

OCCASION

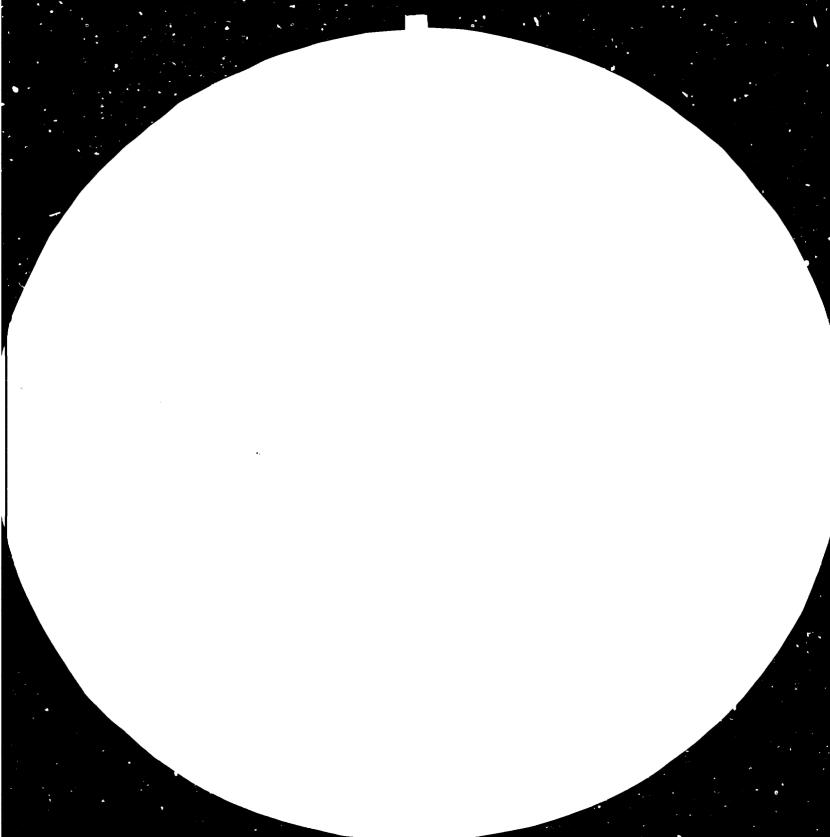
This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

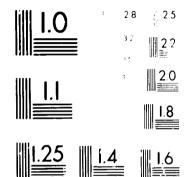
TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.


FAIR USE POLICY


Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at <u>www.unido.org</u>

MICROCOPY RESOLUTION TEST CHART MATIONAL REAR ALL RELEASE ARTS

13994

Distr. LIMITED UNIDO/I0.597 11 September 1984 ENGLISH

١

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION

Union of African Railways Third Symposium

Libreville, Gabon, 22-24 October 1984

STRATEGY FOR PRODUCTION OF RAILS, SLEEPERS, AND OTHER STEEL MATERIALS FOR THE RAILWAYS, WITHIN THE FRAME OF DEVELOPMENT OF THE IRON AND STEEL INDUSTRY IN AFRICA*

Prepared by the secretariat of UNIDO, based on the work of the Senior Interregional Adviser, on Metallurgical Industries, and F. Abou-Zaghla, UNIDO Consultant

v.84 89964

^{*} The designations employed and presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This document has been reproduced without formal editing.

INDEX

1.	Introduction	2
2.	Evaluation of Activities and Future Prospects of UAR	4
2.1.	Present Activites	5
2.2.	Prospects	5
2.3.	Statistics	6
3.	Status and development of the iron and steel industry in Africa	9
3.1.	Iron and Steel Industry – The World Setting	9
3.2.	The Iron and Steel Industry in Africa	14
4.	Recommendations for Action for the Development of the Iron and Stoel Industry in Africa, in Interconnection with the Development of the African Railways	24
5.	Conclusions and Recommendations	31
	ANNEX 1 - 1. Tracks	34 - 76
	3. Rolling Stock	37 - 43
	ANNEX 2 - Mineral Resources of Africa/Production, 1930	44
	– Iron and Steel Industry in the African countries	45

5

Pages

 \sim

1. INTRODUCTION

In its resolution 32/160 the United Nations General Assembly proclaimed the Transport and Communications Decade for Africa, 1978 - 1988. The assistance to the African railway engineering sector is one of the most urgent priorities of the Decade due to its direct relationship to the overall economic and social problems confronting African countries.

The density of the African railways network is very low. For 29 million km^2 , the African continent has only 80,706 km of track which gives an average density of 2,63 km per 1,000 km²; while in Europe, with other highly developed modes of transport, it is over 60 km per 1,000 km². On the African continent 10 countires have no national railways or section of an international railway. These are the Gambia, Niger, Somalia, Chad, Rwanda, Burundi, the Central African Republic, the Libyan Arab Jamahiriya, Lesotho, Guinea-Bissau and Equatorial Guinea.

The African railway network is made up of a series of secondary network most of which being national in character and often independent. Moreover, they do not all have the same technical characteristics. There are nine gauges in Africa but only three are widespread, namely, a normal European track gauge 1,435 m for 11,743 km (14,5 percent), a standard African track gauge 1,067 m for 49,473 km (61,3 percent) and a metric track gauge 1,000 m for 15,472 km (19,2 percent).

The normal European gauge is used in North Africa from Morocco to Egypt. The standard African track gauge is that of the South African countries' network including Zaire, Sudan, Ghana, and Nigeria. The metric track gauge is that of the railways of West Africa and East Africa. The adoption of 1,067 m as the standard gauge for the entire continent would facilitate the inter-connection of the networks, the unification, development and improvement of railway services and facilities for the production and maintenance of railway equipment.

So far, investigations have not been made on the development of the African Railways and railways industries, vis-a-vis development of the iron and steel industry on the continent, and the mutual requirements and existing constraints imposed along both lines of development. Therefore, the initiative of the UAR is very timely and suggestive, and the elaboration on this subject would be useful both for the railways and the iron and steel industries development in Africa.

- 2 -

In the Resolution on the Lagos Plan of Action, the Member States have recognized that transport and communications constitute a most important sector on whose development depends not only growth sector but also the socio-economic integration of Africa, as well as the promotion of intraand extra-African trade.

In recognition of the special importance of the transport and communications sector to the African economy, the Economic Commission for Africa Conference of Ministers in March 1977 has adopted a resolution calling for the declaration of a Decade for Transport and Communications. This resolution has been endorsed first by the Economic and Cocial Council and secondly by the General Assembly of the United Nations which has accordingly proclaimed the Transport and Communications Decade for Africa, 1978 - 1988. This resolution has been subsequently adopted by the OAU of Heads of States and Government in Monrovia in July 1979.

On the above mentioned summit fora, the principal goals of the strategy for the decade defined by the ECA Conference of Ministers of Transport, Communications and Planning in May 1979, have been endorsed and the Member States have agreed to work towards:

- (a) promotion of the integration of transport and communications infrastructures with a view to increasing intra-African trade;
- (b) ensuring the co-ordination of the various transport systems in order to increase their efficiency;
- (c) opening up of the land-locked countries and isolated regions;
- (d) harmonization of national regulations and reduction to a minimum of physical and non-physical barriers with the aim of facilitating the movement of persons and goods;
- (e) stimulating the use of local human and material resources, the standardization of networks and of equipment, research and dissemination of techniques adapted to the African context in the building of transport and communication infrastructures.
- (f) promotion of industry in the field of transport and communication equipment, and
- (g) mobilization of technical and financial resources during the decade, with a view to promoting the development and modernization of transport and communication infrastructures in Africa.

- 3 -

These goals have to be realised through the implementation of projects classified in accordance with their relevance in meeting the problems of transport and communications in Africa as follows:

- (a) (i) regional projects;
 - (ii) sub-regional projects;
 - (iii) national projects with a regional or sub-regional impact.
- (b) projects for the least developed, land-locked, newly independent, island and frontline and other majority ruled countries in Southern Africa.
- (c) projects of concern to other countries.

It has been decided to implement the Decade in two phases:

PHASE I : 1980 to 1983

- continued implementation of ongoing projects:
- implementation of projects already identified and studies and which are only waiting to be financed;
- identification of technical feasibility and economic studies
 of other projects and a search for their financing.

PHASE II: 1984 to 1988

- continued implementation of projects undertaken in the course of the first phase;
- financing and implementation of new projects;
- continuation and identification of other new projects.

2. EVALUATION OF ACTIVITIES AND FUTURE PROSPECTS OF UAR:

The establishment of the UAR in 1974 was in response to the desire of the African countries to make railways play their full role in the economic development of the continent in view of the technical and economic advantages of this mode of land transport:

- heavy traffic over long distances;
- low energy consumption;
- generation of economic activity.

2.1. Present Activities

In 1976, the 4th General Assembly of UAR approved the short and mediumterm programme of action. This programme is currently at various stages of execution, and comprises:

(a) Railway interconnections:

- Master plan for rail links in Africa (26,000 km long);
- the transport decade and the railway (1978 to 1988);
- normalization and standardization of stock and equipment.
- (b) creation of sub-regional training centres;
- (c) UAR Documentation and Publication Centre;
- (d) sub-regional grouping of purchases;
- (e) organization of railway meetings;
- (f) establishment of relevant Working Committees.

2.2. Prospects

The UAR pursued its policy of co-operation with the different subregional agencies with a view to favouring the development of railway industries in Africa. Within this specific framework, the West African Economic Community (CEAO) has entrusted the UAR with conducting a feasibility study for a community wagen factory in the West Africa sub-region.

This feasibility study will be followed by a study on execution in accordance with the CEAO's three year investment programme. This experiment is to be encouraged for obvious economic reasons, and because the construction of wagons does not demand an advance technique which African technicians and engineers have not yet mastered. The UAR will examine the possibility of setting up in each sub-region the following units:

- (a) sleeper production units (wood concrete and metal);
- (b) industrial ballast production units;
- (c) depending on the railways geographical situation the UAR will stimulate and encourage experiments in the use of solar energy for signalling, so as to countervail the constraints of traditional sources of energy;
- (d) grouping of purchases;
- (e) creation of Railway Documentation Centre;
- (f) creation of sub-regional Training Centres;
- (g) improvement of railway operating conditions.

2.3. Statistics

(1) There are three gauges, the so called standard gauge (1.435 m) is found in North Africa and in Gabon - where a new railway is under construction. The so called metric gauge (1.067 m) is found in East and Southern Africa and the (1.000 m) metric gauge is gernerally found in West and central Africa. Lines with gauges of less than (1.000 m) are in the process of being replaced.

(2) Africa today has approximately 100,000 Km of railway lines. Most of these lines were built prior to the 1950'5. The use of electric traction (2,000 Km of electrified lines) is not yet wide spread, it is currently used by only 4 or 5 countries (Algeria, EgyLt, Morocco, Zaire, Zimbabwe).

(3) The average speed of train is still quite low, 30 Km/h for goods trains and 45 Km/h for passenger trains. These low-average result from the uneven geometry of tracks dating from over 50 years ago.

(4) Mining transport is the largest form of traffic, such minerals are intended exclusively for export. Traffic involving agricultural products ranks second. Passenger traffic is fairly developed in the countries of North Africa. The Egyptian railways carry over 25 million passengers annually. Efforts are being made by other countries to develop such traffic.

(5) The economic doldrums which the world as a whole is experiencing makes the operation of the African railways increasingly difficult. Financing for the renovation of rolling stock and the modernization of old lines is growing rarer or is granted under unfavourable conditions. In any even, operating results reveal a very serious deficit, some railways only survive owing to government subsidies .

- 6 -

(6) Despite these difficulties, and relatively unfavourable economic situation, railways, which generaly emerge in most countries as the backbone of the entire transport system, continue to wage the battle for economic development with a view to the integration of all the African economies .

(7) The following table shows the statistics which was carried by UAR in 1979 about the total length of the lines and the rolling stock in the subregion of Africa .

	Length of Line	No. of Coaches	No. of Wagons	Remark
North Africa East " West " Central "	16101 9221 9873 16387	195616 42093 47154 16535	49775 23790 11250 9598	
Total 1979	45582	301398	94413	
Total in 1984	50000	5000	100000	round figures putting in consideration the increase in the next 5 years.

From the above statistics we can estimate the requirements of the African Railways as follows :

(a) Rails : Sleepers

1. Renovation of tracks to meet present - day demands .

This include about 25,000 km of rails and the necessary amount

of sleepers .

- 7 -

 Layout about 26,000 km of new railway lines to fulfil the master plan for connecting the African countries .

(b) Rolling stock steel materials and casting

- The steel sections profiles, plates, sheets neede for renovation of the coaches and wagons which estimated to be 5000 coaches and 100,000 wagons.
- 2. The steel material needed for fabricating additional amount of coaches and wagons for meeting the increase in demand and for the new railways lines .
- (c) From the above statistics we can estimate that the African railways requirement from steel materials (rails, sleepers, construction steel and steel semi fabricates for the new system and the repair and maintenance of the existing one, to be from 3 - 4 million ton yearly.

3. <u>Status and development of the iron and steel industry</u> <u>in Africa</u>

A survey of any industry ought to be done appropriately in the context of its world setting. This stipulation is equally if not more important in the case of a heavily capital intensive industry such as the iron and steel industry. It will be, therefore, necessary to outline in general the world's iron and steel industry, followed by a survey of the iron and steel industry in developing countries (Africa, Arab Countries, etc.) and by referring to UNIDO's technical assistance activities in the field of iron and steel industry for the developing countries and regions.

A survey of the iron and steel industry, national, regional or interregional is inevitably linked up with its future plans and the possibilities of their implementation; it is in the latter fields that constraints, obvious or oblivious, crop up in the case of developing countries with their limitations of scarce capital, scanty trained manpower and an extant or lean technological base.

3.1. IRON AND STEEL INDUSTRY - THE WORLD SETTING

The world production of crude steel has more than doubled in the last thirteen years, from 346 m tons in 1960 to $870 \,\mathrm{m}$ tons in 1983. The growth rate of course was with regard to the individual steel producing countries not equal. Japan's share in the global growth rate was extraordinary. The big question for the future is: What about the growth rate of the steel industry in the developing countries. It is said that steel consumption is somewhat characteristic of the standard of living in a country. In this light the world still lacks a lot of steel. At present, Sweden has one of the highest per capita consumption of 700 kg, closely followed by the United States, then inter alia, by Great Britain with a per capita consumption of 400 kg; and then tail the numerous developing countries where the per capita rate is only a few kilograms of the decimal of a kg. If the devoloping countries increase their consumption only by a few kilograms per head, the quantities of additionally required crude steel would rise enormously.

The iron and steel industry is notably capital-intensive, with a specific requirement of \$400-600 $\frac{1}{1600}$ each ton per year of steel-ingot production capacity. In addition, in certain cases, particularly in doveloped countries, substantial infrastructure investment has to be made. Accordingly, the establishment of an integrated iron and steel plant with a capacity of 1 million tons per year of ingots will require an investment $\frac{1}{1600}$ This forgure is now approaching a \$1,000 mark.

- 9 -

of \$400 million to \$600 million. Additional investment "upstream", i.e. for supply of the necessary inputs, and "downstream", i.e. for processing of steel into manufactured products, will have to be considered in addition and may amount to investments of the same order of magnitude. A large portion of the capital invested in iron and steel installations correspond to heavy industrial equipment and heavy industrial construction. The iron and steel industry is, thus, a large buyer of heavy capital goods. For developing countries this may mean a heavy burden on their balance of payments.

World steel output is expected to keep growing in the future as in the past because steel is one of the most basic industrial material. This long term growth seems assured, if only because the drive to industrialise will relentlessly augment steel demand in many emerging nations. But the uptrend will continue to mask profound changes in the pattern of world consumption and production of steel.

Over the past 100 years, the rise in the world's output of steel has been spectacular. In 1870, it was just short of 10 million metric tons. A half-century later, in 1920, it had increased nearly eightfold to 75 million metric tons. By 1983 it had olimbed to 870 million metric tons.

As a nation starts to industrialize, a first surge of steel demand is likely to reflect heavy investment in its economy's infrastructure the development of a transportation and communications network, electricpower generation and distribution, and other essential facilities. A broader impetus to steel consumption comes from the industrial expansion itself, which is both a cause and a prime beneficiary of the infrastructurs improvement. As economic growth takes off and affluence starts to speead, demand escalates for key consumer durables such as cars and major appliances which in turn, boosts the use of steel.

The country's demand for steel is likely to be satisfied at first by imports. But as its requirements increase, it will attempt to shift to domestic production - initially, perhaps only for large-volume items. The establishment of a domestic steel industry will be recommended increasingly on grounds that it will stimulate supplier and use industries, provide employment and save scarce foreign exchange. It will seem attractive, too, for reasons of self-sufficiency and defence - and at times because of the prestige surrounding steel mills. The prospects, both immediate and long-term, of the steel industry are intimately linked with the world trade in steel. A good part of the world steel production is exported. For instance, in 1955, almost 13 percent of the world steel production was exported Today, close to 23 percent of the world production is exported. Japan, the largest quantum exporter exported almost 37 percent of its production, followed by West Germany. Belgium exports more than three fifths of its production plus imports. italy, France, Luxembourgh and Czechoslovakia also export quite a substantial portion of their production.

World trade in steel has greatly increased over a period of time. The rising trade has been engineered by Japan. The planned manner in which the top six steel producers in Japan have been pushing their steel everywhere, especially in West Europe and the US, has upset the steel production programmes in several of these countries.

One does not have to seek far for the reasons for the Japanese surge in exports. The unit costs of production in Japan is still about 40 percent of that in the US, 45 percent of that in Wesc Germany and 60 to 65 percent of that in France, and these figures Japan is steadily still improving upon. Japan, having joined the steel producing countries' group more recently than all the other developed countries. has more up-to-date, scientifically advanced and technologically superior machinery.

In 1977, it took US steel producers some 15 man-hours to produce a tonne of steel. In 1974, it took them 11 man-hours for the same job. West Germany spent almost 37 man-hours in 1955 but only 20 man-hours in 1974. In the case of France, the man-hours spent for producing a tonne of steel came down from 35 hours to 26 hours. But the productivity of steel makers in Britain during 1974 remained almost at the same level of 35 hours. However, in the case of Japan, the man-hours needed to produce a tonne of steel came down sharply from 69 in 1955 to 9 in 1974! This alone is enough to demonstrate why Japan has forged ahead so fast while countries like the UK have remained where they were two decades ago.

The big exporters are aware that the W.Asian and African developing countries, moving towards higher economic levels, will continue to provide a boost to the production of steel in exporting countries. As the gestation period is pretty long before steel plants come into production, countries in Latin America, Africa and W.Asia will continue to demand steel.

- 11 -

The growth of the Third World steel industries is another structural effect and is an important factor to be reckoned when discussing world steel production.

	Western in	1985,				
	1974 m.tons	%	1985 m.tons	%	1974-1985 growth rate	_
Industrialized countries	462	93	613	83	2.6	
Developing countries	36	7	125	17	12.0	
Total Western World	498	100	738	100	3.6	

Most of the Third World steel producers will be state-owned and exportoriented. Governments of the industrialized countries will try to assist the Third World development with a cut of the big steel markets. This will necessitate established exporters to restrict their share of certain major markets so as to accept Third World producers' participation.

World steel demand will grow at a much slower rate than before and production will match demand. The production pattern will transform with a shift from the industrialized countries to the developing world.

Already occuring is a diversification by the private sector into other related industries and into more sophisticated products and technologies.

Since the Fifties there has been much technological development in the steel industry. The locational problem has been idely studied for reduction in construction costs, operating costs, and, above all, pollution control. Bigger units are favoured for savings in capital cost and operating cost per tonne. The following tabulations are presented to indicate the investment made, capital costs of selected major steel works. The size of the blast furnace of Fukuyama grows with every stage of expansion.

	Inner Vol.of B.F. Cu.m.
Stage 1	2004
Stage 2	2828
Stage 3	3016
Stage 4	4197
Stage 5	4400

1/ Summary extract from 11SI 68th Annual Meeting

- 12 -

The average investment pattern during 1971-75 in the four main steel making countries reflects the pattern of huge capital requirement of the industry.

		Capacity Mty.	M.\$ investment	-
1.	USA	150	1850	
2.	Japan	144	2880	
3.	W.Germany	63	774	
4.	France	34	860	

Investment costs of selcted major steelworks are shown below:

Country	USA	Japan	France	Japan	Japan
Company	Bethlehem	Kobe	Usinor	NSC	NKK
Works	Burns Hbr.	Kakogawa	Dunkerque	Oita	Fukuyama
Cap.Mtpa	4.0	6.0	8.0	8.0	16.0
When Buil	t 1964-75	1968-73	1960-74	1971-76	1963-73
Actual Co	st \$ 1½ bill.	\$ 1½ bill.	\$ 1.1 bill.	\$ 2 bill.	\$ 2 bill.
Poss.1976 Cost	\$ 3½ bill.	\$ 3½ bill.	\$ 5½ bill.	\$ 4 bill.	\$ 8 bill.

Brief analysis of the situation of developing countries in regard to Iron and Steel production and consumption

The situation of developing countries can be summarized as follows: (a) Developing countries have increased their share of world production of raw steel (ingots) from 1.5 percent in 1950 to about 11 percent in 1983; (b) In 1983, their share of world production was roughly 104 megatons, or 11 percent, while their share of consumption was roughly 128 megatons, or 15 percent;

(c) Their per capita production and consumption (as a whole) are extremely low, about 20 to 30 kilograms, respectively;

(d) Even the most developed of the developing countries show per capita indices much lower than developed countries, i.e. about 100 kilograms and 400-600 kilograms respectively;

(e) Only a few (about 13) developing countries in Africa, Asia and Latin America have established in agrated iron and steel plants, however small;

(f) The iron and steel production of developing countries has grown at about 10 percent per year since 1950, with apparent consumption growing at about 8 percent per year;

(g) Developing countries still depend on imports for about one third of their needs for steel, about 35 megatons per year;

(h) Developing countries are heavy exporters of raw materials to developed countries. They supply about 125 megatons per year, or 19 percent of all iron ore consumed in the iron and steel industry (compare that with their share of 11 percent of world steel production). Since the ore they export is of a very high grade, their ore output represents about 25 percent of the iron contained in the world ore output;

(i) Many developing countries are now engaged in major efforts to plan, establish or expand their steel industry, which is generally considered a high priority sector;

(j) The degree of self-sufficiency (percentage of demand covered by local production) attained in the last few years is roughly estimated as follows:
73 percent for Latin America; 56 percent for Asia; 12 percent for the Middle East; 7 percent for Africa.

3.2. THE IRON AND STEEL INDUSTRY IN AFRICA

The current per capita steel consumption in Africa is one of the lowest in the world estimated at 8 kg compared to 250 to 300 kg on an average in developed countries. The consumption of steel in Africa primarily relates to steel rods (RCC), bare, light merchant mill sections, wire rods, rails, plates and sheets. It is currently projected to rise at an annual rate of growth of 9-10 percent. This means that the total steel consumption in Africa will exceed 60 million tons by the year 2000. This, however, is considered to be a pessimistic projection. The growth rate is relatively low for countries at an early stage of development but it is more than adequate for the establishment of iron and steel industry in each of the African countries and the sub-regions. Economies of scale should be taken into account; the production facilities should, therefore, be based on a sub-regional basis with phasing of projected steel industry's development. If this co-ordination materializes, the pace of development will rise and so will the steel consumption which may as a result rise to 3 times the above figure to give a total of 180 million tons by the year 2000. In some African countries, there are abundant reserves of high grade iron ores, oil and natural gas.

<u>Charcoal</u> can be considered for iron smelting in countries which lack coal resources but possess good forests and forestry development programmes. The annual capacity of operational iron and steel plants in African member countries of the Organization of African Unity is now much less than two

- 14 -

million tons; this capacity is expected to rise 15 million tons of steel by 1985. Compare this with the world picture around 1950, the total annual steel production in developing countries was less than three million tons; mid-fifties one often heard that the world's steel industry's capacity had reached saturation levels and that the developing countries could, therefore, import their entire steel requirements from the advanced steel producing countries and further that the developing countries should not enter into the <u>highly capital intensive</u> and the <u>highly technological</u> fields of the steel industry which was stated to be beyond their means financially and technically. However, by 1970, the annual steel production capacity of the developing countries attained a figure of <u>27 million tons</u>. The phenomenal increase in world annual crude steel capacity from the World War II figure of <u>180 million tons</u> and <u>200 million tons</u> in the im_ediate post-war years to its present output exceeding <u>860 million tons</u> annual production represents the gigentic growth of world iron and steel industry.

What are the steel production figures for Africa? Extremely low, and the following figures for the whole of Africa speak for themselves:

	Steel	productio	n in Afri	ca (x 10	00 tons)			
<u>Africa</u>	1964	1966	1968	1970	1973	1981	1983	<u>1984 E</u>
	3,269	3,503	4,312	5,346	6,405	10,860	11,850	11,970

The growth of <u>Steel Consumption</u> and <u>local production</u> in Africa during 1950-1982 at a compound rate (percent per annum) has been estimated at 5.95 and 9.78 respectively. The percentage of regional steel consumption covered by regional production over 1950-1982 for Africa is derived to give a figure of 3 for 1950, 5 for 1960 and 1965, 8 for 1970 and 6 for 1972, and 11 for 1982.

In terms of population, only five countries, namely Ethiopia, Zaire, Gambia, Uganda and Tanzania have a population of more than ten million each; only two African countries have a steel consumption level of more than 100,000 tons and five African countries more than 50,000 tons per year.

In Central Africa, only <u>Zaire</u> has a moderate steel consumption to justify a small scale steel plant based on local raw materials. <u>Gabon's</u> steel consumption currently is of the order of 80,000 tpy. <u>Ethiopia</u>, with a population of 26 million has a large market for steel but hardly any production. <u>Kenya</u> is building up his industries and steel consumption is growing. <u>Zambia</u>, with a population of 4.5 million has its northern part somewhat industrialized where copper industry is operating and its steel consumption is rising.

- 15 -

In Vest African countries, there is no steel production except small plants in <u>Ghana</u> and <u>Nigeria</u> that are scrap-based with small merchant steel rolling mills. Steel consumption in Nigeria has currently been of the order of 650,000 tons/year followed by lvory Coast with a steel consumption exceeding 100,000 tpy. In Nigeria, plans are under implementation for the establishment of an integrated iron and steel plant, using the Direct reduction sponge iron-electric arc furnace route. It would produce 0.5 million tons/year of sponge for export and 0.5 million tons of semis for home market; natural gas will be used for sponge making. This project will reportedly have the collaboration of C. Itoh (Japan) for markcting/financing and of Korf (FRG) for technology.

An agreement has been signed several years ago by the Government of Zaire and FINSIIER (Italy) for the latter's collaboration in the management of the Société Nationale de Siderurgie at Maliku during the first ten years of operation; this plant has a capacity of 120,000 tons per year. In Egypt, identical developments are taking place at the present time.

The Egyptian General Organization for metallurgical Industries (EGOMI) has prepared acomprehensive and long-range plan for the utilization of mineral resources for iron and steel industry in the Arab Republic of Egypt, aiming to meet the increasing demand for the iron and steel products till 1985. The Helwan Steel complex, the only integrated steel plant in the country, has recently expanded its initial crude steel capacity of about 300,000 tpy to about 1.5 million pty in two phases (each phase based on an addition of 0.6 million tpy capacity); this expansion has been carried out with Soviet technical assistance. Other units of the steel industry in ARE are based on the melting of steel scrap in electric arc furnaces and basic open hearth furnaces (all cold charge); these plants have captive merchant steel rolling mills and steel foundries. The total capacity of the non-integrated small plants, viz. Delta Steel, the Egyptian Copper Works and the National Metal Industries Co., is of the order of about 300,000 tpy of liquid speel.

Non-integrated small steel plants in Egypt using cold charges consisting of steel scrap/pig iron, are equipped with basic open hearth and electric arc furnaces. At the Delta Steel, alloy and tool steels are mainly produced whilst the other plants mainly produce plain carbon mild steels for rolling into rods (Reo) bars, etc.

<u>Ghana</u> has a small plant based on electric arc furnaces. <u>Ivory Coast</u> has large reserves of low grade iron ore only.

- 16 -

In <u>Liberia</u>, the demand for iron and steel has risen sharply in recent years. In 1967, UNIDO had sponsored a detailed study of the iron and steel industry situation in Liberia; the latter has highly developed its iron ore mining and pellecizing industries.

Crude steel production in some of the Afro-Arab countries is shown below (x 1000 tons/y):

	_	1970	1974	1981	1983	1984E
Algeria		330	410	2,030	2,060	2,060
Tunisia		60	90	200	200	200
ARE		300	270	1,860	1,890	1,890
Libya				20	20	20
	Total	690	770	4,110	4,170	4,170

Afro-Arab countries with a population exceeding 15 million, are: ARE, Morocco, Algeria and Sudan; total crude steel consumption in all these countries has been of the order of five million tons currently. Algeria is an agrarian country with good petroleum industry. Potential reseves of iron ore are also high and it has fully integrated steel plants in the country (El Hajdar) plans which have raised Algerian steel production considerably in trhe last several years. <u>Mauritania</u> has good reserves of high grade iron ore but no steel industry.

Average Chemical Analysis of high-grade lumpy iron ores/concentrates/

			per	cent			
Lumpy Ore	Fe	sio ₂	A1203	CaO	Р	S	Mn
Algeria	52.56	2-6	0.6-1.5	1.8	8:83		0.2-1.6
Gabon	64.8	1.7	2.0	7.0	0.15	_	-
Liberia	65.8	2.5	1.0	_	0.05	0.005	_
Mauritania	65.0	4.3	1.2	0.2	0.03	0.01	0.12
High-grade concentrate	(ore fin	ies)					
<u>High-grade concentrate</u> Liberia fines Liberia fines concentrate	(ore fin 65.1 64.4	4.5 5.3	1.24 0.51	-	0.09	0.10	-
Liberia fines	65.1	4.5		- - -	0.037		- - -
Liberia fines Liberia fines concentrate	65.1 64.4	4.5 5.3	0.51	-	0.037	0.022	- - -
Liberia fines Liberia fines concentrate Mauritania fines	65.1 64.4	4.5 5.3	0.51	- - -	0.037 0.018	0.022	- - <u>-</u> 0.06

1/ World Market for Iron Ores, UN New York, 1968 and Metal Bulletin 1969.

- 17 -

It will now be relevant to furnish some data concerning the capital and production costs of steel on an <u>average</u> basis under overall African conditions. Steel production costs through various process routes applicable to African conditions and raw materials are furnished in the following tables assuming reasonable unit costs and norms; these will provide the general trends on the subject.

%	Fe	Si0	A1,0,	CaO	MgO	S	F.C.	Ash
	<i>.</i> -		2 3			-		
Iron ore pellets	65	2.4	1.5	-	-	-	-	-
Iron ore lumps	52	7.0	3.5	1.8	0.4	-		-
Blast furnace								
limestone	-	3.5	0.6	50.0	1.0	-	_	-
Dolomite	1.4	1.8	1.0	31.0	19.0	-	-	-
Coke	1.0	4.0	2.9	0.3	0.2	1.0	89	10

Average Chemical Analyses of Raw Materials (percent)

Unit Costs (latest price US\$ per ton)

Iron ore pellets	65% Fe	28
Iron ore lump	52% Fe	19
Iron ore fines	52% Fe	10
Manganese ore		
(high-grade)		65
Limestone/dolomite		7
Fluorspar		120
Blast furnace coke		100
Nut coke		50
Fe Mn		450
Fe Si		400
Natural gas 10 ⁶ Koal		1.0
Power KWh		0.1

		eduction HyL and electric		_	electric smelting LD oxygen steel~	Blast fu LD oxyge making	urnace en steel
Liquid steel production x 1000 t/year	300	1,000	2,000	3\$000	600	1,000	2,000
Capital cost US\$ per annual ton liquid steel capacity	100	86	80	150	135	119	109
Production cost US\$/ton							
Sponge iron	39	37	35	-	-	-	
Hot metal	-	_	-	78	77	70	68
Liquid steel	70	69	67	99	96	87	84
Fixed charges US\$/ton ^{2/}	10	8.5	8.0	15	14	11	10.0
Total cost of production of liquid steel - US\$/ton	80	77.5	75	114	110	98	94

Estimates of production costs by different process routes (average approximations) $\frac{1}{2}$

 $\frac{1}{1}$ These estimates do not relate to any particular African country but provide approximate averages which vary from one African country to the other.

 $\frac{2}{1}$ Fixed charges are based on the following:

- Interest on capital at 4.5% on 50% of the capital
- 5% depreciation
- Interest on working capital for three months production cost at 6.5%
- Total fixed charges are calculated adding 30% to the capital costs to cover infrastructure facilities (raw materials handling transport, etc.)

61

- 20 -

Reserves of African 'ron Ores-1/

Fe X	Proved reserves	Potential reserves	Total 1 + 2
range	million tons	(unproved) million t	million tons
30 - 67	6,800	24,500	31,300

Grades of Iron Ores in Selected African Countries

Country	Reserves mill. tons	Fe %	\$10 ₂ %	A1203 ⁷	Mn Z	P%	S%	Others 2	
Mauritania	465	65.0	4-3	1.2	0.12	0.03	0.01	-	
Morocco	149	60.0 43.0	7 9.6	1.2	2.3	0.05 0.01	1.5 _	14.6 BaO 2.2 CaO	
		52.2	8	5.9	0.2	1.04	0.03		
Algeria	1,579	40.0-56	3.8	-	2 - 0	-	0.5	3.4 Ca0	+ 1.0 NgQ
		49-54	4.9	4.3		0.8	-	0.3 Mg0	+ 0.3 T1
Tunisia	75	54.0 58.0	4.0 4.0	0.8 3.7	2.1 2.0	0.03 0.10		0.5 CaO 0.3 CaO	
Libya	3,525		10.9 7.05 6.15	4.9 4.5 4.9	 	0.94 1.03 0.92		-	
ARE	433	49-59	14.10 2.6-9.1 20-25	NA NA	2-4.5 N:: NA	0.6-1.0 0.19-0.6 NA	NA NA		
Sudan	61	37-61	NA	NA	NA	NA	NA	ŇĂ	

 $\frac{1}{W}$ World Reserves of Iron Ores, United Nations, 1970

Country	Oil million cu m	Gas billion cu m	
Algeria	7,550.00	2,960.00	
Angola			
(incl.Cabinda)	192.00	28.40	
Congo (Bras.)	800.00		
Dahomey	832.00	213.00	
ARE	100.00		
Gabon	176.00	198.00	
Libya	4,864.00	781.00	
Morocco	160.00	40.00	
Nigeria	2,400.00	1,136.00	
Tunisia	160.00	28.40	
Zaire	80.00		
TOTAL	17,314.00	5,304,80	

Oil and gas resources of Africa - 1973 1/

As of 1 January 1974, Africa's (Algeria, Angola, Congo, ARE, Gabon, Libya, Morocco, Nigeria, Tunisia and Zaire) crude oil and natural gas reserves have been estimated at 10,701.34 million cu m and 5,315.59 billion cu m, respectively.

Estimates of natural gas flared in some African countries billion m³ - 2/

Country	produced	1965 quantity	proport.		(estimate quantity	-
·		fla	red		fla	red
Algeria	3.97	2.10	53%	11.33	2.27	20%
Libya	8.61	8.61	100%	17.85	12.24	70%
ARE	0.31	0.25	84%	2.83	1.42	· 50%

1/ Oil Statistics - Government of India, Jan.-March 1973, Fetroleum Information Service, New Delhi

2/ Development and utilization of natural gas resources and their vital role in accelerating economic development by Abdel Dayan A. El-Sani, Planning and Development Adviser, Kuwait.

The existing capacities of the iron and steel industry in Egypt, as well as the planned expansion with regard to the requirements of the African rail-ways, are shown below.

PRODUCTION CAPACITIES OF EGYPT

(Sections and Plates Product Mix Existing)

Section	Sizes m.m.				
Section	Light Section	Medium	Heavy		
Billets and Squares	40x40 to 60x60	80x80	100×100 to 130×130		
Bars (R.C.) and Rounds	13.16.19	-	50 to 125		
Flate bars and Sheet bars	6x30 8 and 10x40	_	30x120 8 to 12x300		
Equal Angles	30x30 40x40 50x50	60x60 70x70 75x75	80x80 90x90/100x100 120x120/150x150		
Unequal Angles	-	-	50x100 80x120 100x150		
Channels	-	80.100	120.140.160 200.260		
І Велжя	-	120	140 160 200 260		
Rails	-	-	18.37.52		
Sleepers	-	-	(For Rails) 47 52 54		
Fish Plates	-	-	(For Rails) 47.52.54		

Rc.Reinforced Concrete bars

Rails identified in kg per metre

Sleepers for rails 18 kglm are also produced but by cold forming

	Sizes m.m.				
	Thickness	Widch	Length		
Plates	5 to 100	1250.1500	3000.6000		

- 23 -

÷,

S .

PRODUCTION CAPACITIES OF EGYPT (to be achieved by 1987)

 \cdot

.

	Sizes m.m.				
Sections	Light Section	Medium	Heavy		
Billets and Squares	20x20 to 30x30	40x40 to 80x80	100x100 to 130x130		
Bars (R.C.) and Rounds	13,16,19,22	40,45,50 60,65,70	80 to 130		
Flate bars and Sheet bars	6x30, 8 and 10x40	8x50	30x120 8 to 12x300		
Equal Angles	25x25 30x30 40x40	50x50, 60x60 70x70, 75x75 80x80	90x90, 100x100 120x120, 150x150 180x180, 200x200		
Unequal Angles -		-	50x100 80x120 100x150		
Channels -		80,100	120,140,160 200,220,240 260		
Beams (IPE)	-	-	140 to 400		
" (IPB)	-	-	140 to 200		
Rails	-	18	37,52		
Sleepers	-	-	47/52,54		
Fish plates	-	-	47,52,54		

	S	lzes m.m.	
Plates	Thickness	Width	Length
	50 to 100	1250, 1500	3000-9000

4. <u>RECOMMENDATIONS FOR ACTION FOR THE DEVELOPMENT OF THE IRON AND STEEL</u> <u>INDUSTRY IN AFRICA, IN INTERCONNECTION WITH THE DEVELOPMENT OF THE</u> AFRICAN RAILWAYS

In making recommendations for the development of the iron and steel industry in African Countries, one is of course, conscious of the tact that such recommendations cannot be regarded as all embracing in absolute terms. The endeavour is to focus attention on some of the problems and factors that are of critical value for the development of the iron and steel induscry and seek to find pragmatic ways to tackle them.

(a) The establishment and growth of the steel industry are based on a complex network of project activities; some of the latter must precede the actual establishment of the steel industry, others have to be undertaken concurrently with the installation of the industrial plant and some perforce follow the commissioning and operation of the steel plant itself. Thus techno-economic feasibility studies must precede the establishment of the steel industry; these studies comprise a vast spectrum covering inter alia the evaluation of raw materials and energy resources, technological process routes and choice of appropriate technology, plant layout and services, market demands and choice of product-mix, capital and production costs and financing of the industry, technical trained manpower and efficient business management, steel plant maintenance and infrastructure, etc. All such studies must be undertaken in advance of the establishment of the iron and steel industry such as at a greenfield site. The steel plant's installation requires another set of co-ordinated activities concerning inter alia civil works and foundations, structural work and foundations, structural work and assembly, provision of utilities and services, commissioning of the plant units and operational trials. The steel industry's practical operations themselves call for another set of well planned and co-ordianted activities covering the actual production of ironand steel and the product-mix based on maximum capacity utilization and adherence to optimum production norms and operational costs.

In all these fields, comprehensive planning and planned action are essential to maintain a chain of inter-related activities in order to get co-ordinated results. The African countries, like any other country, developed or developing, have to plan for the steel industry and its growth to optimum targets and endeavour to link the steel industry to

- 24 -

overall economic development of the country; the objectives being to make the fullest possible use of the natural resources and talents.

(b) In preparing the economic development <u>plans</u>, including those for the iron and steel industry, the need will inevitably arise to formulate the overall <u>strategy</u> for the growth of the iron and steel industry, and prepare a <u>Master/National Plan</u> for the iron and steel industry in the individual countries and regionally co-ordinate these Master Plans as pragmatically as possible.

(c) In the wake of long-term planning and preparation of <u>Master Plans</u> of the steel industry, the need to develop <u>technical consultancy services</u> and establish a base for indigenous technical designs and project engineering services, will be felt for the iron and steel industry and this will, of course, be a long-term <u>strategy</u> to be <u>recommended</u> to the African world.

The <u>technical consultancy</u> organization for the iron and steel industry will inter alia provide the following services to the latter:

(i) pre-feasibility and feasibility surveys and reports;

(ii) techno-economic project evaluation;

- (iii) detailed project reports and engineering;
- (iv) plant and equipment specifications;
- (v) detailed layout, utilities and services;
- (vi) materials balance and cost analyses;
- (vii) capital costs and investment potentials;
- (viii) production cost analyses and profitability;
 - (ix) market studies and demand projections;
 - (x) mode of financing and methodology of project implementation;
 - (xi) civil works and foundation analyses;
- (xii) installation of plant and services;
- (xiii) commissioning and plant running;
- (xiv) overall plant operations and unit production including ancillary services;
- (xv) training services and expatriate expert services.

The technical consultancy services will provide comprehensive services in the above fields for the iron and steel industry from a green field site to full operations of the steel plant, covering the entire gambit of technical self-sufficiency. (d) The strategy for steel development would also entail the evaluation of schemes to maximum the socio-economic benefits of the steel industry; in other words, <u>social cost analysis</u> is <u>recommended</u> to be studied in order to convince the steel industry's critics who continue to maintain that the steel industry is too highly capital intensive and uneconomic for developing countries to project and further that the developing countries con buy all the steel in the world markets; but <u>at what cost</u> and <u>at whose cost</u> - these questions are mostly ignored. It is therefore <u>recommended:</u>

> that the economic appraisal of the steel industry in the African countries (and developing countries) should not be undertaken in isolation or on absolute terms but on a <u>national basis</u>; the steel industry providing the <u>basic raw materials (s eel sections, rails,</u> <u>profiles, rods, bars, plates, sheets, structurals</u>, to name a few) for the light, medium and heavy engineering industries (transport - rail, road and shipping, consumer products, bridges and buildings, tools and machines) and so on. Apart from providing a main sinew for industrial development, the economic growth of the country is promoted through the training of technical manpower, technicians and skilled workers and of business managers. True, the quantitative measure of such benefits can be mostly qualitatively measured and assessed nevertheless. There now exists appropriate methodology to undertake social cost analysis and benefits of the steel industry and project them quantitatively to discerning planners and investors.

- (e) It is also <u>recommended</u> that studies on the sectoral steel demand on a national and regional market basis should be sponsored for African countries (OAU). These studies will provide to the planners with the categorywise steel demand, based on the steel consumer industries. The value of these studies on national and regional basis is important to the African steel industry as a whole; more so, in view of the diversity of steel product-mix and the category-wise demand of steel in individual countries. The iron and steel in individual countries may be inhibited by the limited domestic markets and therefore, the possibilities of developing sub-regional markets and co-operation should be pragmatically studied in order to counteract the effects of the national market constraints.
- (f) It is also <u>recommended</u> that co-operation amongst African countries (OAU) should be examined and promoted in the following specific areas:

- 26 -

(i) Interchange and supply of raw materials

African countries (JAU) should take steps to promote the interchange of raw materials (high-grade iron ores/pellets), directly reduced sponge iron, etc. on a mutually advantageous basis. For example, high-grade pellets from Morocco (RIF Mines in North Morocco) could be exported to Alexandria in ARE; the latter could from its projected DR sponge plant, export highly metallized sponge to Morocco for its new steel plant's electric arc furnaces. Identical biand multilateral exchange of raw materials, sponge and steel is strongly advocated amongst African countries of OAU.

(ii) Interchange of metallurgical know-how, expertise and consultancy services amongst African countries

A developing country within or outside Africa which has attained high standard metallurgical expertise, technical know-how and consultancy services, could assist another developing country lacking such specialization. This type of interchange can be promoted through governmental or private action.

(iii) Interchange of steel plant and equipment manufactured indigenously

A developing country within Africa or outside which has set up technical design and manufacturing facilities for the fabrication of iron and steel plant equipment and machinery can supply them to another developing country lacking corresponding design and manufacturing capabilities; such exchanges can be promoted through bi- and multilateral trade in raw materials, fuels, finished steel products or semis, on mutually beneficial terms.

(iv) Interchange of trained manpower and business management

Some developing countries have achieved high standard business management and executives and have trained personnel (operational and administrative) for the iron and steel industry. They can assist other African developing countries in training of plant managers and executives, steel plant operators, skilled workers, technicians and trouble shooters at various levels. Foremen, superintendents, supervisors, etc. are being trained in some developing countries. Additionally, the provision of such short- or long-term expatriate staff and trained personnel can be mutually arranged amongst the developing countries through mutually acceptable terms.

- 27 -

(v) Interchange of capital investment, equity partnership and sharing of financial resources amongst African countries

Developing countries relatively well endowed with capital resources including foreign exchange while lacking raw materials could assist others in Africa through joint capital investment, equity participations and formulation of joint Consortia; long-term loans and bilateral financial aid may also be arranged.

(vi) Interchange of trade and complementarity of production

Developing countries in Africa can establish mutually baneficial interchange of trade in finished steel end-products and semis (billets, blooms and even steel ingots, etc.) and market arrangements, so that complementarity of their efforts may lead to mutual gain. On the basis of the above guidelines, it is <u>recommended</u> that specific project studies should be sponsored for technical co-operation and assistance amongst developing countries themselves. Plans for bilateral and multilateral iron and steel industry development based on technical co-operation and assistance amongst African countries themselves should be promoted.

- (g) Production of sponge iron using high-grade iron ores/pellets and natural gas Several African countries such as Nigeria, Algeria, Cabon amongst others, have good resources of natural gas and have also fairly good reserves of iron ores. It is strongly recommended that industrial scale production of highly metallized sponge should be taken up in African countries based on proved gaseous DR processes (HYL, Midrex, etc.). It is necessary to pelletize the iron ore fines with or without prior beneficiation as appropriate, and set up pelletizing plants; the high-grade pellets will provide the feed to the DR sponge plants and also an added value product for export. It is recommended that a Master Plan should be prepared for the African countries for the establishment of sponge iron plants in African countries based on the use of high-grade African iron ore fines pellets and natural gas resources. The highly metallized sponge could be exported with advantage outside Africa as also mutually traded amongst the African countries themselves on barter or cash basis. UNIDO can assist in the preparation of the Regional Sponge Master Plan for Africa.
- (h) Production of alloy, tool, special and stainless steels in African countries The ratio of alloy, tool, special and stainless steel output to that of mild and plain carbon steels is normally between 5-15%. In African

- 28 -

countries (OAU) there is practically no production of alloy, tool, special and stainless steels except in the ARE in a small way. It is highly important to plan the production of alloy steels on a national and regional co-ordinated basis. National and regional <u>Master Plans</u> should be prepared for the production of alloy, tool, special and stainless steels in the Africal countries (OAU); UNIDO can promote the preparation of such Master Plans on request by the countries concerned under their respective Country Programmes for UN technical assistance.

(i) <u>The production of ferro-alloys and steel plant refractories in African</u> countries

There is very little production of ferro-alloys and steel plant refractories in African countries (OAU). It is strongly recommended that techno-economic feasibility studies should be undertaken with UNIDO assistance for the production of ferro-alloys and steel plant refractories in African countries (OAU); these projects are of direct and indirect value to the iron and steel industry irrespective of the latter's establishment on a national or regional basis. The production of ferro-alloys should cover ferro-manganese (different grades), ferro-silicon, ferrochrome (different grades of high and low carbon ferro-chrome), ferrovanadium, etc; the steel plant refractories should include acid, basic and neutral refractories, e.g. high silica bricks, magnetite and dolomitic refractories, chrome-magnesite and carbon blocks, etc. A beginning has to be made in these fields.

(j) Iron and steel industry documentation and statistical data for African countries

The importance of documentation, dissemination and cataloguing of technical information and data pertaining ot iron and steel industry and technology is obvious; however, statistical data concerning iron and steel industry in African countries are not readily and fully available. A good start has been made by the Arab Iron and Steel Union and IDCAS (Induatrial Development Centre of Arab States). A centralized technical data bank for the African countries (OAU) will be most useful to the latter.

(k) Standardization of steel products in African countries

It is never too early or late to study the standardization of multiple grades of plain carbon and mild steels as also of alloy, tools, special and stainless steels. Unified and mutually accepted standards (standard

- 29 -

specifications) will greatly facilitate mutual co-operation and trade amongst African countries (OAU). The current practice is to apply standards and relevant specifications as formulated in developed countries (ASTM, BSS, etc.) in African countries. Whilst this may appear inevitable, sooner or later, African standards have to be prepared, accepted and applied in practice. It is strongly <u>recommended</u> that action in these fields should be initiated and UNIDO can assist in undertaking such work on request of the countries concerned.

(1) Manpower and training of steel industry personnel for African countries The training of personnel, skilled workers and technicians, foremen at operational levels and of business management executives and managers, it is strongly recommended, should receive concerted attention of African countries (OAU). This subject is of short-term and long-range importance Very little appears to have been done in these fields except possibly on an ad-hoc manner in a few African countries. A review is also recommended of the educational and vocational training facilities in African countries (OAU) with a view to identify the capacity, future potential and types of technical educational facilities available in African countries. The need to do so is urgent.

It is emphasized that in the above technological training and industrial fields relating to the ircn and steel industry, the process of study, survey and examination is self-generating giving rise to fresh issues, connected with the continuous growth and expansion of the iron and steel industry. An open mind will need to be kept on new issues and dimensions in order to rationally study the individual factors and needs of developing African countries and co-ordinate them on a regional platform. The importance and value of such national and regional studies and surveys of basic issues and plans cannot, therefore, be over-emphasized.

In conclusion, it is stressed that dogmatic approaches should be avoided in the establishment of the iron and steel industry in developing countries. Whilst the applications of the latest technological innovations, automation and computerized operations in developing countries are rightful ambitions and objectives, nonetheless the applications of fully <u>appropriate</u> technology should be encouraged depending upon the conditions and environments in each case and country.

- 30 -

Some of the areas in which co-ordinated action will be required by the African countries are the following:

- i) raw materials development
- ii) economic evaluation and strategy for development
- iii) infrastructure and manpower
- iv) market studies and projections including statistical data (home and export markets)
- v) techno-economic feasibility studies including site selection studies
- vi) detailed project reports covering project engineering.

5. CONCLUSIONS AND RECOMMENDATIONS

As it was mentioned above, that the iron and steel industry is a capital intensive industry and there are several approaches to make the most effective use of capital.

- (A) Existing plants
 - (1) To rehabilitate and increase the capacity of the existing iron and steel plants which was established since many years as the case in Egypt, Algeria and Zimbabwe, revise the product mix of the recent plants as the case in Nigeria. The target is to produce steel materials needed for the railway requirement of the sub-region.
 - (2) To utilize the existing capacities of the rolling stock fabricating plants in some countries to supply the requirements of the railway in the sub-region like the plant in Zimbabwe which can supply the requirements of some of the countries in the Eastern and Southern region and the plants in Egypt and Algeria which are able to supply the requirements of the countries in the North region or the central region.
 - (3) Utilizing the existing capacities of the railways maintenance workshops which after additng some equipment and machinery can manufacture some of the rolling stock as the case of railway maintenance shop in Kenya.

(b) New Plants

(1) In establishment of iron and steel plants the approach of downward integration is preferable starting with production units which are

- 31 -

single processes delivering a saleable product. In this approach the primary conversion units to produce pig iron and crude steel are deliberately postponed but planned for in the overall facilities. Generally, the production of rolled products from imported billets or slabs are considered to be merely an entry into product sales than steel production proper.

(2) The deliberate delay of the iron and crude steel capacity after the rolling mill has been commissioned and operated for a time corresponds to the natural evolution of the iron and steel industry. It is important to stress that primary conversion is fairly capital intensive and in cases where there is initial crude steel capacity, this stage of iron and steel industry development requires more capital than all other stages. An important question when planning for an expanded steel production is the economic size of the plant in question. It is recommended to have the smallest size that can give reasonable economy under prevailing conditions. Since trade within the subregions is expected to be an important strategy in the development of the iron and steel industry, it is essential that the iron and steel technology employed is chosen with great care. In particular, the technologies to be considered include:

Iron and steel, direct reduction, steel making, continuous casting and rolling and fabrication mill technologies. Due to the enormous effect of choice of technology on production costs and price and quality competitiveness of iron and steel products, it is highly recommended that the countries of each sub-region seriously consider close collaboration and joint action in the search, evaluation and negotiation for the most modern and efficient, available and tried technology and be ready to pay appropriate prices to ensure that products from their national steel plants as well as any sub-regional one are both price and qualitatively competitive. So it is recommended in case of establishment of new integrated plants, it must be on the basis of sub-regional project and all the technical aid and assistance given by the UNIDO or other organization for the studies must be for sub-regional projects and in co-operation with ECA.

(3) In planning to put new rolling stock factories in the sub-regions, the feasibility studies must be done on the basis of sub-regional projects, whether the study is done by UAR or ECA or any other agency as the case of the West African Economic Community (CEAO).

- 32 -

- (4) Other engineering projects for railway requirements as springs, axles and wheels, bolts and screws, welding electrodes, must be studied on the same basis.
- 33 -

1. TRACKS

-Characteristics of rails and tracks -Length of lines and tracks -Type of Signalling

1	2	3	4	5	6	7	. 8	9	10	11	12	13	14	15	16	. 17
NAME					LENC	TH OF	LINES (I	Km.)			LENG	TH OF	TRACKS	(Km.)	[· ·
	TRACK	WEIGHT	AXLE LUAD	Elect	rified	Non El	cuifier!	1	BAL-	Elect	rified	Non El	ectrified	TOTAL		Туря
of Railw ay	GAUGE mm.	RAIL Kg/m. (1)	Ē	Single Track	Double Track	Single Track	Double Track	Total Km. cols. 5to8	LASTED Km.	Single Track	Double Track	Single Track	Double Track	Km. Cols. 11to14	BAL- LASTED K.m.	OF SIGNAL- LING
								NORTH	AFRIC	A						
SNTF	1,435 1,055 1,000	46		' 299 		2,350		· 2,649 1,263					•			
ER	1,435	47/54	22	۱ ۱ ۱	25	2,928	952	. 3,905	3.905		50	2,928	1,904	4,882 (2)	4.882	Electrical 4 Mechanica
ONCF	1,435	33/54	22	549	163	1,056		1.768	1.768	549	326	1,056		- 1.931	1.931	Electrical d Mechanical
SRC	1,067			i .	}	4,784.1		4.784.1			1	5,495.9		5,495.9		,
SNCFT	1.000 1.437	25/36 30/46	16 18			1,282 414	18	1,318 414	1.318 414			1,476 479	18	1,512 479	1,512 479	
							1	16101 CENTR	AL AFR	ICA						
ANGOLA	1.067	13/60	13	i				3.613			i					
RNCFC	1.000	26/36	14		1	1,164	4	1,168	1.168			1,360	8	1.368		Simple panels
]		(3)				!		(3)		(3)	. (3)	Mechanica
CFCO	1,067	30/44	20			792-5	2.5	795	795	•		1.039.6	2.5	1,042.1	1,042.1	and Electrical
OCTRA	1,437	50	28			90	·	90	90	· · · · · · · · · · · · · · · · · · ·		130		130	130	•
SHCZ	600 1,000 1,067	9/32 24.4 24.4/40		!		1,023 125 2,715		1.023 125 3,573	•	861		1,048 139 4,179		5.366		Mechanica

ANNEX 1 page -1-

1 34 T

41

1

-

1. TRACKS

ANNEX 1 page -2-

0

- 35 -

---Characteristics of rails and track ---Length of lines and tracks ---Type of Signalling

1	2	3	- 4	5	6	7	8	9	10	11	12	13	14	15	16	17
	!	WEIGHT			LEN	GTH OF	LINES	(Km.)			LENG	TH OF	TRACKS	(Km.)		·
NAME	TRACK	OF RAIL	AXLE LOAD	Elect	rified	Non El	ectrified	TOTAL Km.	BAL-	Elect	rified	Non E	lectrified	TOTAL		Туре
of Railway	ຫາກ.	Kg/m. (1)	(T)	Single Track	Double Track	Single Track	Double Track	cols. 5 to 8	LASTED Km.	Single Track	Double Track	Single Track	Double Track	Km cols. 11 to 14	BAL- LASTED Km.	OF SIGNAL- LING
								WEST	AFR	ICA	· <u></u>					•
RAN	1,000	25/36	15	l		1,147	l	L 147	1,120	ı I	!	1,144	19	1,163	1,157	Mechanical
OCBN	1,000	22/30	13.5		l	579		579				655		655		
GRH	1,067						;	925.		 						·
ONCFG	1,000							662								
LAMCO	1,435						, I	270		1)				•
REFM	1,000	20/30	15			641		641	641			702		702	702	Mechanical
SNIM	1,435	54	25			650	:	650	650			738		738		Radio Control of trains
NRC	1.067	30/40	18			3.523	: :	3,523		;	 	4,846		4.846		Prodominantly (Mechanim) (2)
RCFS	i.000	36	15			964	. 70	1,034				1,116	70	1.186		Fixed signals
CFT	1.000	33/36	12.5	1	1	442		442	!	1		497	1	497		

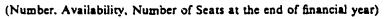
1. TRACKS

ANNEX 1 page -3-

--Characteristics of rails and tracks

-Longth of lines and tracks

-Type of Signalling


]	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
		WEIGHT	Axle		LENGTH	OF LIN	NES (Km	.)	Ĺ	ENGTH	OF TRA	CKS (Kr	m.)			- ·
NAME	TRACK	OF RAIL	LOAD (T)	Elec	urified	Non El	ectrified	TOTAL	BAL-	Elect	rified	Non E	lectrified	TOTAL Km.	BAL-	Type
of Railway	mm.	$\frac{Kg/m}{(1)}$	(1)	Single Track	Double Track	Single Track	Double Track	Km. cols. 5-8	LASTED	Single Track	Double Track	Single Track	Double Track	cols. 11–14	LASTED Km.	OF SIGNAL- LING
								EAST	ÅFRI	C.A						
CFE	1,000	30/20]4					781		1						
UR	1,000					1,265		1,265								
RNCFM	1,000	25/37	14			883	5	888				! 56		1,044		Electrical & Mechanical
MR	1,067	30/40	15			556		556	351			614		614	351	Token
CFM	1.067 762	27 5/54 15/24	12/20 5.5			2,427 90	30	2,457 90	2,417			2,965 140	30	2.995 140	2,505	Electrical
SR	1.067	40	16			220		220	220		!	270		270	270	СТС
TAZARA	1,670	45	20			1.860		1.860	1.860			2.044		2,044		
ZR	1.067	30/45	31					1.104								

3. ROLLING STOCK 3-2. TRAILLING STOCK

ANNEX 1 page -4-

- 37 -

3-2-1. PASSENGERS

1	2	3	4	5	6	7	8	9	10	11	12	13 !	14	15	16	17	81
					COAC	CHES						RAILO	CAR 1	FRAIL	ERS		
Name		Nun	nber				Number	of Seats				!	Nur	mber of S	cats		' ! ;
OF Railway	Ordi- nary coaches and vans	Slee- ping cars	Din- ing cars	Total cols. 2, 3 & 4	l st Class	2nd Class		Total cois. 6, 7 & 3	Scats	Beds	NU'A- Ber	lst Class	2nd Class	Other Classes	Seats	Beds	Availa- bility
					•			NORT	HAF	RICA							1
SNTF				475 (1)				31.894 (1)	• •								
ER	1,394	59	13	1,466	3,611	24,976	85,724	;114,311	114,311	1,284	234	1,974	6,880	4,320	13.174	·	70
ONCF	394 .	7		401	3,042	10,823	4,558	18.423	18,353	70		·					
SRC	441	33	12	486	1.602	3,265	20,142	25,009	24.613	396	9		96	750	846		80 %
SNCFT	146	2	2	150	1.295	4,684		5.979	5.979	92	58	1.028	5.130		6.158		88.4 *
Angola								195616 CENT	RAĽ	AFRJ	СА 			· · · · · · · · · · · · · · · · · · ·			'; <u></u>
RNCFC	42	5	3	50	135	2,076		2.211	2.211	104	57	140	3,768	·	3.908		85 ;;;
CFCO	35		2	38	280	864	1,634	2.778	2,530	14	40	225	2,260	· · · · · · · · · · · · · · · · · · ·	2.215		79 %
OCTRA	16			16	; 	800	 1	800	800					;			100 %
SNCZ	129	68	22	219	1,128	1,624	7,994	10.746	8.906	1.840	15	910	92		1.002		40 %

3. ROLLING	STOCK
------------	-------

3-2. TRAILLING STOCK

3-2-1. PASSENGERS

ANNEX 1

page -5-

(Nutto at Availability, Number of Seats at the end of financial year)

1	2	3		4	5	6	7	8	9 ,	10	11	12	13	14	15	16	17	18
	• •				c	0 . C	HES						RA1	LCAR	TRAI	LERS		:
NAME	·		Num	ber				Number	of Seats					Nu	mber of S	cats		-
OF Railway	Ordi- nary coaches and vans	Slee pin car	5	Din- ing cars	Total cols. 2. 3 & 4	ist Class	2nd Class		Total cols. 6, 7 dz 3	Seats	Beds	NUM- BER	lst Class	2nd Class	Other Classes	Seats	Beds	Availa- bility
							; 	WEST	AFR1C	A					1 			
RAN	129		12	6	. 147		9,734		9,968	9,968	234	27		1,886	i	1,886		98.7%
OCBN	11				11		120		120	120	18	18		1,076	·	1,078		90%
GRH					182													
ONCFG					20													
LAMCO					!							,, ,				· · · · · · · · · · · · · · · · · · ·		
RCFM	26		4	1	31	42	790		888	888	64	16	204	932	, 	1,136		73.7%
SNIM	8			- -	8	12	168		180									
NRC	467	2	B6	52	805	1,088	1,602	30,090	32,780	29,776	3,316	;						
RCFS	110 (1)		4	2	116	210	2,956	52	3,218	3,166	60	28	48	1,598	109			
CFT	34				63							11			;	;		

- 38 -

3-2. TRAILLING STOCK

3-2-1. PASSENGERS

ANNEX 1 page -6-

- 39 -

(Number, Availability, Number of Seats at the end of financial year)

1	2	3	4	5	6	7	8 '	9	10	11	12	. 13	14	15	16	17	18
	;			······································	COA	СНЕ	S				 i	RAILO	CAR '	TRAIL	ERS		
NAME		Nu	mber		, 		Number	of Seals					Nun	ber of Se	ats		
OF Railway	Ordi- nary coaches and vans	Slee- ping cars	Din- ing cars	Total cols. 2, 3 & 4	lst Class	2nd Class	Other Classes	Total cols. 6, 7 & 8	Seats	Beds	NUM- BER	lst Class	2nd Class	Other Classes	Seats	Beds	Availa bility
CFE					1 1 1 2 8		1 : :	EAST	AFRI	CA	• • •						
KR	97	67	17	181	627	1.422	8.084	10.133	10,133	1.835							·
RNCFM	29			29	381	2.466		2.847	2,027	:	42	531	4.020		3.068		, 95.5 %
MR	30	3	· · · · · ·	33		88	2.788	2,876	2.876	; ;							94.: %
CFM	187			·	663	2,414	13.028	16.105									sc ;;
SR			·														
TAZARA	44	46	. 10	100	364	1,584	3.264	5.212	3.264	1,948					~~~~		75 **
ZR	132	6	: 12	150	1.040	3.240	640	4.920	5.046	132	6			360			

3-2. TRAILING STOCK

3-2-2. GOODS

ANNEX 1 page -7-

- 40 -

(Number, Net Weight, Availability at the end of financial year)

ŀ

1	2	3	4	5	6	7	8	9	10	11	12	13	14
NAME OF	Covered	Wagons	Flat W	/agons	High- Open V	-sided Vagons	Other \	Vagons		iy-owned gons	Total Number	Total Net Weight	Availa- biiity
RAILWAY	Number	Net Weight (T)	Number	Net Weight (T)	Number	Net Weight (T)	Number	Net Weight (T)	Number	Net Weight (T)	cols. 2, 4, 6, 3 & 10	(T) cols. 3, 5, 7, 9 & 11	•/
SNTF	:					NORT	H AFRI	C A			11,049	314,139	<u> </u>
ER	6.948	76,870	500	35.990	6,359	180.731	2.013	62.205			16,620	355.846	85%
ONCE	2.337	55,384	2,099	51,533	2,087	46,182	2,897	122.491	554	18.066	9,974	293,656	
C	3,523	105.562	218	6.658	979	28,739	1.283	34.850	658	i I	6.661	175,809	92°,
OFT	944	13,142	1,035	20,235	643	8,710	2,746 (1)	61.875	103	2.680	5,471	106.642	93.47 "
ANGOLA			• .	· · · · · · · · · · · · · · · · · · ·		CENTR	AL AF	RICA		1	49775	ـــــــــــــــــــــــــــــــــــــ	
RNCFC	542	16.400	551	24.750	95	3,220	183	5.630	130	4,480	1,501	54,480	90 •,
CFCO	612 (2)	24,523	664	32.590	219	\$.250	239	6.732	159	7.063	1,893	79,158	85.2 %
OCTRA	12	660	300	20.4000	1	50	8	485		1	321	21.595	100 *.
SNCZ	2.144	74.219	1,893	70.834	530	18.884	1.032	34,455	284	9.636	5.883	208,048	56 ",

3-2. TRAILING STOCK

3-2-2. GOODS

(Number, Net Weight, Availability at the end of financial year)

1	2	3	4	5	6	7	8	9	10	11	12	13	14
NAME	Covered	Wagons	Flat V	agons	High Open V	-sided Vagons	Other W	agons	Privately Wage	r-owned	Total	Total Net	Availa-
of Railway	Number	Net Weight (T)	Number	Net Weight (T)	Number	Net Weight (T)	Namber	Net Weight (T)	Number	Net Weight (T)	Number cols. 2, 4, 6, 8 & 10	Weight (T) cols. 3, 5, 7, 9 & 11	bility °
						WEST	AFRI	C A					
RAN	661	19,740	170	4,187	2!1	6,195	51	1,144	107	3,520	1.200	34,786	
OCBN	210	6.046	91	2.428	15	715	27	575	13	210	356	9,974	94.7
GRH	,						· <u> </u>				•	•	
ONCEG	. <u></u>		<u></u>				·				i	, gian <u>anan</u> , ,	
LAMCO					<u></u>		;					• <u> </u>	
RCFM	262	8,299	25	925	49	1.715	34		10		380		89 °.
SNIM			82	5.248			1.070 (1)	85,154			1.152	90,402	85 "
NRC	3.606	99.912	45	1.170	372	9.435	2,625	69,709	590	17,182	7,257	196,925	
RCFS	479	13,470	58	1.334	149	3.675	39	330	180	6.287	905	25,096	
CFT	199	2,738	94	2,942									

- 41 -

\$ ¹

11250

ANNEX 1

page -8-

- .

ANNEX 1 page -9-

3-2. TRAILING STOCK

3-2-2. GOODS

1.

umber, Net Weight, Availability at the end of financial year)

1	2	3	4	5	6	7	8	9	10	11	12	13	14
NAME	Covered	Wagons	Flat W	agons	High- Open V		Other V	N'agon s	Privately Wag		Total Number cols. 2, 4,	Total Net Weight	Availa-
OF Railway	Number	Net Weight (T)	Number	Net Weight (T)	Number	Net Weight (T)	Number	Net Weight (T)	Number	Net Weight (T)	6, 8 & 10	(T) cols. 3, 5, 7, 9 & 11	bility
	·					EAST	AFRICA						-
CFE				i			 !		 ; ;		' 		~
KR	3,246		928		825		1.634				6,633		
RNCFM	545	14,475	257	6,736	92	2,760	75	2.526	78	2,360	1.047	28,857	97.3 %
MR	346	11.387	22	573	141	6,107	247	8.362		<u></u>	756 -	26,429	95.4%
CFM	1.465	50,254	312	10,435	5.335	214.200	542	16.329	i		7.657	291,218	86 %
SR	23	460	•••••••••••••••••••••••••••••••••••••••		535	9.095	209	3.971	20	400	787	13,926	95 %
TAZARA	523	15.690	. 892	44.600	400	20.000	285	5.161			2.100	85.601	97.5 %
ZR	311	9.952	30	1.200	4.429	193,721		1.207	40		4.810	206.080	

42 -

- E


3-3. CONTAINERS

ANNEX 1 page -10-

- 43 -

(Types, Sizes, Number and Traffic)

1		2	3	4	5	6	7	8	9	10	11
NAME	an			SIZES		NUM	BER	т	RAFFIC	(in thousand	ds)
OF		Types	<u></u>	+ <u></u> + <u></u> ,				NATIO	DNAL	INTERN	ATIONAL
RAILWAY		, i	Length (mm)	Width (mm)	Height (mm)	Owned by the Railway	Privately owned	Tonnage	Т.К.	Tonnuge	Т.К.
SNTF	•••					NORTH	AFRICA				
ER							· <u> </u>				
ONCF		SCIFCT SNCF Bloc tube	2,170 2,310	1,500 2,200	1.635 1.900	190 57		ļ			
SRC		•							·····		
SNCFT		42 C SPB SP ISO	3.032 1,900 2,098 2,006 5,695	2.032 1,100 1.000 1,604 2.078	2,000 1,425 1,500 1,450 2,078	12 3 2 3 5	9 7 0 5 3	1		1	
ANGOLA	•••					CENTRAL	AFRICA			:	
RNCFC	•••	(1)	ISO					·			
CFCO											
OCTRA		;									
SNCZ						· ,					

	Algeria	Angela	Jetowata	hrund1	Contral African Rep.	Consten	Cauge	Cape Verde Isl.	Laype	Echiopia	C:ben	Chana,	Guines	Kenya
Aluzina												188	706,000	
Alusinium (thousand tons)	•					43			120			188		
Antimony (tons)	· –													
Arsenic (White)														
Asbestoc									230					6,647
Restum (tone)	91,000								3,000			225		4,447
Bauxite												445	11,759	
Bestonite and														
Fuller's Earth (tons)	41,000								5,200					
Cadalum	150								•					
Caddium Ores and Concentrates (tems)														
Coal (tens)			371,395											
Cobalt (metal content - 1	(ana)		226											
Copper (Mine Fred.)	200		226 15,554			-								
Copper (Smelter Fred.)			-											
Dispende	1.	500,000	5,144,000		279,000							1,200,000	84,000	· · · ·
Distmite	3,600		•						100					1,677
Teldspar	-•··								3,600					367
Fluerspar			•			5	230		680	280	28			93,378
Culd (Kilegram)				4		-						10,937		•
Graphite	200,000	25,000							190,368					-
Cypeun														-
Iron Ore	3,500	•							1,870					
Pig-lron	580								760					
Steel Ingots and	\$00								/eu					
Castings														
Ferre Alleys									44 000	30,000				1,447
Keolin	18,100			2,750			7,000		43,000	30,000				1,40/
Lead	2,400						7,000							
Refind Load														
Litiilum														
Magnesite														
Manganese Ore									-		2,147,00	0 252,450		
Hercury	1,035,000													
Mica														
Sickel			15,442									-		
Petroleum	51,560	7,610				2,790	3,130		31,200		8,88	0		
Natural Gas	14,600										••	•		-
Thosphate Rock	1,025,400							6.	58,000					
Platinum (Group Matals, Kliograms)										4				
Potash							•							
Rare Earths				•••				_						47,016
Selt	172,000	50,000						4	99,000	106,000		50,000		
Sillinamice														
Silver	2,500													
Sulphur Pyrites									3					
Talc									4,400					
Tantalum (Columbium)						•1								
Tin (Min. Prod.)						24								
T.a (Smolter Fred.)														

Source: World Mineral Statistics, 1976-1980, Production/Exports/Imports (Institute of Geological Sciences, Fatural Environment Research Council, London, Her Nejesty's Stationary Office, 1982).

4

SECTION 1

SECTION 2

708,000 188 549 2,000 800 6,647 318,000 225 11,759 1,500 18,100 70 146,529 612,802 680,000 1,000 8,600 408.000 39,200 40,000 1,560,000 \$3,714 300,000 00,000 1,677 5,000 25 64,400 93,378 4 4 9,906 45 :0,937 140 1,800 -14,000 8,900 ... ·78 17,481 100 115,500 40,300 2,720 1,487 47,700 42,700 3,000 132,200 2,450 1,642 200 500 14 80 18,824,200 100,286 \$6,020 1,37 ... 20 227,000 14 104,000 28,000 47,016 10,000 30,000 5,000 6,000 3,000 47,000 10,000 60 550 60 2,527 1,600 2,684 1,000 96

Table 2 Mineral Resources of Africs/Production, 1980, tonnes

Madagascar, Mali

Ivery Ceast Lesothe Liberia Libya

Lanys

Guinea

Chana

rironment

1

40

ANNEX 2 page -1-

Mauritania Mauritius Morocca Hozambique

Mamibia Riger Nigeria Rosada :

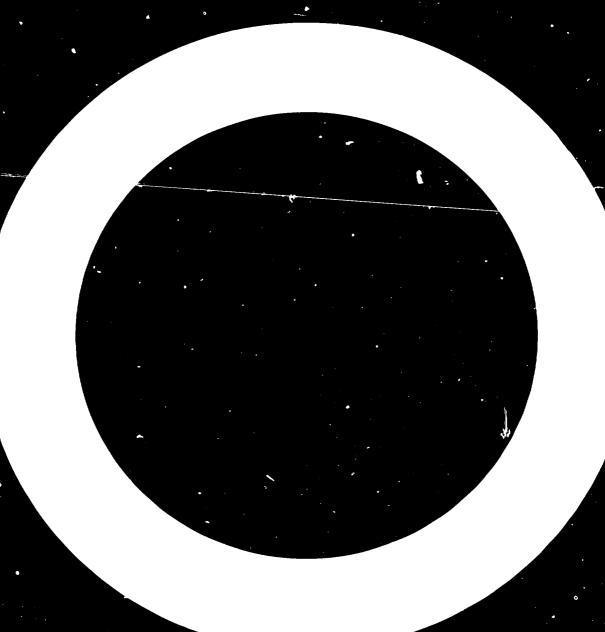
SECTION 3

		2,000			87 13,013						150
549		2,000			276,734		32,833				79
	800				2,435		-	26,950			250,949 195
318,000					674						
18,100	1,500			3,978	52,535						
		70		-	3,414,410	25,000			168	-	552,475
			612,802		115,119,974		175,989 4,250		136,000	568,799	3,133,036
6#0,000 1,000 8,400	408,000	39,200 40,000			200,683 185,800				14,700 - 459,700 - 425,700	3,310	24,901 26,700
		1,540,600			592,018 6,521,682 584		269 ,876		10,235,000		-
	•		5,000	15	52,247 522,718 672,786			30,451		475	1,263
64,400				-	•				1,243	257	11,443 7,385
-78			1,800		452,490 26,312 7,200	10,000	\$,119 _	214,910 309 140		-	1,622 93
					9,000			182			800
115,500					1,577,950 137,854 56,059		- 7,434	•		14,131	221,910 4,450
40,300		47,700 42,700	100					8,310 19,195		10,047	
	-	3,000	. •	•••	59,975 5,695,426				16,586	-	21,030 78,217
132,200					2,528	1,500	3		-		
	200				25,700	-,	•				1,022 15,075
500			100,286					5,600	1,000		
80			1,343	1,372,603	3,185,000		2,930,000	355 4,501,907	-		130,337
,824,200					192,800						,,,,,,
104,000	28,000		20 227,000	140,000	567,000 121,317	82,000	34734	436,516	51		
10,000	-		47,000		97,213 14,366			7,332	\$5,003 30	23,752 101	29,68 1 29 456
~	-	1,000	550 96 2,577 1,6 2,684	60 00	2,913 1,100				40 3,159 300		430 41 934 918

Namibia Niger Nigeria Rounda Sanegal Sierra Loone South Africa Sodan Souriland Tenzania Tego Teninia Uganda Zaire Zambia Zimbabue

• onnes

** Morocce Mozambique


1

.

,

0

Ģ

ANNEX 2

	Ŀ		Populatio			Critical New Materials								Con		Cil	`aa	consumpt	ion	Ingot Steel Product	
No.	Countries	(yuars-) (Rounded off figures)			Reperves	Tion One						Reserves	T	<u> </u>	+	19"3		kg per capita	<u> </u>		
		(1972/73 (1381)	1985 (00) x 1000	2000 (HIS)	million tope	Percentage (Averages) Pe 3102 31203 Mm P S Others America					Reports	allion tons	Quality	million	billion E		L	1973			
1.	Sigeria	70,000	85,000	105,000	258	43								350	bi taminous	2,400	1,136	1.4	28	15 15 7 (C.: p.c.)	· .
:.	A.R. Egypt	35,000	53 , 50 0	75,000	433	46	14	j	2-4	-6				 		10C F		28	200	340 (7 kg/p.c.)	
3.	Ethiopia	26,000	35,800	50,000		50-59 43	25			1-9 0.4											
4.	ZAITO	20,000	25,800	34,000	29 5050	30 10	13/3 9	┦	Į_	.1				73	hôn tituminous	Ac			[ļ
<u>.</u>	Sadan	17,000	26,100	40,000	ெ	27-	L						2.2 Cao		non bituminous		ļ				
6.	Nerocco	16,000	26,800	41,000	149	43 -60	7- 10	1-6	2.3	.01 to _1.1	-1-		-6 5eC	58 28	anthracite	160	3 0	2.	150	(°-) p-t-'	
7.	Algeria	14,000	24,000	38,000	1,580	40-50 49-51 50.		4.3	-	0.8	0.05	3-4CmO+ - 3%g0 +	371	20	bon bituminous	-, 550	2,350	r	.12C	335 (25 kg/p=c=)	<u> </u>
8.	Temenia	14,000	20,000	29,000	121	<u>30</u> .			upt 11			11 0	-13		<u> </u>	<u> </u>	 	 		25	∔
э.	Kenya	12,000	18,000	36,500	27	60	5	-	-	0.2			<u> </u>		<u> </u>			<u> </u>	25	25 (2 kg/p-0-) 15	+
16.	Uganda	10,500	13,100	18,000	98	60 -67	1.1	0.05				710 10-	ō	L			 	15	100	(1 xg p.c.)	
<u>:1.</u>	Shene	9,000	15,000	24,000	405	46 -51	3		ļ	1.0			ļ				ļ	1	25		
12.	Nozambique	8,000	10.900	14.000	261	52 to 67		<u> </u>		.05	.02		ļ	700	bi Cusinous	L					
13.	Malagaay Seps	7,400	10.800	16,000	251	25 to 46	1			.15	.،		L								
14.	Gameron	ó, 000	8,000	11,000	120	38				.08	.2						28.2				
15.	Angola	5,600	8,100	12,000	1100	62	ړ			-05	.C3 -1.0					iyz (inclusive					
16.	Opper 707 ta	5,600	7,700	10,500	50	1 58	2.2	1.5		.06		∀-0.	41	1	1	1	1	1	1	· · · · · · · · · · · · · · · · · · ·	1
17.	Ivory Comet	5,400	6,500	نعہ 9	2,400	40 ~46	39		+	.06	. 01		42	<u>↓</u>	<u> </u>	<u>+</u>		+	+		1
18.	Tunisia	5,300	ε, 500	13,000	75	54 58	4	.5	2	.03 .1	-	0.5 C	10 10	20	Lignite	150	25.4	5	400	(16 kg)-c.)	T
19.	Wali	5,300	7,600	11,00C	69	64								1				1	1		+
æ.	Quines (Z)	5,100	7,000	10,000	1544	52 -64	3		1	•06	.1					1	1				1
21.	Malar:	4,700	6,800	10,000	<u> </u>	~		<u>↓</u>	+				~~	÷	+	+	+	+			+
22.	Cambia	4,500	7,000	10,000	346	40	6		1.9				-	115	non bitusinous		+	1		1	+
	Niger	4,300	6,200	9,500	680	-62	-20						+	+		+	+		-+	+	+
24.	Senegal	4,000	6,500	10,00C	100	58	5	<u> </u>	<u>†</u>	.03	.05			<u> </u>	+	+	+	-	1		+
25.	Bennda	4,000	5,700	9,800		Ĺ						_		<u> </u>							<u>+</u>
26.	Thad	3,800	5,500	9,000			Ĺ									ļ					
	Burundi	3,500	5,300	8,300	•		ļ	<u> </u>					•	Ĺ				<u> </u>			<u> </u>
.°°.	Somalia	3,000	4,300	6,500	170)C - 19	<u> </u>										_!	_			
23.	Doho sey	2,900	4,100	5,500	290	50 -58	3 -16			.8	.04		•	L		932	213				<u> </u>
x.	Sierra Leone	2,700	3,800	5,800	200	60	6 -13			.01 03	.00										
<u>,1</u> .	Libya	2,000	3,100	5,000	3#525	50	6	4.9	-	1.0			+	1		4,864	781	1 18	800	1	
2.	+	2,000	2,800	4,300	642	35	20	16	t i	.23	.05			<u> </u>		-	-		+-		+
. 33.	1	1,700	2,100	3,-000		-	•						1	1			-		1		
	<u>+</u> -	1,600	1,800	2;200	713	65,8	4.7	1.2	0.12	.03	•001				+			×	500		
35.	Neuritenis	1,200	1,700	2,500	465	65	4-3	1.2	0.1	2.03	.01		1	[1		-				• _+
16.	Congo (Braz.)	1,200	1,350	1,600	100	43	20]		iwo					
Jr.	Spanish Sasara	<u> -</u>	56	65	150	54	-		+	+	ті-	4	+	J	+	- 					
, 3 .	Tabon	500	600	800	1,216	65	1.7	2		+	<u>-</u>	0-0.2		5,022	non- cituainous	175	198	66	500		
33.	Gessland	450	680	990	290	61	4.2		6.9 10	1						·		1	200		
4').	Gambia	vao	514	750]					+ -		
	Others	2,200	3,500	5,000	600													:		Ì	
	TOTALS	147,730	491,KC	1707,101																A82 2.5kg p.a.	1

5 - Excluding South Africa and Rhodesia

🕗 There are no coking coal reserves in these Afrixan countries (excluding South Africa and Rhodesia) - Resources of 🛛 anthracite to sub-bituminous coals are 7,000 m/tons

5 Total reserves of iron cres in Africa (30-67% Fe) proved = 6,800 x toss/Potential unproved reserves tron cres = 24,500 x/tone; total = 31,300 x/tone

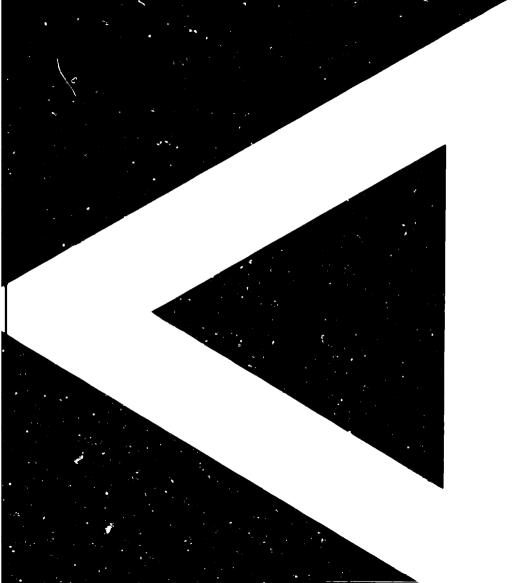
SECTIÚN 1

4 All Netris Tone

g

TE AFRICAN COUNTRIES

والمستعدية والمستواصية في المستحد المستح


-

ingot Steel Production x million tons				Bas Nate	rials			1	Present Status o	ion	Prospective Iron and Steel Industry			
<u>х</u> в: Хев.:	T	per year	Poor (P)	763 (7	1r)	Good (G)	Exc	ellent (E)	Poor	Pair	Cood	- Ercellent	Poor	Pair
19 A C	1985	2000	Iron Ores	Coal	Coal Non-Coking	Charcoal	011	Gas	(P)	(7)	.c)	(E)	(P)	(P)
•.5	1.5		7	i P	7	-	3	;	è					
1.	3.	15.5			Р		P	Р			+	- -		
	C.5	٤.	P	P	P	•	P	Р	P		<u> </u>		P	
.:	1.	3.	P	P	P	Р	7	Р	Р	ļ	<u> </u>			7
	1.	3.	Р	Р	Р	Р	P	Р	P		<u> </u>	+		
	1.5	6.	3		•		P	Р	P			- •		
	ó.	15.	7	Р	P	-	3	s	-	P				
		1.	Р		-	-	· ·	-	P	I				P
:.)	0.5	2.	P	<u> </u>				-	P					?
••5	1	2.0	7	-	-	P	-		P				Р	
0.1	0.2	1.	7	-	-	P	-	-	P	<u> </u>			P	
	1		2	-	Р	<u> </u>	-	-	P		Г 	}	P	
	1	1.	P	-	<u>† -</u>	-	-	-	Р				P	
		0.5	,		-	-	-	-	Р				P	
		1	,	-	-	-	P	,	P				7	
	1	0.2	р Р				<u> </u>	<u> </u>	P				Р	<i>i</i>
	0.4	1.5	┝──└──	_ _	ļ	+		+		<u> </u>	- 			
c.3	1.5	4.	↓ ₽		-		+	+	P				,	
• 3	C.6	1.	╉━╍╍╼╸_	_		+	+	┿╌		+				
	+	2.	-		+		+		P	-+			P	
	+	··	<u>ــــــــــــــــــــــــــــــــــــ</u>		·+				P				P	
	+	1.	<u> -</u>				+	+	Р			_	P	
		+		-	F'	P	4	<u> </u>	Р				P	
	+	1.	P	-		-		+	P		+		P	
_					- <u> </u>		<u> </u>		P		+		P	rr
		<u> </u>		-		-			Р				P	
		┣───	 	-	-				P					P
						-		+	P			_ <u>_</u>	P	
		┢────	, ,		-	-	,	P	Р				P	
	⊥	_	,	-	-	-	-	-	Р				P	
-	2.0	5.	3	-	-	-	E	7	P					
			P	<u> </u>				+	P		+			
			Р	-	-	-			P				P	
·		2.		-	+	_		+	P	+	+			•
·	1.	2.			+			+	P	+				
	-+	+												
		+				- <u> ·</u>	P		P	-+				
		1.5		-		-		+	P					,
					- 	_ <u> </u>					- \			
		. <u> </u>	<u>↓</u>						Р				Р	
			- 			_			P				P	
											- <u> </u>			
	-+	+	+		-+			+	+	-+				
·	. :°.0	- 79-85 -		i i				1						
12 x	a 1 57 10	- 80-	1					Í						
	- 1 p.c	1 115 kg p	·c i	1	1	1		1	1		ł			

1

SECTION 2

	P	resent Status of	Industrialisat	108	Prosp	ective Iron and Ste	el Industry in the	e Tear 2000	Remarks
	Poor (P)	Pair (P)	Good (C)	Excellent (E)	Poo :- (P)	Pair (P)	0000d (C)	Ercellent (E)	General incluses based on resources (men and materials) for the Iron and Steel Industry: A to G represents the status of the Steel Industry of African Countries
;	p						;		 (C) Irva and steel industry will be expanded to make Figeria a indiag steel production is frica. (B) Irva and steel industry is being expanded and SE will be (B) a indiag steel amberty is folder.
	P	P	<u>├</u>	·	 P		3		(B) a leading sizel producer in Africa Hoods a small irvn and steel industry
	р Р	<u> </u>				7			
 F	,				<u> </u>	7			Iron and steel industry meeds top priority
	P						G		(F) Morococ should have a sedium sized steel industry in Africa.
:	-	,	Ī				G		Iron and steel industry's expansion is being gives a top (B) priority and Algeria will lead the African countries in stand production.
	P		ļ			r 7			
•	P		<u> </u>		 Р				
	P	_							
	р Р	<u> </u>			P			<u></u>	
-	p			_	P				
-	P				P				
P	р		1		P		G		
	, Р		1		P				
	ŧ	+	+				3		(E) Tenisia will have a modium size steel industry in Africa
	P				,				(5) Africa
	P				PP				
	Р				P				
	P	+			PP				
	P		+		F				
	P P	<u> </u>			F'	7			
	P								
	P	- 			F				
	P				P				
<u></u>	p				P				
	Р				P				
	P						3		(7) Iron and steel industry meeds top priority. Likys will be a leading steel producer in Africa.
	р р		+		P				
	P				P				
	4	+				•			(7) Liberia will have a medium size steel industry amongst the African countries.
• · · ·	P P	+					<u>.</u>		
	P		+		P				
	P		1	1		· · · · · · · · · · · · · · · · · ·			
	р		1		P				1
			+		р				+
ŀ		-+							
		_	-+						
	-								
			,	,			.**	S E	CTION 3

