G @ | TOGETHER

!{’\N i D/? L&y

=S~ vears | for a sustainable future
OCCASION

This publication has been made available to the public on the occasion of the 50" anniversary of the
United Nations Industrial Development Organisation.

’-.
Sy
B QNIDQI
s 77

vears | for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations
employed and the presentation of the material in this document do not imply the expression of any
opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development
Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its
authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or
degree of development. Designations such as “developed”, “industrialized” and “developing” are
intended for statistical convenience and do not necessarily express a judgment about the stage
reached by a particular country or area in the development process. Mention of firm names or
commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY
Any part of this publication may be quoted and referenced for educational and research purposes
without additional permission from UNIDO. However, those who make use of quoting and
referencing this publication are requested to follow the Fair Use Policy of giving due credit to
UNIDO.
CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION
Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria

Tel: (+43-1) 26026-0 * www.unido.org * unido@unido.org

mailto:publications@unido.org
http://www.unido.org/

| -:-'Z(’:-}.C/v‘/' [/ '/Aé. /K’Z A = (

_/'/'6‘7/ 7'!’:" N =

20U]

Parallel Computers and Their Industrial
Applications

Boleslaw K. Szymanski — (~wsee €honé
Department of Computer Science & Scientific Computation Research Center
Rensselaer Polytechnic Institute
Troy, NY 12180, USA

1 Challenges for Parallel Computers

Parallel computing has become a critical technology for manufacturing processes. It is also
quickly gaining importance in sciences, medicine and the drug industry. Large-scale com-
puter modeling impacts decision making in banking and finance, military and government.
The Industrial Revolution of the 18th Century had freed humans from the enslavement of
manual labor and had transformed craft and handiwork into the industries of today. Like-
wise, the Computer Revolution which we are witnessing now has been freeing the labor
force from routine mental tasks which were and often are still done by assistants, clerks and
low-level managers. Parallel computers form an important component of this revolution.
They empower decision makers, such as high-level managers and chief scientists, with the
ability to gather, access, and synthesize information, as well as to simulate real-life processes
to measure the impact of social, economical and design decisions. The quality of the sim-
ulations and synthesized information is strongly dependeat on the applied computational
power. Today, even the largest uniprocessor computers are too slow for the most challenging
problems of this kind.

In the United States, the quest for higher-speed machines is fueled by computationally
intensive problems with profound ecoaomical and social impacts referred to as Grand Chal-
lenges [3]. It is difficult to list all Grand Challenge problems because so many areas of science
and engineering are potential sources of such problems. The short list typically includes:

o High-resolution weather forecasting crucial for agriculture. disaster prevention, etc.

e Pollution studies that include cross-pollutant interactions, important in environmental
protection.

o Global modeling of atmosphere-ocean-biosphere interactions to measure the long-term
impact of human activities on the stability of the global ecosystem.

¢ Human genome sequencing that will assist in recognizing, preventing and fighting ge-
netic diseases.

¢ The design of new and more efficient drugs to cure cancer. AIDS and other diseases.

e High-temperature superconductor design that can revolutionize computer design. elec-
trical devices, etc.

e The aerodynamic design of aerospace vehicles (airflow modeling) and improvements in
automotive engine design (ignition and combustion modeling) that can lead to more
efficient use of depletable fossil fuels in transportation.

e The design of quantum switching devices important for building more powerful com-

puters.
40 Gbytes | Humane Genol‘k
CMS ¢ s Su C“‘?.'.”a‘
- reon
e P Vehplce:lc Dynamq
s ”
Y 4 D
4 Gbytes Py Structural Biology
CrayC-90,, [© SP-2
” s’ DesigncrlDrugs
400 Mbytes
48 hr. Weathes
2D Y '
40 Mbytes Oil Reservoi
Airfoll MT-I
100 Mflops 1 Gflops 10 Gflops 100 Gflops 1 Tflops

Figure 1: Computational Speed and Memory Required for Grand Challenge Models versus
Current Parallel Machines

It is estimated that to achieve acceptable response time for these problems. in the order
of several hours, will require a machine with performance of teraflops = 10'? floating point
operations per second. Today’s parallel computers approach a tenth of a teraflops, i.c.,
about 100 gigaflops (1 gigaflops = 10° flops). However, such speed is achieved only on
certain very large, highly localized, finely tuned, often idealized applications. The demand
for computational speed and memory for some applications from the above short list of
Grand Challenges are shown in Figure 1. The position of some current parallel machines
discussed in this article is also marked in Figure 1.

In this article. finst the need for the parallel computers is Justified on technological
grounds. Then. the recent developments in parallel computer architectures are discussed. fol-
lowed by a brief review of their software and limitations. Finally. the industrial applications
are summarized and discussed.

2 Need for Parallel Computers

In recent years, it has become increasingly difficult to improve the performance of a unipro-
cessor based on the time-honored von Neumann model. By laws of physics. the speed of
signal transmission in a computer cannot exceed the speed of light in the transmission me-
dia, about 3 x 10° m/sec for silicon. Consequently. it takes 107 of a second for a signal
to propagate in a silicon chip c¢f an inch in diameter. However. one signal propagation can
support at most one floating point operation. Hence, a sequential computer built with a chip
of such a size can provide at most 10° flops = 1 gigaflops, i.e., one-thousandth of the needed
teraflops. The immediate conclusion is that the only feasible path to a teraflops computer
leads through massively paraliel machines (MPPs).

An interest in parallel computing systems is not new and can be traced back as far as
the 1920s. However, as late as the carly 1970s , major criticism of parallel processing was
based on Grosch’s law which states that the computing power of a single processor increases
in proportion to the square of its cost. Recent careful analysis of Grosch’s law showed that it
is valid only within one technology. Economy of scale for mass-produced memory and RISC
(Reduced Instruction Set) processors makes them a few orders of magnitude less expensive
than custom designed chips for mainframes and traditional vector supercomputers. The
improving computer chip technology enables the placement of ever-faster processors with
ever-increasing amounts of memory on a single wafer. Hence, introduction of RISC technol-
ogy made Grosch’s law obsolete. Massively parallel computers built from a large number of
RISC processors provide a superior performance-to-price ratio compared to computers based
on the powerful, custom-designed CISC (Complex Instruction Set) processors.

The traditional vector supercomputers are built of a limited number of powerful proces-
sors connected to large shared memory. In addition, they explore array operation parallelism
through vector coprocessors. As discussed below, because of the shared memory, the number
of processors in such a parallel system cannot easily be increased and is limited to about
16. In contrast. massively parallel computers have proressors with local memories. The
processors are connected directly to each other by a network. The cost of such a parallel
computer is roughly proportional to the requested number of processors. Therefore the size
of the computer installation is more limited by costs than technical considerations. The
massively parallel computers have three advantages over traditional vector supercomputers:

1. An accelerated rate of advance of peak processing power. In the last decade, micro-
processor performance has increased four times every three years, following the rate
of integrated circuit logic density improvement. By contrast, the clock rates of vec-
tor machines have improved much more slowly, doubling every seven years [2]. These
trends are expected to continue for at least the 1990s.

2. Animprovement in the performance-to-cost ratio. In 1993, this ratio was between two

to cight times higher for MPPs than for the vector supercomputers.

3. Scalability of the machine. The smallest configurations of MPPs are usually low priced
to entice initial purchase (in 1993, the least expensive MPPs costed below $100.000).
The initial configuration of the MPP can be upgraded incrementally as the needs and
available funds arise.

The clear conclusion is that only massively parallel computers can deliver the much needed
ieraflops level of performance.

3 Architectures of Parallel Machines

In Flynn’s well-known classification of parallel computational models [5]. the von Neumann
model is characterized by a single stream of instructions controlling a single stream of data
(SISD). To achieve parallelism. multiple data streams can be introduced. thus creating a
SIMD model. A further extension adds multiple instruction streams which leads to multiple
instruction multiple data streams (MIMD) architectures. The last category splits into two
classes on the basis of a memory access mechanism. One class. the shared-memory architec-
ture, is characterized by the existence of a single global memory. Each processor has equal
access to this memory. The other class, the distributed-memory architectures. have proces-
sors with local memories. Each processor has direct access to its own memory and indirect
access to the memory of other processors. The indirect access is typically supported through
a message-passing mechanism that enables processors to commiunicate with each other.

On SIMD machines. all processors execute the same statement but each operates on a
different piece of data (data parallelism). The major task of a programmer is to identify
data that can be distributed among the processors. However, programming itself is relatively
simple because each processor executes the same sequential program. If. for a particular
program step, a processor does not have any data assigned to it or the executed step does
not apply to its data, the processor remains idle. For this reason. SIMD machines are efficient
only in such applications that have enougl operations applicable to a large number of data
pieces.

An example of a massively parallel SIMD system is the MP-2 computer produced by
MasPar. The MP-2 is built around an array of processors with a single circuit board con-
taining 1024 processors. Each processor has 64 Mbytes of local memory. A processor can
communicate with its eight nearest neighbors interconnected in a two-dimensional grid. An-
other means of communication is supported by the hypercube interconnected network and
a global router that can deliver messages from any processor to any other processor. The
Array Control Unit (ACU) controls the operations and communication of all the processors
in the array. The front-end of the machine is a standard UNIX workstation with standard
and high speed input /output subsystems. The front-end handles traditional serial process-
ing. The MP-2 includes up to a 16.364 array processor and delivers up to 6.3 gigaflops with
32-bit precision arithmetic. MP-2 runs an operating system that is a derivative of the UNIX
system and has optimizing compilers ior MPL (a variant of the data parallel (" language)
and Fortran.

Programmung for MIMD machines is more complex than programming for sequential or
SIMD machines. For MIMD shared-memory architectures. the most ditficult programmer’s
task is to map the program onto processors. Synchronization and data exchange can be
efficiently implemented through blocks of shared memery. Programming of such machines is
less difficult than for distributed-memory machines thanks to the global address space that
makes any data uniformly accessible from any processor. The challenge is in the hardware
support for shared memory. As the number of processors increases. so does the traffic in the
network connecting processors with the memory. If the memory requests from the different
processors are directed to the same memory bank, memory access is done sequentially slowing
down the processors. Consequently. it is believed that shared-meraory machines cannot
support massive parallelism. The currenv.y available architecture in this class is the Cray
C-90 series which represents a traditional vector supercomputer with limited interprocessor
parallelism [3]. Its largest configuration consists of 16 processors. each with a performance of
1 gigaflops and shared me:nory of 8 gigabytes. Each processor can have two vector pipes and
two functional units active in a cycle, thus producing four vector results per clock unit. This
parallelism of operations within each processor can be multiplied by 16 available processors
resulting in the peak performance of 16 gigaflops. The Cray C-90 runs under the UNICOX
operating system and has vectorizing compilers for Fortran and C.

Programming for distributed-memory machines inherits all the problems of the shared-
memory programs and is further complicated by the the need for data distribution. Each
processor has the direct access to the local memory only. Non-local data must be negotiated
with the owner processes using communication. The synchronization imposed by the wait
for a communicated data can significantly slow the performance of a computer. Subsection
4.1 discusses the Fortran extensions that allow the programmer to define data distributions.
Another effort to ease the programmer’s burden is to support non-local data access through
hardware as done by the Kendall Square Corporation in the so-called all-cache KSR-1 ma-
chine. Although the memory of KSR-1 is distributed, the address space of the program is
global. If the accessed data is not in local memory, the operating system suspends the pro-
cess and brings the data to the processor. The efficiency of such a solution is being evaluated
by the KSR-1 users {8].

The MIMD architecture, also capable of SIMD execution mode. is exemplified by the CM-
5 computers produced by Thinking Machines Corporation [8]. The CM-3 machine consists
of processing nodes (the configuration can vary from 32 to 16,384 processors), a number
of control processors. a data network, a control network and a diagnostic network. Each
processing node is a RISC processor with 32 Mbytes of memory and a 128 megaflops vec-
tor processing unit. Input and output are provided via a high-bandwidth interface. The
data network is interconnected into a fat-tree and provides high-performance, point-to-point
data communication between the processors. Unlike an ordinary binary tree, the channcl
capacities of a fat-trce increase as the tree is traversed from leaves to root. The contro!
and diagnostic networks are implemented as binary trees; the first one provides cooperative
operations such as broadcast and synchronization whereas the second one supports testing
system integrity as well as detection and isolation of errors. The data parallelism in CM-5
can be implemented in either SIMD mode, multiple SIMD mode or synchronized MIMD
mode. ‘Lhe reported performance of the 1024 processing node configuration was about 50
gigaflops. Theoretically, a full configuration of 16,384 processing nodes could reach teraflops

-t

range but, with current pricing, such a machine would be prohibitively expensive.

The biggest promise of wide commeercial use. in the opinion of the author, 1s the recently
announced (end of the year, 1993) scalable SP-2 computer produced by IBM Corporation.
It is an MIMD computer based on the RISC Syvstem/6000 processors. The system con-
sists of three major components: the number of the RISC System/6000 processors. the
high-performance switch, and the control processor. Fach processor can perform at 250
megaflops. The high-performance switch is a multistage network with optical links. The
switch is capable of a 40 Mbyte/sec processor-to-processor data transfer with a latency of
about 3 microseconds. The software approximately doubles this latency. The predecessor
of this machine, the SP-1, is about half as fast as the SP-2. Both systems run under AIX
operating system and support PY'M message-passing protocols. The Cornell Theory Center
in Ithaca announced recently the replacement of its SP-1 machine with the 312-processor
SP-2 computer with a peak performance of more than 100 gigaflops in 1994. The Theory
Center plans to use the new system to introduce commercial users ‘o scalable computing
for such applications as modeling sedimentary basins to predict where oil is present. inter-
active access to large data sets, aerospace engineering. dissolution of natural gas, turbulent
combustion and orthopedic biomechanics.

The size of the high performance computing market worldwide is about $2 billion {ex-
cluding sales of the IBM add-on vector hardware). The large share of this market is held by
Cray Research which accounts for roughly 40% of sales. On the other hand, many MPP ven-
dors have sales below $100 million. Clearly, the MPP industry is still in the early stages of
development and it is very likely that some existing companies will disappear and new ones
will enierge. However, in the opinion of this author. the direction of development towards
MPP system will intensify.

4 Programming Models and Languages

While the use of parallel computers has been increasing, their popularity has been hampered
by the level of effort required to develop and implement the needed software. Parallel software
often must be tuned to a target architecture to execute efficiently. Thus, it often requires
costly redesign when ported to new machines. Different categories of parallel architectures
have led to a proliferation of dialects of standard computer languages. Varying parallel
programming statements for different language dialects limit parallel software portability.
Parallel computation can be viewed as an interwoven description of operations that are
applied to data values, and of data movement and synchronization that dictate the form of
data accesses and computation order. The traditional programming languages, like Fortran,
C. or C++, provide for description of data movements and synchronization through ad hoc
architecture-dependent extensions. Examples are various synchronization constructs such
as busy-wait, locks or barriers used in programs for shared-memory machines, send and
receive with different semantics employed by programs for message-passing architectures,
and dimension projection and data broadcast popular in programs for SIMD computers.
To counter this trend to proliferation of language constructs and variants, there has re-
cently been a strong push towards standardization of programming models and languages.
Examples are the High Performance Fortran (HHPF) language, the Parallel Virtual Machine

6

(PV'M) communication primitives library. and the Message Passing Interface MPI standard.
There is also a trend towards an object-oriented paradigm represented by several experimen-
tal languages based on C++. Many operating systems for parallel machines are derivatives
of UNIX; therefore, next to Fortran the most popular language available on parallel machines
is C with extensions. However. since its introduction in the 1950s. Fortran has been the lan-
guage of choice for scientific and engincering applications that have driven sales of parallel
machines so far. Fortran compilers are available on virtually ali computers ranging from
personal computers to workstations to parallel computers. The newest version of Fortran
that was designed as a standard for parallel processing is discussed below.

4.1 High Performance Fortran

Fortran has evolved over the period of its existence by incorporating such features as array
operators, dvnamic storage allocation, and enhanced support for modular programming. To
exploit the full capabilities of modern parallel architectures, the programmer must be able
to define additional features of the programs, such as [7]:

e data mapping among processors,

e placement of data within a single processor.
e specification of control parallelism.

e specification of parallel sections of code.

The Fortran extensions that enable the user to provide this kind of information in the
source program are called High Performance Fortran (HPF). They were developed by a
group of users between 1991-1993 [7]. HPF is intended as a platform for portable parallel
programming. It is widely assumed that major vendors of parallel computers and third-party
compiler and system software developers for parallel processing will adopt HPF.

HPF includes features for mapping data to parallel processors, specifying data parallel
operations and interfacing HPF programs to/from libraries and other languages. HPF uses
compiler directives if the extension cannot change the program semantics and explicit lan-
guage extensions otherwise. The parallelism in an HPF program can be expressed by array
operators, FORALL and DO INDEPENDENT loops and EXTRINSIC and library proce-
dures. Since communication in a program is an overhead that lowers i\ he parallel execution
efficiency, HPF puts much of the burden of defining communication on the compiler. The
user supplies very high-level data mapping strategies and the compiler generates the needed
communication.

4.2 Message Passing Interface

MPI is intended to be a standard message-passing interface for applications running on
MIMD distributed-memory computers and workstation networks. The design of MPI has
been a collective effort involving rescarchers in the United States and Europe from many
organizations and institutions. MPI supports point-to-point and collective communication
routines. It provides constructs for defining process groups, communication contexts and

7

application topologics. Since MPI was introduced in November of 1993, it is difficult to
measure its unpact on portability of programs written with its use. It is hoped by ats
authors [10] that it will be useful in building libraries of matheniatical software for MIMD
machines. MPI's design allows heterogenecus implementations and definitions of virtual
communication channels. The design was also influenced by the need for ensuring that it
could be implemented efficiently in a multi-threaded environment.

5 Limitation of Parallel Processing

System performance defines the computational problem sizes that can be handled within
acceptable time and cost limitation. Performance is impacted by the four factors that may
be of varying importance in different appiications. The first is the raw computational speed
(processor and memory clock time, number of arithmetic operations per second). The second
is the memory of the machine (loading/unloading the data to/from the disk increases the
program execution time). The third factor is the rate of input/output operations. i.e.. the
rate at which data can be loaded into and produced by the machine. The fourth factor is
the synchronization and communication delay. It is relevant only for parallel computers.
The synchronization delay arises when a processor idles because it waits for other processors
to finish the corresponding stage of computation. The communication delay results from a
processor’s wait for receiving the requested data. In both cases part of the computational
power of the machine is lost.

A parallel machine with p processors, each with speed of m megaflops, can theoretically
achieve the peak performance of pxm. However, rarely can the algorithm be divided equally
among processors. There are usually parts of it that can be done one step at a time. The so-
called Amdahl law defines the limit on the speedup of a parzliel execution due to the residual
sequentiality of the prograni [1]. Speedup for a p-processor system over a uniprocessor system
is defined as

where Tj is the execution time for the best serial algorithm on a single processor and T}, is the
execution time for the parallel algorithm using p processors. Let a be the so-called Amdahl’s
fraction, i.e.. the ratio of the execution time spent in sequential parts of the algorithm to
the total execution time on a single processor. Then,

_ 1 1

””_n+(1-0)/p<; M

Amdahl’s formula (1) suggests that no matter how many processors are available to partici-
pate in the computation, the speedup is limited by 1/a. For example. if 5% of an algorithm
cannot be parallelized. the maximum speedup will not exceed 20, no matter how many
processors are used.

In most engincering and scientific algorithms, the fraction o is not a constant but a
decreasing function of the problem size n. Algorithms for which a(n) asymptotically reaches
0 while n increases are called cffective parallel algorithms. Such algorithms, if applied to
large enough problems, are capable of achieving speedup nearly equal to the number of used

8

processors. ‘To substantiate this point, let 8 < p denote the desired speedup, arbitrarily
close to p. Since the achieved speedup S, is given by formula (1). then
. 1
S = >S
afn) + (1 — a(n))/p

-~

Hence. it follows that

P— 2
aln) < 5o (2)
For an effective parallel algorithm a(n) is asymptotically decreasing to 0. Hence. it is always
possible to select such a large problem size ng that for problems larger than ng, a{n) satisfies
inequality (2). Therefore any problem with size n > ng will achieve speedup greater or equal
to S.

In a message-passing system, a significant fraction of the total execution time is often
spent on communication between processors. To examine the effect of communication over-
head on the speedup in such systems, let ¢ denote the fraction of the total execution time
spent on communication that is not overlapped with computation. If t is the sequential
execution time and a is Amdahl’s fraction then, with p processors, the total execution time
(which includes the time spent on communication) is

at (1-a)t
l1—c p(l1-¢)
Thus, the speedup in this case is
l1—-c p(l-¢)

at+lz2 " 14a(p-1)
Since p > 1. the speedup is limitea by
Sy < p(l1-¢) 3)

As in the case of Amdahl’s fraction, the communication fraction of the execution time
c is often a function of the problem size, say ¢(n). A parallel algorithm is communication
effective if c(n) asymptotically reaches 0 with the growth of n. The conclusion is that for
large applications using effective parallel algorithms the speedup can be very close to the
number of the used processors despite the communication and synchronization delays.

Large applications running on a single processor can exceed the memory and cache limit of
the machine. The resulting excessive paging or cache miss ratio lead to the poor performance
of such application. On a parallel machine, each processor runs only a fragment of the
application. Hence, the cache and memory of the processor might be sufficient to achieve
low paging and cache miss ratio. As a result, the application can achieve super-linear speedup
on a parallel computer, meaning that the sum of execution times on all parallel processors
is smaller than the total execution time on a single processor, i.e.,

Such speedups have been reported for large irregular computations {9).

9

6 Industrial Applications

Industrial applications of parallel computations are limited mainiy by the relatively high
cost of solving computationally intensive problems. The use of a parallel computer must
be justified by the economical significance of the results. As the performance-to-price ratio
and reliability of new generations of parallel computers increase, the range of ar.plications
will follow. A large part of the cost of parallel processing results from the tugh cost of
program development. The new standardization efforts described in the previous section
have a potential of fostering software portability and reuse, thus further contributing to the
decline of the cost of parallel computing. The next few years most likely will witness wide-
spread commercialization of parallel computers. Today. the range of applications is already
impressive and there is a clear trend towards an increased involvement of industry in paralicl
processing, as evidenced by Table 1 [2]. In 1992, the worldwide installed parallel computer

Year Government | Academia | Industry
early 1980s 70 5 25
late 1980s 60 15 25
1993 40 20 10

Table 1: The Percentage of Parallel Computer Installations for Different Users Categories

base (of U.S. vendors only) was nearly equal between Academia and Government (129 in
total) and Industry (122). In academic cen’ers, the usage of parallel computers by industrial
users nearly doubled between 1991 and 1992 (last two years for which data is available).

The cooperation between academic centers and industry is strong in the United States.
For example, the Scientific Computing Research Center at Rensselaer Polytechnic Institute
brings together 35 faculty, 50 graduate students and many researchers from 16 organiza-
tions including such industrial leaders as Alcoa Technical Center. Dassault Systems, General
Electric Company, General Motors Corporation, Grumman Aircraft, and IBM Corporation.
The spectrum of investigated problems covers computational fluid dynamics, engineering
structural analysis, human joints dynamics, and epidemiological modeling.

Some of the largest customers of parallel computers are commercial aerospace companies.
They have been using computational fluid dynamics to analyze airflows for spacecraft and
planes. An interesting application of this method was made by Boeing to predict airflow in
aircraft cabins using a Cray parallel computer. The design of an airplane’s environmental
control system involves the specification of air supply and return and analysis of airflow
speed and distribution. The computer simulation eliminates the majority of candidates and
the full-size airplane cabin mockups are used only in the final selection. The expense and
the time required for testing the large number of candidate airflow systems has been thus
largely reduced. Computational fluid dynamics is also useful in the analysis of airflow for
cars. For example, Nissan Motor Company reported that it saves on wind tunnel tests by
using a model of an unsteady, three-dimensional viscous incompressible flow program on the
Cray C90 computer achieving the performance of 7 gigaflops.

10

Oil reservoir modeling uses cross-well seismic data to build and run the model. Even
with current parallel supercomputers. large models use a computational unit of several-
hundred feet which may contain few separate wells. Howevrr. there are important fluid
events at the scale of a foot. such as the mixing of elemertary fluids. Companies like
Mobil Corporation and Amoco Oil Company use parallel computers for exploiting existing
as well as searching for new reservoirs. Shell Oil Company reported that it butlt parallel
versions of several petroleum reservoir simulators, but those have not been put into use
because of the difficulty in providing requisite network and job support. In contrast, selected
geophysical application programs have been used successfully in corporate settings. In [4],
British Petroleum Exploration Inc. reported the accurate modeling of a complex reservoir to
predict potential gas and oil production, the rate of production and the impact of operating
decisions on recovery and economics. When operating under constrained computer resources.
the model of « reservoir must be simplified and projections conservative. More reliable
projections obtained with the use of the parallel computer increased predicted recovery and
reduced the time and cost of the study. The economic benefits far outweighed the cost of
using the parallel computer.

Challenged by the international market demand and increasingly complex production re-
quirements, a growing number of heavy industries worldwide are exploring parallel processing
usage to optimize manufacturing processes. A division of the German industrial conglom-
erate Mannesmann used the Cray parallel computer for optimizing pipe and tube milling
[11]. Structural and civil engineering problems are solved at Mitsui Construction Company
in Japar. Ford Motor Company purchased the Cray Y-MP C90 system for structural anal-
vsis, crash simulation and other problems related to automotive design and engineering. A
smaller system, the Cray Y-MP 4E, was also installed in the PSA Peugeot-Citroen in Velizy,
France for similar applications.

Computational chemistry uses parallel computers to study problems such as the predic-
tion of relative stability of different molecules, the identification of transition states, and
reaction intermediates based on the model of heat formation. A commercial application also
includes an analysis of the effect of a molecular structure on the flexibility of polymers [6]

Designing, installing and operating a power transmission network and ensuring its sta-
bility and reliability are complex challenges. Each network is a dvnamic system subjected to
oscillations which can lead to costly equipment failures, network separation and eventually
blackouts. Events such as lightning bolts, ice storms and tornadoes disturb and threaten to
disrupt power network operation. The growing demand for electrical power and the com-
plexity of interconnected, expanded networks require prudent operational planning and the
ability to predict a power system's behavior under various conditions. Hydro-Quebec in
Canada uses the Cray computer for testing and predicting the network’s operation under
the various contingencies to decide the proper improvements for the network structure.

Weather forecasting uses grids of the size of two-hundred miles by three-hundred miles,
too large to register local rains, storms, etc. To reliably model storms. the Center for Analysis
and Prediction of Storms at Oklahoma University developed the ARSP (Advanced Regional
Prediction System). ARSP has been ported to the massively parallel computer CM-5 with
1024 processors {12]. A high speedup of 907 times over a single processor was achieved with
the overall performance of about 50 megaflops. Still. for the problem size corresponding
to a regional weather prediction, the simulation runs about one-fifth as fast as the weather

11

changes (so after one hour of simulation. the prediction could be made for four hours in
advance). It is estimated that a teraflops machine would be able to produce a four-hour
forecast in about 2.5 minutes.

There is a growing trend among Wall Street securities firms to utilize the advanced
computer simulations to track and model global financial markets. Among them. Prudential
Securities is a pioneer of parallel computing, currently using the Intel 32-node hypercube
computer IPSC/360. Dow-Jones News Retrieval acquired two Connection Machines from
Thinking Machines Corporation to improve the performance of their commercial document
retrieval systems.

Parallel computing and related technologies of computer networks. database management
systems and graphics are changing the scale and scope of data that companies and govern-
ments can manage and analyze. This process involves not only computer expertise but
also finance, marketing and management. Parallel computing helps organizations produce
mformation in three major domains:

1. changes in production, with greater emphasis on managing the data as a strategic
resource.

o

improved control over relationships with customers and clients.
3. development of new kinds of information.

In recognition of this trend, ORACLE has been making its database system available to
a growing number of parallel machines. The impact of paraliel computers on this kind of
applications should rapidly grow.

References

{1] Amdahl, G.M., “Validity of the Single Processor Approach to Achieving Large-Scale Comput-
ing Capabilities,” Proc. 30 AFIPS Conference, AFIPS Press. pp. 483-185, 1967.

[2] Branscomb, L. (Chair), From Desktop to Teraflop: Ezploiting the U.S. Lead in High Perfor-
mance Computing, NSF Blue Ribbon Panel on High Performance Computing, Washington,
DC, August, 1993.

[3] Committee on Physical, Mathematical and Engineering Sciences. Grand Challenges: High
Performance Computing and Communications, NSF/CISE Report. Washington, DC, 1991.

(4] Cullahm, W.E., Deskin, R.H, Handyside, D.D.. Karaoguz. O.K.. and Li, K.-M.. ~Improved
Financial and Operational Forecasting with Large-Scale Reservoir Models,” Cray Chznnels.
vol. 14, no. 3, pp. 26-31, 1992.

(5] Flynn, M., “Some Computer Organizations and Their Effectiveness.” [EEE Transactions on
Computers, vol. C-21, pp. 948-960, 1972.

(6] Graffunder, S.K., “Barrier-Breaking Performance for Industrial Problems on the Cray (916"
Proc. Supercomputing’93, Portland, OR, November, 1993, IEEE Computer Science Press, Los
Alamitos, CA, pp. 516-519.

[7] High Performance Fortran Forum, Iligh Performance Fortran Language Specification. version
1.0, Center for Research on Parallel Computation, Rice University, Houston, TX. Revised
May, 1993, to appear in Scientific Programming, vol. 2, no. 1, 1994.

[8] Hwang, K., Advanced Computer Architectures, McGraw Hill, New York, 1993.

[9] Lewis, T.G., and El-Rawini H., Intruduction to Parallel Computing, Prentice Hall. Englewood
Cliffs, NJ, 1992.

[10] The MPI Forum, “MPI: A Message Passing Interface,” Proc. Supercomputing’93, Portland,
OR, November, 1993., IEEE Computer Science Press, Los Alamitos, CA, pp. 878-883.

[11] Pehle, H.J., and Thieven, P., “Advances in Metal Forming Simulation at Mannesmana,” Cray
Channels, vol. 14, no. 1, pp. 6-9, 1992.

[12] Sabot, G., Wholey, J.B., and Oppenheimer, P., “Parallel Execution of a Fortran 77 Weather
Prediction Model,” Proc. Supercomputing’93, Portland, OR, November, 1993, IEEE Computer
Science Press, Los Alamitos, CA, pp. 538-545.

