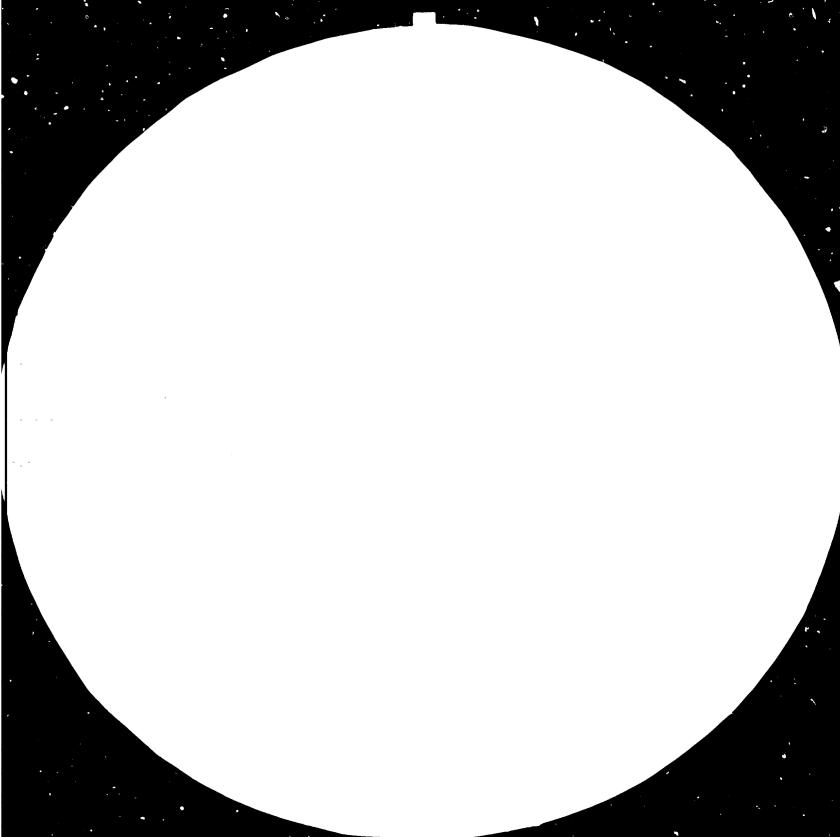


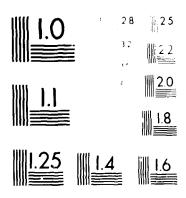
OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.


FAIR USE POLICY


Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

MICROCORY RESOLUTION TEST CHART

TAKTERTAS REBERSELE STANZAROS STANDAROS BERSELE AMATERIAL STAN AMATERIS STANZAROS TO AMATERIA

.

13994-F

GRGANISATION DES NATIONS UNIES POUR LE DEVELOPPEMENT INDUSTRIEL

Distr. LIMITEE

UNIDO/IO.597 11 septembre 1984

FRANCAIS

Original : ANGLAIS

Union africaine des chemins de fer Troisième Symposium

Libraville (Gabon), 22-24 octobre 1984

- STRATEGIE DE PRODUCTION DE RAILS, TRAVERSES ET AUTRES MATERIAUX EN ACIER POUR LES CHEMINS DE FER DANS LE CADRE DU DEVELOPPEMENT DE L'INDUSTRIE DU FER ET DE L'ACIER EN AFRIQUE *

> préparé par le secrétariat de l'ONUDI, basé sur les travaux du Conseiller principal sur les industries métallurgiques, et de F. Abou-Zaghla, consultant de l'ONUDI

^{*,} les appellations employées dans le présent document, et la présentation des données qui y figurent n'impliquent de la part du Secrétariat des Nations Unies au une prise de position quant au statut juridique de tel ou tel pays ou territoire, on de ses autorités, ni quant au tracé de ses frontières ou limites. Ce document est la traduction d'un texte qui n'a pas fait l'objet d'une mise au point rélactionnelle.

TABLE DEL MATTERES

	DETECTION
- •	TAL ACTON DES ACTIVITES ET PERSPECTIVES FUTURAS DE L'UAC
	L.L. Dregotives
•	AND THE CONTENT OF A'INDUSTRIE OF THE ECONOMISSING EN APRICE E. Situation monitors.
٠.	RUT MMANDAFIGUS S'ACTION FOUR LE DEVELOPPEMENT DE LA FIDUST RUIE EN AFRIQUE, EN RAPPORT AVEC LE DEVELOPPEMENT DES CHEMINS DU FER AFRICAINS
· .	CONCLUSIONS BY RECOMMANDATIONS
	ANNEXE : 1. Voies
	- Salad I) - Responses minérales d'Afrique, Prefration en 1980
	- In last rie sidérurgique dans les pay atrictins

1. INTRO JCTION

Dans sa résolution 32/160 l'Assemblée générale des Nations Unies a proclamé la Décennie des transports et des communications en Afrique, 1978-1988. L'assistance à apporter à l'ingénierie des chemins de fer en Afrique est l'une des pricrités les plus urgentes de la Décennie, en raison de son lien direct avec les problèmes économiques et sociaux auxquels les pays africains sont confrontés.

La densité du réseau ferrovizire africain est très faible. Pour 29 millions de km², le continent africain ne dispose que de 80 706 km de voies ferrées, ce qui donne une densité moyenne de 2,63 km par 1 000 km². Par opposition, l'Europe, qui possède d'autres moyens de transport hautement développés, a une densité ferroviaire qui atteint plus de 60 km de voies de chemin de fer par 1 000 km². En Afrique, dix pays n'ont pas de chemin de fer national ou de tronçon d'un chemin de fer international : Gambie, Niger, Somalie, Tchad, Ruanda, Burundi, République centraficaine, Jamahiriya Arabe lybienne, Lesotho, Guinée-Bissau et Guinée équatoriale.

Le réseau ferroviaire africain est constitué d'une série de réseaux secondaires, dont la plupart sont nationaux et souvent indépendants. En outre, ces réseaux n'ont pas tous des caractéristiques techniques identiques. Il existe neuf écartements de voies en Afrique, mais seulement trois sont répandues : écartement européen normal de 1,435 m sur 11 743 km (14,5 %); écartement africain standard de 1,067 m sur 49 473 km (61,3 %); écartement métrique de 1,000 m sur 15 472 km (19,2 %).

L'écartement normal européen est utilisé en Afrique du Nord, du Maroc à l'Egypte. L'écartement standard africain est celui du réseau des pays d'Afrique du Sud, y compris le Zaïre, le Soudan, le Ghana et le Nigéria. L'écartement métrique est utilisé par les chemins de fer d'Afrique de l'Ouest et d'Afrique de l'Est. L'adoption de 1,067 m comme écartement standard pour tout le continent faciliterait le raccordement des réseaux, l'unification, le développement et l'amélioration des services ferroviaires et des installations destinées à la production et à l'entretien de l'équipement.

Jusqu'à présent, aucune étude n'a été faite sur le développement des chemins de fer africains et des industries terroviaires, dans le contexte du développement de la sidérurgie du continent, ainsi que sur les besoins réciproques et les limitations en matière de développement. Par conséquent, l'initiative de l'Union africaine des chemins de fer (UAC), vient en son temps et l'étude de ce sujet serait bénéfique pour le développement de la sidérurgie et des chemins de fer en Afrique.

Dans la résolution du Plan d'action de Lagos, les Etats membres ont reconnu que les transports et les communications constituent un secteur important, du développement duquel dépend non seulement la croissance sectorielle, mais aussi l'intégration socio-économique de l'Afrique et la promotion des échanges commerciaux intra et extra-africains.

Reconnaissant l'importance particulière du secteur des transports et des communications pour l'économie africaine, la Conférence des ministres de la Commission économique pour l'Afrique a adopté en mars 1977 une résolution demandant l'instauration d'une Décennie des transports et des communications. Cette résolution a été adoptée tout d'abord par le Conseil économique et social, et ensuite par l'Assemblée générale des Nations Unies qui a proclamé la Décennie des transports et des communications en Afrique, 1978-1988. Cette résolution a été ultérieurement adoptée par la Conférence des chefs d'Etats et de gouvernement de l'OUA, à Monrovia, en juillet 1979.

Les principaux objectifs de la stratégie élaborée en vue de la Décennie ont été acceptés par la Conférence des ministres des transports, des communications et de la planification lors d'une réunion de la Commission économique pour l'Afrique, (CEA), en mai 1979, et les Etats membres ont décidé de prendre les mesures suivantes:

- a) promotion de l'intégration des infrastructures de transport et de communication, afin d'augmenter les échanges commerciaux intra-africains;
- b) réalisation de la coordination des différents systèmes de transport, en vue d'augmenter leur efficacité;
 - c) ouverture des pays n'ayant pas accès à la mer et des régions isolées;
- d) harmonisation des règlements nationaux et réduction au minimum des barrières physiques et non physiques dans le but de faciliter le mouvement des personnes et des biens;
- e) stimulation de l'utilisation des ressources humaines et matérielles locales; normalisation des réseaux et de l'équipement; recherche et dissémination de techniques adaptées au contexte africain pour la construction d'infrastructures de transport et de communication.
- f) promotion de l'industrie dans le domaine des équipements de transport et de communication, et
- g) mobilisation de ressources techniques et financières durant la Décennie, afin de promouvoir le développement et la modernisation des infrastructures de transport et de communication en Afrique.

Ces objectifs doivent être atteints grâce à la mise en oeuvre de projets classés en fonction de leur possibilité de répondre aux problèmes des transports et des communications, en Afrique, grâce aux dispositions suivantes :

a)

- i) projets régionaux;
- ii) projets sous-régionaux;
- iii) projets nationaux ayant un impact régional ou sous-régional;
- b) projets en faveur des pays les moins développés, continentaux, nouvellement indépendants, insulaires et de première ligne, et autres pays de l'Afrique du Sud;
 - c) projets intéressant d'autres pays.
 - Il a été décidé de mettre en oeuvre la Décennie en deux étapes :

PHASE I: 1980 à 1983

- mise en application continue de projets en cours;
- mise en ceuvre de projets déjà identifiés et d'études qui attendent d'être financés;
- identification de la faisabilité technique et études économiques portant sur d'autres projets; recherche de moyens de financement.

PHASE II: 1984 à 1988

- poursuite des projets entrepris durant la première phase;
- financement et mise en oeuvre de nouveaux projets;
- poursuite et identification d'autres nouveaux projets.

2. EVALUATION DES ACTIVITES ET PERSPECTIVES FUTURES DE L'UAC

La création de l'UAC en 1974 constituait une réponse au souhait exprimé par les pays africains de permettre aux chemins de fer de jouer leur plein rôle dans le développement économique du continent, compte tenu des avantages économiques et techniques de ce mode de transport terrestre :

- trafic lourd sur de longues distances;
- faible consommation d'énergie;
- génération d'activités économiques.

2.1 Activités actuelles

En 1976, la quatrième Assemblée générale de l'UAC a approuvé le programme d'action à court et à long terme. Ce programme se trouve dans différentes phases d'exécution et comprend :

a) Interconnection des réseaux ferroviaires

- Plan directeur pour les raccordements ferroviaires en Afrique (26 000 km);
- Décennie de transport et chemins de fer (1978-1988);
- Normalisation et standardisation du matériel roulant et de l'équipement;
- b) création de centres de formation sous-régionaux;
- c) centres UAC de documentation et de publication;
- d) groupement sous-régional des achats;
- e) organisation de réunions ferroviaires;
- f) création de groupes de travail compétents.

2.2 Perspectives

L'UAC a poursuivi sa politique de coopération avec différentes institutions sous-régionales, afin de favoriser le développement du secteur ferroviaire en Afrique. Dans ce cadre spécifique, la Communauté économique de l'Afrique de l'Ouest(CEAO) a demandé à L'UAC d'effectuer une étude de faisabilité relative à l'installation d'un atelier de construction ferroviaire dans la sous-région d'Afrique de l'Ouest. Cette étude de faisabilité sera suivie par une étude de

mise à exécution conformément au programme triennal d'investissement de la CEAO. Cette expérience doit être encouragée pour des raisons économiques évidentes, et parce que la construction de wagons n'exige pas l'utilisation d'une technologie avancée que les techniciens et ingénieurs africains ne maîtrisent pas encore entièrement l'UAC étudiera la possibilité d'installer les unités suivantes dans chaque sous-région;

- a) ateliers de fabrication de traverses (bois béton et métal);
- b) unités de production industrielle de ballast;
- c) selon la situation géographique des voies ferrées, l'UAC encouragera des expériences en matière d'utilisation de l'énergie solaire pour la signalisation, afin d'éviter les contraintes inhérentes aux sources énergétiques traditionnelles;
 - d) regroupement des achats;
 - e) création d'un centre de documentation ferroviaire;
 - f) création de centres de formation sous-régionaux;
 - g) amélioration des conditions d'exploitation des chemins de fer.

2.3 Statistiques

1) Il existe trois écartements de voies. L'écartement standard (1,435 m) est utilisé en Afrique du Nord et au Gabon, où une nouvelle voie ferrée est en construction. L'écartement métrique (1,067 m) est employé en Afrique de l'Est et en Afrique du Sud. L'écartement métrique (de 1,000 m) existe généralement en Afrique de l'Ouest et en Afrique Centrale. Les voies ayant des écartements inférieurs (à 1,000 m) sont en cours de remplacement.

- 2) L'Afrique dispose actuellement d'environ 100 000 km de voies ferrées. La plupart de ces lignes ont été construites avant 1950. L'emploi de la traction électrique (2 000 km de lignes électrifiées) n'est pas encore fort répandu. La traction électrique n'est couramment utilisée que par quatre ou cinq pays (Algérie, Maroc, Egypte, Zaîre, Zimbabwe).
- 3) La vitesse moyenne des trains est encore très faible : 30 km/h pour les trains de marchandises et 45 km/h pour les convois de passagers. Ces moyennes peu élevées résultent d'une géométrie inégale des voies, celles-ci ayant été construites il y a plus de cinquante ans.
- 4) Le transport de minerais constitue la majorité du trafic. Ces minerais sont exclusivement destinés à l'exportation. Le transport de produits agricoles vient en deuxième place. Le transport de passagers est particulièrement développé dans les pays d'Afrique du Nord. Les chemins de fer égyptiens transportent plus de 25 millions de passagers par an. Des efforts sont faits par d'autres pays afin de développer ce trafic.
- 5) La crise économique mondiale rend de plus en plus difficile l'exploitation des chemins de fer africains. Le financement destiné au renouvellement du matériel roulant et à la modernisation des voies ferrées se fait de plus en plus rare ou est accordé à des conditions défavorables. Dans de nombreux cas, les résultats d'exploitation révèlent un déficit considérable et certains chemins de fer ne survivent que grâce à l'intervention de l'Etat.
- 6) Malgré ces difficultés et l'existence d'une conjoncture économique défavorable, les chemins de fer qui sont considérés dans de nombreux pays comme étant l'épine dorsale de tout le réseau de transport continuent de mener une bataille en faveur du développement économique, dans le souci de promouvoir l'intégration des économies africaines.
- 7) Le tableau ci-dessous comprend les statistiques qui ont été rassemblées par l'UAC en 1979 sur la longueur totale des lignes et le matériel roulant, dans la sous-région africaine.

	Longueur de la ligne	Nombre de voitures	Nombre de wagons	Remarque
Afrique du Nord Afrique de l'Est Afrique de l'Ouest Afrique centrale	16 101 9 221 9 873 10 387	195 616 42 093 47 154 16 535	49 775 23 790 11 250 9 598	
Total 1979	45 582	301 398	94 413	
Total en 1984	50 000	5 000	100 000	Chiffres arrondis tenant compte de l'accroissement au cours des 5 prochaines années

Sur la base de ces statistiques, nous pouvons estimer les besoins des chemins de fer africains :

a) Rails: traverses

- Renouvellement des voies pour répondre à la demande actuelle, soit environ besoin de 25 000 km de rails et de la quantité de traverses nécessaire.
- 2. Construction d'environ 26 000 km de voies, afin de réaliser les objectifs du Plan directeur destiné à relier les pays africains.

b) Matériel roulant : produits sidérurgiques et pièces moulées

- Sections, profilés et tôles nécessaires au renouvellement des voitures et wagons (estimation : 5 000 voitures et 100 000 wagons).
- 2. Matériaux sidérurgiques nécessaires pour construire une quantité supplémentaire de voitures et de wagons, afin de répondre à l'augmentation de la demande, et pour la construction de nouvelles voies ferrées.
- c) Sur la base des statistiques indiquées ci-dessus, nous pouvons estimer que les besoins des chemins de fer africains, en matériaux sidérurgiques (rails, traverses, acier de construction et produits

semi-finis) destinés au nouveau système et à la réparation et l'entretien du réseau existant, représentent de 3 à 4 millions de tonnes par an.

3. STATUT ET DEVELOPPEMENT DE L'INDUSTRIE DU FER ET DE L'ACIER EN AFRIQUE

L'étude de tout secteur industriel devrait être effectuée d'une manière appropriée, dans un contexte mondial. Cette considération est tout aussi, voire même plus importante dans le cas d'une industrie à forte intensité de capitaux telle que l'industrie du fer et de l'acier. Il sera par conséquent indispensable de dégager les caractéristiques essentielles de la sidérurgie mondiale, et de procéder ensuite à une étude de la sidérurgie des pays en développement (Afrique, pays arabes, etc.) en se référant aux activités d'assistance technique de l'ONUDI dans la sidérurgie des pays et des régions en développement.

L'étude de la sidérurgie, à l'échelon national, régional ou interrégional est inévitablement liée aux plans futurs et à leurs possibilités d'application. C'est dans ces domaines spécifiques que des contraintes, évidentes ou cachées, existent dans les pays en développement, car ceux-ci sont caractérisés par une pénurie de capitaux, de personnel qualifié et de base technologique.

3.1 Industrie sidérurgique - situation mondiale

La production mondiale d'acier brut a plus que doublé au cours des treize dernières années, passant de 346 millions de tonnes en 1960 à 870 millions en 1983. Il est évident que le taux de croissance a été inégal, selon les pays producteurs concernés. La contribution du Japon au taux de croissance global a été extraordinaire. La grande question qui se pose pour l'avenir est de savoir quel sera le taux de croissance de l'industrie sidérurgique des pays en développement. On considère souvent que la consommation d'acier est un indicateur du niveau de vie d'une nation. Si cela est le cas, nous pouvons affirmer que le monde manque encore d'une quantité considérable d'acier. Actuellement, la Suède a la plus forte consommation d'acier par habitant (700 kg), suivie de près par les Etats-Unis, puis -entre autres pays- par le Royaume-Uni, avec une consommation per capita de 400 kg. A la queue du peloton nous trouvons les nombreux pays en développement qui n'utilisent que quelques kilogrammes par habitant, et parfois même moins d'un kilo. Si les pays en développement augmentaient leur consommation par habitant - ne fût-ce que de quelques kilos - la quantité d'acier brut supplémentaire augmenterait dans des proportions énormes.

L'industrie du fer et de l'acier est caractérisée par son intensité de capitaux avec une valeur spécifique de 400 à 600 dollars 1/ pour chaque tonne/an de capacité de production de lingots. De plus, dans certains cas, et plus

^{1/} Ce chiffre approche actuellement 1 000 dollars

particulièrement dans les pays en développement, des investissements considérables doivent être effectués dans l'infrastructure. Il en découle que l'installation d'une aciérie intégrée ayant une capacité de 1 million de tonnes de lingots/an nécessitera un investissement de 400 à 600 millions de dollars.

Les investissements supplémentaires à effectuer en "amont" (par exemple achat des intrants nécessaires), et en "aval" (transformation de l'acier en produits finis) devront également être pris en considération et peuvent parfois atteindre un niveau d'investissement équivalent. Une partie importante des capitaux investis dans les usines sidérurgiques portent sur l'équipement lourd et les bâtiments. Par conséquent, l'industrie du fer et de l'acier est un acheteur important de biens d'équipement. Cette nécessité peut constituer un fardeau considérable pour les pays en développement et grever leur balance des paiements.

La production sidérurgique mondiale est supposée se développer à l'avenir, comme par le passé, car l'acier est le matériau industriel le plus fondamental. Cette croissance à long terme semble assurée, ne fût-ce qu'en raison de la tendance à l'industrialisation. Celle-ci augmentera la demande d'acier dans de nombreux pays en développement. Toutefois, cette tendance à la hausse continuera de masquer les changements profonds qui se produisent dans la structure de la consommation et de la production mondiale d'acier.

L'augmentation de la production mondiale d'acier a été spectaculaire au cours du dernier siècle. En 1870 elle avoisinait 10 millions de tonnes métriques; cinquante ans après, en 1920, elle avait pratiquement augmenté d'un facteur de 8 pour atteindre 75 millions de tonnes métriques. En 1983, la production mondiale atteignait 870 millions de tonnes métriques.

Lorsqu'une nation commence à s'industrialiser, l'augmentation initiale de la demande d'acier reflète probablement les investissements considérables qui ont été effectués dans l'infrastructure économique: développement d'un réseau de transport et de communication, production et distribution d'électricité et autres facilités essentielles. Un encouragement plus vif de la consommation d'acier provient du développement industriel lui-même, ce développement étant à la fcis la cause et le premier bénéficiaire de l'amélioration de l'infrastructure. Au fur et à mesure que la croissance économique "démarre" et que l'affluence économique touche des couches de plus en plus vastes de la population, la demande de biens de consommation s'accroît (voitures, appareils électriques, etc.), favorisant à son tour l'utilisation de l'acier.

Il est probable que la demande d'acier sera satisfaite dans un premier

temps par les importations. Ensuite, lorsque les besoins augmentent, les pays s'efforcent de passer à la production nationale, initialement sans doute pour les produits de grand volume. L'installation d'une sidérurgie nationale sera de plus en plus préconisée, considérant qu'elle stimulera les industries fournisseuses et consommatrices, créera des emplois et permettra aux pays qui s'embarquent dans un tel programme d'épargner leurs maigres ressources en devises étrangères. Ce développement peut sembler attrayant, pour des raisons d'autosuffisance et de défense, et à cause du prestige qui entoure les activités des laminoirs.

Les perspectives immédiates et à long terme de la sidérurgie sont étroitement liées aux échanges mondiaux d'acier. Une partie importante de la production mondiale d'acier est exportée. En 1955 près de 13 % de la production était exportée. Aujourd'hui, ces exportations constituent environ 23 %. Le Japon qui est le plus gros exportateur mondial a exporté presque 37 % de sa production, suivi par la République fédérale d'Allemagne. La Belgique exporte plus que les trois cinquièmes de sa production et est en même temps un importateur de produits sidérurgiques. L'Italie, la France, le Luxembourg et la Tchécoslovaquie exportent également une partie importante de leur production.

Les échanges d'acier se sont considérablement développés, cet accroissement étant principalement dû au Japon. La manière concertée avec laquelle les six principaux producteurs d'acier du Japon ont réussi à placer leurs produits "tous azimuts", en particulier en Europe occidentale et aux Etats-Unis, a perturbé les programmes de production sidérurgique de plusieurs pays.

Il ne faut pas chercher bien loin les causes de la "vague" japonaise d'exportation. Le coût unitaire de production au Japon représente encore à l'heure actuelle 40 % du coût unitaire aux Etats-Unis, 45 % de celui de l'Allemagne occidentale, et de 60 à 65 % de celui de la France et le Japon continue d'améliorer sa position. Le Japon, qui a adhéré au groupe des pays producteurs d'acier plus récemment que les autres nations industrialisées possède un équipement moderne, scientifiquement avancé et supérieur technologiquement à celui des autres pays.

En 1977, il fallait aux sidérurgistes américains quelques 15 heures d'ouvrier pour produire une tonne d'acier, contre 11 heures en 1974. Pour l'Allemagne occidentale : environ 37 heures d'ouvrier en 1955, mais seulement 20 heures en 1974. Dans le cas de la France, les heures d'ouvrier nécessaires pour produire une tonne d'acier sont passées de 35 à 26. Cependant, en 1974, la productivité des sidérurgistes anglais est restée presque constamment au niveau de 35 heures. Dans le cas du Japon, les heures d'ouvrier nécessaires

pour produire une tonne d'acier sont tombées de 69 en 1955 à 9 en 1974 ! Ceci suffit à expliquer pourquoi le Japon a progressé aussi rapidement, alors que des pays comme le Royaume-Uni demeuraient au niveau où ils se trouvaient il y a vingt ans.

Les exportateurs principaux sont conscients du fait que les pays en développement d'Asie occidentale et d'Afrique, qui s'orientent vers des niveaux économiques plus élevés, continueront de favoriser la production d'acier des pays exportateurs. Etant donné que la période de gestation est assez longue avant qu'une aciérie soit en mesure de démarrer la production, les pays d'Amérique latine, d'Afrique et d'Asie occidentale continueront à importer de l'acier.

La croissance des sidérurgies du tiers monde constitue un effet structurel et un facteur important dont il convient de tenir compte lorsque l'on parle de la production sidérurgique mondiale.

Production d'acier du monde occidental en 1985, prévision de l'ONUDI 1/

	1974 1985 m. tonnes % m. tonnes		7.	1974-1985 Taux de croissance				
Pays industrialisés	462	93	613	83	2,6			
Pays en développement	36	7	125	17	12,0			
Total pour le monde occidental	498	100	738	100	3,6			

^{1/} Résumé de la 68 ème Conférence annuelle de l'IISI.

La plupart des entreprises sidérurgiques des pays du tiers monde seront étatiques et orientées vers l'exportation. Les gouvernements des pays industrialisés s'efforceront d'aider le développement du tiers monde en découpant les grands marchés sidérurgiques. A cet effet, il sera indispensable que les grands exportateurs limitent leur intervention sur les principaux marchés sidérurgiques et acceptent la participation des producteurs du tiers monde.

La demande d'acier augmentera à un rythme plus lent que précédemment, et la production correspondra à la demande. La structure de la production se transformera et l'on assistera à un déplacement de la production, des pays industrialisés vers les pays en développement.

Une diversification existe déjà dans le secteur privé appartenant à d'autres industries : les produits sont plus sophistiqués et les technologies, plus complexes.

Depuis les années 1950, de nombreux développements technologiques se sont produits au sein de la sidérurgie. Le problème de l'implantation des usines a été étudié afin de réduire les coûts de construction et d'exploitation, et pour tenir compte avant tout des prescriptions en matière de contrôle de la pollution. Les grandes unités de production sont préférées, car elles permettent de réduire les investissements et les frais d'exploitation par tonne d'acier. Les tableaux suivants ont pour but d'indiquer les investissements effectués par d'importantes entreprises sidérurgiques sélectionnées. Les dimensions du haut fourneau de Fukuyama augmentent lors de chaque phase d'expansion.

		Volume	intérieur	hau	t fourneau	(mètres	cube)
Phase	1			2	004		
Phase	2			2	828		
Phase	3			3	016		
Phase	4			4	197		
Phase	5			4	400		

La structure moyenne des investissements des quatre principaux pays producteurs d'acier, durant la période 1971-1975, reflète l'évolution des besoins de la sidérurgie en capitaux.

		Capacité tonnes métriques par an	Investissement (million de dollars)
1.	Etats-Unis d'Amérique	150	1 850
2.	Japon	144	2 880
3.	République fédérale d'Allemagne	63	774
4.	France	34	860

Les coûts d'investissement de certaines grandes aciéries sont indiqués ci-dessous:

Pays	Etats-Unis d'Amérique	Japon	France	Japon	Japon
Société	Bethlehem	Kobe	Usinor	NSC	NKK
Aciérie	Burns Hbr.	Kakogawa	Dunkerque	0ita	Fukuyama
Cap. Mtpa	4,0	6,0	8,0	8,0	16,0
Construction	1964-75	1968-73	1960-74	1971-76	1963-73
Coût actuel	$\frac{1}{2}$	$\frac{1}{2}$	\$ 1,1	\$ 2	\$ 2
	milliard	milliard	milliard	milliard	milliard
Coût éventuel en 1976	\$ 3 1 2	\$ 3 1 /2	$\frac{1}{2}$	\$ 4	\$ 8
En 1970	milliard	milliard	milliard	milliard	milliard

Analyse succinte de la situation des pays en développement du point de vue de la production et de la consommation d'acier

Nous pouvons résumer la situation des pays en développement de la manière suivante :

a) Les pays en développement ont augmenté leur part de la production mondiale d'acier brut (lingots), qui est passée de 1,5 % en 1950 à 11 % en 1983;

En 1983, leur contribution à la production mondiale était d'environ 104 mégatonnes, soit 11 %; alors que leur part de la consommation s'élevait globalement à 128 mégatonnes (15 %);

- c) La production et la consommation par habitant, dans ces pays, est extrêmement faible (environ 20 à 30 kg respectivement);
- d) Même les plus développés des pays en développement ont des indices par habitant nettement inférieurs à ceux des pays industrialisés : environ 100 kg et 400-600 kg respectivement;
- e) Seuls quelques pays en développement (environ treize) situés en Afrique, Asie et Amérique latine ont construit des aciéries intégrées, mais de faible capacité;
- f) La production de fer et d'acier des pays en développement a augmenté d'environ 10 % par an depuis 1950, tandis que la consommation apparente a augmenté d'environ 8 %;
 - g) Les pays en développement dépendent encore des importations pour

satisfaire un tiers de leurs besoins en acier, soit environ 35 mégatonnes/an;

- h) Les pays en développement sont d'importants exportateurs de matières premières vers les pays industrialisés. Ils fournissent environ 125 mégatonnes par an, soit 19 % de l'ensemble du minerai de fer consommé par la sidérurgie (à comparer avec leur part de 11 % de la production mondiale d'acier). Etant donné que le minerai de fer qu'ils exportent est de très haute qualité, leur production de minerai représente environ 25 % du fer contenu dans la production mondiale de minerai;
- i) De nombreux pays en développement déployent actuellement des efforts considérables pour planifier, installer cu développer leur industrie du fer et de l'acier, celle-ci étant généralement considérée comme hautement prioritaire;
- j) Le degré d'autosuffisance (pourcentage de la demande couvert par la production locale) atteint durant ces dernières années est grossièrement estimé comme suit : 73 % pour l'Amérique latine, 56 % pour l'Asie, 12 % pour le Moyen-Orient, et 7 % pour l'Afrique.

3.2 L'industrie du fer et de l'acier en Afrique

La consommation courante d'acier par habitant, en Afrique, est l'une des plus faible dans le monde : elle est estimée à 8 kg, à comparer avec la moyenne de 250 à 300 kg enregistrée dans les pays industrialisés. La consommation d'acier en Afrique concerne principalement les produits suivants : barres RCC, largets, profilés légers de laminage, fil laminé, rails, tôles fortes et tôles. Il est projeté que la consommation augmentera selon un taux de croissance annuel de 9 à 10 %. Ceci signifie que la consommation totale d'acier en Afrique dépassera 60 millions de tonnes en l'an 2 000. Cette projection semble toutefois pessimiste. Le taux de croissance est relativement faible lorsque les pays se trouvent dans une phase initiale de développement. Cependant, ce taux est plus que suffisant pour la création d'une industrie sidérurgique dans chacun des pays africains et dans les sous-régions. Il convient de tenir compte des économies d'échelle; les unités de production devraient par conséquent être réparties sur une base sous-régionale en tenant compte des possibilités de développement de l'industrie sidérurgique. Cette coordination permettra une accélération du taux de croissance. Il en résultera que la consommation d'acier pourrait dépasser trois fois le chiffre mentionné ci-dessus pour atteindre un total de 180 millions de tonnes en l'an 2000. Certains pays africairs disposent de réserves abondantes en minerai de fer de qualité élevée, en pétrole et gaz naturel.

Le charbon de bois peut être considéré pour la fusion de l'acier dans

les pays qui n'ont pas de ressources en charbon, mais qui possèdent des forêts et des programmes appropriés de développement forestier. La capacité annuelle des aciéries qui sont en exploitation dans les pays membres de l'Organisation de l'Unité africaine est actuellement nettement inférieure à deux millions de tonnes. Cette capacité est supposée atteindre 15 millions de tonnes vers 1985. Ici, une comparaison s'impose avec la situation qui prévalait en 1950. A cette époque la production annuelle totale d'acier était inférieure à trois millions de tonnes; vers le milieu des années 1950, il était souvent considéré que la capacité de la sidérurgie mondiale était arrivée à un point de saturation et que les pays en développement pourraient, par conséquent, importer la totalité de leurs besoins en acier, à partir des pays disposant d'une industrie sidérurgique avancée. Il était estimé, en outre, que les pays en développement ne devaient pas s'engager dans un secteur à force intensité de capital caractérisé par un niveau technologique élevé. L'acquisition d'une sidérurgie était considérée comme étant au-dessus des moyens financiers et techniques des pays en développement. Cependant, en 1970, la capacité annuelle de production d'acier des pays en développement a atteint 27 millions de tonnes. L'accroissement de la capacité mondiale d'acier brut a été extraordinaire: 180 millions de tonnes pendant la deuxième guerre mondiale; 200 millions durant l'après-guerre, pour atteindre actuellement une production annuelle dépassant 860 millions de tonnes. Cet accroissement reflète la croissance gigantesque de la sidérurgie mondiale.

Quels sont les chiffres de production d'acier pour l'Afrique ? Il est à noter qu'ils sont à un niveau très faible, comme indiqué par les statistiques reprises ci-dessous relatives à l'ensemble de l'Afrique.

Production d'acier en Afrique (x 1 000 tonnes)

Afrique	1964	1966	1968	1970	1973	1981	1983	1984 E
	3 269	3 503	4 312	5 346	6 405	10 860	11 850	11 970

La croissance de la consommation d'acier et de la production locale, en Afrique durant la période 1950-1982 à un taux composé (pourcentage par an) a été estimée à 5,95 % et 9,78 % respectivement. Le pourcentage de la consommation régionale d'acier couvert par la production régionale, en Afrique, de 1950 à 1982, a été dérivé pour obtenir une valeur de 3 en 1950, 5 en 1960 et 1965, 8 en 1970, 6 en 1972 et 11 en 1982.

Du point de vue démographique, seuls cinq pays (Ethiopie, Zaîre, Gambie, Ouganda et Tanzanie) ont une population de plus de dix millions d'habitants. Deux pays africains seulement ont un niveau de consommation d'acier supérieur

à 100 000 tonnes, et cinq pays consomment plus de 50 000 tonnes/an.

En Afrique centrale, seul le Zaîre a une consommation modeste d'acier qui justifie la présence d'une petite aciérie fonctionnant sur la base des matières premières locales. La consommation d'acier du Gabon représente environ 80 000 tonnes/an. L'Ethiopie, avec une population de 26 millions d'habitants dispose d'un marché potentiel considérable, mais ne produit pratiquement pas d'acier. Le Kenya développe actuellement son industrie, et la consommation d'acier est en augmentation. La Zambie (population : 4 millions et demi) a industrialisé dans une certaine mesure sa région septentrionale, où se trouvent les gisements de cuivre, et la consommation d'acier s'accroît.

Dans les pays d'Afrique de l'Ouest, il n'existe pas de production sidérurgique, à l'exception de petites aciéries situées au Chana et au Nigéria, basées sur la ferraille et équipées de mini-laminoirs pour acier marchand. La consommation d'acier, au Nigéria, s'est généralement située aux alentours de 650 000 tonnes par an, suivi par la Côte d'Ivoire avec une consommation dépassant 100 000 tonnes. Des projets sont mis en oeuvre au Nigéria pour l'installation d'une aciérie intégrée utilisant le procédé de réduction directe de l'éponge de fer - arc électrique. Cette usine produira 500 000 tonnes/an d'éponge de fer pour l'exportation et 500 000 tonnes/an de semis pour le marché intérieur. Le gaz naturel sera utilisé pour la production d'éponges de fer. Ce projet sera mis en application avec la participation de C. Itoh (Japon), en ce qui concerne la commercialisation et le financement, et de Korf (RFA) pour la technologie.

Un accord a été conclu il y a plusieurs années entre le gouvernement zaîrois et FINSIIER (Italie) pour que l'association italienne participe à la gestion de la Société nationale de sidérurgie, à Maliku, durant les dix premières années d'exploitation. Cette sciérie a une capacité de 120 000 tonnes/an. Des projets identiques sont actuellement en cours en Egypte.

L'Organisation générale égyptienne pour les industries métallurgiques (EGOMI) a élaboré un plan exhaustif à long terme pour l'utilisation des ressources minérales utilisées par l'industrie du fer et de l'acier en République arabe d'Egypte (RAE), dans le but de répondre à la demande croissante de produits sidérurgiques, jusqu'en 1985. Le complexe sidérurgique de Helwan qui est la seule aciérie intégrée du pays - a récemment augmenté sa capacité initiale d'acier brut, qui était de l'ordre de 300 000 tonnes/an, pour atteindre environ un million et demi de tonnes par an, en deux phases (chaque phase étant basée sur l'addition de 600 000 tonnes/an de capacité). Cette expansion a été réalisée grâce à l'assistance technique de l'URSS. D'autres aciéries de

la RAE sont basées sur la fusion de la ferraille dans des fours à arc électriques et dans des fours Martin basiques (charge à froid, dans tous les cas). Ces usines sont équipées de trains à fer marchand et de fonderies. La capacité totale des mini-aciéries non intégrées, c'est-à-dire Delta Steel, Egyptian Copper Work et National Metal Industries Co. est de l'ordre de 300 000 tonnes d'acier liquide par an.

Les petites aciéries égyptiennes utilisent des charges à froid composées de ferraille et de fonte; elles sont équipées de fours Martin basiques et de fours à arc électriques. Delta Steel produit principalement des aciers alliés et à outils, tandis que les autres aciéries fabriquent des aciers non alliés au carbone qui sont laminés en barres (Rebars), etc.

Le <u>Ghana</u> possède une petite aciérie fonctionnant avec des fours à arc.

La <u>Côte d'Ivoire</u> possède uniquement des réserves importantes de minerai de fer de faible qualité.

Au <u>Libéria</u>, la demande de fer et d'acier a considérablement augmenté durant ces dernières années. En 1967 l'ONUDI a parrainé une étude détaillée de la sidérurgie au Libéria. Ce pays a considérablement développé son industrie extractive pour le minerai de fer, ainsi que ses activités de bouletage. La production d'acier brut de certains pays afro-arabes est indiquée ci-dessous (x 1 000 tonnes/an).

		1970	1974	1981	1983	1984 E
Algérie		330	410	2 030	2 060	2 060
Tunisie		60	90	200	200	200
RAE		300	270	1 860	1 890	1 890
Libye				20	20	20
	Total	690	770	4 110	4 170	4 170

Les pays afro-arabes ayant une population de plus de 15 millions sont : République arabe d'Egypte, Maroc, Algérie et Soudan. La consommation totale d'acier brut de ces pays s'est située généralement au niveau de cinq millions de tonnes. L'Algérie est un pays à vocation agricole qui dispose d'une industrie pétrolière de premier rang. Les réserves potentielles de minerai de fer sont également considérables et l'Algérie possède des aciéries intégrées (El Hajdar). Ces aciéries ont considérablement augmenté la production d'acier au cours des dernières années. La Mauritanie a des réserves satisfaisantes de minerai de fer de bonne qualité, mais elle n'a pas d'industrie sidérurgique.

Analyse chimique moyenne de blocs de minerai de fer de qualité élevée/ concentrats/ boulettes/ de certains pays africains sélectionnés 1/

Pourcentage

			•				
Gros minerai	Fe	sio ₂	A1203	Ca0	P	S	Mn
Algérie	52,56	2-6	0,6-1,5	1,8	0,01 - 0,03	-	0,2-1,6
Gabon	64,8	1,7	2,0	7,0	0,15	-	-
Libéria	65,8	2,5	1,0	-	0,05	0,005	••
Mauritanie	65,0	4,3	1,2	0,2	0,03	0,01	0,12
Concentré de haute qualité ((fines)						
Fine du libéria	65,1	4,5	1,24	-	0,09	0,10	-
Concentré de fines du Libéria	64,4	5,3	0,51	-	0,037	0,022	-
Fines de Mauritanie	62,7	7,2	1,6	-	0,018	0,002	
Boulettes - haute qualité							
Libéria	64,5	4,2	2,0	1,1	0,06	0,003	$\frac{\text{Mgo}}{0.06}$
Матос	65,5	2,6	1,2	0,8	0,006	0,008	0,97

¹/ Marché mondial des Minerais de fer, ONU, New York, 1968 et Metal Bulletin 1969.

Il est nécessaire de fournir certaines données concernant les coûts en capital et les coûts de production de l'acier, sur une base moyenne, en tenant compte des conditions qui prévalent en Afrique. Les coûts de production de l'acier, selon les différents procédés utilisables en AFrique, en tenant compte des matières premières, sont indiqués dans les tableaux suivants en supposant des coûts unitaires et des normes raisonnables, de façon à pouvoir dégager des tendances générales.

Analyses	chimiques	moyennes	des	matières
	oremières (pourcenta	ige)	

7.	Fe	sio ₂	A1203	Ca0	Mg0	S	F.C.	Ash
Boulettes	65	2,4	1,5	_	_	-	_	_
Minerai en blocs	52	7,0	3,5	1,8	0,4	-	-	-
Chaux pour haut fourneau	-	3,5	С,6	50,0	1,0	-	-	-
Dolomite	1,4	1,8	1,0	31,0	19,0	~	-	-
Coke	1,0	4,0	2,9	0,3	0,2	1,0	89	10

Coûts unitaires (dernier prix en dollars E.-U., par tonne)

Boulettes	65 % Fe	28	
Minerai en bloc	52 % Fe	19	
Fines	52 % Fe	10	
Minerai au manganès	e		
(haute qualité)		65	
Chaux/dolomite		7	
Fluorspar		120	
Coke pour haut four	neau	100	
Coke concassé		50	
Fe Mn		450	
Fe Si		400	
Gaz naturel 106 Kca	1	1,0	
Energie Kwh		0,1	

Estimation des coûts de production pour différents procédés (approximations moyennes) 1/

	rédi	cédé gazeux de uction directe four électriqu	Hyl	Fusion de la arc électriq et élaborati par le procé	ue immergé on de l'acier	Elaboration l'acier pas LD en haut	r procédé
Production d'acier liquide x 1 000 t/an	300	1 000	2 000	3 000	600	1 000	2 000
Coût du capital en dollars des Etats-Unis par tonne/an de capacité d'acier liquide	100	86	80	150	135	119	109
Coût de production en dollars des Etats-Unis/tonne							
Eponge de fer	39	37	35	-	-	-	-
Métal chaud	-	-	-	78	77	70	68
Acier liquide	70	69	67	99	96	87	84
Frais généraux en dollars des Etats-Unis/tonne 2/	10	8,5	8,0	15	14	11	10,0
Coût total de production d'acier liquide - dollars des Etats-Unis/ tonne	80	77,5	75	114	110	98	94

^{1/} Ces estimations ne sont pas liées à un pays africain particulier, mais donnent des moyennes approximatives qui varient d'un pays africain à un autre.

- intérêt du capital de 4,5 % sur 50 % du capital
- 5 % d'amortissement
- intérêt du capital circulant de 6,5 % pour trois mois de coût de production
- les frais généraux sont calculés en ajoutant 30 % au coût du capital pour couvrir l'infrastructure (transport des matières premières, etc.)

 $[\]underline{2}/$ Les charges fixes sont basées sur les éléments suivants :

Réserves de minerais en Afrique 1/

Teneur en Fe	Réserves prouvées millions de t	Réserves potentielles (non prouvées) millions de t	Total 1 + 2 millions de t	
30 - 67	6 800	24 500	31 300	

^{1/} Réserves mondiales de minerais de fer, Nations Unies, 1970

Degré de qualité des minerais de fer dans certains pays africains choisis

Pays	Réserves millions tonnes	Fe Z	sio ₂ z	A1203 Z	Ha X	P %	s z	Autres %
Mauritanie	465	65,0	4 - 3	1,2	0,12	0,03	0,01	-
Maroc	149	60,0 43,0	7 9,6	1,2	2,3	0,05 0,01	1,5	14,6 BaO 2,2 CaO
		52,2	8	5,9	0,2	1,04	0,03	
Algérie	1 579	¥0,0 - 56	3,8	-	2,0	-	0,5	3,4 Cao + 1,0 Ng Q
		49 - 54	4,9	4,3	-	0,8	-	0,3 MgO + 0,3 Ti
Tunisie	75	54,0 58,0	4,0 4,0	0,8 3,7	2,1 2,0	0,03 0,10		0,5 CaO 0,3 CaO
Libye	3 525	49,0 50,5 51,75	10,9 7,05 6,15	4,9 4,6 4,9	- - -	0,94 1,03 0,92	-	-
RAE	433	46,9 49-59 43	14,10 2,6-9,1 20-25	na Na	2 - 4,5 NA NA	0,6 - 1,0 0,9 - 0,6 NA	na na	
Soudan .	61	37-61	NA NA	NA.	NA	NA.	NA	NA

Ressources	en	pétrole	et	en	gaz	en	Afrique	- 1973	1/
				_					_

Pays	Pétrole (millions de m³)	Gaz (milliards de m³)
Algérie	7 550,00	2 960,00
Angola (y compris Cabinda)	192,00	28,40
Congo (Brazaville)	800,00	
Dahomey	832,00	213,00
RAE	100,00	
Gabon	176,00	198,00
Libye	4 864,00	781,00
Maroc	160,00	40,00
Nigéria	2 400,00	1 136,00
Tunisie	160,00	28,40
Zaīre	80,00	
TOTAL	17 314,00	5 304,80

Au I er janvier 1974, (Algérie, Angola, Congo, RAE, Gabon, Lybie, Maroc, Nigéria, Tunisie et Zaîre) l'Afrique disposait de réserves de pétrole brut et de gaz naturel estimées à 10 701,34 millions de m³, et de 5 315,59 milliards de m³ respectivement.

Estimations du gaz naturel brûlé dans certains pays africains - millions de m³ 2/

		1965		19	ions)	
Pays	produit	quantité	proportion	produit	quantité	proportion
		brû	lée		brû	ilée
Algérie	3,97	2,10	53 %	11,33	2,27	20 %
Libye	8,61	8,61	100 %	17,85	12,24	70 %
RAE	0,31	0,25	84 %	2,83	1,42	50 %

^{1/} Oil Statistics - Government of India, Jan.-March 1973, Petroleum Information Service, New Delhi

Les capacités actuelles de l'injustrie du fer et de l'acier en Egypte, ainsi que l'expansion prévue pour répondre aux besoins des chemins de fer africains, sont indiqués ci-dessous.

^{2/} Développement et utilisation des ressources en gaz naturel et leur rôle vital pour l'accélération du développement économique, par Abdel Dayan A. El-Sani, conseiller à la planification et au développement, Koweit.

Capacités de production de l'Egypte

(Production actuelle de profilés et de tôles fortes)

D 6:34	Dimensions en mm						
Profilés	Profilé léger	Moyen	lourd				
Billettes et barres carrées	40 x 40 à 60 x 60	80 x 80	100 x 100 à 130 x 130				
Barres et acier rond	13, 16, 19	-	50 à 125				
Barres plates et largets	6 x 30 8 et 10 x 40	-	30 x 120 8 à 12 x 300				
Cornières égales	30 x 30 40 x 40 50 x 50	60 x 60 70 x 70 75 x 75	80 x 80 90 x 90/100 x 100 120 x 120/150 x 150				
Cornières inégales	-	-	50 x 100 80 x 120 100 x 150				
Fer à U	-	80, 100	120, 140, 160 200, 260				
Poutres en double T	-	120	140 160 200 260				
Rails	-	-	18, 37, 52				
Traverses	-	-	(Pour rails) 47, 52, 54				
Eclisses	-	-	(Pour rails) 47, 52, 54				

Rc. Barres en béton armé Rails identifiés en kg/m Des traverses pour rails de 18 kg/m sont également fabriquées, mais par formage à froid

	Dimensions (mm)					
T21 - 6 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	Epaisseu:	Largeur	Longueur			
Tôles fortes	5 à 100	1 250, 1 500	3 000, 6 000			

Capacités de production de l'Egypte (à atteindre en 1987)

(Production future de profilés et de tôles fortes)

	Dimensions (mm)						
	Profilé léger	Moyen	Lourd				
Billettes et barres carrées	20 x 20 à 30 x 30	40 x 40 à 80 x 80	100 x 100 à 130 x 130				
Barres (R.C.) et acier rond	13, 16, 19, 22	40, 45, 50 60, 65, 70	80 à 130				
Barres plates et largets	6 x 30, 8 et 10 x 40	8 x 50	30 x 120 8 à 12 x 300				
Cornières égales	25 x 25 30 x 30 40 x 40	50 x 50, 60 x 60 70 x 70, 75 x 75 80 x 80	90 x 90, 100 x 100 120 x 120, 150 x 150 180 x 180, 200 x 200				
Cornières inégales	-	-	50 x 100 80 x 120 100 x 150				
Fer en U	-	80, 100	120, 140, 160 200, 220, 240 260				
Poutres IPE	-	-	140 à 400				
Poutres IPB	-	-	140 à 200				
Rails	_	18	37, 52				
Traverses	-	-	47/52, 54				
Eclisses	-	-	47, 52, 54				

	Dimensions (mm)				
Tôles fortes	Epaisseur	Largeur	Longueur		
	50 à 100	1 250, 1 500	3 000 - 9 000		

4. RECOMMANDATIONS D'ACTION POUR LE DEVELOPPEMENT DE L'INDUSTRIE
DU FER ET DE L'ACIER EN AFRIQUE EN CONJONCTION AVEC LE
DEVELOPPEMENT DES CHEMINS DE FER AFRICAINS

En élaborant des recommandations pour le développement de l'industrie du fer et de l'acier en Afrique, il convient de réaliser que ces recommandations ne peuvent pas couvrir tous les aspects du problème, en termes absolus. Nous cherchons à attirer l'attention sur certains problèmes et facteurs qui revêtent un caractère fondamental pour le développement de la sidérurgie, et de trouver une méthode pragmatique pour les traiter.

a) L'installation et le développement de l'industrie sidérurgique sont basés sur un ensemble de projets complexes. Certaines activités doivent obligatoirement précéder la mise sur pied d'une industrie sidérurgique, d'autres doivent être mises en application au moment de l'installation d'une aciérie, et certaines activités interviennent après l'acquisition de l'équipement et la mise en exploitation de l'usine. Par conséquent, des études de faisabilité technique et économique doivent être effectuées avant la création d'une sidérurgie. Ces études couvrent de nombreux aspects, entre autres : évaluation des ressources en matières premières et énergie; procédés technologiques et choix d'une technologie appropriée; caractéristiques générales de l'usine et des services; demande et sélection d'une gamme de production; coût du capital et coûts de production; financement; personnel technique qualifié et gestion efficace des activités commerciales; maintenance de l'aciérie et infrastructure, etc. Toutes ces études doivent précéder l'installation d'une industrie sidérurgique.

L'installation d'une aciérie nécessite une autre série d'activités, <u>interalia</u>: génie civil et fondations; travaux de structure et fondations; travaux de structure et montage; facilités et services; acquisition des unités de production et essais de démarrage. L'exploitation d'une industrie sidérurgique et les différentes opérations technologiques requièrent une autre série d'activités adéquatement planifiées et bien coordonnées, portant sur la production de fer et d'acier, ainsi que sur une gamme de produits basées sur une utilisation maximale de la capacité de production et le respect des normes optimales et des frais d'exploitation.

Dans tous ces domaines, une planification exhaustive et des actions concertées sont essentielles pour assurer un lien entre les activités, afin d'assurer la coordination des résultats. Les pays africains, comme les autres pays, industrialisés ou en développement, doivent élaborer des plans

pour la sidérurgie et pour obtenir des résultats optimaux. Ces pays doivent s'efforcer d'établir un lien entre la sidérurgie et le développement global de la nation, l'objectif étant d'utiliser au maximum les ressources et les aptitudes locales.

- b) Lors de la préparation de <u>plans</u> de développement économique, y compris ceux qui concernent la sidérurgie, il s'avérera inévitablement nécessaire de formuler une <u>stratégie</u> globale pour la croissance de l'industrie du fer et de l'acier et de préparer un <u>plan directeur/national</u> pou: la sidérurgie des différents pays, et de coordonner ces plans directeurs au niveau régional, d'une manière aussi pragmatique que possible.
- c) Dans le sillage de l'élaboration de plans à long terme et de la préparation de <u>plans directeurs</u> pour la sidérurgie, il sera nécessaire de développer des <u>services de consultance technique</u> et de créer une base pour les services locaux de conception technique et d'ingénierie destinés à l'industrie du fer et de l'acier. Il s'agira une fois de plus d'une <u>stratégie</u> à long terme destinée à être <u>recommandée</u> aux pays africains.

L'organisation de <u>services de consultance technique</u>, pour la sidérurgie, comportera les activités suivantes:

- i) études de préfaisabilité et de faisabilité et rapports;
- ii) évaluation technique et économique des projets;
- iii) rapports détaillés relatifs aux projets et ingénierie;
- iv) spécifications de l'usine et de l'équipement;
- v) schéma détaillé, production et services;
- vi) bilan des matériaux et analyses des coûts;
- vii) coûts de capital et potentiels en matière d'investissement;
- viii) analyses du coût de production et rentabilité;
 - ix) études de marché et projections de la demande;
 - x) mode de financement et méthodologie de mise en oeuvre du projet;
 - xi) génie civil et analyses des fondations;
- xii) installation de l'aciérie et des services;
- xiii) mise en service et exploitation de l'usine;
- xiv) opérations globales de l'usine et production, y compris services auxiliaires;
 - xv) services de formation professionnelle et services d'experts expatriés.

Les services de consultance technique comprendront des services complets dans les domaines énumérés ci-dessus, pour la sidérurgie, ces services allant du choix du site à l'exploitation de pleine échelle d'une aciérie, dans le but

d'assurer une autosuffisance technique.

- d) La stratégie de développement de la sidérurgie comporte également l'évaluation de projets visant à optimaliser les avantages socio-économiques de l'industrie du fer et de l'acier. En d'autres termes, il est recommandé de procéder à une analyse du coût social afin de convaincre les critiques de la sidérurgie qui continuent d'estimer que celle-ci a une trop grande intensité de capitaux et qu'elle est peu économique pour les pays en développement, considérant que ces derniers peuvent acheter tout leur contingent d'acier sur le marché mondial. Toutefois il n'est pas spécifié à quel prix se fait cette opération, ni aux dépens de qui. Ces question sont généralement ignorées. Par conséquent, les recommandations suivantes sont faites:
 - l'évaluation économique de la sidérurgie, dans les pays africains (et dans les pays en développement) ne devrait pas être effectuée d'une manière isolée ou en termes absolus, mais sur une base nationale, étant donné que l'industrie du fer et de l'acier fournit des matières de base (profilés, rails, barres, tôles fortes, tôles et aciers de construction, etc.) aux secteurs d'ingénierie lourde, moyenne et légère (transports - rail, routes et navigation, biens de consommation, ponts, bâtiments, outillage et machines, etc.). Tout en étant le "nerf de la guerre" du développement industriel, il est possible de promouvoir la croissance économique d'un pays grâce à la formation de techniciens, d'ouvriers qualifiés et de personnel de gestion. Il est vrai que ces mesures quantitatives sont principalement évaluées qualitativement. Il existe actuellement des méthodes qui permettent de procéder à une analyse du coût social et des avantages offerts par la sidérurgie, et de faire des projections quantitatives à l'intention des planificateurs et des investisseurs.
- e) Il est également recommandé que les études concernant la demande sectorielle d'acier, dans le cadre des marchés nationaux et régionaux, soient parrainées par l'organisation de l'unité africaine (OUA), en faveur des pays africains. Ces études indiqueront aux planificateurs de la demande de différentes catégories de pays sidérurgiques, sur base des industries consommatrices d'acier. Ces études effectuées à l'échelon national et régional sont importantes pour la sidérurgie africaine, considérée dans son ensemble. Leur utilité est encore renforcée si l'on tient compte de la diversité des produits sidérurgiques et de la demande de certains matériaux en Afrique. L'industrie du fer et de l'acier de certains pays peut être inhibée par les limites du

marché intérieur. Par conséquent, il conviendrait d'étudier d'une manière pragmatique la possibilité de développer les marchés sous-régionaux, afin de pallier les limitations des marchés intérieurs.

- f) Il est également recommandé que la coopération entre pays africains (OUA) soit examinée et encouragée dans les domaines spécifiques suivants :
 - i) Echange et fourniture de matières premières

Les pays africains (OUA) devraient adopter des mesures pour faciliter l'échange de matières premières (minerais de fer de haute qualité/boulettes, d'éponge de fer produite par réduction directe, etc., sur une base mutuelle avantageuse. Par exemple, les boulettes de haute qualité du Maroc (mines du RIF au nord du pays) pourraient être exportées à Alexandrie (RAE). La République arabe d'Egypte pourrait, à partir de son unité de production d'éponge de fer par réduction directe exporter au haroc des éponges à teneur élevée en métal, pour la nouvelle aciérie à arc électrique. Des échanges identiques de matières premières, d'éponge de fer et d'acier, sont vivement recommandées, sur une base bilatérale ou multilatérale, entre les pays de 1'OUA.

ii) Echanges de savoir-faire en métallurgie, d'expertise et de services de consultants entre pays africains

Un pays au développement situé en Afrique ou en dehors du continent qui a atteint une expérience considérable en métallurgie, un savoir-faire technique et des aptitudes importantes en matière de consultance pourrait venir en aide aux pays qui ne possèdent pas un tel degré de spécialisation. Ce type d'échanges réciproques peut être promu grâce à des mesures gouvernementales ou privées.

iii) Echange d'aciéries et d'équipements construits localement

Un pays en développement situé en Afrique ou dans une autre région et qui a mis sur pied des facilités en matière de conception technique et de fabrication d'équipements et de machines destinées aux aciéries pourrait fournir ces équipements à un autre pays en développement qui ne possède pas de telles capacités en matière de conception et de production. Ces échanges pourraient être encouragés par le bisis d'échanges bilatéraux et multilatéraux de matières premières, combustibles, produits sidérurgiques finis ou semi-finis, à des conditions mutuellement avantageuses.

iv) Echange de personnel spécialisé et d'experts en commercialisation

Certains pays en développement ont atteint un niveau élevé dans le domaine de la gestion des affaires commerciales et disposent de cadres compétents et d'un personnel qualifié (exploitation et administration). Ces pays peuvent aider d'autres pays en développement d'Afrique en matière de formation des catégories suivantes de personnel : gestionnaires et cadres d'usines sidérurgiques, opérateurs, ouvriers qualifiés et techniciens, à différents niveaux. Des contremaîtres, inspecteurs, etc., sont formés dans certains pays en développement. En outre, la fourniture de personnel expatrié qualifié, à court et à long terme, pourrait être organisée entre pays en développement, à des conditions mutuellement acceptables.

v) Echange d'investissements, participation à l'actif et partage des ressources financières entre pays africains

Les pays en développement disposant de ressources considérables en capital, y compris des devises étrangères, mais ne possèdant pas de matières premières, pourraient aider d'autres pays africains grâce à des investissements conjoints, participation à l'actif et création de Consortiums. Des prêts à long terme et une aide financière bilatérale peuvent également être organisés.

vi) Echanges commerciaux et complémentarité de la production

Les pays en développement d'Afrique peuvent organiser des échanges mutuellement avantageux de produits sidérurgiques finis ou semi-finis (billettes d'acier, blooms et même lingots de fer, etc.) et conclure des accords de commercialisation, de façon à ce que la complémentarité de leurs efforts produise des bénéfices réciproques. Sur base des indications qui précèdent, il est recommandé que des études spécifiques de projet soient effectuées en matière de coopération technique et d'assistance entre pays en développement. Il convient de promouvoir des projets de développement bilatéral et multilatéral pour l'industrie du fer et de l'acier, sur base d'une coopération technique et d'une assistance entre pays africains.

g) Production d'éponge de fer en utilisant des minerais de haute qualité / boulettes et gaz naturel

Plusieurs pays africains, tels que le Nigéria, l'Algérie et le Gabon, entre autres, possèdent des ressources considérables de gaz naturel et de

minerai de fer. Il est vivement recommandé qu'une production à échelle industrielle d'éponge de fer à teneur élevée en métal soit créée dans les pays africains, sur base des procédés gazeux de réduction directe (RD) (Hyl, Midrex, etc.). Il est nécessaire de bouletter les fines de minerai avec ou sans enrichissement préalable, selon le cas, et d'installer des usines de boulettage. Les boulettes de qualité élevée constituent la charge nécessaire aux unités de production d'éponge de fer par RD et représentent un produit de valeur ajoutée pour l'exportation. Il est recommandé qu'un plan directeur soit élaboré pour les pays africains en vue de l'installation d'usines de production d'éponge de fer basées sur l'utilisation des fines de qualité (boulettes) et des ressources en gaz naturel. L'éponge à teneur élevée en métal pourrait être avantageusement exportée en dehors de l'Afrique et être également échangée commercialement entre pays africains sur base de troc ou en paiement en liquidités. L'ONUDI peut apporter son assistance pour la préparation du Plan directeur régional relatif à l'éponge de fer, en Afrique.

h) Production d'aciers alliés, outil, spéciaux et inoxydables dans les pays africains

Le rapport qui existe entre la production d'aciers alliés, outil, spéciaux et inoxydables, et la production d'acier doux au carbone non allié se situe généralement entre 5 et 15 %. Il n'existe pratiquement pas de production d'aciers alliés, outil, spéciaux et inoxydables dans les pays africains, exception faite d'un faible volume produit en République arabe d'Egypte. Il est particulièrement important d'élaborer des projets pour la production d'aciers alliés sur une base nationale et régionale coordonnée. Des plans directeurs nationaux et régionaux devraient être préparés pour la production d'aciers alliés, outil, spéciaux et inoxydables, dans les pays africains (OUA). l'ONUDI peut faciliter l'élaboration de ces plans directeurs, à la demande des pays intéressés, dans le cadre des Programmes d'assistance technique des Nations Unies établis par pays.

i) <u>Production de ferro-alliages et de réfractaires pour les aciéries des</u> pays africains

Les pays africains (OUA) ne produisent que de faibles quantités de ferro-alliages et de réfractaires. Il est fortement <u>recommandé</u> d'entreprendre des études de faisabilité technique et économique relatives à la production de ferro-alliages et de réfractaires dans les pays africains (OUA). Ces projets ont une valeur directe et indirecte pour l'industrie du fer et de l'acier, que celle-ci soit établie sur une base nationale ou régionale. La production de ferro-alliages devrait englober les produits suivants : ferromanganèse

(différents degrés), ferrosilicium, ferrochrome (différentes nuances de ferrochrome à teneur basse et élevée en carbone), ferro-vanadium, etc. Les réfractaires pour aciéries devraient englober des réfractaires acides, basiques et neutres, par exemple : briques à teneur élevée en silice, magnétite et dolomite, magnésite au chrome et blocs de carbone, etc. Il convient d'assurer le démarrage de la production de ces matériaux.

j) Documentation sur l'industrie sidérurgique et statistiques relatives aux pays africains

Il convient de mettre l'accent sur l'importance évidente de la documentation, distribution et répertoires d'informations techniques et de statistiques relatives à la sidérurgie et aux techniques existantes. Cependant, il est difficile d'obtenir des statistiques complètes concernant l'industrie du fer et de l'acier en Afrique. D'excellentes initiatives, constituant un bon point de départ, ont été prises par l'Union arabe du fer et de l'acier et par l'Organisation arabe de développement industriel (OADI). Une banque centralisée de données industrielles serait certainement de la plus grande utilité pour les pays africains (OUA).

k) Normalisation des produits sidérurgiques dans les pays africains

Il n'est jamais trop tôt ni trop tard pour étudier la possibilité de standardiser les multiples nuances d'acier doux au carbone, ainsi que les degrés d'aciers alliés, outil, spéciaux et inoxydables. Des normes uniformisées, mutuellement acceptées (spécifications) seraient de narire à faciliter dans une large mesure la coopération et les échanges entre pays africains (OUA). On applique généralement aux pays africains (OUA) les normes et les spécifications des pays industrialisés (ASTM, BSS, etc.). Bien que cette procédure soit actuellement inévitable, des normes africaines devront être tôt ou tard élaborées, acceptées et mises en application. Il est vivement recommandé qu'une action soit prise dans ce domaine et l'ONUDI pourrait apporter son aide à cet effet, à la demande des pays concernés.

1) <u>Main-d'oeuvre et formation du personnel de la sidérurgie dans les pays</u> africains

La formation de personnel, ouvriers spécialisés et techniciens, contremaîtres, cadres et dirigeants est fortement recommandée et devrait recevoir l'attention des pays africains (OUA). Cet aspect revêt une grande importance, à court et à long terme. Très peu d'initiatives semblent avoir été prises dans ce domaine, sauf éventuellement dans certains pays africains, d'une manière adéquate. Il est également recommandé de procéder à une étude des

possibilités des pays africains (OUA) en matière de formation professionnelle et d'enseignement, afin d'identifier la capacité, les possibilités futures et les modes de formation technique qui existent dans les pays africains. Il s'agit d'un besoin urgent.

Il convient de souligner que, dans le contexte de la formation technologique et industrielle en sidérurgie, le processus d'apprentissage, d'étude et d'examen des problèmes est autogénérateur, à savoir qu'il crée de nouveaux problèmes liés à la croissance continue et à l'expansion de l'industrie du fer et de l'acier. Une ouverture d'esprit permanente doit être assurée afin de pouvoir étudier les problèmes nouveaux et les dimensions, d'examiner rationnellement les divers facteurs et besoins des pays africains et d'arriver à les coordonner au niveau régional. L'importance et la valeur de ces études et enquêtes nationales et régionales, portant sur des problèmes et projets fondamentaux, ne sera jamais assez soulignée.

En conclusion, il convient de mettre l'accent sur la nécessité d'éviter une approche dogmatique en vue de la création d'une industrie sidérurgique dans les pays en développement. Alors que l'application des innovations techniques les plus récentes, l'automatisation et l'utilisation d'ordinateurs constituent un objectif pleinement justifié, il n'en reste pas moins que l'utilisation d'une technologie <u>adéquate</u> devrait être encouragée, en tenant compte des conditions et de l'environnement de chaque pays, en fonction d'une analyse faite cas par cas.

Parmi les domaines qui nécessitent une action coordonnée de la part des pays africains, citons :

- i) développement des matières premières;
- ii) évaluation économique et stratégie de développement;
- iii) infrastructure et main-d'oeuvre;
- iv) études de marché et projections comportant des données statistiques (marché intérieur et exportations)
 - v) études de faisabilité technique et économique, y compris études concernant le choix du site;
- vi) rapports détaillés des projets englobant l'ingénierie.

5. CONCLUSIONS ET RECOMMANDATIONS

Comme indiqué précédemment, l'industrie du fer et de l'acier est un secteur à forte intensité de capital et plusieurs approches sont disponibles pour utiliser les capitaux d'une manière optimale.

a) Usines existantes

- 1) Rénovation et augmentation de la capacité des aciéries existantes qui ont été installées il y a de nombreuses années, ce qui est le cas de l'Egypte, de l'Algérie et du Zimbabwe. Révision de la gamme de production des aciéries plus récentes (par exemple au Nigéria). L'objectif est de produire des matériaux sidérurziques pour répondre aux besoins des chemins de fer de la sous-région.
- 2) Utilisation de la capacité actuelle des usines de fabrication de matériel roulant, dans certains pays, dans le but de répondre aux besoins des chemins de fer de la sous-région, par exemple l'usine située au Zimbabwe qui peut répondre aux besoins de certains pays de l'Afrique de l'Est et du Sud. Il s'agit également des aciéries situées en Egypte et en Algérie qui sont en masure de satisfaire aux besoins des pays d'Afrique du Nord et d'Afrique centrale.
- 3) Utilisation des capacités actuelles des ateliers d'entretien de matériel ferroviaire. Ceux-ci, suite à l'addition de certaines pièces d'équipement et de machines, sont en mesure de fabriquer une partie du matériel roulant (par exemple l'atelier de maintenance situé au Kenya).

b) Nouvelles usines

- 1) Lors de l'implantation d'aciéries, il est préférable de démarrer sur la base d'unités de production qui utilisent des procédés simples pour fournir un produit commercialisable. Dans le cadre de cette approche, les unités de transformation primaire destinées à produire de la fonte et de l'acier brut sont volontairement ajournées, bien qu'étant englobées dans les projets globaux. En général, la production de laminés à partir de billettes d'acier importées ou de brames est considérée comme une contribution aux ventes plutôt qu'un apport à la production d'acier.
- 2) L'ajournement délibéré de la capacité de production de fer et

d'acier brut, après l'acquisition et l'exploitation d'un laminoir pendant un certain temps correspond à l'évolution naturelle de l'industrie du fer et de l'acier. Il importe de souligner que le procédé de conversion primaire nécessite une forte intensité de capital. Lorsqu'il existe déjà une capacité initiale de production d'acier brut, cette phase de développement de la siderurgie a besoin de plus d'investissements que toutes les autres étapes. La dimension économique de l'aciérie est un élément important de la planification et de l'expansion de la production d'acier. Il est recommandé de choisir la dimension la plus modeste, de façon à ce que l'aciérie puisse avoir un rendement économique, dans les conditions locales. Etant donné que les échanges commerciaux dans la sous-région constituent une stratégie importante pour le développement de l'industrie du fer et de l'acier, il est essentiel de choisir avec soin la technologie à employer. Il convient notamment d'envisager l'utilisation des technologies suivantes : réduction directe, coulée continue, laminage et fabrication en continu. En raison de l'impact formidable exercé par le choix d'une technologie adéquate sur les coûts de production et la compétitivité des produits sidérurgiques du point de vue de la qualité, il est fortement recommandé que les pays de chaque sous-région étudient la possibilité de collaborer étroitement dans les domaines suivants : recherche, évaluation, négociation afin d'obtenir les technologies les plus avancées; paiement d'un prix adéquat pour assurer que les produits des aciéries nationales et sous-régionales seront concurrentiels, du point de vue du coût et de la qualité. Il est par conséquent recommandé que l'installation de nouvelles usines intégrées se fasse sur la base d'un projet sous-régional, avec l'aide technique de l'ONUDI. L'étude des projets sous-régionaux sera entreprise en coopération avec la Commission économique pour l'Afrique (CEA).

- 3) Dans le cadre des projets relatifs à l'installation de nouvelles usines destinées à la construction du matériel roulant, dans les sous-régions, des études de faisabilité devraient être effectuées par l'UAC ou la CEA ou par toute autre institution, par exemple la Communauté économique de l'Afrique de l'Ouest (CEAO).
- 4) Il convient d'étudier, sur la base indiquée précédemment, les autres projets d'ingénierie destinés à répondre aux besoins des chemins de fer, en ressorts, essieux et roues, vis et boulons, électrodes de soudage.

1. VOIES

- Cacactéristiques voies et rails
 Longueur lignes et voies
 Type de signalisation

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
					LONG	UEUR LIGNES	/ICM			LON	GUEUR VOII	S (km)				
NOM DE LA SOCIE-		Poids des	Poids	Electri	fiées	non élect	rifi ées	Total		Electr	ifi ées	non	électrifiées	TOTAL	Voies	
TE	Ecarte- ment des voies/mm	rails kg/m (1)	Sur l'essieu (T)	Voie unique	Voie double	Voie unique	Voie double	cols. 5 à 8	Ballast km	Voie unique	Voie double	Vris unique	Voie double	km cols. 11 à 14	ballas- tées en km	Type de signalisation
									AFRIQUE D	NORD						
SNTF	1 435 1 055	40		299		2 350		2 649	Ì					}		
!	1 000					1 263		1 263								
ER	1 435	47/54	22		25	2 928	952	3 905	3 905		50	2 928	1 904	4 882 (2)	4 882	Electrique et mécanique
ONCF	1 435	33/54	22	549	163	1 056		1 768	1 768	549	326	1 056		1 931	1 931	Electrique et mécanique
SRC	1 067					4 784,1		4 784,1				5 495,9		5 495,9		
SNCFT	1 000 1 437	25/36 30/46	16 18			1 282 414	18	1 318 414	1 318 414			1 476 479	18	1 512 479	1 512 479	
									01 RIQUE CENT	RALE						
ANGOLA	1 067	13/60	13					3 613							ļ	
RNCFC	1 000	26/36	14			1 164	4	1 168	1 168			1 360	8	1 368	 	Panneaux simples
C£C0	1 067	30/44	20			(3) 792,5	2,5	795	795			(3) 1 039,6	2,5	(3) 1 042,1	(3) 1 042,1	Mécanique et électrique
OCTRA	1 437	50	28			90		90	90			130		130	130	
SNCZ	600 1 000 1 067	9/32 24,4 24,4/40	8 12 15	858		1 023 125 2 715		1 023 125 3 573		861		1 048 139 4 179		5 366		Mécanique

10387

1. VOIES

- Caractéristiques voies et rails
 Longueur lignes et voies
 Type de signalisation

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
					LON	CUEUR LIGNES	/IDK			LONG	UEUR VOIE	S (km)				
A SOCIE-		Poids des	Poids	Electri	fides	non élect	rifides	Total		Electri	fiées	non	électrifiées	Total	Voies	
TE.	Ecarte- ment des voies/mm	rails kg/s (1)	sur l'essieu (T)	Voie unique	Voie double	Yoie unique	Voie double	kms cols. 5 à 8	Ballast km	Voie unique	Voie double	Voie unique	Voie double	cols.	ballas- tées en km	Type de signalisation
								apri	On a de r,o	JEST			, ,			
IAN	1 000	25/36	15			1 147		1 147	1 120			1 144	19	1 163	1 137	Mécanique
CBN	1 000	22/30	13,5			579		579				655		655		
RH	1 067							925								
NCFG	1 000							662								
AMCO	1 435							270								
LEFM	1 000	20/36	15			641		641	641			702		702	702	Mécanique
MIM	1 435	54	25			650		650	650	i		738		738		Contrôle radio des trains
TRC .	1 067	30/40	18			3 523		3 523				4 846		4 846		Prédominance mécanique
RCFS	1 000	36	15			964	70	1 034				1 116	70	1 186		Signaux fixes
FT	1 000	33/36	12,5			442		442				497		497		

1. VOIES

- Caractéristiques voies et rails
 Longueur lignes et voies
 Type de signalisation

1	2	3	4	5	6	,	8	9	10	11	12	13	14	15	16	17
					LON	GUEUR LIGI	TES/KOH				LO	NGUEUR VOIE	S (kona)			
O%s.	Ecarte-	Poids des cails	Poids sur		rifiées	non #1	ctrifiées	Total		ále ct	rifi ées	non éle	ctrifi ées	Total	Voies	
e la ociété	ment des voies		l'essieu (T)	Voie unique	Voie double	Voie unique	Voie double	cols.	Ballast km	Voie unique	Voie double	Voie unique	Voie double	km cols. 11 à 14	ballas- tées en km	Type de signalisation
l								l Prique de	L'EST							
'E	1 000	30/20	14					781					<u> </u>	<u> </u>		
R	1 000					1 265		1 265								
CEH	1 000	25/37	14			883	5	888				156		1 044		Electrique et mécanique
R	1 067	30/40	15			556		556	351			614		614	351	Appoint
PN	1 067 762	22,5/54 15/24	12/20 5,5			2 427 90	30	2 457 90	2 417			2 965 140	30	2 995 140	2 905	Electrique
R.	1 067	40	16			220		220	220			270		270	270	CTC
ZARA	1 670	45	20			1 860		1 860	1 860		!	2 044		2 044		
R	1 067	30/45	18		 			1 104								

9221

3. HATERIEL ROULANT 3-2. REHORQUES 3-2-1. PASSAGERS

(Nombre, disponibilité, nombre/sièges a la fin de l'exercice budgétai...)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
					WAGONS	 I	- · · ·						WAGON	REMORQUE			
fice		Homb t	:•				Nombre d	le sièges					Kombi	e de siège			
de la société	Wagons or- dinai- res et wagons mar- chandise	Voitures cou- chettes	Wagons restau- rant	Total cols. 2, 3 & 4	1re classe	2ª classe	Autres classes	Total cols. 6, 7 & 8	Sièges	Cou- chettes	Nombre	1re Classe	2ª classe	Autres classes	Sièges	Cou- chettes	Disponibilité (%)
								,	I Merique du	HORD	}						
SKTF				475 (1)				31 894 (1)								i i	
ER	1 394	59	13	1 466	3 611	24 976	85 724	114 311	114 311	1 284	234	1 974	6 880	4 320	13 174		70 X
ONCE	394	7		401	3 042	10 823	4 558	18 423	18 353	70							
SRC	441	33	12	486	1 602	3 265	20 142	25 009	24 613	396	9		96	750	846		80 X
SHCFT	146	2	2	150	1 295	4 684		5 979	5 979	92	58	1 028	5 130		6 158		88,4 %
ANGOLA									5616 FRIQUE CEN	TRALE							
RNCFC	42	5	3	50	135	2 076		2 211	2 211	104	57	140	3 768		3 908		85 %
CFCO	35	1	2	38	280	864	1 634	2 778	2 530	14	40	225	2 260		2 215		79 %
OCTRA	16			16		820		800	800					 	 		100 Z
SNCZ	129	68	22	219	1 128	1 624	7 994	10 746	8 906	1 840	15	910	92		1 002		40 Z

39 -

3. MATERIEL ROULANT 3-2. REMORQUES 3-2-1. PASSAGERS

(Nombre, disponibilité, nombre/sièges à la fin de l'exercice budgét

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
					WAGONS						_			WAGONS RE	Morque		
NON DE LA		Nomb	re				Nombre de	sièges						Nombre de	siègen		·
SOCIE- TE	Wagons or- dinai- res et wagons mar- chandise	Voitures cou- chettes	Wagons restau- rant	Total cols. 2, 3 & 4	1 ^{re}	2 ^e	Autres classes	Total cols. 6, 7 & 8	Sièges	Cou- chettes	Nombra	1 ^{re} classe	2 ^e classe	Autres classes	Sièges	Couchette	Disponibilité (%)
			İ					AFRIQ	E DE L'O	UEST							
RAN	129	12	6	147		9 734		9 968	9 968	234	27		1 886		1 886		98,7 %
OCBN	11			11		120		120	120	18	18		1 076		1 078		90 %
GREE				182							_						
ONCFG				20													
LAMCO																	
RCFH	26	4	1	31	42	790		888	888	64	16	204	932		1 136		73,7 %
SNIM	8			8	12	168		180									
NIKC	467	286	52	805	1 088	1 602	30 090	32 780	29 776	3 316							
RCFS	110 (1)	4	2	116	210	2 956	52	3 218	3 166	60	28	48	1 598	109			
CFT	34			63							11						

3. MATERIEL ROULANT 3-2. REMORQUES 3-2-1. PASSAGERS

(Nombre, disponibilité, nombre/sièges à la fin de l'exercice budgétaire)

1	2	_ 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
					WAGO	IS		,					WAGONS	REMORQUE			
		Hombre					Nombre d	e sièges					No	mbre de si	ges		
NCH DE LA SOCIE- TE	Wagons ordinai- res et wagons mar- chandise	Voitures cou- chettes	Wagons restau- rant	Total cols. 2, 3 & 4	1 ^{re} Classe	2 ^e Clusse	Autres classes	Total cols. 6, 7 & 8	Sièges	Cou- chettes	Nombre	1 ^{re} classe	2ª classe	Autres classes	Sièges	Cou-	Disponibilité (%)
are								AFRI	ONE DE L'	ST							
KR.	97	67	17	181	627	1 422	8 084	10 133	10 133	1 835							
RINCELH	29			29	381	2 465		2 847	2 027		42	531	4 020		3 068		95,8 %
HOR	30	2	1	33		88	2 788	2 876	2 876								94,1 Z
CFN	187				663	2 414	13 028	16 105									80 X
SR																	
TAZARA	44	46	10	100	364	1 584	3 264	5 212	3 264	1 948							75 Z
ZR	132	6	12	150	1 040	3 240	640	4 920	5 046	132	6			360		1	

3. MATERIEL ROULAN': 3-2. REMORQUES 3-2-2. WAGONS MARCHANDISES

(Nombre, poids net, disponibilité fin de l'exercice budgétaire)

1	2	3	4	5	6	7	8	9	10	11	12	13	14
NOM DE LA SOCIE-	Wagons	couverts	Wagon	s plats	Wagons o	ouverts	Autres	wagons	Wagons/ sociétés	privées	Nombre	Poids net	
TE .	Nombre	Poids net en T	Nombre	Poids net en T	Nombre	Poids net en T	Nombre	Poids net en T	Nombre	Poids net en T	total cols. 2,4.	total (T) cols. 3, 5, 7,9 & 11	Dispo- nibilité en %
SNTF						AFR	IQUE DU NO	PRD			11 049	314 139	
ER	6 948	76 870	500	35 990	6 359	180 781	2 813	62 205			16 620	355 846	85 %
ONCF	2 337	55 384	2 099	51 533	2 087	46 182	2 897	122 491	554	18 066	9 974	293 656	
SRC	3 523	105 562	218	6 658	979	28 739	1 283	34 850	658		6 661	175 809	92 Z
SNCFT	944	13 142	1 035	20 235	643	8 710	2 746 (1)	61 875	103	2 680	5 471	106 642	93,47 %
ANGOLA						AFR	IQUE CENTE	ALE			49775		
RNCFC	542	16 400	551	24 750	95	3 220	183	5 630	130	4 480	1 501	54 480	90 Z
CFCO	612 (2)	24 523	664	32 590	219	8 250	239	6 732	159	7 063	1 893	79 158	85,2 %
OCTRA	12	660	300	20 400	1	50	8	485			321	21 595	100 %
SNCZ	2 144	74 219	1 893	70 834	530	18 884	1 032	34 455	284	9 656	5 883	298 048	56 Z

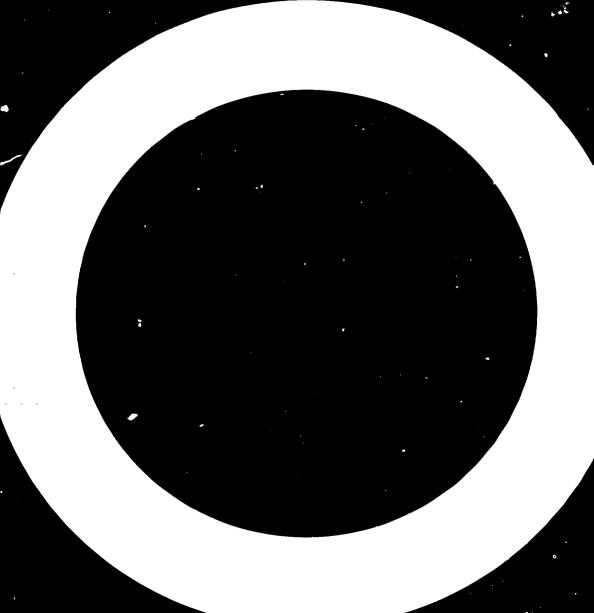
3. MATERIEL ROULANT 3-2. REMORQUES 3-2-2. WAGONS MARCHANDISES

(Nombre, poids net, disponibilité fin année budgétaire)

1	2	3	4	5	6	7	8	9	10	11	12	13	14
nom de	Wagons	couverts	Wagons	plats	Wagons o	ouverts	Autres	wagona	Wagons/ proprié	té privée		Poids net	
SOCI E- TE	Nombre	Poids net en T	Nombre	Poids net en T	Nombre	Poids net en T	Nombre	Poids net en T	Nombre	Poids net en T	Nombre total cols. 2, 4. 6,8 & 10	total (T) cols. 3, 5,	Dispo- nibilité en X
						AFRI	QUE DE L'OU	EST					
RAN	661	19 740	170	4 187	211	6 195	51	1 144	107	3 520	1 200	34 786	
OCBN	210	6 046	91	2 428	15	715	27	575	13	210	356	9 974	94,7 %
GRH													
ONCEC													
LAMCO													
RCFM	262	8 299	25	925	49	1 715	34		10		380		89 X
SNIM			82	5 248			1 070(1)	85 154			1 152	90 402	85 Z
NRC	3 606	99 912	45	1 170	372	9 435	2 625	69 709	590	17 182	7 257	196 925	
RCFS	479	13 470	58	1 334	149	3 675	39	330	180	6 287	905	25 096	
CFT	199	2 738	94	2 942									

3. MATERIEL ROULANT 3-2. REMORQUES 3-2-2. WAGONS MARCHANDISES

(Nombre, poids net, disponibilité fin année budgétaire)


1	2	3	4	5	6	7	8	9	10	11	12	13	14
NOM DE	Wagons	couverts	Wagons	plats	Wagons	ouverts	Autres W	agons	Wagons/ proprié	té privée		Poids	
SOCIE- TE	Nombre	Poids net en T	Nombre	Poids net en T	Nombre	Poids net en T	Nombre	Poids net en T	Nombre	Poids net en T	Nombre total cols. 2, 4 6, 8 & 10	total (T) cols. 3, 5, 7,9 & 11	Dispo- nibilité en %
						AFRI	UE DE L'E	ST					
CFE													
KR	3 246		928		825		1 634				6 633		
RNCFM	545 ·	14 475	257	6 736	92	2 760	75	2 526	78	2 360	1 047	28 857	97,3 %
Œ	346	11 387	22	573	141	6 107	247	8 362			756	26 429	95,4 Z
CFH	1 468	50 254	312	10 435	5 335	214 200	542	16 329			7 657	291 213	86 %
SR	23	460			535	9 095	209	3 971	20	400	787	13 926	95 %
TAZARA	523	15 690	892	44 600	400	20 000	285	5 161			2 100	85 601	97,5 Z
ZR	311	9 952	30	1 200	4 429	193 721		1 207	40		4 810	206 080	

ANNEXE 1

3. MATERIEL ROULANT 3-3. CONTENEURS

(Types, dimensions, nombre et trafic)

1	2	3	4	5	6	7	8	9	10	11
		I	DIMENSIONS	1	NO	MBRE		TRAFIC (MILLIERS)	
NOM DP. LA		Y	T		Pro-	Pro-	NATIO	NAL	INTERNA	TIONAL
SOCIETE	TYPES	Longueur (mm)	Largeur (mm)	Hauteur (mm)	priété société	priété privée	Tonnage	T.K	Tonnage	T.K
SNTF					AFRIQUE DU	NORD				
ER										
ONCF	SCIFCT SNCF	2 170	1 500	1 635	190					
	Tube bloc	2 310	2 200	1 900	57					
SRC										·
aa	42 C	3 032 1 900	2 032 1 100	2 000 1 425	129 37					
SNCFT	SPB SP ISO	2 098 2 006 5 695	1 000 1 604 2 078	1 500 1 450 2 078	20 35 53					
ANGOLA					AFRIQUE CEN	TRALE				
RNCFC	(1)	ISO								
CFCO										
OCTRA										
SNCZ										-

	Algeria	Angels	Butavana	Deput!	Cantral African Rep	. Camproon	Cango	Cape Verde Isl.	Egy yt	Ethiopia	Cabon	Chana	Coines	Lon
													708,000	
Alumina						43			120			188		
Aluminium (thousand tone) Antimony (tone)	' <u>-</u>													
Armenic (Linite)	_													
Asbestos									230					
Berium (tons)	91,000								3,000			225		6,6
Imaite	22,000								•			223	11,759	
Restorite and														
Fuller's Earth (tons)	41,000								5,200					
Cadalan	130													
Cadaina Ores														
and Concentrates (tome)														
Cool (tone)			371,395											
Cobalt (motel content - 1			226 15,554											
Copper (Mine Pred.)	200		15,554			-								
Copper (Smalter Prod.)	_												84.000	
Diamonia		,300,000	5,146,000		279,000				100			1,200,000	٠٠,٠٠٠	1,57
Distante	3,600								3,600					3
Feldaper					•				· ; ; ; ;					93,57
Fluoroper			•	4		5	220			200	25	10,937		
Gold (Kilegram)	***	***		•				4	590,368			20,737		
Graphite	200,000	25,000						· ·	,					
Сурана	3,500								1,870					
Iron Ore	500	•••							-					
Pig-Iron Steel Ingota and	300								760					
Castings														
Ferre Alleys														
Koolia	18,100			2,750					47,000	30,000				1,4
Lead	2,400						7,000							•
Refind Lood	•													
Lithium														
Magnesite														
Hanganese Ore									•	;	2,147,000	252,450		
Heroury	1,035,000													
Mica														
Sickel			15,442											
Petroleus	51,5 40	7,610				2,790	3.130		31,200		8 ,880	•		
Katural Gas	14,600	• • •									•••			- 4
Phosphate Rock	1,025,400							•	58,000					
Platimum (Group Motals, Kilograms)										4				
Potach							_							1
Lara Eartha							_							
Salt	172,000	50,000		•••				6	99,000	104,000		50,000	4	7,015
Sillimenite	1/1,000	2,000						•••	,,,,,,,,,,	,				
Silver	2,500													
Sulphur Pyrites	-,								3					
Tale									4.400					
Tactalum (Columbium)									-,					
Tin Orine Prod.)						26								
Tin (Smelter Pred.)														

Source: World Mineral Statistics, 1976-1980, Production/Exports/Imports (Institute of Geological Sciences, Natural Environment Research Council, London, Net Mejesty's Stationary Office, 1982).

ANNEXE 2

Tableau 2

Ressources minérales d'Afrique/Production en 1980 (tonnes)

Chans	Culmen	Kenys	Ivery Coast	Lesethe	Liberia	Libya	Hadagaecar,	Mali	Youritani	a Mauritius	Kerecce	Hozzabique	Hemibia	Rigar	Migeria	Pronds	Seneg
188	708,000										***		1 444				
											549		2,000				
}		6,647									318,000	800					
225	11,759	-,										1,500					
											18,100	1,300	70				3,77
							146,529						••				ĺ
											480 000	A20 000			612,802		
ļ											680,000 1,000 8,400	~~, www	39,200				
ŀ									-		8,400	-	39,200 40,000 1,560,000				
200,000	84,000	1.477	40,000	\$3,714	300,000								-,,		5,000		
		1,677 367 93,378									64,400	-			2,000	15	
:0,937	•	77.C,CC			140		4	45	-		ص. بس						
		-			17,481	•••	9,906		.14,000 8,900		-78			1,000			i
					-												
		1,487					2,720				115,500 40,300		47,700 42,700		100		J
												-	3,000			•••	}
2,450											132,200						
							1,642				***	200					
						86,020					500 14			1	00,286 1,343		- 1
•		•				••••				18.	80 824,270				.,	1,3	72,6 53
		-															1
															20		٠٠.٥٠٨
.ગ,૦૦૦	4	7,016				10,000	30,000	5,000		6,000	104,000	28,000		2:	27,000	•	٠٠٠]
1											10,000			4	67,000		- 1
											60						
												-	1,000	96	550 2,527 1, 2,684	60 600	
															•		
																	

ironment

SECTION 3

							18							
L St					118 61		EIO,EI						2,000	
61 76°05Z			26,950		- 25,525		261,212 262,1	729						900
							\$65,528		87.6,E					005"
74,522 [°]	•	166				000,22	9,414,610						OK	
co'cc1'c	. 464. 495	000.861		0CZ.A	606 °5£T		766'611'61	τ						
96'YZ	3,310	00('71					200'002	_			612,802		-30 44	0001
36,70	976*109	000,252,01		378, 80£			299'125'9 000'581	819,566					000'07	•
1,36,1	567	lemies					785,52				3,000		1,560,000	
*****	LST.	EAE,1	167 '6 6				817,552 887,578			ST	40			-
36°4	-		016, A12	611.8	_	000'01	067*254 .					000'1		
16 129'1			770 200		_		21 6,3 5							
)O8			78 1				000'6							
) 127 187	161,131			464.7	-		028,772,1 428,761 920 42				•••			
7EU 16	£70°01		561'61 01C'8				650'95				100		00L*L7	
050,12 (15,87		16,306					27 6,6 2 854,2 66, 2			•••			3,000	-
ZZO.1				C		005'1	\$25°Z							
540,21		1,000	00915				001,25				,			300
75C,0CI			206,102,A	000,000	t.		3,185,000		£09,£7£,1		1,343			
							192,800							
		ts		762 76		****					OZ			
	J-0 90		915'957	4C7,8C		000,51	416,151		900'071		000,722	;		000
52 189 '62	527, ES 101	C00, C8 OC	\$66,7				615,7 0 535,41				000 4 4			
17		07					005*44			09	055			
816 766		00C 651'C					1°100 1°13			009*1	2,527	96	000'I	-

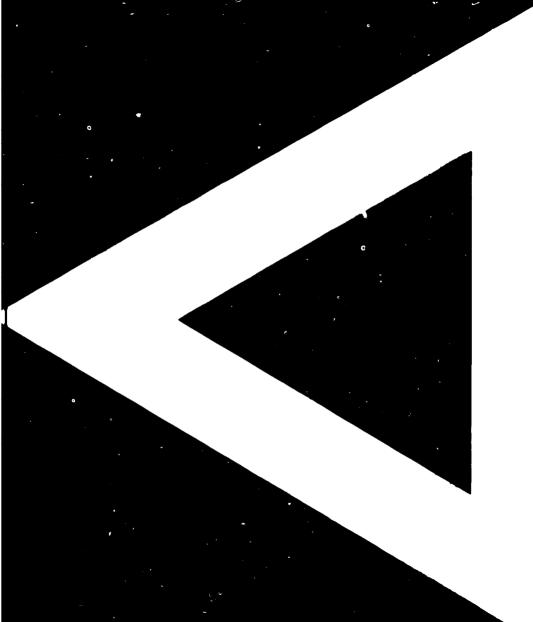
(Sauc

				• /
INO	AND	STEEL THIRDSON	 ATTICA	3/

												INO	1 ND 21 22	INCOME IN	APPRICA S				1		
20	Countries 15'		Population (years-)					Critic	l Re	i iin t	erial	<i>لا</i> ـ		Com	<i>≧</i> /	Çil	iae	er capit comment per yea		Ingot Stee x 1000	
		1972/73	ded off fi	2000	Reserves million tone			Percee	-	(Ave	Le Cas)		Reserves million tons	Quality	million	Dillion	1973		kg/per capita	+
_		(11920)	(m) x:1000	(1013)	·	Po	2105	\$1 ₂ 0 ₃	100	P	s	Others	Bonarks	tom				per c	apita	1973	\perp
1.	Sigoria	70,000	85,000	105,00C	² %6	13	ļ			$oxed{oxed}$				35C	nos bitmainous	2,400	1,136	1.4	28	(0.5 p.c.) 340	
2.	A.P. Egypt Ethiopia	35,000 26,000	53,500 35,800	75,000 50,000	433	46 50-59	14 2 - 9	 	2-4	1-9	\vdash		 			100 8*		28	200	(7 kg/p.c.)	╀-
Ä			35,000	7444	29	43 30/4	25	-	╁	0.4	-		 -	}	Boh			 	<u> </u>		┿
4	Zaire	20,000	25,800	34,600	1 5050 4	130 to		<u> </u>	╄	-1	\vdash		<u> </u>	73	batterinous	80		<u> </u>	<u> </u>		1
ا_ر	Solen	17,000	25, 100	40,000	வ	1		_	L.				2.2 040					<u> </u>			<u> </u>
6.	Ногосоо	16,000	26,800	41,000	149	43 -60	7- 10	1-6	2.3	100	0.0 -1.5 0.0	14	-6 Be0	68 28	hituminous amthracite	160	40	22	150	(C.3/p.c.)	
7.	Algeria	14,000	24,000	38,000	1,580	49-5	3.8 4-9	4-3	-	0.8	0.0	3.4Cm0+.)78	20	bi tunimous	7,550	2,36C	70	440	395 (25 kg/p.c.)	Ī
8.	Tangania	14,000	20,000	29,000	121	50. 30.			11			710	-13								\perp
9.	Kenya	12.000	18,000	36,500	27	60	5	-	•	0.2								16	25	25 (2 kg/p.c.)	
10.	Uganda	10,500	13,100	18,000	98	60 -67	1.1	0.05				710-	ō				[15	100	(1 kg/p-c-)	
11.	Channe	9,000	15,000	24,000	405	46 -51	3			1.0				-		<u> </u>	<u> </u>	1	25	<u>-</u>	+
12.	No sambique	8,000	10.900	14.000	261	52.4	1 to			\vdash	T2			700	bi toninous		-	†	+-	 	+
13.	Halagaay Rope	7,400	10.800	16,000	251	25 1046	1			\vdash	.3			-			 	+	+	 	+
_		\vdash			120	38	+-		\vdash		.,			<u> </u>	 	 	 	 -	├	 	+
14.	Cameron	6,000	8,000	11,000	1700	62	3-8		\vdash		.03 -1.0					192 —	28.4	+	+	 	+
15.	ingola	5,600	8, 100	12,000	130	ļ <u>~</u>	,~		Ш	-05	-1.0			<u> </u>		(inclusive	Cabinda)	 	<u> </u>	<u> </u>	<u> </u>
16.	Upper Volta	5,600	7,700	10.500	50	58	2.2	1.5	.2	.06		V-0-	3	<u> </u>	! L	I	<u></u>				
17.	Ivory Coast	5,400	6,500	8,500	2,400	40 -46	39			-06	-61									87	\perp
18.	Teniola	5, 200	8,500	13,000	75	54 58	4	.8 3.7	2	.03	-	0.5 C	0	20	Lignite	160	28.4	- 6c	400	(16 kg/p.c.)	1
19.	Mali	5, 300	7,600	11,000	69	64													T^-		
20.	Outnes (Z)	5,100	7,000	10,000	1544	52 -64	3 -24			•06	-1						i				$\overline{}$
21.	Halari	4,700	6,800	10,000		Ť									 	 	 	+	+	 	+
22.	Zembie	4,500	7,000	10,000	346	40 -62	6 -20		1.9		\vdash			115	non bitusinous		1		T		+
23.	Higor	4, 300	6,200	9,500	680	-02	~~		Н	\vdash	Н			 	 	 	+	+	+-	 	+
24.	Senegal	4,000	6,500	10,000	100	58	5			.03	.00				1	† 	1	+-	+	†	+
25.	Reads	4,000	5,70C	9,80														1			1
26.	Chad	3,800	5,500	9,000																	\perp
27.	Burandi	3,500	5,300	3, 300																	
28.	Sounlia	3,000	4,300	6,500	170	30 -39															ĺ
29.	Dohomety	2,800	4,100	5,500	290	90 -58	3 -16			.8	.04					832	213				
30.	Sierra Leone	2,700	3,800	5,800	200	60	-13			.01 03	.009			ŗ		1		T	T		i
							6		\vdash					 	 	1	+	+	+-	+	-
и.	Libra	2,000	3,100	5,000	31525	35	-11	4.9	-	1.0	<u> </u>					4,864	781	138	6.00	 -	-
2.	Togo	2,000	2,800	4, 300	642	- 7 6	20	16	\vdash	.23	-05				-	 	+	+-	+		
33.	Central Africam Rep.	1,700	2,100	3,000	-	<u> -</u>	<u> </u>		_	_	-					1				<u> </u>	
34.	Liberia	1,600	1,800	2;200	נמ	65,8	4.?	1.2	0.12	.03	.001							30	500	1	
35.	Heuri tania	1,200	1,700	2,500	465	65	4-3	1.2	0.1	Į.,	.01		<u> </u>	T					1		•
	Congo (Bres.)	1,200	1,350	1,600	100	43	20	 		7	1	<u> </u>	 - -	f		300	†		+-	 	
37.	Spenish Sehere	-	56	65	150	54		1-			71-	4				1	<u> </u>		1		
38.		500	600	800	1,216	65	1.7	2	•	0.1		-0.2		5,022	non- ti tusi none	176	198	66	500		
39.		450	680	990	280	61	4.2		6.9 to				ı				**************************************	1	200		
40.	Gembia	380	514	750																	
	Others	2,200	3,500	5,000	600				1				!								. 1
	TOTALS	347,730	491,60r	707,104																062 2-5kg p-0-	-

There are no ooking coal recorves in these African countries (excluding South Africa and Revision) - Resources of anthracite to sub-bituminous coals are 7,000 a/tone

Total reserves of iron ores in Africa (30-67% Pe) proved = 6,800 m tems/Potential umproved reserves iron eres = 24,500 m/tems; total = 31,300 m/tems


4/ All Hetric Tems

ANNEXE 2 (suite)

Industrie sidérurgique dans les pays africains

															
Inget Steel	Production tons	Ingot z m	Steel Pr	roduction w			he late	rials				recent States of	Industrialisatio	·	Prospec :
zg/per capita		Year	T	per year	(P)		dr ')	(g)		llest E)	Poor	Pair	Good	Excellent	Poor
1973	1974	1980	1985	200C	Iron Ores	Conl Coking	Coal Bos-Coking	Charcoal	011	Geo	(P)	(P)	(G)	(z)	(P)
(1.15 p.c.)	20	0.5	1.5	5.	P	Р	P		s	G	Р			<u> </u>	
7 kg/p.c.	350	3.	5. c.5	15.5	<u>Р</u>	- <u>P</u>	,	- P	P	P	P				
		1			,	P	P	P	P	P	Р		 		
-		C-5	1.	3.	P	P	P	F	P	P	P				
2.3, p.c.	5		1.5	6.	3		P	-	Р	Р	P				
25 kg/p.c.)	410	2.	6.	15.	,	P	P	-	G	G	-	P		L	
. /				1.	P		-	-	-		Р				
2¢ 2g/p.c.)	25	0.3	0.5	2.	P	<u>-</u>	<u> </u>	-	-					<u> </u>	
i.1 kg/p.c.)	15	0.5	la.	5 TC		 -	<u> </u>	7	-	-	Р	<u> </u>	 	ļ	<u> </u>
		0.1	0.2	1.	7	 		-	 - -		P	 	 	 	P P
	-	+	 	1.	,	 	 	<u> </u>	-	_	, P	 	-	 	P
;		<u> </u>		0.5		-	 - -	-	-	-	· ·		 	<u> </u>	P
				1.5	,	-	-	-	,	,	P				P
		İ		0.2	P	<u> </u>	-	-	-	-	,			1	P
87			0.4	1.2	-	<u> </u>	†		 			<u> </u>		 	
(16 kg/p.c.)	90	0.3	1.5	4.	,	-	-	-			Р				
·	 -	0.3	0.6	1.	,	-	-	-			Р				,
ļ. ———		<u> </u>	 	2.	<u> </u>	-	•	-	<u> </u>		P				P
+	 	+	 	1.	-	-	-		 	 	Р				r
 	 	+	+	 	P	 - -	P -	,	 	-	P	-	-		P
				1.		-	-		<u> </u>		P	 	 	+	P
 		+ -	+		<u> </u>	-	-	<u> </u>			P				P
	<u> </u>					 	-	 -	 	-	P	-	-	 	- P
					,	•	1-				P			1	P
	-	1	-		,	-	-	-	С	,	Р				P
		 	↓		,	-	-	-	-		Р				P
	1	-	2.0	5.	σ	-	-	-	E	G	Р				
	-	+-	├	 	P		<u> </u>				Р	ļ			P
	<u> </u>	<u> </u>	ļ	<u></u>	Р	-	-	-	1		Р				,
	 	- 	U.5	2.	<u> </u>	ļ -		-	ļ		Р				
-	ļ		1.	2.		<u> </u>	•	<u> </u>	<u> </u>	<u> </u>	Р		<u> </u>		
		-	+	 		-			P .	 	P	 		ļ	<u> </u>
 + 	<u> </u>	 	3.5	1.5	G	+	-	+	+	 	P		 	 	<u> </u>
•		0.2	-3	-45	,	-	+		+	+	+,	+	 	 	
· · · · · · · · · · · · · · · · · · ·		+	+			+	+	+	+	-		+	 		· · ·
	 	-	+	 	 -	+			 	+	?	 	 	-	P !
	-	-	-		<u> </u>		 			ļ	ļ			ļ	
. 662 - 2-5kg p.o.	915	77 = 22 kg p.o.	28.0= 57 kg p.a.	L											

the Year 2000 Inserts	Excellent Communal Amelyses based on recommons (som med materials) for the live mad Steal Industry: A to G represents the states of the Steal Laboutry of African Comparison	The state of the property of the state of th		Needs a small tree and steel industry	I've and steal industry model the principle	(*) Historic charle have a medium of seed industry in	Ive and even industry's expension to being given a top										7 Smiths will have a matter class closed industry in	Africa										(p) Iran and other industry access top priority. Like will be a leading other producer in Africa.			(7) Liberia elil have a settam else steel laderity amount the					
and Steel ladmetry to	Pair Bood (9)	0	8		4	ь	5		•						ь		8											v			•	b		•		
Pro specti ve 1 ros	obliest Poor (E)			a .						a	a	ē.	a.	a. a		^ - -		•	•	•	•		•	, d	d				4	•			•] •			
Table trial is stion	(c)							+						+			- +																	+		
Present States of Las	Ž (£)		-	a.				. a.	a.	a .		a.	a	-	B.	P	-	Q.	ů.	a.	0.	a.	a. a		a.	a. a.	G.	1	ā.		d	a	a. a			

