole software scene over the last 15 years is the
emergence of consensus on the issue of software correctness. It is by now universally
accepted that correctness is the main criterion of software quality: no matter how good a
piece of software is in all other respects (such as efficiency or robustness). ifit is incorrect its
value is nil. Without an accepted notion of what constitutes the correctness of software, the
insistence on software being first of all "correct" would be meaningless.

A very useful notion of software correctness has been found in the logical notion of
satisfaction that may exist between two formal systems. Roughly speaking, a system S
satisfies system T if whatever follows from the system T is a fact in system S. In more
rigorous terms, we ;;ay that S satisfies T if there exists an interpretation I: T - S such that to
each statement t deemed true in T the interpretation I assigns a provably true statement s in
S: (t = true in n implies (s = I(t) = true in S). In practical terms, T is what constitutes a
specification, S- the software.

For example, the statement t may say that SORT (x) is the sequence X rearranged so that its
members are put in ascending order. Statement s may take a fonn CALL PROO SHELL
(INPUT(A)). If now the interpretation I is such that PROC SHELL is the name of the
Shell-sort routine, CALL denotes an invocation of a routine, A is the name of a file, INPUT
is an operation delivering the file listed as its parameter, then all that is needed to establish
that s satisfies t is to prove, from the particular description of Shell-sort, that indeed its
execution delivers the sorted version ofits input parameter.

Two observations are in order:
- Using the outlined tpproach we assume that the specification correctly reflects the

user's requirements.
- It is a matter of formal calculations to establish if a given software satisfies the given

specification.

The first of these observations clearly indicates that the burden of somehow verifying
whether or not the software meets the application needs is shifted from programming to
specification analysis. The second one presents in a nutshell the methodological advance,
which is the cornerstone of software engineering: given the specifications, the correctness of
remaining parts of the design and implementation process becomes a calculable question.

We shall return to the specification issue later. Now, we shall consider the significance of
correctness calculability.

First attempts to exploit the notion of calculable correctness concentrated around pro­
gramme verification, i.e. around a process that would take a specification and a programme,
and - based on this information alone - would attempt to calculate if the programme is
correct. This approach has had a limited success only: the amount of formal calculations

32

JJ:\f Tu~1

involved was fonnidable even in the case of pretty small programmes. For large pro­
grammes it became prohibitive. even if human intervention was allowed to speed up some
of the calculations.

Soon it transpired that a much better policy to exploit the notion of calculable correctness is

to devise such programming techriiquesthat would guarantee programme correctness by
virtue of the very construction process. Thus, methods of building correct programmes from
specifications started to appear.

Specification-based Methods of Programming

Common to these methods is the view of specification as the most abstract description of all
desired properties of the desired software. (By the .. most abstract" here we mean .. free of all
unnecessary detail.") The software design and implementation is seen as a process of

transfonning such abstract description. by adding necessary details. into a programme
which is to preserve all properties contained in the specification. (Thus the main difference
between the specification and the corresponding programme is that of detail· the specifica­
tion is free of machine-oriented details but, of course. contains all application-oriented
ones.)

Methods that pursue this approach are known as top-down design methodologies. a name
that refers to the fact that -after the software is successfully designed and implemented -
the history of the construction process is not unlike a pyramid, \.\ith the original specifica­
tion occupying its summit and the working versi(\n of the implemented software being its
base. When one ascends this pyramid (moving as it were in the direction opposite to that
which the designer took), one sheds the implementation and design details until the refined.
most abstract summit -the specification -is reached.

Basically, the top-down programming methodology consists in repeated application of the
following procedure:

- Given a problem P, is it possible to express its solution in a reasor.ably concise
fashion using primitive notions of the linguistic level at which we want to pro­
gramme? If yes, write the programme, if not, invent notions Pl Pn such that

• each of the notions Pl, ... , Pn is well-specified.

• using these notions according to their specification it is possible to write a
satisfactory ?rogramme for problem P.

- Consider each of the notions Pl, .. , Pn in tum as a new problem and repeat the
procedure.

This procedure continues until all invented notions are implemented in tenns of primitives
of the given programming level.

33

The above given brief description of the top-down design and implementation methodol()!,ry
introduces two important techniques that of structured programming (or structured decom­
position) and that of stepwise refinement We rely on the first one when we decompose
problem Pinto problems Pl ... Pn. and on the other one when we consider each of the
PI.. .. Pn as a new problem in itself. to be solved by the same method

Both techniques rely on sound mathematical principles. which guarantee their correctness if
certain rules of decomposition and refinement are observed. Consideration of the mathe­
matical foundations of structured programming and stepwise refinement ha"·e led to new
concepts in programming languages. such as ADA. PASCAL or MODULA These modem
programming languages are designed e.1Cplicitly so as to facilitate and even in some
instances enforce a disciplined use of these techniques. It should be observed that while no
programming language per -~ ever solves any software design problem. the use of a tool
influences the way in which its user works. Programming languages of yesteryears.
FORTRAN. COBOL and BASIC. lack the mechanisms to suppon structured programming
and stepwise refinement. In such languages it is vinually impossible and cenainly very
awkward to use the techniques that emerged as the most common tool of modem software
engineering.

Approaches to Specification of Software

It has been firmly established that the early stages of software system design are crucial for
the eventual system usefulness. This observation is. of course. directly related to the fact that
it is precisely the specification. which in the final count is taken as the frame ofreference in
which software correctness is established. Thus, all design/implementation techniques
respecting the notion of correctness cannot but preserve any specification errors. Conse­
quently. such errors become apparent only after the software has been implemented and are
thus very expensi"·e to correct. This clearly underscores the need to verify specifications.
both from the point of view of their implementability and from the point of view of their
relevance for the intended application.

The verification of specifications with respect to their relevance poses a very subtle question
of translation between (often fuzzy) intentions of the eventual user and (necessarily formal)
expression of specifications. Many techniques have been proposea specifically oriented
towards easing of this task. In essence, these techniques assume that the prime author of the
specifications is the eventual ustr. and - by providing a somewhat restrictive means of
expression -force him to express his intentions in a form that can be easily manipulated by
formal methods. Often such techniques depend on graphic conventions (e.g. SADT).
whereby the user/author is pressed to describe his ideas in the fonn of pre-designed and

partially labelled diagrams. Freely added, user-invented labels express his intentions origi­
nally just by their mnemonic significance. Gradually. as the specifier is asked to complete

34

Sojtwan Engmttnng: A Siun~•· W.\l 1iuxtr

more detailed diagrams, the pre-designed structural dependencies between diagrams are
explored by a "hidden" analyser, which brings to the open all inconsistencies and many
instances of desigP. incompleteness.

An entirely different approach to specification writing can be e.'<emplified by specification

languages (such as CLEAR). In this approach. the recognition that a specification is in fact a
formal theory of an application domain is made into the main tenet and main mental tool as
well. Specification languages provide means for relatively easy-to-read description of
theories and - more significantly -for combining thus described theories into larger ones
For example, given a formulation of a theory of optimality (for instance by mear..:; oflinear
programming principles) and a formulation of a theory of control of a chemical process.
their combination will yield a formulation of a theory of optimal control of this process.
(Naturally, not any two theories can be combined. it is up to the specification language
designers to make sure that any combination expressible in the language "makes sense" and
that absurd combinations would be inexpressible; exactly as in safe programming language,
it is impossible to execute sin(ttue) instruction).

When many useful application domain concepts are captured by corresponding theories. a
specification language may indeed be very useful: the specification of a concrete system
may be obtained by a combination of ·1ibrary theories" with some specific expressions
written just for this system. The main advantage of this approach, apart from economy of
design. is in the increased safety: library theories are known to be safe and the language
includes many safety measures. which make it unlikely that nonsensical combinations
would be expressed by mistake.

Both graphic and linguistic approaches to formal specification writing are well founded in
deep theoretical research into such issuesas abstract data types, algebraic theories, theory of
models, etc. The same kind of foundations are used by a number of software description
techniques, such as VDM, commonly used for unambiguous definition of large software

products such as semantics of new programming languages (CHILL, ADA) or special
software systems (CICS).

Software Lif e-t:yde

A software system written for a particular application can seldom be used for an extended
period without undergoing a number of changes. Among the many causes that necessitate
software changes one can list the following:

a) The nature of the application itself changes (e.g. for a banking application, the
introduction of EFT facility changes dramatically the accounting procedures).

b) New hardware elements are added to the system and need to be incorporated into the
class of devices supported by the software (e.g. colour screens are introduced into a
system that used monochromatic screens only. a new "dimension" must be added to all
output and, perhaps, input functions).

35

H".\/ T 11nla

c) An existing piece of software is transferred to another environment. or the environment
itself changes (e.g. better educated operators are hired. for whom the existing input
procedures are too dull; new input procedures are required. which would make the
operators' task more appealing tone\\ stafi).

d) The scope of the application is enlarged (e.g. in a hospital computer system the
intensive-care unit computer services are to be linked to a previously separate medical
record system).

e) The requirements placed on the existing system are changed (e g. the air-traffic control
system must be modified when the airpon it serves stans accepting faster jet-. and thus
the decision time must be redl'.ced to accommodate the faster traffic).

The list of causes can no doubt be extended. Even this incomplete list is sufticient to draw
the unavoidable conclusion that changes in a live system are indeed necessary, quite apart
from any remedial changes due to its detected shoncomings and internally motivated
software improvements.

An unfonunate tradition lumps under the title "software maintenance" all those activities
related to software changes that occur after the original system has been successfully
installed. It is imponant to remember, therefore, that software maintenance is needed not
because software deteriorates in use (there is. of course. no wear and tear of software), but
because its use for a dynamically changing application will be diminished unless the
software is modified.

In fact, the usual presentation of a software life-cycle contains tour major phases:- (a)
Conception (b) Design (c) Implementation (d) Maintenance

Largely due to the fact that .. maintenance" comprises future modifications, its share in the
total expenditure is very large. In many cases the maintenance costs constitute more than
three quarters of the total investment in a software system (This is a very importa.,t
observation: a client buying a moderately-sized software system for, say, $100,000 should
not be surprised that the maintenance costs over the next few years will run up to$ 300,000.
lfhe is not prepared to pay this "extra", almost certainly he \A.ill find himself tied to an ever
decreasing useful piece of software. lfhe tries to economize, e.g by assigning junior staff to
maintenance activities, he may face a total disaster - the system may become hopelessly
entangled and virtually useless.)

The main reason for the high cost of software maintenance is the fact (abundantly confirmed
by many a post-mortem analysis), that the complexity of software grows very rapidly with
every change made to the original version, unless a conscious redesign effort (also expen­
sive) is made to reduce the complexity. Thus, each subsequent change is harder to make and
is more likely to introduce - in addition to the desired ones - many unforseen and often
unpleasant effects.

These observations lead to two inter-related software engineering problems :

36

Sojht·ore Fngmeenng: .·I Su.n"l'y JD/ Trusk1

a) How to design software in such a way that it Ylould be relatively easy to modify'>

b) How to modify an existing sofhvare so as not to increase its complexity more than
absolutely necessary'>

The first of these issues is answered by modular and hierarchical design. The second-by
controlled backtracking techniques - is greatly facilitated by well-designed programming
suppon environments.

Modular Design

A very general engineering principle calls for the final product to be assembled from easily
replaceable pans. Thus a bicycle consists of a frame, two wheels, pedals, chain, etc. If the
bicycle malfunctions. the case of the trouble can usually be traced to one of these parts, and
the faulty pan can be replaced by another of the same type or, indeed, by any similar pan
that fits. It is not unusual for the bicycle to have wheels of different make to the frame or
even two different pedals. As long as the pans satisfy cenain externally specified interfac.e
requirements, their internal construction is of secondary imponance. Thanks to this princi­
ple, we may put snow tyres on our cars, thus obtaining a vehicle with rather different driving
parameters without actually having to change the engine or steering wheel.

This general engineering principle translates in software design into a requirement accord­
ing to which any software product should be built from relatively independent modules.
Each module meets its specifications if it is a corrPCt module; a module specification is all
that is externally known about the module. The functionality of the whole system obtains
from the interaction of modules, the interaction itself being fully detennined by modular
interfaces.

When designing a piece of software, one decomposes the design into a number of relatively
independent units - modules. Having listed the external propenies of each module, i.e.
having fonnulated each module specification, one can prove the appropriateness of the
decomposition by proving that the required propenies of the whole indeed follow from the
postulated propenies of modules. This being established, each module in tum may be
considered a new design problem. Thus, allowing for hierarchy of modules, we see a
co!llplete analogy with the stepwise refinement technique, although this time the technique
is expressed in terms of structured components of programmes.

A well modularized program can now be relatively easily changed by replacement of one
module by another. the fresh module sharing with the old one its interface specification,
while differing in seconJary considerations, i.e. in those that are not covered by the
specification relied upon in the overall design. For instance, if we want to adapt our software
to exploit the potentials offered by a new output device, we can concentrate on the output
module in which all relevant aspects of the given piece of software should be encapsulated.

37

11 I I I
~--------

If.\/ T ur-sla

Naturally enough, not any haphazard hacking of the design into pieces can be considered a
proper modulariz.ation. Sound engineering principles of modular design have been formu­
lated. which facilitates making correct modulariz.ation decisions. The same principles
ensure that a majority of errors can be localized within a module, thus the repair activities

may usually be limited to a single module

Since a module can be replaced by any other module provided their functional specifica­
tions and interface characteristics match. there is a huge incentive to plan libraries of
interchangeable modules. rather like a Mechano set. from which a variety of software
products could be rapidly constructed. Modules that could be used in many differuit
programmes are known as reusable ones. and all successful software houses possess
substantial libraries of reusable modules from which a major part of any system within the
specialization area of the house can be constructed.

Some modem programming languages. notably ADA and MODULA. actively encourage
modular programming. ADA, for example. was explicitly designed to permit independent
compilation of modules. so that libraries ofresuable. precompiled modules may be accumu­
lated.

A number of design methcds have been proposed that are based on the modular program­
ming principle. Some of these are commercially available as kits consisting of a large
number of tools, i.e. special programs that assist programmers in their work on software
design and implementation In general. such commercially available methods concentrate
on a chosen guiding principle for modularization (e.g. data flow, calling hierarchy or
input/output transfonnation). which suggests a particular approach to structuring the design.
Identified modules are named and their main characteristics are specified. Then. the use of
supplied tools enables one to display the emerging design in a coherent way and -more
importantly - check the consistency of the design by verifying that the specified properties

of the modules placed in their respective structural positions indeed correspond to each
other. Thus, for instance. if it follows from the design structure that a module M imports data
named x, it is possible to check that there is at least one other module that exports the so
named data. Hav-ing identified such a module, say N, it is possible to check if modules M
and N are structurally related in such a way that data transfer between them is allowed.
Similarly, it may be checked if data z, generated by a module K, is imported by any other
module or presented as a system output.

Most available tool-assisted modularization methods allow many such consistency checks
to be run at several levels of detail, thus permitting tthe verification of at least some aspects
of the design before any detailed programming (on intramodular level) is done.

Another useful extension of modular programming techniques consists in substituting
module surrogates for not yet implemented modules. Thus, as the implementation pro­
gresses, one can animate the complete system even if only a part of its modules is actually
coded: the remaining modules being replaced by surrogates, the whole system may be made

31

to perform Such animated execution allows one to check some external properties of the

system long before its implementation is completed and. therefore. to avoid at least some
unpleasant surpriso and - perhaps - to introduce design modifications before they
hecome prohibitively expensive to cany out

Softwan Modification

Assuming that we have a well dt:Signed and correctly implemented piece of software. any

subsequent modification should start with a clearly specified request for modification If the
history of the design is preserved (and again there are special software tools constructed

specifically for the purpose of storing the software design history in a manageable form). it
is possible to identify the design step at which the decisions contrary to the requested

modification were made (Such a step must always be there since othernise the request

could be met by the existing software and thus no real change would in fact be requested,
although the request may still have led to some programming. e g of an add-on extension of
the available software) As soon as the pertinent design step is identified we kr.ow that all
preceding step> can be safely preserved in the new design. i.e in the design aimed at
satisfying the considered change request If the subsequent steps of the old design are
discarded, the incorporation of the requested modification may be viewed as a continuation
of the preserved part of the old design by a suitable sequence of the new design steps

If there are many such modification requests. we are soon faced with a .. forest" of designs­

from each design step at which some change has been incorporated a new branch is started
A suitable ··navigation" tool is needed if the programmer is to be able to freely traverse the
design .. forest" and collect design steps along each particular branch. Again, such tools are
commercially available

The main objective of controlling the softwar~ modification may be stated as a stability

problem for software development how to achieve the situation in which small changes in
specification could be accommodated by small changes in the implemented software.

No general solution for this problem is known (and, according to many experts. such a

general solution may never be discovered). There exist. however, ~ome design/implementa­
tion techniques which admit a partial solution of the stability problem.

For instance. if an arbitrary decision is made every time (selecting a particular branch), all
feasible although discarded decisions are duly recorded and preserved in the design data­
base. subsequent design steps may include a '"what if' analysis, forcing the programmer not

to do anything detrimental to the implementation of the rejected options Or - at the very
least - to clearly mark subsequent decisions with comments informing about such past
options. which from now on becoml! unfeasible. If the design history is decorated with such
comments, a change request may be run against the tree of rejected alternatives, yielding not
only the level to which the design is to be backtracked. but also informing about the point at
which the incorporation of the requested change became unfeasible in the present imple­
mentation. Analysis of this information permits the rough guessing of the amount of

39

JU/ Tursk1 Software Engineering: ..t Su~\·

redesign effort needed to make the change. Changes that wculd require too much effort may
then be rejected. or if undertaken. may be explicitly marked as difficult-to-implement and
therefore expensive. It should be stressed once more that a proper management of software
modification and change requests is probably the most important aspect of software
engineering. as it is this phase of the software life-cycle in which the lion's share of the total
expense is incurred. The general approach outlined above may be viable only if during its
entire life-cycle a software system is supported by a comprehensive design and develop­
ment documentation in which all versions and mutations are recorded in a manner allowing
for a relatively easy restoration of arbitrary past states. It goes without saying that if such a
support is to be of real assistance to programmers, it must provide the relevant information
in a form that permits machine-assisted manipulation of a large number of variants. Thus,

again. we are led to consider the importance of software tools.

Software Tools

There are several varieties of software tools more or less available on the market, many
more tools are the propeny of software houses, which use them for their internal purposes.

Probably the most common among the commercially available tools are all sorts of editors,
i.e. program that facilitate program composition and program text manipulation at a
programmer's work station (e.g on a VDU). The editors range from pretty simple text
manipulators to quite sophisticated, programming-language oriented structured editors that
in addition to the facilities provided by plain text editors include an active mode of
assistance. In the latter mode, structured editors prompt the programmer as to proper
instruction formats, check for syntactic completeness of phrases, warn against simple
context-detectible errors, etc. Nearly all varieties of programming editors take care of
simple yet laborious editing operations, such as textual substitutions, systematic renaming
of programming objects, etc. Many newer programming editors are geared to exploit
display facilities off~red by modem temtinals, e.g. by providing the so-called multiwindow
option, whereby a programmer may divide the screen into several independent ·'windows",
conducting in each of them a separate program (or program part) development. Thus for
example, a programmer may develop the main program in one window, a subroutine in
another and an input/output handler in yet another. A fourth window may be used for
display of pertinent parameters, such as the number of lines of code already generated,
memory maps, etc. Each of the windows may be zoomed in, therefore providing a more
detailed view of a particular feature, contents of different windows may be merged, etc. A
programming editor with a multi window facility creates a fair analogy of the programmer's
desk top, with all assorted documents and scratch pads being available in an electronic form
at the same time.

Another kind of commonly used programming tool is represented by program generators.
For a variety of applications. working programs are sufficiently stereotyped to permit their
automatic generation from a suitable chosen set of design parameters. Such program
generators usually work interactively, either in a dialogue (question and answer) mode, or

40

Sojhmrr En,l(ineerzng: .·I Surwy JOI Tursk1

by menu selection technique, whereby a programmer is shO'-"TI a number of options.
depending on the circumstances selects one, thus fixing a design decision, which triggers a
next level menu to be displayed. At the end of a session. the totality of decisions made
determines a particular application program, which is then produced ready for operation.
Programs produced in this way are often a bit inefficient, but othernise quite accep!:tble and
can cenainly be used as system prototypes. If their functional behaviour is found to be
satisfactory, their performance may be improved in a number of ways, e.g. by optimizing
the most frequently executed parts of the code. (Incidentally, program optimization is
another task that may often be left to a suitable software tool.)

Finally, we should not forget that the ever growing body of commercially a"ailable
compilers, interpreters, decision-table processors, etc. are all in fact software tools. An
extremely useful addition to this class of tools are program transformation systems, which
accept a program expressed in an abstract form and - guided by the programmer -
perform textual transformations aimed at replacement of abstract algorithms by concrete
ones, or at replacement of less efficient parts of code by more economic versions. The
importance of such tools rests in the fact that program transformation systems are so
designed that their action preserves the intended meaning of programs being transformed. A
programmer may therefore try a number of transformations quite safely: even if he does not
achieve the intended improvement, he certainly does not run a risk oflosing correctness of
his program.

Another class of software tools are those which gradually transform an initial design into a
more and more program like text. Some tools of this class for instance, accept graphic
designs in the form of interconnected, labelled boxes and represent them as equivalent
linguistic structures more amenable to further textual refinement. (In addition to transforma­
tions between various levels of abstraction. such systems usually perform a number of
useful consistency checks.) Nearly all software design methodologies advocated for general
use rely on some tools of this class.

The most sophisticated software development tools, in addition to all previously listed
facilities and standard features (such as parsers, table generators and file managers), also
incorporate very advanced databases in which progra·n versions and mutations are stored
for easy reference and manipulation.

It is customary to refer to a fully developed system of software support tools as program
support environment (PSE). Modem requirements for a programming language usually
include a specification for a PSE. Probably the best-known of them is the APSE- intended
programming support environment for ADA. In fact, it is expected that the portability of the
ADA program will be achieved via functional equivalent of APSE installed in nearly all
computers. In this way, not only the programs themselves could be ported, but also their
PSE, which would allow for a further development of the program to be ported from one
installation to another.

41

IJ:\f Turski

In addition to program design/implementation tools, a well-de,·eloped PSE includes a
variety of tools for program testing and debugging. which greatly reduce time and effort

needed for the pre-release servicing of software.

Non-procfllural LanguagH and Oth~r Advancfll Conc~pts in Programming

Classic programming languages, COBOL, FORTRAN, PASCAL and even ADA. are based

on the notion of assignment: as a result of the execution of a statement, a variable is assigned
a new value. This notion, a direct descendant of the machine order "execute and store", can

be rightly described as the cornerstone of the von Neumann computer architecture.

New architectural concepts, such as data flow machines, highly parallel computers and

inference engines, find little use for the notion of assignment. Hence, in recent years a

number of entirely different programming languages have been proposed, based on very

unorthodox principles and more or less directly incorporating these architectural innova­

tions. which seem most promising from the application point of view.

Arguably the most widely accepted of the new line of programming languages is PROLOG,
a language for programming in logic. Originally intended as a tool for computational
linguistics, PROLOG is rapidly becoming the main programming language for artificial
intelligence, slowly replacing the old time favourite, LISP in this role.

What an assignment statement is to FORTRAN or PASCAL, a Hom clause is to PROLOG.

(A Hom clause is a special form of a first order predicate calculus formula.) Its main
computational advantage rests in the natural parallelism of Hom clause evaluation, while its

advantage for application programming obtains from the observation that a Hom clause,

may be just as easily interpreted as a statement of fact and as statement of a hypothesis to be
verified based on other clauses. Close kinship of Hom clauses and relations, which provide
the foundations for commonly used relational databases, is another bonus for PROLOG

adherents: not only does it yield an easy interface between application programs and
databases, but also makes possible database description by essentially the same means as

program description.

Data flow machines seem to provide a natural evaluation mechanism for another brand of
new programming languages. the so-called applicative languages, exemplified by LUCID.

Hardware/software experimental systems, e.g. ALICE, are currently being built to explore

new and apparently very powerful concepts of data flow and functional programming.

Finally, the Japanese Fifth Generation project, extremely influential in shaping the current

research interests both in the United States and in Europe, favours a highly parallel machine

architecture harnessed to a multilevel hierarchy of specialized machines: database machine

topped with an inference engine (programmed in PROLOG) yields an expert knowledge

base which, interfaced with very advanced input-output machines (such as graphic or visual

computers and speech analysers and synthesisers), are to become intelligent computers of
the 1990s.

42

SojhrOIT f:ngrnttrin~: .-1 S1tn't"y JU I T 11rsla

Futuristic as such designs may seem, they do underline a new approach to computing: a
merger of hardware and software design. aimed at exploitation of the potentials made
available by the abundance of cheap and very efficient large chip components.

Software Enginttring Management

As soon as we recognize that software writing has hecome the major component of the
multi-billion dollar information processing industry, we must realize that this kind of
industry generates its peculiar managerial problems and leads to specific managerial
techniques.

The peculiarities of the software industry are quite pronounced. First of all, it is an industry
almost totally independent of any raw materials and almost zero-energy consuming. A?art
from software tools - themselves produced within the software industry - it does not
require much investment in material terms. Its products are often classified as intangibles,
and, contrary to any other industry, most of its costs are concentrated in design: the actual
production costs (if one considers the reproduction of once composed programs as "produc­
tion') are practically nil. This should be contrasted not only with usual industrial sectors,
such as mining or manufacturing, but also with innovation-intensive industries, such as civil
engineering or the drug industry. (A construction finn may redesign a bridge ten times over,
the cost of nine discarded designs is negligible compared to that of actually building a bridg~
on site. A software firm forced to redesign a major piece of software usually comes close to
bankruptcy).

In addition, nearly all resources needed for the software industry are people: highly
qualified. well educated software engine s. Hence, the managerial problems in this indus­
try are almost exclusively pure problems of the workforce management, where the work­
force in question is very independent and fully aware of its own value.

To fully understand the ensuing managerial difficulties, let us consider a simple example: a
software team engaged to produce a system for an application is running behind schedde.
The manager decides to accelerate the rate of progress and implements this decision by
hiring more programmers. Instead of the expected acceleration, the work is slowed down as
the fresh programmers need to be instructed on the system in production and the only
available instructors are the programmers already on the job. Thus the newly hired hands are
unproductive because they are not "in" yet, while the old hands, burdened with the
additional task of instructing the newcomers, become less productive. Hiring even more
programmers may be disastrous. After a period, the newcomers are integrated and the work
may resume in emest (although the delay has grown considerably). Now, however, the
management discovers that enlarging the team has blown up the communication problems,
which grow as the square of the number of people on the project, and a sizeable portion of
the total effort must be spent on overcoming the resultan~ communication clashes. Hiring an
extra support team: secretaries, information officers and technical writers, compounds the
difficulty. After another couple of months the management realize they are fighting an

43

JI:\/ Turski Software Engineering: A Survey

uphill battle: the effective rate of system production is invariant of the work expanded; it
seems to be solely determined by the original design, and after it has been approved there is
little that the management can do to influence the rate of further development.

A number of managerial techniques, including the spectacularly successful .. chief program­
mer team" approach pioneered by IBM, has been proposed and found useful. Still, the
management of software projects remains a vexing problem and successful software
managers are - if anything - even rarer than good programmers.

Impact of Technological Change on Software Development:
Implications for the LDCs and Nies•

Robert Schware ••

1. Introduction

The worldwide computer industry has been characterized since its inception by continuous
innovation, improvement and rapid change. These developments have resulted in the
growing importance of software - the programs that run computers and allow them to
communicate with each other through data networks. Developing (LDCs) and newly
industrializing countries (NICs) seeking a share in the burgeoning global information
Industry are promoting the development of their software industries through a variety of
policy and institutional measures. At the same time, a growing number of United States and
western European software firms and non-software firms (such as aircraft and financial
service providers) are beginning to develop software overseas often for foreign as well as
domestic markets.

The worldwide software industry is still very much an industrie nouvelle. Any assessment
of the worldwide software market has to rely on scanty, inconsistent and unreliable data.
This makes projections of future software products and services an exceedingly risky
undertaking. Nevertheless, such projections have been made, and they range from SUS 70
billion to SUS 180 billion by 1990. l

Five major forces are now promoting rapid changes in the world-wide software industry:

a) A productivity bottleneck in programming, with software and software-related support
activities now accounting fer the overwhelming percentage of total system costs;

b) The global battle for operating system standards;

c) The move away from single vendor solutions as the typical way for organizations to
meet their information systems needs towards customized, integrated, multi-vendor
hardware and software solutions;

Aficroelectronics Afonitor, April 1989, pp.47-53

•• Senior lnfonnation Technology Specialist. Developmenl lnfonnatics Unit. Asia Technical
Department. World Bank. Washington D.C., USA.

The World Bank docs not accept responsibility for the views expressed herein. which are th>se of
the author and should not be attributed to the World Bank or to its affiliated organii.ations. The
findings. interpretations and conclusions do not necessarily rcprcsenl official policy of the Bank.

Rob~r! Sdrwar~ Impact of Tuhnological Chang~s on Softwan Dn-rlopm~nt

d) The increasing emphasis on software production and sales by hardware vendors.
leaaing to increasing concentration by large- and medium-sized firms; and at the same
time

e) an expansion and fragmentation of the industry resulting in a large number of inde-
pendent software vendors.

Technology defined broadly as procedural methods, organizational modes and technologi­
cal knowledge used to transform inputs into outputs, is becoming an increasingly important
element in international competitiveness for software firms. This paper examines the
importance of organization and management of the software production process for firms. It
reviews some new software management practices being introduced by firms to control
costs and improve the quality of both the final products and the process of developing
software. Some new technologies that will affect the entire software production process and
that will require a reorientation in thinking about investment and technological options are
also examined.

2. Software Development Management

Software firms in developing cou11tries and N/Cs alike are still struggli11g with inappropri­
ate tools and methods in the software development process. This problem is due to: (a) lack
of experience; (b) lack of knowledge or discipline; (c) difficulty of measuring the develop­
ment effort accurately; (d) implementation of designs whose poor quality does not surface
until the finished product is either tested or installed for operation; and (e) high life-cycle
costs resulting from a system that was not designed for reusability or maintainability.
Without established process methods and techniques, firms often solve the same problems
over and over again. The average large software project continues to cost twice as much as
its initial budget and is completed a year or more behind schedule; approximately 25 per
cent of such projects are never completed and the remaining 75 per cent require inordinate
amounts of maintenance.

A major premise in software development
management is that the quality of a piece of
software is governed largely by the quality
of the process used to develop and maintain
it. In a "mature" process, the methods, tech­
niques and technology are used effectively
and produce reasonably consistent results.
Improvements in quality and productivity
occur in part from automation. But in an
immature software development process,
unpredictable results occur; formal proce­
dures. cost estimates and project plans are

46

OPTIMIZED

MANAGED

DEFINED

REPEATABLE

INITIAL

Figure l. Software Maturity Model

lacking~ and technology is used on an aJ hoc basis. The prospects for the NICs in software
development will depend increasingly on the processes carried out in the software life cycle
There is considerable middle ground between th~e two organizational extremes. An ideal
maturity mo<lel (illustrated in figure I) hy which firms and organizations can judge the
effectiveness of their software development process has fh·e maturity levels (l) initial. (2)
repeatable. (3) defined. (4) managed, and (5) optimized.2

The initial procns lenl: A firm has ill-defined procedures and cootrols. Typically, it
operates without project controls and does not integrate tools and techniques with the
process. Coding and testing are dominant activities. Established procedures, if they exist,
are usually abandoned in a crisis.

The repeatable process levd : A firm has established basic project controls. such as
project scheduling. coding standards. product assurance and change control. Mechanisms
are in place for ensuring that the design team understands each software requirement.
Statistics may be gathered on software code and test errors. The strength of the firm may
also stem from its prior experience of doing similar work, but it may face major risks when
presented with new challenges.

The defined process level : Standards and methods for technical and management activi­
ties required for software development are established at this level. These specifically
include design and code reviews. trainirtg programmes and increased organizational focus
on software engineering. including measuring specific tasks in the process. Some uncenain­
ties remain about the value of the measurements. the best ones to use and the appropriate
response to reviews.

The managed process level : A firm typically has a minimum set of process measure­
ments for each stage in the software life cycle, and it conducts extensive analyses of the data
gathered during reviews and tests. Automated tools and techniques are used increasingly to
control and manage the development process, as well as to support data collection and
analysis.

The optimind process level : Firms at this level have achieved a high degree of control
over their process, have automated data gathering and typically have a method for improv­
ing and optimizing these operations. This includes identifying and replacing obsolete
technologies, more sophisticated analysis of the error and cost data and the introduction of
error cause analysis and prevention studies. 3

Some firms and organizations, particularly in the United States, are beginning to use the

maturity model to assess their software development process and software management.
The importance of such assessments is to indicate the maturity and technological levels at
which a firm is operating. More importantly, it may indicate the strong and weak areas of a
firm's software development capabilities, thus identifying immediate improvement priori­
ties, interim improvement goals and progress measures.

47

Rob~rt Sch1.-t1rr Impact of T~drnological Changrs on Sojtwan fN,-r/opmnu

One implication of the maturity process model for software producers in developing

countries and NICs is clear: technology and managing the process of engineering tangible
products will become increasingly important. An understanding of the maturity model and
how it might be of practical benefit should be a clear research priority for software firms and
for various government sponsored research programmes.

2.1 Softwan assessment standards

Standards for software engineering will take a long time to develop. But with the rapid
technological change and increasing competitiveness characteristic of the software industry,
government agencies and other large purchasers of software are using new techniques to
evaluate contractors' abilities to develop software according to "modem" software engi­
neering methods. Corporations, also mostly in the United States, are using the new evalu­
ation techniques to assess their own ability to create "critical" projects and to assess their
overall competitiveness. One methodology, developed by the Software Engineering insti­
tute of Carnegie-Mellon University for the United States Air Force, examines a contractor's
capabilities in:

a) Organization and resource management, including software engineering training and
the adequacy of surport facilities;

b) Software engineering process and management, which includes the scope and use of
con•!entions, formats, procedures and documentation during the various software
development phases, software quality control and data management; and

c) The tools and technologies a contractor may use in the software engineering process.

Since this new methodology has become only one additional part of the criteria for
procurement, it is unlikely that it will create a radical change in the contractors who are
selected for software development projects but the evaluations will probably lead major
software companies to manage their software development process more closely. An
awareness of software producers of these evaluation methodologies is important to future
software developments. Raising some of the questions presented in various methodologies
may improve the software development process in software firms and to some degree
enhance their competitiveness in international export markets. These methodologies are
usually concerned with ~tandards and practices of software firms in the following areas:

• organization and resource management, including quality assurance, process
management, configuration control and the quality and quantity of resources;

• software engineering process and its management, including the scope, depth
and completeness of the process and how it is measured, managed and im­
proved; and

• Tools and technologies used in the software engineering process, e.g., computer
tools to measure test coverage, to analyse cross-references between modules and
to design and debug code.

Impact o/Technologrcal ('han~s on .'t..Jjtwan Dn~lopmenl Robert Sc:lna aN

2.2 Softwarr mrtrics

The state of software metrics, or measurement, is still somewhat immature and imprecisely
defined. None the less, measuring software and software development can lead to substan­

tial benefits for reasonable costs. Shon-tenn productivity improvements. as well as the
establishment of common development environment. have been reponed by companies that
use software metrics. To many project managers in software companies. software metrics
are a means for more accurate estimation of project milestones, as well as a useful
mechanism for monitoring progress. 5 Basically. software metrics are a way of measuring
the various attributes of the software development process. Attributes include the size of a
program, its cost, the number of programming errors or defects. the level of difficulty or
complexity of the project and the method of communications required between members of

a project.

Figure 2 shows an example of using software metrics in software development in what is
usually an ignored activity: documentation. Documentation is frequently a low priority
activity in software development. Yet in two studies at IBM and TRW, the overall quality of
software is very much a function of documentation. As the figures suggests, 25 per cent of
all software defects in the two studies were in documentation delivered to customers 6

Many tools are available - some in the public domain - to assist in collecting and
examining measurable results during the various development stages. An earlier issue of the
Microelectro11ics Momtor (No. 24, 1987/IV) describes some of the available public domain
software.• For example the United States National Aeronautics and Space Administration
(NASA) offers more than 1,100
computer programs through its
Computer Software Management
and Information Center (COS­
MIC). A program called SOFT­
COST estimates software size,
implementation productivity.
recommended staff level, prob­
able location, amount of com­
puter resources required, and
amount and cost of software
documentation. SOFTCOST is
designed to provide project man­
agers with a comparison between

their expectations of a project's

development and industry-based

70

This paper is reproduced in Part V of this volume.

49

Figure 2. IntroductionofSoftware Defects
(from IBM and TRW studies)

Rohm Schwan Impact o/Technological Changes on Sojtwarr /Xvelopmmt

Specification Assistance
Slltc Transition Diagrams

Dalaflow Diagrams

Resource Estimation _________________ --._ Program Design Language
_,/ ~

ProjectTr.di.·ng -~cquiremeris::%upport · • Structu. reCbarts
· · Dala Prestlllalion

Process Mcaswcmcnl / - · ,

Management Anah"Sis /Management . / Documemationl " Design \ DB Design Aids
. / Support . Softwatc Control Support Graphical Data

\ \ Structun:s I

Bcctronic Mail 1·_ ---1/ Archi\-al
!

~' ' I R . \
1

cprcscntabon
S/W ' Source '
J:>c\·. \ Coruol , ---1 Reusable Code

'
Defect Tradcing I

I System !

I \
\

Data I '
base '
~

Mainte~ .Program / SourceCod:
Configuration Control f".ieneratiow' Generation Defect Analysis Support \

Software Distribution

Autogcneration
and faccution
of Test Cases

Networ\ Managcmenl · I
.· i

~ / Language Em-ironmcnl

Test support) · .. · Symbolic Debug Source
/,/ Code Anlyzers

,,......,.-- .
----- Performance AnalySJS

Co\·cragc Check and Prediction
Emulators

Figure 3. Hewlett-Packard Software Engineering Producti>"ity Em·ironrnenl

statistical expectations of that project. The software metrics data provide an additional basis
for budgeting time and effort to a project. A complete integrated set of tools does not exist.
Figure 3 illustrates what Hewlett-Packard considers an ideal software development environ­
ment, which is reinforced by tools and metrics. The central database provides a common
control mechanism for all important parts of a project.7

"Successful" integration of collection and use of software metrics into the software develop­
ment process is the main objective of firms using such tools. The time factor involved in
learning tools and incorporating them into the entire development process has been the
primary obstacle of their implementation. For example, the history of Hewlett-Packard
Software Metrics Council shows that it took roughly three years of collecting analysing data
using software metrics before there were sufficient data available to show measurable trends
for the entire organization. 8

50

Impact o/Techno/oJlical < 'hanges on Sojht·'1re /Je\·eloprnent Rohert .'\ch'M. art•

2.3 Software risk management

Several years ago. an error in the avionics software for the F 16 jet fighter instructed the
plane to flip upside down whenever it crossed the equator. In separate incidents. software
.. bugs" have been responsible for the deaths of patients when an irradiation unit for cancer
therapy generated .. inappropriate" doses. More recently (1988) American Airlines lost an

estimated SUS 50 million in ticket revenues because its passenger reservation system
indicated that aircraft had sold out of discount fares when such seats were in fact still
available. The list goes on and on.

Like many fields in their early stages, software engmeering Jim- had and co11ti1111es to have
its share of disasters. Most assessments of projects with large. critical and complex software
systems that "failed", particularly in banking, air tratlic control, nuclear reactors. chemical
plants, medical technology and defence and aerospace systems. have indicated that soft­
ware-related problems would have been avoided or at least significantly reduced if there had
been an explicit early concern with identifying and resolving high-risk elements. Fre­
quently, these projects were swept along by a tide of optimistic enthusiasm during their
early phases, or by enthusiasm for new software capabilities.

Risk management is an emerging di:;cipline that provides techniques both for risk assess­

ment (risk identification. analysis and prioritization) and risk control (risk management,

planning, resolution and monitoring). To ameliorate the potential problems caused by the

relative unreliability of software systems, the united States Government is increasingly
requiring risk management plans of software contractors (for example. the Federal Aviatio~
Administration's Advanced Automation System and the software for the United States Air
Force Small Missile System). Software risk management is also being instituted within
United States industry.

Table I provides a list of risk items in software projects and techniques in the software life
cycle that have helped software projects avoid disasters.9 It is theoretically conceivable that

a project could face all of these risks. Some of the software risk management techniques
may appear familiar to software developers, although they are usually applied in an ad hoc
fashion. Provisions for risk management should be made in the planning process by
software firms, particularly those designing large systems with a number of independently
modifiable subsystems and interfaces with other systems.

3. The Impact of New Technologies

Research and development efforts in the software engineering have produced new methods
that show promise for improving prngrammer productivity and software reliability. As the
software industry gradually becomes less Jabour-intensive over time, the quality and
availability of skilled labour will become more important than labour costs. Pressures on the
quality of software labour markets will increase competition among NICs, as well as

51

Rob~rt Schwan Impact of T~chnological ('hanges on Sojtwon l.Je\'f!lopmml

Risk Items Risk Management Techniques

I. Personnel shortfalls Slaffing with top talent: job matching: team building:
morale building: cross-training: prcschcduling kc~· IJC(l
pie

2. U rucalistic schedules alli budgets Oct.ailed. multi-soun:c cost and schedule estimation;
design to cost: incremenul de\·elopmcnt: software
reuse: outside re\icws.

3. De\"Cloping the wrong software functions Organization analysis: user sun·eys: prototyping: early
users· l1l3JlJal

4. De\·eloping the wrong user interface Prototyping scenarios: user characterization (fuoction­
ality. Sl}·le. workload)

S. Gold plating Requirements scrubbing: prototyping: cost-benefit
analysis: design to cost

6. Continuing stream of requirements changes High change tbreshold. information hiding: incre­
mental ck\·elopment (def er changes to laterincremcnlS

7. Shortfalls in externally-furnished components Bcnchmarlting; inspections: reference checking: com­
patibility analysis

8. Shortfalls in externally-performed tasks Reference checking: pre-award audits: award-fee con­
tracts; competitiYc design or prototyping: team-build­
ing

9. Real-time performance shortfalls Simulation; benchmarking: modelling: prototyping: in
strumentation; tuning

10. Straining computer science capabilities Technical analysis; cost-benefit analysis; prototyping:
reference checking

Table I. Top ten software risk items

between NICs and developed countries, for skilled labour in software production. But the
introduction and adoption of these new techniques is difficult and expensive, and they are
thus adopted bit by bit as project budgets allow. IO

3.1 Automated software development aids

The conventional "waterfall" software life cycle has been stretched, shrunk and otherwise
modified since its inception in the early 1970s. The major stages of software production -
specification, design, coding, testing and maintenance - remain, but efforts are under way
to alter and automate many aspects of the software life cycle. 11 Lower development and life
cycle costs are being realized through better structured and documented software, program
support library procedures, diagnostic aids, environmental simulators, test data manage­
ment systems and applications generators. Such tools and techniques support different
phases of the life cycle. Some tools support the early phases in the form of automated
diagram drawing. screen painting and error checking. Others give assistance by automating
code generation and documentation.

52

Impact o/Technolo~1cal '.'hanges on So.ftwan Dewlopment Robert SclnH1n

Sizeable applications programs can now be generated using a very small number of

user-language directives, which means that developing software with applications gener­
ators can be a far more cost-effective pursuit than hiring programmers to develop software
one instruction at a time_ Applications generators are also valuable for their ability to
develop quick prototypes of a desired software capability_

The emergence of applications generators oriented around a database management system
and report-generation capability has created an attractive approach for both software
productivity gains and for software customization. Some United States and European firms
using these tools have improved productivity by factors of two to as much as 20 across
various phases of the software life cycle_ l2

The facilities in three different tools - one for complex. real-time computer systems, the

other for business applications ('"Auto-G'', ''Excelerator", and the "Cortex Application

Factory") now in use are listed below to illustrate the variety of ways in which software

automation currently increases the productivity of software of all sizes and types_

Auto-G, produced by a small United Kingdom company, Advanced System Architectures
(ASA), is so far the only non-United States system design tool that has been evaluated and
supported financially by the United States Strategic Defense Initiative (SDl).13 The com­
pany focuses its operations on high reliability, high security real-time computer systems for
tele-communications, aerospace or defence applications.

Auto-G uses a formal graphical notation, G, to enable software engineers to build a system
on a workstation in stages, from requirements specification to code generation. When the
design is complete, the Auto-G tool set provides a code generator that converts detailed
design automatically into a variety of programming languages, including, for example, C

and Ada.

The facilitie~ Auto-G provides include:

• Menu-driven, on-screen selection of design symbols;

• On-screen editing;

• Full graphic manipulation;

• Hard copy output to low-cost graphics plotters;

• Automatic checking of logical consistency of design.

Excelerator has four basic facilities for automating systems analysis and design tasks:

• Automatic diagramming tool for drawing structured diagrams, such as data flow
diagrams, structure charts, data models and control flow diagrams;

• Screen and report painters for prototyping user interface;

53

Robert SchM-al'I! Impact of Technological Chan>?es on Software Dewlopment

• Integrated dictionary for storing and cross-referencing all systems analysis and
design information;

• Automatic checking and reporting the completeness and consistency of struc-
tured diagrams.

The Cortex Application Factory is used by systems analysts and programmers to develop
and maintain medium-to-large information systems. It is used to lead a developer through
the steps of software development and includes features similar to those of the Excelerator,
including:

• Screen and report painters for prototyping user interfaces;

• A dictionary for storing documentation about a system;

• Automatic checking for completeness and consistency of program specifica­
tions;

• A code generator capable of automatically generating 95 per cent of the program
code from program specifications;

• Automatic program documentation generator.

Once completed, the applications are translated into machine code by an optimizing
compiler for fast computer run time and greater machine efficiency. Applications developed
with the Cortex Application Factory range from such bread-and-butter applications as sales
tracking, order entry, accounting, inventory and payroll to more esoteric applications, such
as regional price trend tracking for commodities and orders for materials monitoring in bulk
fibre manufacturing plants. Applications range in size from a few files, screens and less than
50 data base fields to those with several hundred files and screens and thousands of fields. 1"

Engineered applications generators can produce major benefits in productivity and ease of
implementation, use and maintenance if accompanied with good training and providing
unexpected problems do not occur. Quantitative benefits include reductions in system life
cycle costs and rapid development of prototypes to ensure quick turnaround for end user
assessment. Among the possible qualitative benefits are the generation of documentation
directly from specifications rather than program code, rapid iterative prototyping and
greater control over maintenance.

Automated software documentation management techniques are gradually being introduced
to software engineering to improve the quality of both software and documentation. It takes
an average of thre~ hours to produce a page of software documentation.15 The cost of one
employee's labour-year in the mid-1980s is approximately SUS 100,000, so one hour is
worth approximately SUS 50. Thus, a 500-page software document that may be obsolete by
the time it is finished can represent a cost of SUS 50,000 to $80,000. Code and documenta-

Impact of Technological Changes on Software Dn·elopment Rob~rl Schwart:

tion management systems are particularly useful in very large software projects (more than
100,000 lines of code). These systems automate routing and distribution of documentation
cross-referencing and status reporting for code and documentation changes. 16

Some tools now link hardware and software design. For example, an integrated set of tools
- C compiler, optimizer, assembler, linker, simulator and debugger - developed by
Quantitative Technology Corp. allows engineers to evaluate design iterations of both
hardware and software without waiting for a final version of either. A simulation informs
the hardware team how design changes will affect software execution speed before a
prototype is built, and software engineers can see how code modifications will work on the
proposed hardware. Such tools operate on mini- and mainframe computers_ 17

Automated tools alone are not suffic:ient to ensure a productil'e software e11viro11mem. With

no coherent methodology, standards and set of controls, autol!lated tools sometimes merely
help a software project .. spin its wheels more quickly". They can also create an image of
modem methods and high technology without substantively increasing productivity.

·'Successful'· use of automated tools requires a fit between the tool and the e11viro11me11t in
which it will be used. The selection of tools can be a complicated and confusing process.
Tools must, in some ways, be similar to what a firm already does and knows; they must

operate on available hardware and operating systems; and they must be supported and
maintained. Firms generally understand and use automated tools only gradually over time.

4. Conclusion

As noted above, one cannot ignore the key technological trends and changes that are now
unfolding in software production. Large software firms, especially in western Europe, Japan
and the United States, are increasing their degree of software automation and improving
their efficiency and performance by better software management practices. Those firms in
developing countries and newly industrializing countries that are able to purchase, integrate
and exploit software engineering tools will need to be able to provide their customers with
working software prototypes and custom software, the latter perhaps at package prices. But
this technological capability requires increasing capital, skilled employees (most crucial),

access to foreign technology, and an organizational maturity, which does not yet exist in
many software firms in both developed countries and in NICs.

Notes

1. See Schware(1989) for some of the implications of basing policy decisions on overly
optimistic market projections.

2. Humphrey and Sweet (1987), pp. 5-6
3. Humphrey and Sweet (1987), pp. 23-30.
4. See for example, Humphrey and Sweet (1987) and Kellner and Hansen (1988).

55

Robert Sch1H1re

5. Caswell and Grady (1987).
6 Caswell and Grady (1987), p. 25.
7. Caswell and Grady (1987), p.199
8. Caswell and Grady (1987) p. 1.
9. Boehm (1988). pp. IO-I I.
IO. OTA(l985),p.76

Impact of frchnolog1cal Changes on Software De~lopment

11. The "US Defense Science Board Task Force on Software" Report (1987), for example,
recommends the removal of "any remaining dependence on the assumptions of the
·waterfall" model, and to institutionalize rapid prototyping and incremental develop­
ment". A number of alternative software life cycle models have evolved over several
years. However, although each of these alternatives software approaches deals with
some of the difficulties of the waterfall approach, especially the fact that the model
does not adequately address automatic programming capabilities and "knowledge­
based software assistance capabilities", each has its own set of challenges and difficul­
ties to resolve.

12. Business Software Review (1987), pp. 29-30
13. Advanced System Architectures, Ltd.
14. Picardi (1987), p 3. CORTEX Corporation, 138 Technology Drive, Waltham, MA

02154, USA
15. Boehm (1981), p.574.
16. Singleton(1987), p. 54.
17. Young(1988).

References

Advanced System Architectures Ltd., Johnson House, 73-79 Park Street, Camberley,
Sur.-ey, GU 15 3PE, United Kingdom.

Boehm, B. W ., "Software Risk Management: Principles and Practices" (April 1988).

Boehm, 8.W., Software Engineering Economics (Englewood Cliffs, New Jersey: Prentice­
Hall, Inc., 1981).

Caswell, D .L., and Grady, R.8., Software Metrics: Establishing a Company-Wide Program
(Englewood Cliffs, New Jersey: Prentice Hall, Inc. 1987).

Humphrey, W.S., "Characterizing the Software Process: A Maturity Framework" (Pitts­
burgh, Pennsylvania: Software Engineering Institute, Carnegie-Mellon University, June
1987).

Humphrey, W.S., "A method for Assessing the Software Engineering Capability of Con­
tractors" (Pittsburgh, Pennsylvania: Software Engineering Institute, Carnegie-Mellon Uni­
versity. June 1987).

56

Impact of T~chnological Chang~s on So~·an ~lopm~nt Rob~rt Schwan

Kellner. M.I. and Hansen. G.A Software Process Modelling" (Pimsburgh, Pennsylvania:

Software Engineering Institute, Carnegie-Mellon University. May 1988).

OTA. lnforma1io11 Technology R&D: Critical Trends and Issues (Washington, D.C.: Office

ofTechnology Assessment. 1985).

Picardi, A., ·-coRTEX Application Factory: Concepts and Facilities", Auerbach ltiforma­
tion Managemelll Refere11Ce (Boston. Massachusetts: Auerbach Publishers, 1987).

Schware. R Trends in the Worldwide Software Industty and Software Engineering:
Opporn.mities and Constraints for Newly Industrializing Countries", Unpublished paper
(Washington, D.C.: The World Bank. Room H 3029, 1818 H Street. NW, Washington, D.C.

20433. April 1989).

Singleton, M.E .• Automating Code and Documentation Ma11ageme11t (Englewood Cliffs,

New Jersey: Prentice-Hall. Inc .• 1987).

Young. J.L. .. The Software Foundry: Almost Too Good to be True", Electro11ics, (21
January 1988). p47-51.

57

Software Technology: Trends

R. Narasimhan•

I. Commodities and Capabilities

In a series of papers and books Amartya Sen, the developmental economist. has been
advocating the tr~sis that economic development is best seen as an expansion of people's
'capabilities' . "This approach focuses on what people can do or can be, and development is
seen as a process of emancipation from the enforced necessity to 'live less or be less"'. In
developing his th'- .. ,;, Sen draws an essential distinction between capabilities on the one
side, and commoditic.s and utilities on the other . 1

The traditional approach is to measure economic development in tenns of availability of
goods and services - quantities as well as types. Sen notes that "while goods and services
are valuable, they are not valuable in themselves. Their value rests on what they can do for
people, or rather, what people can do with these goods and services". Equally, "enhancing
utility" interpreted as "enhancing happiness or desire-fulfilment" should not be confused
with enhancing capability. In the context of developmental economics, Sen faults "utility­
based narrow vision of traditional welfare economics" for its fundamental inadequacy to
provide a "basis for evaluating action and policy. in general, and development and structural
change, in particular". More generally, the contrast between utility and capability can be
seen as the contrast between seeking satisfact!on accepting existing constraints as nonns,
and seeking to change the existing constraints to innovate and explore new possibilities.

The distinction that Sen draws between commodities and capabilities - although worked
out in the context of economic development - can be seen to have deep relevance to

technology development as well. This is especially true of infonnation technology (IT)
where the commoditites/capabilities distinction more or less completely coincides with the
hardware/software distinction. In the recent past. all the spectacular breakthroughs in IT
have been in hardware (i.e., commodities) and, to some extent, in systems (i.e., utilities).
However, we have hardly begun to tap the seemingly infinite potential of infonnauon
technology to enhance the capabilities of human beings and enrich their life-styles (i.e.,
quality oflife). There are several technical reasons for this. But they can all be summed up
by noting that comp11ters have a long way to go before they can become well-adapted
companions to human beings. Since software technology (i.e., the software component of
infonnation technology) is the essential means for achieving this adaptation, the current

Professor of Computer Science. Computer Maill!cnancc Cooperation Ltd . Bangalore. India.

59

R. .\.arasimhan

trends in software technology can be seen as attempts along several dimensions to bring
about human-computer symbiosis in more natural ways. In this chapter we shall discuss
some of these attempts, but first we must digress a little to get some feel for what has been
happening on the commodities side ofinformation technology.

2. Commodities: Hardware Technology

Here we shall briefly discuss in what sense computer hardware is becoming - if it has not
already become - a commodity. We shall not consider the electronics, circuits and
fabrication aspects of hardware technology. Some account of these may be found in the
papers by Kopetz included in Parts Ill and V of this volume.

"Between 1980 and 1985, the average end-user price per mips (million instructions per
!!econd) declined from about $250,000 to $25,000 From 1985 to 1990, the average price
per mips fell at roughly the same rate from $25,000 to less than S2,500." 2 In 1990, the
computer market was divided between the four principal categories roughly as follows: 3

Mainframe : 25 per cent
Minicomputer : 25 per cent
Workstation : 10 per cent
Personal Computer : 40 per cent

The market for the first two categories has been steadily declining from the mid-80s, while
the market for the other two categories has been steadily on the increase from the early 80s.
According to expert predictions: "Except for very large-scale scientific computing ... , all
computing will be done with microprocessors; certainly all interesting computers will be
micros. So, the microcomputer industry essentially will equal the computer industry"." It is
also predicted that by the end of the 90s, 1,000 mips capability will be available with
desk-top machines.

Notwithstanding the spectacular improvements in the performance of personal computers
and workstations, hardware is rapidly becoming a commodity. This view has been most
vigorously argued in a recent paper by Rappaport and Halevi.5 They claim: "Semiconductor
value is now a function of specialization. And specialization depends on responsive design
and not high-volume low-cost production". Making a similar point, The Economist notes
that "across the industry, small firms, which have concentrated on doing a few things
excellently have flourished at the expense of larger ones, which have taken the conven­
tional wisdom about "solutions" seriously and tried to do a lot of things well". 6

According to Rappaport and Halevi, "the semiconductor world is on the brink of astounding
excess capacity". Semiconductor fabrication technology has become so sophisticated and
powerful that "most companies selling high-performance products do not require access to
the most advanced manufacturing facilities". What one manufacturer can produce, another

60

Sojtwon T «Imo/~·: T nnds R. .\'oras1mhon

manufacturer can also produce with equal effectiveness. Unless the market is expanded
through the creation of new applications - i.e., new ways of using computers and/or
applying computers to new tasks - mere improvement in hardware performance will not
create additional wealth to the industry as a whole.

Taking laptops as a specific example. Rappaport and Halevi argue that: "laptops themselves
- even though they represent a major innovation in raw computing power - do not cre2te
a new computing paradigm. Without new applications they will merely replace rather than
expand the computer hardware market".

If making good computers is not enough to bring success, what additionally needs to be
done? "Adding utility" is the answer to this question according to Rappaport and Halevi. To
add new utility one has to look-ahead. enlarge one's vision, and identify possibilities for
value-addition through new concepts and by devising new technologies based on these_
Some examples suggested by Rappaport and Halevi are: ··pen-based operating systems,
natural language interfaces. multimedia data storage and recall, and so on"_ Practically all
such extensions to information technology constitute challenges in software ir.novation
rather than in new hardware development. This leads us then to look at software technology
as a resource for endowing the commodity side of information technology with capabilities.
We shall discuss some recent developments in software technology from this perspective_

3. Capabilities: The Software Environment

It is the software environment that converts the commodity-orientation of information
technology to t1'e capability-orientation. To understand how this comes about, it is not
sufficient to look upon a computer as [hardware + software]. It is essential to analyze
•software' into its several functionalities, which together constitute the software environ­
ment for computing. Figure I is an illustration,;· such an articulation.

In terms of this articulation, the trends in software technology may be briefly summarized as
follows. One major thrust is in simplifying the huJTlan-machine interface and making it more
natural for use by human beings. Another thrust is to move computing away from the linear
symbolic domain to a spatial visual domain. There is much investment in devising sophisti­
cated visualization techniques. Simultaneously, there is a move to enhance interaction
through the incorporation of motion pictures, sound, and body movements. Coming to grips
with •'virtual reality" is an increasing preoccupation in spatially-oriented computing.

To support the above innovations, enabling developments in database technology are
essential. It is important to move away from exclusive preoccupation with textual databases
and to begin to cope with databases of other kinds as illustrated in Figure I. The ability to
traverse smoothly a mixture of such databases is a prerequisite to functioning realistically in
a multimedia environment This capability would seem to be closely related to having some
understanding - in a conceptually manipulable sense - of the domains which these
different data types model.

61

r------
1

; Application Software l

' '

' .

. ' .. ' .. ~ .
. ' ', . . .

,~·-.~~~: '·,',, --.,~~

· Computing Engines

+Mouse

+ Menu/icons
Windows

Voice

+Writing

+Sketches

Softwan TrchnologJ-·: Tnntk

Commercial

Text

Image
•Static
•Dynamic

(Video,
Animation)

Engineering
(Architecture)

Cartographic

Speech

Other signals

figure I. Components of a Computing Environment

62

Software T~chnology: Tnnds R .\"arasimhan

Even the most user-friendly computer is at present too difficult to use for most people who
are not computer specialists. As has been remarked: .. The most profound technologies are
those that disappear". 7 They become a pervasive part of one's environment and the usage of
that technology becomes totally interiorized. For literate communities. •writing' is such a
technology. In this sense computers have a long way to go before they become .. an integral.
invisible part of people's lives". Mass markets for computers - especially in developing
countries -cannot be expected to develop until computing can be totally interiorized in this
sense.

Interacting with computers. at present. requires too detailed a specification to be provided
by the interacting human being of what he or she wants the computer to do. In our normal
mode ofinteracting with other human beings, we leave many things unsaid. Shared contexts
and shared presuppositions help to fill in the gaps left unspecified. The ability to do this is
the basis of commonsense. Computers currently lack commonsense. How to endow them
with some semblance of commonsense is a major research issue. Knowledge. intelligence.
capability to conjecture, collect evidence. reason, judgement. and so on, are various facets
of common sense. Knowledge-based computing is an effon to come to grips with these
capabilities. which we take for granted tacitly while interacting with other human beings.
Reasoning, which is the foundation ofintelligence, would seem to be an essential capability
that computers must be endowed with. Artificial intelligence research and knowledge-based
computing studies are centrally concerned with this issue. Preliminary successes in these
efforts are already being spun-off into software technology practices.

The software generation process is becoming more and more automated and tool-intensive:
(see the papers by Turksi and Schware in this part). With the coding process more or less
fully automated. the focus of systematization will move to the specification process. This is
already happening through the invention of specialized specification languages. But for
major breakthroughs in this area. we have to understand the application areas more
analytically. A natural generic taxonomy of application areas might make it possible to
develop schematized architectures well-tuned to specific application classes. Such schema­
tizations should enable rapid prototyping of application software and vastly improve
software productivity.

Networking of computers has gone through rapid developments during the past two
decades. The technology of distributed computing is beginning to be taken for granted as a
normal mode of accessing computers and engaging in cooperative software development
activity. The client-server paradigm separates the computing related to the user-interface at
one end from the back-end activities associated with centralized information stores. These
latter have been 'down-sized' to use superminis. The client-server technique has vastly
reduced the amount of network load involved in performing a transaction and has vastly
im;>roved the man-machine interface use in on-line transactions. The end result has been the
effective exploitation of the rapidly falling costs of personal workstations and local area
network (LAN) interfaces.

13

R. ;\"aras1mhan Softwan Ttchnology: Trrnds

The availability of high bandwidth channels at affordable prices is making it possible to use
computer networks for multimedia applications_ Voice mail is soon bound to become as
familiar as e-mail on networks. Distributed computing and real-time computing are also
providing an impetus for advanced developments in the architecture of operating systems_

In the following sections we shall consider in somewhat greater detail, developments in
software technology directly concerned with augmenting the capabilities of computers to
interact with human users in more natural and friendly ways.

4. User Interface

User interface is the channel that links a user with a computer when the computer is being
used in an interactive mode_ Typically, interacting with a computer a step at a time requires

the user to specify a desired action to be carried out (by the computer) on designated objects.
Simple examples are: delete a file (identified by its name); create a (new) file assigning a
given name to it; copy one designated file into another designated file; execute a program
(identified by its name) with specified arguments (identified by their names); and so on_

At each step, the user typically has to know the action options available to him at that stage
of the interaction, and for each action that he selects, the arguments (i.e., objects) that need
to be specified_ The problem of making the interaction interface user-friendly consists in
providing the right kind of assistance to the user at each interaction step. Productivity
improvements, job satisfaction, avoiding fatigue, increasing motivation and so forth, are all
ultimately determined by how easily and meaningfully a user can interact with a computer_

In the last ten years or so, the single factor that has qualitatively improved the user interface,
making it enormously user-friendly, is the shift away from the textual mode ofinteraction to
the graphical mode of interaction. This shift in modality can be characterized as moving
away from "telling" to ''pointing" -from telling what is the desired action to pointing what
is the desired action. Instead of expecting the user to carry in his head a whole mass of
detailed information about the current state of interaction, the options available and the
specific command to be keyed in to invoke a particular option, all these details are displayed
to the user on his terminal through imaginative use of icons and menus. A hand-held device
- typically a mouse - is used to point and click, thus selecting and invoking an action, or
choosing an argument (object) for an action. The display is continuously kept updated to
reflect the interaction path the user has traversed so far.

This form of a graphical user interface (GUI) was pioneered by scientists at Xerox PARC in
the 70s resulting in the Xerox Star computer. These ideas were subSP..quently picked up and
made into a commercial success by Apple Computer for use with its Lisa and, later,
Macintosh models. With the proliferation of IBM-compatible PCs, the GUI has been
extended to them by several software vendors, some of the more widely-used being
Windows (from Microsoft), GFM (from Digital Research) and mM·s Presentation Man-

Software Technolo!{\·: Trends R. .\"aras1mhan

ager to go \\lith OS/2. Similarly, the X Window System, first developed at MIT and now
actively supported by the MIT X Consortium consisting of almost all graphics workstation
manufacturers, provides a po11able standard for developing GUI applications on graphics

workst'lti ons.

Recent research in the area of GUI is focusing on a variety of issues. Much effort is going
into the systematization of the theory and practice of the design of user interface manage­
ment systems.8 The original desktop metaphor (which resulted in the Macintosh and
Windows type ofGUls) is being extended, again by scientists in Xerox PARC, to cope with
interaction environments that cannot be confined to a single desktop. "Instead of one big
virtual desktop, the PARC team is trying out a new metaphor for organizing the world inside
the computer: rooms. Each room contains the tools and data needed for a different son of
task. To switch tasks, move from one room to the next. In the /11formatio11 Visualizer,
moving from room to room looks like moving down a set of corridors"9 Yet another
attempt being tried at PARC is to organize multiple screen data in terms of 3-D spatial
architectures~ for example, walls of a room or set of rooms displayed in perspective
projection to the user.

So far we have been concentrating on the GUI aspects relating to display, presentation of
information relevant to each step in an ongoing interaction, and choice of actions to move
the interaction step by step. Equally important in determining the friendliness of a user
interface are a variety of ergonomic and human factors. There is a large literature describing
and analyzing these factors and discussing how to make the right design choices in
structuring user-friendly interfaces. IO

Aside from alpha-numeric keyboards and indirect pointing devices such as a mouse,
joystick, etc., direct pointing devices such as a light pen, or touch screen, could be more
appropriate in particular interactive applications. Voice input is bound to become a valuable
adjunct to a friendly user interface. But commercial realizations of voice inputs are, at

present, seriously restricted in their scope. Computational problems relating to speech
recognition and speech understanding are still mostly unsolved and/or ill-understood. User
interfaces incorporating unrestricted voice input are unlikely to be available for general use
for quite some years.

Like voice inputs, writing is a more natural interaction mode than typing for most literate
human beings. Taking note of this, pen-based computers clre beginning to be commercially
exploited. However, unrestricted handwriting recognition remains an unsolved problem.
Hence, open-ended pen-based computing is not likely to become a commercially viable
technology in the near future. However, pen-based computing has been attracting the
attention of several hardware and software manufacturers. Pen-based operating systems
have been developed by at least two software houses - Microsoft. and Go-Corporation of
California. Pen-Window of the former uses a pen-like stylus for pointing and clicking
instead of a mouse. Go's Pen point uses a notebook metaphor instead of a desktop one. A
notebook has information gathered into pages, with index markers and a contents page.

65

R. .\"ara..-t11nhan Sojt'A·an Technology: Trends

"The user operates the software by touching the pen to a page number or an index marker
displayed on the computer screen Pen poi Ill also recognizes printed letters and numerals,
upper and lower cases, and some common editing marks". 11 Limited textual information
can be entered by printing characters with the pen - a necessarily slow process and, hence,
not intended for long texts.

A natural extension to writing with a pen is to draw sketches and other notational symbols
on a tablet with a pen and have these read and interpreted by the computer. These modes of
interaction are, in a deep sense, more natural to human beings than typing or the use of string
languages for formulating commands. Interfaces incorporating such modalities are bound to
be more user-friendly. However, to successfully cope with the recognition and interpreta­
tion problems intrinsic to such interaction modalities, the market may have to wait for a
wider and more general availability ofintelligent and knowledge-based computing.

Endowing computers with knowledge and intelligence is, in fact, the bottom line in making
computers user-friendly in a human-like sense. We have a long way to go before we can
successfully incorporate common sense and reasoning capability in computers. However,
the results of three decades of research in artificial intelligence (Al) are already making it
possible to design user interfaces with some knowledge-based skills. "Aldus, which makes
desktop publishing (DTP) software, is said to be trying to incorporate a small expert system
in its bestselling Pagema/cer software to help advise people on how to make better-!ooking
documents"_ 12 Expert system technology, in general, would seem to have the potential to
understand the "intention" of the user and base advice on this knowledge.

A computer system capable of providing intelligent advice in this sense to a user must have
two kinds of knowledge: first about the application domain the user is grappling with (for
instance, DTP)in the Aldus case above), and second about its own capabilities, i.e., the
services it can provide. But it is not sufficient to make available this knowledge in the form
of "HELP" files. The system must be able to, eason about its own actions and those of the
user; infer the intentions of the user (that is, what he is seeking to accomplish); and help him
along in the right direction. Clearly, humar.izing the user interface through the availability
of voice, writing, sketching, pointing, use of natural language, and so on, are only means to
this ultimate end.

S. Multimedia

User-friendly interactions with computers in the future will call for the ability to cope
simultaneously with information in a variety of media. That is, not just with texts and
graphic symbols presented on the computer screen (as we have been discussing so far), but
with speech (natural, as well as computer synthesized), video segments in colour (both still
images and moving pictures), computer animated sequences, sound, geographical and
spatial information such as maps, architectural drawings and so on.

66

Sojhmre Techno/~·: Tnndt R . .\"aras1mh1111

For multimedia applications to be accessible to casual c.omputer users. appropriate hardware
platforms would have to be devised and these must be available at affordable prices
Specifications for PCs to support multimedia applications have already been defined and
PCs satisfying these specifications are beginning to be available ... Proponents claim that by
the late 1990s. such multimedia PCs will have four "Gs": gigabyte of main memory, a
gigabyte (at least) of secondary storage, giga operations per second, and gigabit-per-second
data transfer rates". 13 Will the multimedia technology make its first major impact tJ.irough
the consumer electronics market or the computer market? This is a hotly debated quesiion in
the industry. Current indications are that the consumer electronics market, perhaps, has an
edge over the computer market for wider acceptance of this new technology. The reason for
tl!is is clear. With the current state of the multimedia technology, it is easier to create
products focused on entertainment, and to a limited extent, education, than it is to create
applications for specialized professional end-users.

The advertisement industry and the engineering industry can derive significant benefits
from the new technology. It has been suggested that the expected drop in the prices of 30
graphics workstations would open up exciting new opportunities ·• ... to combine digital
video and 30 graphics in advertising". "Architects and designers will be able to use
multimedia systems to call up typical designs from a multimed~a repository, customize the
design to meet a job on hand, visualize the design in 30. make a video clip. and send it to the
customer". 1-l Multimedia technology offers great potentials for exploitation in education
and training - especially, training in diagnosis and repair, training in assembly and
shop-floor operations, training of paramedical personnel, and so on

However, before multimedia technology can be effectively deployed to support these kinds
of applications, efficient application development methodologies must be devised. In
attempting to tackle this problem, one has to come to grips with issues that are not only
concerned with computing or computer science. Creating a multimedia product is akin to

creating a movie - a T. V. film, for example. Scripting, designing, typography. visualizing,
editing, sound and music, all play vital roles in realizing an effective end product. Teams of
experts in each of these areas have to work together to create multimedia products.
Managing such teams would call for project managers with a combination of skills: (l) in
multimedia technology; (2) in communication; and (3) in visualization, art and aesthetics. A
good multimedia application methodology has to address issues relating to all these
domains.

Handling multimedia technology effectively calls for new developments in database tech­
nologies. As has been noted: "new conceptual issues are encountered as attempts are made
to apply database technology to types of data not previously stored in databases. such as
speech, signals of various types, texts, geometric data (e.g, engineering design and carto­
graphic data). imagery, Al knowledge representations. Such data types frequently involve

67

R. .\"aras11nhan

highly specialized data structures with very large storage requirements and with processing
programs that often access data in patterns for which conventional database techniques were
not designed". 15

Confining our attention for the moment to digital audio and video components of multime­
dia, the first problem to face is the enonnous volume of storage needed to represent them to
ensure high quality reproduction. A variety of compression techniques have been worked
out and new ones are continuing to be invented. Compression techniques can operate at the
signal level. These are the ones, which at present are being widely used commercially, and
some of these have already been incorporated into silicon chips. But as Fox points out:
"Ultimately, images and video will have to be analyzed and stored in high level. storage-ef­
ficient representations that identify and characterize objects. relationships, distances and
movement "16 Such techniques lead to model-level compression supponing truly scalable
presentations of displays varying from palm-size to wall-size. Clearly, before model-based
compression techniques can be devised, we have to acquire a deeper conceptual level
understanding of stationary as well as moving images. in order to be able to formulate
adequate models of them. We are very far from achieving this at present

Creating suitably indexed repositories of digital audio and video objects (sequences or
files), and structuring these in the fonn of databases ofinterlinked entities for rapid retrieval
and editing, is a prerequisite to large-scale multimedia applications development As Fox
points out again: "While many people know how to file text documents, select a graphic
object while drawing, or choose slides for a presentation, most people have had no
experience editing audio or video files. Nevertheless, tens or hundreds of hours of raw
footage are often edited to produce a single hour of video presentation" 17

Editing text files under computer control interactively has become a sophisticated technol­
ogy. Here, one is dealing with linear strings of symbols, moving them around, deleting,
interleaving, pennuting. and so on. In the case of audio, video, and spatial structures such as
maps, architectural drawings, etc., editing involves operations in the temporal and spatial
domains. It is unclear whether one can arrive at universal (i.e., domain independent) editing
primitives in these cases. The entity-relationship models of standard database techniques
clearly are inadequate. Editinr, in the temporal and spatial domains call for complex
transformations to be performed on objects (temporal/spatial entities) and not just their
selection and rearrangement as in the case of strings. Editing commands have, of course,
been developed for use in computer graphics. But conceptually new approaches may have to
be devised to exploit the full potentials of multimedia.

6. The Future

Looking upon computers as tools that extend human cognitive and communication capabili­
ties, we have discussed so far developments along two dimensions

I. Making computers more user-friendly. and

68

R . .\"arasimhan

2. Enriching the semantic and representational aspects of the information environment
provided by computers for interactive usage.

Multimedia and highly dynamic interaction together enable qualitatively new ways of

visualizing and exploring aspects of physical phenomena hitherto inaccessible to the human
senses. The compute1 acts as a window providing a view of ''virtual reality" made accessible

through simulation for 1ealistic interaction. Many of the desiderata we identified in the last
two ;,ections. one can be sure, will be realized as actualities in the not too distant future.

But what can we say about the distant future and beyond " Alan Kay predicts that the next
stage of evolution will see computers transforming themselves from being mere tools to
becoming agents. 18 Tools are passive and are there to be manipulated by humans (i.e.

agents) to reach desired objectives. The computer as an agent is a robot It is no longer a
passive entity but is capable of initiating actions on its O\\'TI. Minimally a robot is pro­

grammed to carry out a pre-determined sequence of actions under environmental control -
including explicit commands externally given. Kopetz' s contribution included in section V

of this volume argues the desirability of incorporating intelligence in control and measuring

equipment. and other household and engineering gadgets. Specially programmed micro­
processors act as agents in these cases.

Weiser extends this scenario to its ultimate possibility while describing the explorations he
and his colleagues are conducting at Xerox PARC 19. He calls the scenario '"ubiquitous

computing" or ··embodied virtuality". Consider first the case where a larger iiild larger
number of artifacts in one's normal living environment (either in the house or in the office)
have agents (i e. programmed microprocessors) embedded in them. Next. assume that all
these agents are networked through acoustic, radio. infrared, or whatever means. Finally,
consider that interactive computers of various sizes (notepads, terminals, black boards, and
so on) are available scattered around for ready access, and that these are part of the

ubiquitous network earlier described. Assume that these computers are also networked to

geographically distributed information sources. including other computers. What kinds of

life styles would such ubiquitous computing environments make possible ? Weiser de­
scribes an illustrative example in his paper.

While Weiser's ultimate scenario might seem too much like science fiction, restricted
networking of distributed agents is, clearly, operationally viable and within technological
reach in the foreseeable future. Minimally we can expect individual PC's, workstations, or
whatever, to function at the same time as a networked computer, a radio, a T. V., a telephone,
a hi-fi sound system, VCR, a fax machine, a telex machine, a clock. Add-on cards to PC's

already make available many of these functionalities. Next. add to these other multimedia
functionalities and access to packaged information resources such as books, encyclopedias,

databases, and so on. A PC or a workstation becomes, in these circumstances, a very
versatile and informationally rich work (or entertainment) environment. Adaptations of

69

R . .\"aras1mhan SojtM·an T~chnolog\·: Tnnm

such environments to cater to particular professional groups {engineering, medical, legal,
advertisement, newspaper, etc.) are the kinds of capability developments most likely to
become commercial realities in the next decade or so.

Ackncwledgment

I would like to thank the National Centre for Software Technology, Bombay, and particu­

larly Dr. S. Ramani, Dr. S. P. Mudur, Mr. P. Sadanandan and Mr. R. Chandrasekar, for
extensive assistance in the preparation of this chapter.

NOTES

I. The principal reference is Amartya Sen (1983). The quotations here are from Sen's
paper "Goods and People" included in the collection Amanya Sen (1984).

2. Rappaport and Halevi (1991), p. 70.

3. The Economist, 2November1991, p. 68.

4. This and the following prediction are from the interviews with experts compiled by
BYTE in its Se:-Jtember 1990 issue; pp.226, 234.

S. Rappaport and Halevi (199 I).

6. The Economist, 2November1991, p.67.

1. Weiser(1991), p.66.

8. For an excellent review, see Ero and van Li ere (I 988).

9. The Economist, 29 June 1991, p. 80-8 I. This report is a readable summary of recent
work on GUI at Xerox PARC.

I 0. For a good review and extensive references to literature, see Ero and van Liere (1988).

1 I. New York Times news story reprinted in Deccan Herald, 30 May 1991.

12. The f:Conomist, 14 March 1992; p.7 of an excellent 20 page survey article on the
current status of AL

13, 14 Narasimhalu and Christodoulakis (1991). These quotations are from the introduction
to the special issue of IEEE C omp11ter (October 1991) on "Multimedia Information
Systems", guest-edited by them.

15. Mylopoulous and Brodie (1989). This quotation is from their introduction.

16. Fox (1991), p.12. This paper by Fox included in the special issue referred to above in
13/ 14 is an exceptionally informative review of the status of interactive digital
multimedia systems.

17. Fox (1991). p.11.

18. Kay (1990), p.241.

70

Sofl"'·are Technology: Trends R. Xarasimhan

19. Weiser(1991), p.66-75.

References

1. J. Ero and R. van Liere (1988): "User Interface Management Systems"; in M.M. de
Rinter (Ed.): Advances in Computer Graphics III, Springer-Verlag, Heidelberg; pp.
99-131.

2. E. A. Fox (1991): "Advances in Interactive Digital Multimedia Systems", IEEE
Computer, October, pp. 9-21.

3. A. Kay (1990): .. On the Next Revolution"; BYTE, September, p. 241

4. J. Mylopoulous and M. L. Brodie (Eds.) (1989): Readings in Al and Databases,
Morgan Kaufman, C.Jifomia.

5. A. D. Narasimhalu and S. Christodoulakis (1991): "Multimedia Information Systems:
The Unfolding of a Reality", Guest Editors' Introduction, IEEE Computer, October.

6. A. S. Rappaport and S. Halevi (1991): 'The Computerless Computer Company",
Harvard Business Review, July-August, pp. 69-90.

7. Amartya Sen (1983): Commodities and Capabilities; North Holland, Amsterdam.

8. Amartya Sen (1991): Resources, Values and Development; Basil Blackwell, Ox­

ford.

9. M. Weiser (1991): "The Computer for the 21st Century"; Scientific American,
September, pp. 66-75.

71

III

The Software Market

The Software Market: Emerging Trends ... 75
Hermann Kopetz

The Software l\'larket: Emerging Trends •

Hrnnann Koprtz ••

I. Introduction

In the last few years. software production has emerged as a major industry of substantial
economic significance. It is estimated that over half of the worldwide information process­
ing market in the order of more than USS 500 billion is, in one way or another. relaled to
software production. This market is still growing at a rate of about I 0 per cent per year.
Millions of software professionals, system analysts, programmers, managers, etc., are
engaged in software production worldwide. It is our opinion that every industrialized or
developing country in the world has to face the impact of the software industry. Software
can be seen as an industrial product, which is imported to serve the local needs or which is
locally produced and exported to the world market In a maturing economy. which is
integrated into the economic systems of the world, software should be seen as both an
import and an export product.

Most of the software produced does not appear on the open market in the form of

prepackaged software. A formidable amount of softwaP is produced by the computer
companies and sold together with their hardware as a computer systems product. A lot of
software is integrated in other tangible products to increase their functionality and value.
Many of the latest consumer products and industrial products contain integrated microproc­
essors or computer systems with significant amounts of application software hidden behind
a user-friendly man machine interface. Software is also needed for the computer integrated
manufacturing (CIM) systems. Computer-based production planning and control systems
are installed in most manufacturing plants. It follows that a state-of-the-art software
capability is not only needed for the production of software per s-e, but also in the production
of any kind of industrial product.

Software is a know-how intensive industry. Highly qualified, well trained and fully moti­
vated personnel form the basis of any software industry. Because productivity ranges are
much higher than salary ranges, it is wise to attract the best people to software production b•
offering extraordinary working conditions.

Excerpted from UNlDO lPCT. I 44(SPEC.). Nov. 1991

•• Professor of Computer Science. Technical University of Vienna. Austrid.

75

II Ko~t: ~ So.ftwan .\l!Jl'lc~t: Em~rging Tnnds

2. The Operational Environment

An end user is interested in the delivery of some specified computational service of an
integrated computer system. Only the proper combination of computer software and
hardware can provide such a service. From this point of view, software in itself is not a
complete product - it requires an operational hardware environment to produce the
intended effect. In this section we review the expected trends in the field of computer
hardware and operating systems to sketch the operational hardware environment for future
software.

2.1 Hardware trends

In the next ten years the technological advances in the field of computer hardware will
continue to produce more powerful microelectronic chips at the same rate as we have seen in
the recent past. These advances will affect both the functional capability and performance of
computer hardware.

By now it is fairly clear that the next generation of memory chips, the 64 Mbyte chip, will be
introduced in the market around 1995. Before the end of this decade the following
generation, the 256 Mbyte chip, should be available. Similar advances can be expectej in
the capabilities of the Central Processing Units (CPU) and storage media. The interconnec­
tion of computers will be realized by high speed networks in the gigabit range.

A short glimpse backwards should help us to put these extraordinary developments in the
proper perspective. When the first personai computers were marketed at the beginning of
the eighties, a memory size of 64 kbyte was common. five years later the typical memory
has increased to about 512 kbytes, while today, another five yea.rs later, another ten-fold
increase to 5 Mbyte can be observed. If this trend continues - and there are convincing
indications it will - a typical personal computer will have a memory of more than 100
Mbytes before the end of this decade.

More importantly, the expected advances in the field of VLSI integration will allow the
integration of more than I 0 million circuit elements on a single chip before the end of this
decade. This level of integration makes it possible to manufacture complex information
processing systems on a single chip. Powerful single chip microcontrollers with onboard
RAM, ROM and process 1/0 will be available for all kinds of integrated control functions.

Since the design of highly integrated VLSI chips is extremely costly and the marginal
manufacturing costs are relatively low, only a few "families" of general purpose processors
will dominate the worldwide computer market. This has important implications for the
software industry. Only a small number of standardized operating systems will be available.

Over the next decade, the cost of producing computer hardware of a given functionality will
decline at a similar speed to that of the past decade. An equivalent reduction of the software

76

The Software Market: F.merging Trends H Kopet:

costs cannot be expected. Therefore, on a system basis the strategic importance of software
will increase, i.e. the major fraction of the value of an integrated computer system will be in
its software.

2.2 Operating systems

The standardization of the operating systems is well under way. Proprietary operating
systems from the major computer compan!es are giving way to standardized operating
systems, such as UNIX and MS/DOS. According to a recent United States statistic concern­
ing the personal computer market, [Bul9 l] the following operating systems were dominant
by the end of 1990:

MS DOS 60760;
·------- --~

·,

Windows 8860 l _____ ;
<

l Apple Macintosh . 505 ~

UNIX

OS/2

1500;

700;
I

'"---~~~~~~~~~

Major PC Operating Systems shipped through year-end 1990

(in thousands of units) [Bul9 I I

From these numbers it is evident that at the moment the MS/DOS market is the most
interesting market for producers of commercial software packages. An established operat­
ing system base of more than 50 million installations offers tremendous opponunities for a
novel software package of mass appeal.

In the field of real-time so~are and microcontroller software, no statidardization tenden­
cies similar to the PC market are observable at the moment. Although the United States
Department of Defense launched a standard programming language and environment,
ADA, for embedded computer applications some years ago, this language has not yet found
widespread acceptance outside the military community. Many embedded computer applic&.­
tions are based on small proprietary real-time operating systems offocused functionality.

The future trends in the operating system field will be determined by a number of factors.
The expected hardware environment. as described above, will open completely new mar­
kets, such as multimedia applications integrating text. sound and video. It is not sure
whether the present market leader in operating systems, MS/DOS can evolve to handle these
new applications in an optimal way.

On the other side, new strategic alliances cire being formed in the computer and ele~tronics
industry worldwide. The collaboration between IBM and Apple computers can have a

71

II Kopet:

considerable effect on the future of the MACINTOSH operating system. The agreement
between Digital Equipment Corporation and Philips can have an impact on the multimedia
market. which is also at the focus of the major Japanese electronics companies.

3. Software Products And Senrices: Their Nature And Market

For the purpose of our analysis of the economic opportunities of developing countries in the
software world, we will partition the software activities into the following five segments:

I . Prepackaged software
2. Key element software
3. Intelligent software
4. Contract programming
5. Software maintenance

Although these segments are partially overlapping. they each have a clear identity, as will be
seen in the following discussion.

3. ~ Prepackaged software

Prepackaged software is defined as that segment of the software industry which is dedicated
to the production, marketing and maintenance of software packages, such as a word
processing program.

Although there are many
thousands of small software
companies trying to estab­
lish themselves in this very
competitive market, only a
few companies succeed.
The best-selling application
packages are all based on
the MS/DOS operating sys­
tem. Accordin3 to a US sta­
tistics [Bul91], the pack­
ages that make the list of
the top 1 O prepackaged
software products by the
end of 1990 are as given
alongside. Note that none

-- ~~--"-~=====-,,,,==-==~~· ~==-- - = ="-·.~. ~--'-===t=="--·--

1 I ' Software Company : Units sold
'

I i Windows Microsoft . 8,860,000 - -r-- - --- ----- ----r------ --·- ----- --· ---
2 ! Lotus 1-2-3 Lotus Develp. : 8,000,000

3

4

WordPerfect ,

WordStar
- t -

WordPerfect ; 5,500,000
·---·--- ;·- -·--

Word Star Int. : 4,200,000

t- 5 ; _ dBa~ _ _ r- _ Ashton-Tate -~ 3,~ ~~.o~o

t 6 : PCP~n!b_llJS~- I . ZSoft -- - --~ 2~?5~'.~o~
l 7 · Multiplan Microsoft 1,800,000
~ ; - - - ·---i 8 SuperCalc ~ Computer Ass.Int" I, 700,000

I 9 · Norton Utilities Symantec 1,500,000 !
i i
I .

~~~sk~~~----!~ndy 1,500,000 

78 



The Softwarr .\l<JT'kLt: Emergmg Trmds II Kopet: 

of the packages based on the second most successful operating system, the MACINTOSH, 
made it to a place in the top l O best-sellers. 

These numbers, impressive as they are, should not lead to the false conclusion that 

prepackaged software is the only major market for the output of the software industry. 
Although it is the most visible market, it accounts for less than 10 percent of the total output 
of the software industry. The world's leading software company, MICROSOFT, which 
produced the leading PC operating system MS/DOS and has two products in the l 0 
best-sel!ers list above, recordC'l sales of about USS 1200 million last year, less than 2 per 
cent of the sales volume of the leading integrated computer company, IBM [Bus9 l]. 

Successful products in the "preiJackaged software" market address the following issues with 
great care: 

(I) Genuine user nttd: 

(2) Ease of use: 

(3) Documentation: 

( 4) Quality: 

(S) Support: 

A lasting success of any product depends on the relevance and 
quality of service it can provide to its users. The focus on the 
true needs of the prospective users is thus the foremost require­
ment of a software product. 

A product aimed at a mass market should be usable by an 
average user without extensive training. "Ease-of-use" is a 
complex software characteristic which not only depends on the 
product per se, but also on the background and experience of 
the prospective use. Many new software companies fail be­
cause they underestimate the effort required to make a program 
easy-to-use. 

A mass software product has to be a-companied by a flawless 
documentation that is sc organized to answer all conceivable 
questions from its users quickly. Preparing such a documenta­
tion is a major effort, which is often underestimated. 

A serious error in a mass software product can nullify an 
expensive marketing campaign and cause excessive support 
costs. 

Vendors of successful software packages provide extensive 
after sales support to their customers. It is common that the 
average customer will require more than one telephone based 
assistance directly from the supplier, since r.•any distributors 
are not in the position to answer in-depth questions from 
customers. 

There are many instances of successful software products in small specialized markets. 
These products are based on comprehensive application know-how in a specific area and 

79 



H Kopet= The Sojtlt·are .\larket: Emerging Trends 

provide excellent service for a select customer base. These products are not necessarily 
linked with all the key attributes of "mass market" software, e.g. a delighted customer might 

be willing to trade some .. ease-of-use" for a profound assistance in his key business needs. 

3.2 Key element software 

Key element software is defined as that segl!lent of the software industry where the software 
contributes the key element to a complex industrial product, e.g., the software for a 
telephone switching system or an operating system for a new computer. A typical example 
is where an existing industrial organization with an established home market tries to 
improve or enhance its existing product by new functionality based on software. 

The key element software market is dominated by major industrial companies both inside 

and outside the computer field. The major computer companies have to develop or adapt the 

system-software and networking-software to their hardware architecture, resulting in an 

immense software etTort. 

Our attention will focus on companies outside the established computer field. Many of these 
industrial companies replace their conventional control systems by software based subsys­
tems and add improved functionality to increase the competitiveness of their products in 
their respective markets. The cost of the software subsystem can range from a small 
proportion (a few per cent) to a substantial part of the final product price. Characteristic for 
the key element software is the rapidly rising share of the software subsystem. Let us 
consider the automobile. A few years ago there was hardly any software based subsystem in 
an automobile. According to industry estimates, by the end of this decade 10 to 15 per cent 
of the cost of an automobile will be in the electronics subsystem, a considerable part thereof 
in the software. A similar trend can be observed in avionics control systems, telephone 
switching systems, etc. 

The following attributes characterize the key element software: 

Dependability: 

Real-time response: 

Comple:iity: 

Since many of the targeted applications, e.g., an avionics 
system, can potentially fail in catastrophic failure modes, the 
software must be highly dependable and support fault-tolerant 
operation. Other applications, e.g., telephone switching, re­
quire extreme levels of availability (e.g. l\!ss than two hours of 
outage in 20 years m· operation). 

M0st of the software in this market segment is concerned with 
real-time applications, i.e., it must be guaranteed that a result 
will be produced by the computer within the specified time 
interval. 

Many of the applications in this market segment are inherently 
large and complex. It therefore requires a substantial invest-

ao 



The Software .\lark.et: Emerging Trends If Kopet: 

ment in a sizable software development organization and qual­
ity assurance program to meet the demanding requirements of 
the applications. 

3.3 Intelligent product software 

'"Intelligent products" are products which integrate a mechanical subsystem 1.•lith a com­
puter controlled subsystem into a compact functional unit thereby fulfilling a specific user 
need, e.g. an automatic scale with an integrated microcomputer to perform the calibration, 

weighing and recording functions. A substantial portion of the cost in the intelligent product 
is in the application software development. The application software forms an integral part 
of the intelligent product and is normally stored in a Read Only Memory, i.e., it is int~grated 
in the hardware and cannot be changed easily. 

In a recent contribution to the UNIDO Microe/ectro11ics Monitor, January 1990 ([Kop90]), 
the characteristics and design challenges in the production of intelligent products in 
developing countries was analyzed.• 

Although intelligent product software is related to the key element software, there are 

substantial differences, which justify its separate classification. The following attributes 
characterize the intelligent product software: 

Dependability: 

Real-time response: 

Complexity: 

Optimal resource 
utilization: 

The reliability of an ·•intelligent product" may not be compro­
mised by errors in the software. Since the software is inte­
grated in the intelligent product it is not possible to correct 
software errors in the field, i.e., in case of a software error the 
whole product may have to be discarded. 

The software in most intelligent products must respond in 
real-time. 

The inherent software complexity of intelligent product soft­
ware is normally much lower than the complexity of key 
element software. 

Intelligent products are sold in a mass market in large quanti­
ties. Therefore, it is necessary to be aware of the resource 
requirements of the software. 

Because of the lower complexity and stand-alone utility, intelligent products are well-suited 
for development by innovative small companies. 

Tilis conlribuuon is r..:produced in Pan V af this \"Olumc. 

11 



II Kopet: The Softw:arl! .\/arket.· Fml!r"Rlf!R Tnndf 

3.4 Contract programming 

Contract programming is concerned with the design and implementation of software 
relative to given functional specifications In a typical scenario. a client, i.e. an industrial 

company, specifies a software package and fonnulates a set of acceptance tests. A software 

service organization, e.g., a small software house, implements this software package and 

delivers it to the client. Normally the software house will also offer a maintenance contract 
for the delivered software. 

Contract programming can be an interesting activity for developing countries. It requires 
little capital investment, other than excellent training facilities and access to an international 
electronic network, e.g. Internet There is a significant potential for cooperation between 

industrialized and developing countries in the field of contract programming. A major 
industrial company can start with small contract programming projects and can gradually 

build up a partnership with an organization in a developing country. There are some 
developing countries, notably India, which are active in the field of contract programming. 

A small software house in a developing country, connected to one of the major international 

computer networks, e.g., Internet, can receive the specification and deliver products elec­
tronically. Also the interactions between the client and the software house can be executed 
via e-mail so that an interactive dialogue is possible. 

3.5 Software maintenance 

Software maintenance encompasses the elimination of software errors, the adaption of 
existing software to a new hardware platfonn, and the enhancement of existing software. It 
is performed either by EDP departments within organizations or by independent software 
houses closely linked to an organization . Software maintenance is the largest software 
activity. Its size is related to the general level of industrialization and automation within a 

country. Although its volume is still increasing in absolute tenns, it is decreasing in relative 

size. Many proprietary software solutions within companies are replaced by prepackaged 
softwares. As a consequence, the need for software maintenance is reduced. Software 
maintenance requires a good understanding of and a smooth cooperation between the 
organization utilizing the software and the organization providing the service. The mainte­
nance activity is nonnally not open for outside competition. 

4. Software Distribution 

After a new software product has been developed successfully it has to be distributed to an 
interested clientele. We will distinguish between three different styles of softv.·are distribu­

tion: commercial software, integrated software and free software. 

Since software is an intellectual product and can be easily copied. the intellectual propeny 
laws have been expanded to cover software and thus protect the software developer. Still. a 

12 



The SojtlA·an .\larker· Emerging Trends II Kopet: 

sizable fraction of prepackaged software is copied illegally. The present situation concern­
ing the intellectual property rights of the software owner is still a subject of heated debate. 
On the one side it is felt that the protection of the software rights, e.g., of the "look and feel" 
of a man-machine interface, is not sufficient to protect the ideas of the original inventor. an 

the other side it is argued that too often copyrights and patents are granted to programs that 
are obvious. As a consequence programmers must spend more and more of their time on 
finding ways around existing patents. It is feared that in the future it will be difficult to write 
useful software because most basic ideas are protected and every new program is likely to 
infringe patents. 

There is some logic in the radical idea, expressed by a minority group. to reduce the scope of 
the software protection; software companies should make their money by servicing the 

software products they create. Such a measure would reduce the increasing number of costly 
litigations and eliminate the legal barriers on creativity in the software field. 

4.1 Commercial software 

The standard way to market prepackaged software is via wholesale and retail distributors, 
such as a computer shop or a mail-order company selling via a software catalogue. Since 

there is only a limited amount of shelf space available in a computer shop, it can be very 

difficult to convince a computer shop owner to display a new software product if at has not 
been widely advertised. Expensive marketing campaigns are necessary to bring the new 
product to the attentiof1 of prospective buyers. In many cases, the cost of distribution is 
significantly higher than the cost of software development. There are only a few small 
software companies who can afford the prohibitive cost of an effective product introduction. 

0•1ce a new software product is established in the market it is enhanced and improved, based 
on the response of the customers. A new version is released about every year and the 
established customer base can upgrade to the new version for a small fee. As the product 

gets older it becomes more difficult to make changes. The new versions are designed so as 
not to upset old customers by changing operating procedures the users are accustomed to. 

On the other side, new technology (e.g., the availability of graphical user interfaces) may 
offer improved opportunities, which are difficult to reconcile with the traditional product 
architecture. At this critical phase a competing product, which does not have to cope with 
the past, can take full advantage of the new technology and can triumph In many cases. the 

old product fades out and disappears. 

Leading software packages are marketed worldwide at comparable prices. For example. we 
can order a software package directly from a United States wholesale distributor at United 
States wholesale prices from Vienna via FAX and get delivery the next day via a courier 
service, effecting payment with a credit card. Such distribution mechanisms force local 
software companies to sell similar products at matching prices ff a local software company 
has only a relatively small customer base, it can be difficult to recover the development costs 
if the product price is detem1ined by "world-market" competitors 

83 



II Kopet= The Software .\/arket.· Fmel}!mg Trendf 

The situation is significantly different if a know-how intensive sottware package is aimed at 

a specialized market. In such a situation the marketing activities can be more focussed (and 
at low-cost) and the competition is less severe. 

4.2 Integrated software 

''Key-element" software and "intelligent product" software is completely integrated within 
the product and distributed along the established product marketing channels This form of 
software distribution avoids many of the pitfalls of commercial software distribution, such 
as the problem of illegal duplication, documentation, support, etc. [Kop9 l] As the price of 
computer hardware drops further and further, the strategic importance of the software in an 
intelligent product increases. Another advantage of integrated software is the generation of 

additional revenue by the sale of the associated product hardware 

4.3 Free software 

In order to avoid the capital expenditures for marketing, advertising and commercial 
distribution, some authors of software packages decide to distribute their software freely via 
bulletir boards in computer networks. If a user is satisfied with a program, he is asked to 

register with the author (or his organization) and pay a small fee for extended documenta­
tion, support and future updates. Software distributed in this form is sometimes called 

shareware. The author of the shareware recovers his costs from the fees paid by satisfied 
users. He retains the copyright and in some cases restricts the use of the shareware, e g , it 
may not be repackaged and sold commercially. 

Another form of free software is public domain software, which is free of any copyright 
restrictions. Public domain software originates often at universities and other research 

organizations and is freely distributed to the community. The quality and maintenance of 

public domain software can be a problem. 

A thorough report covering many issues relating to free software has been published by 

UNI DO recently [Bot91 ]. • 

5. Software Development Management 

In the last few years the techniques for managing software have been further refined. 
Professional software management is now established in most software companies and 
quality books about software management are available, such as the practical book by 
DeMarco Co11trolli11>: Software Pro1ects [DeM82}. In this section we focus on three 

llus report 1s reproduced in Part V of this rnlume 

84 



The Svjhrnre .\/arket: Emerging Trends II Kopet: 

software management issues which require special management attention and are some­
times overlooked when setting up a new software production organisation: quality manage­
ment, risk management and productivity management. 

S. l Quality management 

Si nee many purchasers of software are very concerned about software quality, they start to 
require that an accredited quality management system is used in the development of the 
software they are buying. 

The International Standards Organization has standardized such a quality management 
system which is applied to software and other service industries. In its ISO standard 8402 
quality is defined as the ·'totality of features and characteristics of a product, process or 
service that bear on its ability to satisfy stated or implied needs". 

Quality attrthutes 

We ~all those characteristics of the software which are relevant for software quality 
attributes We distinguish between functional and nonfunctional quality attributes. Func­
tional attributes are concerned with the mapping from the input domain to the output domain 
of a software system, i.e., the description of the system functions. Nonfunctional attributes 
refer to all other requirements not directly related to the systems functions, such as 
reliability, performance, adherence to development standards, development cost. etc .. In 
practice, the complete set of requirements is normally in partial conflict. For example, faced 
with a tradeoff between cost and reliability, the designer is forced to make a decision 
affecting quality attributes. 

Quality can only be managed if the quality attribu~es are specified precisely in such a form 
that they can be measured and tested. General quality attributes, such as ''the software 
system must be well-structure", are meaninglec:;. Quality control refers to the operational 

techniques and activities to ascertain that the stated quality attributes are satisfied. 

It has been recognized that quality has to be built in at the point of production and no. after 
the production process at the point of inspection. Therefore modem software development 
processes integrate quality management with the software production process. In the 
development of safety critical software, the quality control agencies require the certification 
of the software production process as well as the certification of the software product. 

Quality managemem .\}'Siem 

Quality managerr.ent starts with the introduction of a quality management system as part of 
the software production process. The quality management system provides the framework 
for a coordinated quality policy in an organization. It specifies the strategy and tactics to be 
followed in order to achieve the intended level of software quality. 

In the following section we present an overview of the ISO standardized quality manage­
ment system (ISO '1001 ), which is applied to software and other service industries: 

15 



II Kopet= The Sojt.,,..are .\/arlcet: Emerging T"nds 

(I) Management responsibility: The organization must 'define and document manage­
ment policy and objectives for and commitment to quality'_ In particular. the responsibilities 
of all staff who perform and verify work affecting quality have to be defined_ The 
documentation of all quality related activities has to be recorded in a corporate quality 
control manual. 

(2) Contract rniew: Any contract to produce software has to be reviewed from the point 
of view of quality management. In particular. the quantified quality attributes must bl! 
agreed on between purchaser and supplier and must be documented in the contract_ Tests as 
to how to measure the level of quality required must be contained in all contracts. The same 
applies to software acquired for the project_ 

(3) Design control: The developer has to establish procedures in order to demonstrate the 
quality of the design at each design step. 

(4) Inspection and testing: Inspection and testing must take place during development 
and the product status must be recorded at all times_ Where appropriate, statistical tech­
niques required to verify the acceptability of product characteristics have to be established_ 

(5) Quality records: The developer must ensure that sufficient records are maintained to 
demonstrate that the required quality has been achieved. The quality record keeping must 
make sure that no unrecorded quality actions took place. Change control must be an 
integrated activity of the quality management system. 

(6) Internal quality audits: The quality control system itself must b.! subject to ,•eriodic 
reviews to maintain its effectiveness. 

(7) Training: Training needs and training levels for all staff involved in the software 
production process must be specified and recorded. 

In some countries, there are organizations to accredit quality control systems. For example, 

such an organizaticn grants its stamp of approval that the objectives of the ISO 9001 
standard are met by a particular quality management system installed in a given organiza­

tion. In this area of quality management system approval a cooperation between industrial­
ized countries and developing countries could be of benefit to both partners. 

Q:1ality comrol 

Whereas the quality management system is concerned with setting up the framework for 

quality management, quality control is concerned with the operational techniques and 

activities executed in order to achieve the intended level of quality. i.e., that the quantified 

quality attributes of the software are met. Quality control is carried out on intermediate and 

final software products with the intent to uncover weakness in the preceding development 

process. Quality control can be decomposed in five activities [Oul91]: 

I. Define the soft\\. are quality attribute and its measure. 
2. Define the attribute check procedure. 
3. Carry out the check procedure. 

16 



The Sojtt.·are .\/arket: Fmerging Trends If Kopet: 

4. Record the result 
5. Take and record any corrective action taken. 

It is important that steps 1 and 2 are carried out before the product is ready, i.e., in the 
requirements analysis phase or in the contract specification phase in contract programming. 

If the specification of an intennediate software product is available in a formal notation with 
formally defined semantics, some properties of the product can be checked mechanically. 
However, ifthe intermediate product is not amenable to such automated checks, one has to 
rely on less formal checking techniques, such as checklists designed to help check for 

completeness. Birrel and Ould [Bir88) contain extensive check lists for most of the major 
items produced during software development. 

5.2 Risk management 

There are many risks involved in software development, which can manifest themselves as 
technical failures (impaired functionality, poor reliability) and management failures (sched­
ule and cost overruns). Risk management is concerned with the identification, analysis and 
elimination of these risks before they effect the software project Risk management involves 
two steps: risk assessment and risk control [Boe89]. 

Risk assessmelll 

Risk assessment is concerned with the identification and analysis of the risksassociated with 
a software project. We distinguish between gr.neric risks, i.e., those that are common to all 
software development projects and specific risks, which are those that apply only to a 
p~cular project. 

Risk ide11tificatio11 

Risk identification can start with the examination of general checklists for the most common 
generic and project specific risks. Some of the most important generic risks are: 

1. Inadequate personnel 
2. Imprecise requirements 
3. Unmastered complexity 
4. Poorquality 

In addition we have to consider such project specific risks, as for example: 

I. Imprecise description of the expected work 
2. Unrealistic project schedules and budgets 
3. Inappropriate staffing lacking know-how base 
4. Deficient communication among project members 
S. Poor project control 
6. Application of unproven technologies 

17 



II Kopet= 

7. Insufficient hardware resources 
8. Ill-suited system software 
9. Unrealistic performance requirements 
10. Unstated or illusory assumptions 

TM Soft-·an Alarlc~t: Emn-ging Tnnds 

These checklists can only serve as a staning point for risk identification. They have to be 
complemented by a checklist based on local experience. 

Risk a11a(l·sis 

Risk analysis starts with the rating of the identified risks in relation to the particular project. 
This rating has to reckon with the criticality of the identified risk and guess the probability of 

its manifestation. Jn some situations it will be necessary to develop an analytical depend­
ability mo<iel of the given system in order to assess the significance of a given risk factor. 
The result of the risk analysis is a weighted list of risk factors relevant to the particular 
project. 

Risk co11trol 

Risk control is concerned with the determination of management actions to eliminate, or at 
least reduce, the identified risks. One first action will be the improvement of the manage­
ment visibility of those aspects of the project which are prone to risk. This can be done by 
requiring up-to-date documentation of the ai:hieved progress and by the installation of 

project management baselines. 

If a particular failure mode of a computer system is recognized as very critical, the risk 
reduction strategy can consist ofincreasing the resources for verification or the provision of 
software fault tolerance for a particular function. Furthermore, operational loss-limiting 
techniques may be installed. 

If a high probability of a schedule overrun is suspected, renegotiations with the client arc 
sought in order to modify the completion date or to reduce the functionality that has to be 
delivered on time. 

5.3 Productivity management 

In a competitive environment those organizations will thrive which can deliver a given 
software product of high quality at the lowest cost. Software productivity, defined as the 
relation of software output ti: the cost of producing this S'.)ftware, is an imponant parameter 

of an organization and has to be managed explicitly. 

Software productivity can be increased by either reducing the amount of work required to 
produce a given product or by increasing the effectiveness of the development staff. The 
analysis of software cost models gives valuable insights into the key factors determining 
software productivity. Boehm [Boe87] has identified a namber of such key factors: 

(I) Staff effectiveness: All cost models indicate that the selection, motivation and man­
agement of the people involved in a software project are the key productivity factor . 

.. 



The Softta·an .\/arket: Emerging Trmds H Kopet: 

Employing the best people is a good strategy, because the productivity ranges of people are 
normally much wider than that of their salaries. Continuous training of personnel in 
technical and managerial matters has a high productivity payoff. 

(2) Simple products: During the architecture design phase. every effort has to be made to 
decompose the system into components that can be designed, implemented and tested 
independently. The interfaces between components have to be clearly specified and should 
be free of side effects. If a number of design alternatives to implement a given requirement 
are available, understandability should be a prime selection criterion. If there are open 
questions about the implementation of a key software component. rapid prototyping should 
be considered in order to learn about the difficulties of the solution. 

(3) Modern development techniques: The application of modem software development 
techniques. such as object oriented design techniques combined with an integrated tool 
support, which covers technical as well as managerial aspects in an integrated fashion, can 
increase the software productivity and avoid unnecessary clerical rework to accommodate 
software changes. Automated support tools, such as the provision of an integrated documen­
tation system, can eliminate costly development steps. A good description of the present 
state-of-the-art in modem development techniques and tool support is contained in [ Ald9 I], 
where more than ten support environments are discussed. The selection of the most 
appropriate support environment for a particular organization depends on the type of 
software produced and the programming methodology/languages chosen. It is a difficult 
task that requires careful analysis. 

( 4) Reuse components: The Lines of Code (LOC) which are produced is !>1ill considered a 
reasonable metric for software size. If this size can be reduced by the reuse of software 
components or the employment of application generators, software productivity is in­
creased. Some software organizations regularly monitor the software reuse factor, i.e , the 
LOC taken from software libraries and reused relating to the total LOC delivered. Software 
reuse requires careful management planning. In a .. building up" phase standards for 
software reuse are established and reusable software components identified and classified in 
a reuse database. In the "design" phase software is selected from this reuse database on the 
basis of the given requirements profile. There are a number of support systems for software 
reuse available, which are described in some detail in [Hal91]. Software reuse can be 
organized on a wider scale than just within a company. If a number of organizations -
national or international - agree on a standard reuse database, they can all benefit from 
such a joint effort. 

The level of acilieved software productivity is an important measure of success of any 
commercial software organization. Productivity and quality issues have to be key items on 
the priority list of top management. 



References 

IAkl9tJ 

IBirll) 

(Boe87) 

(Boe89) 

(Bot91) 

(Bul91) 

(Bus91) 

(DeM82) 

(Hal91) 

(Kop90) 

(Kop91) 

(Oul91) 

(Roo91) 

TM Software .\lark~t: Emerging Trrnds 

A. Alderson; Configuration Management. in: Software Engineering Refer­
ence Handbook. ed. by J. A. McDermid. London, 1991, pp. 34.1-34.17 

N. D. Birrel, M. A. Ould; A Practical Handboolc for Software Development, 
Cambridge University Press. 1988 

8. W. Boehm; Improving Software Productivity, IEEE Computer, Septem­
ber 1987. pp.43-57 

Software Risk Management, IEEE Tutorial, IEEE Press, 1989 

A. J. A. Bothelho; Emerging issues in the selection and distribution of public 
domain software for developing countries, Report prepared for UNIDO, 
Vienna. Austria. 30 April 1991 

W. M. Bclekley; Technology, economics and ego conspire to make software 
difficult to use. The Wall Street Journal, Technology section on software, 
RS. 20 May 1991 

Business Week. The world's most valuable companies. 15 July 1991. pp. 
43-80 

T. DeMarco; Controlling Software Projects. Y ourdon Press. New York, 
1982 

P. Hall, C. Boldyreff; Software reuse. in: Software &1gineering Reference 
Handbook, ed. by J. A. McDermid. London, 1991. pp. 41.1-41.12 

H. Kopetz; The production of intelligent products in developing countries, 
Microelectronics Monitor, UNIDO. Vienna. Issue Nr. 29, January 1990. pp. 
63- 71 

H. Kopetz, R. Zainlinger, G. Fohler. H. Kantz. P. Puschner. W. Schutz; The 
design of real-time systems: from specification to implementation and veri­
fication, Software Engineering Journal. May 1971, pp. 72 - 82 

M. A. Ould; Quality Control and Assurance, in: Software Engineering 
Reference Handbook, ed. by J. A. McDermid. London, 1991, pp. 29.1-29.12 

P. Rook; Project Planning and Control, in: Software F,ngineering Reference 
Handbook. ed by J .A. McDermid, London. 1991, pp. 27.1-27.36 

90 



IV 

Legal Issues in 
Software Development, 

Procurement and Distribution 

Recent Trends in Contractual Practice and Jurisprudence 
Relating to the Licensing and other Forms of Acquisition 
ofSoftWare in the United States of America and the EEC --------------------------------------------------93 

Stanis/(IM· Soltysinslci 

The~ !!':::;1ion of Software-------------------------------------------------------------------------------------133 



Recent Trends in Contractual Practice and Jurisprudence 
Relating to the Licensing and other Forms of Acquisition of 

Software in the United States of America and the EEC* 

Stanislaw Soltysinski •• 

Introduction 

This report contains a succinct review of recent developments in contractual practice, 
legislation and case law relating to the acquisition of software in the United States and the 
EEC. References to practice and case law in other jurisdictions (e.g. in Japan) have been 
incorporated in footnotes while discussing parallel problems in American or European law. 
The section devoted to the EEC concentrates on recent legal developments at the Commu­
nity level and in Germany. In addition, the report takes into account contractual practice and 
case law in the United Kingdom and France. Furthermore. the report contains a few 
references to important judicial and legislative developments in Japan (e.g. the issue of 
legality of .. reverse engineering") 

Differences between the United States and European laws suggested a parallel analysis of 
analogous problems constituting the main subject of this study. Thus, for instance, the 
peculiarities of United States and European rules relating to liability for defective software 
products dictated somewhat different internal division of the material in the two main 
segments of the report (Chapter One and Chapter Two). The last chapter is devoted to 
common problems arising in transnational transactions involving software and computer 
systems. 

In accordance with the terms of the assignment, the report focuses on protection of the 
recipient (e.g. purchaser, licensee, etc.) of software. In contfllst to the majority of available 
commentaries, handbooks and standard contracts, which are usually prepared under the 
auspices of suppliers of software or hardware, the report is mainly aimed at helping an 
importer and user of computer programs. While evaluating typical contractual clauses 
encountered in standard forms used by the computer industry in the United States and the 
EEC, I was trying to explain their legal consequences and to suggest alternative solutions 
that could be more advantageoas to the recipient of computer technology. However, one 
must bear in mind that the legal .. know-how" constitutes only one prerequisite for a 
successful deal and it cannot counter-balance disparities in bargaining powers between 

• UNIDO/IPCT.139, May 1991 

•• Professor of Law. U ruversity of Po7.nan, Poland 

93 



S So/~-sinski R~ant Trends in Ctmtrachla/ Practia ... 

providers of software and their clients from developing countries. At the same time. an 
in-depth knowledge of the relevant contractual practice and applicable law is an important 
factor in negotiations. 

A computer program may be acquired and disseminated in a number of ways. The limited 
scope of this report dictated the need of narrowing it to three main categories of such 
agreements. namely. ··sates". ·1icenses" and .. software development contracts" (commis­
sion contract. W erlr..vetrag). It is further assumed that the foregoing agreements are con­
cluded between computer companies and end-users of software. International distribution 
and representative agreements are beyond the range of this analysis. In principle. the report 
is limited to "pure" software transactions but several references are made to case law 
applicable to "mixed" contracts which cover both software and hardware products. 

In accordance with the ')ob description". the report focuses on three substantive aspects of 
software acquisition contracts : 

I . The scope of the software recipient's right to use the acquired technology, 

1. Responsibilities of the supplier for legal and technical defects of software. including 
tests and guaranties. and 

3. The recipient• s contractual remedies against the supplier for malfunctioning of defec­
tive software. 

Special attention is paid to contractual devices aimed at limiting or excluding supplier's 
liability in the foregoing areas. In addition. the papzr scrutinizes problems arising in the 
context of the so-called "shrink-wrap" licenses and analyzes the dispute concerning the 
legality of "reverse engineering" (decompiling) of computer programs. Issues common to 
all transfer of technology transactions. such as fees and other forms of payment. term and 
termination of the agreement. non-competition and non-assignment clauses. are outside the 
parameters of this analysis. 

The United States 

I. General considerations 

The difference between "sales" and "licenses" seems to be rather clear. The former contracts 
consist in transferring the title to "goods" while license agreements are merely permissions 
to use intangibles by licensees within the limits and on terms agreed upon between the 
parties to a license contract. In the context of software acquisition contracts this distinction 
is blurred. First, it is by no means clear whether computer programs are "goods" within the 
meaning of Art. 2 of the Uniform Commercial Code (UCC). which governs sales transac­
tions in all States, except Louisiana. Second, the owneu of software rarely transfer all rights 
in their intangibles. Normally, they prefer to recoup their investments and profit therefrom 
by way of granting limited permissions to use the licensed programs to more than one user. 



Reant Trrnds in Contractual Practice __ _ S Soltysinsk1 

License agreements allow them not only to maximize profits but also to limit potential 
competition from recipients of their software. Hence. the owner of a computer program 
usually wants to retain some proprietary rights in order to get access to improvements. 
control future developments of the disseminated software. etc. 1 When the supplier retains 
some indicia of owr.ership in software. the demarcation line between "sales .. and ·1icenses .. 
is not clear_ Third. "pure .. software transactions are less common than "mixed .. contracts 
involving hardware. software and supporting services_ 

For reasons stated above. recipients of software should be aware of the implications of the 
choice between "sale" and '1icense" form of the transaction. An importer of software. 
should explore the possibility of "purchasing" rather than obtaining a right to use the target 
software_ Because copyrights and intellectual property rights in trade secrets in a specific 
computer program constitute a bundle of territorially divisible rights, an importer may 
sometimes persuade an exporter to c;ell him software within the borders of the purchaser· s 
country. Similarly. in a border-line case when the supplier of software retains some indicia 
of title. the recipient should try to insert a clause explaining that the title has passed to the 
purchaser and the stipulations in favour of the supplier are of purely contractual nature_ 

Disputes concerning legal characterization of a given transaction (''sale" or ··1icense'') are of 
particular significance with respect to "packaged" software, which is commonly marketed 
in the ·'license" form_ Courts and commentators agree that it is the content of the legal 

relationship rather than the denomination of the transaction by the distributor. which should 
be taken into account in disputable cases. 2 

2. Program licenses with end users 

(aJ Grant 

The term ''license" suggests that a licensor is the holder of an exclusive right in the licensed 
information. It is also presumed that the licensed software is the property of the lict..nsor. 
The term "property" in this context denotes copyright or proprietary trade secret. Occasion­
ally, a computer program can be protected by a United States patent. Most computer 
programs are protected concurrently by federal copyright and state trade secrets laws. Such 
cumulative protection of technology information provides the cheapest and the most 
effective form of guarding the interests of the licensor. Copyright protection ofbinary form 
enhances trade secret protection of underlying non-copyrightable ideas and procedures. 3 

And despite obvious conflicting objectives of these two fonns of legal protection and 
notwithstanding the preemption of all legal rights "that are equivalent to any of the 
exclusive rights that are within the general scope of copyright ( ... )". the majority of recent 
precedents shares the opinion according to which a trade secret claim is not pre-empted by 
federal copyright law:' And although the purpose of copyright laws has been public access 
to information and the "dissemination of ideas"~. at present both courts and the United 
States Copyright Office reconcile copyright formalities with assertions of trade secrets 

95 



S Soltysinslci R~crnt T~nds in Contracht11l Practicr ... 

rights. By pennitting secret deposits of computer programs, the Copyright Office has 
become an agency collaborating with proprietors of software to bar public access to 
non-copyrightable ideas (e.g. algorithms) indefinitely.6 

The rl~mise of the supremacy offederal competition law over intellectual property exclusive 
rights in the present case law, pennits the licensor of software to grant both temporary and 
perpetual licenses. While a copyright license shall not exceed the term of the monopoly 
right, assertion of trade secrets rights in the licensed software justifies licenses of indefinite 
duration. Computer industry standard forms indicate that .. there is no case or other prece­
dent holding that proprietal)' or trade secret protection will not be enforced if the license is 
perpetual. "7 Some commentators advise against perpetual software licenses arguing that 
such contracts may be treated by courts as .. sales" or may be held invalid because of antitrust 
considerations. 

It is clear from the above that suppliers of software are almost completely free to shape the 
content and scope of their pennissions to use licensed software. Apart from time and 
geographical limitations, software licenses frequently restrict the pennissible use to a single 
computer specified in the agreement by its serial number or in the location designated 
therein. A typical standard fonn reads as follows: 

''Client shall have the right to use the Licensed Program and materials solely for its own 
internal operation in the location designated in this Agreement, (or, 011/y in the installation 
designated in this Agreement, or only on the computer for machine} designat.?d in this 
Agreemelll) ·6 

As an alternative to restricting a grant to a single location or a specified machine, the parties 
may agree on a unifonn company-wide license pennitting the licensee to use the program on 
each ofits computers. Large corporations prefer to negotiate for a single license covering all 
their hardware installations. 

Current IBM's .. tenns and Conditions for Licensed Programs also restrict the use of a 
program on the designated machine but, in addition, they pennit the customer, inter alia, to: 

''copy or translate the Program 's machine readable portion into any machine readable or 
printed form lo provide sufficient copies to support the Customer's authorized u~e of the 
Program; and modify and or merge the Program's machine readable portion with other 
programs to form an updated work for the Customer's own use.(. .. ). " 

In the event the licensee is authorized to use the licensed program oniy on a single machine, 
he should try to negotiate a special pennission in typical contingency situations involving 
inoperability of the designated compcter or the need to transfer the installation to a new 
location.9 Likewise, a prudent licensee should try to negotiate a pennission to transfer the 
licensed programs to another location or to another designated CPU. Bi ngelow recommends 
the following standard clause: 

96 



Recent T"nds in Contractwal Practice ... S Soltysinski 

·'Upon thirty days writte1111otice to Licensor, Licensee may transfer. the Licensed Programs 

to another Designated CPU 011 a date specified Such notice shall s~.:ify the date of 
transfer and thereafter the designated CPU shall be the CPU desig11ated in such 11otice ... JO 

As already mentioned, software licenses are normally limited to the licensee's internal use 
or operation. This limitation is usually further defined in the agreement. In Systems 
Development Corp. v. United States, l l the pertinent clause read: 

'The National Library of Medicine agrees not to utili:e licensed material in the perform­
ance of computer sen•ice burea11 operations nor performance uf any services for third 
parties except withi11 its mission as establi.'ihed by law or regulation " 

The court interpreted strictly this ambiguous clause and held that the Library did not violate 
the terms of the license by providing data to hospitals, universities, etc. Such use of the 
licensed software was not viewed as providing computer service bureau operations. 

An importer of a computer program that contemplates to use the software both in its own 
company and with the help of third parties is recommended to adapt a flexible clause found 
in a United States-Canadian licensing agreement: 12 

••fhe use of the licensed software is to be confined to the Licensee. This License may be 

exercised by the Licensee by having the Licensor install an operating version of the 
Licensed Programs 011 the Licensee's own computer or 011 such other computer of suitable 

capacity as may be selected by the Licensee, provided a non-disclosure and confidellliality 
agreement is first entered into between the owner of such other computer and the Licensor. " 

Such a clause my be very helpful to an importer from a developing country who wants to 
benefit from the acquired software without the need to make his own capital invesnnent in 
more expensive hardware. 

A careful licensee should also try to negotiate the right to use the licensed software for the 
internal requirements of its affiliates. The key terms "use" (or "internal requirements'') and 
"affiliates" require precise definitions in the agreement 13 

(b) Access to the Source Code; Reverse Engineering, Copies and Adaptations 

An important issue in software licensing negotiations is whether the licensor is obliged to 
provide the licensee with the source code and documentation describing the structure or 
functioning of the program. Licensors prefer to license only an object code and "as little 
documentation as possible , so that it will be difficult for the licensee to reverse engineer the 
software to reveal any trade secrets". 14 Following the policy of IBM, the industry leader, the 
majority of licensors normally expressly prohibit the licensee's access to source codes. 15 

Such express contractual prohibitions are aimed at avoiding the impact of the doctrine of 
"fair use" and other permissive provisions of the Copyright Act ( 1980). 16 

97 



s Soltysinski Recent Trrnds tn ( ·ontroctuol Practice __ _ 

By contrast. the licensee will be always interested to receive the source code. without which 
it is practically impossible to modify, enhance or even to remove defects of a lic~nsed 
program. Licensing a source code is sometimes indispensable _ For instance. in an agree­
ment where a software developer licenses a distributor (e.g. a software house or a computer 
hardware producer), the latter party is usually responsible for ~ontinuing obligations 
consisting in adaptation of the licensed software to the needs of end-users of the product. 
removing defects and. often, enhancing the original program. But in the context of a license 
v.ith an end-user, the licensee interested in obtaining access to the source code is usually 
required to pay an extra fee and accept specific obligations aimed at assuring confidentiality 
of the code and any information related thereto. Standard contracts dealing with the issue of 
confidentiality of licensed materials and information embrace both the officers of the 
licensee and its employees. Bingelow17 suggests the following formulation: 

"Licensee agrees that the source code licensed u11der this schedule Sis the property of al'IJ 
a trade secret off Lice11sorj. Licensee agrees not to reveal the source code to any person or 
elllily, except as otherwise provided herein, nor shall Licensee rel·eal to any other per.wn or 
elllity dir2ctly or through its employees a11y i11formatio11 relating to the source code, the 
programming therein, or the algorithm thereof " 

Some licensors require from licensees that their officers and employees having access to 
confidential data must execute special confidentiality covenants_ Furthermore, licensees are 
frequently bound to pay agreed damages for breach of such stipulations and the agreed 
liquidated damages may be higher than the total cost of acquiring the license 

Licensees who receive object codes only, become completely dependent upon the licensor, 
not only for future enhancements and modifications of the program, but also in the event of 
software malfunctioning. Access to the source code of a licensed program is crucial in case 

of importation of foreign software when the distance between the licensee and the licensor 
makes it difficult to have the licensor's experts available in the country of the situs of the 

user. Spt-cial hazards exists when software is acquired from small software houses that may 
become bankrupt, thus enabling creditors to attach all unsecured property of the licensor. 

A standard compromise solution for such contingencies, consist in appointing an escrow 
agent, with whom the licensor will deposit the source code and its subsequent modifica­
tions. Under such an escrow agreement, the licensee has the right to obtain access to the 
deposited code in the events specified in the agreement, for instance, if the licensor stops 
maintaining the licensed program. refuses to deliver the modifications thereof or files a 
petition in bankruptcy. Such an arrangement reduces the risk of Jestroying secrecy while 
affording the necessary protection for the licensee 

A standard form elaborated under the auspices of ADAPSO recommends the following 
language of the Source Program Escrow clause: 

91 



R~ant Trends tn Contractual Pradic~ ... S Soln:s1nski 

"A.BC will deposit and mai11tai11 with 011 escrow agent a c:11rre11t copy of the so11rce code of 
the lice11Sed Program. /11 the e'l:ent A.BC cease."' to carry 011 business or cea-res to prm·ide 
maintene11ce for the l.ice11sed Program. the source code will he pnwided to client. "18 

In 1985, a bankruptcy decision in which the court permitted a bankrupt licensor to reject its 
nonexclusive license to a licensee, was interpreted as a precedent that could preclude the 
usefulness of the escrow agreements.19 Soon afterwards. the United States Congress has 
passed a corrective legislation, which reiterates the validity of escrow rights in the field of 
intellectual property. The Intellectual Property Bankruptcy Protection Act states that if a 
bankruptcy trustee .. rejects" a license, then the lice:isee may either treat the rejection as a 
termination and submit a claim for a breach of ~ontract, or retain the license, continuing to 
make royalty payments to the estate. The trustee must not interfere with the licensee's right 
to obtain copies of intellectual property technologies (e.g. a source code). but there is no 
obligation of maintenence or suppon on the part of the bankrupt estate in such a situation. 2•l 

Industry standard forms for software licenses with end users often contain express prohibi­
tions on reverse enginttring, modif'M:ations and adaptatio11s of software. Reverse engi­
neering is the process by which a product embodying an innovation is analyzed by a 
competitor in order to study or to reproduce thereof for competitive purposes. While such 
inspection is perfectly lega! in all other areas ofintellectual property,21 hybrid protection of 
software under trade secret and copyright laws enables the software developers to argue that 
decompilation and disassembling of computer programs amount to an illegal copying of the 
protected form of software. Since the law in this field is not settled, suppliers of software can 
afford to preclude reverse engineering and modifications of the licensed software by 
inserting express contractual prohibitions into their agreements with licensees. 

It is interesting to note that prior to its 1983 announcement, 22 IBM apparently tolerated 
decompilation and adaptation of its software. Since then, however, the company· s ban on 
reverse engineering has become an industry legal standard. ''Agreement for IBM Licensed 
Programs" provides that a licensee (customer) shall not reverse, assemble or decompile in 
whole or in pan any licensed program.23 

While judicial authorities and commentators are divided on the issue of legality of "reverse 
engineering" in the area of "copyrighted" software, the licensors of computer programs may 
also rely on contractual bans enforceable under state laws. While CONTU Report24 and 
some recent cases25 suggests that it may be a "fair use" under Section l 07 of the Copyright 
Act to make a printout copy of software for purposes of making modifications and other 
purposes, there is no judicial authority questioning the validity of contractual prohibitions 
on reverse engineering in arms-length licenses. 

As a rule, software license agreements with end users strictly control the number of 
permissible copies of each licensed program and other proprietary materials supplied to the 
licensee. Restrictions on the number of authorized copies the licensee can make during the 
agreement cover not only source codes but also object codes, manuals, instructions, etc. The 

99 



S Snltysinski Recent Trend" in Contractual Practice __ _ 

Licensee is pennitted to make one copy of each program for back-up purposes (archival 
copies). In the event ofloss or accidental destruction. he may obtain an extra copy subject to 
an additional payment Frequently, licensees are obliged to observe special measures aimed 
at assuring compliance with confidentiality obligations: 

"(a) COPIES. As prm:ided in Clause 3(c). f.i.-:e11See may make copies of the Licensed 
Software, provided that each such copy shall state that it is the property of Licensor • ...• ill 
the fol/owing language: 

·'this copy of. .. .{ insert the name of program or manual) is the property of [insert the name 
of the Licensor / .... , as their illlerests may a;:;x.u and is protected under the cop}Tight, 
trOlle secret a11J co11fide111iality law~ cf the l/11ited States and Canada. At Licensee's 
request. Licellsor will provide a /ah:!/ to he attac.:hed to the copy setting forth the foregoing 
statemelll. licensee shall keep a record of each copy made, where .mch copy is located and 
in whose custody ii is. The prm•isions of this dause shall app(r to all licensed Software, 
i1icluding witho;1t limitation programs, ma1111als, instructional materials a11J all other 
docume111atio11 provided to Licensee. • ·26 

Practical significance of such contractual steps to protect the confidentiality of the infonna­
tion licensed carnot be overestimated. The problem is illustrated by Data General Corpo­
ration V. Digital Comput~r Controls. Inc.27 The plaintiff alleged misappropriation of its 
proprietary information embodied inn .ntenance drawings for a Nova 1200 minicomputer, 
which had the following legend: 

"These drawings and specifications, herein, are the property of Data General Corpora­
tion and shall not be reprodMced or copied or 11sed in whole or in part as the basis for 
manufacture or sale of the items without written permission. " 

It was rather surprising. even in the context of the present generous attitude of the United 
States judiciary vis-a-vis propriertors of trade secrets, that the court ruled for the plaintiff 
despite the fact :hat the pertinent maintenance drawings had been made available to about 
six thousand people and the mass distribution of the alleged secrets by the proprietor did not 
destroy its claim for trade secret protection. 

(c) Tests, lrai11i11g, Maintenance and E11ha11cemems 

As explained in IBM's "Terms and Conditions for Licensed Programs", the purpose of a 
trial period is to allow the customer to determine that an acquired program meets its 
requirements. A trial period may be either a Tnting Period or a Return Period. Where the 
fonner applies: 

"The Customer may use the Program 011/y for 11011-prod11ctiw purpo.~e.~ during this period 
to determine that it meets il.f req11irements.( .. .) The C11stomer may terminate the Liceme 
upon writte1111otice, effective immediately, at any time, during the testing period, in which 
eve.II /charges specified in the Agreemelll/ will not he due. However. proces.~ charge.f, if 
any, will he due." 

100 



Recent T ~nib m ( ·nntractua/ Practice ... S Soltysin.Vi.1 

Where a return ~riod applies. the licensee may return the licensed program but it must end 
the agreement by written notice because: 

"U11less such 11otice of termi11atio11 is gi\'fm, the customer will be deemed at the e11d of the 
trial period to retain the Lic:ellSed Program under the pro,·isio11S thereof " 

According to a survey conducted by ADAPSO among its members. an agreement between a 
software company and an end user is the most frequent type oflicensing contracts. Although 
some software licenses and industry standard forms characterize ··program support serv­
ices" as optional. according to the same source, such services are usually included with the 
license at no extra cost.28 Among the services most frequently offered free of charge are 
installation. training or maintenance. A license contract will usually specify the scope of 
such additional services to be rendered at no extra charge during the term of the agreement. 
The following sample clauses illustrate the practice:29 

"{Lice11sor/ will pro,•ide up to ... days of training (or, operator instruction to ... {number of 
persollS/ desig11ated by {Licensee/) ill the use of the licensed Program and Materials (on 
Clielll :" comp11ter eq11ipme11t. " 

'1Lice11sor/ will provide maintenance of the l.Ji:e11sed Program for a period of. ... momh(s) 
or, year{s)) from the date of delivery (or date of i1istallation) of the Program (and 
Materials). ·' 

''Upo11 wri1te11 request, Lice11see will pro,·ide. for a period of month(s) (year(s)} ajier 
execution of thi.'i" Agreement (or, after delivery of i11stallatio11 of the licensed Program and 
Materials) enha11cement.\" to the Licensed Program [and Materials/ that are marketed by 
Licensor." 

Characteristically, software i:adustry standard contracts often provide clauses to the effect 
that any unauthorized enhancement to a licen ~ed program by the licensee deprives him of 
the benefit of program support services. "Software product maintenance and support 
agreements" frequently constitute a separate part of a software acquisition contract. In such 
cases, they provide for additional fees to be paid by the licensee. Sometimes, suppliers of 
comprehensive computer systems covering the delivery of software and hardware insist on 
executing a legally autonomous maintenance and support contract that becomes effective 
after the installation of the system. The separation of a basic software acquisition contract 
from its functionally relat{'d .. maintenance and support" agreement may be dictated by 
various factors (e.g. tax considerations, requirements of foreign technology control laws, 
inability of the main supplier to undertake extensive support obligations, etc.). 

101 



R~crnl Trrnds in Contrac!11al Practrcr ... 

The licensee may prefer to enter intc a separc.~e software program maintenance agreement 
with a third party in the e••ent when the recipient of technology is in direct competition ~ith 
the licensor and does not want its commercial secrets to be disclosed to the personnel of the 
competitor. Similarly, the licensee may prefer to order installation and training services 
from the actual developer of a licensed program, who is more familiar with the technolagy 
than the licensor. who acquir:d the title to the licensed software from the programmer. 

The maintenance and support agreements osually mean removal of programming errors, 
maintaining a licensed program operational in conformity with specifications, supplying the 
licensee with updated user guidelines and updates to the licensed programs. In addition, the 
licensee may be also authorized to request .. mhancemmts" of the original software. Some 
sample contracts carefully distinguish between .. updates" and ··enhancements". JO Be­
cause some program maintenance and support obligations overlap with warranty obliga­
tions (e.g. correction of errors), some aspect~ of a licensor's duty to remove defects of 
software will be d:scu.'ised in Section 2.5 of this report. 

(dJ Warra11tie.f of Title 

In view of the uncertainties associated with the legal status of software programs, licensors 
are reluctant to grant express warranties of tide and lend to limit their potential liability by 
way oi contractual disclaimers. J 1 Foreign licensees should be aware that standard warran­
ties of property rights employed by American licer.sors offer them a minimum of protection 
and should not be confused "vith comprehensive warranties of title. Thus. for instance. a 
promise that licensor .. warrants that it has the right to grant a license to the licensed 
program", may be interpreted merely as an assurance that the licensor has obtained the 
authority to license from a third party. for instance, the developer of the licensed computer 
program. Such clauses are used also by program developers who wish .. to guarantee what is 
minimally necessary to ensure the legality of the license grant. .. 32 Therefore. the licensee is 
advised to check the validity of the licensor's authority or to demand a stronger legal 
guarantee to title ostensibly owned by the supplier. 

A warranty of software development by the licensor is also a very weak form of guarantee. 
It simply means that the licensed program was conceived by the licensor ,but the latter does 
not guarantee that the software does not infringe third party intellectual property rights. 
Therefore, a licensee with a strong bargaining power or a .. deep pocket" may try to obtain 
both an express guarantee of title and indemnity in the event of infringement of third party 
rights. Such a double protection scheme can be drafted along the following lines: 

·'The /,1e:e11sor wc"ams that it is the sole ow11er of the licensed software that is free of any 
third party right.'i (c.1(. liem. encumbrances. etc.). The licensor further warrants that, to the 
he.'il of it.'i: lv1ow/edKe. its proprietary right.fare not challmged or disputed by any third 
party. In the evem of a claim that the use of the licensed program comtitut.:s an infringe· 
ment of a third party right. the licensor will indemnify the licensee from all direct and 
,·nn.teque11tial damages. '' 

102 



S Snltys1mk1 

Realistically, however. the chances of obtaining such protmion by a licensee are often 
ma:ginal. A sensible compromise may consist in combining an assurance that the licensed 
program does not violate third party rights (to the best of licensor's knowledge) with a 

promise to defend licensee in the event of a challenge by such parties. Consider the 
following sample clauses prepared under the auspices of ADAPSO : 

·'In the event of a copyright or patent infringement claim, [Licensor/ may at its cJtm expen~ 
defend such claim or may procure the right to continue using all or port of the Lic:ensed 
Program or may discontim1e the Lice11set'/ Program. This shall constitute the entire liability 

of/ Licensor J with respect to a c:op)Tight or patent infringeme11t claim. ".H 

"/11 the enmt of a cla:m that the LicenMd Program constitutes m1 infringement of a 

cop} Tight or patent, / liceltSOT J l4 • ;; indemnify /licensee/ from direct erperJitures incu"etl 

by fit/ in Jefe11se agaimt such claim. pro1:ideJ that /Lice11!ior/. in its judgement. shall 
receive the Coopt!ratio11 and ass ... 1ance of/ Licensee j. ·'3-1 

Note that in both instances. the licensors' liability is limited to patent and copyright 
infringement suits while a license (an be attacked for violation of proprietary information_ 
Second. the first clause gives the licensor a full discretion whether to defend a third party 

challenge.In the second sample. the licensor may avoid liability arguing that the licensee has 
failed to provide him sufficient assistance. Therefore, a judicious licensee should be able to 
distinguish between limited but meaningful warranties from sham and discretionary assur­
ances_ Therefore. for instance , the parties should agree on the scope of cooperation while 
def ending third party suits. 

Some major computer firms. notably IBM, grant their customers very effective warranties 
of title. Standard Terms and Conditions used by th~t company read as follows: 

.. IBM will at its own expense settJe or defend, and pay any damages or costs resulting from. 
any claim brought against the customer that any machine, program package or progran1-
ming or the use of any material within the scope of a License or any use thereof infringes or 
has infringed a patent, design right ... , moral rights copyright or any intellecrual property 
right effective in the United Kingdom provided that the customer. 

i) promptly notifies IBM in writing of any such claim~ and 
ii) permits IBM to control the defence and settlement of any such claim." 

(e) Wa"anties of Fitnes.f and Merchantability 

Implied warranties of fitness for a particular purpose and warranties of merchantability of 
software roughly correspond to statutory liability for "physical" defects of goods in civil law 
countries. Like in Europe and Latin American countries. the threshold problem is whether 
code provisions governing the seller's liability for defective performance are applicable to 
transactions involving software. Two arguments are advanced against the application of 
An. 2 of the Uniform Commercial Code on Sales to licensing of software First, software is 

103 



................................... --------------~~~~~~~~~~~---

s So/C).'Slnski &ant Tnnds in CorrtnJc111al Proctia ... 

11ot a .. good" within the meaning of & 2-105 because software is an intangible. Second. 
software licenses are not .. sales" because the title to the intangible remains with the 
licensor. 35 

Objections against applying traditional sales law concepts have gradually faded away.T~ 
day. the majority of commentators agree that the UCC provisions on warranties should 
govern either directly or by way of analogy the obligations of suppliers -:-f software vis-a-vis 
their clients. A recently published handbook concludes. that Art. 2 of the UCC governs most 
computer-related transactions, except those that can be characterized as contracts for 
rendering soldy services.36 Judges and parties to software legal disputes tend to rely on the 
Code. because th~ standards established in Art.2 constitute the only comprehensive codifi­
cation of warranties m business transactions. Efforts to pass special legislation devoted to 
the liability of suppliers of software have failed due to the lobbying of the industry. 37 

Since courts and legal commentators tend essentially to treat various forms of transactions 
in software equally and in reality. software licenses are often merged with transactions for 
the delivery of hardware and services (e.g. computer system agreements or '"tum-key" 
computer contracts). a mo.-e comprehensive description of legal consequences of the 
subjection of the said computer software deals to Art. 2 of the UCC. is presented in Section 
4 (infra). Below. we will briefly present legal standards prevailing in the United States 
licensing practice. 

According to an industry survey. the warranty clauses belong to the most frequently 
negotiated cvntractual stipulations. Yet. at the same time. the content of warranty clauses 
used by members of ADAPSO reveals that these clauses are strikingly similar. It proves that 
the clauses are .. so to speak non-negotiabl. 38 A review of warranty stipulations used by the 
industry leaders and recommended by leading software law handbooks indicates that with 
the sole exception of custom-made programs, licensees can rarely count on obtaining a 
bare minimum of guarantee that a licensed program either fits for a particular purpose or that 
its operation will be substantially error-free. For example, a program license agreement for 
IBM's 2.1 DOS reads: 

"lJ.\flffD H:-tRRA.\TI·: TlfEPROGR.·l\l/SPRDi1DED ':AS/S"H1THOLTWARRA.\TI"OFA.\T KIND, 

flTHER fXPRESSF..D OR /.\f PlJF.D. l.\'CLL'DJ.\'G, BuT NOT UM/TED TO THE IMPUED H:4RRA,\TJF.S 

OF .\IERC/l.f :\ 7.-tBJim· A.\'D FIT.VESS fVR A PARTICC.:UR PURPOSE. THE£\ TIRE RISK AS TO THE 

Ql :-ti.Jn" A.\'D PF..RJ-VP\IA.\'CE OF TllE PROGJU\l /S H1TH YOU. SHOULD THE PROGRAM PROVE 

DEFH7n·r: mer ... ASSC:. IE TllE E.\TIRE COST Of" AU .\'ECf ... ~RY SERHC/,\'G, REPAIR OR 

CORRE<710.\" ... IBM does not wa"ant that the functions contained in the program will be 
uninterrupted or e"or.free. Hawever, IBM warrants the diskelle(s) or other medium on 
which the program i.'i jumi.'ihed. to be .free from defects in material'i and workmanship under 
normal u.'ie for a period of90 (ninety) days.from the date of delivery to you ... l/MITA 170NS 
OF Rf Ml~IJIF.S: IBM's entire liability and your exclusive remedy shall he: the replacement 
of any diskette ... 2. if IHM or the dealer is unable to deliver a replacement ... which is .free of 
defects .. yo11 may terminate this agreement ... 39 

104 



R~ant Trrnds in Contractual Practia __ _ S So/1ysinst1 

The foregoing contractual provision. which follows An_ 2 requirements concerning war­
ranty exculpation clauses. contains the notorious .. as is" disclaimer excluding all implied 
warranties. According to& 2-316(3)(b) of the Code. such e.'<pressions like ··as is" or .. with 
all faults" exclude all implied warranties, which means that the buyer (licensee) takes the 
entire risk as to the quality of the goods. Foreign importers of software should also be aware 
that by examining the computer system or refusin~ to examine the licensed program. they 
may lose implied warranties .. with regard to defects which an examination ought in the 
circumstances to have revealed to [them r (& 2-316{ 3} { b} ). 

Against this backdror. licensees ought to try to negotiate a meaningful protection Ylith 
respect to the reliability of program performance and its fitness to a concrete purpose. The 
two sample clauses reproduced below seem to represent a compr001ise approach: 

.. Licensor warrants that the Licensc:d Program shall perform in accordance with the specifi­
cations set forth in the licensed materials :ind fits the purpose described in the ·whereas 
clause"'_ 

.. Licensor warrants that the licensed program will perfonn substantially in the manner 

described in the licensed materials if it is properly used as described in the instructions and 

manuals delivered to Licensee." 

It is worth noting that the latter clause contains two important qualifications in favour of the 

licensor. The word .. substantially" takes into account the legitimate interests of the licensor. 

Indeed, there are no perfect error-free programs and they are constantly modified. There­
fore, parties to a licensing agreement should negotiate a program of long-term cooperation 
aimed at both removing defects and perfecting the licensed software_ .W 

A discerning licensee should describe in detail the intended use of the computer program to 
be acquired and obtain precise infonnation from the licensor concerning the advantages of 
his software, its compatibility with the user's hardware, etc. The licensor's explanations, 
especially given in business correspondence, may be classified as .. express warranties". 

Licensors, however, try to disclaim liability for inducing their clients to enter into contracts 
by relying on the parol provision of & 2-202 of the UCC. disdaimtn and the so-called 
mrrg~r clauses. Consider, for instance, tht: disclaimer and merger clause in lnveston 
Prtmium Corp. v. Burroughs Corp. :4 1 

"There are no u11der.s1a1u/i11gs. agreements, representations or warranties, express or 
implied (including any regarding merchantability or fillless for particular purpo.-;e) not 
specified herein, respecting thi.5 contract or the equipment hereunder. This comract .Wates 
the entire obligation of the .o;eller i11 connection with thi.o; transaction." 

The purpose of such a merger clause is to negate an express warrant}, usually given before 
execution of the contract but, sometimes, it is used to disclaim even a warranty given after 
signing the agreement. Commentators stress the fa:..t that the majority of United States 
courts usually approve the vaJidity of such disclaimers embodied ir. merger clauses 42 The 

105 



S Soltysimk.1 Recrnt T nmds m Contracn1al Pr:x"tice ... 

first precedent in the computer transaction field that explicitly rejC\;ted the proposition that 
disclaimers are effective against express warranties was Consolidattcl Data Tttminals v. 
Applitd Digital Data Systems. -'3 Although those cases dealt with computer hardware and 
computer systems. it is likely that thcir holdings are applicable to ··mntcl" ( soth\'are-hard­
ware) and "pure .. software transactions_ 

3. Shrink-wrap littnsa 

The development of personal computers. combined with the ability of software firms to 
distribute programs on floppy disks. have enabled them to market software in small 
packages.Typically. such programs are recorded on diskettes and marketed in plastic 
envelopes containing both software and instructional material. Although the distribution of 
programs is analogous to selling books. software companies have chosen a license form of 
contracts in order to protect their trade secrets and control the market The advantages of the 
license approach are manifold: first. software owners are able to retain title to the program 
and the medium in which the software is recorded in_ Second. they can unilaterally delineate 
the scope of the client's right to use the program and disclaim all warranties. Third. prhaps 
they can even defeat those provisions of the Copyright Act. which are aimed at securing the 
owner of a copy of a program the right to make adaptations and the right to make a back-up 
copy.The retention of tide enables the owner of software to prevent reverse engineering and 
avoid the application of the First Sale Doctrine that prohibits the copyright owner to control 
copies of books and other works which were sold in a market place . 

.. Shrink-wrap" iicenses, also known as .. blister-pack" or .. box top" licenses. are typical 
contracts of adhesion. Unlike arm's-length license agreements, they leave no room for 
negotiations and. according to their terms, the contract is made upon the opening of the 
package containing a program by the client An offer to clients printed on the wrapper 
typically reads as follows: 

"BEFORE roe: OPE.\' THIS PACKAGE: CAREFL'LI.r READ TllE FOLLOW/.\"G LEGAL AGRE£\IE.\T 

REGARDIXG roc.:P. CSE OF THE E.VCLOSED PROGR.4Jl OPE\'/XG THIS PACKAGE ME4..\iS roe 

ACCEPT THE TFJUIS A.\'D CO.\'D/TIO.\'S OF THIS L/CE\:5E IF roe DO .\'OT AGREE WITH TlfE.\f, 

rou SllOC:LD RETUR.V THE PACKAGE U.\'OP£\'ED A.\"D }DUR .\10.\"E.T lf1LL BE REFC:.VDED .. 

Some software companies try to obtain the customer's signature by providing a registration 
certificate, which may allow the .. licensee" to claim his money back or e!lforce skeleton 
warranties but many software .. publishers" do not bother to obtain such evidence of the 
client's assent Typical terms of shrink-wrap licenses used by suppliers of such popular 
programs as Lotus 1-2-3. WordPerfect, Apple Writer usually contain the following terms 
and conditions: 

I. The geographical scope of the license is limited to the territories of the United States 
and its possessions; 

2. The licensee is pennitted to use the program on a single machine; 

10I 



Rrant T rendf in Contract11al Practicr ... s Soll).-sinski 

3. The! transfer of the program is prohibited or cond!tioned upon the acceptance of the 
terms of the license bv the sublicensee; 

4. Reverse engineering ~d adaptations of the program are usually prohibited;'" 
5. Programs are normally licensed on "AS IS" basis. that is to say ·'without warranty of 

ki d .. 45 
any n ~ 

6. Licensors disclaim any damages but. sometimes, licensees are allowed to claim the 
replacement of a defective medium (e.g. diskette) or they may obtain a refund upon 
returning the program if the licensor or its dealer is unable to deliver a replacement; 

1. To further protect the licensor and its dealer against the risk of express warranties 
arising during negotiations or discussions preceding the agreement. shrink-wrap li­
censes contain "merger" or ··entire contract clauses" which state that the licensee 
acknowledge that he has read the contract and agrees that the agreement "supersedes 
any propo~ or prior agreement, oral or written, and any other communications 
between [the Parties] relating to the subject matter( ... ). ,..u; 

The phenomenon of shrink-wrap licenses has been analyzed in numerous law reviews and 
many commentators stress the fact that they epitomize all vices of contracts of adhesion 
allowing the party of superior bargaining strength to dictate its terms unilaterally to its 
clients.-'7 Recognizing that courts may refuse to enforce such licenses either as a matter of 

contract law (the lack of assent of the purported licensee) or because their tenns are 
inconsistent with federal laws, the software industry has been lobbying several state 

legislatures to enact laws validating shrink-wrap transactions. In 1984, the first statute of 
such nature went into effect in Louisiana.-'8 The enactment provides that an acquirer of 
mass-marketed software enters into a license agreement on terms fonnulated by the supplier 
upon opening a package. The Louisiana Law validates the following terms of the license: 

a) Stipulations for the retention of title to the software by the 'icensor; 

b) Prohibitions against ··reverse engineering", copying, modifying and adapting the soft­
ware; 

c) Prohibitions against assignment, rental or other disposition of the software; and 

d) Stipulations for the automatic tennination of the agreement if any license tenn or 
condition is breached by the licensee. 

The Louisiana Statute was challenged soon after its entry into force. A district court decision 
held that several ofits provisions are preempted by the federal Copyright Act and the ruling 
has been upheld by the court of appeal.49 The court held that the Louisiana Software 
License Enforcement Act created a perpetual prohibition .. against copying any computer 
program licensed pursuant to its provisions".so Thus it clashed with the archival copies 
exemption of Section 117(2) of the Copyright Act, which was established by Congress for 
users of software. Furthermore, the opinion states that the Statute has touched upon the area 
of the federal patent and copyright laws by permitting a software producer to prohibit the 
adaptation of a licensed program by reverse engineering. 

107 



S Soltysinski Reant Trrnds in Contraclllal Practice __ _ 

Vault raises an interesting and controversial question. To what extent, if at all. does its 
rationale apply to nonnal licensing agreements that are not contracts of adhesion? The 
argument that the conflict between state la'Yf'S enforcing covenants prohibiting all fonns of 
reverse engineering and adaptations and federal laws propagating dissemination of ideas 
and competition should be resolved in favor of the latter laws, is consistent with some 
United States Supreme Court decisions. but there are also precedents established by state 
and federal co'.Jrts enforcing perpetual prohibitions on licensees of trade secret~ that are 
justified in the naMe of the parties' autonomy and freedom of contract. 51 

4. Sales and computer system agreements with end users 

As already mentioned, ''pure" software transactions take the form of ·1icense" or '1ease" to 
enable the supplier to retain the title to the marketed intangible_ And as long as the rationale 
of Vault is not extended by courts to normal contracts which are actually negotiated by 
users of software, licensors will be able to circumvent & 117 of the Copyright Act. which 
authorizes the owner of a copy of a computer program to make or to authorize the making of 
another copy or adaptation of that computer without the pennission of the copyright 
ov.-ner.52 Because the statutory privileges are granted to "owners", instead of '1awful 
possessors"53 of copies of programs, licensors and lessors of computer programs forbid 
their clients to exercise their rights by inserting appropriate contractual prohibitions into 
their agreements_ 

For the foregoing reasons, acquisition of software in the United States and elswhere is 
typically conducted through licenses (leases) rather than through various forms of sales-like 
transactions_ 54 The latter arrangements typically comprise the delivery of hardware, soft­
ware or services. The majority of reported cases deal with such mixed transactions involving 
the sale of hardware, including its system software, combined with the sale or licens­
ing(leasing) of application software needed by the purchaser. In addition the transaction 
may cover the provision of maintenance and support services. These complex contracts are 
usually denominated as "computer system" or "tum key" agreements. 55 

A review of the recent case law confirms the proposition that courts apply Art. 2 of the UCC 
to the overwhelming majority of software acquisition contracts either directly or by way of 
analogy. The Code provisions on "sales" govern not only mixed transactions involving 
software and hardware but also the lease-purchase of computer software.56 Customized 
computer programs have been also classified as "goods" for the sole purpose of allowing the 
court to apply Art. 2 of the UCC to such transactions. 57 

The application of Art. 2 of the Code to the majority of computer-related transactions 
means, inter alia, that the following practical aspects of such agreemt..>Jlts are governed by the 
proper state law on sales: 

I. Warranties, 
2. Remedies for breach, 

108 



R~ant Trrnds in Contractual Practic~ ... 

3. 
4. 

5. 
6. 

Disclaimers and limitation of remedies, 
Mergers and integration clauses, 
Starute oflimitations ~riods and 
..Vouching in" rules. 

s SoltJ'Sinski 

We have discussed some of these issues in the context of software licensing agreements 
(supra. items 2 and 3). To avoid repetition, this section of the report will examine only 
selected new issues against the background of recent court decisions in software sales 
transactions. 

The Code creates an implied warranty of merchantability (&2-314). which requires that 
the product be of reasonable quality and fit for its ordinary uses. Some commentators argue 
that the standard of .. merchantability" cannot meaningfully be applied to software transac­
tions becau3e computer software are so diver.;e that they cannot be properly described for 
the purpose of defining their quality characteristics or minimum functions the program can 
be expected to perform. 59 Although this statement seems to be disputable, it is interesting to 
observe that there are very few court decisions in which software vendees prevailed in a suit 
for breach of warranty of merchantability. Similarly, software vendors frequently prevail in 
actions involving allegations of breach of warranty of fitness for a particular purpose (& 
2-315 of the UCC). A case-by-case analysis ofUCC software litigation reveals that vendors 
successfully rely on warranty disclaimen not only in implied but also in express warranty 
disputes. The latter form of warranties can be created both by agreement and any affirmation 
of fact or promise made by the seller that constirutes part of the bargain (&-313 of the Code) 
. Typically, any description of the quality or function of a computer program may become 
classified as an express warranty (e. g. a representation that a program has an on-line 
response time or that a system is adaptable for a specific type of business). 

While in "normal" sales transactions, courts have generally not allowed vendors to rely on 
disclaimers to disavow their written or oral express warranties, in the majority of com­
puter-related cases, they have reached the opposite conclusion.60 Thus, for instance,in 
Westfield Chemical Corp.v. Burroughs Corp. the court held that an express assurance 
concerning the time saving of a computerized accounting system was effectively dis­
claimed. 61 Similarly, in Jaskey Financing and Leasing v.Display Data Corp. the court 
ruled that a conspicuous and properly worded disclaimer, effective against implied war­
ranties, precluded oral e:ipress representations that the sold software system was adaptable 
to the buyer's type of business. 62 

The minority view exemplified by Consolidated Data Terminals v. Applied Digital Data 
Systems63 rejected the seller's proposition that the disclaimer of "express and implied 
warranties" should override an express representation relating to the operating speed of a 
line of terminals sold to the purchaser.The author of a law review lists, inter alia, the 
following obstacles facing purchasers of computer systems under United States law: 

109 



S Soltysinskl Reant Trends m Contractual Practicr __ _ 

1. The seller's ability to limit or disclaim warranties, 
2. Limitation of consequential damages 
J _ The buyer's failure to effectively reject defective goods or to particularize the defects, 

and 
4_ The shortening of the statute oflimitations_M 

Industry surveys indicate that .. sales" of computer systems are subject to the same kind of 
warranty standards as licenses and leases of software. Typically, suppliers of software grant 
limited warranties ranging from 30 to 120 days of duration_ Suppliers of custom-made 
software usually give longer warranties. One year warranties are not uncommon_6S 

In practice, the seller's obligations are usually reduced to .. fix or replace" duty_ The 
following language is recommended by an ADAPSO sample form: 

·'If ABC is u11able to replace defective documentation or media or if ABC is unable to 
provide a corrected computer program or co"ected docume11tatio11, ABC will at its sole and 
exclusive optio11 either replace the computer program with a .functionally eq11iva/ent 
program or ref1111d the fees paid for licensing the computer program without charge. •66 

Legal analysts emphasize that until recently courts were decisively biased in favour of the 
suppliers of computer programs because of the ''infant industry" argument At present, 
many legal analysts, consumers and even the software industry recognize the need to 
enhance the protection of users and condone misrepresentation by suppliers of computer 
programs. The software industry, without conceding the issue, is advising its minicomputer 
segment to take into account the ootential applicability of The Magnuson-Moss Warranty 
Ad'7 to microsoftware transactions. The Act applies to "consumer products" and imposes 
certain mandatory obligations on sellers of such merchandise. 

To sum up, United States laws governing the acquisition of software is still biased in favour 
of the seller and, therefore, foreign importers of United States SC'ftware should be aware of 
many potential legal traps associated with the application of the UCC to their transactions. 
In arm's-length transactions, if they cannot agree on the choice of a more fair legal system, 
they should seek advice of an expert in the law of the exporter. 

Recent Developments in the EEC 

I. Introduction 

As indicated, the second part of the report is devoted to a succinct review of recent legal 
developments in the EEC. The evolution of national laws is illustrated mainly with 
references to jurisprudence and practice in the Germany. Germany has the richest collection 
of judicial precedents in our field. Moreover, the dominant trend of the case law in that 
country is rathfr well-balanced. By and large, German courts take into account reasonable 

110 



Recent Trencl" in Contractual Practice ... S Soltysmski 

expectations and justified interests of both the suppliers of software and users thereof.This 
point seemed to be relevant from the perspective of the Regional Network for Microelec­
tronics in the Economic Commission for Latin America and Caribbean (ECLAC) region. 

Importers and users of technology from Latin .\.merican and Caribbean countries are 
advised to examine and adapt various European model laws and general conditions for the 
acquisition of computer programs. The following sections of the report contain numerous 
references to the Conditions for Supply of Licensed Software Packages to Government 
Users i11 the United Kingdom (the United Kingdom Government Procurement Conditions 
1987) and similar general conditions being in force in Germany.68 Those standard fonns 
and general conditions establish de facto legal standards and are more even-handed than 
contractual forms elaborated by the software industry. 

2.Licensing of software and computer systems 

(a) General Considerations 

Unlike the United States or the United Kingdom, where apart from codification of sales 
laws, the remaining contracts are almost exclusively the domain of general law of contract, 
in Germany, as in many civil law countries, the Civil Code (BGB) regulates a number of 
typical contractual transactions (contracti 11ominati). As a result, classification of a given 
transaction under a specific rubric (e.g. ''sale", "barter", "lease", etc.), entails important 
practical consequences for the parties thereto. Specific types of contracs are subject to 
different slandards of form, remedies, statute of limitations, etc. Transactions not regulated 
by the legislator, are governed by general rules applicable to all contracts. Besides, such 
unnamed contracts can be governed by the provisions applicable to similar types of 
contracts regulated in the Code by way of analogy. 

Intellectual property licenses are not regulated in the Civil Code. Thus, in principle, they are 
subject to its general rules on contractual obligations. According to the German Supreme 
Court, contracts for the supply of software - depending upon their content - qualify as 
lease (A-fiete ), leasing, usufructuary lease, contract for work or sale. 69 Although the issue of 
classification of software licenses, has not been finally settled, the dominant view in the 
jurisprudence is that they are governed by general rules of the Code applicable to contrac­
tual obligations.70 Some commentators advocate the application of the pertinent provisions 
relating to lease (Miele) or usufructuary lease (Pacht). 71 As explained by the Landsgericht 
Stuttgart72, the application of the general rules gives the licensor the right to cure defects (& 
326 of the Code), but extends the statute of limitation period from six months to 30 years. 

In principle, software licenses are limited to situations when the marketed data are copyrigh­
table or constitute trade secrets and when the supplier retains the title. 

111 



S Soltysms/a Recent Trends in Contractual Practice ... 

(b) lhe Scope of the License 

Both in Germany and other EEC countries, suppliers of software are essentially free to 
delineate the scope of the grant. Territorial, time and subject-matter restrictions are permis­
sible within the limits permissible under the respective national and Community antitrust 
rules. As in the United States, licensees are often expressly prohibited to copy the licensed 
program, except for a back-up copy, and may not adapt it for purposes not contemplated in 
the agreement. Furthermore, the licensee may not rent the licensed program to third parties. 

(c) Training, A.fai11te11a11ce and Support 

Neither United Kingdom nor German laws of contract imply a general obligation of the 
licensor to provide the licensee with free of charge training and support services.However, 
German courts have developed a principle that the licensor owes the licensee a duty of 

advice concerning the choice of the best combination of software and hardware for a 
concrete purpose described by the client. 73 

Model Form of License Agreement for the Use of Computer Software Products, elaborated 
in the United Kingdom under the auspices of the Institute of Purchasing and Supply (JPS 
Model L, I 987), stipulates that the licensor, shall .. if applicable, install the program by the 
date, all as specified in App. I". Also, maintenence and support obligations arise only .. if 
required" (Clause 11 ). On the other hand, the IPS Model License is more generous to the 
licensee with respect to the issue of training: 

"lhe licensor shall provide instruction in the use of the Program for the Licensee 's 
personnel as !ipecified in App./. Unless otherwise specified no charge shall be made for 
such instruction but the Licensee shall be responsible for paying any travel or living 
expenses." 

(d) Responsibility for Legal Defects (Wa"a111ies of Title) 

Analogous application of sales concepts or rules applicable to intellectual property licenses 
under the majority cf European legal systems would lead to the impositiou of sanctions 
upon the licensor in the event of "legal defects". Therefore many software suppliers and 
some commentators argue that far-reaching limitations oflicensor's liability should not be 
objectionable. Consider the following sample form: 

"The Ucensor is not aware of any rights of third parties which would oppose the 
utilization purposes of the Ucensee. The Ucensor is not liable, however, for the licensed 
software being free of rights of third parties. " 

''If the Licensee is accused by third parties of infringing intellectual property r1ghts ( .. .), the 

/,icensor promises to provide the Licensee with information and documents in deft!nse 
against such claims a:; far as the licensor is able to do so without breach of third party 
obligations and while maintaining its own confidentiality interests. All costs involved in 
such activities .'!hall he borne hy the licensee. "74 

112 



Reant Tnnds in Contractual Practice ... S Soltysmski 

In contrast, the IPS Model provides that the licensor shall fully indemnify the licensee 

against all damages (excluding consequential damages) incurred by reason of any infringe­
ment or alleged infringement of the licensed program subject to the foliov.ing conditions: 

i) "The Lice11See shall promptly notify the Licensor in writing of any allt:ged infringe­
ment of which he has notice; 

ii) The licensee must make no admissions without the licensor's prior wrillen conselll, 
iii) The licensee, at the licensor's request and expe11Se shall allow the Licensor to 

conduct any negotiations or litigation and or sen le any claim. The Licensee shall give 
the licensor all reasonable assistance. The costs incu"ed in such negotiations shall 
be for the Licensor 's account. '· 

A simiiar copyright indemnity clause is found in the Centrai Computer and Telecommuni­

cations Agency and Computing Services Association Software License General Conditions 
(CCT A & CSA Licensing Conditions). This proves that it is a myth that a software supplier 
cannot undertake an effective copyright indemnity obligation. 

(e) Responsibility for Physical Defects-Wa"anties of Merchantability and Fitness for a 
Particular Purpose. 

Although the European computer industry also stresses the point that software is never free 
of errors, the jurisprudence in Germany and other EEC countries is less supplier-biased than 
the United States case law. In Germany, for instance, the judicial concept of "physical" 
defects of software is much broader than in United States case law and, surprisingly, there 
are numerous reported cases devoted to warranty disputes there. The notion of "defect" is 
defined in & 459 of the Civil Code in the chapter on Sales but it is applicable to defective 
performance within the framework of other "named" contracts such as "lease" or "work". 
Since software licenses are classified usually as "lease-like transactions", we will limit our 
analysis to a brief examination oflessee's remedies in case of breach ofwarranty.75 

According to & 537 of the Civil Code, the lessee may either suspend paying rent (in the 
event the product is inappropriate for the agreed use) or reduce its payment (in case the 
product has a defect limiting its usefulness forthe agreed use). In addition, if the lessor fails 
to remove defects in due time, the lessee (licensee) has the right to sue for damages. In 
addition, the licensee may remove defects at the licensor's cost (&538). Finally, the lessee 

(licensee) may rescind the contract if the lessor (licensor) failed to make the thing good 
within a reasonaJ:.ie cure period (& 542). 

General conditions and sample contractual clauses frequently limit the licensee's right for 

breach of warranty. Major computer companies offer a full range of warranty terms. 
Siemens' General Tenns of Software Licenses, for instance, offer three classes of warranty 
obligations that are subject to different price conditions: 

a) Full warranty, including elimination of errors; 

113 



S Soltt:sinski R~crnt Trrnds 1n Contract11al Pradier ... 

b) Partial warranty plus assistance in the elimination of errors~ and 

c) Replacement of defective software and/or assistance.
76 

In the United Kingdom. the licensor of software typically warrants that the licensed program 
will perforrn substantially as described by the enclosed technical documentation. A contrac­
tual warranty found in the CCT A & CSA general conditions promises that: 

"Unless otherwise provided in the Srecid Co11ditions, the Licensor wcurants that the 
Product u.-.ed i11 accordance with the Lice,,sor 's instructiuns will perform substmitially in 
accordance with the operating manual ... for the duration of the Warrmity Period specified 
in the Schedule. The Licensor does not warrant that the functions or facilities of the Product 
will meet the Licensee 's requirements or that operation of the Product will be uni11terrupted 
or e"or free. " 

Similar terrns of warranties are recommended by the Model Form of License Agreement of 
IPS. 

(/) Disclaimers 

European standard forms and general conditions often expressly exclude the licensor's 
liability for consequential losses. Licensors tend to disclaim their liability for warranty of 
fitness. Some model forms recommend the language stating that the licensee knows the 
licensed program and its technical capabilities. 77 However, some mciel agreements pro­
vide that "the licensor shall indemnify the licensee against injury to any persons or loss of or 
damage to any property, including the program which may arise out of default or negligence 
of the licensor. "78 The CCTA & CSA Conditions contain a similar provision, qualified by a 
ceiling of the upper amount of any liability in respect of losses and damages to property up 

to the amount of one hundred thousand pounds. 

IBM's Standard Terms and Conditions used in the United Kingdom offer warranty of 
conformity of the licensed program with the current specifications: "All other licensed 
programs are distributed "as is'', without warranty of any kind, express or implied." But in 
the event the company is found liable for death, personal injury or for damage to tangible 
property its liability is unlimited. In ot.'1er cases, the conditions specify contractual maxi­
mums of liability. For instance, the upper limit of compensation to be paid for a licensed 
program, IBM promises to pay the greater of £5 5, 000 or twelve months' charges due for the 
use of the licensed software.79 

(g) Shrink-Wrap Licenses 

As in the United States, "shrink-wrap" licen:.;es are widely used in Europe. They are 
marketed on similar terms and conditions. Thus, for instance, standard software packages 
offered by Image System Technology, United Kingdom, are "licensed" subject to the 
following stipulations: 

i) The license is made upon opening the package by the customer; 

114 



&ant T rrnd:s rn C 'ontractual Pradier ... S Soltysrnst1 

ii) It can be returned to the place of')>urchase"(sic!) \\ithin 7 days to obtain a refund. 
iii) The software may be operated on one computer at a time~ 
iv) The customer may make one back-up copy which becomes the property of the 

licensor, 
v) Software and data are provided "as is .. and the licensor excludes all warranties. 

"except that the media (disk or tape) are free from defect and materials under normal 
use for a period of90 days from the date of delivery." 

Except for Germany. there seems to be no precedents relating to the legal qualificajon of 
"shrink-wrap" licenses or to the validity of typical restrictive covenants found in such 
standard contracts. Legal commentators agree that some "shrink-wrap" licenses can be 
found partially or totally unenforceable in the light of general principles of the applicable 
law of contract (unconscionability ). In Germany "shrink-wrap" licenses and disclaimers are 
strictly controlled by special legislation concerning general conditions of contracts. Such 
licenses are valid only if they conform to the requirements of the body of case law 
established under the Statute.so 

Others correctly observe that certain restrictions may conflict with the principle of frtt 
movement of goods within the Community or the doctrine of exhaustion of copyright. It 
should be mentioned that according to a decision of the Supreme Court of Germany, 
standard programs fixed in tangible media and distributed to the recipient for an indefinite 
period of use in exchange for a fixed payment are presumed to be classified as .. sales".81 

Similar doubts exist in the United Kingdom and France. Restrictions on reverse engineering 
and dccompilations may be ~iewed as contrary to public policy. The British Copyright Act 
considers "research" as a privileged act. regardless of its purpose.82 However, the validity 
of an express prohibition of such activities in the context of a contract of adhesion is an 
unsettled issue.83 

Finally, it is worth noting that Section 56 of the British Copyright Act of 1988 indirectly 
applies to "shrink-wrap" licenses. The Act provides that, if d;1y work in electronic form is 
marketed on tenns that it may be copied or adapted, the right to do so passes to any 
subsequent transferee of any of such copies.Thus. S. 56 admits express terms prohibiting 
transfer or making adaptations. 

3. Sales of Software and Mixed Software/Hardware Transactions 

(a) Prohlem.tt of Classification 

Although the problem of legal classification of software acquisition contracts in EEC 
countries has not been settled, there is a growing tendency to treat many transactions in 
standard software, as sales or sales-like agreements. In Germany, there are several 
Supreme Court decisions recognizing software acquisition contracts as sales when the data 
are incorporated in a tangible medium and the acquirer obtains the right to use only an object 
code.84 A similar trend is visible in the United Kingdom. In Endodynamic Systems 

115 



S !i.>ltysinstr Recrnl T"11tk 111 ( ·l)lflradllal Practice ... 

v.Gmttal Automation. the coon held that at least contracts invol\ing both software and 
hardware should be treated as transactions in ··gooc:ts"_85 Funhermore. the application of the 

Sale of Goods A ... '1 ( l 979) to software acquisition contracts is rarely questioned_ 86 

In Gennany, mixed software and hardware acquisition contracts are often classified under 
the rubric of "sales". If hardware and software cannot be separated without a detriment to 
the client. he can rescind the whole contract even if only the software is defective. If a 
defective software can be replaced only by a new version of the program with which the 
supplied hardware is not compatible, the client can rescind the whole agreement despite of 
the fact that the tangible element is error-free.87 The practical difference between such 
unitary contracts and truly .. mixed" contracts consist in that the latter are split intc two or 
more separate parts to which differer.t provisions of the Civil Code are applicable. For 
instance, a contract for the commissioning of softwVare and acquisition of a suitable 
hardware equipment was held a mixed agreement governed by the Code provisions relating 
to contract for work (Werkswrtrag) and sales (Kauj)_KI 

{bj Wurra11tiesfor "Physical"Defects 

After a shon period of doubt it was accepted that the Code concept of .. def ecf' is applicable 
to software transactions. Indeed, especially German coons have demonstrated their tremen­
dous capacity to adapt the Code rules on breach of warranty in our field. Section 459 of the 
Code states that a thing sold shall be free of defects that reduce its value or usefulness for 
ordinary use or its fitttess for the purpose contemplated in the agreement 

The German case law generally applies very strict standards to the seller's obligations 
relating to the functionality and usefulness of software. Judges found defective performance 
by the seller of software in the following circumstances: 

i) Unclear documentation;89 

ii) Lack of compatibility between error-free software and hardware recommended by the 
seller;90 

iii) Lack of a signal indicating that a diskette is defective;91 

iv) Lack of proper instructions; manuals shall be translated into German; 
v) The use of a program "'lock" is permissible but it constitutes misuse if the buyer is not 

informed about its presence and the seller uses the device to "persuade" the client to 
buy additional products 92 

German couns apply rather strict standards to the consulting obligations of the supplier of 
software, especially with respect to consumers. Funhermore, judges are eager to find the 
existence of a representation of promised characteristics of a sold program by the seller. The 
lack of the promised characteristic of the "merchandise" is treated as a "defect" (& 463 of 
the Code). Such a warranty of "compatibility" can be granted not only by way of express 
representation, but it can be implied when the seller knew the purpose of the contemplated 
application of the purchased program 93 

116 



H~~nt T rrnth 1n Contractual Pract1c~ ... S Soltysinski 

(c) Remedies for Breach of W arra11ties and the Impact of General ( ·o,.,Jitions 

Remedies for breach of warranties under German law include the right to rescind the 

contract and claim only transactional damages (& 276 of the Code). Full damages are 
available only in dte absence of ·)>romised characteristics of a thing" (:ugesicherte £ige11-
schafte11). From the buyer's perspective. the Code system ofliability for defective perform­
ance in the framework of sales law has two disadvant6ges: First. it has a very short statute of 
limitation period (six months).Second. the buyer does not have a right to demand correction 
of defects. 

The \isible improvement of the legal position of the buyer vis-il-l·is the seller of software 
products in EEC countries is partially due to a concerted action oflarge-scale software users 
and consumers. Apart from general conditions for the delivery of computer hardware and 
software for government agencies. the associations of users of computer programs from the 
EEC have elaborated a Model Law for the Acquisition of Computer Equipment.9-i The 
CECUA Model Contract applies also to mixed transactions involving software. Although a 
comprehensive evaluation of the Model Contract is beyond the scope of this report. we will 
briefly characterize its key provisions pertaining to the matters examined in our study. 

First. the CECUA Model Contract defines and stresses the importance of the parties' murual 
obligations during the installation of an ordered computer system (Cl. 4-11 ). The supplier is 
obliged to familiarize himself with the requirements and local conditions at the installation 
site. Furthermore, he is bound to give the client necessary advice and check his actual needs 
with respect to the ordered equipment ( Cl.4). Second. following the delivery and installa­
tion of a system. the supplier shall conduct necessary tests of all delivered hardware anc! 
software elements of the package. Copies of such tests shall be made available to the buyer 
(Cl.13). Third, the supplier warrants that hardware and software are free of design. execu­

tion, function, workmanship and material defects and that they conform to the published 
specifications and contractual terms and conditions ~Cl.15). Fourth. the supplier shall 
deliver all necessary programs and shall guarantee the client access to software improve­
ments during seven years following the delivery of the system. Fifth. The supplier warrants 
that all elements of the system are mutually compatible and he shall not modify any 
interfaces without a written permission of the client. Sixth. the supplier is obliged to deliver 
all necessary documentation and user's instructions (Cl .21 ). 

Sanctions for breach of warranty of title and warranty of defects are stricter than under the 
Code or typical seller's general conditions for the supply of computer systems. The period 
of contractual guarantee is de mi11imis 12 months and the client has the right to demand 
specific performance (repair) or he is authorized to cure the defect with the help of a third 
party at the risk and cost of the supplier (Cl. 23). The supplier is obliged to defend the client 
at his costs against third party claims for alleged or actual infringement of intellectual 
property rights, including infringement of trade secrets and to reimburse all costs incurred 
by the buyer therewith (Cl. 30). 

117 



~ So/n:sinski R~unl Trrnds in COl'lll'Od1lal Pradier __ _ 

A commentator stresses the fact that the CECU A Model Cootract is rather unpopular among 
suppliers. but it serves as an educational tool for clients who negotiate computer contracts. 95 

Furthermore some suppliers have introduced specific provisions of the Model Contract to 
their general conditions. Finally, the CECUA Standards are being more and more accepted 
by courts.96 

Of course. standard forms and conditions used by suppliers of technology are less friendly to 
the "buyer". It is worm stressing. however, that in some EEC jurisdictions such contracts of 
adhesion are controlled by special legislation_ In Germany, for instance. the Law on General 
Conditions of Contracts 97 prohibits a number of clauses deemed to be oppressive to clients 
and. therefore. they are either null or unenforceable. For instance, a disclaimer of the right to 
rescind the contract in the event of seller's failure to repair the sold software was held 
unenforceable_9S Likewise. OLG Hamm ruled that a clause aimed at establishing a fiction 
that the delivered software was accepted by the client immediately upon its delivery. was 
aimed at shortening a mandatory test period for software transactions and it was therefore 
unenforceable. 99 

4. Custom-made Software and Pttuliaritia of Contract for Work (Werknrtrag) 

The providers of customized 5'>ftware or computer systems are subject to stricter rules than 
suppliers of standard products. In many respects such transactions are subject to similar 
legal standards to those applicable to sales and licenses (e.g_ the notion of ''defect'', 
warranties of title, disclaimers. etc.). However, courts have developed some peculiar rules in 
this field. 

In civil law jurisdictions .. sales" and "contracts for work" are governed by separate chap~ers 
of the applicable code. In Germany, for instance, the basic difference between the two legal 
regimes consists in that the principal remedy of the employer in the event of a defective 
program consists of the right to demand repair (& 633 of the Civil Code) rather than in 
rescission of the contract. The right to rescind the contract (Wandlung) arises, in principle, 
only if the contractor fails to repair the work within a reasonable cure period (& 634). 
Finally, if the contractor is in delay, the employer (client) may repair the work at the 
supplier's cost. National laws may provide divergent warranty and statute of limitation 
periods for "sales" and ··contracts for work"-

Several judicial decisions in Germany characterize transactions for writing custom com­
puter programs as "contracts for work"_ loo Also, mixed transactions covering hardware, 
software and services are classified as .. works" if the dominant element of the transaction 
consists in creating of a specified tangible or intangible work (result). IOI A contract for the 
elaboration of a computer program (software) has been classified by the Supreme Coun of 
Germany as ··werk.wertrag".102 

111 



R~ant Tnmds in c_·ontractual Practic~ ... S Soltysinslci 

In many European countries copyrightable programs developed within the framework of 
contracts for work. R&D or consulting agreements belong to the developer (contractor). 
unless recent modifications of copyright laws introduced the opposite solution. Of course. 
the parties to a soft'>1are development agreement may provide otherwise. 103 Because the 
developer of softVll·are usually owns the title to the program, commentators and courts are 
divided on such issues as to whether the employer (the client) has the right to demand the 
delivery of the soune code of the commissioned software. According to a recent decision of 
the Munich Court of Appeal. a developer of software under an individual contract was 
obliged to deliver the source cooe to the client. if the parties had not concluded a mainte­
nance and support agreement 1™ The opinion explained that since the client had to care for 
maintaining the program. he needed the source code and the developer's duty to deliver it 
was implied under the circumstances. The decision is consistent Vllith an earlier opinion of 
the Supreme Court. which had refused to uphold a similar demand of the client's where the 
developer was obliged to provide maintenance and support service- during the contract. IOS 

The duty to deliver a source code is also stipulated in the Government Special Conditions 
for the Development ofComputerProgramsof21January1986_ 106 

The legal status of prohibitions against adaptations and self-repair by the client is uncertain. 
Software developers frequently include such provisions which. while supported in copy­
right laws and the general law of contract, might be held by courts as practices restraining 
competition or against public policy_ Io7 A German district court ruled that the client is 
authorized to make the necessary adaptations of the acquired program, unless the contract 
provides otherwise_ I OS The pennissible scope of adaptations is limited by the purpose of the 
agreement. The court explained that such interpretation is consistent both with the general 
principles of interpretation of contracts and & 39(2) of the German Copyright Act. which 
allows adaptations of a work ifit is not contrary to bona mores. 

In Saphena Computing v. Allied Collection Agencies, 109 a British court indicated that the 
commissioner of custom software may be authorized to repair the program if it has legally 
obtained the source code from the defendant. Making available the source code amounts to 
an implied license to copy it .. for the purposes of their business, including repair of 
improvement of the object code. nJ 10 

Foreign importers of software and computer systems should study the Gennan •'BVB 
Conditions" (1986)_ 111 They classify contracts for the development and supply of computer 

systems as contracts for work and are similar to the CECUA Model Law. They provide, 
inter alia, for a minimum 12 month guarantee period, broadly defined right of use of the 
program and effective remedies in case of breach of warranties. Apart from the Code 
remedies, the Conditions stipulate for penalties in the event of the contractor's delay. 

As a rule, disclaimers in contracts for work are treated in the same way as exculpatory 
clauses in other software acquisition contracts. 

119 



s S<>ltysinski Rurnt Trrnds in Contractllal Practi« ... 

5. The lmpliutions of the EEC Commission Draft Dirtttive on tht Legal Protection 
of Computer Programs 

The proposed EEC Directive on the Legal Protection of Computer Programs has generated 
a flood of controversial opinions, which epitomize the two contrasting policy approaches in 
this field. At the risk of over simplification. the dispute can be summarized as follows: big 
computer companies led by United States dominant companies such as IBM and Apple 
stress the need to grant software producers the maximum protection. They are in favour of 
cumulative protection of computer programs under copyright and trade secrets laws and are 
against "reverse engineering"_ They have formed a lobbying group known as Software 
Action Group for Europe (SAGE). The second camp, composed of medium-sized and small 
companies, computer users and academics. has organized the European Committee for 
Interoperable Systems (ECIS). favours free competition and a weaker protection of software 
innovations, consistent \\ith the traditional copyright principles of freedom of exploitation 
ofideas and dissemination of knowledge. 

The gist of the ongoing debate focuses on the legality of "reverse engineering" and the 
freedom of access to computer interfaces. The proponents of the pr<Kompetitive approach 
(ECIS) argue that the Directive must expressly permit research by means of decompilation 
(disassembling) software in order to allow access to existing interface specifications and 
algorithms.112 The proponents of the opposite view opine that reverse engineering is 
contrary to the Berne Convention and, as a matter of policy, it would encourage "piracy" 
and ··rree riding"_ 113 Indeed, the latter approach, if adopted, would strengthen the dominant 
position oflarge computer firms and stifle innovation. This view prevails also among small 
and many medium-sized finns in the United States. 

Members of the ECIS stress that European firms would be at a disadvantage at "home" 
because "reverse engineering" is permissible both in Japan and in the United States_ 114 
While in the United States the courts and legal commentators are divided on this issue, I IS 

Japanese judges and leading commentators take a more moderate and less protective 
strategy to the protection of software. It is worth noting that Japanese courts are likely not 
only to legitimize "decompilation", but also to reject the famous Whelan approach, which 
held that a computer program is protected against substantial copying of the so-called 
"structure, sequence and organization".116 

It is expected that a compromise will be reached along the following lines: reverse 
engineering will be permissible but subject to substantial restrictions. It was recently 
proposed by the EC that the decompilation can be used to make a compatible program but 
not to develop a directly competing product. The Commission's amended proposal 
:;ubmitted to the European Council pursuant to Art. 149 of the EEC Treaty restricts the 
application of the "reverse engineering" privilege to those pans of the original program 
"whose function is to provide for its interconnection with other elements in a system": 

120 



R~ant T rrnds in C ontrac111al Proctic~ ... s So/tysinslci 

.... Notwithstanding contractual provisions to the contrary. the authorization of the owner of 
the rights shall not be required where reproduction of the code and translation ofits form are 
indispensable to achieve the creation. maintenance or functioning of an independently 
created interoperable program provided that the following conditions are met: 

a) those acts are performed by the licensee or by another person having a right to use a 
copy of a program. or on their behalf by a person authorized to do so; 

b) the information necessary to achieve interoperability has not previ(\lJsly been publish­
ed. or made available to the persons referred to in subparagraph a); and 

c) these acts are confined to the parts of the original program that are necessary to achieve 
. rab·1· "th . "117 mterope I tty WI It. 

The Commission's amended proposal does not follow the much broadly worded .. reverse 
engineering" exception recommended by the European Parliament. which allowed it also 
for the purpose of ensuring the maintenance of the program.1 18 On the other hand. the 
Commission has followed the Parliament's suggestion that the Directive should expressly 
allow a legitimate use of a program - without the authorization of the right-holder - to 
"observe. study or test the functioning of the program in order to determine the ideas, 
principles and other elements which underlie the program and which are not protected by 
copyright" (Art. 5 (5)). Furthermore. the proposal incorporates the so-called principle of 
.. exhaustion" of a copyright acoording to which the right to control the distribution of a 
program shall not be available after its first sale and importation by the right holder or with 
his consent (Art.4 (c)). The practical significance of the latter provision may be marginal 
because standard software is usually licensed rather than sold. 

The last text of the EEC proposals contains a reference to programs "sold" or '1icensed" 
(Art 5). The proposal provides that all acts necessary or incidental to the use of the program 
purchased under such circumstances shall be permitted. In a nutshell, Art. 5 prohibits 
contractual restrictions on use and allows translation, adaptation and other alteration where 
they are necessary for the use of the program by the lawful acquirer in accordance with its 
intended purpose. By contrast. a licensee benefits from the same rule if the contract "does 
not contain specific provisions dealing with such acts (Art. 5(2))". It remains to be seen 
whether the Commission and the European Court will tolerate restrictive use limitations 
clauses in shrink-wrap and other software licenses. 

To sum up, the expected EEC Directive on the Legal Protection of Computer Programs will 
probably legitimize limited "reverse engineering" and improve the position of "purchasers" 
of computer programs, thus strengthening to some extent the bargaining position of smaller 
computer companies and users of software both in Europe and elsewhere. 

121 



SSol~inski Reanl Trends in Contrachlal Practice __ _ 

Problems Peculiar to Transnational Transactions 

I. General considerations 

The last part of this report sketches issues that are peculiar to transnational software 
acquisitions contracts_ It has been prepared in order to highlight typical problems that may 
arise in import transactions concluded by microelectronics industries from the ECLAC 
region with suppliers from the United States. the EEC or Japan. 

International transfer of technology transactions are similar to domestic agreements but they 
also involve special issues not present in agreements between firms located within the same 
jurisdiction. Parties to international transactions should take into account differences in their 
local laws, government controls on the export/import of software, international tax and 
antitrust aspects of the contemplated deal. choice of law and choice of forum and implica­
tions of the distance dividing the parties to the transaction on their mutual rights and 
obligations. 

Typically. since exportation of the majority of software and hardware requires an export 
license, the parties to a transaction should expressly provide that all fonnalities and licenses 
required in the country of exportation shall be arranged by the exporter. Similarly, the 
importer of software should be responsible to obtain the necessary import licenses in his 
country_ In addiiion, because many Latin American countries have transfer of technology 
import regulations. the importer should familiarize the exporter with pertinent rules in the 
recipient country. 

Parties to transnational transactions are advised to define all key technical and legal tenns 
used in their contracts and properly characterize the legal nature thereof. Ideally, the 
classification of a given acquisition of software contract should fit the applicable categoriza­
tion in tl:e law of the recipient country and in the law chosen by the parties to govern civil 
law cc'lsequences of the arrangement Because of the differences among national laws, it is 
necessary to define even such standard legal concepts as ''t1.clusive license". In some 
countries this term means that the licensor cannot compete with the exclusive licensee in the 
licensed territory (e.g. in the United States). By contrast. in France an exclusive licensor is 
only obliged not to grant another license within the same field to a third party. 

The distance dividing the parties has an impact on the formulation of maintenance and 
support obligations, as well as on the clauses dealing with the transfer of risk when the 
goods are in transit. The importers of software or computer systems are advised to try to 
acquire the products on CIF terms or to allocate delivery costs between the parties. The ideal 
solution for the importer would be to negotiate the following clause: 

"Exporter shall a.'i.rume all risks of loss or damage to the imported Program (Computer 
System) while in transit and cover all costs of transportation between the Exporter's factory 
and the port of destination. "I 19 

122 



- ---- - - --------------------------

R~ant Trrnds in Contractual Practic~ ... S Soltysinski 

Of course, exporters of technology are reluctant to off er training. support and maintenance 
services in distant countries, unless they have their local representatives there. Therefore, 
importers should carefully negotiate a minimum of support and training. The agreement 
should specify the number of days or weeks provided for technical training, installation and 
additional support. A relatively cheap fonn of support consists in providing such services by 
telephone, telex or fax. Access to the exporter's support center should be available on a 
round-the-clock basis, or de minimis, during the importer's working hours. Consider the 
following clause: 

"During the term of the Agreement, Exporter shall provide Importer with assistance by 
telephone (fax) regarding the installation. use and maintenance of the Imported Product. 
Exporter shall reimburStr. Importer for all costs incurred !;y it in co1mectio11 with defective 
performance of the Product or insufficient expla11ation of its operation and maintenance in 
the enclosed Materials. '' 

2. Choice of Law and Choice of Forum 

Even experienced lawyers tend to insist that their domestic laws shall govern international 
transactions entered into with foreign parties.Familiarity with one's own legal rules is 
certainly an important factor in this context but it is by no means clear that such a choice is 
the best option for the partisan of his domestic law. If the parties cannot agree which of the 
two competing systems should govern their relationship, they often choose a ··neutral" legal 
system. Unaware importers from developing countries often agree to choose Swiss law, 
which allegedly epitomizes the most neutral legal solutions. In reality, however, Swiss law 
strongly favours the stronger, professional party, especially the exporter of technology. In 
the absence of choice of law, Swiss conflict-of-laws rules apply the law of the exporter of 
technology and this choice reflects a deliberate policy of encouragement of suppliers of 
technology to choose Swiss law and the Swiss forum.12° The Swiss Law of Obligations 
seems to be the most liberal codification of the law of contract, which favours freedom of 
contract, thus permitting the "seller" of technology to exploit his bargaining position.121 Of 
course, Swiss law and the Swiss forum are strongly recommended whenever finns from the 
Regional Network for Microelectronics for Latin America and the Caribbean (REMLAC) 
region export their computer products abroad. 

The foregoing review of the recent developments in the contractual practice in the United 
States and in the EEC clearly indicates that the European case law is far more even-handed 
and more sympathetic to the recipient of computer products. Within the EEC, German law is 
probably the most advantageous to the buyer (licensee) of software products. Thus, the 
selection of German law is recommended to Latin American importers of software.They 
should also translate into Spanish (Portuguese) and use during negotiations the various 
general conditions for the acquisition of software elaborated in the EEC by users of 

123 



S So/1ystn.tk1 Reant Trrnds in Contractual Practice ... 

software. Members of the Regional Network for Microelectronics in the ECLAC Region 
should consider adaptation of the Gennan Government software procurement general 
conditions, examined in Chapter II of this repon 

While negotiating contracts with United States, European and Japanese firms, imponers 
from Latin America and Caribbean countries should consider choosing the laws of such 
countries as the Netherlands, Sweden or Austria. It is imponant to mention that the Austrian 
Statute of Private International Law, unlike its Swiss counterpan, provides that in the 
absence of choice oflaw, transfer of technology transactions shall be governed by the law of 
the country for which territory a license was granted. 122 This law may become applicable to 
a software impon transaction, if the parties agree to arbitrate in Vienna leaving open the 
question of the law governing their contracrual relationship. In such a case the arbitral 
tribunal shall apply the conflict-of-law rules of the forum. 

While acquiring standard software packages in the United States, Japan or Europe, foreign­
ers should carefully check the geographical scope of the .. shrink-wrap" license and other 
terms of the transaction. Frequently, the recipient of such standard computer programs and 
materials may discover that he acquired the right to use the copyrighted materials only in the 
country where the transaction was made or that warranty remedies are available only in that 
country. In such cases, the acquirer (e.g. the licensee) should request an express statement 
from the supplier of the licensed software that would modify the geographical scope of the 
license and the tenns of enforcement of key contractual remedii.s. Usually, it is enough to 
obtain the following representation by the seller (licensee) on the back of the invoice: 

"The licensor hereby expressly declares that it is aware that the licensee will use the 
acquired program ill [ the name of the country of exploitation of the program] and grants 
him the right of use, as defi11ed in the enclosed "Terms a11d Conditions of License·: i11 that 
country. A II warranties and other colllractual rights provided in the aforementioned 
"Terms and Conditions "will be available to the licensee, except that the licensor will not be 
respomih/e for prm·idi11g st:rvices concerning [e.g.installation or suppon, as defined in 

Sec .. ]." 

Importers of technology from the REMLAC region should consider selecting one of the 
small arbitral centers such as Vienna, Stockholm, or Rotterdam. They are cheaper than 
Swiss fora or the Coun of the International Chamber of Commerce in Paris. Besides, they 
are located in countries pursuing strong public policies in favour of the weaker party and 
freedom of competition. While negotiating dispute resolution problems, importers of 
technology should consider a compromise solution, which consists in the adoption of the 
so-called "home-on-home" clause. It requires the party bringing a suit to attack the 
defendant in his domestic jurisdiction. Naturally, such a clause encourages the parties to 
attempt to resolve their controversies by amicable settlement. Clauses of this type are 
enforceable both in Europe and in the United States_ I 2J 

124 



Recent Trends in Contractual Practice ... S Soltys1nsk1 

Finally, the parties to international software transactions should remember that certain 
matters cannot be arbitrated and that some Latin American countries subject import 
transactions to the exclusive jurisdiction of their domestic transfer of technology transac­

tions and lochl courts.Obviously, this aspect of the problem is a matter of concern for 
foreign supp!iers of technology_ l24 

Notes and References 

1. Schachter. Product Acquisition Agreement: A Form Contract With Alternative 
Clau~es: Association of Data Processing Service Organizations, hereinafter 
.. ADAPSO", ( 1983). at (i) 

2. Careful characterization of a given transaction is very important in transnational 
agreements to avoid its wrong classification under foreign and domestic transfer of 
technology regulations, tax laws, etc. 

3. Davidson: Reverse Engineering and the Development of Compatible and Competitive 
Products Under United States Law, 5 Santa Clara Computer & High Technology Law 
Journal, 399,410 (1989). 

4. See Warrington Ass. Inc. v. Real Time Eng. Sys., Inc., 522 F. Supp. 367 (N.D. Tex. 
1981); BPI Sys., Inc. v. Leith, 5532 F. Supp. 208 (W. D. Tex. 1981). Contra: 
Videotronics, Inc. v. Bend Eiectronics, 564 F. Supp. 1471 (D. Nev. 1983). In the latter 
case the court denied trade-secret protection on the grounds that "a property which is 
subject to protection under federal patent or copyright law cannot also obtain the 
benefit of protection under either state unfair competition or misappropriation law" Id. 
at 1476. 

5. Harper & Row, Publishers Inc. v. Nation Enters., 471 U.S 539, 545-546 (1985). 

6. See further Soltysinski: L(gal Protection for Computer Programs, Public Access to 

Information and Freedom of Competitive Research and Development Activities, 16 
Rutgers Computer and Technology Journal, 447, 467 (1990). 

7. Schachter: Program License Agreement With End User. A Form Contract With 
Alternative Clauses, ADAPS0(1979), Section 7. 

8. Id. at 7. 
9. A frequently negotiated "temporary use" license clause reads: "Client is authorized to 

transfer the license and to use the licensed Program on a back-up computer when the 
designated computer is temporarily inoperable until operable status is restored and 
processing on the back-up machine is completed". Id. (ADAPSO standard fonns). 

10. Bingelow: Computer Contracts Negotiating and Drafting Guide, vol.2. form 8.03-1 (3] 
(1989). 

11. 531 F.2d 529 (Ct. Cl. 1976). 
12. Id., clause 3(b). Bingelow adapted the language of the license agreement between 

Com/Code Corporation of Washington D.C. and the St. John Shipbuilding & Dry 
Dock Co. Ltd. of Saint John. 

125 



S Soltysin.o;ki Recitnt Tnnds in r cmtracrr.al Practice ... 

13. The following definitions are recommended by Schachter, s11pra. note I, at 34: "The 
term 'use' shall include copying any portion of the licensed materials into a computer 
or transmitting them to a computer for proc~sing of the instructions or statements 
contained in the licensed program or materials". The term "affiliates" is defined as 
"any corporation controlling or controlled Licensee or controlled by a corporatio11 
which also controls Licensee". For the purpose of the preceding sentence "control shall 
mean the ownership of more than 50 per cent of the outstanding capital sotck or other 
equity interest". 

14. Sobel, Einhorn: Software Protection and Licensing (in: Technology Licensing 1989, 

ed. Sobel). at 403. 
15. Notice to IBM Customers of February 8, 1983, International Business Machine 

Corporation, White Plains, NY. 
16. See, for instance, the 1976 Copyright Act, as amended, 17 U.S.C. && 107, 109 and 

117 (1980). 
17. Supra, note 10, form 8.03-1, Cl. 14 
18. Supra, note 1 at47. 
19. Lubrizol Enterprises Inc. v. Richmond Metal Finishers, Inc., 756 F. 2d 1043 (4th Cir. 

1985), cert. denied, 475 U.S. 1057 (1986). By allowing to reject the license, the court 
left the licensee without the right to use the licensed invention. Although the license 
dealt with a metal coating technology, its rationale applied to all executory licenses and 
the majority of software licenses belong to this category. 

20. P.L. 100-506. 11 U.S.C. & 365(nX2)(1989). 
21. See Kewanee Oil Co. Bicron Corp., 416 U.S. 470, 476 (1974). Recently, the Supreme 

Court noted again that "the competitive reality of reverse engineering may act as a spur 
to the inventor, creating an incentive to develop inventions which meet the rigorous 
requirements of patentability." Bonito Boats, Inc. v. Thunder Craft Boats, Inc. l 09 S. 
Ct. 971, 982 ( 1989). 

22. Supra, note 15. 
23. Id. A clause drafted by Bingelow goes even a step further: "Licensee shall not 

decompile, disassemble, or reverse engineer the Licensed Programs or any of them, or 
attempttodoso."Supra, note IO, FM8.0-l cl. 3(d). 

24. National Commission on the New Technological Uses of Copyrighted Works 
("CONTU'), pp.31-32 (1978). 

25. See, for instance, NEC Corp. v. Intel Corp. N. 67, 434 (N.D. Cal. Feb. 6, 1989). The 
court refused to condemn the disassembling and listing of an Intel microcode for the 
purpose of analyzing it and making a competitive program. Contra: Apple Computer, 
Inc. v. Franklin Computer Corp., 714 F. 2d 1240 (3d Cir. 1983). 

26. Bingelow supra, note 10, Form 8.03-1 (Cl.# 4(a)). 
27. 357A2d105(Del.Ch.1975). 
28. Schachter,.mpra, note I, at 9. 
29. All examples taken from ADAPSO Sample Forms, note I supra, at 10-13. 

126 



Recent Trend'> in Contractual Practice ... s Soll}'Sinski 

30. A sample contract elaborated under the aegis of ADAPSO defines "updates" as 
"program logic and documentation changes and improvements to correct known 
defects and maintain the operational quality of the Licensed Program", while "en­
hancements" mean "any program, any part thereof or any materials not included in the 
Licensed Program and Materials at the time of execution of the original License 
Agreement ... that is developed for the Licensed Program." They usually cover an 
added funtion to the originally licensed program. Desrosiers, ADAPSO Product 
Maintenance Agreement, & 1.05 (1983). 

31. Disclaimers of warranties are discussed in sub-section e) infra. 
32. Schachter supra, note I at 33. A similar comment is made by Bingelow, who is of the 

opinion that such warranties mean that the licensee is only indirectly liable for failure 
to have title. Supra, note I 0, Form 8.03-1, Cl.5. 

33. Schachter, supra note I. at 35. 
34. Id. 
35. Durney: The Warranty of Merchantability and Computer Software Contracts: A 

Square Peg Won't Fit in a Round Hole, 59Washington Law Rev., 512-515 (1984). 
36. Simon: Computer Law Handbook: Software Protection Contracts Litigation Forms, at 

64-65 ( 1990). Compare also Rodau: Computer Software: Does Art. 2 of the UUC 
Apply? 35 Emory Law Journal 853 (1986). 

37. A bill proposed in California to require specific software warranties was withdrawn 
after opposition of the software industry. See Section of Patent, Trademark and 
Copyright Law (1987). Special legislation validating "shrink-wrap" licenses was 
passed by two states. See infra Section 3. 

38. Schachter. supra note 1, at 28, footnote 1. 
39 Note that the disclaimer language is in block letters to meet the requirement of the UCC 

that the exculpatory clause shall be "conspicuous" in the contract 
40. ADAPSO sample forms recommend, for instance, the following clause: ·During the 

period the Licensed Program is under warranty, [Licensor's] sole obligation will be to 
correct technical errors or failures ... in the Licensed Program of which the Licensee 
notifies in writing ... This service will be rendered without charge ... , except for the 
costs incurred by Licensor for machine time, software delivery, medium ... and 
reasonable travel and per diem maintenance costs ... ". Schachter supra, note I, at 31. 

41. 389F. Supp.45(0.S.C. 1979). 
42. Chretien-Dar: Uniform Commercial Code: Disclaiming the Express Warranty in 

Computer Contracts, 40 Oklahoma Law Review, 471 et seq. (1987). 
43. 708 F. 2d 385 (9th Cir. 1983). The case dealt with a conflict between an express 

warranty concerning the speed of a line of terminals acquired by plaintiff and a general 
disclaimer in the contract. 

44 But some licenses permit making a back-up copy, modification and merging of the 
licensed software into another program used by the licensor for its internal purposes. 

45. Bingelow, supra note 10, Form 8-04(1) Cl.5. 
46. Id., Cl. 8. 

127 



S Soltysinsb R~ant Tnnds in Cuntractllal Practiu ... 

41. Compare Kemp: Mass Marketed Software: The Legality of the FORM License 
Agreement. 48 Louisiana Law Rev., at 88 et seq.(1987); Einhorn: The Enforceability 
of .. Tear-Me-Open" License Agreements, 6 7 Journal of the Patent Office Sofiety, 509 
(1985); Stem: Shrink-Wrap Licenses of Mass Marketed Software: Enforceable Cc,r.­
tracts or Whistling in the Dark? 11 Rutgers Computer and Technology Law Journal, 51 
( 1985). 

48. 51 LS.A. && 1961-1966. A similar statute was passed in Illinois but it has been 
repealed recently. 

49. Vault Corp. v. Quaid Software, 847 F.2d 255 (5th Cir. 1988). 
50. Id. at 763. 
51. See further a review of case law in this field by Soltysinski, supra note 6, at 469-470. 
52. United States Code, & 117 (1989). 
53. Such a solution was recommended by CONTU prior to the 1980 revision of the 

Copyright Act. There seems to be no rational argument to treat differently licensees 
and lessees of computer program copies and to deprive them the privileges of making 
back-up copies and adaptations. 

54. This typology does not include software services agreements (e.g. batch processing 
agreements, remote processing service or professional services agreements). 

55. Schachter supra, note I, at i. 
56. Triangle Underwriters, Inc v. Honeywell, Inc. 457 F. Supp. 765 (EDNY 1978); RRX 

Indus., Inc., Lab-Con, Inc. 772 F2d 543 (9th Cir. 1985); Neilson Business Equip. 
Center, Inc. v. Monteleone, 524 A.2d 1 i72 (Del. 1987) (lease for a turnkey system). 

51. Compare Graphic Sales, Inc. v. Speny Corp., 824 F2d 576 (7th Cir. 1987). It is worth 
mentioning that the UCC does not regulate a contract for work (Werbvertrag). 
Therefore, the statutory model of contract of sale remains the only .. contractus nomi­
natus" that serves the parties to software transactions and judges as a source of legal 
guidelines how to regulate warranties, disclaimers and other aspects of similar agree­
ments. The situation is different in civil law countries where parties and judges must 
choose among several types of codified contractual transactions. 

58. "Vouching in" provision of the Code provides that, when buyer is sued for breach of 
warranty for which his seller is responsible, the former may give the latter a notice of 
litigation and seller will be bound by the result of the litigation ifhe does not come in to 
defend the litigation (&2-607[5]). Compare Step-Saver Data Systems, Inc. v. Wyse 
Technology, Inc., 912 F.2d 643 (3rd Cir. 1990) (vendor computer systems sued its 
hardware and software suppliers seeking a declaratory judgement that they were liable 
if certain actions filed by its customers established defects in .. products" acquired from 
the suppliers by plaintiff). 

59. Durney, supra note 35, at 522. 
60. See generally, Chretien-Dar, supra note 42, 488-492. 
61. 21 UCC Rep. Serv. 1293 (Mass. Dist. Ct. 1977). 
62. 564 F Supp. 160 (E.D. Pa. 1983). 
63. 708 F.2d 385 (9th Cir. 1983). 

121 



R~crnl T rrndr 1n < 'on1Tac111al Pmclrtt ... S Soltysr."llkt 

64. See Chretien-Dar, supra, note 42 at 498. & 2-725 of the Code provides for a four-year 
statute oflimitations but the term can be shortened to one year 

65. A survey by International Data Corporation found that more than 50 per cent of those 
interviewed gave 12 month warranties. 

66. Daunt: Warranty Drafting Aid, ADAPSO. at 8 (1985). Alternatively, the author 
recommends a "money back" guarantee: "If the computer program does not perform 
substantially with the documentation ABC will refund the fees paid for licensing (or 
the purchase price if the computer program is sold) the computer program"_ Id. at 9. 

67. 15 U.S.C. && 2301-12 (1990). 

68 The German government promulgated seven general conditions for different types of 
contracts for supply of software products to government users. These contractual 

conditions are binding upon suppliers, unless expressly modified by parties See 
generally, Schneider: Softwarenutzungsvertrige im Spannungsfeld von Urheber and 
Kartellrecht. Munich ( 1989). 59-65_ 

69. Bundesgerichtshof (BGH) of 6 June 184 (VIII ZR 83/83). NJW 1984, 2938; BGH of 
11February1971, Betriebsberater(88)677 (1971). 

70. The decision of the OLG Stuttgart of 3 January 1986, Computer und Recht. 639 
(1986). 

71. Pagenberg, Geissler: Lizenzvertriige, 557 (1989). 
72. Supra, note69. 
73. OLG Koln, decision of JO March 1987, CR 12/1989, at 1087. 
74. Pagenberg. Geissler, supra, note 71, 551. 
15. The concept of .. defect" (Fehler) will be examined in the next section of the report 

dea!ing with sale of software. 
76. Goldrain: National Laws affecting Distribution and End-User Agreements, 13 (a paper 

presented at Conference: Information Technology: Trading with Europe - East and 
West, Munich, 31 May to I June 1990). 

77. This creates an irrebuttable presumption that the licensee knew the defects at the time 
of delivery of the program and it excludes the suppliers liability. Compare Pagenberg. 
Geissler, supra, note 71, at 519. 

78. IPS Model From of License (1987), Cl.16. 
79. IBM, Standard Terms and Conditions (1990), Section A, Cl. 8 B. (A form used in the 

United Kingdom). 
80. See the text accompanying note 96, infra, OLG Stuttgart of 2 February 1989, CR 685 

(1986) The decision conditions enforceability of disclaimers in ··shrink-wrap" li­
censes on their conformity with rules and precedents established under the AGBG. 

81. BGH of 4 November 1987, NJW 406 (1988). However, the holding refers to cases 
when the standard software is conveyed for "freier Ver.fiigim1<", which is translated by 
a German software expert as "for indefinite optional applications". Goldrain, supra, 
note 76, at 9 But it can also be translated as "free disposition" and not all "shrink­
wrap" licenses grant such broad pennissions to the customer 

129 



S Sol1ys1n...Ji1 Recrnl T rrnds m ContrtJCluol Practice ... 

82. Chalton: Implementing the EC Council Directive: The National Perspective fonn the 
UK. (in: lnfonnation Technology: Trading with Europe, Conference of International 
Federation of Computer Law Association. Munich, 3 lMay to I June 1990). at 12. 
Similar view dominates in the French jurisprudence. Michau: The French Perspective 
of the EEC Directive, 5 (the Munich Conference, supra). 

83. See further discussion on the issue of .. reverse engineering" under the future EEC 
Council Directive. Section 5, infra. 

84. BGH of May 2. 1985, GRUR. 1055 (1985); BGH of 4November1987, supra. note 81. 
See further Hoeren: Der Softwareuberlassungsvertag als Sachkauf. CR 908 ( 1988). 

85. As reported in Applied Computer and Communications Law, v. 5. at 58 (1989). 
86. CompareGoode: Commercial Law. 154(1985). 
87. Landesgericht Berlin, decision of 2 February 1987, luR. 424 ( 1987). 
88. LG Augsburg of 11November1985: luR 166 (1986). 
89. KG Berlin of24 November 1985, CR 643 ( 1986). 
90. OLG Celle of 26 February 1986, CR 303 ( 1988). 
91. OLG Koln of 22 June 21988. NJW 2477 (1988). The same holding applies when a 

program defect is signalled but without explaining the cause thereof. 
92. LG Stuttgart of J January 1986. CR 639 ( 1986). 
93. OLG Saarbrucken of30 May 1990, CR 713 (1990). 
94. The model contract was published in Gennany and is generally known as "CECUA -

Standard Contract" (Modellvenrag flir den Kauf von Computeranlagen und Gerate~). 
95. Schneider, .mpra. note 68, at 64 
96. See. for instance. the decision of LG Di.isseldorf of 1987, CR 292 ( 1987), in which the 

court held that the supplier is obliged to get acquainted with the production require­
ments of the customer when writing an individual program. 

97. Gesetz i.iber Allgemeine Geschafts Bedingungen (AGBG). 
98. LG Mi.Jnchen of23 January 1985. (luR 72 (1986)). 
99. Decision of 12 December 1988, (NJW I 041 ( 1989). 
100. BGH of 11 February 1971, BB 677 (1971 ); OLGOldenburg of 12 February 1986, CR 

552(1986). 
1 O I. See BGH of24 July 1986, CR 799 ( 1986). 
102. BGH of 30 January 1986, CR 377 (1986). 
I 03. But even in France, it is advisable for the developer to include an express provision that 

he retains ownership in the program. An example of stach a stipulation reads: "AJI 
instructions. procedures and comouter programs first made by Contractor in the course 
of developing the software to be rumished to the company remain the property of the 
Contractor. The Contractor may use the entirety of information and knowledge which 
he may acquire in the course of development of the software." Muenchinger: Who 
Owns Software Developed Under Contract? The French Perspective, EIPR 311 
( 1986). In BMW v. Pachot, a fired ex-employee prevailed in a suit against his former 
employer over the issue of the ownership of a program developed by the former 

130 



Rn:rnt TrrnM in Conlractfllll Practia ... S So/1ys1nsk1 

without any assistance from his employer but with the use of processing cards removed 
temporarily from his work place. Cour de Cassation. March 7. 1986. as reported by 
Muenchinger. Id. at 307. 

104. LG Munchen of 18November1988. NJW 2625 (1989). 
105. BGH ofJOJanuary 1986, NJW 1259 (1987). 
106. Besondere Venragsbedingungen fur das Erstellen von DV-Prog.rammen. as published 

in Heussen: Computerrecht Handbuch. 1 (1990). hereinafter referred to as ··avB 
Conditions". 

107. Goldrain. supra. note 76. at 6. 
108_ LG Munich of 17 February 1987. CR379 (1988). 
109. Official Referee'sCourt of25 April 1988, 59 Computers and Law 20 (1988). 
JIO. Id. 

111. Supra, note 106. 
112. Comish, Interoperable Systems and Copyright, EIPR 391 ( 1989)~ Colombe, Meyer: 

Interoperability Still Threatened by EC Software Directive: A Status Report, EIPR 325 
(1990). 

113. Lake et al.: Seeking Compatibility or Avoiding Development Costs? EIPR 43 (1989): 
Burki II: Reverse Compilation of Computer Programs and its Permissibility Under the 
Berne Convention, Computer Law and Practice 1 J 4 ( 1990). 

114. This view is essentially true although the matter is controversial in those tow countries, 
too. See Soltysinski, supra, note 6, 468-469~ Durney: Reverse Engineering Under 
Japanese Law. Intellectual Property, Marketing and Community Law, 2 (1990). The 
author cites Japanese authorities for the proposition that under the Japanese Copyright 
Act "reverse engineering" is permissible. Furthermore, he explains in detail that a 
recent decision in Microsoft Corp. v. Shuuwa System Trading KK of30 January 1987, 
which is interpreted by some partisans of the SAGE camp as allegedly outlawing 
"disassembling" of software, did not even discuss that issue. Id. at 3. See further, infra. 
note 115. 

115. Contrast Whelan Inc. v_ Jaslow Dental Laboratory Inc. 797 F2d 831 (1987) and Apple 
Computer Inc. v. Franklin Computer Corp. 714 F2d 1240 (3d cir. 1983) ~ith NEC 
Corp. v. Intel Corp. IO USPQ 2d (ND Cal. 1989). The latter decision found "reverse 
engineering" unobjectionable. 

116. Compare System Science Corp. v. Toyo Sokki KK, Tokyo Dist. Ct decision of 31 
March 1989, commented by Karjala: Japanese Courts Interpret the Algorithm Limita­
tion on the Copyright Protection of Computer Programs, 7 European Intellectual 
Property Rev. 235 (1990). See also Karjala: The First Case on Operating Systems and 
Reverse Engineering in Japan, 10 EIPR 172 (1988). 

I I 7. Commission of the European Communities, Amended Proposal for a Council Direc­
tive on the Legal Protection of Computer Programs of October 18, 1990, COM (90) 
509, at p. 28. 

118. See Official Journal of the European Communities, No. C 231178 of 17 September 
1990, Art. 5 A. 

131 



S Soltys1n.sk1 R~,_--rnt Trrndf m ConlTOCIUOl Practicr ... 

119. Naturally. exporters of software systems propagate the opposite solution. See Palenski: 
Exclusive Distribution Agreement (International). 6 ( 1983 )( ADAPSO FORMS). 

120. Compare Loi fCderale sur le droit international prive of 18 December 1987, Art.122. 
121. See further Soltysinski: Choice of Law and Choice of forum in Transfer of Technol­

ogy Transactions, Recueil des cours. 307-323, 345-347. 
122. See the text of the Austrian Statute on Private International Law published in: 43 

Rabels Zeitschrift 383 (I 979). & 43. 
123. See Smith, Valentino& Smith, Inc. v. SuperiorCourt., l7Cal. 3d491 (1976). 
124. See generally. Correa: Transfer of T cchnology in Latin America: A Decade of Control, 

15 Journal of World Trade Law, 388 (1981)~ Soltysinski, supra, note 111, at249et seq. 
Recently, however, many Latin American countries have liberalized their transfer of 

technology laws. 

132 



The Legal Protection of Software• 

•• C.M.Correa 

I. Introduction 

This paper discusses. from an economic perspective. the main issues involved in the legal 
protection of computer programs. particularly as they concern Newly Industrialising and 
Middle-Income Economies (NIEs and MIEs). 

Section Il briefly analyses the characteristics of the world software market and production in 
order to set out the context in which the protection issue is dealt with. It holds that in this area 
there is a profound North-South technological and industrial asymmetry and that the 
prospects of developing countries to enter into this field are more limited than often claimed. 

Section Ill presents the main legislative trends regarding software protection and the 
rationale underlying the prevailing copyright approach. It also examines the ambiguities 
and uncertainty created by the application of copyright law in this area, and the growing 
dissatisfaction with its coverage and effects. 

The implications of software protection for the diffusion and local production of software 
are discussed in Section IV. While the granting of some fonn of protection seems necessary 
for political or economic reasons. ii is argued that its effects on the access to computer 
programs and on their development depend on the structure of the market and the country's 
relevant policies. 

On the premise that no universally valid form of protection is sustainable. Section V finally 
addresses some of the regulatory aspects that may influence the diffusion of productive 
software policies in NIEs and MIEs. It suggests that there is no general prescription on how 
to formulate an adequate legal strategy or. the matter, and that the form and extent of 
software protection should take into accoont the economic and technological conditions as 
well as the objectives of the concerned countries. 

• 

•• 

Research for this repon has been funded by the OECD Developmeri Centre as part of its ~h 
project on 1'echnological Change and the Electronics Sector - Perspectives and Policy Options 
for Newly Industrialising Economics". The author is grateful to Dr. Dieter Ernst for his 
stimulating comments and suggestions. He would also like to thank participanlS of the OECD 
workshop on the electronics Industry (Paris, Ju~ 1989) for their conunents on an earlier draft of 
this paper. 

Doctor of Law. Coordinator of Project DP/RLA/92/014, Buenos Aires. Algeltina 

133 



(·.\/ ("cJrrra Tht Ugal Protrction o/Sojtwan 

The main conclusions are presented in Section VI. 

II. World Software Demand and Supply 

1. World market: main f eatura 

Software nowadays constitutes one of the most dynamic segments of the information 
technology market. In 1979 the world software market accounted for an estimated USS48 
billion; it grew at nearly 22 per cent annually in the period 1984-1987 (OECD, p.21, 1988). l 
OECD countries accounted for nearly 97 per cent of the world market in 1984. The United 
States domestic market represented 54 per cent thereof. Only a few devdoping countries 
rank according to an OECD study (OECD, 1985) among the major software markets in the 
world. Brazil would be the tenth major national market, 2 quite far from Mexico (12th) and 
the Republic of Korea. The United States accounts for a major part (around 70 per cent) of 
world software production, followed by France and Japan (United States Department of 
Commerce, 1984). Analyses at the country levd indicate for most countries, including 
devdoped ones, that a significant part of the market consists of importeJ software distrib­
uted by local dealers or by subsidiaries off oreign enterprises. This applies particularly to 
basic software and various types of standard application software. Custom application 
programs, instead, are Je facto reserved to a great extent to local finns. 

The United States software industry is the most internationalised one among those of OECD 
countries. A significant part of its worldwide revenues have a foreign origin. France ranks 
second according to the level of internationalisation of its industry (mainly based on the 
provision of custom software); United Kingdom, Canada and New Zealand follow. Japan 
presents one of the lowest levels of internationalisation within OECD (OECD, 1988, Table 
24). 

Although no specific information is available, it is safe to affirm that the world market share 
of developing countries is in a 3 to 5 per cent range and that it almost entirely corresponds to 
application software for domestic markets. Some NIEs have initiated attempts to develop an 
export-oriented software industry. However, their results are still marginal in global terms. 

2. Do the NI Es and Ml Es enjoy any competitive advantages in software production? 

The determinants of competitiveness in software markets have not been thoroughly studied 
yet. The aimension of the domestic market and the size and marketing capabilities of the 
United States' firms may explain their success at the national and international level 
(OECD, p 51, 1988) In most other countries, including France, the limited size of the 
market seems to be a significant restriction on the growth of the software industry, 
particularly on expanding towards standard software (Correa, 1987). In the case of Japan 
(the second largest country by the number of computers installed), the emphasis tradition­
ally put on custom software and the barriers imposed by language may be some of the 

134 



The legal Protection of So~·are C\/ Corna 

factors that explain a very low degree of participation in the international market. notwith­
standing the size of the domestic market and the fact that Japanese programmers are 
reported to be many times more productive than their American colleagues (United States 
Department of Commerce. P- 11, 1984)_ 

In many developing countries software production has been identified as a promising field 
of action. It is argued, newcomers face high barriers for joining the production of hardware, 
while with low capital investment and the mobilisation of local qualified personnel, it is 
relatively easy to exploit the growth potential of the software sector_ Paradoxically, a few 
NIEs have evidenced an ability to break into some segments of hardware production (e.g. 
microcomputers and peripherals) successfully, whiie the efforts made to establish software 
capabilities have not had, at least up to now, significant results_ 

A number of factors may favour the development of software in developing countries_ 
Among them, low wage scales for computer professionals seem the most clear cut advan­
tage_ In countries such as India, Brazil and Argentina, local salaries may be many times 
lower than those prevailing in OECD countries (Katz, 1986; Takahashi and Pereira Lucena. 
1988; Subsecretaria de Informatica y Desarrollo 1987)_ There may also be advantages 
stemming from external circumstances, such as growing software backlogs and scarcity of 
personnel in developed countries, the proliferation ofintemational subcontracting, etc. (see 
Table I). 

At the same time, however, there are a number of facts that considerably dilute the real 
possibilities for developing countries to break into the software field. 

Factors favoring the development of software 

Low wage scales 

Growing software backlogs 

Iocreasing development. operating and 
maintenance costs 

Lack of speciali7.cd software for !ocal conditions 

Proliferation of International subcontracting for 
software development; joint training centers 

Local suppon sen·ices requirements 
Modifications requested by users 

New communications technology 

Factors retarding the dC\·elopment of software 

Small domestic markets 

Low capital availability 

Lack of market expertise 

Absence of an informatics or computer industry policy 

Absence of taxation/fiscal and R&D inccnti,·es for soft­
ware producers; regulatory restrictions on imponation 
of technology and software 

Shonagc oflabor with required skills; retention of 
highly skilled labor neces.sary 

Stuft toward semi-automated programming 
Language barriers 
Severe competition from large companies in R&D and 
marketing 
Difficulties in providing adequate maintenance and 
suppon 

Table I. Factors in the Development of Software by Developing Natio~ 
Source: Schwarc. 1987 

135 



C\!Correa Tire legal Protection of Softwan 

In addition to the smallness of domestic markets (an aspect which plays a part even with 
countries like Brazil), there is generally a shortage of professionals actually qualified to 
develop software in accordance with international standards, as well as the management of 
software development projects of a certain complexity. 3 Moreover, even if those skills are 
available, the marketing of software, and particularly the access to extremely competitive 
markets such as the United States one, poses extremely difficult problems (1' atz, 1987). It is 
not enough to develop a good software~ it is necessary to know how to sell it. 

A survey made in Argentina with major local software producers revealed that most finns 
considered that their comparative advantages (availability of qualified personnel, low 
salaries) were not sufficient to compensate the obstacles for software development and 
commercialisation. The obstacles more often cited included the small size of the market, the 
lack of resources and capabilities in R&D and in marketing, and limitations as to capital 
investments."' In connection with the expon of software, the difficulties concerning market­
ing and distribution and the post-sale client suppon were particuiarly mentioned (SPCA­
LAI, 1988). Moreover, the mere identification of a concrete potential demand is problem­
atic, when there is no proximity witk1 the potential user. For this 1eason, the establishment of 
subsidiaries for joint ventures may be an essential instrument to enter foreign markets in this 
field (Correa, p.8, 1987). 

III. Legal Protection 

1. Main legislative trends 

The issue of legal protection of computer software appeared when software affirmed itself 
as a good that could be traded separately from hardware, and particularly with the expansion 
of .. packaged"" software. Before 1983, only three countries had specifically legislated on 
the matter: Philippines, United States and Bulgaria. After that year more than a dozen 
countries introduced rules regarding software protection: Hungary (1983), Australia (1984), 
Federal Republic of Gennany (1985). France (1985), India (1985), Japan (1985), United 
Kingdom (1985), Taiwan Province of China (1985), Republic of Korea (1986), Spain 
(1987), Singapore (1987), Malaysia (1987), Indonesia (1987), Brazil (1987) and Canada 
(1988). 

The determination of the appropriate legal framework for the protection of software gave 
rise to considerable debate in both developed and developing countries. In some of them, 
attempts were made to devise special rules for software protection, in order to take into 
account its functional character and the peculiarities of its commercialization and use. In 
Japan, the Ministry for International Trade and Industry (MITI) proposed a special regime 
in 1983 in order to exclude moral rights, limit protection to 15 years and regulate the use of 
software on terms balancing the private and public interest. In France, the National Institute 
of Industrial Property also proposed a sui generis optional protection ( 1984). In Brazil and 

136 



~ Ugal Prot~ction of Sojtwarr C.\f Correa 

Argentina also some draft laws proposed special rules (though, in the latter country, having 
copyright as the general framework). Most of these proposals have been abandoned by now 
(see also point 2 below). 

The protection of software under copyright laws is the predominant trend worldwide. Apart 
from cases where specific amendments wer~ introduced to such laws, in a number of other 
countries judicial or administrative decisions also followed that direction (Switzerland. 
Belgium. Italy, Mexico, Chile, etc.). 

In most cases, the adoption of the copyright approach has been instrumented by amend­
ments to copyright laws which specify that software is a copyrightable work as are the rights 
relating to copies and adaptations. In a few countries the reforms have been deeper, such as 
Japan and France(Correaetal., 1987, p. 116)as well as in the Republic of Korea, Brazil and 
Indonesia. 

All developing countries that have already adl')pted legislation in order to legally cover 
computer programs have admitted the copyright principles. The threat of the application of 
Section 301 of the 1984 United States Trade Act has prompted some countries to deal with 
the issue in accordance with that approach. 5 In Brazil, the .. Software law" of 1987 regulated 
the application of copyright to computer programs, but also created a detailed regime for the 
commercialization of such programs in the country. 

2. Rationale for copyright protection 

Abundant literature has analysed the different legal institutes under which software may be 
protected, namely copyright, trade secrets, contractual law, patents and a special regime. 
The application of utility models has also been proposed (Higashima, p.12, 1986). As 
mentioned before, the prevailing trend. after some unsuccessful attempts to establish special 
regimes, is software protection under copyright.6 

The referred trend has been strongly influenced by the United States position on the subject. 
particularly after the amendment. in 1980, of the United States copyright law. In tum, the 
option for this form of protec.1ion has been determined to a great extent by the domestic and 
international interests oflarge software producers. the main advantages for them in relying 
on copyright derive from: 

• the possibility to apply well-known and generally respected principles and rules; 

• the assimilation of software producers' rights to those of literary, artistic or 
scientific authors, in spite of the functional character of programs; 

• the access of established legal remedies against unauthorized reproduction; 

• the long-tenn of protection conferred; 

• the commencement of protection since the date of the creation of a program; 

• the lack of registration requirements to obtain protection; and 

137 



C.\ICorrea The Ugal Protectwn of Sofr.i·are 

• the existence of international conventions where protection is obtainable on a 
universal basis. 

The last point mentioned is crucial for the international operation of the industry. to the 
extent that the copyright approach is admitted, under the Universal or the Berne conven­
tions, a computer program created in one country automatically receives protection in 
almost any country in the world.7 The monopoly rights granted facilitate commercial 
exploitation of such programs on a worldwide basis. The stronger the protection, the less is 
the need to be present (through a subsidiary or licencee) in a particular market (Correa, 
1988b ). The world market can thus be supplied under the highly centralized productive 
scheme that prevails in the software industry, at least wherever standard products can meet 
the users' demands and there are no other compelling factors for some form of permanent 
establishments. 

Conversely, copyright offers some disadvantages from the producers' standpoint. The main 
one is that it is conceived to prevent copying and not the use of a protected work. 
Henceforth, the legal power to prevent unauthorized use (including private use) is limited. 
Another problem may arise in connection with the originality requiremer.t. In some coun­
tries where high standards are applied (as in Germany). many computer programs may not 
qualify forprotection.8 In fact, in many cases a piece of software is determined by functional 
specifications in such a way that the scope for originality is very restricted or non-existent. 
In addition, copyright only protects the expression of a work, but not the underlying idea. It 
therefore allows third parties to base any new development on an existing idea, even if the 
latter's expression is protected.9 

On the other side, the impact that the introduction of protection may have in for•ering a 
domestic industry is quite · icertain. Protection is particularly important for standard 
software, and especially for packages that run on microcomputers. Unauthorized copying of 
bigger systems is more difficult given the suppliers' proximity (through maintenance and 
other services) to equipment installations. For custom software - which is precisely the 
area in which domestic firms mostly work it. NIEs and MIEs - contractual provisions may 
be far more important for protection than any general legal regime. 10 

From the point of view of the user, copyright exhibits many disadvantages, which come 
from the original conception of that legal system. Designed to protect intellectual works as 
an emanation of human creativity, it is strongly biased in favour of author's rights. While 
many rights accrue to him, obligations are minimal. Unlike patents, for instance, no working 
obligation is generally established. At the samP. time, protection may be obtained even 
without disclosure of the work. the long terms of protection {generally fifty years po.'it 
mortem a11ctoris) do not allow the society to benefit from the free use of the work (in this 
case a technical functional work) within a reasonable period after its development. Further­
more, as stressed by MITI's proposal of a special regime, that system does not contain 

131 



The legal Protection of Sojhrnre C\!Correa 

provisions to guarantee the user against defects or lack of suppon for the use of programs 
(MITI. 1983)_ Finally, the granting of "moral rights" contradicts the nature of software as a 
living entity, which is constantly adapted and improved_ 

3. Copyright Questioned 

In the light of the difficulties of treating software as a copyrightable work and of the 
shortcomings referred to, it is not surprising to find criticism and several reservations on the 
copyright approach, even in developed countries where it has been formally adopted_ 

Dissatisfaction comes from many sides_ Producers are unhappy with the limited effect of 
copyright on actual copying. Producers' associations claim continuous losses due to piracy 
in the United States a..,d other countries. Surveys made in the United Kingdom and the 
Netherlands, for instance, indicate a general lack of confidence in the protection provided 
for computer programs by copyright law. Only 15 per cent of the respondents (in the case of 
the Netherlands) stated that they were prepared to enforce their legal rights in civil courts in 
case they were confronted with software piracy. This attitude results from the lack of a clear, 
unambiguous legislation (Borking, 1987). On their side, users are often confronted with too 
restrictive clauses, for example, in connection with archival back-up copies (Meisner, 
p.397, 1988) and educational purposes (OT A p. 8, 1986). For instance, a highly controver­
sial draft bill was introduced in April 1988 in France in order to allow universities and 
graduate schools "to reproduce the software they have acquired for their educational 
activities, provided that these copies are not used outside of those universities and schools" 
(Benrand and Coust, 1988). 

In the United States, the policy on software protection states a study of the Office of 
Technology Assessment, "is being made in the couns, virtually on a case-by-case basis, and 
the resulting ambiguities satisfy no one" (OTA. p.34, 1986). 

Case law has, in effect a decisive role in shaping the scope of protection afforded in that 
country_ One major development has l~d to a re-interpretation of the principle that confines 
copyright protection to the program's expression. In Whelan Associates vs. Jaslow Dental 
Laboratory, while recognizing that copyright protection does not extend to the "idea" or 
functionality of the program, the coun held that it covers the sequence, organization and 
structure of the code-program. 11 Furthermore, in Broderhund Software vs. Unison World it 
was decided that the protection of the underlying program extends to all elements of its 
audiovisual display. 12 Courts also face the need to decide on the imprecise frontiers of 
copyright protection in specific cases. After an intense debate they decided to support the 
copyrightability of "microcode" - which controls the sequence of operations carried out 
within the computer in response to a particular instruction received - in NfX: Corp. vs. 
Intel Corp. ( Sandison, 1987) despite its clear mechanical and utilitarian nature_ I 3 

139 



C\/Correa The legal Protection of Software 

In Alloy \.'S. Ultratek, moreover, the copyrightability of hardware itself in the form of 
Programmable Array Logic chips (P ALs) is at stake. If the decision is affirmative, "then 
hardware - at least its low-level, step-by-step functionality -would quality as a 'work of 
authorship'. placing virtually all unpatented logic devices (generally presumed to lie in the 
public domain) under the protection of copyright law" (Siegel and Laurie, 1989). 

In other pending cases (based on suits by Lotus Development Corp., Ashton Tate Inc. and 
Apple Computer Inc.) judges are bound to decide whether a software company can legally 
protect a program's appearance, design and functionality - its "look and feel". If granted, 

such a protection would include visual program features as pull-down menus, graphic 
symbols and even certain key stroke sequences. This eventual further extension of copyright 
has already brought up considerable criticism, and raised questions on the capabilities of 
United States software firms to compete on the basis of innovative i<ieas rather than on the 
basis oflegal instruments (Burgess, 1989; Business Week, Editorial, p. 22, 1989). 

The confusion on the means to ensure the legal protection of software has increased recently 
in the United States due to the so far successful attempts to ensure patent protection for 
computer programs. Recent evidence indicates •• that all software claims are eligible for 
patent protection unless they simply involve the use of a mathematical formula to calculate 
and display a number. Software patentability is a de facto reality today, as the Patent and 
Trademark Office (PTO) now commonly issues patents for software inventions" (Maier, p. 
157, 1987). l.J 

The inadequacy of copyright protection should, in view e,,!" the United States Congress 
Office of Technology Assessment (OTA), lead to the development of a new legal frame-
work: • 

"The disti11ctio11 between writings and inventions is indeed breaking down with 
respect to f1111ctio11al works such as computer software and semiconductor chip 
masks. Because there are many works of this type, they may require their own 
framework for protection. If ii were based on the distinctive characteristics of 
these works, the law might be more accurately targeted to achieve specific 
policy outcomes, thus serving a more robust policy tool. With a new category of 
law. both producers and users wo-.:ld face less uncertainty each time a new type 
of work were introduced OTA 'sanalysissuggests, too, thatafruitful basis.fora 
revision along these lines might be found in the distinctions between works of 
art, works of.fact, andworksof.function"(OTA,p. 14, 1986). 

Paradoxically, OTA recommends an approach that, as indicated before, the United States 

Government has strongly opposed, particularly in Japan. The need to look for a special form 
of protection was also stressed in other countries when amendments to their respective 
copyright laws were proposed or approved. In France, the rapporteur senator Jolibois 
qualified software as being of "industrial character". Moreover, it was stated that the law 
was "approved as a temporary measure, still remaining as an ultimate objective the search 
for a specific form of protection which will surely require some years to be found" (Jm1rnal 

140 



The legal Protection of Sojtwan! ( '.\/ Corrt'a 

Officiel. 1985). In Australia. the Minister of Justice referred to the 1984 amendment in his 
count:-y·~ legislation as ''a solution for the short term". which should allow to completely 

revise the policy adopted for the long term. In Canada. the study ··From Gutenberg to 
Telidon - a white paper on copyright" published in 1984 15 understood - like some 

judicial decisions in several countries - that the object program was not protectable under 
copyright law. A special title f0r ten j'ears was proposecf_ 16 

It should also be recallai that the specialized United Nations organisation on intellectual 
property. the World Intellectual Property Organisation (WIPO). proposed in 1978 a set of 
model specific rules on software. later on ab4Ildoned as the copyright approach became 
prevalent. The WIPO's recommendations have been the basis, however, of many initiatives 
such as the comprehensive computer draft law recently distributed by the Ministry of Justice 
oflsrael (Levenfeld. p. 5. 1988). 

Many authorities have objected to or made reservations on the application of copyright to 
software. Trolle (Switzerland) advocates that software is an intellectual method. not a 
creation. It would lack esthetic character(Ulmer and Kole, 1983). Desjeux (France) stresses 
that intellectual property is an ·'hommage" of society to "creators" (moral rights. long term 
of protection. etc.). The inventor receives more limited rights, like the software producers 
should, since the latter make an "intell~'1Ual contribution" but do not ··create" (Desjeux, 
1986). Van der Berghe (Belgium) argues that the lack of human communication in software 
conspires against the fundamentals of intellectual property (Flamee, 1985 ). G. Shipley 
(United Kingdom) affirms that software is different from protectable works both for its 
origin and use (Shipley 1985). 17 Jean Jonqueres, Presiding Judge of the Supreme Court, in 
Paris. after analysing the disappointtnent with software protection through copyright, 
concludes that the protection by a patent is likely to be even more disappointing "in view of 
the traditional strictness in applying the criteria of patentability and the interpretation of the 

claims. In the absence of any general text governing the protection of intellectual property, 

would it not be better to move towards a protection sui generis? This, with the protection 
provided by legal proceedings for unfair competition, is the only satisfactory protection for 
intellectual creations" (Jonqueres, p. 620, 1987). 

Briefly, copyright has not yet succeeded in becoming an uncontested and satisfactory 
framework for software protection. It is likely, in fact, that even ifit is admitted that software 
deserves a legal protection, the debate over the form that it should assume will continue in 
the future. A crucial point is how a proper balance among the different interests at stake can 
be reached_ IS Of course, such a debate is of utmost relevance for developing countries, 
particularly for those which intend to formulate active policies with regard to the diffusion 
or local production of software. 

141 



C~ICorrea Tire Ugal ProtectJon of Sojtwan 

IV. Implications for Software Diffusion and Production in NIEs and MIEs 

The analysis made in the precedent sections indicates. first. the existence of a profound 
North-South asymmetry in technological and productive capabilities for software develop­
ment~ second. that notwithstanding some efforts. the NIEs and MIEs have not been able to 
achieve significant positions in the software field~ third, that the existence of given com­
parative advantages for software developmen~ in those countries is questionable. 

On the other side. Section III has shown that considerable uncertainty and ambiguity 
prevails in connection with the extent of protection conferred by copyright. 

What implications may the prevailing software protection patterns have on NIEs and MIEs 
in this context? This question should be dealt with in relation to two aspects: the diffusion 
and the local production of software. 

From the point of view of diffusion, liberal copying would arguably reduce the cost of 
access to software. In the last analysis, suggests Prof. Wells, for a country which is not an 
innovator in the field it may be convenient. from an economic perspective, to facilitate the 
obtaining copies at low costs to stimulate a rapid software diffusion and save foreign 

currency (Wells, I 987). High softwclfe pricesl9 may make it difficult for domestic firms to 

computerize and compete internationally. Important trade-offs may exist. however, whether 

protection is granted or not. The lack of appropriate maintenance and after-sales support, 
and the consequences thereof for an efficient application of computer programs, may limit 
the advantages of non-protection. On the other side, while licensing under copyright may 
slow the diffusion of certain types of software. it may at the same time support the 
introduction into the economy of high-quality types of software. From an international point 
of view, moreover, a free-copying approach would be extremely conflictive. It does r.ot 

seem feasible nowadays for a country to compete by departing from generally accepted 
rules in intellectual work protection. 

The initiatives for strengthening and internationally expanding the legal protection of 

software have almost completely disregarded the problems posed for developing countries. 
The establishment of some form of protection will, in the first place, work in favour of those 

enterprises already operating in the market. It will evenrually reduce piracy and increase the 
income obtained through the distribution of a larger number of copies, at a higher price. 

Firms exporting software to the protected market would be among the main beneficiaries of 
the legal change. It is noticeable, however, that according to an OECD survey, the lack of 
protection by national law is not deemed by exporting finns to be a "high" obstacle for 
international operations, but just one of "medium" importance (OECD, p. 65, 1988). 

142 



Th~ /~al Prot~ctwn c>fSojtM·llTf! C\ICorrea 

Again. the impact of protection considerably differs according to the type of software 
developed. It may eventually have a significant impact if national firms intend to compete in 
the area of packages; this is. however. a considerably limited possibility due to the size of 
local markets. the investments needed and the difficulties in specifying standardized 
products for distant potential users. If software development basically means production of 
custom programs. legal protection will not add very much to the existing situation. 

The surveys made in some countries illustrate the software suppliers' point of view on the 
issue. The information collected in Argentina and the Republic of Korea revealed a general 

attitude in favour oflegal protection2°. In both cases, however, an important proportion of 

respondents indicated their preference for a special regime rather than for copyright (90 per 
cent in Argentina; 42 per cent in the Republic of Korea). Moreover. in the case of the 
Republic of Korea. the majority (97 per cent) "feared that the implementation of such 
protection at too early a date would hamper the growth of the domestic information 
industry." (Song. p. 5. 1987) 

In sum. to the extent that a local industry is confined to or concentrates itself on custom 
programs. the effects of legal protection will mainly reflect on imported software. Even in 
the case where packages are also produced. it cannot be assumed - obviously - that the 
introduction of protection or of a strengthened regime will lead automatically to more and 
better local r:roduction. The legal framework will be one factcr that may influence the 
software development. but in no way may it be deemed to be the most important or even a 
significant promotional element. The protection conferred may eliminate the unfair compe­
tition of pirated programs sold for a few dollars. This positive effect may be counterbal­
anced, however, by a stronger competitive position ensured to importing firms and, eventu­
ally, by a larger presence of foreign companies in the local market. 

Another aspect to be considered is the situation of a country that does not confer protection 
and is willing to export software to third countries. Under present international conventions 
(Berne and Universal) the Member countries are only bound to grant foreigners "national 
treatment". This rule would not be violated if neither foreigners nor nationals were granted 
protection. It is doubtful whether it can be interpreted that those conventions cover com­
puter software within their widely defined scope. However, present initiatives of the United 

States at GA TT precisely aim, among other things, to establish software protection under 
copyright as a universal standard. Japan and the EEC also share this proposal, notwithstand­
ing some differences as to the content of the standards and norms to be developed (Correa, 
J988b). 

In any case, it seems clear that the development of a local software industry will not 
necessarily be benefited-it may also be jeopardised-by the establishment or strengthen­
ing of a legal system of protection. The promotion of a software industry will require more 
complex and specific instruments than simple protection. The experience of many countries 
- Brazil, India, Republic of Korea - indicates that special policies have to be imple­
mented with that aim (see point 11.3 above). 

143 



C.\fC~a Tit~ ugal Prot«tion of Sojtwan 

V. Options for NIEs and MIEs: Key Issues in Devising Legal Regimes for 

Software Protection 

The newness and complexity of the protection issue. and the confusion existing in devel­
oped countries. make it extremely difficult for a developing country to adopt decisions on 
the matter. As mentioned before. dissatisfaction with the copyright approach is important 
and gro\\ing. The patent system does not seem to offer a better solution. It makes protection 
stronger since even independent developments on the basis of the underlying ideas of a 
program would be excluded. The setting up of a special regime. finally. faces the difficulties 
inherent to the creation of a completely new legal framework. panicularly vis~-vis its 
recognition in other countries. 

Independently of the approach followed. a number of key issues need to be considered if 
certain industrial or diffusion objectives are sought. 

I. Subject matter and scope of protection 

While recognising that protection extends to a computer program in its source or code form, 
or even embedded in a Read Only Memory (ROM). the development of the industry 
requires that the ideas themselves do not become directly or indirectly the property of the 
program title holder21. In this sense. the Japanese law explicitly excludes from protection 
the algorithms and rules employed in the development of a program. Likewise, languages 
should not be considered copyrightable. Only the expression of a program is to be deemed 
protectable, if some room for alternative creation of software is to be retained. 

2. Duration 

The typical duration for copyrights, as mentioned before, generally extends beyond the 
author's death. In the case of works of juridical "persons", periods of 50-70 years are the 
rule. These terms are clearly in1_ompatible with the diffusion of computer progra.'!ls while 
they are still economically and technologically valuable. Moreover, the recovery ofinvest­
ments made in the development of a program is often completed in a few years. The 
extension of the exclusivity would on!y ensure a monopoly rent for the title holder and 
prices for users higher than those obtainable under free competition. While adopting the 
copyright framework, some countries (France, Brazil, Indonesia) have limited its duration 
to 25 years for computer programs. 

144 



Tire Ll!'gal Protection of Software C\/Corrra 

3. Adaptations 

A crucial point for countries which are strongly dependent upon imponed software is to 
allow some flexibility for adaptation of i>rograms. either to specific types of equipment (this 
would be particularly important if a loca! hardware industry is promoted). or to local 
conditions. The Brazilian law. for instance. stipulates that when provided for in the contract. 
the rights on the technological changes and adaptations will belong to the person authorized 
to make them. who will exercise those rights autonomously (An. 6, Law 7646). 

4.Copies 

Developed countries' laws tend to restrict the right to make copies22_ Three main regulatory 
lines seem to exist: 

1. Copies are permitted by law. under specific conditions (United States, F ranee. Japan); 

2. Copies need always to be authorized by the proprietor (Germany, United Kingdom); 

3. Back-up copies are permitted by law, except if prohibited by theproprietor(Australia) 
(Correa. I 988a). 

A broader right to make copies may tie necessary, however, to reach a balance between the 
title holder and the user's interests. The diffusion of software may, in particular, be hindered 
by too stringent provisions on this aspect. The Brazilian law permits the legitimate user to 
make all copies "indispensable for adequate use" of the program (An. 7, Law 7546). The 
Republic of Korea 1987 law, for its pan, allows reproductions for use ··for the individual 
purpose in a limited place like home" and for educational purposes, among others (An. 12, 
Law No 3920, Dec. 31. 1986)23. 

5. User's points 

Another important regulatory aspect relates to the rights for the continuous use of a 
program. Since. under copyright, registration is neither compulsory nor ensures full disclo­
sure, in certain situations -such as when the tide holder has gone out of business or cannot 
be contacted -the user may be in a very difficult position. The Republic of Korea law, in a 
quite original provision, stipulates that if the owner of the program copyright is unknown 
and cannot be located, the user may apply to the Ministry of Science and Technology for 
approval to use the work. In such cases, a deposit of compensation for use of the program 
will have to be made with the Ministry (Art. 17). In order to facilitate the access to computer 
programs Anicle 18 of that law provides, funher, that a program copyright holder m11st 
allow a bona.fide user to use a program which has already been published and distributed 
unless there is justification for not doing so (Art. 18)24. 

For its part, the Japanese law does not deem the use of a program for non-commercial 
purposes to be a copyright violation when the user does not know about the infringing 
character of the copy. 

145 



C\/Corrra Th~ Legal Prot«lion of Sojtwan 

As the preceding discussion reveals, the regulation of software protection may - even 
within the framework of copyrighting principles - reflect certain policy objectives related 
to the diffusion or production of programs. How to obtain a balance between the private and 
public interests, including those of users as well as oflocaJ industry, is the crucial point for 
the formulation of strategies en software protection. 

It should be clear, in particular, that no general prescription on the matter can be made. 
There is nothing in the nature of software as an economic and technological entity that 
would justify a universal approach, independent from the productive and technological 
development and from the public policy objectives of the regulating country. 

Points l to 5 above, illustrate some of the ways in which the balance referred to may be 
struck. The clear limitation in the extent of protection (the expression and not the ideas or 
internal software structure). certain flexibility regarding the right to make copies and 
adaptations, a reasonable duration and the establishment of certain guarantees in favour of 
such users (such as the non-voluntary license provided for in the Republic of Korea). are 
among the elements that may contribute to attain such a balance. 

As mentioned before, the number of developing countries that have already legislated on 
software protection is very limited. In many cases, the issue has not still emerged or gained 
public attention. In others, studies are only starting at the academic or governmental level. 
Finally, in a third group, pressures by the United States or by organised local associations 
(mainly those controlled by distributors of imported software) are pushing for the adoption 
- by legislation, administrative act or jurisprudence - of the copyright approach. In 
addition, the initiatives of the United States and other industrialised countries to define 
international ··norms and standards" within the Uruguay Round include, among other 
matters, rules relating to computer program protection under copyright. 

If the copyright scheme is imposed in GA TT negotiations. the immediate consequences for 

most developing countries party to GA TT would be the adoption of new laws and the 
amendment of existing ones in order to bring their intellectual property systems in consis­
tency with the agreed norms. This would imply the loss of GA TT concessions and 
advantages for countries unable or unwilling to adapt their legal regimes to the minimum 
standards and for those unable to enforce them. 

In this context, most developing countries will be confronted, in a bilateral or a multilateral 
framework, with the need to decide on the software protection issue. Considerable room for 
co-operation among such countries seems to exist. That co-operation may take various 
forms and imply different degrees of commitment, ranging from co-ordinated action in 
bilateral and multilateral negotiations, to the definition of a more substantial common 
position2S. Joint efforts to understand the implications of software protection and to devise 
the most appropriate legal models may therefore also be fruitfully envisaged26_ 

146 



Tire Ugal Prot«llon of Sojtwan ( '.\/ Correa 

In sum. the strategic opti<.'ns for NIEs and MIEs on software protection are limited by the 
newness of the issue and the ambiguities that still prevail on the form of regulation. as well 
as by the choice already made by the majority of industrialised countries. In \iew of the 
growing dissatisfaction with the parameters and results of protection through copyright 
however. the best solution for many countries would be just to wait until a more precise 
picture is available. In fact. no real urgency to deal \\ith the matter - at least from a 
legislative point of view-would exist in most developing countries, if the main concern 1s 
the protection/promotion of local software production. As said before, to the extent that 
custom software largely prevails. contract law may be a more effective mode of protection 
than a general regime. 

In the event that bilateral or multilateral pressures make it necessary to produce a more 
immediate response, it should be clear that copyright is neither the best nor the .. natural" 
solution, imd that skilful drafting of pertinent rules may permit the right balance between the 
private and public interests involved. 

VI. Main Conclusions 

Any analysis on the software protection issue requires full understanding of the economic, 
institutional and technological context in which the debate takes place. Study of the world 
software market reveals a number ofimportant facts in that respect: its dynamic growth; the 
overwhelming importance of developed countries as users and producers, the dominant 
position of United States firms; the high concentration of the supply. and the centralisation 
of R&D activities, among others. It also indicates that NIEs and MlEs have no comparative 
advantage for successful competition internationally, or even domestically with imported 
packaged software. If substantial efforts to improve production and marketing methodolo­

gies are not made, the participation of such countries in the software area may remain 
illusory. 

The consolidation of copyright as the basic approach for software protection, cannot be 
attributed to its appropriateness for the subject matter. It rather shows the power of the 
country leading in software - the United States - to force the adoption of a legal system 
that basically reflects the interests of its industry - the most internationalised one among 
the OECD Member countries. The ambiguities and uncertainty that the application of 
copyright creates, has promoted the search for alternative forms of protection. Some of 
those initiatives were abandoned under United States' pressure. Others -like the applica­
tion of patent law or the new approach suggested by OT A - indicate that even within that 
country the issue is still open to controversy. 

Copyright protection of software is generally considered in developed countries as a means 
of promoting innovation and ensuring a reward for investments made in the development of 
new products. The attempt to transfer the legislative pattern adopted by such countries to the 
rest of the world, assumes that a similar legislation will have similar effects, independently 

147 



C.\f Con?a Th~ Legal Protection of SoftM·tuT 

of the technological and economic context in which it "ill be applied. It seems clear. 
however. that the extension of copyright would mainly benefit software exporter firms that 
operate on a world scale. It is questionable that the protection would foster the diffusion and 
local software production in all countries. particularly in developing ones. 

Diffusion may. in practice. be hampered by provisions such as those concerning adaptations 
and copying. However. since the total exclusion of protection does not seem potentially 
sustainable. the problem in that respect is how to strike a proper balance between producer. 
user and public interests. 

From the point of view of production. local firms have not too much to benefit from 
protection if they are basically involved in the development of custom software. for which 

contractual law is the main means of protection. The production of packages may introduce 
a different picture. since it is not possible to compete with a low cost .. pirate" industry. In 
any case. the impact of the legislation will depend on the segments in which local 
production will compete and on the terms under which the protection is granted. 

It is clear, on the other hand, that mere protection is not sufficient to promote and give 

viability to a software industry. Other specific policies may be necessary in order to 

overcome the often serious obstacles that NIEs and MIEs face in this sector. 

Finally. to the extent that the question is not whether to grant protection or not, but what type 
of regime is best and when it should be implemented, the regulation of different aspects 
(scope of rights. dura!ion, etc.) is particularly relevant. From a technical point of view there 
is considerable room to frame a legal regime that takes into account specific diffusion or 
productive objectives, and which pursues a balance between public and private interests. 
The foreign policy implications of such a national decision on the subject are, of course, a 
different matter. 

Notes and References 

1. For western Europe, INPUT estimates that the market will grow between 1987 and 
1992 at an average annual gro~1h rate of 24 per cent (INPUT, p. 4, 1987). 

2. The figures for the Brazilian software market contained in the OECD study, however, 
should be cautiously considered. Other sources estimate a considerably lower market 

size. 
3. In Brazil. it has been noted, for instance, that though there are capabilities to develop an 

ADA-like compiler. skills for managing a project for the development of an environ­
ment in that language (which would involve a million and a half lines of code) do not 
exist (Pereira de Lucena, p. 17, 1988). 

4. Software engineering tools are very rarely used in Argentina (SPCALAI, 1988). In the 
long term such tools may erode eventual competitive advantages based on the avail­
ability oflow cost - qualified personnel. 

148 



The J.egal Protectwn c>fSofoA·are C.\/ Correa 

5. Pressures have been exercised on several Asian and Latin American countries (particu­
larly Brazil). Thailand is still in conflict with the United States on this matter (Krim, 
1989). 

6. After hesitation. countries of the former Soviet Union are also likely to join those 
countries who support the copyright approach. 

1. Countries such as the Republic of Korea, which had not adhered to such conventions, 
have recently revised their position thereon. in part as a result of American direct 
pressures. 

8. In France and the United States, on the contrary, a low originality requirement is 

applied. 
9. See, however, the implications of the Whelan case below in this section (point c). 

10. This fact explains that national producers concentrated on custom development, and 
did not discover the issue of software protection until pressures of package distributors 
emerged. 

11. A similar decision was taken in the Gem Scan case in Canada. 
12. This interpretation has also been embraced by the United States Copyright Office, 

though other decisions have ruled that a separate protection for such displays should be 
sought for (Russo and Hale, p. 9, 1988). 

13. In accordance with one opinion, the protection of microcode by copyright could result 

in an extension of the monopoly of the copyright owner beyond the termination of any 

patents governing the computer systems. "The lengthy copyright monopoly with its 

presumption of validity would be a frightening weapon having significant 'in terrorem' 

effect against any competitor developing a computer with an instruction set compatible 
with a previously developed computer or microprocessor, whether copied or not" 

(MacPherson et al., p. 4, 1986). 
14. Examples of patented software inventions include a process for a management control 

system for multiprogrammed data processing, a method of constructing a task program 

for operating a word processing system. a program that checks for spelling errors. and 
a program that converts one programming language into another (an RPG to COBOL 
compiler). Perhaps the best known software patent was issued to Merrill Lynch for a 
Securities Brokerage and Cash Management System. Protection is conferred by the 
PTO without requiring the submission of full scope-program, i.e., only partial disclo­

sure is being accepted at the administrative level. 
15. The paper was prepared by the Department of Communications and by the Department 

of Consumer and Corporate Affairs. Supply and Services. 
16. In IHM Corp. vs. Ordi11ate11rs Spira/es, a Canadian court, however, accepted copyright 

for an object program. In 1988 the copyright law was amended in order to fully 
incorporate software as a copyrightable work. 

17. Arguments for a new form of legal protection in the United Kingdom, with a shorter 
term and tailor-made rules are presented by Staines ( 1988) 

149 



C\ICorrea The Legal Protection of Software 

18. In its proposal on intellectual property in GA TI, the EEC has held, for instance, that 
software protection should take account .. oflegitimate interests of users, the promotion 
of international standardization, the development of compatible and inter-working 
systems and maintaining the conditions of competition" (July, 1988). 

19. In Thailand, for instance, Lotus 1-2-3 could cost USS 715, more than twice as much as 
many Thais earned in a month (Krim, 1989). 

20. The Argentine survey was responded to by 156 firms producing, importing or distrib­
uting software (Subsecretaria de informatica y Desarrollo, p. 72, 1987); in the Republic 
of Korea, 384 replies were obtained on the basis of a questionnaire sent to 2, 780 
persons including businessmen, academics, researchers and public officials with ties 
to, or interest in, the computer software field (Song, 1987). 

21. The weakening of the competition that may result from the application of a doctrine 
such as that held in Whelan is discussed in Bulkeley ( 1986). 

22. In the United States, for example, though the CONTU report proposed to allow the 
right of copying to any .. authorized possessor", the law restricted it to any ··authorized 
owner" of a copy (Meisner, p. 394, 1987). 

23. Among the comments and proposals made to the request of the Government of China 
(Taiwan Province) after the amendment of the copyright law in 1985, the estab­
lishment of a compulsory licensing system was suggested ... Under such a system, 
whoever needed a program could use it lawfully at a reasonable price. The software 
rightholder could avoid litigation expenses involved in pursuing pirates", (Chang, p. 
464, 1987). 

24. Limitations on the "moral rights" of a program title holder may also be found in the· 
legislation of France (Correa et al. 1987). 

25. The so-called .. Group of Eight" Latin American countries, for instance, has agreed to 
co-ordinate their positions in GA TT negotiations on new areas, including intellectual 
property ( .. Acapulco Declaration", 1987). 

26. Representatives of Parliaments of twelve Latin American countries recommended, in 
1987, the preparation of "a model of informatics legislation for the (Latin American) 
region". See Informatica e lntegracion en America Latina y el Cari be, p. 19, 1987. 

Bibliography 

American Programmer, "Case Tools from Singapore", Vol. I, No. 7, September 1988. 

Associaci6n Nacional de la Industria de Programas de Computadoras (ANIPCO), "Opor­
tunidades para el desarrollo tecno16gico y comercial de la industria del software en 
Mexico", Mexico, 1987. 

Bertrand, A. and M. Couste, "Current Issues Concerning French Software Protection", Law 
& Technology Pre.'is, Vol. VI, No. 12, May 1988. 

150 



Th~ Ugal Protection of Sojtwarr C\/Corna 

Borking. J .... Results of a SocicrLegal Survey Regarding the Legal Protection of Software ... 
Law & Technology Press, Vol. VI, No. 6, November 1987. 

Bulkeley, W., "Courts Expand the Copyright Protection of Software, but Many Questions 
Remain". The Wall Street Journal, 18November1986. 

Burgess. J., "The Battle over Software Protection", The Washi11gto11 Post, 2 February 
1989. 

Business Week, "Editorials: Don't Use Copyright to Shackle Software", 29 May 1989. 

Chang, C.N., "Computer Software Protection in Republic of China (Taiwan)", Computer 
Law Journal, Vol. VII, No. 4, Fall 1987. 

Computer System News, 1985. 

Computers Today, New Delhi, 1988. 

Correa, C.M., "Comercio Internacional de Software", Subsecretaria de Informatica y 
Desarrollo, Buenos Aires, 1987. 

Correa, C.M., "Computer Software Protection in Developing Countries: a Normative 
Outlook'',JournalofWorldTrade, Vol. 22, No. 1, 1988a. 

Correa, C.M., Propriedad inte/ectual, innovacion tecno/ogica y comercio intemacional, 
Centro de Economia Internacional, Buenos Aires, 1988b. 

Correa, C.M., et al., Derecholnformatico, Ed. Depalma, Buenos Aires, 1987. 

Dataquest, ''Birth of the Indian Software Industry'', New Delhi, January 1987. 

Desjeux, X., ''Logiciel, originalite et activite creative dans la loi du 3 juillet 1985'', in La 
protecticil des logiciels sous la loi du 3 Jui/let 1985, Ed. des Parques, Paris, 1986. 

Flamee, M., "Aspects actuels de la protectionjuridique du logiciel au regard du droit beige", 
Revue de Droil lntellectuel d'Jngenieur Conseil, November 1985. 

Forero Pineda, C., Informatica e integracion economica, Tercer Mundo Ed., Bogota, p. 49, 
1989. 

Fraser Mann, J., "Computer Programs and Copyright: Recent Canadian Developments", 
International Computer Law Adviser, January 1987. 

Higashi ma, T ., "A New Means of International Protection of Computer Programs through 
the Paris Convention. A New Concept of Utility Models", Computer Law Journal, Vol. VII, 
1986. 

151 



< ]/ < ·orrea Tht ltgal Protection of Suftwarr 

Informatica e Integracion er1 America Latina y el Caribe, Boleti11 de la Secretaria Perma-
11eme de la ( 'miferencia de Autoridades Lati11oameric:a11as de biformatica ( APC Al.Al), No. 
23. Buenos Aires, June-July 1987. 

Jnfornuitic:a t! /11tegraci611 en America /Alina y el Cari be, No. 27, Buenos Aires, 1988. 

I~PUT. 'The Western European Market for Information Services. Analysis and Forecasts, 
1987-1992 Executive Overview", London, 1987. 

Jonqueres, J., "The Patentability of Software", llC, No. 5, Munich, 1987. 

Katz, R.L, La industria del software en los Estados Unidos; estructura y comercializacion 
de producto, C'onferencia de Autoridades Latinoamericanas de Informatica (CALAI), 
Buenos Aires. 1987. 

Krim. J. "Thailand's Refusal to Protect Copyrights Produces Cheap Goods, Disputes with 
United States". 771e Wu..-.hingto11 Post, 13 March 1989. 

Levenfeld, B., .. Israel Considers Comprehensive Computer Law", /nteniational Comp11ter 
hn-.· Atki.'ier, March 1988. 

Mac PhersoN, A. et al., ''Microcode: Patentable or Copyrightable?", European /11tellectual 
l'roper(v Re\'lt!W, p. 3, 1986. 

Maier. G .• "Software Protection - Integrating Patent, Copyright and Trade Secret Law", 
.Jo11mal of the Patefll and Trademark Office Society, Vol. 69, No. 3, 1987. 

l\1eisner, M . "Archival Back Up Copying of Software: How Broad a Right?", Rmgers 
Computers & Technology Law Joumal, Vol. 14, 1988. 

MITI, Information Industry Committee, ''Aiming Towards Establishment of Legal Protec­
tion for Computer Software", Tokyo, 1983. 

OECD, Software: an f;merging /11d11stry, Paris, 1985. 

OECD, !11tematio11alisatio11 of Software and Computer Services, Paris, I 988. 

OTA. /111el/ec111a! Prop!!rty Rights in an Age of Electronics and ltiformatics, Washington, 
1986. 

Pereira de Lucena, C.J., .. A tecnologia de software no Brasil: a caminho deuma participa~ao 
no mercado internacional". Paper prepared for the Centre de Estudos em Politica Cientifica 
e Technologica do Ministerio de Ciencia e Tecnologia, 1988. 

Russo. J. and T Hale, "Developmerts in Copyright Protection of Computer Software", 
/111ematio11a/ Complller law Adviser, January 1988. 

Sandison, H., "NEC Corp. vs. Intel Corp.: United States Court Finds Intel's Microcode 
Copyrightable", f:uropea11 /111ell.•ctua/ Property Review, p. 25, 1987. 

152 



The Legal Protection of Software C\!Correa 

Schware, R., "Software Industry Development in the Third World: Policy Guidelines, 
Institutional Options, and Constraints", World Development, Vol. IS, No. I 0/11, 1987. 

Shipley, G., "Computer Software Copyright, the Same but Different?" European /111e/lec­
tual Property Re\•iew, Vol. 7, No. 11, November 198:>. 

Siegel, D. and Laurie, R. ''Beyond Microcode: Alloy vs. Ultratak - The First Attempt to 
Extend Copyright Protection to Computer Hardware", The Computer Lawyer, Vol. 6, No. 4, 
April 1989. 

Song, S.H., "Protection of Computer Software in the Republic of Korea", 
WIPO/IP/JK/87/6, January 1987. 

SPCALAI, "Producci6n de software en la Argentina. Calidad, ventajas comparativas y 
exportaci6n de productos" (preliminary version), Buenos Aires, 1988. 

Staines, A, 'Why Copyright is Wrong for Programs", The Fi11a11cial Times, 21 July 1988. 

Subsecretaria de Informatica y Desarrollo, "Produccion y comercio de software en la 
Argentina", doc. SID No. 35, Buenos Aires, 1987. 

Takahashi, T, and C. J Pereira de Lucena, "A tecnologia do software no Brasil, Problemas 
e perspectivas" (preliminary version), Paper presented to the Seminar on Production and 
Commercialisation of Software, CALAI, Buenos Aires, September 1988. 

Ulmer and Koll, E., "Copyright Protection of Computer Software", UC, Vol. 14, No. 2, 
1983. 

UNCTC, "lnforme sobre las estrategias y politicas globales de las empresas transnacionales 
en la industria de computaci6n: consecuencias para los paises en desarrollo", New York, 
1984. 

UNIDO, "Software Industry: Development Approach'"', by S. Yu and Y. Kim, ID WG.-1781 I 
(SPEC), 1988. 

United States Department of Commerce, A Competitive Assessment of the United States 
Software Industry, Washington, 1984. 

Wells, L., "United States Pressures on Indonesian Intellectual Property, Investment, Trade 
and Immigration Policies", FR/117/87/13, 29 January, 1987. 

153 



v 

Implications for 
Developing Countries 

The Potential Role of Software 
in Enhancing the Com~tiveness 
of~:J~~g Country Finns .......................................................................................... 157 

CE:~!C~r~~:c;insc~~:1e!>~~~~-~~~~~-i-~---····························-············· 1ss Antonio Jose J. Botelho 
Caren Addis 

Public Domain Software for Development ....................................................................... 211 
Robert Schware 

The Production oflntelligent Products 
in Developing Countries ................................................................................................... 221 

Hermann Kopetz 



The Potential Role of Software in Enhancing 
the Competitiveness of Developing Country Firms 

AtulWad* 

Introduction 

There is a fairly wide and expanding literature on the potential role of developing countries 
in the global software industry and on the related problems of developing a software 
industry in these countries. 1 Most of this effort has focused on how developing countries, 
particularly the Newly Industrialized Economies (NIEs) might be able to participate in the 
global software industry, which niches they could penetrate, and how they could take 
advantage of their comparative advantages in this regard. 

Also addressed are the practical problems involved in developing local software production 
capabilities and acquiring the requisite know-how, technology and market intelligence and 
access. 

Strangely, what has received relatively little attention is the potential role of software 
applications, from whatever source, for improving the productive efficiency of enterprises 
in developing countries, thus contributing to economic development and to competitivenes~ 
in international markets. Even though there are many examples of software applications 
making significant contributions to productivity in both the public and private sectors in 
developing countries in various sectors, no systematic study and assessment of these 
experiences have been made. 2 

In the modem global economy, international competitiveness is a driving concern. The 
trend towards freeing up domestic economies, liberalizing markets and encouraging private 
sector development and entrepreneurship has made it vital for firms everywhere to become 
more competitive on a global basis. For the developing countries, this presents a special 
challenge. After years of following .. import substitution" models ofindustrial development3 
and a relatively protected domestic market, firms in developing countries are having to face 
the realities of hard competition both foreign and domestic. A major hindrance in this regard 
is the low level of efficiency ofindustry in the Third World. 

• Director. Technology Programs. International Business Development. Northwestern University, 
Evanston. Illinois, United States. 

157 



Atul Wad Enhancing Competetn:e .-ld\'Ontage through Sojt'A·are 

In a general sense, there is a vast gap in productivity levels between industrialized and 

developing countries as measured in tenns of gross output per worker or value added per 
worker', partly as a result of technology gaps. However, given a cenain level of technology, 

it is also true that productivity is lowered by the inefficient utilization of technology and by 
inefficiencies in the management and organization of production itself 

Attempts have been made to capture these aspects ofinefficiency, at least at the macro-level, 
through such measures as domestic resource cost (DRC), effective rates of protection (ERP) 
and total factor productivity (TFP). These measures, however, do not offer any useful 
insights into the likely causes of these inefficiencies. Pack5, for example, argues that these 
measures do not tell you whether any possibilities exist for improving productivity, through, 
for example, skill transfer. The sources of inefficiency are not clarified in any manner. 

On the other hand, recent developments in the management literature have highlighted the 
imponant role of .. softer" procedural and organizational improvements for enhancing 
overall productivity. Distortions and ••disconnects" in the manufacturing process, commu­
nications, inter-departmental linkages and infonnation flows are identified as some of the 
root causes of inefficiencies in the system as a whole. The ··new" management techniques, 
such as Just in Time, Zero Defects and Total Quality Management stress this focus on the 
processes that are associated with manufacturing and its relevance to improving the 
productivity and competitiveness of the finn. Most of this literature has focused on the 
industrialized world, though some efforts have been made to examine the implications of 
the new management practices for developing countries6. In recent times, this approach has 
taken an explicit focus on the technological processes of the finn and how these could be 
improved upon.7 

Thus, there have been recent developments that have begun to address the issue of 

productivity and competitiveness in developing countries. A wide range of finn level and 

policy measures need to be considered in order to effect productivity improvements. 
Software can play an important role in this regard. 

The purpose of this paper is to examine the practical issues involved in developing and 
applying software for the improvement of the competitive position of finns from developing 
countries, with a specific focus on small- and mid-sized firms. Funhermore, the paper is 
primarily concerned with the applications of software to the industrial sector in developing 
countries. 

The paper will first discuss the broad changes in the global economy and how they are 
changing the concept and detenninants of competitiveness in the modem world. It will then 
examine the potential role of software applications in improving the efficiency of domestic 
enterprises, and the different areas where software can have an impact. Following this is a 
discussion of the issues involved in developing or acquiring the needed types of software 
and the issues involved in the delivery of software to the users. The paper concludes with an 
analysis of the policy implications for developing countries 

158 



Enhancing Com~ld\~ Advantagr through Sojtwan Atul Wad 

The Changing Global Context 

Several dramatic changes in the global context for development make it more important for 
developing countries to become active participants in the world economy. The new global 
context presents a different set of challenges for these countries: 

• A heightened pace of global competition and new bases for competition. 

• The rise of the NIEs and the gradual entrance of eastern Europe into the global 
economy. 

• An accelerating rate of technical innovation and change, particularly in the 
advanced technologies (e.g. informatics, biotechnology). 

• The emergence of science-based knowledge-intensive technology, and its 
spread throughout the industrial world. 

• The internationalization of capital and production and the globalization of 
manufacturing. The development of niche markets and product and market 
differentiation on an unprecedented scale, at least in the industrialized nations. 

• Changes in the concepts of efficiency and productivity (from economies of scale 
to economies of scope). which places greater emphasis on flexibility and innova­
tiveness. 

These changes have had important implications for what constitutes competitiveness in 
today's world. With the shift to a new techno-economic paradigm, the traditional bases of 
competitiveness are being eroded and replaced by a new set of concepts based on quality. 
responsiveness, speed to market. flexibility and efficiency ii! service. In this new playing 
field, the traditional strength of the third world, cheap labour, may not retain the value it 
once had. On the other hand. the changing situation could open up new areas of opportunity 
for the developing countries. 

The Challenge for Developing Countries 

For developing countries, the implications of these changes are complex and serious. To 
compete, they must undertake a series of steps. They will have to: 

• Improve the process of technological development and capability building in 
their industries so as to make them more productive and competitive. This is 
particularly true for countries that have undertaken policies to liberalize their 
economies and privatize public sector corporations. In order to survive and 
succeed in the more open and, hence, more competitive environment being 
created, local firms need to upgrade their technological capabilities through 
internal technology development, sourcing of foreign technologies, adaptation, 
joint-ventures, and other means. 

159 



Atul Wad Enhancing Compt!letive A.dwmtage through Sofr..·are 

• Developing countries must develop their international business strategies and 
increase their participation in global markets on the basis of their competitive 
advant~ges. This requires more systematic and sophisticated marketing, mark.et 
"intelligence" and market access. Their firms need to be able to define "niches" 
and windows of opportunity, enter into cooperative arrangements with firms in 
other countries, and deliver quality goods or services on time and at the right 
price. 

• Firms in developing countries must improve the quality of their manufacturing 
processes and their products, to be competitive. Inefficient modes of operation 
that were affordable under more protective environments need to be rectified. 
New management techniques and other measures are needed to improve produc­
tivity. 

• Developing country governments must adopt innovative policies and institu­
tional mechanisms to create conditions which foster productivity and make 
firms more competitive. 

Clearly, these are not easy tasks. Even though there is a proliferation of new product and 
process technologies, it is difficult to keep abreast of relevant developments and sources. 
As 1.echnology becomes more complex, it is difficult to assess the relative merits of each 
witr;out some basic resident expertise. Gaining access to sources, and to the resources 
needed to adapt and modify these technologies to local conditions is also a problem. 
Furthennom, negotiating technology licenses is a complex process requiring legal, market­
ing and t\:chnical expertise often not easily available to firms in developing countries. 

Similarly, developing a more sophisticated approach to marketing requires networks, 
contacts, various forms of expertise and resources that such firms typically do not have or 
cannot afford. It is costly to conduct mark.et studies, to make frequent marketing trips 
overseas, and to find foreign distributors and collaborators. 

Furthermore, local technological capabilities and resources are often inadequate to meet 
industry needs. Even where large local R&D systems have been established, these are 
typically not in tune with the needs of industry and lack a "demand driven" approach. The 
value of these R&D capabilities to local firms is questionable. 

In other areas, such as marketing, quality control and management, local capabilities are 
generally weak, if not altogether absent. The culture and infrastructure of support service 
organizations and consulting firms in these "soft" areas, which are taken for granted in the 
United States, rarely exist in developing countries. Where they do exist, they are generally 
priced out of the range of most small and mid-sized firms. This situation is compounded by 
a general lack of experience with, and subsequent distrust of, consultants. 

160 



Enhancing Competetn-e Admntage through Software .-ltul IJ"ad 

Clearly, there is a gap between the needs of firms in developing countries with respect to 

their technological capabilities and business development efforts, and the institutional and 
infrastructural context in which they exist Their institutions often were set up to meet other 

priorities, or are based on a different view of the role of science and technology in economic 
development. They tend to be bureaucratic, non-market-driven and not responsive to 
industry because they are normally subsidized by the state. The protectionist policies that 
many countries pursued in the past have insulated local firms from the competitive pressures 
that would have generated technological innovation, increased productivity, more sophisti­
cated marketing, and more aggressive movement into international business. 

Carlota Perez8 has summarized the main points of difference between the old and new 

paradigms and what they imply for the firm: (see Figure I) 

A new perspective on technology 

At the core of the issue here is technology. For decades, the international community has 
focussed on how science and technology can contribute to the economic development of the 
third world. What has happened as a result of the change in the entire basis of manufacturing 
and the dynamics of the market, is a fundamental re-thinking of the concept of techrology 
itself While it is not the purpose of this paper to delve too deeply into this matter, it is useful 

to mention some of the main ways in which our notion of technology appears to be 

cl mging. 

Technology is not just the hardware, but includes a soft dimension as well (i e. technical 

know-how, skills and knowledge related to technical knowledge and the commercialization 
process, management, marketing, etc.). These "soft assets" can be crucial to the proper 

utilization of the hardware, and an entire specialty area is evolving in the field of manage­
ment that deals with this aspect oftechnology.9 

Technology should be viewed as a whole systerr •. ather than discrete elements, incorporat­
ing R&D, design, process and production engineering, maintenance, management and 
marketing. Thus technology is a complete package of processes and equipment that are all 
needed to ensure a technological capability. 

• Technology is becoming increasingly knowledge-intensive, with a rapid in­
crease in the knowledge intensity of production and a growing research intensity 
in the development of new technologies. In some cases, the initial investment 
costs simply to enter into a high-tech sector such as semiconductors, is prohibi­
tive even by industrialized country standards. For developing countries, this 
suggests serious barriers to entry into certain areas of technology and the more 
relevant question is where they can find a place with respect to the industry 
based on this technology. 

161 



Atul Wad 

COMMAND AND 
CONTROL 

STRUCTURE 
AND GROWTH 

PARTS 
AND 
LINKS 

STYLE OF 
OPERATION 

MANNING AND 
TRAINING 

EQUIPMENT 
AND 
INVESTMENT 

PRODUCTION 
PROGRAMMING 

PRODUCTIVITY 
MEASUREMENT 

SUPPLIERS, 
CLIENTS, AND 
COMPETITORS 

Enhancing Competeti\'f! Ad\·antage through Software 

CONVENTIONAL COMMON SENSE 

Centraliz.cd command 
Vertical control 
Cascade of supen'isory le,·els 
"Management Knows best" 

Stable pyramid growing in height and 
complexity as it expands 

Clear ,·ertical links/Separate specialized 
functionaldepartmen~ 

Optimized smooth running organizations 
Standard routit;es and procedures 
"'fh:re is one best way" 
Definition of individual tasks 
Single function specialization 
Single top-down line of conunand 
Single bottom-up information flow 

Labour as variable cost 
Market pro, ides most trained personnel 
People to fit the fixed posts 
Discipline as main quality 

Dedicated equipment 
One optimum plant sire for each product 
Each plant anticipates demand grow1h 
Strive for economies of scale for mass 
production 

Keep production rhythm: use 
Inventory to accommodate variations in 
demand 
Produce for stock; shed labor in slack 

A specific measure for each department 
(purchasing. production. marketing, etc.) 
% T olcrance on quality and rejcc~ 

NEW EFFICIENCY PRINCIPLES & 
PRACTICES 

Central goalsetting and coordination 
Local autonoDl\· /Horizortal self-control 
Sclf-asscssing/Self-impro,·ing uni~ 
Participatory decision-making 

Flat flexible network of \"Cry agile 
units/Remains flat as it expands 

Interactive, cooperati\"C links between 
fwictions along each product lin 

Continuous learning ard impro,·ernent 
Flexible systems/ Adaptable procedures 
.. A better way can always be fouro" 
Definition of group tasks 
Multi-skilled personnel/ Ad hoc teams 
Widespread delegation of decision making 
Multiple horizontal ard vertical flows 

Labour as human capital 
Much in-house training ard retraining 
Variable posts/Adaptable people 
Initiative/collaborationlrnotintion 

Adaptable/programmable/flexible equip. 
Many efficient sires/Optimum relative 
Organic growth closely following demand 
Choice/combination of econ. of scale. 
economies of scope or specialization 

Adapt rhytlur1 to variation in demand 
Minirnire response time (As in ')ust-in­
time ') 
Use slack for maintenance and training 

Total productivity measured along the 
chain for each product line 
Strive for zero defects and zero rejects 

Separation from the ou~idc world: Strong interaction with outside world: 
Foster price competition among suppliers; Collaborative links with suppliers. with 
make standard produc~ for mass customers: customers and. in some cases. with 
arms length oligopoly with competitors competitors (Basic R&D for instance) 
The firm as a closed system The firm as an open system 

Figure 1: The New vs. the Traditional Paradigm: 
Contrast Between two ··ideal Types"' in Managerial Common Sense 

Source: Perc1~ Op. Cit. 

162 



Enhancing Compet~tive Advantag~ throflgh Sojtwan Awl Wad 

• Technology can no longer be regarded as a cost of modernization but as an 
investment towards long-term growth and competitiveness. The .. supply" push 
approach to technology with its assumption that the key to growth is the 
injection of more technology and more science needs to be revised_ Innovation is 
the key concept today. and is much more a demand driven notion. Technology is 
still an essential input. but the type of technology. how it is used. and how it is 
developed need to be addressed on the basis of what is the demand for the final 
results of that technology. demands set in the marketplace and derived from the 
needs of society. 

• Technology is not simply a static input to a productive system. but rather a 
variable that can be manipulated. Thus. the same piece of equipment can be 
used badly or well - as a result of non-technical factors. Simply having the 
technology is not enough. it must be used well. and this requires an under­
standing of and capability in the management of technology at the enterprise 
level, and the development of sensible and realistic technology policies and 
plans at the national level. 

• Technology encompasses not only what is commonly i[lcluded under the term 
-i.e. developed country technology -but traditional bodies of knowledge as 
well. Increasingly in use as an alternative to "technology" is the concept of 
"knowledge systems". which may range from complex computer systems to 
techniques based on accumulated knowledge in traditional societies. For exam­
ple, traditional medicinal remedies based on local herbs and roots, food preser­
vation techniques, etc. The scope of what constitutes knowledge has thus 
expanded, and thereby also become more complex. 

In short, the entire notion of technology needs to be revised and reconceptualized in order to 
take into account the changing realities of the present time The improvement of productiv­
ity of manufacturing therefore needs to be centrally based on an appreciation of the benefits 
that can be gained by using technology well. 

The Role of Software 

The current situation for developing countries 

While there has been a great deal of concern over the implications of the computer 
revolution for developing countries and the debate continues, much of this debate has 
centered on the hardware aspects of the technology. In the past, there was concern over the 
options available to developing countries to build local capabilities in this technology, an 
option that is fast dwindling as the costs of initial investment continues to rise and the 
barriers to entry, at least in the core areas become even tighter. (On the other hand, the costs 
of computer systems continue to drop, making the acquisition of these systems more 
feasible in developing countries.) 

163 



.-ltul Wad Enhancing Competetn·e .-tcl\·antag~ throu!>!h Sofr..·are 

Several countries have, however. made in-roads in the ancillary industries, such as printers, 

disk drives. monitors. etc. For example. the total producti~n of the largest hardware 
manufacturers in the third world, mainly the NIEs. exceeded $12 billion in 1988. For the 

manufacture of peripherals, the comparative advantage of cheap labour will probably 

continue to shape the pattern of movement of the industry through the third world. 

On the ot!'ter hand, in the software industry, the participation of the third world has been 
much smalier. The United States continues to dominate the global industry, which is 
estimated to expand to $340 billion by 1996, by growing at an annual rate of 20-30 per cent. 

But in this business. the third world barely accounts for a few percentage points, although 
there is evidence that the size of the software markets in some countries is increasing rapidly 
(Figure 2) and governments in some countries, such as India, are taking proactive suppor­
tive measures for the development of this industry. 

At the same time, the industry itselfis going through major changes: 10 

• a shortage of trained personnel, resulting in a sit•Jation where software costs now 
account for the major share of total system costs 

• a global struggle over operating system standards 

• a trend towards customized, integrated multi-vendor hardware and software 
solutions 

COUNTRY 
OR AREA 

. Br.v.il 

_Hong Kong 

India 

Korea. Rep of 

Malaysia 

Mexico 

China 

Saudi Arabia 

Singapore 

China (Tai"an 
Prov.) 

1984 198.J 1987 1987 1987 
SOFfWARE SERVICES 

198.J 
TOTAL SOFfWARE SERVICES TOTAL 

---- -------------- __ ._......... 

363.5 337.7 701.2 2,.186.2 2,,031.4 4.,217.6; 
·-· --- ·-- - - --- -- - - - ---·- - .. -------'! 

25 n.a n.a. 61 n.a. n.a. 
- - -- -<r--- ---- - ----- -- -- - - ----- - -- ----

18.3 92.8 111.1 37.7 298.9 336.6, 

40 20 50 107 40 147 

20 n.a. n.a. 67 n.a. na. 
- -·- ----

59 6 65 117 13 130 

175 n.a. n.a. 968 n.a. n.a 

25 n.a. n.a. 49 n.a. n.a., 

27 21 48 71 59 129 

26 29 55 57 51 108 

---~ ~-,----.-r"-- .. -.,...,,-........... ,-- ..... -

Figure 2 · Software and Computer Services Market in Selected Economics 
(Current 1984 S Million) 

Source Schwarc. 1989. pJ2 

164 



Enhancin~ Cornpetem~ .-ldmnta[i?e thmugh Software .-ttul Wad 

• a grO\-.ing emphasis by hardware vendors on software production and sales, 
leading to a concentration of firms within the industry 

• a simultaneous expansion and fragmentation of the industry resulting in a 
growing number of software vendors. 

These changes could have serious implications for developing countries in terms of their 
role in the global software industry. It may open up new opportunities in niche areas. but it 
may also close existing options. In the case of '"body-shopping'', for example. which is 
practiced by companies from India. who sell cheap labour for software development 
through marketing arms in the industrialized countries. a common problem faced is that 
potential clients are uncomfortable with the arms-length transaction involved and prefer to 
deal with software developers who have their staff and production close at hand. This 
despite all the arguments of cheaper labour, ease of transmission of data, etc. There is 
concern over quality control, after sales service, protection of proprietary knowledge and 
delivery schedules. Nevertheless. several firms from developing countries have been suc­
cessful in selling software services to clients in the North. 

Software for domestic applications 

The focus of this paper is on how software can contribute to the improvement of productiv­
ity of industry in developing countries. Issues related to the participation of developing 
countries in global software markets are closely related but distinct in this regard. 

At a first glance, there see'lls to be a strong argument in favour of the potential for software 
for solving problems in the third world. Most developing nations are characterized by: I I 

• Low productivity 

• Labour intensive manufacturing operations 

• Underemployment 

• Poor work habits 

• Inadequate maintenance 

• Low skill and education levels 

• Material shortages 

• Improper supervision 

• Resistance to change 

Damachi and Souder argue that it is precisely these types of problems that lend themselves 
to solution through the applications of computers, which are characterized by: 

• Low equipment costs and declining trends in costs 

• Cost effective operations 

165 



.4111/ Wad F.nhancing Com~t~IM Advantag~ through Sojtwan 

• Remove or reduce repetitive tasks 

• E11able productivity control 

• Assist in quality control 

• Can be made user friendly 

• Improve the quality of data storage, retrieval and analysis 

• Enable decentralized decision making 

• Most systems are standardized 

Thus, there is a strong and logical set of arguments as to why software can be used to 
enhance productivity in developing countries. On the other hand, the diffusion of software 
applications has generally been slow. Partly, this is a function of the slow adoption rate of 
computer technology in general. In most developing countries, the large corporate sector 
and public sector undertakings have been the driving force in generating a demand for 
computer technology, but small and medium sized enterprises have not been as active. Yet. 
it is in the small and medium sized sector that some of the most valuable benefits could be 
reaped. 

Barriers to Software Development 

There are several reasons for this siruation, some related to the characteristics of developing 
countries themselves, and some to the narure of software applications. 

The barriers to the adoption of computer technology in developing countries include: 

• Poor infrastructure and communications systems, which impedes the proper 
utilization of the technology 

• Lack of appreciation by end users of the benefits to be gained. 

• Perceived high costs associated with computers, even though this is increasingly 
not the case. 

• Lack of financial resources, and foreign exchange to purchase the required 
technology 

• Concerns over the security of computers, especially for small businesses which 
often use innovative accounting techniques. 

• Shortage of trained personnel to operate the equipment. 

• Antiquated management philosophies and systems which do not lend them­
selves to the adoption of computers. Many managers in developing countries 
feel threatened by computers, because they fear loss of control and a reduction in 
their own status in the organization. 

166 



Enhancing Competeli\>e Advantage through Software Atul Wad 

• Lack of information about the types of applications possible with today's 
computer technology. 

• Only a few local companies with the resources and capabilities to deliver 
software applications effectively. Many are simply vendors of imported soft­
ware and do not have the capacity to provide on-site assistance in installation, 
trouble-shooting and problem-solving. There is no .. hot-line" for software 
users. 

• High costs of the software itself, because of licensing fees, royalties, duties and 
high profit margins. 

• In some countries, a situation where hardware has been oversold, and has been 
under-utilized, leading to a general mistrust of the technology. and a hesitance to 
invest further in software that would in fact make the hardware more productive. 
There is little appreciation of what Schneider12 refers to as "hardware+soft­
ware" thinking 

• Standard software packages do not fulfill user requirements totally. 

• Inflexibility on the part of the vendors, who expect the organization to adapt to 
the software rather than vice-versa, which relates to the lack oflccal capability to 
adapt and modify software systems for local uses. 

• The ''body-shopping" syndrome, which results in the best talent being drawn 'o 
work on projects for foreign clients. The salaries tend to be higher, and there are 
other perks such as foreign travel. 

• Improper government policies, which tend to favour exports of software serv­
ices rather than provide inc-.:ntive!» to local companies to develop a domestic 
client base. Also, in many countries, the policies tend to emphasize the "supply" 
side rather than attempt to foster a real local demand. Thus, in India, the 
government encourages the training of software engineers and rewards compa­
nies that are able to sell services overseas. 

• Lack of experience in the marketing of software in developing countries. Firms 
tend to under-invest in the marketing effort, even though even a cursory analysis 
of the industry indicates how important it is to success. 

Furthermore, there is the larger problem associated with what is referred to by Schneider as 
"polluted software'', the fact that nearly all software systems in developed countries are 
badly structured and difficult to maintain. He even goes so far as to state: 

"The state of the art in data processing in industrialized countries is not worth imitating. 
Through rationalization of hardware production, the hardware-software cost ratio is now 
20:80 and is predicted to he 10.90 in 1988. Programming staff in industry and in public 
administration devote 80-90 per cent of their total manpower to software maintenance. The 

167 



Atul Jfod Enhancing Competetr:e Adwurtage through Software 

value ofi11stalled software worldwide is about SI 50 billio11to5200 billio11. Near/:; all these 
software .\)'Stems are hadly stn1c:t11red and difficult to mailllai11. This is called "polluted 
software·: 13 

Thus we have a range of problems associated with the diffusion and adoption of software 
applications in the third world, both as a result of constraints specific to the developing 
countries. and as a result of the nature of the software industry itself Yet, in a fundamental 
sense, software can make enormous contributions to productivity improvements in industry, 
banking, transportation, services, public administration and communications. 

Schware, for example, cites several examples of successful software applications in devel­
oping countries : 

• A hospital information system in Thailand 

• A municipal management model that projects cash flow requirements in Brazil 

• An accounting system for businesses operating in hyper-inflationary environ­
ments in Argentina 

• A system for monitoring foreign exchange transactions jointly develop~d by 
Indian and British collaboration. 

• a design and drafting package that incorporates CAD and CAM in Singapore 

• Adaptation of standard software packages for Arab countries developed in 
Tunisia 

• Several examples of text processing software in different languages -Korean, 
Thai, Chinese, etc. 

The possibilities do exist ·,~he question is how to overcome the barriers in order to speed the 
proper development and utilization of software in developing countries. 

A balanced path for software development 

The problem in the past with the manner in which the development of a software industry 
has been approached in developing countries is that is has been skewed towards: 

• an emphasis on exports of software services 

• a bias towards the newly industrialized countries 14 

• a lack of a balanced approach 

The four broad categories of app!ication of software in developing countries are: 15 

• Applications for basic needs and the agricultural sector 

• Applications in the government sector 

168 



f.irhanctn!! ( '11mpetetn'I! Ackantage thro11Kh Sojhn:zn .·ltul lracl 

• Applications for productivity improvement in industry and service sectors 

• Development of trade and expon o;:' software packages and services 

In order to develop a suitable software industry, a balanced approach that takes into account 
all four of the a'Jove areasofapplication and theirinte!"-relationships is required. This entails 
understanding bow expon trade is linked with domestic demand and how the different 
elements of domestic demand relate to each other. 

In addition, a balanced approach must take into account the types of priorities and con­
straints relevant to the development of these countries. While there are wide variations 
between developing countries, some generalizations can be made: 

• A need to expand expons in order to earn foreign exchange for the acquisition of 
technology and other inputs to the economy. This is a pressing need for most 
developing countries, but with the exception of the NIEs, the export perform­
ance of most of the South has not been very encouraging in recent years, partly 
due to declines in commodity prices and partly due to increased competitive 
pressures. For some countries, there is the added burden of heavy external debt 
that funher encourages a strC'ng need to expon. As far as exports of software 
services are concerned, this possibility only exists for a handful of developing 
counaits, those with large pools of trained human resources. For the most part, 
developing countries face shortages of trained personnel in the software sectors. 
However, they may have export opportunities in other sectors which could 
be expanded by improving the competitiveness of these sectors or sub-sec­
tors through the proper applicatio11 of productivity improving techniques, 
including software. 

• A need to address pressing social and economic problems - health. employ­
ment generation, income generation, nutrition, education and the over-arching 
problem of environmental protection. Again, software can play a productive part 
in this context - by enabling the improvement of the quality of social services, 
administration of health care. education and skill upgrading, etc. For the group 
of countries categorized as "Least Developed" by the United Nations, these 
problems are perhaps the most pressing. 

• A very large role played by the state machinery in all sectors of the economy. 
This has two implications: first, the government is often the largest market for 
goods and services in the country and as such cause its own huge purchasing 
power to influence industrial development in desired directions In many coun­
tries, especially India, China and Brazil, the computer industry has received a 
strong impetus from the public sector, accounting for over 50 per cent of total 
output of the industry in India for example. Secondly, the government IJureauc­
racy is itself a source of administrative inefficiency that has an adverse impact on 
the rest of the economy. Proper applications of software in large government 
bureaucracies could improve their own efficiency and thereby improve the 

169 



Ahli Wad Enhancing Competetive Advantage through Software 

environment within which industry functions. In many developing countries, it 
is the government bureaucracy that is often cited as the main obstacle to 
industrial growth - the minor problems and delays associated with getting 
permits and approvals. the enormous paperwork involved in importing equip­
ment or obtaining foreign exchange. the complexities of the regulatory system 
etc. all militate against the efficient working ofindustry in these countries. While 
software wili not be able to solve all of the inherent problems in third world 
bureaucracies. it would certainly help. 

• A trend towards liberalization of the economy. Spurred by the initiatives of the 
World Bank and the International Monetary Fund in the 1980s. many countries 
have enacted Structural Adjustment programs aimed at developing market based 
economic systems and opening up their domestic sectors to international compe­
tition. The results of these efforts have been mixed. with the Least Developed 
Countries perhaps faring the worst as a result of poorly designed and imple­
mented programs. Inenial tendencies from the times of protected domestic 
markets, along with a general lack of capability to compete effectively in 
international markets have had adverse impacts on some countries. Others. 
however. have continued to aggressively privatize their public sector corpora­
tions with some success. for example. Mexico. In all cases, however, there is 
now increased pressure to become more competitive and efficient simply in 
order to survive the new economic climate. There have been positive develop­
ments on the .. input" side as a result ofliberalization, as countries have gradually 
relaxed barriers to imports of technology and products in a variety of industrial 
sectors. including the computer industry. On the other hand. the private sector 
continues to be relatively weak in rr.ost countries. whereas it could be the most 
dynamic and innovative. 

• Finally, there is the common concern in all developing countries with the 
development of endogenous capabilities, however defined, so as to be able to 
pursue self-reliant and sustainable paths of development. More specifically, the 
concern is focussed on developing technological capabilities so as to be better 
able to develop. acquire. adapt and use technology for development. This need 
applies as much to software technology as it does to other areas. and the 
development of long term capabilities in software technology and know-how 
needs to be a central consideration in any policy making exercise. We shall 
return to this issue in the next section. 

Developing a balanced approach to software in developing countries therefore needs to be 
ba_~ on a number of considerations: 

" The generation of both a demand for software services, and the enhancement of 
the supply of inputs, such as trained personnel, for the growth of the industry. 
Demand generation is a roie that the state can and should play through its 
purchasing policies and various incentiv~ schemes. Training programmes and 
relaxed import regulations can support the supply side. 

170 



Enhancing Compeletiw Advantage through Software A.tu! Wad 

• A balance must be achieved between the concern over exports and the genera­
tion of a domestic de:nand and capabiiity to meet this demar1d. In the long run, 
an export capability cannot sustain itself without a strong d<Jmestic base - this 
is a lesson learned in many industrial sectors and is indef!d a key element in 
determining the competitive advantage of a country in a particular industry. An 
overemphasis on exports can in fact lead to an .. enclave" situation, where the 
export oriented industry has very few linkages within the domestic economy. In 
the extreme, this industry could price itself out of range of domestic firms and 
this may already be happening. For example, even though Indian software 
engineers are inexpensive by world standards, they are very highly paid by 
Indian standards. A software engineer in India with the two to four years 
experience earns as much as someone with 15 years of experience in other fields. 
This reflects itself in the cost of software services to Indian industry, and makes 
software affordable mainly to the large corporate sector or the government. 
Small businPsses are unable to afford these services. 

• The development oflocal capabilities for the long term in the appropriate areas 
of software engineering. Since the global industry is itself undergoing a major 
change, it is not clear exactly where efforts should be focussed. Imitative 
strategies will not work for a number of reasons, not least of which is that the 
path that the software industry in the North has followed is itself being ques­
tioned. Some of the problems that software will be called upon to resolve 
include: 16 

problems that are not an1enab:e to algorithmic solutions 
problems that involve jud8mental decisions 
problems that require very context specific knowledge !hat must be 
consulted dynamically, for example, medical diagnostics 
problems where the solutions cannot be specified beforehand, but must 
evolve in an open-ended fashion. 
problems that involve the integration of a mixture of system components 
and are based on inadequate or poor quality data. 

Furthermore, the economics of software production are changing, with an increasing 
emphasis on software quality, productive efficiency, economies of scale and market inten­
sity, increasing intensity of R&D (which is itself a barrier to entry), and the lack of 
availability of financing and venture capital for new start-up firms. 

As the technology of software develops, new possibilities are opening up, and new demands 
are being made upon the technology. For example, there is increasing interest in the 
potential of process control and monitoring software. based on expert systems, to address 
environmental pollution concerns in small firms in the United States In fact, the increasing 
concern over the environment is raising a new set of challenges for tlte industry world-wide. 
On the hardware-side, many of the manufacturing processes associated with computers are 
now being questioned for their ervironmental soundness 011 the software-side. the poten-

171 



Atul Wad Enhancing Competell\·e Ad\·antage through Sojh.-are 

tial for solving pollution problems at all levels, in industrialized and developing countries. is 
being explored. Software packages have already been developed to anticipate toxic spills 

from factories and avoid the chances of reoccurrence of a Bhopal-type incident. 17 

An important recent development is "knowledge-based engineering", which is a soft are 
technology that, ··provides a means of storing a product or process attributes, rules and 
requirements. The rules and requirements can generate designs. tooling or process plans 
automatically". 18 

Unlike traditional CAD software, knowledge-based engineering systems capture the inten­
tion behind product design and provide a richer and more flexible design tool. Companies 
such as Eastman Kodak and General Electric have been able to cut down design times by 
orders of magnitude with this software. In an age when "time to market" and "design lead 
times" are crucial to achieving a competitive edge in the marketplace, the value of knowl­
edge-based engineering cannot be underestimated. For the third world, where design times 
are typically much longer, the application of an appropriate form of this software could yield 
significant competitive benefits in three respects: 

• reduction in time to market 

• leveraging of existing engineering knowledge 

• improved capacity for concurrent engineering 

At present, knowledge-based engineering systems require fairly large and powerful sys­
tems, but with advances in hardware technology it is not unlikely th~t they will be able to 
reside on smaller work-stations or even PCs in the near future. 

All of this needs to be seen within the context of the emerging new paradigm of manufactur­

ing itself, discussed earlier. In fact, the issues related to the potential and role of software in 
developing countries reflects the problems and issues facing the developing world in 

general as it addresses the challenge of how to develop in a new global context where 
competition and productivity have become critical requirements. Software technology can 
make a significant contribution to manufacturing efficiency in developing countries 

Technical change and technological capabilities: the emerging perspec­

ti\·e 

The question of developing domestic technological capabilities in software has been 
discussed earlier Much has been written about the general problems of technological 
capability development in the third world Recent developments in research on technical 
chan~c have however shed a different light on what constitutes technological capability 
Before turning to the specific question of what technological capability in software in­
volves. therefore, it is useful to briefly review the changing concepts of technical change 
and in particular technology choice 

172 



Enhancing < ·ompetetn-e .-ldwllfltJ1le through SojhnUT .-ltul Wacl 

Technology choice is no longer as simple as the neo-classicii view would suggest Other 
factors must be considered in the process, including the current economic cond:tions in the 
South, the structure and efficiency of the market, issues of uncertainty and incompleteness 
ofinformation, the role of management and other "soft" assets, and the evolutionary nature 
of the technical change process itself Research by a number of economists. including 
Richard Nelson and Sydney Winter, Giovanni Dosi, and, for the developing countries, Jorge 
Katz and Sanjaya Lall, have developed this perspective and provided a new conceptual tool 
kit for the analysis of technical change.19 This growing body of literature suggests that 
technological change does not occur in the steady, linear and incremental way presented in 
traditional economic models. These models assume that technological change occurs as a 
spontaneous and linear response to signals from the marketplace; that the market functions 
perfectly and spontaneously. such that these signals precisely reflect a demand for techno­
logical innovation that will always provide a competitive edge to any company that can 
meet the demand; and that all market actors will read the commercial environment, and react 
to it, in the same way. 

These assumptions of perfect response to market signals, perfect market functioning, and 
homogeneity of all market actors are gradually being replaced by a new model of techno­
logical change, which is less linear and leaves more room for interpretation, but which fits 
better w!tn the process of technological change as it actually happens This model stresses 
factors that control the diffusion of technological innovation, such as die tacitness of 
technical know-how (i.e. the difficulty in codifying such knowledge completely), the 
appropriability of the returns from innovation and the important role of learning. It more 
accurately accounts for the complex interaction between all stages of the innovation 
process, from basic research to commercialization, and better explains the wide variations in 
patterns of technological change in different industry sectors. Given these differences to 
traditional economic models, this new model is more demand-driven and stochastic. With 
reference to the search process, it emphasizes how firms are likely to search first at the 
boundaries of their own knowledge before moving too much further, how the uncertainty 
and lack of information associated with new technology may steer them in directions that 
are .. safer" rather than more innovative, and how over time, firms move in directions that 

allow them to accumulate learning and know-how in an evolutionary fashion. 

This perspective also puts a needed stress on the "soft" side of technology, pointing up the 
fact that technological change is not simply a matter of installing new hardware. New 
hardware brings with it a host of demands for new learning and ancillary technologies 
needed to maximize the value of the new equipment This perspective is especially 
important in the area of computer technologies. which tend to be whole systems involving 
software, hardware and service 20 It is also important in the sense that it is pre:isely in 
optimizing this "soft" side of the manufacturing process that software can play a vital role. 

173 



A.tu/ Wad Enhancing Competettve Ad\'Ontage through Software 

The "soft" side of technology is receiving increasing attention in the literature. In a recent 
review of the literature on flexible specialization and third world industrialization, James 
and Bhalla note the increasing emphasis being given to organizational innovation. The 
empirical base for this trend in the developing countries, however, remains small. However. 
they cite a recent study of the garment industry in Cyprus, which showed that three changes 
- reorganization of the production line, introduction of a computerized information 
processing system and the closer integration of marketing and production - contributed to 
a substantial improvement in the competitive position of the firm. 21 

There are other reasons why the "soft" side of technology may be particularly suitable for 
developing countries to try to improve. Pressures to lower cost and reduce waste, to manage 
inventories, reduce design lead times, and satisfy a more differentiated market can encour­
age the adoption of organizational innovations. The relatively lower costs of introducing 
such innovations, over hardware, is also to be considered. 

This admittedly more complex model is nonetheless more accurate for understanding 
technology choice and innovation in the context of the weak and distorted markets, 
institutional weaknesses, and the lack of access to information that characterize many 
developing countries. 

Developing country firms generally have weak domestic technology generation capabili­

ties. This is particularly true in the software business. Therefore, the search for technology is 
likely to be primarily an external one that is limited and conditioned by what they know to 
be available. Hence the quality of the search process becomes an important determinant of 
the quality of technology choice. This capability is often referred to as "technology 
intelligence", or as .. technology sourcing and intelligence"22 and is a crucial component of 
overall technological capability in software. 

The concept of "technological intelligence" is important for our purposes because it 
encompasses a wide range of capabilities with respect to the ability to effectively identify, 
acquire and L•se technology It includes capabilities with respect to: 

• the identification of technological needs at the firm, sectoral and :iational levels 

• the assessment of available technology 

• technolob'Y sourcing capabilities, along with the ability to monitor technological 
developments on a global basis 

• the management of technology 

• technology forecasting and impact evaluation 

Developing such capabilities requires a detailed understanding of the entire technical 
change process as well as a range of practical initiatives directed at institutional develop­
ment, skills, and policies. Furthermore, it must be based on a deep understanding of the 
constraints under which firms in developing countries operate, for example: 

174 



Enhancing Competeti'Vf! Advantage through Software Atul Wad 

• poor information about technological alternatives 

• shortage of skills in technology acquisition and adaptation 

• financial constraints 

• small domestic markets 

• poor quality control 

• bureaucratic constraints imposed by governmental policies and structures. 

Technological capabilities for software 

Drawing from this broad overview of the dimensions of technological capability in develop­
ing countries. it is possible to narrow down to the specific elements that appear to be most 
crucial to the development of such capabilities in the software industry. Three broad 
categories of capability can be identified as important for the software industry: 

• Capabilities in monitoring and sourcing of software techniques and know-how 
on a global basis - technology sourcing. 

• The ability to adapt and digest technology obtained from external sources for 
local purposes and to develop technologies locally - technology adaptation. 

• The capacity to deliver the technologies to the end users effectively - technol-
ogy delivery. 

Of these, the most important with respect to software is the capability to source effectively. 
In the case of adaptation and delivery. the issues involved are more or less the same as with 
other areas of technology. 

Technology sourcing 

The effective sourcing of technologies by firms in developing countries is increasingly 
being recognized as vital to the long term development of technological capabilities. In the 
industrialized countries, corporations both large and small are appreciating the value of 
external sourcing of technology, and its importance to their competitive position. For 
developing countries, this is particularly important in fast moving areas of t.!chnology, such 

as software, which are also typically the areas where they have the weakest endogenous 
technology generation capabilities. 

Technology sourcing is more of an art than a science. Practitioners in the United States each 
have their own particular approach and style. However, certain general principles can be 
identified that have proved useful in the sourcing process: 

• A horizontal perspective on technology; applications in one area may have value 
in another. 

175 



Atul Wad Enhancing Compet~tive Adwmtag~ through Software 

• A global perspective; even though the United States dominates the software 
business, important applications may be available elsewhere. 

• Sourcing is a cumulative process, not a one shot event; it must be an on-going 
effort on the part of the firm, even to the point of designating a person or persons 
with the sole responsibility for this activity. 

• Personal visits and contacts are always more effective than arms length transac­
tions. This is repeated by almost every professional involved in this business. 
The quality of information and the interest that is stimulated is much greater 
when a personal contact has been made. 

• The search must be based on a careful assessment of software needs of the 
domestic industry; it must be based on market "intelligence" and technology 
needs assessment Prior to starting a search for technology, a demand survey is 
desirable. The types of questions that need to be answered are illustrated in 
Figure3. 

In addition, software finns may find it useful to collect background data on the firms they 
see as potential clients and use this to do their own analysis of the types of needs of these 
firms that could be satisfied by appropriate software. A typical listing of the type of 
information that would be needed to identify the specific software needs of a firm is shown 
in Figure4. 

The purpose of this information is primarily to be able to assess where there may be room for 
improvement in the performance of the firm and how this could be accomplished through 
software introduction. For example, the quality related questions may reveal that the 
company has a poor image because of a high level of returns, which is in tum a function of 
poor internal quality control, which could be improved by introducing a total quality 
management package to the company. 

The above discussion reflects to some extent the real experiences of some software 
companies in developing countries. 

Lessons from an Indian Software Company 

One of the largest Indian software companies has stressed the sourcing of new products and 
technologies for years, with considerable success. Based on interviews with a senior 
executive from this company, the following general lessons about sourcing were drawn:23 

• Sourcing as such is not a difficult task, but is labour and time intensive 

• Fairs and expos around the world tend to be an important source of information, 
and travel to these shows on a regular basis is essential. 

176 



Enhancing CompetetiW! Advantage through Software Awl Wad 

• Of the three main regions for sourcing, South-East Asia, Europe and the United 
States, South-East Asia is good for low end hardware needs, Europe for me­
dium-level hardware needs, and the United States for software. Europe is a good 
source for customized software and South-East Asia has little to off er in 
software. 

• The demand for software exists in the domestic market. The needs have to be 
understood, though. This can be assessed through surveys or other channels -
trade journals, manufacturers associations, feedback from the sales force, and 

I .What are your major software needs at present? 
- management applications (accounting, finance etc.) 
- spare parts and inventory control 
- production (e.g. MRP) 
- quality control 
- service and maintenance 
- other 

2. What business goals will this technology satisfy? 
- new products 
- improved quality 
- exports 
- reduced costs 
- larger volumes 
- customer relations 
- new markets 

3. How do you normally identify the sources for software? 
- personal contacts 
- literature 
- trade shows 
- research institutes 
- universities 
- consultants 
- sales calls by equipment manufacturer 

4. What factors de you consider in selecting a specific software package? 
- cost 
- after sales service 
- reputation of supplier 
- equality 
- compatibility with existing software 
- easeofuse 
- level of training needed 
- cost of maintenance and trouble-shooting 

Figure 3. Questionnaire for Technology Needs Assessment 

177 



Alrll Wad 

I. 

2. 

Corponte Profde 

Ownership 
Employees 
Sales (Annual) 
Products (Range of Products) 

Market Position 

Market share 
Major competitors 
Distribution networks/channels 
% of sales for exports 

3. Technology 

Type of equipment 
Age of equipment 
Source of equipment 

4. Production 

Throughput (volume per hour or day of product) 
Number of shifts 
Raw materials 
Percentage waste/scrap 
Down time of equipment 

5. Quality 

Product image among consumers 
Number of defective parts produced 
Average inventory 
Equipment failure frequency 
Quality of raw materials and other inputs 
Number of customer returns 

6. Human Resources 

Management/employee ratio 
Skills profile and areas of weakness. 

Figure 4. Diagnostic Swvey for Assessing Software Requiremcrts 

171 



Enhancing Competdive A.dvantag~ through Software Atul Wad 

from government sources. 

• Generally, large customers know what they need, whereas the smaller compa­
nies are less clear and have to be persuaded. 

• It is good to have a long shopping list when starting the search and sourcing 
effon since not all needs will be met. 

• Keeping abreast of the technical literature is extremely important, especially 
when entering the final stages of negotiations for technology purchase. 

• Part of the sourcing effon is to determine what products and technologies are 
working well in the North, since it enhances your confidence level. 

• Having a clear-cut procurement policy and machinery is important to expedite 
the acquisition of the technology once it has been selected. 

• The sourcing effort, as well as the adaptation process should be properly costed 
out and this cost should be reflected in the price charged to the customer. Firms 
tend to ignore these costs and often underprice a new product. 

Finally, in the acquisition of technology, there is the entire issue related to negotiating_ In the 
case of software, negotiating becomes particularly difficult because of intellectual property 
rights issues and the problems of evaluating the worth of what is essentially a product of 
"brain-power"_ The acquirer of technology needs to be able to negotiate with a full 
knowledge of the legalities, accounting issues and proprietary issues involved in order to get 
the best deal. Strengthening negotiation capabilities for software acquisition is an important 
component of the technology sourcing capability of a firm.24 

Technclogy adaptation and technology delivery 

Acquiring the right type of technology is the first step, and must be followed by an efficient 
process of "digestion" and delivery of the technology. Firms in developing countries often 
spend long periods adapting and absorbing new software technology. Yet, this is a real cost 
to the firm and needs to be minimized. There are few studies that examine the processes that 
follow the acquisition of technology by a developing country firm, and as such our 
understanding of how this could be improved is limited. On the delivery side, the same issue 
arises. Adapting the software to the specific needs of the customer, training the user and 
providing efficient follow-up assistance and trouble shooting is essential to the successful 
utilization of the technology. Few firms in developing countries pay attention to this aspect, 
and often leave the customer stranded with a software package that he cannot use. 

179 



.4111/ Wad Enhancing Competrtil~ Adwurtagr through Softwan! 

The software industry in Jamaica: an illlustrative analysis 

It is useful to examine the specific situation of the software industry in a particular country 
and a recent study by Gillian Marcelle of the Jamaican computer services industry is useful 
in this regard.i:. The study is one of the few thorough analyses of a domestic computer 
industry in a developing country and provides an excellent micro-level assessment of the 
problems and issues faced by the industry. This section draws heavily on the Marcelle 
report. 

Sourcing of technology by Jamaican finns tends to be he3vily oriented towards the United 
States for both h:trdware and software. In the case of hardware. the larger corporations, such 
as IBM, ICE and Apple tend to dominate. In the software area, the sources tend to be: 
hardware manufacturers of operating systems. software specialist houses, and specialized 
applications suppliers. Jamaican finns also source software through large distribution 
houses in the United States. Throughout, the United States dominates. though some 
sourcing does take place from other countries, such as Belgium, Canada. China (Taiwan 
Province), Sweden and the United Kingdom. About 20 per cent of Jamaican firms source 

locally as well. 

On average, the costs of sourcing were estimated as between 0.3 and 24 per cent of revenues 
for the firms studied. These included expenditures on: 

• Technical support fees, training and trouble shooting 

• Purchases ofrelated inform1tio~. 1na1a:.!itls, training course, etc. 

• Acquiring general technical knowledge in the information services field and 
keeping abreast of technological trends. Expenditures on conferences. trade 
shows, industry reports etc. would be included here. 

• Subscriptions and fees for access to electronic databases 

• Fees for training courses and seminars. 

The average level of expenditure on technology acquisition is high compared to other 
sectors in Jamaica, indicating the relative importance of this function to the computer 
industry. 

The report also examined the sources of technological know-how used by Jamaican firms to 
augment what they obtained from the suppliers of technology. Trade shows. conferences. 
technical journals and training programmes were important for this "general capability 
development" purp•...,se. 

In assessing the overall industry, Marcelle conc.ludes that in Jamaica, "All of the technology 
acquisition activity and in-house technology development is aimed at the product develop­
ment stage. Training courses, purchase of journals, trade literature and newsletters as well as 
attending conferences and trade shows all provide detailed product knowledge and equip the 

110 



Enhancing Competeti\'f! Ach·mtap.e through SojtM·ore At11/ Wad 

Jamaican technologists with a working knowledge of infonnation technologies. Anned 
with these two inputs, they adapt and modify received infonnation and products to create 
versions of existing applications or to enhance products but not to fundamentally alter 
their characteristics of capabilities (emphasis added). n26 

As such, even though the Jamaican industry has become very adept at identifying and 
adapting technology from overseas and staying current with the state-of-the-art, domestic 
technology generation capabilities remain weak. To be able to contribute substantially to the 
competitiveness of Jamaican manufacturing firms and the efficiency of the services sector, 
this capability is essential. 

Conclusion: The Importance of the "Soft" Dimension of Technology 

This paper has attempted to provide some insights into the importance of software for 
upgrading productivity in developing countries. It is at best a cursory analysis, since the 
empirical base for the application of software to domestic industry in developing countries 
is weak, and is very scant when this question is addressed within the context of the new 
techno-economic paradigm. 

Nevertheless. the writing is on the wall -to improve productivity, finns all over the world 
are having to look at the "soft" dimension of technology - the intangible processes and 
linkages that are as important to efficiency as the equipment itself. ln Japan, the appr ,.;:iation 
of these "soft" assets has reached a very high level. In the United States, the larger finns are 
beginning to appreciate it But in the third worid, there is still a long road to travel. 

For the software industry the chalienge is simple to describe and difficult to accc:,mplish: 
identify where domestic finns can gain the most from software applications; find the 

relevant software technology wherever it is, adapt it to the local needs and deliver it speedily 
and effectively to the users. 

For policy makers, the need is to develop a more balanced long term approach to the 
promotion of the software industry, taking into account the complexities of the modem 
global economy. Most importantly, there must be a balance between export emphasis and 
the generation of domestic demand. Making it easier for local finns to access and acquire 
software technology and develop domestic capabili:ies are two areas where the State can 

play a very positive role, by relaxing restrictions on imports of technology and using its own 
sizeable purchasing power to shape demand. Policy makers also need to look at innovative 
organizational mechanisms that could be established to improve technology acquisition and 
commercialization - technology incubators, technology sourcing mechanisms, technology 
banks and clearinghouses, etc. 

111 



Ahli Wad F.nhancing Com~l~tive Advontag~ thl'Oflgh Sojtwan 

On the policy research side, much more empirical work is needed on the micro-level. How 
firms acquire technology, what determines their competitiveness. and how technology is 
digested and adapted are all processes that need to be better understood in order to more 
clearly articulate the proper role of software_ 

Notes and References 

I. Robert Schware, .. Software Industry i.Jevelopment in the Third World: Policy Guide­
lines, Institutional Options and Constraints", World Development., Vol. 15, No. 10/11, 
pp. 1249-1267, 1987; Carlos Maria Correa. "Software Industry: An Opportunity for 
Latin AmeriC'.aT', World Development, Vol. 18, No. II, pp. 1587-1598, 1990; Ukandi 
G. Damachi, H. Ray Souder and Nicholas A. Damachi, (eds.) Computers and Com­
puter Applications in Developing Countries, Macmillan Press, London, 1987; Robert 
Schware, "The World Software Industry and Software Engineering: Opportunities and 
Constraints for Newly Industrialized Economies", World Bank Technical Paper No. 
104, The World Bank, Washington D.C., 1989. 

2. For example, the Indian Railway system has been totally transfonned as a result of 
computerization, and the software and systems development was carried out by a local 
firm. Reservations, ticketing and scheduling has vastly improved now for rail travel in 
India. 

3. Furthennore, these .. import substitution" approaches have been critized as actually 
being .. import reproduction" strategies, and thereby not contributing to domestic 
industrial development of a balanced and long tenn nature. See Lynn Mytelka, ·The 
Unfulfilled Promise of African Industrialization", African Studies Review, Vol. 32, 
No. 3, pp. 77-137, 1989foracritiqueofthetraditional imponsubstitutionmodels. 

4. See UNIDO, Industry and Development: Global Report 1989/1990, Vienna, Austria, 
1990, for detailed data on productivity levels in individual countries and sectors. 

S. Howard Pack, .. Productivity and Industrial Development in ~uh-Saharan Africa", 
Working Paper No. J, Technology Assessment Policy APalysis Project, USAID, 
Washington D.C., 1990. 

6. For example, Atul Wad, .. Technological capabilities and Organizational Capabilities 
in Developing Countries", Working Paper, The Technology Assessment Policy Analy­
sis Project, USAID, Washington D.C. 1990; Kurt Hoffman, ·'Technological Advance 
and Organizational Innovation in the Engineering lndusuy'', World Bank Industry 
Series Paper, No. 4, March 1989, and Carlota Perez, .. Microelectronics, Long waves 
and World Structural Change: New perspectives for Developing Countries," The 
World Bank, Strategic planning Review, Discussion paper No. 4, December 1989. 

1. Sec, for '!xample, Steven Hunt, Atul Wad and Timothy Lavengood, .. Technology 
Assets Management: Optimizing the Returns from Technological Assets", Joint 
Working Paper of Arthur Andersen & Co. and the Center for the Interdisciplinary 
Study of Science and Technology (Cissn. Northwestem University, 1991. 

8. Perez, op. cit. 

112 



Enhancing Com~tetil'f! Advantage tlrror1gh SojtwDl'f! .4tr1/ Wad 

9. See. for example. Steven Hunt. Atul Wad and Timothy Lavengood, .. Optimizing the 
Returns from Technological Assets", joint Working paper of Arthur Andersen & Co. 
and Northwestern University International Business Development. The strategic man­
agement literature also contains an increasing number of articles that deal with this 
issue. For example. David Teece. R. Jaikumar and C.K. Prahalad. 

10. Drawn from Schware. 1990, op. cit. 
11. Nicholas Damachi and H. Ray Souder, .. Computers and Developing Nations". in 

Damachi et. al. (eds.) op. cit 
12. Hans-Jochen Schneider, .. Software Production: Organization and Modalities", 

UNIDO. Vienna. IPCT.63. 17 May 1988. 
13. Schneider, op. cit. p. 23. 
14. See. for example, Schware. op. cit. 1989. which deals explicitly with tile implications 

for the NIEs. 
15. R. Narasimhan, •'Guidelir.es for Software Development". UNIDO, Vienna. Working 

Paper. UNIDO/IS.439, 10 Febnwy 1984. 
16. Schware. 1989, op. cit. 
17. See the HASTE system, developed by ERT in Concord. Massachussets, which is a 

computer based system for predicting and mitigating potential impacts of a toxic 
chemiCcll release. The system has already been installed in a number of chemical plants 
around the United States. 

18. Lawrence W. Rosenfield, ·'Using Knowledge-Based Engineering". Production, No­
vember 1989, pp. 74-76. 

19. See, for example, Richard Nelson and Sydney Winter, An Evolutionary Theory of 
Economic Change, The Belknap Press of Harvard University Press, 1982; Giovanni 
Dosi. ed., Technological Change and Economic Theory, Pinter Publishing, 1988; 
Jorge Katz, ·'Late Industrialization, Innovation Processes and the Theory of Techno­
logical Change: Notes Emerging from the Latin American Experience," mimeo, 1990 
(notes for a contribution to Science. Technology and Development: A Sourcebook, 
Francisco Sagasti and Jean-Jacques Salomon, eds .• to be published in 1991; and 
Sanjaya Lall, Building Industrial Competitiveness in Developing Countries, OECD. 
Paris, 1990. 

20. ·"Transfer and Development of Technology in the Least Developed Countries: An 
Assessment of Major Policy Issues", United Nations Conference on Trade and Devel­
opment (UNCT AD), Geneva. 17 August 1990. 

2 ! . Jeffrey James and Ajit Bhalla. •'Micro-electron;r.s, Flexible Specialization and Small 
Scale Industrialization in the Third World", Working Paper No. WEP 2-22/WP. 220, 
International Labour Office, Geneva, August 1991. The study they cite is by Raphael 
Kaplinsky, "A Case Study of Industrial Restructuring: From Mass Production to 
Flexible Specialization", IDS, Sussex, 1990. 

113 



.-tcul lrad F.nhancing ComfNletM Advantage throvg#r Softwan 

22. See. for example, Michael Radnor and Timothy Laven good. "Technology Intelligence 
and Sourcing: Issues and Opportunities for Developing Nations'', Working paper, 
Center for the Interdisciplinary Study of Science and Technology (CISST). Northwest­
ern University, 1990 and .. The Technology Gateway Organization: A Mechanism for 
the Promotion of Technological Development and Industrial Competitiveness for 
Developing Countries", Atul Wad. Working paper No. 8, Technology Assessment 
Policy Analysis Project, USAID. December 1990. 

23. Interview with Arun Tolani. President, ICIM U.S.A and formerly Vice-President, 
ICIM India. 

24. See, for example, S. Soltysinski, "Strengthening Negotiating Capabilities in the Acqui­
sition of Hardware and Software in Latin America", UNIDO IPCT.15, February 1987, 
Vienna. 

25. Gillian Marcelle ... Industry Profile of the Jamaican Computer Services Industry", 
Consortium Graduate School of Social Sciences and Institute of Social and Economic 
Research, University cf the West Indies, Kingston, Jamaica, 1991. 

26. Marcelle, op. cit. p. 24. 

114 



Emerging Issues in the Selection and Distribution of Public 
Domain Software for Developing Countries* 

Acronyms 

BBS 
csw 
email 
FDSW 
ftp 
FSF 
FUSW 
PDSW 
SHW 
UUCP 

Glossary 

backbone computer 
electronic mail 

Antonio Jose J. Botelho .. 
Caren Addis*** 

Bulletin Boards 
Commercial Software 
Electronic Mail 
Freely distributable software 
file transfer protocol 
Free Software Foundation 
Free UNIX Software 
Public domain software 
Shareware 
UNIX-to-UNIX Copy Program 

A major switching computer on a network_ 
Transmitting files from one computer user to another, l!sually via 
communication lines. 

• UNIDOllPCT.14S(SPEC), November 1991 

•• lnfonnation Specialist. Center for lntcmalional Studies, Massachuscus Institute of Technology. 
Carrbridge, Massaclmetts. United StalCS. 

••• lnfonn.1tion Specialist. Programme in Science. Technology and Society. Massachusetts Institute of 
Technology, Cambridge, Massachusetts, United States. 

AclmowledgematU 
The assistance of many professionals and users is gratefully acknowledged. Simson Garfinkel at 
MIT; Richard Salz of Bolt, Beranek & Newman (BBN); Richard Stallman and Robert Chascll of 
the Free Software Foundation; Paul Mayer. Bruce Robey and Randy Maclean of the Association 
of S~arc Professionals; and the many network users who iapondcd to the questionnaire. 
ofTerat inv&luable suggestions as well as insiglts irto lhc complex world of public domain and 
freely distnbuted software_ The responsibility for the contents of this report lies solely with its 
authort. 

185 



Bot~llto cl Addis 

file transfer protocol 

gateway 

host 

network 

site 

TCP/IP 

UUCP 

UNIX 

1. Introduction 

&Mrging .!sswa in tM &/«lion and Distrib1llion ... 

A protocol that allows a computer user to transfer a file from one 
computer to another. 
A computer which passes information between machines on 
different networks 
A central network computer accessible by other computers on the 
network. 
A collection of computers connected in such a way as to allow 
information to be passed easily from machine to machine. 
A geographic locatioo where computers arc located within an 
organization. Also often refers to the host computer itself. 
A pair of networking protocols usually used together. TCP is the 
Transmission Control Protocol and is a standard protocol for 
transferring information from one computer to another. IP is the 
Internet Protocol md is a standard protocol for managing 
connections between one computer and another. 
A software communications protocol as well as a set of 
communications programs. 
A portable multi-user operating system. 

Over the past decade, as a result of the rapid decline in cost and increase in performance of 
microprocessors, and the consequent diffusion of microcomputers, the importance of 
computers in the realization of economic activities has continued to increase. As computers 
become more widely diffused and penetrate new economic and social activities, people 
have come to realize the crucial importance of software both for the efficient and effective 
utilization of computers. However, as compcter hardware becomes more of a commodity, 
the software market has acquired &reater strategic importance for both firms and countries. I 
This trend is leading to higher value being placed on software, as firms seek to acquire 
greater competitive advantage and higher profit margins through software~ and as industri­
alized countries promote stricter control ofissues ofintellectual property and copyright and 
launch prcgrams to tum communication a.ud computer networks into strategic national 
assets. It is against this background that the importance of public domain software for 
developing nations has to be assessed. 

An informal e-mail survey was conducted as pan of this project among network users in 
several industrialized nations and a few newly-industrializing countries. The results reveal 
that among the main reasons for utilizing freeiy available software are its quality, cost, 
availability, functionality and easy of use. Technically-proficient users also singled out 
access to source code as an important reason. The major pitfalls are identification of right 
program, uneven quality of maintenance, reliability, and minor bugs. Users in NICs and 
western Europe singled out network connectivity as a major problem both for figuring out 
what is out there as well as for speedily retrieving progi ams. 

1H 



Emtrging Jssws in tht &kction and Distribution ... Bottllro &- Addis 

This repon examines the characteristics and dynamics of public domair. and other low-cost 
software in the industria!ized countries as well as their organiution and distribution points. 
The objective is to propose a set of methodological guidelines for esta?>lishing an inventory 
of public domain software available in industriafo:ed countries as well as to suggest the 
structure and operation of a clearing house for making the software availabl~ to developing 
countries. 

The conclusion is that the decentralized organization and distribution of the software in the 
United States [and to a lesser extent western Europe] contributes positively to the dynamic 
of the markets - more specifically, the update, debugging. and customization of publicly 
available software. Although the distribution is very decentralized, there are key points in 
lhe system that act as information clearing houses. 

2. Suggestions and Recommendations 

Based on the experience of industrialized nations with the selection and diffusion of public 
domain soft Nare and in the light of the perceived needs and of the technological context of 
the large majority of developing countries, which either lack affordable high-speed commu­
nication and computer networks, our suggestions for transmitting public domain and 
inexpensive software to the third world and our recommendations for future research are: 

I. That key distribution points in the industrialized countries establish direct contact 
with distribution points or representative clearinghouses in the developing nations 
with as little intermediate intervention as possible. It is hoped that such a system will 
also lower administrative costs and will reduce the amount of ··noise" in the commu­
nication between the developing country final user and the software provider. 

2. The clearinghouses would preferably be regionally-based, would make use of exist­
ing local computer networks and international links, and would i>e rreferably staffed 
by local software exj:>erts in close contact with industry, government at different 
levels, and academic and educational representatives from a broad array of economic 
and social activities, so as to insure that the local software needs of industry and 
society are well defined and provided for. 

3. Communication among end-users should be strongly encourag~ and facilitated. If 
possible directly, or as second-best option, through the diffusion by the clearinghouse 
of open, non-mandatory, lists and directories of users of software performing similar 
functions. These periodically updated directories could have users' evaluations of 
programs' strengths, weaknesses and major problems. The clearinghouse experts 
could relay doubts and contributions to user groups and bulletin boards in industrial­
ized countries networks. This arrangement would make distributing and updating the 
software more efficient and effective, at the same time it would create an internal 
learning effect among end-users in developing countries. Incentives for the formation 
of vertical and problem-oriented user groups should be given. 

117 



&te/IH, & Addil Emerging !SS11es in the ~lection and Distributwn ... 

4. The actual distribution of public domain software to developing countries' final users 
should take place primarily through the mail an<l in some cases. when widely 
available and costs are low, through national computer network systems such as 
bulletin boards or national software libraries. 

5. In light of the widespread interest on the part ofintemational and regional agencies on 
issues of diffusion and use of computer databases and networks in developing 
countries there already exist a number of sector-specific networks (academic R&D. 
health. space, physics, communications). In a few cases, these virtual networks have 
begun expenmenting with the distribution of public domain software. There is 
therefore a need to coordinate and learn from these experiences as they develop, 
assessing their advantages and shortcomings. It is suggested that in certain network­
poor areas some of these pre-existing networks could be employed as trunk lines for 
regional clearinghouses at a lower cost than that of developing dedicated networks. 

6. In addition to the diffusion of computers, efforts should be made to encourage the 
establishment of bottom-up regional and local networks. This can be achieved 
through the provision of basic gateway services and low cost trunk and distribution 
communication lines. At the r.ext stage, efforts should be made to allow for regions in 
different countries with similar industrial structures and/or social needs be connected 
in order to enhance the diffusion of public domain software and the learning effect of 
modifying, and eventually developing software. 

7. Identification of actual and potential patterns of software usage and diffusion bottle­
necks in developing countries should be carried out through cross-national sectoral 
surveys as well as through the establishment of a few integrated national software 
diffusion maps. This information would contribute to the design of FDSW distribu­
cion strategies complementary to existing commercial channels. 

8. Typically, academics and other R&D personnel are the first to acquire any experience 
with FDSW in developing countries through their participation in generic (Bitnet, 
Internet) or specialized networks. An in-depth assessment of their unique usage 
pattern could provide valuable insights for the extension of their experience to other 
societal groups in developing countries. The questionnaire as well as the developing 
countries network lists developed in the course of this report research could serve as 
the basis for future research efforts in this direction. 

9. An assessment could be made of existing programs for the diffusion of FDSW in 
vertical markets important for developing countries such as the educational market 
and the Scholastcch (page 193) experience. Because these experiences often faced 
material obstacles similar to those found in developing countries, important lessons 
can be extracted from them. 

181 



EMerginK /s.wes m the Selection and Distr1b111ion ... Botelho & Addis 

IO. In the long run, a central database such as Archie (page 198), could be developed, 
incorporating elements from the initial pattern of FDSW distribution and usage in 
selected developing countries. The aim would be to provide a speedier and more 
customized answer to specific developing countries' software needs and to avoid the 
emergence of duplicate efforts within a same geographical region or country. 

3. Structure of the Report 

The first section of this repon defines and compares the different kinds offree and low cost 
software available in industrialized countries and briefly discusses their scope and applica­
bility in developing countries. Freely distributable software (FDSW) includes a variety of 
software that can be copied, distributed, and used by anyone. Public domain software 
(PDSW) is the most common FDSW and its use and distribution are vinually free of 
restrictions. However, there are other kind:;; of FDSW, often available free-of-charge or at 
nominal fa:s. whose use and distribution carry restrictions. 

The second section of the report discusses distribution methods in the United States and 
western Europe. which have centered on computer networks such as distributed bulletin 
boards; user groups; university and government computer centre software libraries, mainly 
for the scientific and technical communities; and mail for the general PC users as well as 
i..iose transmitting very large amounts of data. 

The third section discusses the applicability of these distribution methods in developing 
countries, based on their perfonnance in the industrialized countries and taking into account 
the diverse needs, economic contexts, and communications infrastructure of developing 
nations. The repon suggests that in the near future the mail system will be the primary 
source for diffusing software data and infonnation, while computer networks will be used 
for identifying and tran~mitting the software as well as follow-up work such as debugging, 
updating and customization. In the short to medium tenn, computer networks are more 
lik~ly to he used by the academic, central government and large business communities. 

A fourth section will discuss other related issues including the logistics issues pertaining to 
the use and transfer of inexpensive software to the third world - hardware, operating 
systems, language and cultural barriers, business and social practices, and a compensation 
system fur small amounts of money involved in distributing software. 

4. Towards a Typology of Public Domain Software 

There are three basic types of software: commercial software, freely-distributed software 
(FDWS), and public domain software (PDSW). Commercial software (CSW) is software 
that has legal protection guaranteeing the rights of the author, the company, or the organiza­
tion that sells it. CSW cannot be copied without pennission and does not provide access to 

189 



&te/ho & Addis EmerginR /~11es in the Selection and Distribution ... 

the source code. It is typically much more expensive than the two other types. At the other 
end of the spectrum is what is generically called PDSW, which in fact encompasses several 
types. In its purest form. the cost of PDSW is generally limited to distribution expenses. 

In light of the shadings from one type of software to the next it is more appropriate to 
generically define PDSW as freely distributed, inexpensive or free software_ Frttly distrib­
uted software (FDSW) is software that can be freely distributed by anyone, although its use 
may carry restrictions. The FDSW with no restrictions attached whatsoever is called public 
domain software (PDSW) Other types of FDSW carry different types of restriction, 
although these restrictions may often enhance rather than limit its distribution_ Within this 
latter category, two types of software have become more predominant and organized, 
although there are still other types available. Two of the more common types of software 
include shareware (SH\\") and frtt UNIX software (FUSW). 

In recer.t years. PDSW moved further from its hobbyist and hacker roots, as the majority of 
smaller computers users are now businesses. Yet. most of the software in use today is CSW _ 
In contrast. much of the PDSW written over the past few years has been the result of specific 
projects and it was written for a defined purpose. Since the source code of the most popular 
operating systems and basic utilities (spreadsheet~ word processing. database) is generally 
not available, most 0f the PDSW is being written with ln aim towards enhancing the ease of 
use and functionality of these programs and in areas where market demand is too frag­
mented to justify the development of commercial products. As the software market becomes 
more commercialized and standards begin to play a greater role. us~r-supported software 
authnrs increasingly rely on shareware-semi-commercial arrangements to diffuse their 
products. There are. however. important initiatives in the technical segment of UNIX-based 
systems toward less commercialized and more open software markets. 

4(a). Public Domain Software 

Public domain software (PDSW) belongs to the public d.->main which is defined as "the 
realm embracing property rights that belong to the community at large, are unprotected by 
copyright or patent, and are subject to appropriation by anyone. "2 In other words, PDSW 
ha~ no restrictions attached to it and is generally free. Any fees charged usually reflect costs 
in copying and diffusion, i.e cost of diskette or tape. 

There are many kinds of PDSW for virtually every type of hardware and operating system 
although not all programs are available on all hardware/operating systems. The most 
popular tend to have the largest number of PDSW available. Often, more-technically 
oriented operating systems appear to initially generate a greater number of language- and 
utility-related PDSW given the technical proficiency and greater communication among 
their users, who share information. 

190 



l!m~rging Issues in th~ &lection and Distribution ... Bol~lho &: Addis 

As a general rule, PDSW programs are utility programs. That is, programs for system-re­
lated tasks such as making an operating system run smoother or quicker, transfering files 
{XMODEM; ftp) to organize a directory, or to provide communications to a network 
{KERMIT; PROCOMM) rather than specific applications (word processing, spreadsheets, 
databases). Yet, there is task and function-oriented PDSW for systems with greater public 
appeal: TxT, a powerful word processing; and a Logo language, in which source codes are 
often available. Games are also a popular category of PDSW as are valuable add-ons to 
existing popular functional programs {Lotus 1-2-3, dBase, PostScript). Add-ons make the 
program easier to use, give it new capabilities, increase its speed, or permit changes to be 
made in its interface. These include templates and command files, for example to send 
printer commands. 

PDSW can be copied and used by anyone for any purpose. Some: people might take public 
domain software, package it, and sell it to unsuspecting users who did not know that the 
same program was available free of charge. While this is not illegal it is considered a moral 
breach by the software community. Other people might change or modify a public dorr.ain 
program and sell it as proprietary or commercial software, a risk that is enhanced in 
developing countries due to the lack of general user access to wider information about types 
of software. Yet, by changing and then selling the software, the producer is taking on a 
variety of responsibilities regarding quality, documentation and support, whiclt some argue 
overcome the fact that PDSW is incorporated into the program. 

In indu~trialized nations, particularly in the United States, PDSW is easily available through 
a variety of sources. These include bulletin board systems {BBSs), local computer clubs 
{New York Amateur Cooputer Club), non-profit organizahons (SIG/M for CP/M; Macin­
tosh Special Interest Group), software libraries, academic and governmental computer 
centres, computer societies and associations (e.g. Boston Computer Society; San Diego 
Computer Society), user groups (Phoenix, Arizona IBM-PC users; CBASIC; MS-DOS), 
interest-specific groups, computer retail stores, small companies, computer company-spon­
sored groups, user group's archives (uunet; Young Minds), public libraries, commercial 
services {CompuServe; The Source; The Well) and schools, to name a few of the most 
common outlets. 

User-groups are organized along a multiplicity of categories - hardware-type, software­
type/function, application-type, function-type, language-type, hobby- specific user groups.3 

Many of these put out electronic lists or publish catalogues of PDSW, which are updated 
periodically. Altogether there are over a few thousand different inrlividual outlets from 
which PDSW can be obtained. The channels available in each source, the services provided, 
the quality of the documentation, the ease of obtaining, and the basic costs vary within a 
small range. Generally a program is available from these outlets with some kind of 
documentation. At one extreme, some companies might charge a small fee for access to their 
collection, but may also provide a free demo or sample disk. At the other extreme, academic 
computer centres offer PDSW that has to be retrieved electronically through compater 

191 



Bole/ht.· & Addis Emuging Issue.-. in tire Selection and Distrib111ion ... 

networks or communication channels about which little information is initially provided, 
making its identification and evaluation problematic for non-technical users. Some limited 
support (e.g. start up documentation) may be available from the author, a BBS, or other 
users, which may require a certain degree oi effort on the part of the user in identifying the 
other right users or the appropriate conference group. As a general rule, however, there are 
no formal support systems. 

Most PDSW emanates from people who have written programs for their own use and then 
believe that they may be useful to others. Rather than undergo the burdens related to 
commercially launching their programs, they put it in the public domain. Others write 
PDSW because they enjoy it. Some of these people are also motivated to fight against CSW 
that does not permit users to modify it. The bulk of PDSW, however, comes with little 
printed documentation. Often authors will include a telephone number and address for 
support, which may be free or available at a nominal cost. 

While PDSW is generally identified on a bulletin board, a computer club list, a re.,iew in an 
int~rest-specific conference, or a reference in a network discussion, it is usually obtained in 
the form of diskettes or tapes through their.ail, following prior identification. In the past, 
access to networks was limited to the possession of a costly modem and restricted by cost 
and quality of telecommunication lines. In recent years, a few academics and certain 
professional categories have gained increased access to multitudes of interconnected net­
works. Today, file transfer programs (ftp) allow users to directly access PDSW lists and 
retrieve programs, in compressed on uncompressed form, and directly from file archives 
and libraries, both public and private. User groups and other non-profit organizations may 
charge nominal fees for processing the requests. Commercial ventures may package and 
improve PDSW and sell either complete libraries, individual programs, customized pro­
grams, or even charge for time of access to their library over phone lines or networks. This 
latter type is often referred to also as shareware or freeware. 

While PDSW may exhibit more problems than CSW at the outset, over the long run it might 
evolve into a product superior to its commercial counterpart. The major problems with 
PDSW stem from the fact that because they are not commercial products they may not have 
been as extensively tested. Therefore, a new PDSW program that has not been widely 
distributed and used is likely to have bugs and small program errors, e.g. hitting a key 
outside the program capabilities may disable it4. PDSW programs at times may not run on 
certain versions of operating systems or certain equipment, as they were tailored to run on a 
particular version or a specific piece of hardware. These problems, however are often 
counterbalanced by the diversity of support that can be obtained which in the long run make 
PDSW popular because they have been tested and modified by a much greater number of 
user than commercial equivalents, and thus exhibit superior quality and ease of use.s User 
groups and other organized sources check every PDSW submitted at least once, and will 
of:~n write short reviews or make small initial improvements. 

192 



EmerginJl ls..•-ues in the Selectum and Dutribunon ... /lotdho & Addi.~ 

4(b). Shareware (SH\V) 

Shareware (SHW) refers to a low-cost or free-of-charge arrangem~nt for distributing 
software. Under the shareware concept. software can be freely copied and passed along to 
others, or distributed through bulletin boards. SHW is generally written for personal 
computers of all brands (PCs), but is rarely written for Unix.6 SHW is otten described as 
.. try before you buy "The author retains the copyright of his/her software but permits copies 
to be made so that anyone might try it. If a user likes the sw. he or she is expected to register 
with and pay the author a fee, which generally ranges from about USS 20.00 to US$i00.00 
By registering with the author, the user \\ill usually obtain more complete documentation, a 
degree of support, as well as a channel to obtain knowledge about solutions to bu~., ·•d, 
more importantly, updates. 

The main advantages of the shareware system are that it allows the user to try the software 
before paying for it~ gives the user an organized access to a much broader base of available 
programs, and is substantially less expensive than most similar commercial programs. 
While shareware is based on the honour system it is not free software. 

SHW, as a general rule, does not include source codes (like most commercial software). As 
a result, it may be difficult for the user him;berself to iron out bugs in the software or 
customize it. In comparison to CSW, however, it is easier to contact the author. Because the 
SHW distribution system is more informal than that ofCSW. bugs may be ironed out more 
quickly. Shareware can be compared to commercial soft\-vare in the following manner. If 
SHW is bought from a vendor (which usually charges US$1.00 to US$ 6.00 per disk) or 
direcdy from the author (through a recommendation from the trade association, for exam­
ple) the SHW may well be of equal or even better quality than its commercial counterpart. 
Some commercial vendors of shareware may also provide some support. This support could 
be as good as that offered by a commercial software package with the exception that the user 
is likely to talk directly with the author or someone who has worked on the SHW. SHW can 
also be freely copied and passed on to friends. While this would be illegal with commercial 
software, SHW producers encourage it as a way to divulge the software. It is essentially a 
free distribution network for the SHW producer. Of course. if a user likes the program. he or 
she should register with the author and pay the fee. 

If SHW can match many of the benefits of commercial software. then why do the authors 
not set up commercial production and distribution" The most common reasons are that 
authors do not have the expertise, time or capital to set up commercial operation -
overhead, marketing, distribution. and advenising are expensive. They do not sell their 
software to a commercial venture because they want to keep the rights over it and belie\ c 
that they can make money through the SHW distribution system. 

193 



&telhn & Addis Emerging Issues in the Selection and Distnb11tion ... 

The most successful shareware typical:y has a mass appeal in terms offunctionality, it is low 
cost. offers some sort of support (telephone or good documentation) and has been around for 
a while. The quality of SHW is attested to by the fact that in Nonh America, as well as in 
Brazil. where it has been divulged only \>Ver the past couple of years. many users are 
businesses, large and small. and a va.riety of educational and social organizations. 

SHW authors may offer additional regidar support at an extra fee. 

As shareware programs become very popular, their authors develop a distribution system 
closer to that of traditional commercial vendors. Thus, PC-File's latest version, a popular 
shareware database, is sold through software retail stores and. for a fee, will provide 
telephone support to new buyers. 

4(c). Frttly-Available UNIX-based Software 

Freely-available UI\1X software (FUSW) is principally designed for minicomputers and 
workstations, and increasingly for PC netwo!T.s. local and regional. Most of the software 
distributed in Unix networks is of the type where the author retains the copyright, and the 
ability to control it.7 

There are very limited FUSW programs based on the shareware production/distribution 
system8. FUSW programs are mainly computer system administration-level and utility 
programs. 

Among the best-known and highest quality FUSW is that of the Free Software Foundation 
(FSF). Its founder, R. Stallman, encourages software from the foundation to be freely 
copied and distributed with source code. Furthermore, FSF software is ··copylefted." This 
means that it can be changed, but it cannot be sold. Once it is incorporated into any software. 
that software cannot be copyrighted. While some argue th.it this may eventually hamper the 
widespread adoption of FSF software, FSF hopes that its quality and transparency (avail­
ability of source code) will make its use more widespread. 9 Stallman says that the ·'F.ree" of 
FSF refers to freedom, not price. 

The FSF plans to develop software that can replace and hopefully improve upon existing 
UNIX software, thus allowing users to modify and improve the software, as well as write 
with greater ease, because of access to source code, tailored applications. Part of this task 
has been accomplished: a program editor (GNU EMACS), a compiler (GCC), as we;: as 
other utilities have already been written. The group is working on a database, spreadsheet, 
and word processing program, which should be done in the next few yearslO Much of the 
success of these utility programs stems from the availability of the source code, which 
permits programmers from all over the world to improve and diffuse FST ooftware. GNU's 
ultimate objective is to allow anyone to run a UNIX-compatible system free and have the 
source code as well. 

194 



Emt!rging /SSllt!s in tht! St!lt!dion and Distribution ... &Mho&Addis 

Another source of FUSW is the UNIX-like software produced by Berkeley's Computer 

Systems Research Groui; (CSRG). which is arguably freer than that off SF. CSRG's effons 
ha\e been directed at rewriting the source code for UNIX. still controlled by AT&T, and 
making it available without any restrictions whatsoever to individuals, companies and 
organizations. which in tum can modify and resell it "ithout providing the source code .o 
the final user. 11 

There are other sources of free UNIX software, which may hold varying types of restric­
tions.• 2 These sources are available through a few h~::ld.ed archives and the programs are 
extremely varied. As a general rule, UNIX users are connected to some kind of BBS, and 
corrections and tips regarding the use of the software flow much more quickly and freely 
than they do in the commercial realm. Because users of FUSW are more technically 
proficient than the average computer user, programs are more complex and the dialogue 
among users more 5C.'phisticated. 

4(d). Couneware and Government-produced Software 

Another type of inexpensive software is courseware, commercially produced educational 
software. Because the writing of courseware is often subsidized by foundations and other 
non-profit organizations, much of the ccx· -:eware available is inexpensive or given to the 
public domain. Furthermore, be-cause of its objectives documentation tends to be of high 
quality. 

For example, a non-profit organization called Scholastech has been involved in public 
domain courseware for many years. As part of it-; mission, the organization develops an 
argument that PDSW and some shareware actually belongs in a democratic educational 

system. The organization has screened several PDSW programs and has developed and 
given away a number of others with the objective of stimulating student creativity. Scho­
lastech also has appli.:ation-oriented objectives. Because educational budgets are often 
:imited, schools often purchase second-hand equipment or accept a variety of equipment 
donations, which leads to incompatible hardware. Thus one of Scholastech' s objectives has 
been to port courseware into different systems. 

Government-produced or supported software is usually available for free or for a minimum 
set-up charge. l!owever, to obtain this type of software one must qualify under the specific 
rules and regulations of the government agency in question. For example, the Center for 
Disease Control (CDC) has a library of PDSW in the area of epidemiology accessible to 
collaborating institutions and researchers. 

195 



&telho & AddlS Emiergtn[l /SS11e~ 111 the Selecrion and Distnburion ... 

5. Distributing PDS\\' 

There are a multitude of distribution networks for FUSW. generically referred to as PDSW, 
in North America where the system is most developed As a general rule they are organized 
by types of users. hardware, andior applications. This discussion, however, will be organ­
ized by g'!neric-type of software, consistent with the descriptions given above. While there 
are PDSW sources in most European countries. their access tends to be restricted to more 
technical users. 

S(a). Distributing Publk Domain Software 

Public domain software (PDSW) is easily available in the United States, Canada and 
Australia, and to a less extent in western Europe (particularly the United Kingdom), through 
user groups, public libraries, schools, universities, stores that sell computer hardware and 
software, catalogue houses. professional group networks, and bulletin board systems. Some 
of the most popular sources of PDSW are university computer centres. Other non-profit 
organizations and government research institutes maintain large or specialized PDSW 
libraries which are accessible through several academic and research networks as well as 
private services. For example, MIT's AI Lab maintains a library of PDSW for the area that 
is accessible even from Europe (prtp.ai.mit.edu). 

Another example is CERN, based in Switzerlar.d, which maintains a library of PDSW 
progre6Jlls for the high energy physics area (CER.'Il.IB). There are over 450 packages 
offered in both source code and object code form, 80 per cent written in FORTRAN and the 
remainder in assembly code. As mentioned above, CER..i'i, as many other organizations of 
its type, has a strict set of regulations for access to its PDSW library. Collaborating 
institutions and university physics departments in member States can receive the programs 
and documentation free-of-char~e. Commercial enterprises in member States may obtain 
the software for a fee. Enterprises in non-member States or intending to use the software for 
military applications are not permitted access to the library. The programs cannot be 
redistributed and CERN retains the copyright. 

Probably the major source of PDSW, in binary and source format, for microcomputers is the 
SIMTEL20., on MILNET.13 SIMTEL20 is also accessible thr\lugh an Internet bulletin 
board, Jnfo-IRM PC, which is a forum for technical discussion of the IBM - and 
compatible - PCs. The library accepts donations of source codes as long as they do not 
carry any restrictions, i.e. no fees, contributions, licensing agreements, are required or 
requested. 

Ever;- major non-profit computer network also has at least one PDSW library at its 
management site. Often there will be several libraries distributed over several sites The 
three main networks are: BITNET, Internet and DECNet Internet Other, virtual networks, 
such as USENET and UUCP-based networks are discussed below. 

196 



Eme~m.e /s..\-Uf!.'li tn tht' ."'-'it•ctwn and /JL'litrthutwn __ 

BITh'ET (Because Ifs Time Network). the worldwide academic and research network 
connecting academic institutions and collaborating research institutions. maintains a PDSW 
library. Bl~ET includes the United Stz.tes and Mexican constituencies, NetNonh (Can­

ada) and EAR~ (European Academic Research Network) and is com~osed of about 500 
member institutions. \~ith 100 new members added each year. Together they form a logical 
network that employs the same protocols and routing mechanism. The network serves o .. ·er 
6,000 computers in 35 countries, including the larger '.\ICs such as Argentina. Brazil. Chile. 
China (Taiwan Province). Colombia. Cote d'Ivoire. Egypt Hong Kong, Mexico. the 
Republic of Korea. Saudi Arabia and Singapore. 

BIThET sites are limited to communication through file transfer and email Files from its 

archives can be retrieved directly through ftp or a dial-up connection. Gateways exist to all 
other major networks. The BINET Network Information Center (BITNIC) maintains 
PDSW archives. Information about Its archi~·es as well as some PDSW that is not in 

BITh"ET can be gleaned from over 1,000 discussion groups. PDSW files can be transferred 

on BIThET. 

EARN·. the associated European network. is already connected to Cote d'Ivoire and 
connections are pending to six Middle Eastern countries: Algeria, Cyprus, Jordan, Morocco, 

Syrian Arab Republic and Tunisia Two other participating developing countries outside 
E~Y s geographical area are India and Pakistan. The network supports over I 00,000 users 
connected by more than 800 nodes. EARN provides PDSW programs to enhance EARN 
usage. It also provides access and file transfer to other PDSW libraries through a specialized 
server (TRICKLE) for microcomputers stored at SIMTEL20. 

Internet is a worldwide network, which allows the transfer of email, file transfers between 
computers, and interactive logins between machines. Internet was from the very beginning a 

large structure connecting many smaller networks, a structure that persists today. Internet 
utilizes the TCP11P transmission protocol. In fact, Internet today is a logical network 
connecting more than 2.000 networks. It includes wide-area networks, such as NSFNET. 
MILNET, CS~ET and ESnet: midlevel and regional networks. such as the MRNet (Minne­
sota Regional Network) er THEnet (Texas Higher Education Network), NORDUnet and 
SURAnet; and campus and organization local area networks. such as UTnet (Texas at 
Austin Network). Geographically, Internet links over 100,000 computers spread in net­
works in North America (including Mexico). western Europe, Japan, r;ew Zealand and 
Australia_ 

DECnet Internet is the name of a worldwide collection of autonomous but cooperatively 

managed, regional, nationt1I and international networks based on Digital Equipment Corpo­

ration's (DEC) Decnet protocols_ It is an important network for scientific and technical 

communities The centerpiece networks include the United States Space Physics Analysis 
Network (US-SPAN) and the European High Energy Physics Network (E-HEPnet), and 
numerous university, state, national and international networks, such as portions of the 
intemordic network C~ORDlJnet) and portions of THEnet. Application services include 

197 



&t~lho & Addis ~a-gin~ /ssv~s rn tit~ S~l«tion and Distrib11tion ... 

email and remote file access and transfer, as well as interactive terminal-t~terminal 
communication. The specialized sub-networks maintain PDSW libraries with restricted 
access to participating institutions. 

Other imponant network sources for th.! distribution of PDSW are the USENET virtual 
network, the microcomputer network FIOONET and several other regional, metropolitan 
and professionally-focused networks throughout the United States and Canada. For exam­
ple, USENET's PDSW libraries have specialized sections on different hardware and 
software types. including GNU. 

In w~"!em European -:i11ntries. various sites have PDSW libraries, often with programs 
from major global ~.lUrces (such as US9otl:T's comp.sources) and locally developed 
programs. One SL '1 site in the United Kingdom is at Lancaster University 
{LANCS.PDSOFT). on JAATET. the United Kingdom Joint Academic Network. In Switzer­
land. the iam.unibe cha has a good library of object-oriented programs, accessible through 
the Internet gateway to EARN. 

UNESCO's °'"•ston of Software Development and Applications has also been developing 
PDSW, primarily for scientific and technical infonnation systems. Several institutes in 
developing countries use UNESCO's CD~SIS, and infonnation storage and retrieval 
system adapted to minicomputers and microcomputers. 

A major source for obtaining PDSW, or at least more specialized information about it, are 
BBSs. There are hundreds ofbulletin boards over the dozens of existing public. semi-public 
and private networks. Just about everything is discussed in these BBSs: from agricultural 
research. to biotechnology. to epidemiology. to social services, to computer science. There 
are BBS discussion or conference groups dedicated to specific types of hardware (IBM-PC; 
Amiga); operating system software (MS-DOS; UNIX); or languages (C; Assembler; For­
tran). Some BBSs are organized geographically. For example. Argentine. Brazilian. Egyp­
tian and Indian students and researchers abroad maintain discussions with their home 
country and expatriate counterparts. Not all BBSs offer direct software downloading 
capabilities. but a majority of the larger ones do. Even if a BBS does not offer PDSW 
directly, it is likely to provide information about new and interesting area-specific PDSW. 

Regionally and locally, an important source of PDSW. particularly for IBM-PCs are user 
groups (Boston Computer Socit.L/ is t>ne of the largesn. As a general rule. software from 
user's groups is sent through the mail. copied and passed around at meetings, or SCflt over 
BBSs through telephone lines and a modem connection. 

S(b). Distributing Shareware 

SHW is distributed principally through vendors, but also infonnally among friends and 
acquaintances. Conceivably, distribution could also take place through many of the same 
mechanisms as the PDSW. Vendors set up mail order businesses where they maintain 
up-to-date archives and send out copies of SHW for nominal fees. 

111 



~'Ring Issues in the Select10n and Distrib1111on ... Botelho .~ AddlS 

There are about 500 vendor:- of SHW in the United States -they charge anything from 
USS 1.00 to USS 6. 00 to copy and mail a disk. and may also sell manuals of the most popular 
programs (PC-Write; PC-File)l.J_ The end-user is still resronsible for registering with the 
author. Vendors do not provide follow-up. 

The Association of Shareware Professionals is such an alternative source of SHW. It 
reviews the software to make sure that it is not trivial (defined as a program that could not 

quickly be created by a programmer): creates and ensures contact with the SHW author for 
follow-up suppon: and consistent with SH W's "try before you buy" philosophy. makes sure 

that the program is not "crippled", which means ensuring that the the program can be fully 

tested. This avoids situations where the author might provide only part of a large data base's 

capacity and require the user to register before receiving the rest of the software. 

S(c). Sources of Frttly Distributed UNIX-based Software 

Bulletin board systems (BBSs) are an important part of exchanging information about, 
obtaining, and diffusing UNIX-based FUSW. The most popular BBSs and archives for 
FUSW are in USENET, an international distributed bulletin board and discussion network. 
USENET, a virtual network within Internet, has over one-half-million readers from 17 
countries ir. all continents of the globe and routinely carries discussions on almost 400 
topics, organized hierarchicaJly into newsgroups, which send and process articles. In fact. 
USENET is a son of multi-topic bulletin board which a user can access to contribute and 
retrieve information, including PDSW. Participants from other networks, such as BITNET 
or UUCP (through UUNET, for example) may also access USENET, but direct retrieval of 
PDSW files is often time cor.suming and erratic. 

USENET's alt.sources and comp.sources archives contain thousands ofFUSW programs. 
The FUSW programs in these archives, and more specialized ones such as 
comp.sources.unis are also available from a variety of sites ih the United States and 
western Europe Some sites will mail tapes. Solutions to bugs and upgrades are posted in 
comp.sources.bug or are relayed in the newsgroups. 

The only costs associated v.ith USENET are the communication costs as the software 
required to install a gateway to USENET is also in the public domain. In countries other than 
the United States, access to USENET is often made through a central location, which pays 

for the long-haul ~ommunications link to a central node. These systems may have an 

average, per-site cost to join, as in Europe. Other popular links to USENET are Internet and 
commercial-900 number gateways. 

Access to USENET archives may occur through a variety of nodes and gateways. One of the 
most popular is UUNET, a large and specialized site run by a commercial non-profit 
organization, which also has over 600 megabytes of PDSW available for direct access on 
tape. UUNET also provides an alternative access to Internet and UUCP mall through its 

199 



!1otellto & Add:_'f Em~in~ frsues in the Selection an•i Distnh111ion ... 

dedicated communications relay computer. uunet.uu.net. Transfer of PDSW files from 
USE~ET archives may !>e made either with the UUCP transport protocol or TCP/IP 

protocol. 

There are still other BBS sources for FUSW. BITNET automatic retrieval ser\'ice will soon 
be available and work is being done to make the archives available to the general public via 
anonymous UUCP. UUNET permits subscribers to access and retrieve files directly_ Some 
sites will include other PDSW archives such as games, X windows and GNU. A few 
companies in the U11ited States (Motorola~ Pyramid Technology) maintain copies of the 
archives and offer limited access. 

As mentioned above, the Free Software Foundation archives provide free GNU software, 
which can be accessed from any of the major academic and research networks, as well as 
commercial services. An interesting new network source for PDSW is Archie, an Internet 
Archive Server Listing Service. Recognizing the difficulty of finding appropriate PDSW in 
today· s multitude of networks and other PDSW sources in different sites and under different 
systems and protocols, McGill's School of Computer Science set up Archie, a dedicated-da­
taoase of PDSW ~ith over 2,600 entries which allows direct ftp. The archive lists the name 
of the PDSW program, document or package followed by a short description. The database 
hopes to incorporate non-UNIX info on PDSW in the future. 

6. Diffusing PD Software in Developing Countries 

6(a). Selttting Software for Developing Countries 

There are a few basic issues to consider when weighing the advantages and disadvantages of 
a particular type of software: 

- Quality of software 
- Easeofuse 
- Hardware compatibility 
- Opt:rating system compatibility 
- Program language 
- Auxiliary sc,ftware requirements 
- Size of the program 
- Computer memory requirements 
- Media availability (i.e. size of diskette) 
- Price of the software 
- Tutorial availability 
- Access to source codes, which permits a user to modify and debug a 

program. and eventually provide updates 
- Access to user support, which permits a user to contact someone who can 

help sort out problems related to the use of the program 

200 



Em~rgin!( /SSfles m th~ Sel~ct1on and Distnb11tion ... Bott/ho & Add1S 

- User group existence which often pennits faster debugging and infonnal 
help with program operaticn 

- Quality of manuals and other documentation 
- Restrictions related to its use 
- Restrictions related to its further distribution 

The main issue when judging the applicability of any FDSW or PDSW is the available 
hardware and operating system. PDSW and SHW can operate on many types of PCs, while 
UNIX-based software works most effectively on workstations. 

The best operating system is a hotly debated issue in the industrialized countries -
UNIX-based systems are considered technically superior, however, PCs run by DOS 
continue to be used by most people. One estimate, from a shareware vendor, states that in 
industrialized countries only about 5 per cent of the users have access to a workstation and 
UNIX; approximately 80 to 85 per cent of users use IBM-compatible with DOS; approxi­
mately 8 to 10 per cent use Apple-based systems; and CP/M and other operating systems are 
used on the balance. 15 Similar figures are not available for developing countries. 

The perfonnance of software is intimately tied to the user capabi!ity of clearly defining 
his/her own needs and selecting the appropriate program to perfonn the task. From this 
perspective, it is crucial to put as much infonnation at the user's disposal as possible, 
assuming that the average user in developing countries is not necessarily technically 
proficient in computers and software as his counterparts in the industrialized world or his 
academic and research counterparts in the country. 

Governmental administrative and service provider users (health, education, transportation) 
and private sector organization users, at all levels and particularly those in touch with the 
citizen or final consumer, are quite capable of defining their needs better than any computer 
expert. It is therefore crucial in the selection process to get as much infonnation about the 
available PDSW to them as possible. Given the limitations of computer networks and even 
telecommunications lines in the majority of the developing countries, this infonnation 
should be made available in printed support such as catalogues, directories and specialized 
lists. Great attention should b~ taken in organizing these lists so that they are easy to use and 
facilitate the selection and access to the needed PDSW. 

As it is done in software caulogues in industrialized nations, some listings of PDSW foun<l 
in the network archives provide some information about the program. Copies of these lists 
could be made available to more technically-proficient organizations in developing coun­
tries. In general, however, the PDSW products listed should be arranged in indexes arranged 
alphabetically, according to applications, according to system compatibility, and a cross of 
system compatibility/applications. Each item entry would include title, sub-title, type 
(PDSW; SHW; FUSW, other) version number, release dilte, last upgrade date (which 
together with the previous data may help assess reliability of item), author(s), email, phone 
or address for contact, news groups/discussion groups/users' groups referenced. compatible 
hardware, microprocessor, operating system, required language(s), memory requirements, 

201 



&t~lho & Addis Emn-ging /ssu~s m th~ &l«tion and Distributwn __ _ 

auxiliary programs required. type of suppon. price of program (in case of SHW), price of 
documentation, cost of support (e.g. cost per call), descriptive annotation. Some of the 
major applications heading would include accounting. agriculture. business management, 
construction. architecture. desktop publishing, engineering and science, food and lodging 
services. general services. health services. social services, databases, insurance; inventory, 
purchasing and invoicing, library services, manufacturing, media, medical, personal com­
puting, programming tools, real estate, spreadsheets, communications and word processing. 

6(b ). Distribution Issues 

There are a few we!l-established user groups that accept institutional memberships. In the 
United States the principal ones are in Boston and California_ Memberships between local 
sites in the third world and the user groups could be set up. The membership fees usually 
include extensive documentation of the society's activities, access to new software and 
timely updates and debugging information on PDSW. Alternatively, United Nations sup­
ported clearinghouses and/or regional software distribution centres could have one mem­
bership and then distribute the software to local sites in the third world. The former option, 
because it diminishes the middle-people, could promote better contact between the user 
groups in the industrialized countries and the end-user in the third world_ Conceivably the 
United Nations could negotiate .. group-institutional rates" for third world organizations that 
are educational or research oriented. 

There is no question that shareware vendors would welcome the opportunity to sell diskettes 
of SHW to the third world and also serve as distribution points for third world software in 
the United States_ There were some cases of this with the Soviet Union. 

User groups and Shareware vendors involve exchanging software for relatively modest 
sums. The problem here is that the cost of exchanging the currency frequently outweighs the 
amounts of payment involved_ Some sort of compensation system would be critical to 
getting low-cost and free-of-charge software to the third world. 

Another barrier to the free flow of software is the language in which the program commands 
and documentation is written. One way is to facilitate links with software user groups/ven­
dors in countries within industrialized and developing countries that speak the same 
language. Additionally, the United Nations could fund programs for translating PDSW in 
developing countries into languages other than English. 

6(c). Electronic Transmission Issues 

There are three fundamental means of transferring software data from one place to another: 
by air, by phone, or through the mail. Air, or satellite transmission, has proved very 
complicated and costly in the United States. High-capacity phone networks needed for 
effective distribution of PDSW are expensive and therefore will be even less widespread 

202 



Emerging Jssr1es in the Selection and Distribution ... &telho & Addis 

and available in the third world, except for academic and research applications. The mail 
system is slow; however it is a good option for inexpen!;ively distributing software and/or 
large amounts of data that would be costly and tie up phone lines. 

6(c)i. Satellite Systems 

Little is known about Stargate, an experiment to transmit UNIX software by cable. It used 
the transmission facilities of a cable company and end-users had to buy a decoder, estimated 
between USS 200 - 500 to be able to receive and decode the messages. 

There were many technical problems: the signal was not always strong and properly tuned; 
the decoders were not always reliable (in part because there are no standards for this 
equipment). Errors were frequent and it was time-consuming to retransmit data and tune the 
signal. Funhermore, satellite time can be expensive. 

Many of these problems are likely to be even more complicated in most third world 
locations. Furthermore, cable television is not as common in developing countries and 
satellite dishes would have to be used thus increasin3 the amount of hardware and the 
expense to the end-user. The system appears to be too expensive, unpro·. e!l and complicated 
to be feasible for the diffusion of PDSW in developing countries. 

6(c)ii. Computer Networks-Bulletin Board Systems 

Computer networks are an important source of PDSW and related information, although 
this is not their primary function. PDSW and other freely distributed software is discussed 
and exchanged typically as a result of individual contacts among researchers with similar 
interests rather than as an activity in itself. 

Computer networks are commonly used by academic and research communities to ex­
change information, documents, and programs; access databases and send messages. The 
networks are organized internationally, regionally and functionally, and may or may not 
include private firms. Many of these networks are connected by email gateways. The large 
national systems frequently restrict communications to those of a non-commercial nature, 
thu3 prohibiting commercial exchanges that might occur in some regional networks. 

Many of these networks, including those in the developing countries, received start-up 
funds and equipment from IBM and later other large computer manufacturers. In some 
cases, these large manufacturers continue to fund the venture. In most cases, however, the 
networks are funded by membership and user fees and possibly government funds. 

With the recent establishment of CREN (Corporation for Research and Euucational Net­
work), which resulted from the fusion of the CSNET and BITNET networks, the main 
global networks have moved to become closely interconnected. CREN's daily activities are 
managed by a non-profit consortium called EDUCOM, based in Washington, D.C .. BIT­
NET provides access and command retrieval of programs frL,m PDSW libraries in sites at 
other major networks and meta-networks. 

203 



-1 
Botf!lho & Addi." Emergin~ /SS11es in the Selectwn and Distnb11twn ... ! 

In Europe, the principal network is the European Academic Research Network (EARN). 
The EARN network will soon have operational links to Turkey and Egypt. EUnet is a 
cooperative computer network run by the European UNIX Users Group. In Canada, the 
principal computer network is NetNorth. 

A similar pattern is likely to emerge in developing countries, at least regarding international 
computer network linkages. In Cote d'Ivoire, for example, the first EARN linkage in Africa, 
the site is to act as a channel for West Africa to computer networks in the industrialized 
countries. 16 

It does not appear feasible to set up a computer network exclusively for exchanging FDSW. 
The network, in most cases. has to be funded by members and users, and it is unlikely that 
users who are exclusively interested in FDSW can afford high fees. Furthermore, in the third 
world, many of these projects are funded by international organizations such as AID or the 
World Bank. These projects aim to transfer specific technologies, many of which are 
commercial. This does not preclude the use of the computer network for FDSW but this 
objective would take a back seat to the principal goals of the project.11 Computer networks, 
as in the industrialized countries, are likely to prove an efficient source of FDSW because of 
the organization of the network along users with similar interests or functions. Existing 
networks, as in the industrialized countries, are likely to become one conduit for FDSW 
related to the specific goals of the computer network members rather than a general conduit. 

Some of the larger and more advanced developing countries are currently in the process of 
modernizing and extending their academic and research computer networks. Mexico's 
CONACYT has began to implement a high-capacity satellite-based Mexican Academic 
"Ner~ork (RArvf), which will be connected to NSFNET. RAM will eventually incorporate 
into a REDMEX the two existing ~atellite-based Mexican networks centered at UNAM 

(Mexican National University) and ITESM (Monterrey Institute of Technology). Two other 
parallel network projects going on in Mexico are REDLAED. organized by the United 
Nations and the Columbus Project. 

Brazil's National Research Network (RNP) is in the process of implementing an academic 
and research network, which will replace the collection of ad-hoc BITNET connections that 
currently exist. The RNP also plans to install a distributed software library, which will offer 
PDSW and flat tariff software in the areas of engineering, medicine, social sciences and 
education. 

In related developments recently, the UNDP contracted a non-profit socially-oriented 
network, PeaceNet, to set up an inexpensive, yet cumbersome, UUCP-based academic and 
research network in Bolivia and Cuba. 

204 



EmeT'fi!ing Issues in the Selection and Gistrihunon ... Botelho & Addis 

There are also about 300 BBS on Latin America alone, some connected to their home 
country. These mailing lists offer an important channel for the diffusion of information 
about and transfer of PDSW among the community of expatriate Latin American students in 
the United States, Canada, western Europe and Japan. Some of these mailing lists are 
devoted to technical issues in computer sciences, but they also discuss general issues &nd 
exchange news and information. 

There are over I 00 BITNET nodes in Latin America, the large majority in academic 
institutions. Brazil and l\'tex:ico have the largest number of nodes. In contrast. Argentina has 

over I 00 UUCP nodes in ~cademic and research institutions, as well as private enterprises 
and government departments. UUCP is relatively inexpensive compared to other network 
transport protocols (e.g. TCP,1P). The problem with UUCP, however, is that its routing 
structure does not allow for either remote login or real-time file transfer, making it 
unsuitable for the distribution of PDSW over long distances. 

6(c)iii. Mail-A "1 'irt11al Network" 

A ''virtual network" or "pseudo-networks" is a fancy way of saying that people would mail 
tapes and floppies to each other. Although slower than a network, it is a low-cost means of 
getting the job done. Catalogue houses and user groups in the industrialized countries could 
send their catalogues to user groups /universities /schools /firms /libraries in the third world. 
The software could be purchased by the i:-stitution in the third world and then it could be 
copied by individual users. Support for maintenance would be slow, but not insurmount­
able. As the software spreads in the third world, users in the particular locale could get 
together and work out problems themselves, thus creating invaluable skills. 

7. Evaluating a PDSW Distribution System for Developing Countries 

The central goal in setting up a distribution system should be to take advan1·age of the 
existing networks in the industrialized countries and the main existing gateways in develop­
ing countries to these networks. While the different networks could be connected to a 
clearing house in the United Nations, a better solution would be to connect the clearing 
house directly to the locale in the third Horld. 

Direct contact between the end-user in the third world and the distributors and producers 
could preserve much of the inter-user contact, which has been important to the dynamism of 
these software markets in industrialized countries. 

While the mail is likely to be the most cost-effective way of getting the c;oftware to users in 
the third world, vis-il-i·i.5 a network, it does have some disadvantages. One disadvantage is 
that the user cannot ask for and quickly receive problem-solving help on specific issues. 
This, however, is not unsurmountable. Not too many users in the developing countries 
currently have sufficient expertise in installing and maintaining workstation software. Even 
in the industrialized countries, it is common to retain "problem-solvers" or consultants to 

205 



Botelho & Addis F.merging Issues in the Selection and Distrib11tion ... 

teach the system and customize it for the user. While consultants could handle the larger 
problems for a few. the smaller problems could be dealt with through an appeal on a local. 
regional, or international computer network. 

A m.Jre serious drawback of relying on the mail system rather than a network system is that 
the user in the developing country will be unable to contribute his/her knowledge or 
participate in the international hackers· interactions. While his/her participation may be 
limited at the moment. it al so represents lost opportunities for learning Under the economic 
constraints, however. the mail system is likely to outweigh the more expensive computer 
network system. 

8. Issues for Future Research 

- Type, diffusion and trends in operating systems (OS) in the third world: Is DOS 
most prevalent now? What will happen in the near future? Should the United 
Nations do anything regarding OS distribution? 

- Logistical issues, apparently small issues that can create large obstacles in develop­
ing countries. Two that have been briefly discussed above and could be further 
explored in the context of different national settings are: translation and compensat­
ing checks. The latter is important anytime a transaction is made. Even free software 
will entail very modest distribution fees to cover the costs of the medium as well as 
mailing. The former is particularly critical for applications-oriented programs, less 
so for utilities. 

- Upcoming patent legislation -threatens all software, but certainly free distributed. 

Notes 

A major potential issue with many recent threats. However, several factors will 
delay its impact. First. the international trade negotiations in services that have put 
intellectual property rights high up in their agenda appear to be stalled. Second, the 
courts in the United States have entangled the issue so much that it is unlikely that 
any final interpretations that could affect the production and diffusion of PDSW will 
emerge in the near future. 

1. The United States Department of Commerce (I 991) estimates that in 1990, sales of 
packaged software alone by United States software firms were $20 billion, or 40 per 
cent of the global market. Firms dependent on software revenues have pointed out that 
half of all software in use has been illegally copied. The Software Publisher's Associa­
tion (SPA) has estimated that lost revenues derived from illegal software copying 
exceed'J $2 billion a year. 

2. Definition from Webster's Seventh New Collegiate Dictionary. 
3. Estimates are that in North America alone there are over 3,000 user groups. 

206 



£merging /ssws in the &lection and Distribution ... Botelho & Addis 

4. As a general rule. every software has some bugs in it. even commercial products. 
particularly when first introduced. Of course. larger and more complex programs will 
exhibit a greater number and variety of bugs. calling forth a more systematic mainte­
nance. 

5. S. Nutting. a well-known propagandist of PDSW says: "The public domai11 is a 
collection of literally te11S of thousands of hours of experimentation with the computer. 
Taken as a whole, it is a database of computer technique. The programs may or may 
not solve your problem, but by golly they will show you what that computer can do. It is 
a bubbling, burgeoning cauldron of uncontrolled experimentation, and it is absolutely 
man•dlous." 

6. Inspite of n;uch talk about opportunities for developing countries of UNIX as the 
standard of the future, the promise is still far from reality as today UNIX accounts for 
less than 15 per cent of the United States software market. For a discussion of the 
inflated promises of UNIX. see A. Botelho ( 1989). 

7. It is suggested that the minimum serious investment needed to use UNIX-based 
software is a 386 co-processor and at least 150 megabyte hard disk. This, however, 

would only permit a limited degree of utilization of the UNIX-based software. 

8. Shareware has not become an important avenue for distribution of workstation/ UNIX 
software, probably because not many average individuals outside the technical and 
academic spheres own workstations. As the price of workstations declines rapidly, 
there is talk that workstations will be tomorrow's PCs and UNIX the ultimate standard. 

9. S.L. Garfinkel, ''Programs to the People," Technology Review, February/March 1991: 
53-60. See also, ''Hacker'sretum,"TheEconomist, 15 July 1989: 81-82. 

10. GNU stands for a recursive acronym meaning GNU's Not illli1X. GNU is not UNIX 
but all GNU software can be run on UNIX. GNU EMACS has been adapted to a variety 
of computer systems, from supercomputers to desktop machines. 

11. CSRG' s most popular program is a UNIX networking software that has been incorpo­
rated into products sold by a variety of companies, including ICs. 

12. D. Fiedler in "Free Software!" (Byte, June 1990), cites the example of where one 
author restricted the use of his UNIX software to non-military sites. 

13. MILNET is the unclassified operational military network that resulted from the 
dissolution of ARPANET in the late 1980s. 

14. PC-Write, for example, has about 50,000 people registered out of 100,000 who 
purchased diskettes, and has sold over 90,000 manuals. 

15. The President of the Shareware Producers Association (United States) states that SHW 
has been unjustly accused of spreading viruses. There are no statistics on this, but there 
is no reason that SHW should be anymore responsible than disgruntled employees in 
commercial ventures or malevolent hackers over networks. 

16. Efforts in this direction can learn from programs for regional cooperation in telecom­
munications, which is already being promoted with mixed success in two regions of 
Africa. See Rothery, Toure and Sharp (1989). 

17. For a recent discussion see Bruce ( 1989). 

207 



Botelho & AdJIS l:.inuging Issues in 1rc- Sel«lion and Distnbulion ... 

Bibliography 

Botelho. A. ( 1989) Technological Change a11d Restructuring in tM /111emalio11a/ Computer 
/IJdustry: Perspectil'es and Policy Optio11s for NIF.s. repon prepared for the OECD Devel­
opment <:entre. Paris, mimeo. 

Branscomb, A. (1988) .. Who Owns Creativity?," Technology Rel·iew, May/June: 39-45. 

Bruce. R. H (1989) "Restructuring the Telecom Sector in Developing Countries: Some 
New Options for Policymakers," IEEE Technology mid Society Magazine, 8 (4) December: 

16-20. 

Desbois. D. and G. Vidal (1988) .. Abidjan de~ient le premier noeud Africain du reseau 
telematique:· Rel'lle TiersM011de, XXIX (116): 1237-1243. 

Dirschauer. S. (1990) ·"Free Software," RUN, November: 29-30. 

Fiedler, D. (1990) "Prowling the Networks," Byte, May: 83-86+. 

Fiedler, D. (1990) .. Go Ahead, Make my Day," Byte, July: 81-84+. 

Fiedler. D. ( 1990) .. The Free Software Hit Parade," Byte, August: 85-88+. 

Frey, D. and R. Adams (1990) !'Yflg:: A Directory of Electro11ic Mail Addressing and 
Networh. Sebastopol, CA: O'Reilly & Associates. 

Froehlich, R. A. ( 1986) lhe IBM PC (and compatible) Free Software Catalog a11d Direc­
tory, New York: dilithium Press. 

Gassman.H.P.( 1978) "'DataNetworks: New Information Infrastructure," OECD Obsen·er, 
October 1978: 10-16. 

Glossbrenner, A. (1984)How to Get Free Software, New York: St. Martin's Press. 

Hildebr1ndt, D. M., editor a'ld compiler (1989) Comp111i11g /11formatio11 Directory, Federal 
Way, WA: Pedaro, Inc. ~6th edition). 

Kahin, B. ( 1990) ''The Software Patent Crisis," Technology Re1,.iew, April: 53-58 

LaQuey, T .. editor. (1990) The User's Directory of Computer Networks, Bedford. MA: 
Digi ~I Press 

The League for Programming Freedom (February 24, 1991) Against U'ier lmerjace Copy­
right, mimeo. 15 pp. 

Lewis. L. l. (1989) ''BITNET: A Tool for Communications Among Geographers," The 
Pmfe:tsional Geowapher, 41 (4) November:470-479. · 

National Research Council (Computer Science and Telecommunications Board) (1991), 
/111el/ec:t11al Property /.'1.'ille.'i in Software, Washington, D.C .. National Academy Press. 

201 



Emerg111g fssws m the Selection D.!rd Distrih•llon ... &>1ellro & A.ddrs 

O'Reilly. T. and G. Todino(l990)Managi11g UUCP ancJ Use11t!t. Sebastopol. CA: O'Reilly 
& Associates (8th edition). 

Rothery. R.~ Toure, H .• and Sharp. D. (1989) ·"Regional Cooperation in Telecommunica­
tions - Two Examples From Africa," IEEE TechnolorJ· a11d Society Maga:me. 8 (4) 
December: 11-15. 

Samuelson. P. (1988) ··is Copyrig.Jit Law Steering the Right Course?:· IEEE Software, 
September: 78-86. 

Sawusch, M. ( 1989) Best of Shareware: IBM PC Utilities. Windcrestff AB 

Schaefermeyer, M. J. and E. H. Sewell, Jr. (1988) ·'Communicating by Electronic Mail," 
American Behavioral Scientist, 32(2) November/December: 112-123. 

The Software E11cyc/opedia 1989 - System Compa11bility Applicatio11s. New York: R.R. 
Bowker. 

Todino. G. (1990) Using UUCP and Usenet. Sebastopol. CA: O'Reilly & Associates. 

United States Department of Commerce ( 1991 ). "Computer equipment and softwlre," 
1990 United States Industrial Outloolc: 26-31. 

209 



Public Domain Software for Development• 

•• Robert xbware 

The use of computers in government agencies and university and scientific research 
institutions in the industrialized nations has caused an enormous amount of software to be 

produced. Much software has also been prepared by United Nations specialized agencies. 

by multilateral and bilateral donor organizations. and by international foundations. A 
considerable amount of this software is in the public domain and has potential secondary 
applications in some industrial sectors. By "public domain" I mean non-ownership and this 

refers to software that is not classified or proprietary. For example. the United States 

National Aeronautics and Space Administration (NASA) ofters more than 1.100 computer 

programs through its Computer Software Management and Information Center (COSMIC). 
COSMIC's inventory of computer programs that have been supplied to small businesses. 

universities and government agencies spans a wide range of application areas. such as 
computer graphics. circuit design and analysis. project management. energy system analy­

sis. structural analysis. heat transfer and software development aids. Furthermore, a portion 
of the available public domain software helps solve the problems common to different 

government agencies and businesses and has been written in programming languages in 

such ways that minor modifications in requirements may be accommodated without too 

much programming effort. 

This article is an attempt to provide developing countries with information on public 

domain software potentially applicable to their needs in order to minimize the re-develop­
ment of programs already tested and in use elsewhere. (The term .. developing countries" is 

used as a generalization since there are different levels of sophistication in the use and 

development of software within and among countries.) The article does not attempt to 
provide an exhaustive identification and description of all the personal computer-based 

models and software that could be of use to firms and/or institutions. Nor does it assess the 
relative strengths and weaknesses of the software available. 

•• 
Micr~l~ctronics .\fonilOI', No.24, 1987/JV 

Senior Information Tcclmology Specialist. Dcvclopmcrt Infonnatics UniL Asia Technical 
Dcpartmc:nt. World Bank. Washington. D.C .• Unite.cf Stales. 

The World Bank does no• accept responsibility for the ,·icws expressed hcn:in. which are those of 
the author and should not be attribute.cf to the World Bank or to its affiliated organi..ations. The 
rmdings, interpretations and cooclusions do not necessarily n:prcscn1 official policy or the Bank. 

211 



Public Domain Softwon fr Dn-rlupmmt 

The major benefits of obtaining public domain software for organizations and firms in 
developing countries are: 

I. Such programs can broaden their access to a variety and number of software re­
sources; 

2. Overall costs. time and use of personnel resources for software acquisition and/or 
development may be reduced; 

3. Computer program source codes may be obtained to study program capabilities and to 
modify or enhance such programs as needed; and 

4. Alternative software choices can be compared before acquiring and/or developing 
software. 

Despite these potential benefits. developing country firms and organizations may find 
serious problems in acquiring and modifying public domain software in the long term. 
Public domain software is a mixture of good programs and bad. old and new. useful and 
disappointing. Many good public domain software programs are poorly documented. which 
restricts their use to mostly experienced users who can quickly learn to use them correctly. 

Some programs come with no warranties or customer support. The quality of the software 
and the usefulness of the software output can vary considerably. Results from software and 
models may not easily be interpreted or may require interpretation and adjustment by 
so-called experts. Software may not easily be adaptable to a variety of countries Many 
producers of modified software systems (in both industrialized and developing countries) 
have had to deal \\ith large and costly changes in the functioning of programs. Some firms 
might not have sufficient resources to cover these costs and also become involved in the 
development of other activities. such as servicing and marketing. The basic point is that 
enthusiasm for acquiring and/or modifying existing public domain software should be 
tempered with some degree of realism. 

At the outset. it is useful to provide a few definitions and to differentiate among types of 
programs available in the public domain. "Software" means all programs and routines used 
to extend the capabilities of computers. as distinct from "hardware" or .. firmware". "Mod­
els" are software used either to explore broad. open-ended problems involving a significant 
degree of qualitative judgement (called "heuristic models'), or "algorithmic models" 
employed when factors central to the problem of concern are mostly quantitative and the 
relationships among factors can be expressed in arithmetic or algebraic form. "Available 
software" means software accessible to other countries (outside of the United States). In 
some instances. computer programs may be restricted to domestic distribution and use for a 
particular period of time. The cost of these public domain software programs range from 
nothing to several thousand United States dollars. though most often they may cost a 
nominal amount to cover diskette and document reproduction expenses. "Shareware .. is a 

212 



P,,bi1c /Jomam St1fhAan fur D~wlof"'l~nl 

copyrighted software for which the owner freely gives permission to copy. but ~ith the 
request that the satisfied users send a contribution for m&?intenance of the program as well as 
to receive notices of updates. 

Types of program 

It is important to differentiate between two types of public domain software. The first 
generally has no formal distribution channels and is circulated among a surprisingly 
well-organized network of enthusiastic computer users through computer user groups and 
electronic bulletin boards. This type of software is part of a long tradition from the time of 

the first mainframe computers. when resourceful people wrote programs to solve particular 
problems and to show off their programming skills. Some sources for this type of software 
can be found in the .. Other sources .. section of this article. 

The second type of public domain software - referred to in the following sections - is 
certainly less known than the former. It is de..-eloped and made available with funding from 
international development agencies. governmental agencies and research instil Jtes. These 
programs are commonly prepared for Stibmittal to agencies following set !l'~idelines de­
signed to encourage the development of a ··software package" that is complete. well 
organized and ··ready to use" in the public and private sectors. This means that the software 
package will basically consist of the complete program source code in machine readable 
form. supporting documentation that presents a full explanation of the program capabilities 
and the manner in which the program achieves its objectives and any additional information 
as merited such as sample input. output and data files. It also means that the software has 
been checked out and evaluated to verify the completeness and operation of the program. 
supporting documentation and suitability of the package for dissemination. 

International Development Agencies 

In the process of working to promote the social and economic development of their member 
countries. through loan operations and technical assistance. international financing and 
development institutions such as the Asian Development Bank. the Inter-American Devel­
opment Bank (IADB), the World Bank, the Food and Agriculture Organization of the 

United Nations and the United Nations Industrial Development Organization (lJNIDO) -
to name just a few - have produced both general and sector-specific software and models 
that o~rate mostly on personal computers. 

For instance, the Project Analysis Department of the IADB offers its members the following 
models, among others: "INDUSMOD", which genera1es financial projections for an indus­
trial company or project over a ten-year period; "RURAL ROAD MODEL", which stimu­
lates the economic costs and benefits associated with road projects providing access to rural 
areas or small villages; and "SPMOD", a financial projections model for public service 
institutions (communications, energy and sanitary engineering) for a period of ten years. 

213 



Rohm Schwan Public Dotnoin Sojtwan for &wlopmmt 

Many of these programs come in English and Spanish and operate in popular environments 
like LOTU3 1-2-3 and dBASE III_ (For further information about these and other software 
packages ir this article see Appendix I.) 

Use of models and software in the broader context of planning and decision-making is 
receiving increased attention in the World Bank_ One model for educational planning in 
developing countries - the "Economies in Curricula Choice (ECC) Model" - is used to 
test the effects of changing policies. e.g .• adding courses to currirula or increasing teacher 
salaries_ This simulation model allows the user to study various alternative capital and 
recurrent costs scenarios created on the basis of a curriculum program. which can also serve 
to facilitate policy dialogue_ 

To meet the needs of highway authorities. particularly · :i developing countries. the Bank has 
developed a ilighway Design and Maintenance Model (HDM-UI)" for evaluating policies. 
standards and programmes of road construction and maintenance_ The modei simulates total 
life-cycle conditions and costs and provides economic decision criteria for multiple road 
design and maintenance alternatives for individual road links or for an entire network of 
paved or unpaved roads_ The user of this model can search for the best alternative. by way of 
discounted total cost. rates of return. net present values or first-year benefit! 

Evaluation and monitoring trade and industrial incentives has become an important concern 
of many government agencies in developing c.ountries. "SINTIA. Software for Industrial. 
Trade and Incentive Analysis" is a package designed to help analyze patterns of customs 
duties and quantitative restrictions in a counuy_ It can be used to provide a systematic 
description of the nominal protection resulting from official tariffs and other import duties. 
It can also be used to simulate different nominal protection structures by allowing users to 
make different assumptions about reform scenarios (i.e .• tariff changes with or without a 
devaluation), import elasticities and/or the effects of quantitative restrictions on price 
changes. 

Another World Bank developed software package, called 'WHAZAN", is a program for 
hazard assessment of industrial facilities to prevent future Bhopal-type accidents. A pack­
age of ten programs for computer-aided planning and design of cost-effective water supply 
and waste disposal systems has been prepared jointly with the United Nations Development 
Programme. The programs help designers and planners identify least-cost solutions and to 
examine cost implications of alternative designs performing a variety of tasks including the 
design of piped water distribution networks, the design of sewage collection systems, 
statistical analysis, mathematical optimization and financial screening. 

214 



P,,b/ic Domain Softwan for ~lopm~nt Rob~rt Schwan 

UNIDO has developed two software packages for investment promotion applications. 
"COMF AR. the Computer Model for Feasibility Analysis and Reporting", is personal 
computer-based and designed for pre-investment studies or contract negotiations. "PROP­
SPIN, Project Profile Screening and Pre-Appraisal Information System", is the second 
package and is designed to speed the flow of industrial investment funds into developing 
countries. PROPSPIN reports are available in English and French. 

Microcomputers and .. appropriate" software are beginning to be seen in primary health-care 
programmes in developing countries. Some of the software is applicable to care providers at 
the .. front line" of primary health care (PHC) programs - such as the Pan American Health 
Organization's "Primary Eye Care: Consultation Program", which provides consultation to 
health workers on primary treatment of problems of the eye. Other software can assist 
managers at the district or central levels of PHC, such as the Aga Khan Foundation's 
program emphasizing integrated maternal and child health services. 

United States Federal Agencies 

The National Technical Information Service (NTIS) in the United States Department of 
Commerce is responsible for all functions relating to the acquisition, development and 
marketing of computer products. These responsibilitic.s include identifying and acquiring 
machine-readable data files created for the Government. creating customized packages of 
information and of course providing public access to more than I ,500 databases and over 
1,600 software programs. The programs cover a wide variety of subject areas such as 
energy, transportation, environmental pollution and control, industrial and mechanical 
engineering, biological and medical sciences and cartography. The NTIS Software Center 
collection includes programs from the National Energy Software Center, which is the 
United Siates Department of Energy's software exchange and information centre. 

As mentioned above, the computer programs developed for NASA projects are distributed 
by COSMIC. Source code is pro :ded for each program, so program capabilities can be 
studied and modifications or enhancements made. Program documentation is also available 
separately for reviewing capabilities in detail. The documentation includes user instructions 
and a detailed description of the equations solved and the techniques used to solve them. 
One program, the "Standard Assembly-Line Manufacturing Industry Simulation (SAMIS)" 
program, was originally developed to model a hypothetical United States industry, which 
manufactures silicon solar modules for use in electricity generation. The SAMIS program 
has now been generalized to the extent that it should be useful for simulating many different 
production-line manufacturing industries and companies. Programs distributed through 
COSMIC are usually restricted to domestic distribution and use for a period of at least one 
year. Some programs with implied military or strategic applications and industrial applica­
tions in advanced or highly competitive fields can be restricted to domestic use for longer 
periods. 

215 



Robert Schw.·are Public Domain Sojht·are for IJn?fopment 

Other Sources 

A computerized project analysis program ·'COMPRAN" has been developed by the East­
\\' est Center and the Ohio State University to aid planners in assessing and comparing 
projects. The program offers financial and economic analysis capabilities, decision criteria 
options such as cost effectiveness, benefit-cost ratios, internal rate of return and sensitivity 
analyses, such as inflation rates. scaling factors on project costs and benefits. Its strength as 
a planning tool lies in its ability to incorporate monetized social welfare impacts into the 

analysis - a perspective often ignored in financial analysis programs. 

A low-cost software project is under way at the Social Development Center to provide 
organizations in developing countries with a complete set of software with good documen­
tation. The project is revie\\ing all of the available public domain and shareware programs 
available from electronic bulletin boards and specialized distributors and choosing one best 
program to be part of four sets of packages for office use, research, statistics and utilities 
(including small calculations, file keeping, writing notes, scheduling appointments. etc.). 
For example, the office package will contain the following generic applications: word 
processor, spreadsheet. graphics, daLabase manager, form generator and key redefinition. 
Translations into Spanish and French will be available. 

Related Literature 

There is so much public domain software for virtually every brand of personal computer 
manufactured that it is often difficult to know where to begin a search for specific items. 
This last section provides current sources of published information. which for the most part 
contain public domain programs. 

Managing a 11a1io11: The software source book is a review of software for application to a 
wide range of national administration and management activities. The book includes 
software and models addressed to issues of concern at a ministerial level that are relatively 
long-term in perspective, policy-oriented and applicable to many countries. Multi-sector 
and global models, modeling languages, and software for rural development; energy; water; 
agriculture; forests; population; environment and ecology; transportation and security, are 
included. 

The Guide to Software for De1•e/oping Coumries has been prepared by IBM. Its selections 
are divided into four major fields: agriculture, economic and social; infrastructure and 
physical. and administration. An Advisory Board screened submissions of hundreds of 
programs in 1984 based on the utility of the program to support development projects, 
proven performance in one or more developing countries, and availability free of charge or 
at nominal cost. 

216 



Public Domain Sojtwan for Dn-rlopm~nt Rob~rt Sdrwan 

The Computers i11 Relief a11J Del·1dopme11t Newsletter provides information about software 

for disaster management. response and preparedness. Emergency management related 
software is available specifically for emergency planning. event management. resource 
management and administration of relief personnel. 

This article barely scratches the surface of public domain software. It ends by mentioning 
two generally reliable distributors of catalogues and of software - Public Brand Software 
and Public Domain Software Interest Group - who each offer more than 1,000 pr~ 
grammes, including word processing, communications, graphics, spreadsheets, business 
accounting. math and statistics, programming languages, utilities and games. If all this 
seems too good to be true, the distributors hasten to add that they do not guarantee that any 
particular program follows sound business practices 

Appendix 1. Contact Addresses 

Current sources of information are provided in this section for the software packages and 
related literature mentioned abo~·e. 

International Development Agencies 

TheIADB 

Project Analysis Department. Support Services Unit, Inter-American Development Bank, 
1300 New York Avenue, N.W., Washington, D.C. 20577, United State~. for INDUSMOD, 
RURAL ROAf.l MODEL, SPMOD, and other available software packages. 

The World Bank 

Economic Development Institute, Education Division, The World Bank, 1818 H Street 
N.W .• Washington. D.C. 20433, United States, for the ECC Model; Industry Development 
Division. Industry and Energy Department for the SINTIA package; Project Manager, 
UNDP Interregional Project INT/81/047, Water and Urban Development Technology Unit, 
for Microcomputer Programs for Improved Planning and Design of Water Supply and 
Waste Disposal Systems; Transportation Development Division for the HDM-111 Model; 
and Technica International, Lynton House, 7/12 Tavistock Square, London WCIH 9LT, 
United Kingdom for WHAZAN. 

UNIDO 

Feasibility Studies Branch, Industrial Investment Division, Vienna International Centre, 
P.O. Box 300, A-1400 Vienna, Austria, for COMFAR and PROPSPIN. 

217 



RobmSdrwan Pllhlic Domain Softwan for Devrlopmmt 

Pan American Health Organization 

Pan American Health Organization. Opthalmology Department. 525 23rd Street. N.W .• 
Washington, D.C., 20037, United States, for the Primary Eye Care Consultation Program. 

Aga Khan Foundation 

P.O. Box 435, 1211 Geneva 6, Switzerland, for the Community Health Program. Also ask 
for the Report of the Workshop on Management Information Systems in Primary Health 
Care, which contains information about other public domain software for primary health 
care programs. 

United States Federal Agencies 

NTIS 

United States Department of Commerce, National Technical Infom1ation Service, Database 
Services Division, 5825 Port Royal Road, Springfield, VA 22161, United States, for NTIS 
software collection. 

COSMIC 

COSMIC, The University of Georgia, Computer Leaming Annex, Athens, GA 30602, 
United States. 

Other Sources 

The Ohio State University, Department of Agricultural Economics and Rural Sociology, 
Room 226, Agricultural Administration Bldg., 2120 Fyffe Road, Columbus, OH 43210 
United States, for COMPRAN. 

Social Development Centre, Microcomputers for Social Development. 1313 East 60th 
Street, Room 476, Chicago, IL 60637, United States, for the four sets of packages for office 
use, research, statistics and utilities. 

Related Literature 

Global Studies Center, 1611 N. Kent Street. Suite 600, Arlington, VA 22209, United States, 
for Managing a Nation: The Software Source book. 

Communications and External Programs Manager, IBM Area South, 190, Avenue Charles 
de Gaulle, 92523 Neuilly-sur-Seine, France, for The Guide to Software for Developing 
Countries. 

211 



Public [Jo,,,ain Sojtwan for ~lopnvnt R<JffrtSdrwan 

Computers in Relief and Development. 106 Parle Road. Loughborough. Leice .• LEl 1. 2lill. 
United Kingdom, for Newsletter. 

Public Brand Software, P.O. Box 51315. lndian.ipolis. IN 46251. United States; and/or 
Public Domain Software Interest Group. 410 E. Sahara. Las Vegas. NV 89104. United 
States, for catalogues of public domain software. 

211 



The Production of Intelligent Products 
in Developing Countries 

Htrmann Kopetz• 

The technical de··elopments in the field of microela1ronics will lead to a new spectrum of 
manufacturing products which integrate a mechanical subsystem, the microelectronics 
technology and the required control software into coherent products of improved function­
ality and reliability. These '·intelligent" products will play a dominant role in the markets of 
the future since they will replace most of the "conventional" products of related functional­
ity produced in the past and at present. Although not visible from the outside, a substantial 
pan in the production labour of these "intelligent" products will be related to the required 
design and software effort. The manufacture of these products will be accomplished in 
highly automated factories. After presenting the characteristics of intelligent products, this 
paper discusses the distinct stepsthat have to be taken in order to produce such an intelligent 
product. In the final section some policy actions are considered, which can be taken in 
developing countries in order to promote the production of intelligent products. 

1. Introduction 

The dramatic progress in the area of microelectronics technology not only impacts the 
"classical" electronics industry, such as computers, telecommunications, industrial control 
and consumer electronics, but opens up a new class of "intelligent products", which 

integrate a mechanical subsystem with a computer control subsystem into a compact unit 
fulfilling a specific user need. These intelligent products will enhance and replace the 

"conventional products" (i.e. those products without microelectronics control) of related 
functionality. 

Recent developments in the microelectronics technology and the design of integrated 
software/hardware systems have opened these new opportunities for product development 
in the area of intelligent products. Ten years ago, the design and construction of a special 
purpose computer tailored to the characteristics of a given application was a major and 
expensive project. Today, with the availability of standard microprocessors, standard 
peripheral chips and high level VLSI design tools, the implementation of such a project has 
lost some of its difficulties. Tomorrow, at a time when the VLSI design technology will 

Professor of Computer Science. Technical University of Vienna, Austri.a. 

221 



H Koprt: Tlrt Prot/Mctwn of /nttlligtnt Products ... 

have matured even further. the construction of an integrated hardware-software solution 
with application specific functionality will be an accepted practice in the area of real time 
control systems for the volume market. 

This paper about the production ofintelligent products in developing countries is organized 
into three major sections. First. the characteristics of intelligent products are discussed and 
the future significance of these products for the high-tech market considered. The next 
section. the main part of this paper. concentrates on the design of these products and 
evaluates the advantages and disadvantages of the different implementation alternatives. In 
the final section. policy actions and recommendations for developing countries related to 
the production of intelligent products are presented. 

2. Intelligent Products 

The significant decrease in the cost of microelectronic systems has led to a multitude of new 
embedded computer applications. which interface directly to a user population unfamiliar 
with computer technology. The resulting products are destined for a growing mass market 
with imponant economic implications. We will refer to these new products by the term 
.. intelligent" product. 

2.1 Product definition 

Let us introduce the concept of an intelligent product by giving some concrete examples: 

• An automatic scale with an in• ;grated microcomputer to perform calibration. 
weighing. conversion and calculation of some consequent value. e.g. the price. 
of some merchandise. 

• An industrial controller. including the control valve. the computer and the 
control software. 

• A washing machine with a microcomputer for the optimal control of the washing 
cycle in order to minimize energy use. water and detergents. 

• A traffic light. including sensors and a microcomputer in order to improve traffic 
control. 

An intelligent product is an autonomous embedded system that performs a specified service 
for its users. It generally consists of a mechanical subsystem. some sensors and actuators. a 
control subsystem with the appropriate functionality and a user interface. 

2.2 Properties of intelligent products 

In the following section we will analyse some of the important characteristics of an 
intelligent product. 

222 



Th~ Productwn of /r.c~ll1xnrt Prodlt,·t:s . 

Focus 011 ge1111ine user 1reeds 

The most important property of a good intelligent product is its focus on a genuine user 
need. The ultimate success of any product depends on the relevance and quality of service it 
can provide to its users. The first step in the planning for an intelligent product is thus the 
identification of the user needs this product is to satisfy. 

OptimJ/ resource utili:ation 

Because of their inherent information processing capabilities. intelligent products can 
provide the intended service with a minimal use of physical resources. such as energy. 
water. dc .. In times. when physical resources become more and more limited. this property 
of intelligent products is also of increasing macroeconomic importance. In designing 
intelligent products care must be taken that the internal use of electrical energy by the 
electronic components is also minimized. e.g. by the use oflow power integrated circuits or 
by the use of solar power. This latter technology. if viable. is of particular importance for 
developing countries since it helps reduce operating costs and avoids all problems associ­
ated with batteries and their appropriate disposal. 

Minimizatio11 of the mechanical subsystem 

The number and complexity of mechanical parts which are contained in an intelligent 
product is minimized. This helps to reduce manufacturing costs and increase the reliability 
of the product. Almost all control functions are carried out by the smart control system 
integrated within the intelligent product. 

Fu11ctiona/ity determi11ed by software 

The functionality of an intelligent product is determined by the integrated software (in its 
widest sense). The effort required to develop this software can be substantial and amount to 
a significant portion of the overall development cost of such a product. Normally this 
software will be contained, either in a read only memory of a microcomputer. or in the 
design of a logic network. The product is then mass produced and distributed over standard 
marketing channels. After the manufacture of the product any correction of a software error 
or change of the software is very difficult. if not impossible, to realize. The quality standards 
for the software which is integrated in such an intelligent product are thus extremely high. 

Simple to operate 

An intelligent product will be utilized by an untrained user population with no computer 
exrertise. Every action required by the end user to operate such a product must be designed 
from the point of view of the user's need in relation to the overall system functionality and 
not from the "computer's" viewpoint. It is therefore necessary to design special easy to 
operate user interfaces. both in hardware and software. General purpose terminal interfaces 
are not suited for these applications. Ideally, the use of an intelligent product should be self 
explanatory and not require any training or reference to an operating manual. 

223 



71r• Prodltction of /n1~//1gm1 Prodvcts ... 

Ability to communicate 

Although most intelligent products can provide the specified service autonomously. it is 
often required to interconnect an intelligent product with some larger system. In the above 
example of the automatic scale, it might be requested to provide an interconnection to a cash 
register. The protocol controlling the data transfer should be simple and robust Generally, 
an optimization of the speed of transmission is not required. 

High dependability 

The control system and mechanical subsystem of an intelligent product (i.e. the machine to 
be controlled) form an integrated functional unit. i.e. a product. The reliability of the control 

system must be optimized in order not to compromise the reliability of the total product. 
Such an optimization of hardware reliability requires minimization of the chip count. This is 
achievable only by an integrated software hardware design. From the point of view of 
dependability, a VLSI solution for the control system is the best alternative. 

/111egrated diagno.'ltics 

The maintenance of an intelligent product should not require any special skills or tools. 
Intelligent products incorporate their own self-diagnosis software and can be maintained by 
an untrained worker replacing standard modules. In many instances the product is designed 
for the best reliability possible and has to be discarded in case ofinternal failures. 

Mass production 

Successful intelligent products are designed for a mass market and consequently for mass 
production. The mechanical subsystem, as mentioned before, is as small as possible in order 
to simplify the manufacturing process. In many cases the intelligent product will be 
assembled by highly automated robots in order to maintain a uniform and high quality level 
and reduce manufacturing costs. The initial investment in such a production facility can be 
substantial. 

2.3 Significance of intelligent products 

As has been pointed out previously. a large portion of the development effort for an 
intelligent product is related to software development and the setting up of an automated 
production facility. From one point of view, the marketing of i.ltelligent products can thus 
be seen as a form of software marketing. However. the distribution of software via 

intelligent products has a number of obvious advantages over the marketing of standard 
software packages. 

While the manufacturing of intelligent products is highly automated and not labour inten­

sive, the distribution systems for these products must be set up carefully. The three key areas 
of concern determining the success of an intelligent product are therefore product develop­
ment, production set up and distribution. 

224 



T1r~ Productwn of /nt~ll1[Zml Produces . 

Tangible product for the mau market 

An intelligent product is a tangible product, which can be marketed on its O\Aill Since the 
integrated software/hardware product is produced by a single source. there are no questions 
of responsibility in case of problems at the hardware-software interface Thus the customer 

\\ill have increased confidence in the product 

No speda/ 11.'il!r slcills required 

The potential market for intelligent products is not constrained by the limited computer 
education of end users. On the contrary. the simple user interface of intelligent p~t'<iucts \\ill 
make such a product easier to use than comparable conventional products. There is no 
special know-how required on behalf of the customer to perform the integration of hardware 
and software at the user site. as is the case \\ith the distribution of standard software 

products. 

K110M·-bm-· protec:tio11 

The most significant investment during the implementati0n of a computer application is in 
the area of software de\·elopment If the software is integrated with the hardware then this 
investment can be better protected than if the software is sold separately. At the moment. 
the adequate protection of software products is still an open question. 

3. The Production of Intelligent Products 

In this section we will distin!,ruish between three distinct phases in the production of an 
intelligent product: the design phase. the implementation phase and the manufacturing 

phase. 

The design and implementation of an intelligent product is quite different from the conven­
tional software design or manufacture of a new piece of electronic hardware Hardware and 

software of :m intelligent product have to be designed in dose consideration of each other in 

an integrated fashion. It is imponant to distinguish clearly between the system design phase 
and the implementation phase. In the system design phase the requirements for the product 
have to be established and the specification of the product, including its user interface and 
the functionality and performance of the control system have to be developed In the 
implementation phase the appropriate microel~ctronics technolo!,ry for implementing the 
specified design has to be selected A well dcfine1 baseline between these tv .. o phases avoids 
the duplication of effon, in case a new implem~ntation technology is chosen 

If the different implementation alternatives are supponed by an integrated design environ­

ment, the switchover from one alternative (e.g software on standard microprocessor) to 
another (e.g. a pare of the functions in gate arrays) can be realized without extra overheads 
These new implementation options have been opened by achievements in the area of VLSI 
design technology in the last ten years 

225 



~ Production of fnlrll1gmt Pmdtlcts ... 

Starting with the seminal work of Mead and Convay [Mea80] the development of VLSI 

design tools has reached a state where it is possible to design application specific VLSI 

chips of moderate complexity \\ithin a period of weeks. At the moment a considerable effort 

is underway to integrate these design tools with the classical software engineering environ­

ments. In the not too distant future, it will be possible to consider the design of a VLSI 

solution as one of a number of alternative implementation strategies for a given system 
functionality. The integrated software-hardware design of the future will start with a 
computer aided requirement specification. These requirements will be checked for com­

pleteness in relation to established standards and internal consistency. In the following 

phase the system functions and system architecture will be specified. Finally, an implemen­
tation strategy wiU be selected. 

J. I Produd design phase 

The product design phase for an intelligent product can be partitioned in the requirements 
specification and architecture design phase. At the end of the product design phase, the 

architecture of the new product. including the external interfaces are fully specified. 

However, no decision has been made yet in relation to the implementation technology of the 

control system. 

3.1. / Requiremems specification 

The first activity in the development of an intelligent product is a feasibility analysis. Since 
such a feasibility must be performed for any kind of investment it will not be discussed 

further in this context. The result of the feasibility analysis is a market analysis and a first 
level specification of the functionality, the design, manufacturing and marketing cost of the 

new product, presented in the form of a detailed cost benefit analysis for thi!; project. 

The requirements analysis takes the feasibility analysis as its starting point. It must 

investigate the following topics: 

Market penetration 

Critical user nttds 

Analysis of the key markets for the intended product and 
specification of the product characteristics (functionality. reli­
ability, maintenance strategy, acceptable price) required in 
these markets. 

Identification of the critical user needs in relation to the in­
tended product. Description of the typical system user. its 
background experience, expectations and training require­
ments. 

Required system functions A complete analysis of all required system functions, covering 
the mechanical subsystem as well as to the control subsystem. 
The system functions should be classified in necessary func­
tions, important functions and comfon functions. This classifi­
cation is needed for the subsequent architecture design phase. 

221 



TM Prodllction of /nt~lligrnt Protlacts ... H Koprt: 

Iaterfacing requittmeats A detailed description of the requirements on all system inter­
faces which are given by the environment of the new system. 
The requirements on the man-machine interface are of particu­
lar importance. since ease of use by the intended user is a 
determining factor for the success of an intelligent product. 

Compdiag products Analysis of competing products. including a description of the 
environment in which these products operate. Evaluation of 
the strong points and the weak points of the competing prod­
ucts. 

Safety requittmaats Critical failure modes of the intended product. Analysis of the 
consequences of system failure to the user. Reliability and 
maintainability requirements of the new system. including a 
description of the maintenance strategy. Rules. regulations. 
policies a'ld other critical aspects of the intended application. 

Statement of all 
assumptioas 

Analysis of the project in respect to the criticality of these 
assumptions. 

Once the systems requirements have been established. these requirements must be vali­
dated. There are four criteria for validating the requirements: 

Coasisteacy: Is there a conflict between some of the requirements? 

Cam'*" lllC'ss:: Are there any functions which have not been considered? Are there any 
constraints which may have been overlooked? 

Validity: 

Realism: 

Are the requirements sufficient to cover the critical user needs? What are the 
key requirements in the intended market and are they covered by the product 
specification? 

Are the requirements realistic considering the given market environment? Is 
it possible to design a product of the required functionality for a price which 
will be accepted by the market? 

3.1.2 Architecture Design 

The architecture design is concerned with the process of going from the statement of the 
requirements to the development of the system architecture. i.e. the specification of the 
subsystems. their interfaces and their interaction. The result of the architecture design is a 
document called the architecture specification. This document contains a complete descrip­
tion of all subsystems, such as the mechanical subsystem, the control subsystem etc., 
including a detailed specification of all subsystem interfaces 

227 



The Prrxillctwn of lntel/1llml Products ... 

As has been mentioned before, this pa.,er is mainly concerned with the analysis of the 

control subsystem. Therefore we will focus our attention on the specification of this 
subsystem. We propose that •he control system specification consists of three sections 

(describing the control system from three different viewpoints) (i) the (static) structure of 

the control system, (ii) the dynamic behaviour of the control system and (iii) the perform­

ance of the control system. 

Structural description 

The structural description is concerned with the partitioning of the system. i.e. identification 

of the different subsystems and a detailed description of the interfaces between these 

subsystems. Since, from our point of view the interfaces of the control subsystem to the rest 

of the architecture are of special significance, we will concentrate our discussion on this 

particular interface. 

The interface description must discuss the external view of the logical and physical 
appearance of the interface. On the physical level, this comprises the electrical and mechani­

cal outlay of the connections and the coding of the signals. At the logical level, all objects 
visible at the inten-ace between the subsystems, including their attributes and relationships 

must be described. Futhermore those internal objects, which are visible from the interface, 
must also be described. The inputs used to create. update or change these objects have be 

identified together with their domains. 

The structural propenies of the interface can be expressed in a connectivity diagram. The 
connectivity diagram depicts the input and output ports of the control system, including the 

name, type and coding of the corresponding data elements. 

Behavioural description 

The behavioural description specifies the input/output behaviour at the interfaces. It con­

tains a detailed specification of the stimulus for an action and the processing steps, which 

have to be executed as a respon~ to a stimulus. An action is normally started if a predicate 
on some input values and/or the real time (the stimulus condition) changes to "true". This 

stimulus condition has to be specified in the behavioural description. 

Given the level of abstraction and the granularity of operations, we can distinguish between 

subsystems with internal state and subsystems without internal state. If a subsystem contains 

no internal state. then the action itself, i.e. the behaviour can be described in the form of truth 

tables. de~ision tables or mathematical functions. In theory. these stateless subsystems can 

be implemented by logic networks without internal memory. 

For subsystems with internal state, the outputs are a function of the current state and the 
current input. At a given level of behavioural description the internal state space (the 

registers) and the state transition functions have to be separated. State transition functions 
and output functions (which do take the state as input, but do not contain any internal state) 

228 



can be described in the same form as .. stateless·· subsystems The internal state space which 
is relevant at the given granularity of operations has to be specified The m·erall behaviour 

of subsystems with internal state caa be represented in some form of state diagrams o; state 
transition tables 

Pufonnance description 

The performance description concentrates on the timing properties of the interface The 
timing of signals on the specified signal lines. the maximum response time of computations, 
the minimum interval between successive computations. etc. have to be specified in the 
performance description 

Test strategy 

The detailed procedures for the product's acceptance test are part of ihe design specification. 
These tests must cover the functicmality of the control system as well as its performance and 
reliability. 

3. 1.3 Dt!.wg11 fool'i 

The effectiveness of any design methodology can be significantly enhanced if it is sup­
poned by an appropriate set of software tools. i e. a design environment We distinguish 
between architecture design tools. analysis tools. implementation tools and management 

tools [Kop86)_ The architecture design tools suppon the system analyst in the requirements 
specification phase and the architecture design phase of a real time application develop­
ment. The analysis tools can be used for an analysis of a given architecture design. e.g in 
respect to timing and reliability and a comparison of different designs. The management 
tools suppon the project management and documentation 

In present industrial practice. development teams for alternative implen1entation technolo­
gies (e.g implementation by a microprocessor with the appropriate application software or 

implementation by an application specific VLSI chip) use different sets of specification, 

dt!sign and analysis tools. However. considerable research is in progress to integrate these 

different design tools and design databases into a coherent toolset so that the duplication of 
effon in implementing the same functionality with different implementation technologies is 
eliminated. However. such an integration can only be successful if the design engineers are 
experienced in both software and hardware design. 

3.2 lmpltmentation phase 

Given the control system specification there is a wide spectrum of different implementation 
alternatives for the control system of an intelligent product. At one end we can select an otT­

the-shelf microcomputer and at the other end a custom made VLSI circuit In this section we 
will analyse four implementation alternatives. a microcomputer implementation. a gate 
array implementation. a semicustom VLSI implementation and a discrete component 
implementation with MSI (Medium Scale Integration) packages. 

229 



The critical parameters deter-
mining the selection of the opti- Design cost 
mal implementation technol-
ogy for the implementation of 
the control system of an intelli-
gent product are task complex-
ity, processing speed, reliabil-
ity, power consumption and 
production volume. 

Task complexity 

Th~ Productron of Int~llig~nt Products ... 

Custom 
\"LSI 

Microo:onlrollcr 

Complexity Figures l(a) and l(b) show the 
qualitative dependence of the 
design effort and the marginal 
manufacturing cost for the 
mentioned technologies as a 
function of the task complexity. 

Fig. l(a) Design Cost as a fuoction ofrask complexil}· 

From these figures it is evident 
that the discrete MSI compo­
nent implementation requires 
the lowest effort for very simple 
products. However, the design 
and production effort increase 
sharply as the complexity in­
creases. Since, by definition. 
the control system of an intelli­
gent product is not very simple, 
this implementation technology 
will not be discussed any fur­
ther in this report. 

Processing speed 

Muiufacturing 
Cost 

Gale 
Anays 

Custom 
VLSI 

Complexity 

Fig. I (b): Manufacturing cost as a function of task complexity 

Tasks are realized by software (firmware) in the case of a microcontroller, but by logic 
networks in the case of gate arrays and custom made VLSI chips. It is evident that a logic 
network with a gate delay of a few nanoseconds is orders of magnitude faster than a 
microcontroller, where the execution of a single instructions takes about a a microsecond. 
Considering the complexity of even dedicated and simple operating ~ystems, the response 
time of a microcontroller application will at best be in the order of milliseconds. 

230 



The Production of /nte/11gent Products ... I! Kopet: 

A full custom VLSI implementation has the highest perf onnance and reliability (the 
smallest chip size), but requires the highest implementation effort On the other end, the off­
the-shelf microcomputer requires the smallest implementation effort (with the highest 
flexibility concerning changes), but gives us the lowest perfonnance. The speeJ of a gate 
array implementation is much faster than the speed of a microcomputer, but slower than that 
of a custom VLSI implementation_ 

Reliability 

In a first approximation, hardware reliability is a function of the number of pins and 
connections of a system. The reliability of the control system is thus optimized if the chip 

count and the number of connections are minimized. A full custom VLSI implementation 
dedicated to the intended control task gives us the best reliability. A single chip microcon­
troller solution with integrated read only memory (ROM), random access memory (RAM) 
and analog as well as digital inputs and outputs will also result in a glivd reliability of the end 
product However, multiple chip implementations will require many extra pins and connec­
tions and thus reduce the overall mean time to failure. 

From the point of view of implementation robustness, any system which minimizes the 
amount of internal state infonnation is to be preferred to an implementation that contains a 
significant amount ofintemal states. If the same functionality is realized by a logic network 
versus a stored program implementation, the logic network will result in a more robust 
system. 

Power Consumption 

The power consumption of a dedicated VLSI implementation in a low power technology, 
such as CMOS, will be less than that of a functionally equivalent gate array or microcontrol­
ler implementation. It depends on the overall product characteristics, whether the power 
consumption is a critical pa- ,.---------------------~ 
rameter in the selection of the 
implementation technology. 

Production volume 

A qualitative comparison of 
the initial design effort and 
the marginal manufacturing 
cost for the different imple­
mentation technologies 1s 
given in Figure 2. 

Micro- D 
controller 

Gale 
Array 

Custom 
\'LSI D 

Fig. 2: Initial im·cstmcnt and marginal manufacturing costs for 
different tcclmologics. 

231 



ll l\opet: The Productwn of Intelligent Products ... 

Criteria 

System devdopment time 

Flexibility 

Processing speed 

Chip size 

Power Consumption 

Know-how requirement 

Initial investment 

Unit cost low volume 

Unit cost high volume 

Reliability 

Micro Computer Gate Array 

shon medium 

high medium 

slow high 

large medium 

high low 

medium high 

low medium 

medium high 

medium lower 

medium higher 

Semicustom VLSI '. -. ----- --· --- --1 
long , --. . - - . . ---f 
low i -, 

' highest 
----------- -------; 

small 1 ---- ---- - ------1 
very low ! 

---- --- --------- l 

highest i 
--- -- - --- ----- -- - -~ 

high l 
-- - ----- --·- . ----~ 

highest I 
j 

--~ __ j . 
lowest j' 

--- ----- -- --

high 

Table I: Comparison of implementation technologies 

It has to be pointed out that significant efficiencies are achieved if the implementation of the 
control system can be kept on one or, at most, a few chips. Going from one chip to another 

causes duplication of circuits as well as larger and more power consuming circuits, resulting 
in additional delays and cost. Funhermore, the negative effect of additional connections on 
the overall reliability of the system has to be considered. 

Table I presents an overview of the characteristics of the different implementation tech­
nologies. In battery powered intelligent products, the expected power requirements can be 
of overriding concern. In these applications a low power (CMOS) application specific VLSI 
solution can be the preferred alternative. In other applications, where the system is to be 
connected to a power source, other considerations may be more imponant. 

3.2. I Microcomputer implementation 

The most interesting alternative for the implementation of the control system of an intelli­
gent product is a solution containing a complete computer including the required Input/Out­
put interface on a single chip. Such a chip is called a microcontroller. 

A microcontroller is an off-the-shelf VLSI chip with on chip CPU, RAM, ROM and process 
1/0 It can be considered as a standard "system on a chip". The specific functionality of a 
microcontroller is realized by application software stored in the ROM. Only the recent 
advances in VLSI technology have made it possible to economically produce chips of the 
complexity needed for microcontrollers. A typical state-of-the-art microcontroller has a 
powerful 16 bi: CPU, which runs at about 10 Mhz speed, provides 8 kbyte ROM and 256 
byte RAM memory on chip, has 64 digital input output lines and 8 analog input channels 

232 



The Productwn of lntel/11(ent Products ... If Kopet: 

and a serial communication link. In the operating mode it has a power dissipation of about 
100 mW and in a standby mode, where the contents of memory are maintained, a power 
dissipation of 100 µW. 

The software development for microcontrollers is very similar to standard software devel­
opment. Many microcontrollers come in different versions for program development and 
production. The program development versions support RAM or EPROM memory for the 
storage of the program code so that the software can easily be modified. There are standard 
software development and debugging kits available from most microcontroller suppliers. In 
the production version the application software is contained in a ROM memory and cannot 
be modified any more. Extensive tests of the application software have to be performed 
before it is committed to ROM. 

When the required performance can be achieved by an off-the-shelf microcontroller. the 
electrical power dissipation is not a problem and the production volume for a particulai 
version of the product is not high (e.g. less than 10,000), then a microcontroller based 
implementation is the most economical alternative, both from the point of view of design 
and the point of view of production. 

3.2.2 J7~S/ implementation 

A custom VLSI implementation of the control system should only be carried out if it is not 

possible to find off-the-shelf components of the required functionality. Even if only less 

than half of the functionality of a well tested standard component is used, it might be more 
cost-effective than the design of a new c~stom chip. 

If, for whatever reason, a microcontroller implementation of the control system is not 
feasible, then a VLSI solution must be considered. A VLSI chip designer has several 
choices, each of them offering trade-offs between chip density and chip design time. At one 
end is the standard gate array approach and at the oth'!r end the full custom design of a VLSI 
chip. 

If the task of the control system is implemented in the form of a logic network in VLSI, the 
transfonnation of the behavioural specification into a logic network specification has to be 
performed. Although considerable research effort is devoted to this interesting topic. at the 
moment this transformation cannot be accomplished automatically. However, there are 
many CAD (Computer Aided Design) tools available today which support the engineer in 
the generation of the physical design representation (mask generation) once the logic 
network has been specified. 

It can be expected that sometime in the future new development tools, called silicon 
compilers, will be available, which perform the translation of an application domain specific 
high level behavioural specification into the logic specification and further on into mask 
representation required for the production of the VLSI chip. A silicon compiler has to 

233 



ff Kopet: The Production of Intelligent Products ... 

contain a knowledge base, which understands the physics of the devices and all design rules 
of a technology so that the detailed geometrical mask shapes can he built up from the high 
level structural and behavioural description of the required system. 

The implementation of the control system in the form of a logic network is the best way of 
protecting the application know-how, i.e. the software. 

Gate array implementation 

The gate array technology is based on the concept of having a fixed basic pattern of logic 
gates on an integrated circuit, which is then .. programmed" by customized on chip wire 
connections in order to produce the logic network of the intended functionality. The main 
advantage of gate arrays over microcontroller implementations is a speed improvement of 
three orders of magnitude. 

Gate arrays have become popular because of the fast tum-around time of the semiconductor 
foundries and the availability of powerful design and simulation tools. A complex gate array 
can now be designed and developed, and prototype samples produced in the same time 
frame as it takes for the production of a printed circuit board. On the other hand, every 
production run of a gate array results in significant costs for the customer. Therefore the 
customer must check his d!!sign very thoroughly by extensive tests and simulations before it 
is committed to production. 

From the point of view of the semiconductor manufacturer, gate arrays are a mass product. 
Only a few customer masks are required at the end of the manufacturing process, all other 
masks being standard. Since the responsibility for the correctness of the customer masks ls 
in the hands of the customer, the semiconductor manufacturer does not require skilled 
design engineers. The complexity of gate array based control system is increasing steadily. 
Systems with I 0,000 and more gates are becoming quite common. 

The main disadvantage of gate arrays is the large chip size because of the necessary spacing 
between every pair of adjacent columns of gates required for the wiring of the chip. As a rule 
of thumb, the gate array chip size will be about five times larger than the size of a custom 
designed logic network of the same functionality with all consequent effects in reliability, 
production cost and power dissipation. 

Custom VLSI Implementation 

The implementation of a given functionality by standard cell arrays is the next logical step 
for semi-custom component design. A standard cell is a pre-defined and pre-tested circuit, 
which performs the defined function. There are standard cells available for all kinds of 
digital functions (e.g. adders, registers, etc.) and analog functions. It is possible to combine 
digital and analog functions on the same chip in order to avoid the problems of inter-chip 
connections. Provided the available cell library is sufficient for the given task, the VLSI 

234 



The Prodllctron of Intelligent Products ... H Kopetz 

designer has to place and interconnect the cells under the guidance of a CAD system. 
Nonnally. the CAD system will also contain facilities for simulation cf the cells so that the 

design can be checked before it is committed to production. 

In the fixed image standard cells [Dec86] a set of fixed sized cells is arranged into an array 
separated b} wiring channels. Sometimes a pre-defined 1/0 path configuration and a power 
distribution system is provided by the design system. The next generalization is the variable 
image cell. If all variable image cells are of the same height. then a regular structure of the 
chip is achieved by interleaving an array of cells with an area for the wiring. The most 
general form is the full custom design. Such a design requires a very high engineering effon 
and should only be considered if a large mass production (in millions of chips) is foreseen. 

3. 2.3 Mamifacture 

The added value in Lie market for intelligent products is not in the manufacture of the 
microcontroller or the silicon chip, but in the product design, software development. 
assembly and marketing of the product It is therefore expedient to buy the off-the-shelf 
microcomputers for the control system or to take advantage of the services provided by 
silicon foundnes in many different countries. 

If a panicular intelligent product is successful and a mass market develops, the assembly 
work should be highly automated in order to guarantee a sustained high level of product 
quality and to stay competitive in the international market place. Only products with the 

highest quality attributes. which are manufactured at internationally competitive costs can 
compete on the world market 

4. Policy Actions 

A high tech industry. such as the production of intelligent products, can only succeed if a 
conducive infrastructure is established and maintained by appropriate policy actions. In this 

section three areas, where policy actions by the public sector are necessary in order to 
suppon the growth of high tech industries such as the production ofintelligent products, will 
be discussed. 

4.1 Provision of training facilities 

Looking at the speed of change in the field of information technology it is of paramount 
imponance to realize the important long-term trends in their early phases in order to take 
appropriate actions in the educational system. 

Only if engineers of the required background in software and hardware are trained in a given 
country will the industry be in a position to take advantage of these new trends. The most 
important long-term action relates to the establishment of courses of study on integrated 
software-hardware design techniques at trade schools and at the univer~ity level for inter­
ested students. These courses must be backed up by appropriate laboratory exercises. 

235 



II Kopet;: The Procluctwn of Intelligent Products ... 

TeacLing software and hardware technology without the possibility of practical work on the 
mach!ae is a dangerous undenaking. Since the lectures tend to become too theoretical, the 
student will not grasp the elementary concepts and might shy away instead of developing a 
positive attitude towards this new technology. 

Therefore. any education initiative in this field must be supported by an initiative to provide 
the necessary computer equipment and software for the practical training and access to a 
silicon foundry. 

4.2 Support for the start-up of small high-technology companies 

In any society you can find talented people willing to take the risk and benefits of becoming 
an entrepreneur in the field of high technology. The policy in the field of technological 
development must provide an economic and political climate so that these young entrepre­

neurs will succeed in the founding and operation of new companies. 

In many industrial countries the operation of new ''high-tech industrial parks", where young 
entrepreneurs can find the organizational and legal suppon for the operation of a new 
company, is well established. Often these industrial parks are affiliated to a research 
laboratory or university to provide contacts and access to the technical infrastructure for 
product development. It is felt that a similar organization should be set up by the public 
sector in developing countries 

The stan-up phase is a very critical period for a newly founded high-tech company. In this 
phase new products have to be designed and developed without any income from older 
products, which have been introduced on the market already and could contribute to the 
cash flow. In this limited phase public suppon through research and development contracts 
for prototype product development can be of significant imponance to the financial viability 
of the newly founcied company. 

4.3 Marketing support 

Normally, entrepreneurs are fascinated by the technical characteristics of their new product 

and do not pay sufficient attention to the development of the market It is particularly 
important to suppon the new companies in this field. Established organizations such as the 

economic divisions of large banks or the import/export branches of trading houses can be 
(financially) encouraged to advise and cooperate with newly-founded small technological 
companies in this critical area of marketing. Also, the procurement policy of the public 
sector should favour newly founded high-tech companies formed within a country. 

Summary of Recommendations 

Let us summarize the recommendations for action by the public sector in this high-tech field 
as follows: 

236 



The Production of Intelligent Products ... 

I. Establish a core group of experts with sound expertise in the following fields: 
software engineering, hardware design and implementation. application know-how, 
application software development, organizational. marketing and legal skills 

2. Establish a training programme for computer engineers and teachers at universities. 
Introduce courses on software development, VLSI design and process control into 
vocational training schools. All courses must have a substantiai section of practical 
laboratory work. These training activities should be initiated by the expert team 

3. Initiate a programme for the financial, organizational and legal support of small 
companies. Provide these small companies with research and development funds for 
the start-up phase. 

4. Encourage existing organizations, e.g. banks or trading houses. to cooperate \'with 
newly founded small high-tech companies in the area of product marketing. Provide 
financial incentives for such a cooperation. 

5. Identify an application area, which is at the centre of national priorities and coincides 
with a genuine user need and which can be effectively supported by some intelligent 
product. Provide funds for a research project in this area 

6. Initiate a pilot project in the se!ected application area with an intelligent product 
destined for the end user market. Involve the established expert group with the 
understanding that a new company is to be formed. Closely monitor the progress of 
this project. It is important to provide a good design and an excellent. i.e. very simple, 
user interface for this pilot product. 

7. Ascertain that the acquisition of intelligent products by the government and other 
public or semi-public agencies is open to and favours these new local high-tech 
companies. 

References 

[Aln7] Alfor,d M.W., A requirement engineering methodology for real time processing 
requirements, IEEE Trans. Softw. Eng. Vol SE-3, p.60-69, 1977 

[DeC86] DeCamp, W.F., Sporynski, G.A., Burbank, H.C., Gate Array and Standard Cell 
Approach in: Design Methodology, S. Goto, editor. Else\·ier Science Publisher BB, 1986 

[Kop86] Kopetz, H., Design Principles for Fault Tolerant Real Time Systems. Proc. of the 
Nineteenth Annual Hawaii International Conference on System Science. Western Peri­
odicals, North Hollywood, Cal., 1986, p.53-62 

(Mea80] Mead, C., Conway, L., Introduction to VLSI Systems, Addison Wesley Publishing 
Company, Reading, Mass, 1980 

[Was83] Wassermann, A.I., Freeman, P., ADA Methodologies, Concepts and Require­
ments, ACM Software Engineering Notes, Vo.I 8, Nr. I, Jan. 1983 p.33-98 

237 



Tlr~ Production of /nt~lligmt Products ... 

[Mur82) Muroga. S .• VLSI System Design. When and How to Design Very-Large-Scale 
Integrated Circuits. John Wiley and Sons. New York , 1982 

238 



VI 

Conclusion 

Conclusion ....................................................................................................................... 241 



CO~CLl"SIO~ 

In past years the UNIDO secretariat has promoted the conc~pt of software as an industry 
and the actions that developing countries could take to promote that industry The concept 
has been elaborated through several studies dealing with software development and 
applications for developing counnies, the approach to software production in those 
countries and guidelines for organizing software houses. Further work in this area includes 
the promotion of software links to industry for specific applications of relevance to 
developing countries and the collection of papers presented here in the hope that these will 
contribute to this goal 

Recently liNIDO has concentrated on the following major trends in the sotiware fie!c!. as 
is also reflected by the collection of papers presented in this publication 

(a) Increasing demand, particularly for sortware, in the wake or the most recent 
developments in microelectronic chips The availability of reasonably priced and 
powerful microelectronic chips is creating an increasing demand for system and 
applications software based on those chips. Many urgent user needs could be satisfied most 
economically by taking advantage of these latest hard\\ are developments The demand is 
principally in the areas of distributed system software and applications software that 
supports easy-to-use man-machine interfaces and integrated hardware-software solutions; 

(b) Globalization or the sortware market. The standardization of computer hardware 
brought about by mass-produced microelectronic chips and the availability of a responsive 
global communication infrastructure (computer networks such as Internet) has led to close 
tran5national cooperation among software professionals Information transfer achieved b~· 
these new means of communication ensures the global community comparable le\ els of 
know-how. liltimately, a product either succeeds globally or disappears even .. niche'· 
markets are being globalized; 

(c) Optimal quality or product, documentation and development processes. As a direct 
comequence of the globalization of the software 'llarket, only products of the highest 
quality succeed. Quality refers to absence of design faults. ease of use and detailed 
documentation. It is also accepted that software quality is detem1ined by a rigorous 
development process; thus, emphasis is now placed on structunng the development 
process accordingly. Many software users have already begun to demand full accreditation 
of the software development process; 

(d) Increased cost of entry into the sortware market The globalization of the software 
market and the emphasis on assured software quality have led to· a significant increase ir. 
the cost of entering the software market as a newcomer In particular, the cost of global 
marketing can be prohibitive for a small company. Schemes already promoted by UNIDO 

241 



( 'om:luswn 

for joint-venture cooperation and risk-sharing between companies in industrialized and 
developing countries are of immediate relevance in this context and should thus be 
encouraged further. 

The key issue in the development of software products is a demand for computer 
applications. Country-specific strategies for software industry development, including 
software applications in non-electronic industries and services. such as cement. fertilizers, 
agriculture. chemicals and transponation, have to be developed to accommodate the mix of 
infrastructure, policy-framework and manpower available in each devdoping country. 

In order to improve product quality and etf ectiveness in the small and medium-scale 
industry sector, panicular emphasis is given to demonstration projects for that sector. 
Demonstration projects yielding tangible and measurable improvements in productivity in 
various sectors of the economy are of vital imponance to opinion building among planners, 
economists and administrators in developing countries. 

Developing countries recognize value-addition as a valid objective for the software 
industry. Contract programming, custom design and implementation would help build up a 
critical mass of experience. It is also important for developing countries to acquire 
expenise in leading-edge aspects of software technology. 

Developing countries should also consider adopting a coherent and cooperative strategy in 
the area of software protection along the lines already adopted for integrated circuits. 

A large proportion of applications, especially in the small and medium-scale industry 
sector. could be implemented using small computers. UNIDO etfons are directed at 
ensuring that industrial users in developing countries are fully aware. 

There is a clearly perceived need for centres of excellence in software production and 
applications. UNIDC encourages and supports developing countries in setting up 
microprocessor and/or software applications development centres to address applications 
in domestic industry and to develop new, intelligent products. lJNIDO also lends 
infrastructural and related suppon to developing countries in setting up software 
development parks where professional entrepreneurs can set up operations serving both 
domestic and expon markets. 

UNIDO works out methods for effectively interfacing the research results and practical 
industrial use. Both centres and networking could be organized so as to bring about the 
effective industrial application of research results. 

242 



<·Olk-fusion 

The most critical input to software development is the quality of the human resource 
capabilities available. Consequently. in order to build up the software industry in 
developing countries. it would be necessary to build up human capabilities in the field of 
software technology in two specific groups: 

(a) Training those about to enter the software development industry~ 

(b) Retraining and/or upgrading the skills of professionals already active in the industry. 

Assistance is provided to programmes designed to ensure the cost-effectiveness and 
relevance of training programmes to industry. With respect to item (b). UNIOO supports 
countries in setting up programmes designed to acquire, analyze. adapt and disseminate 
relevant technical information to software developers, as well as to analyze the structural 
or organizational implications of informatics in both an industrial and administrative 
environment. 

Emphasis is placed on the importance of supporting the growth of the software industry in 
developing countries and the pursuance of active policies to promote the diffusion of 
informatics, particularly among small and medium-scale enterprises. 

The approach outlined here is expected tc assist developing countries in the inevitable 
transfer to the information-based economy. This book is also intended as a i:o11tribution in 
this direction. 

243 



UNIDO GENERAL STUDIES SERIES 

Tlrt following publications an availablt in this strits: 

Titlt 

Planning and Programming the Introduction of CAD/CAM Systems 
A reference guide for developing countries 

Value Analysis in the Furnirurc lndustty 

Production Management for Small- and Medium-Scale Furniture 
Manufacturers 

A manual for developing counttics 

Docwncn1arion and lnformarion Systems for Furniture and Joinery Plants 
A manual for developing counl:ries 

Low-cost Prefabricated Wooden Houses 
A manual for developing countries 

Technical Criteria for lhe Selection of Woodworking Machines 

Issues in the Commercialization of Biotechnology 

Software Industry 

Forthcoming titles inclutlt: 

Timber Coouuction for Developing Counl:ries 
Introduction 10 wood and timber engineering 

Timber Construction for Developing Counl:rics 
Structural timber and related products 

Timber Construction for Developing Counlrics 
Durabillry and rue resislallce 

Timber Construction for Developing Counl:rics 
Strength characteristics and design 

Timber Construction for Developing Counl:rics 
Applications and examples 

~sign and Manufacture of Bamboo and Rattan Furniture 

Symbol 

ID/SER.Oil 

ID/SER.0(2 

ID/SER.0/3 

ID/SER.0/4 

ID/SER.0/S 

ID/SER.0/11 

ID/SER.0/13 

ID/SER.0/14 

ID/SER.0/6 

ID/SER.on 

ID/SER.0/8 

ID/SER.019 

ID/SER.0/10 

ID/SER.0/12 

Pltost odd SUS 2.50 ptr copy to cover postage and packing. Allow 4-6 wtelcs for delivery. 

Prict (SUS) 

25.00 

7.00 

10.00 

20.00 

6.00 

2.S.00 

45.00 

25.CX> 

10.00 

20.00 

11.00 

16.00 

10.00 

2.S.00 



ORDER FORM 

Please complete this fonn and return it to: 

UNIOO Documents Unit (F-355) 
Vienna lntematlonal Centre 

P.O. Box 300, A·1400 Vienna, Austria 

Send me ___ copy/copies of----------------------

---------------- (!D.'SERC! __ ) at $US __ !oopy p!us postage. 

PAYMENT 

D 
D 

I enclose a cheque, money order or UNESCO coupon (obtainable from UNESCO oftices 
worldwide) made payable to ·uN100·. 

I have made payment through the following UNIDO bank account: CA·BV, No. 29-05115 (ref. 
RB-7310000), Sc:hottengasse 6, A-1010 Vtenna. AuStria. 

Name ----------------------------~---­

Address --------------------------------

Telephone ------ Telex ------ Cable ------- Fax-----

Note: Publications in this series may also be obtained from: 

Sales Section Sales Unit 
United Nations United Nations 
Room DC2-o&53 Palais des Nations 
New York, N.Y. 10017, U.S.A. CH-1211 Geneva 10, Switzerland 
Tel.: (212) 963-8302 Tel.: (22) 34-60-11, ext. Bookshop 


