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SIMULATING OF THERMAL PROCESSES IN SILICATE INDUSTRIES
INTRODUCTION

The increase of energy consumption in ceramic industries
belongs nowadays to important tasks for both research and
production practice. Among many kinds of energy required the
thermal energy plays the most distinguished role. To minimize
the amount of thermal energy supply, the detailed knowledge
of thermal proceases in plants and installations of ceramic
industries is necossary. Under some circumstances, first of
all if
- the plant is only projected, but still not working,
= producing plant is not equipped by measurement system,

- algorithms to evaluate the measured values are still not
known, : _

this knowledge could be, however, difficult to obtain. It is

to remove these inconvenient influencing factors that constitut~

the essencial goal of modelling and simulating techriques.

Generally, only such an object (substantial or abstract)
may be considered as a model which has a defined and unambiguous
relationship to its prototype. A sinmple example of an substantial
(physical) model is a pattern for mamfacturing metal products
by casting. The only aspect for designing the patterm is the
goeometric similarity with respect to the temperature comntraction
of stiffened metal; and the shape of surfaces to be machined.

Essentially more complicated model then the previcus one
is the physical model of steady flow ot Newtonian fluid through
a cylindrical tube. At a point x, sufficiently distant from the
tabe entry (see Fig. 1), the character of flow (the form of
velocity profile) deponds only on the product v . D of tha
rean velooity and tube diamester. More detailed eiperimental
investigations lead to recognition of influence of fluid density
ard viscosity. It wﬁa found out that the Revnolds mmber

. YD ¢
Re = “

is the main fector of similarity. it determines the character
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of fluid flow. Experimental results showed the following facts:

- in the range 0 € Re £ (2200-2300) the flow is laminar and
all disturbances within flév are subdued by the governing '
effect of the viscous force; the velocity profile is paravolic
(see Fig.2a), ‘

- if Re > (2200-2300), the laminar flow turns into the transient
one and at about Re > 10 the flow is turbulent. 'The velocity
profiles are rather flat then parabolic (see Fig. 2b) and
their form depends on Reynolds mmber.

From this example we can resume: the similarity between
model and prototype demands, that
- two objects, both mode:l.na:nd p:ototype have to fulfill the
geometric similarity, —p- = B,
P T
« initial and boundary conditions of both objects have to be
similar, i.e. similarity of the entrance velocity profiles
and that of tangential force on the inmmer wall of the tube
are required
- the value of Reynolds mumber of both the model and prototype
has to be equal; Ren = Rap.
Then the both dimensionless velocity profiles are equal

(sce Fis;B)

g4
]
IR

The possibility to achieve simila> flows at an equal
Reynolds number by using various modelling fluids is ovident.
If tae fluid with high kinematic viscosity coefficient, fl" ’
is used, the product Vv+.D must be of great value. This
means that one has to work either with hight fiuid velocity in
the tube of st all diameter D or,on the contrary,with small
fluid velocity in a wide tube.

It is clear that the physical similarity requires in addition
to geometrical similarity also to fulfil the equality of other
similarity mumbers.
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Further experimental results ﬁ;ovod that the surface .
roughneas is of a significant influence on the pressure drop
in the tube; again the dependence on Reynolds mmmber was found.
In the laminar flow region, the roughness affects the fiuid surface
friction less then in the turbulent one. It has also been
experienced that the value of Re about (2200-2300) is the
critical one from above only, i.e. below this value the turbulencs
does not permanenily exist. The laminar flow, however, succeeded
to exist even at Reynolds pmumber about 105, if eny tube vibratiors
and disturbances in the entered flow are eliminated and a perfectly
smooth tube is used. Anotler very important phenomenon was observed
if the Reynolds -mmber is above a certain limit (this limit is
different by case) the characteristics of flow depend no longer
on Re and beccme apnroximately constant. Analogous independence
has been found at other physical prccesses (heat, mass transfer,
evaporation etcs.). The &perience was made, that not each model
considered useful must be exact. It depends on purpose for which
it is desigmed.

The static (steady-state) models were considered hitherto,
their properties did not depend on time an the history of the
physical phenomena investigated by modelling.A different type
of model is the dynamic ome, which describes time dependent
‘processes. The notion of model signifies either the model
itself or includes additional equijpuonts as the measuring
apparatus or systems, transducers and even analogous or digital
computer, etc. Processes of getting information on modelled
objects, the modelling or simmlating ones, can be related to
static or dynamic asystems. Most often the lattOr ones are connected
with simulating techmniques.

MODELLING AND SIMULATING TECHNIQUES

These techniques represent a width range whers many scientific
branches ars in touch. The interest does not comprise all
concerning branches. However, we shall direct our attention to
amodelling and simulating of thermal processes connsctel with
energy lnsses and energy consumption. From many possible
classification viewpoints, we shall choose the following two:

- analytical type models
~ simalating Models.

\
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Analytical Models

are based on the assumption of axiomatic validity of fundauentéi‘
laws of physics. Such laws express in mathematical form the
principle of conservation of mass, energy, electric current,etce.,
and represent an effective starting point to develop analytical
models.

Applying the rules of similarity, dimensional analysis,
and mathematical analogy and combining them, many kinds of
analytical models have been developed (see Table 1). The primciple
on which the &nalytical models were derived can be shown at the
following example of heat conduction in solids.

The process of nonsteady heat conduction in a body of solid
material (see Fig.4) can be described by the
Energy Equation

ar
?"a-t-:: Vﬁc?ﬂf-fr (1)

and its boundary cOﬂs;fions
T - --
Wr)-75 ] = -k (3T). .

at the boundary S of the body, and
7,’-7,’[5t} at the time % v 0 (1b)

(the initial condition).
The following ways of solution to this problem may be
shown:

Mathematical Model

Because the solution of Equation (1) in explicit formuilue is
only rarely reached, the mmerical methods performed by computer
must be used. The model input and output are the boundary
conditions and printed tables of computed values, respectively.
These both values represent the field charmcteristics either
in scale of the prototype or more advantageously in dimeisionless

mumbers. The dimension of tie printed field data matrix is that
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as the rpumber of nods in the used space mesh on the investigated
body. The mumbor of fields data can be reduced to several most
important values at significant points of the body as shown

graphically in Fig.h.
Physical Model

The solution of the Equation (1) can be substituted by real

heat conduction process performed at a physical model in a
determined but not arbitrary scale. Herein the theory of similari-
ty will be applied. Let us write Equations (1) and (1a) with both
fqor the protoirypo (index p) and model (index m):

o7 2 a7,
ho o b £, iy (2
£ e 2im
g 5T =
and
W) -, ]=-4 (5’;?4 (2)
)
;,~[(7;'{$" ] =k, (;'., éﬂ (2a)
The initial conditions according tc (1b) are
(Tp)1 at time tp1 =0
(Tm)1 at time ty =0

One of several efficient procedurss of similarity theory, the
method of scale coeffiei ents F ) w3 applied.

f- g:' R .f_f; ‘).g'g.’d.,g‘_--uﬁ

L AR é
k5 ? e S Zn
»
Introducing these coefficients both into Equaticu (2b) and (2c)

AR ARGV VISR AMUR SIS

1) Sometimes M,= !/1' is defined. Ityhowever,does not respact the
temperature rogion at which to make model experimonts would be
desired. That is of significant importance if ptysical properties
of botrh model and prototype substances depond on temperature.




2 3
e I % 5 2L (3a)
%Xy "7 of e P AT
i )T ]« =%F (¥
% 5,[(,4;' ] Eaf,,"(anjs, | ~ (3v)

Comparison of Equations (5a), (3c) with Equations (2a), (2¢)
which are validz for pirototype gives the conditions
%, F
" e Y (341)
e B T

<~ % xx,

where both a, and a, are arbitrary constants.

Equation (3.1) leads to the expression

LT

from which

H

kK & ‘g_% (3.1)
Co £7 fue £ '

The criterion of similarity, kmown as Fouriur number,
kK ¢t

pe 2

joints thermal diffusivity F"z , time &, and the charactarietic
length of the body into one independent variable.

The secund independent veriable (kmown as Biot muber), from
Bquation (3.2) is

h
8i ’Tf' (5)

Fo = (4)

The dimensicnless temperature ,0' ‘Vr s dspends on both mumbers,
1?-0 ard Bi. Experimental results obtained by modelling can be
transferred into the relevant values of the prototype using the
rule that tae identity of independert variables (oriteria)
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ensures the indentity of the dependent wvariable for hoth the

model and prototype. From experimental resultz,diagrams may be
constructed (see Fig.4). So the depencence of dimensionless
temperature at a significant point of the body on Fourier mumber
and s paramster may easily be read from and transferred from
model to the prototype. The marameter .refers to boundary conditions
(for instance, the Biot mumber, see Fig.4 , corresponds wilu the
boundary condition of the third kind).

Mathematical Analogy

It is sometimes named also as physical analogy and . . is based
on the equel form of mathematical description (equations) o*
two or more physically different plhenomena or processes. A well
known example is the equality of mathemmtical formmlas describdbing
potential fields variables such as temperature, electric
potential, hydrostatic prsssure, known as electrical network
analyzer. These analog models (resistor network = Iiabmaa model,
resistor-capacitor network = van HeukXen model, see Fig. 5) has
been develoﬁod to iunvestigate linear heat conduction and diffusion
processes. Ip such models the differcntial equation of the
problem has beer transferred into difference equation of *the
discrete elements of the network. 1o solve nonlinear problems,
these models have to be operated by special procedures. They
are often woirking in commection with digital computers.The whole
system is controlled by computer, designsd as the nybrid model.

Concept of Physical Modelling of Thermal Energy Transformations

Examples shown above are well known from physics and vesearch
practice. That concepty however,can not give the direct answer
upon energy balance heat losses, energetic efficiency, etc.

It is due to the fact that the fundamental equations did not

. contain any energy terms written in an explicit form. (Of.courso,
the temperature difference multiplicated by density and speocific
heat, axpresses the thermal emergy, but not in the easy-to-balance
form). On account of succesful physical modelling of energy in
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thermal processes, it is necessary to substitute some verms
containing intensities by terms expressing enexgy, power, etc.
Aftexr inserting the new variables into Equations (1), (1a)
that is '

ar
P' = Pc ar (accumulated heat), and {6a)

}s? = -6[(773- Z"] (surface power input) (6b)

and using as cbove, the scale coefficients method, we get two
new similarity numbers

£ = P’fz . P’ 7 .
rK(T-T) (D) Fo (60)
and ’ .
BE B g
En, = = S J— N - (6a)
TR AT
The geocametric similarity requires to fulfil tka relation
-@i-- wonst (6e)
s

That way it is principally possible to start modelling thermal
energy processes from the energetic point of view employing
these new energy variables. Their direct measurement botla on

physical models and on prototypes is more advantageous than
the integration of the detailed measured temperature or vnthalpy
fields. It is usaful to express energy within the time space
(t-t1) and volume V of thke body.

¢ ¢
Q= [[ecavat , a [[(a3)asas
sy ¢S S

Q:/?h; dVat , a=/%[(72'7,’]d5d
y LS

4

) (6r)

|
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This commonly used procedure is less exact (from point of view
of energy balance) than the direct measurement of energy values.

The relationship between model and prototype is performed
using the scale factors

P 2
= _M0n . ad o
”P}’ 7)" = ?t‘. 20 (7a)
Py ¢
and
(7b)
&Ps = ‘be’,
from Equations (6a) and (6b) , respectively ‘s performed.
Equations (7a), (7b) lead to scale facto.-
Q
e/ X (7¢)
T @ " %

Complex Processes

Problems to be solved in practice are,however, more complex
than ttose shown above. Besides the scualar energy equation for
fluid flow-

Energy Equation

oc( 2+ 70T) = 0 (hVT) +g,, (8a)

other equations of conservation take part in their description.

If dealing with mass tiansport (drying, absorption, évaporation

etc.) the set of scalar diffusion equations for a flow of multi-
component mixture assumes the following form:

Diffusion Equations

Lv? v, = 0(0, VG)+g, (8)

ce(1,7)
where the index i denotes the i-th component of the fluvid mix tuxre
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\index m):
If we investigate the velocity and pressure fields, the use of
momentum equation is of importance. This nonlinear vector

equation, has three components (in directions f' , f )'ﬁ
of Cartesian ordinates. In Navim=Stokes representation
the

Momentum Equations
W s Y / & p3
5?1"(' V) = 2 (v7) (8¢c)

has evidently simple forme.

The nonlinearity of %“his equation has a consequeace that its
solutions are not always unambiguous. This refers both to the
mathematical and physical models. The ambiguity of physical model
at its working point and at surroundings nmmust be experimentally
investigated. If this investigation gives a positive answer, the
physical model for other working point must be built to prove
if unambiquity can be reached.

To Momentum equation belongs the

Contimuity Equation

-3254-77-0 . (84)

This scalar equation summarises the system of diffusion equations
(8b).

The radiatiweenergy transfer in semitransparent media (f1iame,
firing gases, glass etc.) is subjected to

Equation of Radiative Intensity
d [.1 Ka £, &, D 8
:; + ;}IJ = “a;-"' i‘ln * ‘._5 T; (8e)

(L=, +1, ;o0sds2r ).
mhe deficit between absorbed and radiated energy represents the
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radiative part 25? of the specific heat source )h?in energy
equation (8a).

In an electrically conductive substances, the electric

current causes the source of Jotile heat output
= /(70}: ‘ (8£)
2&9 .

which is another possible component of the tem jhtin.Equation
(8a). The presence of the electric current field is usually
expressed by Equation of Electric Potential

e(pry) =0 (8e)

All the equations written above represent, with their boundary

conditions, the starting point for solving analytical problems

at mathematical, physical and snaloque models. They yield essential

advantage for investigating many physical problems. Therefore

they

= enable us to get information about even projected processes and
objects (equipments, plants and their modcls)

- make easier to develop algorithms for evaluatirg of measured
data

« give information even for improvements of simulating models,
especially, enahle the statement of relations and connections
between innmer variables of physical processes and thsir cuter
effects at such models. )

Approximate Modelling

It exist some complex physical prrcesses, impossible to
be exactly modelled. At this cases it is necessary to be satisfied
with only approximate models developed by using the approximate
similarity principlea. The approximity can be causeda by the
= form of fundamental equations, where some terms are neglected
eithar to enable the solution of the equation oxr to simplify
the §roblem formudation,
- simplification or approximate prescription of boundary conditions,
enforced by either unsufricient knowledge or boundary data at
prototype or dacision to avoid complicaticns in compating, or
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‘or other reasons,

- physical properiies of model fluid, that do not comply all
similarity mumbers at convenient temperature, pressure etc.
ranges,

- other causes, as to stochastic character of measured vaiues, and
from outside comming disturbances, decision to work with
similarity mmbers characterizing only the most significant
processes

- endeavour to take for constant variables, those are only
little varying within the given region of independent criteria.

Simulating Techniques

They beleng to approximate techaiques, bat they are not
coherent with approximate similarity. Simulating models as
abstract objects can also be named as structural models. The
significant advantage of a simmlating model is the fact that
model relations comprise bLoth physical and nonphysiczl (eege
logical, techtnological, qualitative, ots.) values and data.

The task of a general simulating problem (see Fig.6a) is
to determine coefficients of a conveniently elected system of
differential equations which express relations between independent
X variables and the dependent Y ones. This means to transform
the system of equations

F(Y,X)=0 (92)

into the system

! .
y = fly~x) (9b)
of differential equations, with the boundary condition y, -y(x,)
{this is necessary above all for purposes of automatic control
of technological processes). These systems and the relevant computing
programs represent the simulating model of the problem to be
solved. Beneath variables mentioned above,as well, the other
ones for example quantity and quality of product, material,energy
and other costs can be considered. Then energy losses, energy
consumption and any other parametors do not represent any
difficulties.
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The advanced simulating techniques are developed into
routine use, described by detailed instructions including
computer programmning languages and programs. Experimental
techniques and experimental data (see Fig.6b) play an important
irreplaceable role in simmlating techniques.

Optimization

Within this last stage of research and design the results
of modelling and simulating investigations would be utilized.
There is the most substantial task there , to formulate the
goal of optimization and criteria of optimality and to cboose
way and means for achieving it. Usually the simplest procedure
is used to reach optimum in one or two most important indices,
for example to reach highest finmancial profit, highes mamufacture
output at lowest energy and material costs ete.

From this point of view it is quite obvious that thermal
processes participate only with various relevance among other
factors which could influence the total economic effect. Therefore
modelling and simulating thermal processes must be considered as
an implement which contributes to more complex look at the problem

" of optimization.

APPLICATION

Mathematical Modelling of Heat Losses through a Furnace Wall

Steady State (Static) Model

a) thermal conductivity coefficients k of refractory and insulation
layers in the wall conestruction are temperature independent.
The prescribed temperature difference (see Fig.7) is

T-T = Limex

K (10a)
with N p
= /1 n 1)
K=(} +.Z.; = +4‘} (10b)




where 7! - is alowed heat loss [Na 7 .

The mumber N and thickness’ J; of wall components e to be
Tound.
Because A; and l) are known functions of variables 7’ and
T' respectively, the model consisting of Equations (109.), (tob) and
given functions h { 7;) and A [3' N} can be solved by
numerical methods only.

thermal conductivity coefficients kn depend on temperatu.re(,,)r
within thickness of the n-th component of the wall construction.
Because it is k ek ( wﬁ , the temperature g ‘,7’ must be implicitely
expressed by integral equation

Xgg? On
7'— T' - Zh‘g d
») n-1 x (10¢)
' Xy-v k. ((Q)r)
(n)r
Timer® / bl 4T (104)
Tos

and the solution is to be obtained by numerical way, for example

by succesive approximations by specializad computer programs.

Ad an example let us show the result of solution Equation (10d)

for one layer of refractories of the type 1711 and 1681 at

21... S € (5'0,5000) [”u ] ’ (see Fige8). The computed
diagram in Fig$ was applied to design the refractcry wall thickness
8 of a glass melting tank..

Dynamical Models

Static models are .inconvenient to solve nonsteady problems
connected with incontinual thermal processes in irdustrial
furnaces. The essential task of modelling is to optimize
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mamufacturing process. As to energy consumption ; the dymamic
madel would have to find optimal relations between energy conmss
losses etc. and other factors, for instant quality and quantity
products, material co_sts etc. Unlike in the previous examples
the energetic efficisncy represents the steady-state heat loss
flux, [ 'J [ ’nzjin dynamic model, the energetic efficioncy must
be connected with the total amount a [’6] of heat losses within
the time space t -t

/sz‘

where P p - beat loss fiux [W], t,-t, [b] - time period of
thermal process. '

Because heat losses PLp are dependent on furnace inner tempe-
rature Ti’ then the total heat loss Qp within the time space
tz-t1 depends on the period fz-t1. This shows in two examples
Fig.9. In case a)(see Fig.9a), the furnace works at high inner
temperature Ti and in case b)(see Fig. 9b),at the lower one.

In the case a) both tine inner furnace temperature and the tempera- -
ture of goods surface increase rapidly.

The amount of heat accumulated by furnace walls is increasing
as well. The .oase b; is designed by smaller increase of temperature
and accumulated heat , the time périod tz-t1 at the same furmace
type and the .same goods is shorter them that in case qk Her ‘s
amount Qp(b) however, cannot be -the same as the Qp(‘)'
task for dynamical modelling is to choose an adequate dyr. = . .al
model and to carry out model experiments {physical measurement,
computationsz) , to find ou* the heat loss amount Qp as a function
belonging to various conditions. The next task, optimization
of energy losses can be solved either by improvements of furmnace
design (for example by substituting dense ceramic insulating
material by ceramic fibres felt in the wall contruction, to
reduce accumulated heat) or by coptimization of techmological process
in furnace (for example, among all possibitities such a process
must be selected, to minimize the heat loas amount Qp)

Heat Rewovery

Modelling or simulating of heat recovery devic-s '
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by mathematical way is most convenisnt both for periodic and
continucus processes. The problem can be formmlated as a static
or as a dynamical one. The former is usually solved by using
thermal efficiency balance, the latter by the energy one. Some
diagrams of heat reccvery devices are shown at Figs. 10,11,and 12.

Mathematical Analytical Models of Simmitsneous Fields

Very complicated mathematical models are developed for
computing complex (simmltaneocus) fields, as to temperature,
velocily, pressure, radiation and electric curremnt ones in
glass melting furnaces. Figs 13 and 14 demonstrate some results
obtained by two and three-dimensional models. Here the finite
difference method was used.

Physical Models

The aost complex models were constructed and equipped to
investigate the fluid flow, temperature and electric current
fields in oil fired, electrically boosted or rll-electric glass
melting furnaces. Principle of working circuits of the model
of an all-electric glzss melting furnace is given im Fig.15.
Photos in Figs. 16,17 and 18,19 show views and results respectively
of two different models of glass melting furnaces. At the present
state, models are static i.e. working in a steady-state régime.
The similarity of energy values is only investigated. Model fluid
properties do not regard the heat to be spent for melting of
the batch and chemical reactions taking part in melting process.
An example of use of physical analogy the mcdelling of Laplace
equation by means of rheocelntric analogy device is shown in
Mgs. 20,21 and 22.

CONCLUSIONS

The recenrit simmlating and modelling technfques are a very
effiocient implement in r'esearch and marmifacturing practice.
They demand, however, to master the measurement and computer
techniques, both theoretical (mathematics,phyaics, chemistry etc.)
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and practical knowledge and well to plan and organize working
teams (f specialists taking part on soimtion thecretical and
practical problems.

This paper summarizes ideas and results contained in
discussions between the coworksrs of the Laboratory of
Silicates of the Czechoslovak Academy of Scienmcres and
the Institute of Cheaical Technology and the author,
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Pig- 2. a) laminax flowsrarabolio velocity profile
b) nonlaminar (turbulent or transient) flow;
velooity profile nonparabolic

Fig. 3. Dimensionless veloeity profile in the tube flow




Fig. 4. Yonsteady heat conduotion;
a) shape of the body and Cartesian coordinate system
b) temperature field data, referred to point ( f )ll°
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Mg. 5. Prinoipal schems of an BE-C network (van Beuken~mcdel)
for two dimensioznal disorete modelling of nonsteady
potentisl fields.




Fig.$. Simulating problem dliagram
a) the task of simmlation
b) relation between simulating model and the

prototype
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Scheme of temperature profiles in the heat
conducting furnace wall
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Fig. 8. Soluvtiou of the Bquation (10d) for temperature

T, = 1673 /K/




Fig. 9.
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Charscteristics of energy consumption and losses
a¢ a furnace-goods system; wall construction with
reduced heat acowmilation (b/.

stean/hot water A il ?:“ water

Fig. 10.
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Amnealing furmaoe

Scheme of a simple counterflow reheat equipment
ocotpled with glass or oceramio amneali~g kiin




Fig. 11.

Scheme of energy recovering plant of four flame

fired furnaces
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Fig. 12, Scheme of energy recovering equipment for a

flame fired glass melting furnace
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Results of solution of two dimensional

mathematical analytical model of electric
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b) Field of tue Joule heat output

a) Electric potential field
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ig. 14 a. Three dimensional mathematical analytical model

of a simple three electrodes electric glass melting
furnace; field of the Joule heat output 1",




Threo dimensional mathematical analytical model

Fig. 14 b,

of a simple three electrodes electric glass melting
furnace; field of the Joule heat output ief .
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Fige 15. Diagram of working circuits of a physical model of
glass melting tanks
Fig. 16. Physical model of an electrically boosted glass

melting furnace "Unit Melter”




Fig. 17. Convection pattern of model liquid in the lengthwise
vertical section of the "Unit Melter" visualised

by injection of colour

rig. 18. Physical model of electrically boostad glass melting
tank furnace 130tper 24 hs.




Fig. 19.

Me. 20.

Visualized flow pattern in the lengthwise vertical
section of tanmk furnace shown in Fig. 18.

Common view on rhecelectric analogy device for
analog simulation of potential fields
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Pig. 21 Electric conductive paper sheet with nods
simulating positions of boosting electrodes
Fig. 22. Searching for anequipotential line at the electric
cotuctive surface of the sheet
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