

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at <u>www.unido.org</u>

MICROCOPY RESOLUTION TEST CHART NATICITAL BUREAU OF STANDARDS STANDARD REFERENCE MATERIAL 1010a (ANSI and ISO TEST CHART No. 2)

PROSPECTS FOR INDUSTRIAL DEVELOPMENT AND FOR A CAPITAL GOODS INDUSTRY

IN INDONESIA

Volume I. Main Report*

Prepared by the 🖕

Regional and Country Studies Branch Division for Industrial Studies

* This document has been reproduced without formal editing.

5

The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its from ciers or boundaries.

Mention of company names and commercial products does not imply the endorsement of the United Nations Industrial Development Organization (UNIDO).

13500

. .

V.84-88635

The UNIDO Indonesia Industry Sector Study (UC/INS/82/106) comprises three volumes:

PROSPECTS FOR INDUSTRIAL DEVELOPMENT AND FOR A CAPITAL GOODS INDUSTRY IN INDONESIA

Volume I : Main Report
Volume II : Prospects for Industrial Development
Volume III : Prospects for a Selected Capital Goods Industry
Part one : Survey of capital goods and engineering industry
Part two : Long-term projections of demand for capital goods
Fart three : Capital goods production in developing countries
international experience
Part four : Potential for development of a selected capital
goods industry

PREFACE

Within the framework of UNIDO's programme on country surveys and studies, analyses are made of industrial development prospects and structural changes of individual developing countries. The aim of the research programme is to assist national policy makers and planners in identifying long-term prospects for industrial development and in formulating policies and strategies for industrialization. This follows the general approach adopted for in-depth country studies to liuk analytical studies closely with the policy paking process of developing countries.

Accordingly and in response to a request by the Government of Indonesia, UNIDO undertook this study, which covers analyses of the overall prospects for industrial development in Indonesia for the coming 10-15 years and provides an assessment of the scope for developing selected groups of capital goods industries based, <u>inter alia</u>, on demand projections. The study includes a review of processing equipment industry within the overall framework of industrial development and provides a basis for subsequent detailed technical and economic studies. The Government requested further, within the framework of the wider study, a report containing tentative recommendations on the potentials for domestic production of equipment for the following industries: coconut and palm oil, rubber, sugar, cocoa, coffee and tea, textiles, wood and cement.

This study was prepared under the direction of the Regional and Country Studies Branch in co-operation with a team of international consultants. In support of the study, a field mission was undertaken in October-November 1983 to collect data and interview Government officials and representatives from industry, and also to visit a number of industries throughout the country. The UNIDO team was headed by Torben M. Roepstorff of the Regional and Country Studies Branch and consisted of: Atif Kubursi, Peter Manoranjan, Karl Heinz Plaetzer and Marc Dreyer. H.W. Arudt, consultant, contributed some of the analysis and was responsible for much of the final drafting. Arie Kuyvenhoven and J.C. Jansen of the Netherlands Economic Institute were consulted on selected issues. Raman Suri, consultant, provided research awsistance.

(ii)

In undertaking the study close co-operation was maintained with the Government of Indonesia. The Directorate General of Machinery and Basic Metals Industry of the Department of Industry served as the focal point, while & Government Counterpart Co-ordinating Committee provided valuable assistance to the UNIDO team.

A preliminary draft was discussed at a seminar organized by the Department of Industry in Jakarta at the end of May 1984. This report takes into account the comments made by representatives of the Department of Industry and other Government departments during the seminar.

The presentation of the study comprises three volumes. In Volume I. -Main Report - a summary is presented of the whole study as well as analyses of objectives, constraints and policies. Volume II contains detailed analyses of past trends and future prospects of industrial development in Indonesia. In volume III detailed analyses are made of potentials for development of a selected capital goods industry based <u>inter alia</u> on a survey of the capital goods industry, long-term demand projections and international experience in capital goods production. Volume I. Main Report

Contents

			Page
Freiace			(ii)
Abstract			(viii)
Chapter I	Indus	trial Development in Indonesia:	
(Summary of	Past	Trends and Future Prospects	1
Volume II)			
	1.1	Recent Economic Development in Indonesia	1
	1.2	The Industry Sector: Past Performance	4
	1.3	The Industry Sector: Prospects	9
		1.3.1 Demand for Manufactured Products	9
		1.3.2 Priorities in Industrial Strategy	13
Chapter_II	Surve	y of Capital Goods and Engineering	
(Summary	Indus	tries	17
of Part One			
Volume III)			
	2.1	An Overview	17
	2.2	Overall Performance	18
	2.3	Review of Key Capital Goods Industries	20
	2.4	Development Plans	2.4
Chapter III	Long-	Term Projections of Demand for Capital	
(Summary	Goods	<u>in Indonesia</u>	26
of Part Two			
Volume III)			
	3.1	Some Theoretical Considerations	26
	3.2	Capital Goods Demand Forecast:	
		Methodology	26
	3.3	Capital Goods Demand Forecasting:	
		Results	28

1

•

.

IJ

;

.

1

,

ς.

ŝ

Page

Chapter IV	Capit	al Goods Production in Developing	
(Summary	Count	ries: International Experience	29
of Part Three	•		
Volume III)			
	4.1	International Trends in Capital Goods	29
	4.2	Latin American Experience	30
	4.3	Two Case Studies	32
	4.4	Experience at the Micro Level	33
Chapter V	Poten	tial for Development of a Selected	
(Sumary	Capit	al Goods Industry	38
of Part Four			
Volume III)			
	5.1	Introduction	38
	5.2	Criteria for Selection	39
		5.2.1 Processing Industries	39
		5.2.2 Processing-equipment	
		Producing Industries	39
	5.3	Indonesia's Present Processing-	
		equipment Producing Industry:	
		Inadequacies and Constraints	41
	5.4	Edible Oil Processing Equipment	42
	5.5	Rubber Producing Equipment	44
	5.6	Sugar Processing Equipment	46
	5.7	Processing Equipment for Cocoa,	
		Coffee and Tea	48
	5.8	Wood Processing Equipment	49
	5.9	Cement Processing Equipment	51
	5.10	Equipment for Textile Industry	53
	5.11	Recommendations	56
Chapter VI	Objec	tives, Constraints and Policies	60
	6.1	Objectives and Constraints	60
	6.2	Policies	62

LIST OF TABLES

Table Number		Page
Chapter I		
1.1	Indicators of economic performance, Indonesia, 1968-1981	3
1.2	Indonesia average annual rate of growth of GDP and various sectors, 1960-1980	5
1.3	Manufacturing value added by branch of industry ranked according to average annual growth, 1971-1980	7
I.4	Summary results scenario a (inward looking strategy) and b (outward looking/labour intensive strategy)	15
<u>Chapter II</u>		
11.1	Component shares of domestically produced goods, 1980	18
11.2	Value added, employment and labour productivity in capital goods and engineering industries, 1970–1980	19
11.3	Reliance on imported raw materials, ISIC (38) engineering industries, 1980	21
11.4	Domestic production of non-electric machinery and equipment in Indonesia, 1980	23
Chapter V		

V.1 Summary of Equipment Production Recommendations	57
---	----

(vi)

IJ

1

EXPLANATORY NOTE

The following abbreviation have been used:

· -----

.

1.

- ----

ASEAN	Association of South-east Asian Nations
BPPT	Agency for the Assessment and Application of Technology
CACM	Central American Common Market
GDP	Gross Domestic Product
GEC	General Engineering Contractor
ISIC	International Standard Industrial Classification of all Economic
	Activities
ITB	Institute of Technology Bandung
LAFTA	Latin American Free Trade Area
LNG	Liquified Natural Gas
mbd	Million Barrels Per Day
MDF	Medium-density Fibre Board
MIDC	Metal Industry Development Centre
MTI	Material Testing Institute
MVA	Manufacturing Value Added
NDIM	Newly Developed Innovative Machines
OECD	Organization for Economic Co-operation and Development
OPEC	Organization of Petroleum Exporting Countries
PUSPIPTEK	Centre for Development Research, Science and Technology
R & D	Research and Development
SITC	Standard International Trade Classification
UNCTAD	United Nations Conference on Trade and Development
UNIDO	United Nations Industrial Development Organization

(vii)

(¥iii) Abstract

After a decade and a half since 1968 of very rapid and sustained economic development in Indonesia, assisted by the two oil booms of 1973/74 and 1979/80, but also involving remarkable growth of food production and rapid development of the manufacturing sector, the Indonesian economy now faces leaner years as a result of the turnaround in the world oil market and slower growth prospects in the OECD countries. In order to keep external borrowing and debt within acceptable limits, it will be essential to promote non-oil exports and, where it can be achieved reasonably economically, further import substitution. At the same time, the pattern of economic development must give high priority to the generation of productive employment opportunities. For both these reasons, Indonesia's economic future depends crucially on an appropriate and efficient pattern of industria! development.

Although officially designated a "lower middle income country", Indonesia remains industrially relatively underdeveloped, with one of the smallest industrial sectors among large developing countries. In the more favourable environment established oy the economic policies of the Government after 1966, manufacturing grew rapidly from that small base, with an increasingly diversified industrial structure. But much of this growth was concentrated in relatively capital-intensive production of intermediate products and therefore generated relatively little employment directly. It also remained almost wholly domestic market oriented, relying largely on import substitution in a protected market. The bulk of the statistically recorded employment in manufacturing remained in the small-scale and cottage sector.

The central dilemmas of Indonesian economic development in the next decade can be illustrated by two sets of figures. First, in the 1970s, an 3 per cent annual growth rate of GDP was associated with a growth of employment of only 3 per cent, indicating an employment elasticity of only 0.37. If this holds in conjunction with the lower GDP growth rate of 5 per cent officially projected for Repelita IV, employment would grow by only 1.9 per cent per annum, well short of the 2.6 per cent projected growth of the labour force. If a significantly higher growth rate cannot realistically be expected, it becomes extremely important for employment reasons to give growth a more labour-intensive pattern. Secondly, experience of selected developing countries suggests an elasticity of manufacturing output with respect to GDP of 1.5, while Indonesian experience 1975-80 suggests an income elasticity of demand for manufactures of 1.3. If these relationships hold through the 1980s, output of manufactures will grow at 7.5 per cent, while domestic demand will grow at only 6.5 per cent. To ensure sufficient demand to absorb the growing output of manufactures, it will be necessary either to push import substitution further and/or to give manufacturing a strong export orientation.

Since, given Indonesia's comparative advantage, export industries tend to be labour-intensive, emphasis on the export-oriented strategy is preferable for employment reasons. An econometric exercise, contrasting the effects of an import-substitution and an export-oriented industrial strategy, shows not only, as might be expected, that the latter generates more employment with much smaller capital requirements, but also, surprisingly, lower import requirements and therefore a more favourable balance of payments outcome. To some extent, it should be possible to mix elements of both strategies. A larger employment effect and contribution to net foreign exchange earnings can be expected from emphasis on labour intensive and export industries. But certain capital-intensive industries may provide a more balanced industrial structure, a stronger base for long-term development and a broader technological base. The large size of the country may justify the establishment of some large-scale industries dependent on economies of scale that would not be viable in 1 small country.

The Indonesian manufacturing sector, as in most developing countries in the early stages of industrialisation, still produces mainly consumer goods (including some consumer durables) and intermediate goods, with only minimal development of an engineering sector producing capital goods. During the 1970s engineering production expanded rapidly, but by 1980 the share of capital goods in total manufacturing output still accounted for only about 5 per cent. Transport equipment, electrical machinery and metal product.. predominated, while non-electrical machinery lagged behind. One of the issues for industrial policy during Repelita IV and V is whether, and in what ways, to expand this sector. It is to this issue that the rest of this roport is addressed.

There are several approaches to assess the future prospects for capital goods. It is natural to try to begin such an investigation by attempting to

(ix)

forecast future demand for capital goods in the Indonesian economy. Forecasting future demand for capital goods, however, is particularly complex, since it involves estimating highly uncertain variables, including future growth of demand for finished goods, which is the primary octerminant of net investment requirements; replacement demand of existing capital stock; and in an open economy, what part of demand will be met by imports and what addition to domestic demand will be made by exports. Yet an econometric exercise has been undertaken to derive estimates of demand for capital goods in major categories in the years 1985, 1990 and 2000, on "high" and "low" trend scenarios (varying mainly with the price of oil) and "off-trend" scenarios which take into account goals established by Indonesian planners. The absolute totals (e.g. that total demand for engineering products will reach US\$ 17-18 billion in 1980 dollars by 1990) (trend forecast) are substantial and some interesting results emerge in relation to differential growth rates, sensitivity to "high" and "low" projections and growth paths over time for different categories of capital goods.

Another potential guide to policy-making for idonesia is the accumulated experience of other developing countries in the development of capital goods industries. Available data show that production of capital goods in developing countries is highly concentrated: seven countries account for almost 90 per cent of the gross output of 46 developing countries. These seven meet about 60 per cent of their requirements from domestic production and have substantial, though widely varying, export ratios. In Brazil, capital goods already account for 29 per cent of exports of manufactures, as compared with only 19 per cent in the Republic of Korea. Brazil had the advantage of a long period of engineering industry development, but the Republic of Korea has been rapidly catching up from a starting point of export-oriented development concentrated initially on consumer goods. Brazil's experience is particularly interesting because of the role played by transnational corporations: both for the access they provide to advanced technology, management and export markets; and for the challenge of dovetailing their operations with national goals and policies. A feature of special interest in the Korean experience is the 1979 scheme to facilitate the development of industrial technology for capital goods production through the designation of certain capital goods as "Newly Developed Innovative Machines" and the offer of special inducements for their production and purchase.

(x)

Experience in developing countries at the micro or plant level points to the importance of distinguishing between "task" productivity and "plant" productivity. The former, which reflects chiefly the quality of work of the individual operative tends to be quite high. Low productivity, relative to advanced industrial countries, is mainly accounted for by low "plant" productivity - due mainly to poor plant layout and scheduling, low capacity utilisation, poor production and materials management and inadequacies of design and quality control.

The development of a capital goods industry in Indonesia is needed to diversify the industrial structure and to provide a stronger base for long-term development and technological progress with resulting benefits for employment, skills, exports, etc. In developing a larger capital goods manufacturing sector, there is an obvious case for focusing first on equipment for Indonesia's agricultural and forestry processing industries. The great advantage in selecting such processing equipment, in preference to other engineering industries, is that a substantial domestic market exists. Moreover, the production of most such equipment (though not all) is relatively uncomplicated, with no very high requirements in terms of skills, capital and technology. Here, as in all areas of import substitution, efforts are required to ensure that domestic production will be an economic proposition. If a new domestic equipment-producing industry (e.g. producing rice mills or crumb rubber plants) is seriously uncompetitive with imports in terms of price and/or quality, the effects on the raw material (rice or rubber) producing industries may be negative. Conversely, if the new industry is able to adapt equipment knowledgeably to the special requirements of the domestic raw materials and the tastes and needs of (foreign and domestic) markets, it may largely benefit the agricultural sector.

Adequate assessment of the potential for future domestic production of equipment for these industries requires detailed knowledge of current technology and expert assessment of technological trends. In an effort to make the best possible judgements, this part of the study draws upon the expertise of international equipment producers. The most serious difficulty has proved to be the inavailability of much of the economic data needed to assess whether domestic production of the many hundreds of items of equipment would not merely be technically feasible in Indonesia but would also be

(xi)

(xii)

economically feasible, in the sense of not requiring very high rates of effective protection. All recommendations for the establishment or expansion of equipment producing industries in this report should therefore be regarded as provisional, subject to confirmation by detailed studies of economic, as contrasted with merely technical, feasibility.

The estimates of technically feasible local production of equipment for the selected industries yield a list of "most promising candidates" and some very tentative broad aggregates of investment, production and employment. Among the former are selected items of processing equipment in palm and coconut oil extraction plants, coffee and tea processing, wood processing and textile and cement industries. In many cases, the approach already adopted in the sugar industry of appointing a general engineering contractor, preferably a joint venture between an international equipment producer and a domestic company, which sub-contracts production of equipment with gradually increasing local content, has been recommended for several other industries. The tentative aggregate investment requirements during Repelita IV for seven processing industries (excluding textiles) are but at US\$ 1,086 million a year; technically feasible local production of processing euipment at US\$ 510-600 a year; investment required in additional capacity for processing equipment production at US\$ 380-410 million; and direct employment generation in equipment production at 21,000-24,000 jobs.

The report concludes with a review of objectives and constraints and some policy recommendations. Among the latter, besides certain general considerations relevant to industrial policy, particular stress is laid on the desirability of promoting sub-contracting, both as a means of using and encouraging the capacity of small firms and of standardising components required by several industries in order to reap economies of scale; the urgent need to improve quality control; the importance of education and training of the work force and of developing an indigenous capacity in technological research and development; the value of industry associations to operate not merely as lobbyists but as promoters of technical and managerial capability among their members; and, finally, the benefits to be obtained, in the context of an export-oriented industrialisation strategy, of examining potential export markets, e.g. under ASEAN complementation arrangements, for any processing equipment to be produced domestically. UNIDO could assist Indonesia in the design and execution of policy measures which have been recommended, such as technical assistance in the "general engineering contractor" approach, in technical and economic feasibility studies which are a necessary follow-up to this report, and more generally, in programmes for technology transfer, feasibility studies, management, training, investment promotion, planning and development of engineering capability. UNIDO could also assist in a review of overall industrial prospects and analyses of selected issues of industrial strategy and policy, which may be desirable some time through Repelita IV.

(xiii)

Volume I. Main Report^{1/}

Chapter I. Industrial Development in Indonesia: Past Trends and Future Prospects

1.1 Recent Economic Development in Indonesia

The decade and a half since 1968 have been a period of rapid and sustained economic development in Indonesia such as few would have thought likely or possible in the 1950s or early 1960s. Following the change of regime in 1966, the country's tremendous economic problems were energetically tackled. Beginning with measures of stabilisation and rehabilitation, economic policy makers from 1969 on aimed at resumption of long-term economic development. The first Five Year Plan (1969-74) gave top priority to agriculture and especially rice production. The following two ""ans shifted the emphasis towards broader economic, industrial and social development.

Indonesia was fortunate in two respects. First, the policy emphasis on rice production coincided with the "green revolution" in rice, the development of high-yielding and fast-maturing varieties. Taking advantage of this opportunity, a wide-ranging programme of "rice intensification", including fertiliser, irrigation, pesticides, rural credit and extension, contributed to an annual rate of growth of rice production averaging 5 per cent over 13 years (1968-81). This not only raised living standards directly but also contributed to general economic development by widening the market for manufactures and services and generating employment opportunities.

Secondly, the two OPEC oil price increases of 1973-74 and 1979-80 for a decade freed Indonesia from the balance of payments difficulties which had constrained her economic development during the 1950s and 1960s. Very large oil earnings, in foreign exchange and (in the form of oil company tax) government revenue, suddenly became available to finance economic and social

^{1/} The statistical data and qualitative information included in the report are in the main those available to the UNIDO field mission to Indonesia in October-November 1983.

development projects, both directly and by enhancing Indonesia's international credit standing. The two oil booms were not an unalloyed blessing. They led to some imprudent developments, of which the Pertamina crisis of 1975 was the most conspicuous example, and by raising the real effective exchange rate put severe pressure on the country's non-oil traded goods industries. While manufacturing industries producing for the domestic market derived some compensating benefit from rising domestic demand and from tariff and other protection, non-oil exporters, both of cash crops and manufactures, bore the brunt. The two devaluations of the rupiah, in November 1978 and March 1983, were partially intended to give relief to these industries.

The overall performance of the Indonesian economy during the 1970s is illustrated by Table I.1. The average GDP growth rate of 8 per cent compared well even with the other fast-growing countries of east Asia. The inflation rate fluctuated with the two oil booms but was kept within tolerable bounds by prudent macroeconomic policies. The rise in the investment ratio from 9 to 21 per cent, and of the tax ratio from 8 to 24 per cent, during the period 1968-81, serves to indicate the notable economic development that has taken place. But much of this development, especially of the rapidly growing modern manufacturing sector, has been relatively capital intensive. It has therefore contributed relatively little to the enormous task of providing productive employment for a largely underemployed work force growing by nearly 2 million new entrants a year.

In the past two years, adverse trends in the world economy - the prolonged recession in the OECD countries and the turnaround in the world oil market - have seriously worsened Indonesia's short and medium term economic prospects. For some time, there had been concern about Indonesia's capacity to maintain the volume of oil exports because of rapid growth of domestic demand for oil products at subsidised prices. The decline in the real price of crude oil in world markets which began in 1981 has greatly aggravated the problem. A balance of payments surplus of. US \$ 2 billion in 1980-81 turned into a deficit of nearly US \$ 3 billion in 1981-82 and nearly US \$ 7 billion in 1982-83, and there was a sharp fall in oil tax revenue.

The past year has brought a considerably better economic performance than had been expected. Real economic growth in 1983 is estimated to have reached at least 4 per cent and the balance of payments position improved

- 2 -

Year	GDP Growth	Inflation Rate	Gr	owth of	Output		Investment	Tax
	kate		Rice	Food	Agricul- ture	Crude Oil	GDP Ratio	GDP Racio
1968	13.9	85	12.5	9.1	6.9	18.0	9	8
1969	9.0	10	5.1	1.0	1.1	23.3	12	9
1970	10.9	9	6.5	3.5	4.2	15.1	14	10
1971	6.5	2	4.7	3.4	4.0	4.3	15	11
1972	9.4	27	-3.6	1.1	2.1	21.3	19	13
1973	6.8	27	10.6	7.0	3.7	23.8	18	15
1974	7.6	33	4.7	6.9	3.7	2.8	17	16
1975	5.0	20	-0.6	0.9	0.0	-5.0	20	18
1976	6.9	14	3.9	3.5	4.7	15.3	21	19
1977	8.8	11	0.1	-1.2	1.6	11.7	20	19
1978	6.8	8	10.1	9.6	7.2	-2.9	21	19
1979	5.3	20	2.3	4.0	3.8	-2.6	21	21
1980	9.6	16	12.8	8.6	5.2	-1.1	22	24
1981	7.6	7	10.4	8.1	3.5	1.6	21	24
Annual Averag	ge							
1968/8	1 8.2	20.1	5.1	4.0	3.4	7.8		

Table I.1 Indicators of economic performance, Indonesia, 1968-81

(Percentage)

Source: Central Statistical Bureau.

dramatically, from an overall deficit of \$ 40 million in 1982/83 to an estimated surplus for US\$ 2 billion in 1983/84. Exports have also performed well, with oil production rising from 1.4 mbd towards 1.6 mbd and some of the major non-oil exports, especially palm oil, textiles, plywood and handicrafts registering increases of 40-50 per cent.

All these improvements reflect well on the quality of macroeconomic monagement in a critical situation. The government has taken prompt action to deal with the immediate crisis. Public sector wages and salaries have been frozen, public investment projects drastically pruned, oil and food price subsidies cut, the rupiah devalued (thus offsetting the fall in oil tax revenue and giving price incentives to non-oil export industries), the banking system partially deregulated and a tax reform prepared to stimulate domestic resource mobilisation. But Indonesia clearly faces leaner years. There is little reason to believe that world oil prices will rise in real terms before the end of the 1980s, and while LNG exports will help fill the gap, exportable surpluses of oil will inevitably decline and may disappear by the end of the century. The fourth Five Year Plan, commencing on 1 April 1984, envisages annual growth rates of GDP and manufacturing of 5 per cent and 9.5 per cent respectively, a good deal below those achieved during the 1970s; yet even these will strain available external and domestic resources.

In order to keep external borrowing and debt within acceptable limits, it will be essential to promote non-oil exports and, where it can be achieved reasonable economically, further import substitution. At the same time, the pattern of economic development must give high priority to the generation of productive employment opportunities. For both these reasons, Indonesia's economic future depends crucially on an appropriate and efficient pattern of industrial development. The main burden of providing the jobs will inevitably fall on the service sector. But manufacturing can and must wake a contribution.

1.2 The Industry Sector: Past Performance

Although officially designated a "lower middle income" country, Indonesia remains industrially relatively underdeveloped. In 1980, the contribution of large and medium manufacturing to GDP was only 10.3 per cent.^{1/} Among large developing countries, only Bangladesh and Nigeria had smaller manufacturing sectors. However, Indonesia's manufacturing sector grew rapidly during the 1970s from a small base (only 6.8 per cent of GDP in 1970). In absolute terms of total value added, Indonesia now has a manufacturing sector of considerable size, exceeded among Asian developing countries only by the People's Republic of China, India, the Republic of Korea and the Philippines.

Indonesia is thus an active partner in the world's industrial restructuring process. Internationally Indone«ia's share of world manufacturing value added more doubled from 0.10 per cent in 1970 to 0.22 per cent in 1980. In other terms Indonesia's share of total value added of all developing countries increased from 1.18 per cent in 1970 to 2.0 per cent in 1980.

- 4 -

^{1/} Unless otherwise indicated, manufacturing refers to the modern organised sector of large and medium-scale enterprise with more than 20 employees.

The new industrial policies adopted by the Soeharto Government after 1966 dramatically improved the climate for industrial growth, by liberalising foreign exchange and trade and by encouraging domestic and foreign private investment, while the oil booms provided resources for massive public sector investment. As a result, manufacturing showed the highest rate of growth, next to construction, among the major sectors of the economy during the 1970s, a rate (12.3 per cent) exceeded only by few developing countries (Table 1.2). In the latter half of the decade, growth slowed down somewhat, as the oil boom reduced the international competitiveness of non-oil traded goods production and as the easy stage of import substitution was gradually coming to an end.

The high rate of industrial growth during the 1970s greatly diversified the structure of the Indonesian manufacturing sector. Some of the Larger traditional branches, food processing, textiles, beverages and tobacco, grew more slowly, while others grew from nothing or very small beginnings, among them iron and steel, cement, rubber and engineering industries. Medium growth

<u></u>	1960-65	1965-70	1970-75	1975-80	1960-70	1970-80	1960-80
Agriculture	1.1	2.8	3.5	4.3	2.0	3.9	2.9
Mining and							
quarrying	1.8	11.3	9.5	5.0	6.4	7.3	6.9
Manufacturing	1.5	7.3	14.2	10.6	4.4	12.3	3.3
Utilities	8.8	12.8	12.7	11.5	10.8	12.1	11.5
Construction	-1.6	14.4	20.5	11.4	6.1	15.9	10.9
Services	2.8	5.3	9.8	9.6	4.0	9.7	6.8
Gross domestic	·						
product	1.7	5.6	8.2	7.4	3.6	7.8	5.7

Table I.2: Indonesia's average annual rate of growth of GDP and various sectors <u>1960-1980</u>
(based on constant 1975 prices in US \$)

Source: UNIDO Data Base, information supplied by the United Nations Statistical Office with estimates by the UNIDO secretariat.

rates were recorded by industrial chemicals (chiefly urea), saw-milling, glass and paper products (Table I.3). Many of these fast growing industries were relatively capital intensive. This also applied to large projects in the petroleum sector, such as oil refineries and LNG plants, which are not included in these statistics. Divergent rates of growth among branches brought substantial changes in the composition of the manufacturing sector,

- 5 -

with a marked decline in the relative importance of food processing and textiles in favour of chemical, wood and metal working industries. One feature of this structural change was a substantial shift from single-use consumer goods towards consumer durables, capital goods and intermediate products.

A striking characteristic of Indonesia's industrial development so far has been its almost complete orientation to the domestic market. Despite efforts to encourage exports of labour-intensive manufactures which showed some results in 1978-79 and again in 1982-83 in increased exports of garments, electronic products and recently plywood, manufactured products (i.e. containing substantial value added by manufacturing) accounted in 1980 for only about 2 per cent of total Indonesian exports. Industrial growth has met expanding domestic demand and replaced imports. Import substitution has in the past decade considerably reduced the share of imports in the Indonesian market of urea and paper and has virtually climinated imports of wheat flour, cotton varn and fabrics, caustic soda and insecticides. Indonesia is almost self-sufficient in most food products (sugar and temporarily still rice being the most important exceptions), in textiles and oil products. But she continues to rely on imports for most chemical and metallic intermediate products, including components for assembly, and for most producer capital goods. Domestic production of the latter is limited, though expanding.

While value added in large and medium-scale manufacturing grew during the 1970s at an average annual rate of over 12 per cent, employment rose by only 7 per cent a year, from 487,000 in 1970 to 963,000 in 1980. The difference reflects a significant growth in labour productivity, but it also indicates the failure of manufacturing growth to have much of a direct effect on Indonesia's employment problem. The increase in the number of jobs created in large and medium-scale manufacturing of 0.5 million during the decade represents only one-fifth of the average <u>annual increase</u> in Indonesia's labour force during the period. Indirectly, of course, through the stimulus it has given to transport and other service industries, industrial growth has undoubtedly generated additional employment opportunities.

Growth of lebour productivity has been very high in some of the very capital intensive branches of industry, such as cement, non-electrical machinery, fabricated metals and industrial chemicals, and was likely to be

- 6 -

ISIC		Average annual growth rate
	Wish second	Percentage
2710	- nign growin -	50.2
3710	Tron and steel	20.2 22.2a/
3300		33.2-7
2220	Leather products	31. <u>)</u>
3830	Machinery electric	0.UC 20.0
3690	Utner non-metallic minera, products	20.1
3820	Machinery, except electrical	27.0="
3420	Printing and publishing	24.327
3220	Rubber products	22.8
3810	Fabricated metal products	20.2
	- Medium growth -	
3510	Industrial chemcials	18.9
3320	Furni:ure, except metal	18.7 <u>a</u> /
3310	Wood products, except furniture	17.6
3620	Glass and products	17.4
3410	Paper and paper products	16.1
3110	Food products	14.1
3220	Wearing apparel, except footwear	12.6a/
3850	Professional and scientific equipment	12.0a/
3900	Other manufactured products	12.0 <u>a</u> /
3210	Textiles	11.8
	-Low growth -	
3240	Footwear, except rubber or plastic	10.1
3130	Beverages	9.7
3140	Tobacco	9.4
3530	Petroleum refineries	8.0
3840	Transport equipment	5.6
3520	Other chemcials	3.2
Total	manufacturing	11.8

Table I.3: <u>Manufacturing value added by branch of industry ranked</u> according to average annual growth 1971-1980 (based on values in 1975 US \$ constant prices)

Source: UNIDO Data Base, information supplied by the United Nations Statistical Office, with estimates by the UNIDO secretariat.

a/ 1971-76.

even higher in the large capital intensive developments planned in the late 1970s, in petroleum refining, LNG trains, iron and steel, and non-ferrous metal smelting. The latter industries, as might be expected, also show the highest levels of labour productivity, while labour productivity remain. very low in the more labour intensive industries, such as textiles and garments, furniture, potteries and metal fabrication. The latest available statistics on the geographical distribution of Indonesian manufacturitg, those from the 1974-75 Census of Industry, show that Java then accounted for 85 per cent of all medium and large-scale enterprises and 83 per cent of value added. Sumatra had another 12 per cent of value added, leaving only 5 per cent for all the rest of the country. Since then industrial development based on the oil, natural gas, timber and other natural resources of the outer islands may have shifted the distribution in terms of value added (though hardly of employment) somewhat in their favour. But it remains true that Java is much more industrialised than the other regions, primarily owing to better transport and other infrastructure, government and services, although concentration of industry in turn promotes concentration of infrastructure investment and service industries. Government policies aim at promoting industrial development in the outer islands. Four major industrial growth regions outside Java have been identified and industrial estates are being developed in some of them.

Since the passing of the Foreign Investment Law of 1967, there has been a good deal of foreign investment in Indonesian manufacturing, with Japanese capital in the lead. Taking the large and medium-scale manufacturing sector as a whole, private domestic enterprises still dominate ownership, accounting (in 1974-75) for almost one-half of value added. But they were heavily concentrated in the traditional medium-sized industries. In the past decade the relative importance of state enterprises, multinationals and joint ventures has increased considerably, especially in the large-scale heavy industry sector.

Besides the large and medium-scale manufacturing sector with which this report is mainly concerned, there remains a huge and diffuse sector of small-scale and household or cottage industry. While it accounts for little more than one-fifth of value added in manufacturing, it is overwhelmingly more important in terms of employment. According to the official statistics (which have many weaknesses), small-scal≥ and household-cottage industry accounted together for ô7 per cent of total manufacturing employment in 1974-75 and for 80 per cent in 1979 (the apparent decline being largely accounted for by change of statistical coverage, in particular exclusion of all but regular workers). A large proportion of workers in household industry are family workers working part-time and intermittently.

- 8 -

The extreme heterogenity of manufacturing industry in Indonesia - one can almost speak of dualism - poses a dilemma for policy makers. Employment and anti-poverty objectives suggest the allocation of considerable effort and resources to the household sector, while growth objectives are more likely to be served by concentrating on the larger firms in the modern sectors. Even in relation to production of capital goods, the small-scale and household-cottage sector is not entirely negligible. There is significant production of metal products, such as hand tools and small agricultural machines, as well as vehicle components and repair, which needs to be borne in mind in any policy consideration of the capital goods sector.

1.3 The Industry Sector: Prospects

1.3.1 Demand for Manufactured Products.

Demand for the products of Indonesia's manufacturing sector is determined by three factors. One is the size and composition of total domestic demand for manufactures. The second is the relative share of imports in the domestic market for manufactures. The third is the size and composition of manufactured exports. The second and third of these will depend on the development of the comparative advantage enjoyed by Indonesian manufacturing industries relative to their foreign competitors. The prospects for the Indonesian manufacturing sector over the next decade are conveniently examined by considering first the growth prospects for the manufacturing sector as a whole and then prospective changes in comparative advantage and in the composition of domestic demand for manufactures.

The fourth Five-year Plan assumes annual rates of growth of GDP and manufacturing of 5 per cent and 9.5 per cent respectively. Two questions may be asked about the implications of such a growth rate for the manufacturing sector. First, will such a rate of growth of GDP be suffic.ent to absorb the growth in Indonesia's labour force? Secondly, will domestic demand grow at a rate sufficient to absorb the output generated by the rate of growth of the manufacturing sector implied in such an overal. growth rate?

~ 9 -

During the period 1971-80 manufacturing employment and output grew at an annual rate of 5.3 and 14.9 per cent, as compared with 3.0 and 8.1 per cent for the economy as a whole. These figures imply an employment elasticity with respect to output growth of 0.36 for manufacturing and 0.37 for the whole economy. During the 1980s the labour force, assuming an unchanged participation rate, is expected to grow at an annual rate of 2.6 per cent. A 5 per cent rate of growth of GDP, with an unchanged employment elasticity of 0.37, would yield an increase in employment at an annual rate of only 1.9 per cent. To meet the minimum target growth rate of employment of 2.6 would require either a growth rate of GDP of 7 per cent or an increase in the employment elasticity to 0.52 per cent. Some increase might result in any case from a decline in the relative importance of the oil sector. The elasticity could be further raiced by policies to encourage labour-intensive manufacturing, including small-scale industry.

Experience of other developing countries at Indonesia's present stage of development suggests an elasticity of manufacturing output growth with respect to GDP growth of 1.5 per cent, and there are reasons to believe that some such relationship will hold for Indonesia in the 1980s. In other words, for GDP to grow at 5 per cent, manufacturing output must grow at 7.5 per cent. However, between 1975 and 1980, while GDP grew at an annual rate of 7.5 per cent, domestic demand for manufacturing grew at 10 per cent, giving an income elasticity of demand for manufacturing of only about 1.3. If this value holds during the 1980s, a growth rate of GDP of 5 per cent, not enough to absorb the hypothesised output growth of 7.5 per cent. To ensure an adequate growth of demand, the gap must be filled either by further import substitution or by a sufficiently high rate of growth of exports of manufactures. For employment reasons, an export oriented strategy is likely to be preferable.

For the purpose of projecting prospects and indicating policy options during the 1980s for the manufaturing sector in general and the capital goods industries in particular, an intermediate assumption of a growth rate of GDP of 6 per cent has been made in this study. Given the same elasticity of manufacturing output growth (1.5 per cent), this would imply an annual growth rate of manufacturing output of 9 per cent. To absorb this output, given an income elasticity of demand for manufactures of only 1.3, even more emphasis

- 10 -

on import substitution and/or export promotion will be needed. On the other hand, the more ambitious GDP growth rate target would, with an unchanged employment elasticity of 0.37, get closer (2.2 per cent) to the projected growth rate of the labour force of 2.6 per cent.

To make reliable projections of any country's future comparative advantage at a disaggregated level is hardly possible. But it may be helpful in assessing the likely trends in the pattern of Indonesia's future comparative advantage in manufacturing to draw on the experience of other developing countries.

The first generation, after Japan, of the newly industrializing countries of east Asia (NICs) which achieved spectacular growth of exports of labour-intensive manufactures in the 1960s and early 1970s have since around 1975 embarked on a transition from labour to capital and skill intensive products. Their success in this strategy will be relevant to Indonesia because it will influence the extent to which markets for labour intensive products will be vacated. But in seeking export markets for such products, Indonesia may encounter formidable competition from a new generation of industrialising countries, such as the People's Republic of China and the countries of south Asia.

Four sets of data on the manufacturing exports performance of developing countries may help throw further light on the characteristics of manufacturing industries in which Indonesia is most likely to have a comparative advantage.

The first shows that the share of resource-based exports declines with the stage of economic development. The comparative advantage due to high levels of total factor (capital plus labour) productivity which the more highly industrialised countries obtain from their endowment with human capital (skills, management, technology), less developed countries are most likely to derive from endowment with natural resources. Indonesia is still clearly in the latter category.

The second set of data compares levels of wages and labour productivity in selected industries in Malaysia, the Philippines and Indonesia. It shows that wages levels in Indonesia were very much lower than in Malaysia and only

- 11 -

two-fifths even of those in the Philippines. But the potential comparative advantage which Indonesian manufacturers might have enjoyed on account of 'ow wages was largely offset, and in some industries outweighed, by low levels of labour productivity. While lower capital intensity of production may explain some of the differences in labour productivity, the most likely explanation is found in other factors, such as lower average levels of skill, management and organisation of production for which the regulatory environment may be partially responsible.

The third set of data examines the relative success of developing countries in increasing their share of imports of various manufactures into the USA and other developed countries. While miscellaneous manufactures (SITC 8), among others, have done well, manufactured goods (SITC 6) and machinery and transport equipment (SITC 7) have tended to do badly.

Finally, data from a UNIEO study of 134 manufacturing industries from three country samples during the years 1966-75 have been classified according to the product characteristics of <u>non</u>-resource-based industries. The classification rests on the hypothesis that comparative advantage in exports of manufactures depends, apart from differences in factor proportions, chiefly on skill requirements and on the degree to which the production process is standardised (in the sense that developed countries are more likelv to have a comparative advantage in products requiring quick adaptation in response to changes in demand). The data indicate a range of non-resource-based manufactures in which Indonesia is most likely to have a comparative advantage because of relatively high labour intersity, relatively low skill requirements and a relatively high degree of standardization.

Domestic demand for manufactures is primarily influenced by population growth and by changes in income. A UNIDO report¹/ identifies growth elasticities (with respect to per capita GDP) and size elasticities (with respect to population) of value added per capita for 3-digit ISIC industries from cross section data for large countries, including developed and developing. They suggest that increases in market size have little effect on

- 12 -

^{1/} UNIDO: Industry in a Changing World, (United Nations publication, sales No. E.83.17.B.6).

production in most cases. Branches for which market size matters because large production runs and economies of scale are important include machinery, professional equipment, iron and steel and chemicals. Other things being equal, these are industry branches in which Indonesia, because of the large size of its domestic market, might have a certain advantage as compared with small countries at a similar stage of development. The highest growth elasticities, as might be expected, occur in the more capital intensive industries producing intermediate products and capital goods.

1.3.2. Priorities in Industrial Strategy.

Since 1969, there have been significant changes in objectives of industrial development included in Indonesia's Five-year Plans (Repelita), from emphasis on industries ancillary to agriculture in Repelita I to emphasis on social objectives (especially employment and protection of pribumi entrepreneurs) in Repelita II, and broad-based industrial development on the basis of domestic oil, mineral, timber and other natural resources, as well as of labour intensive manufactures for export, in Repelita III. For the fourth Plan (Repelita IV), it is envisaged that manufacturing should take the place of the oil sector as the main engine of growth, contributing an increasing proportion of value added, net foreign exchange earnings and employment. Promotion of machinery and export industries is to receive high priority, but there are also plans for further import substitution, especially in the processing of raw materials into intermediate products for downstream manufactures.

In Repelita IV the overall economy (GDP) and manufacturing are expected to grow at 5 and 9.5 per cent annually respectively. The Plan envisages a real growth rate manufactured exports of 13-14 per cent annually. In terms of employment the Plan estimates that the manufacturing sector will provide new employment opportunities for 1.2 million persons. Repelita IV attaches high priority to the development of the basic chemical industry as well as metal and machinery industries, which both are expected to grow at around 17 per cent per year. Miscellaneous industry consisting mainly of basic commodities is planned to expand at 6.5 per cent while growth of small-scale industry is slated at 3 per cent.

- 13 -

In view of the important role of small-scale industry in Indonesia in creating employment, and its prevalence in rural areas and regional dispersion, strategies of industrial development should include assistance to this sector in overcoming its many problems - low productivity, intermittent employment, financing, marketing, quality control, managerial and others.

The options open to Indonesian policy makers concerned with industrial development can usefully be examined in an analytical framework of two alternative broad strategies. The first aims to reduce Indonesia's dependence on world markets and imports. It emphasizes the development of manufacturing industries producing for the domestic market for consumer goods, capital goods and intermediate products. In so far as it relies heavily on import substitution, it may be called an inward-looking strategy, or alternatively one of self-reliance. The second strategy focuses on the development of industries in which Indonesia can be expected to have a comparative advantage in international trade. It tends to emphasize labour intensive industries, export promotion and small-scale enterprise. It can be called an outward-looking or labour intensive strategy.

Growth prospects for different industries can be projected for the first strategy on the basis of a continuation of the historical pattern in Indonesia and the experience of another large country which adopted such a strategy, Brazil in the 1960s. In the specification of growth elasticities for the second strategy, the experience of export-oriented industrializing countries, such as the Republic of Korea (in the late 1960s and early 1970s) and Malaysia is a useful guide.

In assessing the economic effects of industrial development under the two alternative strategies, it is important to take into account not only the direct effects on value added and employment in each industry, but also the indirect effects on output and employment in industries using that industry's products (forward linkages) and industries supplying inputs to that industry (backward linkages), as shown by input-output relationships. Forward linkages imply an assured market. Backward linkages imply that growth of the industry may give a stimulus to supplier industries. But large linkages present only a <u>prima facie</u> case for expansion of an industry. While establishment or expansion of an industry may help user and supplier industries if it produces

- 14 -

its products efficiently (i.e. cheaply, quality for quality), it would affect them adversely if it could operate only under cover of high rates of effective protection from imports.

Comparison of the direct and indirect economic effect. of industrial development under the two strategies, in terms of labour-output ratios to measure relative labour intensity, and of skilled man-years per unit of output and non-wage value added per worker as proxies for the use of human and physical capital, yields a number of interesting findings which are presented in Table I.4.

As might be expected, because of its emphasis on relatively labour intensive industries, it is the second (export-oriented) strategy which has the more favourable effects on employment, even when the same labour intensities are assumed in each industry under the two strategies. Not surprisingly, the first strategy has much the larger capital requirements also, 30 per cent larger than those of the second strategy. Most striking is the finding that, despite its emphasis on import substitution, the first strategy has the higher import requirements, 36 per cent of the value of production, as compared with 31 per cent for the second strategy.

Summary results		
	Increme	ics 1980-1990
	Strategy A	Strategy B
	Inward looking	Outward looking
	strategy	strategy
Production (Rp. billion)	22,191	22,191
Employment (thousands of persons)	1,785	2,531
Investment (Rp. billion)	32,688	22,462
Value added (Rp. billion)	6,670	6,535
Imports of inputs (Rp. billion)	7,878	6,903
Incremental ratios:		
Capital-output	1.5	1.0
Capital-value added	4.9	3.4
Efficiency of capital (value added capita	1) 0.20	0.29
Capital-labour (Rp. million)	18.3	8.9
Value added-labour (Rp. million)	3.7	2.6

Table I.4	Summary results strategy A (inward looking st_ate	:gy)
	and B (outward looking/labour intensive strategy)

Source: Vol. II, Chapter 4.3.

- 15 -

To some extent, it should be possible to mix elements of both strategies. A larger employment effect and contribution to net foreign exchange earnings can be expected from emphasis on labour intensive and export industries. But certain capital intensive industries may provide a more balanced industrial structure, a stronger base for long-term development and technological deepening. The large size of the country may justify the establishment of some large scale industries dependent on economies of scale that would not be viable in a small country. Other things being equal, the case for such an industry or project is stronger if the initial investment can be financed by external capital which would not otherwise be forthcoming. Even here, however, selection needs to be based on sound economic criteria, carefully weighing economic costs and benefits.

A selective approach to import substitution can be blended into a labour-intensive strategy by focusing on industries in which Indonesia is likely to have a comparative advantage in the longer run, thus minimising the need for longer-term protection. The most favourable prospects here are among simple engineering products, especially for processing equiment. The development of labour intensive and resource based industries also has important implications for regional development. While labour intensive industrial development will continue to be concentrated in Java, the processing industries will largely be located in the outer islands where the natural resources are found. In some cases, these may also support economic processing equipment producing industries.

- 16 -

Chapter II. Survey of Capital Goods and Engineering Industries

2.1 An Overview

Capital goods production constitutes an important part of the engineering industry sector classified under ISIC 38 "fabricated metal products, machinery and equipment". The sector includes tive main industrial groups: fabricated metal products (ISIC 381); machinery, except electrical (382); electrical machinery (383); transport equipment (384); professional, scientific and photographic equipment (385). The engineering industry includes manufacture of intermediate products, parts and components as well as assembly operations. One of the most heterogeneous branches of manufacturing, the engineering sector produces consumer durables (such as radios, TV sets, motor cars and cycles), intermediate goods (such as steel rods and components for assembly) and capital goods (such as machinery). The distinction between consumer durables and capital goods is not clear-cut since some products, such as sewing machines, are used both by households and industry. But the distinction is important because market conditions and production processes may be very different for products meeting consumer or investment demand.

Indonesian industrial statistics do not permit an exact statistical definition of capital goods. But broad estimates, derived from the provisional 1980 input-output table, indicate the distribution of capital goods, intermediate products and consumer durables production for the major branches of engineering industries (Table II.1). They show that a high proportion of the output of engineering industries (50.3 per cent) consisted of intermediate goods, followed by capital goods (28.2 per cent) and consumer durables (21.5 per cent). This chapter focuses, after an initial survey of the engineering sector as a whole, on those branches which produce most capital goods, i.e. non-electrical machinery and equipment, electrical machinery and metal products. Emphasis will be placed on capital goods for industrial use, and especially plant processing equipment for raw materials from sgriculture and forestry. Some information is also provided on the iron and steel sector (ISIC 371) which supplies part of an important raw material for the engineering sector.

- 17 -

1510	D	Inter- ediate output	Private consump tion	Govern- - ment consump- tion	Gross fixed capital formation	Change in stock	Exports	Totel produc- tion
381	Metal products	71.59	7.78	2.48	18.53	-1.03	0.66	100.0
282 , 383	Machinery repair	, 39.02	11.67	5.93	19.39	15.36	8.73	100.0
384	Transport equipment	33.92	20.28	7.76	37.19	0.69	0.16	100.0

Table II.1:	Component a	sha es of	domestically	produced	goods, 1980

Source: Provisional Input-output Tables, 1980.

2.2 Overall Performance

The capital goods and engineering sector was one of the fastest growing branches of Indonesian manufacturing industry during the 197.)s, admittedly from a small base. Table II.2 shows particularly high growth of value added for the electrical machinery sector (chiefly electronic products). Rapid growth raised the share of engineering goods in total manufacturing value added from 6.1 per cent in 1970 to 16.9 per cent in 1980. Assuming, as Table II.1 suggests, that capital goods accounted for 28.2 per cent of engineering sector output, the share of capital goods in total manufacturing output in 1980 can be put at about 5 per cent. An embryonic capital goods industry has emerged.

Among the major branches of the engineering sector, the transport equipment sector was the largest (6.4 per cent of total manufacturing value added), followed by electrical machinery (5.3 per cent) and metal products (3.5 per cent). The share of non-electrical machinery (1.6 per cent) lagged behind, and production of plant equipment included in this category was still very small.

Because much of it was relatively labour-intensive, the engineering industry made a relatively substantial contribution to employment creation within the monufacturing sector. Employment in large and medium scale engineering industry grew during 1971-80 at an average annual rate of 15.8 per cent. In absolute terms, employment increased by some 93,000, from 28,000 in

ISIC .	Average annual growth 1971-1980		Share of value added in total		Share of Employment in total		Value added per em-	Contribution to overall employment
	MVA	Em- ploy- ment	man. tur 1971	ing 1930	mar tur 1970	nufac- irg 1980	ployee 1980 (000 US \$)	growth of total manufacturing 1970-80
381 fabricated metal					<u></u>		· ·	· · · ·
products 382 Machinery,	20.2	11.5	2.3	3.5	2.8	4.2	2.9	5.7
except electrical 383	19.5	10.5	0.4	1.6	0.9	1.2	4.5	2.6
Electrical machinery 384	30.8	27.1	2.5	5.3	0.7	3.9	4.8	7.1
Transport equipment 385 Scientific and profes-	5.6	16.6	0.9	6.4	1.3	3.1	7.3	5.1
sional equip.	12.0 <u>a</u> /	-	0.0	0.1	0.0	0.1	2.2	2.1
ISIC 38 sub-total	17.6	15.8	6.1	16.9	5.8	12.6	4.7	21.6
Total manufac.	11.8	7.1	100.0	í .00. 0	100.0	100.0		100.0

Table II.2: Value added, employment and labour productivity in capital goods and engineering industries 1970-1980

Source: Volume III, Part One, Table II.1. a/ 1971-1976.

1970 to 121,000 in 1980. In the electrical machinery branch, the rate of growth of employment was 27 per cent per annum.

Around 86 per cent of all large and medium engineering enterprises were (1979) located in Java and most of the rest in northern Sumatra. Average plant size has risen in recent years and is particular large in the electrical machinery branch, with its large-scale assembly operations. But it is noteworthy that, outside the large and medium scale sector, there is substantial production, particularly of metal products (furniture, hand tools, cutlery, screws and bolts, etc.), by small-scale and household enterprises
throughout the country. Their contribution might well be enhanced by sub-contracting arrangements. Non-pribumi private ownership predominates in all engineering industries (reaching 50 per cent in the electrical machinery branch, according to one sample survey), followed by private pribumi enterprises which are relatively most important in the transport equipment sector. Foreign investment in the engineering sector has been quite significant, with some \$500 million of realised investment by 1981, chiefly in assembly operations.

In 1980 close to two-fifths of total manufactured imports consisted of imports of machinery and equipment. Exports of engineering products are extremely limited, confined to electronic products worth about \$108 million in 1980 or 3.7 per cent of exports of manufactures. The share of imports in apparent domestic consumption of machinery and equipment is very high, estimated at 66 per cent, domestic production acounting for only 34 per cent. Since much of present engineering production consists of assembly operations, import dependence is particularly high for parts and components and other inputs. In 1980 imports accounted for 79 per cent of the raw material and components requirements of the engineering sector (Table II.3). Import dependence was particularly high for batteries, communications equipment, non-electrical machinery, structural metal products and metal containers. But there were also a few products of which domestic production provided more than one-half of all raw material requirements, among them repairs of electrical equipment; cutlery, screws and bolts; bicycle and becak assembly; and shipbuilding and repair.

2.3 Review of Key Capital Goods Industries

The <u>non-electrical machinery</u> branch, although still a relatively small one, of greatest potential interest in relation to production of capital goods. Among its sub-groups are engines and turbines, agricultural machinery and equipment, metal and wood working machinery and office equipment. The branch has lagged behind the growth of the rest of the engineering sector since 1975, so that its share in value added and employment has declined. The reasons for this can be traced to meagre investment, presumably reflecting problems connected with shortage of skilled labour, management and marketing expertise and technical knowhow. Very few enterprises have the capacity to

- 20 -

ISIC		Imported Raw Materials and Components in Percentage of Total Raw Materials
37100	Iron and Steel Basic Industry	
38111	Agriculture, hand tools	60.0
38112	Cutlery, screws, bolts	20.3
38113	Kitchen apparatus	65.6
38120	Metal furniture and fixture	37.6
38130	Structural metal products	86.6
38140	Metal containers	81.9
38190	Metal products n.e.c.	61.4
38200	Machinery and repair	82.6
38311	Storage batteries	96.1
38312	Dry cell batteries	89.7
38320	Radio, TV, communication equip.	87.9
38330	Elec. apparatur/supplies	75.2
38340	Repair of elec. appl.	18.2
38411	Shipbuilding and repair	45.4
38430	Motor vehicles ass./manu.	81.2
38440	Motor cycle/3 wheel veh.	64.7
38450	Bicycle, becak ass./manu.	49.7
38460	Motor vehicle body + equipment	57.5
384 90	Transport equip. u.e.c.	59.2
38500	Manufacture of scientific equip.	34.9
38	Metal products, machinery and	
equipment		76.1

Table II.3: Reliance on imported raw materials,ISIC (38) engineering industries, 1980

Source: Survey of Industries, BPS, Indonesia, Vol. II, 1980.

manufacture complete products or parts. Castings are generally of poor quality and production is greatly dependent on imported components.

Table II.4 shows the beginnings of an industry producing plant and equipment for agricultural processing, including such items as sugar cane milling, coffee milling, tea processing, corn grinding and rice press machines. Most production processes amount to assembly using imported parts. Machinery used is often old and technology traditional. In contrast to the other major branches, average size of enterprise in this branch is relatively small, with an average (in large and medium size firms) of 99 employees. Ownership is shared in almost equal parts between pribumi and non-pribumi, foreign and government owners. There are virtually no exports. The effective

rate of protection is relatively low (18 per cent). If the rapidly growing demand for non-electrical machinery products in Indonesia is to be met to an increasing extent from domestic production, improvements in product quality, technological capability, competitiveness, management and marketing skills are essential.

The most important sub-sectors of the electrical machinery branch are communications equipment, electrical cables and transformers, lamps, refrigerators and electronic products, such as radios, TV sets, cassette, tapes, etc. Most of these products are consumer durables, but there is also a large number of potential capital goods products. The electrical machinery branch has shown the highest rates of growth of value added and employment, with moderate growth in labour productivity. Production processes, however, are generally quite up to date, consisting mostly of assembly operations which use unskilled or semi-skilled labour. The majority of enterprises are located in and around Jakarta. They are typically large-scale, with an average of 337 employees. Ownership is predominantly non-pribumi, followed by foreign ownership. Electrical machinery is the only branch that has penetrated export markets, some 14 per cent of its output being exported. The main export product is integrated circuits bond-processed by US companies. Inevitably, in view of its predominantly assembly character, the industry's inputs come almost entirely from abroad, only 8 per cent of raw materials and components being obtained from domestic sources. The finished products are highly protected, with an effective rate estimated at 111 per cent.

The <u>fabricated metal products</u> branch produces a wide range of goods, ranging from agricultural hand tools and equipment, kitchen utensils and furniture, metal containers, screws and bolts, to galvanised products. The branch accounted in 1981 for about 4 per cent of manufacturing employment (44,000 persons). Labour productivity during the 1970s grew almost as rapidly as employment, but its level was still very low in all sub-sections. A significant proportion of employment and output of metal products in Indonesia is still in small-scale and household enterprises spread throughout the major islands. There are virtually no exports and a large proportion of inputs of intermediate products is imported, but there are exceptions, such as cutlery, screws and bolts production where domestic raw materials predominate, and inputs of chemicals (chiefly paints) of which about half are of domestic

- 22 -

Machinery	Unit	Physical	Value	Unit
•		Production	(000 Rp.)	Value
		or Repair	-	(000 Rp.)
Generator	unit	58,705	26,369,491	449.2
Radiator	000 uni	t s 130	4,231,169	32.6
Stone crusher	ton	102	1,300,500	12,750.0
Generator sets	set	1,645	962,549	585.1
Cranes	unit	37	673,719	18,208.6
Tile press	set	2,578	207,540	80.5
Tile roofing machines	set	206	181,902	883.0
Rice press machines	set	451	175,891	390.0
Tile press machines	set	250	153,000	612.0
Tea processing machines	unit	27	142,598	5,281.4
Mixing machinery	set	37	77,000	2,081.1
Rubber machinery	ton	27	60,937	2,256.9
Sugar cane milling machines	ton	241	58,319	242.0
Brick processing machines	number	1,002	47,600	47.5
Weaving machine apparatus	number	5,205	45,018	8.6
Rubber rollers machines	number	33	35,600	1,078.8
Sondir/special machines	number	24	28,800	1,200.0
Corn grinder mill	number	142	22,120	155.8
Coconut oil milling machines	number	40	21,000	525.0
Brick pressing machine	number	3	17,000	5,666.7
Maize press/roller machines	set	134	16,623	121.8
Tapioca milling machines	set	2	15,000	7,500.0
Moulding machines	number	75	11,250	150.0
Kloss machines	number	15	11,250	750.0
Finishing textile machinery	unit	12	11,100	925.0
Saw machines	unit	1	9,000	9,000.0
Coffee milling	number	33	8,500	257.6
Excenter press machines	number	13	1,500	115.4
Bean curd processing machine	s number	7	980	140.0
Chili processing machines	number	2	270	135.0
Other machines	-	-	18,429	-
Total all machines	 		34,915,661	

Table II.4: Domestic production and repair of non-electric machinery and equipment (ISIC 382) in Indonesia, 1980

Source: Survey of Manufacturing Industries, Indonesia, Vol.II, 1980.

origin. Production processes are very diverse, ranging from old factories with outdated technology and low quality products to modern plants. Average capital intensity is low.

2.4 Development Plans

Repelita IV accords the engineering industry high priority, with a planned growth rate of 17.0 per cent for metal and machinery which is substantially higher than the 9.5 per cent envisaged for manufacturing as a whole. Special attention will be directed at industries producing industrial machinery, in the hope that Indonesia will increasingly be able to meet its own needs. High priority is accorded to agricultural and processing machinery industries. It is this that lends importance to Volume III of the present study aimed at identifying opportunities for domestic production of capital goods required for processing of agricultural and forestry products.

During Repelita III, some 52 key projects were proposed for the basic metals, basic chemicals and multifarious industry sectors, with total investment requirements of nearly \$12 billion. Among these were 18 projects for the basic metals sector, with total planned investment of US\$2.2 billion. Some of these projects were initiated during Repelita III; others are still being negotiated or open for negotiation. Early in 1983, the Government rephased a large number of major public sector projects, but none of the 18 in the basic metals sector appears to be included in the deferred list. Among the 18 projects are several steel fabricating plants for the Cilegon steel complex, as well as factories for the production of diesel engines, railway rolling stock, machine tools, casting and forging blanks, sugar and other processing equipment, heavy electrical machinery, copper cathodes and ship yards.

Repelita IV also includes specific development programmes for promotion of machinery and basic metal industries; machinery and factory equipment; machanised equipment; agricultural machinery and equipment; heavy construction equipment; electronics equipment; electronics; motor vehicles; railways; aviation; shiping; iron and steel; and metal industry (non iron and steel).

Estimates of demand and supply for important industrial products at the five-digit ISIC level have been prepared covering the period 1982/83 - 1986/87. Among the major categories for which such estimates have been made are iron and steel, non-ferrous metal (chiefly aluminium), industrial machinery and utensils, heavy duty and construction equipment, agricultural

- 24 -

and electrical machinery, commercial vehicles, aircraft, ships and railway rolling stock. For all of these, ambitious targets are being set in terms of investment and output. Both capital goods and materials and components production plans aim primarily at meeting growing domestic demand and import substitution.

Chapter III. Long-term Projections of Demand for Capital Goods in Indonesia

3.1 Some Theoretical Considerations

All economic forecasting is difficult, and forecasting the demand for capital goods particularly so.

Capital goods are required to produce other (consumer, intermediate or capital) goods. For any given technology, a particular stock of fixed capital (e.g. machines) is required to produce a particular annual flow of output of finished products. This relationship underlies the acceleration principle which is often incorporated in forecasts of new investment for expansion of capacity. To the requirements for net investment have to be added those for replacement investment, as determined by depreciation and obsolescence of existing equipment. If the task is to estimate demand for capital goods in the economy as a whole, not merely for individual capital-using industries, there remains the further problem of forecasting future rates of growth of demand for the final products of the whole range of capital-using industries. In au open economy, allowance must also be made for that part of domestic demand for each category that is expected to be met by imports and the addition to domestic demand likely to be made by exports.

If the ultimate purpose of estimates of future demand for capital goods is to guide planning for the establishment of domestic capital goods producing industries, precise estimates of future demand for capital goods are not really necessary for an open economy. All that is needed is to determine, for each type of capital good whether (a) domestic demand is likely to be sufficient for economically efficient (optimum scale) domestic production and, if not, whether (b) there are prospects for exports sufficient to enable domestic production to reach this volume and whether (c) domestic production is likely to be competitiv, with imports, subject to some maximum rate of effective protection (say, 20 or 30 per cent).

3.2 Capital Goods Demand Forecast: Methodology

With this conceptual framework in mind, an attempt has been made, as far as data constraints permit, to make long-term projections of demand for capital goods in Indonesia. Forecasts of the demand for a selected group of

- 26 -

capital goods are generated for the years 1985, 1990 and 2000 under alterntive assumptions about the rate of growth of oil and LNG revenues, the growth of oil and non-oil GDP, and the growth of manufacturing relative to other non-oil sectors.

The methodology combines time series extrapolations of GDP and sectoral shares of GDP with econometrically estimated forecasting equations. These equations relate the demand for particular products to either the current level of overall GDP (a proxy for the ability to import) or to future changes in GDP in the using sector. Thus in the first step GDP components (an 8-sector breakdown) are forecast. In the second step the amounts of capital goods which are required to support the forecast growth of sectoral GDP are computed. The approach follows a middle ground between a detailed econometric model (for which data are not available) and pure time series extrapolation.

The GDP forecasts are broken down into two steps. First, oil and non-oil GDP are forecast separately using econometrically estimated equations which take into account the impact of oil and LNG revenues. In the second step, sectoral shares of non-oil GDP are forecast for seven non-oil sectors, using logistic equations. Multiplication of the non-oil sectoral shares by the level of non-oil GDP yields levels of sectoral GDP for the non-oil sectors. These are the basis for the "Trend" scenarios.

The demand forecasts are generated in terms of current US dollars. In order to convert them to more meaningful constant dollar (1980 US dollar) values, a price index for equipment is forecast from US data. This forecast takes into account the impact of oil prices on capital goods prices.

Oil prices and Indonesian oil production are important factors in determining the forecast values. Three alternative scenarios (labelled High, Medium and Low) for these variables have been used to generate the capital goods demand forecasts. Additional scenarics have been generated by assuming that the manufacturing sector grows more rapidly than indicated by the time trends. These have been labelled the "Off-trend" scenarios and are based on goals established by Indonesian planners. Thus there are six sets of forecast, based on three "Trend" scenarios and three "Off-trend" scenarios.

- 27 -

3.3 Capital Goods Demand Forecast: Results

The results predict that, even under the most pessimistic views of future oil revenues and the growth of manufacturing, there will be substantial growth in the demand for capital goods in Indonesia. Growth in demand over the 1980-85 period is forecast to be somewhat slower than growth over the 1985-1990 and 1990-2000 periods. Growth rates of demand for non-electrical machinery are forecast to average 15.5 per cent over the period 1980-1990 under the Medium Treud scenario. Rates of growth for food processing machinery and pulp and paper machinery are forecast to be 21 per cent and 14.5 per cent, respectively, over this period. Continuation of this rapid growth over the 1990-2000 period leads to forecast levels of capital goods demand which are large encugh to support domestic production of many products. The largest demand is for construction and mining machinery, food processing machinery and pulp and paper machinery.

The "Off-trend" scenarios, which feature more rapid growth of manufacturing, lead to forecasts of the demand for capital goods which are substantially higher than those in the "Trend" scenarios. The achievement of a 25 per cent share of manufacturing in total GDP by the year 2000 is forecast to require a growth rate of capital goods demand in excess of 20 per cent, a rate which may well be too high to sustain over a long period.

The forecast results suggest that the demand for capital goods in Indonesia will grow rapidly, leading to domestic demand which can support a substartial domestic capital goods industry. The establishment of such an industry may well be necessary if Indonesia is to achieve the rapid growth of manufacturing desired by her planners.

In order to develop and expand its domestic capital goods industry, Indonesia must undertake careful and detailed planning. Special attention must be paid to the development of a solid engineering infrastructure, to the forward and backward linkages which tie various products together, to efficient scales of production, and to possible co-operation with other neighbouring countries in research, product development and specialization.

- 28 -

Chapter IV. <u>Capital Goods Production in Developing Countries:</u> <u>International Experience</u>

Before turning from the analysis of past performance and future prospects for capital goods production in Indonesia to policy recommendations, it may be useful to glance briefly at international experience of developing countries. This chapter begins with an overview of international trends in trade, production and consumption of capital goods. It then focuses first on Latin American experience and then on two particularly interesting cases: the role of multinationals in Brazil and of technological innovation in the Republic of Korea. The second part of the chapter examines a range of problems that have been encountered by developing countries at the industry and plant level.

4.1 International Trends in Capital Goods

International trade in capital goods is, not surprisingly, dominated by the developed countries. They accounted in 1978 for 88 per cent of exports and 60 per cent of imports. The centrally planned economies had another 10 per cent of balanced trade. The developing countries are overwhelmingly net importers, with 30 per cent of imports but only 2.6 per cent of exports (1978).

Between 1970 and 1978 the developing countries increased their share in trade in engineering products only marginally, but in absolute terms their exports of engineering products increased almost tenfold, to US\$ 9.4 billion. As in the case of the developed countries, a relatively small number of developing countries accounted for the bulk of this trade. In 1979, only six developing countries (Singapore, the Republic of Korea, Hong Kong, Brazil, Yugoslavia and Argentina, in that order) recorded exports of machinery and transport equipment in excess of \$US 500 million. More than one-half of the exports of the three leading exporting countries fell into class 71 (electrical machinery) and consisted chiefly of electronic products and components, although the Republic of Korea has been developing rapidly as an exporter of other machinery and equipment. More than 50 per cent of these exports went to developed country markets. Brazil and Argentina have become significant exporters of non-electrical machinery and transport equipment, in Brazil's case at a level comparable to those of several OECD countries. Production of capital goods in developing countries is almost equally concentrated. Seven countries account for almost 90 per cent of the gross output of 46 developing countries. These meet about 60 per cent of their requirements from domestic production and have substantial, though widely varying, export ratios. There is a second group, with domestic procurement ratios above 40 per cent, which comprises some traditional capital goods producers (e.g. Argentina, Colombia, Chile, Egypt) as well as a number of new ones, including two ASEAN countries, the Philippines and Thailand. All the rest, incuding Indonesia, have domestic procurement ratios of less than 25 per cent and little if any exports of engineering products.

By far the largest producers of capital goods among developing countries in terms of number of establishments and employees are the People's Republic of China and India, but Brazil surpasses India in value of gross output, apparent consumption and exports. (No trade figures for China are available). In Brazil, capital goods already account for 29 per cent of exports of manufactures, as compared with only 19 per cent in the Republic of Korea. Brazil had the advantage of a long prior period of engineering industry development for the domestic market, but the Republic of Korea has been rapidly catching up from a starting point of export-oriented development concentrated initially on consumer goods.

4.2 Latin American Experience

In the years after World War II, much of Latin America embarked on a deliberate policy of industrialization based on import substitution, in the belief that manufacturing industry could serve as the dynamic engine of growth, creating employment for rural surplus labour, absorbing modern technology, reducing dependence on world markets for primary products and on imports of manufactures, and thus overcoming chronic balance of paymants problems. By the end of the 1950s, the most influential exponent of this strategy, Dr. Raul Prebisch, had come to the conclusion that the strategy was largely failing to achieve the hoped-for objectives. Import dependence was not being reduced, unemployment was not being significantly alleviated, balance of payments problems remained. He concluded that Latin American countries had to seek export markets for manufactures. His first approach was to recommend schemes of regional integration, to expand the horizons of manufacturers from domestic to regional markets, but none of these schemes

- 30 -

(LAFTA, CACH, Andean Pact) proved very successful. In his proposals for UNCTAD I he emphasised the need for developing countries to look to the large and growing markets of the advanced industrial countries and urged the latter to assist through preferential tariff concessions. Some Latin American countries, especially Brazil, have followed this strategy with considerable success. The majority have continued to rely in their industrial development primarily on production for the domestic market. Both the less and the more export-oriented Latin American countries, however, in contrast to the east Asian NICs, have from the beginning put considerable emphasis on engineering industries and domestic production of capital goods.

Growth rates of GDP and industrial production in most Latin American countries have been a good deal lower, especially in the 1970s, than in the east Asian industrializing countries, growth of GDP averaging about 5 per cent and of industrial production about 6 per cent a year. Alongside this overall growth, there have been considerable changes in the structure of Latin American manufacturing industries. The share of non-durable consumer goods in total industrial value added has fallen from two-thirds in 1950 to one-third in 1977, while the share of metal-working industry (ISIC 383) has riser from 11 to 25 per cent. Within the metal-working branch, the largest increases were recorded by electrical machinery (from 1 to 6 per cent) and transport equipment (2 to 9 per cent).

A breakdown by three subregions - Brazil, the Andean Group and Central America - shows the increasing role of engineering products in the course of industrial development. While in Brazil their share had already passed 15 per cent by 1960 it did not reach this figure in the Andean Group countries until 1977 when Central America still registered a share of barely 10 per cent. Among sub-sectors, transport equipment moved ahead of others in Brazil, followed by non-electrical machinery (the sub-sector containing most capital goods). In the other sub-regions, fabricated metal products still recorded the largest share in 1977. These figures reflect the fact that Brazil's dynamic growth in engineering industry has relied heavily on development of its automotive sub-sector. The Andean Group have also sought to develop automotive production beyond mere assembly of passenger cars but as yet with indifferent success. The prospects for any such development in Central America are meagre, since the minimum scale of economic production is far larger than the small domestic market and realistic export prospects combined.

- 31 -

Latin American governments have all given high priority to industrial development of one kind or another and have sought to pursue this objective with a variety of industrial policies, including various forms of promotion, protection and support activities, such as investment in infrastructure, technical education, development finance, and in varying degree in different countries also by more direct intervention by the state acting as entrepreneur or as buyer of industrial products. Direct cwnership has been important in steel production (accounting for 60-100 per cent in Argentina, Mexico, Brazil, Chile, Venezuela and Peru) and in petroleum refining and petrochemicals in most of these countries. But governments have generally refrained from competing with the private sector in most other branches of manufacturing, except in instances where governments have taken over weak companies to maintain employment. The role of foreign investment by multinationals has been contentious, but most Latin American countries have seen a need for their participation in industrial development requiring high technology and large investments.

Because of the importance of the role of multinationals and technological innovation in engineering development, it is instructive to look at two case studies, the role of multinationals in Brazil and promotion of technological innovation in the Republic of Korea.

4.3 Two Case Studies

Transnational companies in Brazil have a production share of 46 per cent in capital goods and 56 per cent in durable consumer goods. Both figures are far higher than for the other two major branches of engineering industry, intermediate products (35 per cent) and non-durable consumer goods (16 per cent). The difference is largely explained by the advantage which multinationals enjoy in advanced technology and access to export markets. Both of these are of greater importance in automotive and capital goods production than in the other two branches of manufacturing if allowance is made for the major role of state enterprise in steel and petrochemical production. The transport equipment sector, and to a less extent electrical and telecommunications equipment production, show larger investment per (multinational) company than the other sectors. Korean production of capital goods began with shipbuilding, motor vehicle, general machinery and electronics industries in the 1960s. During the 1970s, further policies were adopted to expand machinery production, including schemes to promote heavy electrical machinery, machine tool and textile and agricultural machinery industry, and designation of 85 kinds of key machinery and 35 types of specialized machines for early development. An institute for applied research and quality control was established to upgrade the technological capability of Korean machinery industries. Between 1960 and 1975, the share of the machinery industry in total manufacturing output doubled, with an annual growth rate of 21 per cent, a growth performance due in considerable degree to the incentives provided by government to create a technology base for the industry.

In 1979 a new scheme to facilitate the development of industrial technology for capital goods production was adopted. Its central feature was the designation of certain capital goods as "Newly Developed Innovative Machines" (NDIM) and the offer of special incentives for their production and purchase. Among other requirements for NDIM status were that the product was developed with local patents, without technical co-operation from abroad, with at least 60 per cent of local components (and no foreign components for critical functions) and that no NDIM was an exact copy of a foreign product. Quality of NDIM had to be certified by an independent quality inspection laboratory.

A sample study of innovative entrepreneurs under the scheme has shown that 85 per cent of them were small and medium-sized companies, confirming similar findings in other industrializing countries which suggest that small companies tend to respond more flexibly to opportunities for innovation. Approximately two-thirds of the technological innovations arose in response to market needs, rather than mere technological feasibility. In more than half the cases, the innovative company received outside technical assistance from research institutions or potential users of the product.

4.4 Experience at the Micro Level

Developing countries embark on the production of capital goods for a variety of reasons: to ensure a steady and reliable supply of this key type of input, to take advantage of potential comparative advantage based on low costs of skilled labour, to secure the benefits of spin-off from the capital goods branch to raise the level of technology of the entire manufacturing sector, and to develop a capacity to produce machines embodying specifications and designs appropriate to their countries' factor proportions. Indonesia is now embarking on such a strategy. For a programme of this kind to achieve the intended benefits, it is essential to ensure cost efficiency in domestic capital goods producton. The experience of a selected group of NICs (Argentina, Brazil, India, the Republic of Korea, Mexico, Pakistan and the Province of Taiwan) and of the problems they have encountered in capital goods industries (defined here as comprising industrial and agricultural machinery but excluding vehicles and electrical equipment) may offer valuable guidance.

While skilled operatives in developing countries receive relatively low wages, this ensures a competitive advantage only if the wage differencial is not nullified by proportionately lower labour productivity. Two aspects of labour productivity need to be distinguished: "task" productivity (the number of items produced per minute by a worker on a set task) and "plant" productivity (output per operating day which depends on plant features beyond the operative's control). Most observations of factories in NICs indicate that "task" productivity is quite high, despite the use of less sophisticated machinery. In many activities, performance equals that of workers in developed countries, and it is rarely less than 30 per cent of their level. "Plant" productivity, however, is often much lower. In India, for example, labour productivity in the best firmss in the textile-machinery sector was estimated at one-third of that in European countries, in the worst at one-tenth. Similarly, a study in the Republic of Korea found average labour productivity in the entire mechanical engineering sector to be 20-30 per cent of that in Britain and the USA, although wages were still lower (by 90 per cent or more) than in these countries.

Lower productivity at the task level in developing countries, when it was observed, was attributed chiefly to inadequate instruction about the best use of a machine tool, clogged floor space, poor quality tools, inadequate technical aids and failure to use jigs and fixtures in setting-up operations. Low plant productivity is chiefly a function of plant layout and scheduling. The typical plant in Mexico, Brazil and India exhibited poor layout in which the movement of the work-in-process interfered with operations at work

- 34 -

stations. Poor scheduling, observed in a study of forging in India, resulting in reduced use of labour and equipment, delays in identifying and correcting errors and in high interest charges on semi-finished inventory carrying costs.

Low capacity utilization is another characteristic feature of machinery production in developing countries. Mechanical engineering plants usually employ some costly items, such as machine tools, fixtures and welding equipment. Each can be fully utilized only if a plant produces a large batch of items of a single type or a range of products requiring a similar operation such as stamping. At low volumes of output, low utilization rates are unavoidable. Addition of export markets to a small ...mestic market is one way of reducing this problem.

Materials management is another problem area. Studies in India and elsewhere have observed floor space cluttered with accumulated sand from castings, and fabrication and assembly operations crowded in any place that happens to have room available. The almost universal characteristic is congestion and a mixing of operations which frequently leads to poor quality production.

Sub-contracting has proved an important way of reducing costs in machinery producing sectors. Small firms concentrating on a few operations or components are able to use special purpose equipment fully and to benefit from learning by doing in a specialized area. Two conditions need to be met to reap the potential benefits of sub-contracting. The mother firm must be able to co-ordinate multiple sources of supply so that production is not interrupted by bottlenecks, and the sub-contractors must be efficient and reliable. In contrast to Japan, where sub-contracting played a very major role in the process of industrialization, sub-contracting is exceptional in east Asia and Latin American NICs. The organization costs of sub-contracting, it seems, tend to outweigh the cost reductions that can be derived from it. Related to sub-contracting is failure to make use of opportunities for rebuilding of equipment. The cost of rebuilding is often much below that of new machines, and rebuilding makes it possible to incorporate newly available features. While rebuilding is common in developed countries, it seems non-existent in the Republic of Korea, the Province of Taiwan or the Philippines.

Efficient machinery production presupposes well developed casting and forging facilities, activities which are intensive in skilled labour and do not justif; the cost of mechanization except at very high volumes. Foundry and forging operations in developing countries are typically very much less capital-intensive than in developed countries. In India, the capital-labour ratio has been found to be \$US 3,500 per worker, as compared with \$US 25,000 in developed countries, but the savings in fixed costs are not reflected in greater competitiveness. The price of Indian forgings of comparable quality is on avecage 50 per cent above the cif price of imported ones. The explanation is partly factors external to the firm, such as high cost and erratic supply of materials, and partly internal inefficiency and small production runs. Similar difficulties have been encountered in the Republic of Korea, such as wastage of material in unnecessarily heavy forging blanks.

Superimposed on the technical difficulties faced by an infant capital goods sector, such as those surveyed in the preceding paragraphs, may be additional difficulties caused by misguided policies designed to foster the sector's development. In the Republic of Korea, Mexico and India, for example, early emphasis on encouragement of large-scale firms through low-interest loans and tax incentives resulted in the purchase of equipment several times too large for the domestic market. Emphasis on size often leads to laxity about quality. High quality is particularly important for machine tools. If locally produced machine tools are not adequate for high precision work, they can compromise the competitiveness of the equipment producing sector.

As developed countries have lost competitive advantage in the production of simple standard machines and have been obliged to concentrate on higher technology production, a potential export market for simple machines has opened up for developing countries, both in developed and in other developing countries. Developed countries import primarily conventional lathes, drilling and grinding machines demand for which tends to be highly price elastic. The unit price of machines imported by Japan from developing countries, for example, is less than one-tenth that of machines imported from developed countries, which suggests a developing country advantage in the cheaper type of machine and/or in price of any given type of machine.

- 36 -

Given the relative abundance of labour in developing countries, one would expect them to produce machines designed for relatively labour-intensive processes. What little evidence is available does not support this presumption. One reason may be that the evidence is restricted to large firms which often produce under licence and behind protective tariff walls and therefore have little incentive to adapt factor proportions to prevailing relative factor prices. Small producers are more likely to face competitive factor and product markets and therefore feel obliged to adapt imported designs or produce their own, copying and adapting existing equipment.

Relying solely on equipment of older vintage is liable to leave developing countries with a technological disadvantage. Design research then becomes an important additional influence on competitiveness in the longer run. There is evidence of efforts by companies in NICs to modify and upgrade imported designs to produce a machine that permits a lower capital-labour ratio in the using sector. An example is that of Argentine companies manufacturing food-processing equipment that is less mechanised than developed-country equipment designed for the same product. But the general weight of the evidence is that developing countries do not devote enough effort and resources to research, and this applies even to the NICs. Much of the limited research undertaken in developing countries is process related and pertains primarily to design. Technology development is an infant industry that requires intensive, though temporary, nurturing.

- 37 -

Chapter V. Potential for Development of a Selective Capital Goods Industry

5.1 Introduction

The Government of Indonesia, within the context of planning for further development of capital goods production during Repelita IV, has requested UNIDO to report specifically on the potential for domestic production of equipment for the following industries:

- 1. Coconut oil
- 2. Palm oil
- 3. Rubber
- 4. Sugar
- 5. Cocoa, coffee, tea
- 6. Wood
- 7. Cement
- 8. Textiles

UNIDO was asked to address the following questions: Which engineering industries within this group could be developed relatively easily and why? Which types of equipment could be produced domestically, how, where and by whom? Could examples of (say) 25 projects be given which would be promising candidates for promotion? What follow-up studies would be required?

It should be said at the outset that, for lack of data and time, only very tentative and parcial answer can be given to these questions at this stage. On many relevant and indeed essential aspects, even of the present situation in Indonesia, the required statistical data have not been available or have proved inadequate.

In general Repelita IV target figures for output, and hence processing equipment requirements, have been taken as the starting point. But it should be recognised that, even if planning and investment decisions were taken expeditiously, actual production of equipment in the selected industries is most unlikely to become available before Repelita V.

Adequate assessment of the potential for future domestic production of equipment for these industries requires detailed knowledge of current technology and expert assessment of technological trends. Every effort has been made to draw on the expertise of international equipment producers to make the best possible judgements. The most serious difficulty has proved to be that hardly any of the economic data are available which are needed to assess whether domestic production of the many hundreds of items of equipment would not merely be technically possible in Indonesia but would also be economic, in the sense of not requiring very high rates of effective protection from import competition (by tariffs, subsidies or controls) with consequent economic burdens on the Indonesian user industries. All recommendations for the establishment or expansion of equipment producing facilities in this report should therefore be regarded as provisional, subject to confirmation by means of detailed sub-sectoral studies of economic, as contrasted with merely technical, feasibility.

5.2 Criteria for Selection

5.2.1 Processing Industries.

Indonesia already has a wide range of industries processing domestically produced raw materials, including staple foods (such as rice), cash crops (such as rubber) and minerals (such as petroleum). Processing may be for export or for the domestic market. If raw materials are at present exported in unprocessed form, a policy of further domestic processing before export is called "export substitution". If a domestically produced raw material is processed abroad for reimport into Indonesia in processed form (e.g. crude oil refined in Singapore or rubber processed abroad for import into Indonesia of the finished product), a policy of domestic processing implies import substitution.

Whether export or import substitution is desirable depends on the prospects for efficient domestic processing. The mere fact that a new industry processes domestically produced raw materials for the domestic market does not, in itself, prove that it represents a more efficient use of scarce resources than some alternative industrial development, but there is a presumption that there will be a saving in transport costs. The presumption is much less in the case of export substitution. The domestic export industry will benefit by improved international competitiveness if domestic processing

- 39 -

is efficient (in terms of costs and quality); it will suffer if domestic processing is relatively inefficient. Even in terms of net foreign exchange saving, the effect on the balance of payments may be negative, as in the case of import replacement in shipping if the net effect is higher freight charges which reduce the competitiveness of the country's export industries.

5.2.2 Processing-equipment Producing Industries.

Similar but distinct questions are raised by a policy of import substitution through the domestic production of processing equipment (machinery, etc.). Clearly, there are cases, such as petroleum refining, where the equipment is so capital and technology intensive that its domestic production is beyond the reach of Indonesia at the present stage. But there is a wide range of processing equipment, such as crumb rubber factories or edible oil processing plants, most of the equipment for which is relatively simple, with no very high requirements in terms of skills, ι bital or technology. The great advantage in selecting such processing equipment for import substitution, in preference to other engineering idustries, is that by assumption a substantial market exists. A large volume of output is produced in Indonesia by the user industries and most of this output requires machinery-using processing. Future demand prospects depend on the expected rate of growth of demand and productive capacity for the product and on replacement demand as existing processing equipment wears out.

Here again, there is no certainty that import-replacement will be an economic proposition. If a new domestic equipment-producing industry (e.g. producing rice mills or crumb rubber plants) is uncompetitive with imports in price and/or quality, the effects on the raw material (rice or rubber) producing industries may be disastrous. Conversely, if the new industry is able to adapt equipment knowledgeably to the special requirements of the domestic raw materials and the tastes and needs of (foreign and domestic) markets, it may benefit the agricultual sector.

There are some considerations, often called "developmental" or "social" (although economists would prefer to think of them as involving externalities) which may reasonably modify conclusions reached on the basis of the preceding criteria. Among them are "learning by doing", backward and forward "linkages" of domestic equipment production, better adaptation of equipment to domestic

- 40 -

factor proportions, employment effects and location for regional development. There is no doubt that such externalities may justify, from a longer-term social point of view, investment that would not appear economic in the short run or attractive to private investors. But the uncertainty of such external effects, and the virtual impossibility of quantifying them, make reliance on them as a guide to investment decisions dangerous - at best an act of faith, at worst an excuse for malinvestment of scarce capital and protection of vested interests.

5.3 Indonesia's Present Processing-equipment Producing Industry: Inadequacies and Constraints

Some of the metal working enterprises in Surabaya, Jakarta, Bandung and Medan that are either already producing equipment or spare parts for processing industries or have the potential to do so, were visited by a UNIDO mission in October/November 1983 in order to assess their current capability. The most striking impression was that most of the machine tools and other equipment used are very old and of obsolete design. The machine shops generally lack the necessary families of machine tools, particularly milling, grinding and boring machines, which are necessary for minimum-quality production. Some of the units had their own foundries, but these also were ill equipped. It was evident that investment in machine tools and equipment had been completely neglected over long periods.

Some of the older establishments suffer from poor layout, cluttered space around the machines, which make orderly work flow and efficient handling virtually impossible. With one exception, none of the establishments visited practised production planning or production control. Operation workers were generally without instructions on selection of materials, sequence of operations, etc. necessary for efficient production, while the absence of job cards recording the timing of operations precluded any accurate assessment of costs of production. Designs of equipment were invariably obtained from the foreign contractors for the processing plants and followed without adaptation to the local conditions. Faulty design of equipment was evidently at the root of some problems of the user industries. Another constraint is lack of standardisation.

- 41 -

As regards production processes, the mission found one modern foundry in Gresik and a workshop in Bandung making large castings for tea rolling machines which were found to be of good quality, thanks to the technical guidance provided by the Metal Industry Development Centre (MIDC). But the captive foundries in the older metal working establishments were ill equipped, leading to poor quality products with a high rejection rate. There is ample scope, with the help of MIDC and its regional branches for putting to use existing underutilised capacity in the modern foundries, such as that in Gresik. Quality of machining is generally poor, chiefly owing to the age of the machine tools used, although one joint venture enterprise in Medan producing palm oil processing equipment was found to have a good machine shop. By contrast, the quality of welding was generally very high.

Three key constraints evident almost everywhere were the lack of any quality control, leading to poor performance and breakdowns in the user industries; unsystematic management without any systems of production and cost control; and almost complete neglect of equipment maintenance.

These failings of the present Indonesian equipment producing industry should not be taken to imply that domestic equipment production is impracticable or undesirable. But they highlight the need to reise standards of efficiency if domestic equipment production is to be promoted on a larger scale. The most important requirements are the development of a pool of manpower with adequate engineering skills; of design perconnel and design standards; of machinists and line personnel, such as foremen; of quality control systems; of more adequate production and financial mangement; and of maintenance procedures, including training of maintenance personnel; and especially for export marketing capability.

5.4 Edible Oil Processing Equipment

Indonesia has two large edible oil producing industries, coconut oil and palm oil. While coconuts and coconut oil are still largely produced on a subsistence basis and marketed production has been increasingly absorbed by the domestic market, so that Indonesia has changed from an exporter to a net importer, palm oil producion has been expanding rapidly. The main problem of the coconut industry has been aging trees and declining yields, due to decades of neglect of replanting. The Government has embarked on an ambitious

- 42 -

rejuvenation programme, including replanting of 35,000 ha and improvement of strains and methods of cultivation. While coconut palms are almost entirely on smallholdings, palm oil is an estate industry. There are some 50 estates, chiefly in North Sumatra. Since harvested fruit must be processed within a specified time, all estates have a primary processing (extraction) facility, and i. practice even secondary processing (refining) is usually linked to the plantation. Palm oil production expanded rapidly until 1977, then more slowly for some years. A government decision to divert palm oil sales from export to the domestic market in order to free coconut oil for the export market contributed to a fall in output in 1982. Repelita IV projections envisage large increases in both coconut and palm oil production during 1984-88, by more than 100 per cent in the case of palm oil. Much of the expansion is to be achieved through a nucleus estates programme.

There are three alternative methods of primary processing (extraction) of coconut oil and a somewhat different one for palm oil. For secondary processing (refining), however, although different processes have been used in the past, there is one process (physical refining) which is the same for both. Its obvious advantage for Indonesia is that it reduces the technological variables in the domestic production of refining equipment. A very wide range of equipment, varying from relatively simple tools and structures to technologically quite complex machinery, is required in both the primary and the secondary processing industries for edible oils.

Coconut oil extraction in Indonesia was carried out in 198% by some 380 enterprises, many very small-scale, with an annual capacity of 850,000 tons but actual production of only 325,000 tons per annum. Assuming 80 per cent normal capacity utilisation, output could be raised to 680,000 tons per annum with existing capacity, equivalent to a copra intake of 1,240,000 tons, well in excess even of the Repelita IV target for 1988. No additional capacity, therefore, appears needed for coconut oil extraction from copra. A shift to wet processing on the outer islands would require new capacity. The expansion of output from newly producing oil palm plantations will in any case require a substantial increase in capacity for palm oil extraction. Capacity for edible oil refining in 105 plants was reported to be 282,000 tons per annum, with actual production in 1982 of 254,000 tons which implies a very high (90 per cent) degree of capacity utilisation. Additional capacity for 200,000 tons per annum will be required during 1984-88.

- 43 -

There is a limited production of coconut processing equipment in Indonesia, forty items of equipment valued at Rp. 21 million in 1980. For the palm oil sector, the field mission identified seven equipment producers, five in Medan and two in Surabaya. Only three of these, however, were capable of acting as general contractors, and all three need enhanced engineering capability. The quality of equipment produced by the other four enterprises is poor. Most of the more specialised equipment for palm oil extraction is nct as yet produced in Indonesia. No corresponding information was available for coconut oil processing. The equipment for edible oil refining is still wholly imported, except for some civil works and steel structure components.

The annual investment required for new and replacement investment during Repelita IV in edible oil processing equipment (and equipment producing capacity) is estimated at about US \$103 million. Some crude oil extraction equipment is already produced locally and domestic production of most of the rest may be expected in due course. The situation is different for refining equipment where lack of engineering capacity presents a major obstacle even for the simpler equipment. It is assumed that by 1985 some 30 per cent of refining equipment should be technically capable of being produced locally and that local content could subsequently be increased by (say) 10 per cent a year. As in the case of the sugar and cement industries, the favoured approach is the establishment of one or more general engineering facilities acting as general contractors. They should be joint ventures in order to draw on the experience and technical knowhow of a leading international edible oil equipment producer. One of its tasks would be to advise on the sequence of technically and economically feasible extension of equipment production.

5.5 Rubber producing equipment

Although synthetic rubbers have become increasingly important, natural rubber still has advantages as a raw material because of its versatility and for special uses (e.g. where heat resistance is important) and the steep rise in the cost of synthetic rubber which followed the oil price increases of the 1970s has improved the competitive position of natural rubber in world markets. Indonesia is second only to Malaysia among rubber producers, with an average share of 25 per cent in world production. About one-third of Indonesia's output of rubber is produced by estates and two-thirds by smallholders. A programme of extension of area and replanting has succeeded in significantly increasing productive capacity, though it will be some years before the programme becomes fully effective in terms of output. Efforts to upgrade the quality of Indonesian smallholder rubber through better methods of processing have met with some success, but problems remain.

More than two-thirds of Indonesian rubber output is exported as crumb rubber and about 20 per cent as rubber smoked sheet (RSS) in various quality grades. The value of rubber exports declined sharply in 1981 and 1982 with the world wide recession but some recovery is under way. Small quantities of rubber are imported, mainly synthetic rubber and finished goods. The Repelita IV target for 1988 is 1.5 million tons of rubber. Export prospects are favourable, and domestic absorption is expected to rise to 200,000 by 1988.

Rubber processing proceeds in two stages. The purpose of primary processing is to stabilise and concentrate the natural latex, mostly by centrifugation or creaming. Secondary processing can take several forms. The traditional technology, which yields smoked sheet, involves coagulation of latex, followed by rolling and drying in smoking sheds. In the past decade, the traditional method has been largely superseded by crumb rubber, in the hope of producing a product of superior and more homogeneous quality. After cleaning and coagulation, the rubber is crumbed by a machine with rotary blades or a pelletiser. A third process produces crepe rubber, a product of high quality, by repeated shearing and masticating by a rolling machine and simultaneous washing. A new technique, not yet in use in Indonesia, is powdered rubber, produced by spray-drying of latex and granulating crumb rubber. It has advantages in saving of energy and labour in mixing and compounding, but low density and consequent high storage and transport cost make it unsuitable for export.

A boom in crumb rubber in the early 1970s saw the establishment of 150 factories, mainly by private enterprises. Excess capacity led to many brankruptcies and running down of installed capacity. In 1983, some 100 crumb rubber plants were operating in Indonesia with an installed capacity of some 700,000 tons per annum, but capacity utilisation was only 56 per cent. How much of the excess capacity was effective is not known. No corresponding data are available on the rest of the rubber processing industry which consists mostly of smallholders and small-scale enterprises. There is considerable rubber manufacture. In 1980 some 166 enterprises, employing 31,000 persons, produced tyres and other finished products, equivalent in terms of value added to 4.8 per cent of all manufacturing.

Most equipment, such as tanks, for the traditional methods of rubber processing is locally made by traditional methods. The main equipment for production of concentrated latex, centrifuges are usually imported (largely from Germany); in view of their technical complexity and declining demand for the product, domestic production is unlikely. Nor is any of the equipment used for crumb rubber production as yet made domestically, although most of the items, such as shredders, washing tanks, conveyors, driers and compactors, are relatively simple. The equipment for the present plants was originally imported from Great Britain. If the data on capacity utilisation are correct, greatly increased output could be obtained without new investment, unless the additional planned production is in areas too remote from the existing processing plants. The Government is reported to be planning to install six new crumb rubber plants, a number too small for economic domestic production. Whether there would be enough replacement demand could be determined only by a survey of the existing 151 enterprises. Demand for the machines meeded for creping is also unlikely to be large enough for economic domestic production, though the possibility of production under ASEAN complementation arrangements may be worth examining. The potential importance of powdered rubber is such that a feasibility study of domestic manufacture is desirable.

5.6 Sugar processing equipment

Although sugar production has been growing rapidly, at an average rate of 8 per cent per annum (1976-81), it has not been able to match the growth of domestic consumption, so that sugar has had to be imported in increasing volume. More than half of Indonesia's cane sugar is still produced on (mainly government-owned) estates, but the share of smallholder production has been rising, partly because of a deliberate policy of transforming the sugar industry from an estate to a smallholder structure, and yields on smallholdings have been rising, although they remain much below yields on estates. Indonesia also produces some 350-400,000 tons of brown sugar, largely on a subsistence basis.

Sugar production is expected to grow during Repelita IV at a somewhat slower rate than during Repelita III, but the Government hopes to meet all domestic demand and return Indonesia to a net export position. To meet these targets, a substantial programme for expansion of area under sugar cane establishment of new mills is planned, both on the outer islands.

The great majority of Indonesia's 58 (1983) sugar mills are government owned (51) and all but three are on Java. One, in Lampung, is a foreign investment project. Since the mid-1970 a large factory renabilitation programme financed by a World Bank loan has been under way. Repelita IV envisages an increase in sugar processing cracity by 800,000 tons by 1988, equivalent to 12 new mills. The Government in fact plans to build 12 new mills, all but two on the outer islands; six are under construction and a seventh has been commissioned. Beyond 1988, two more mills will have to be commissioned every three years to meet projected demand.

The seven mills under construction have been commissioned on the conditions that the international equipment supplier cooperate with a domestic equipment manufacturing company and that a local content of about 60 per cent be achieved. There are at present six local companies (three state-owned an three private) engaged in engineering planning of sugar mills and production of various kinds of equipment. Some have begun to manufacture centrifuges under licence. The next mills to be commissioned are to have an Indonesian company as the main contractor supported by an international sub-contractor; local content is to be raised towards 80 per cent. A wide range of parts is also produced, mainly on the often well equipped repair shops of the mills.

Assuming that local content of the five new mills to be installed by 1988 reaches 70 per cent, US \$28 million per year investment in new processing capacity will be required. Adding replacement of outdated equipment and spare parts, and investment in equipment producing capacity, raises total investment requirements for technically feasible local production to US \$78 million a year.

5.7 Processing equipment for cocol, coffee and tea

Indonesia has not hitherto been a significant producer of cocoa. In 1981, some 15,000 tons were produced, mainly on government estates. A programme of replanting and extension of estates is expected to increase output substantially during the 1980s. Most cocoa is exported, chiefly in the form of beans, powder and paste, but there are also imports of beans for quality blending.

By contrast, Indonesia is a major coffee producer, ranking fourth after Brazil, Colombia and the Ivory Coast. Coffee is mainly a smallholder crop. The bulk of Indonesia's coffee is robusta. The world coffee boom of the mid-1970s greatly benefited Indonesia's coffee growers, and coffee exports reached US \$656 million in 1980. Prices then declined and the value of exports fell by nearly fifty per cent in 1981, but there has been some recovery since.

Tea is predominantly an estate crop, grown chiefly on higher ground in Java. Most estate tea is processed to black tea for export. Indonesia ranks fourth among tea exporting countries, but tea accounts for only three per cent of non-oil export earnings.

For all three of these estate/smallholder crops, Repelita IV envisages ambitious output targets, in the cases of cocoa and coffee increases by 10,000 tons a year.

Cocoa processing to prepare beans for export involves fermentation, washing, drying and grading; the equipment needed consists of flight conveyors, tray driers and graders. The equipment needed for further processing into paste and cake is more complex and specialised, including grinders, mixers and presses.

Coffee processing involves curing, grading, roasting, blending, grinding and packaging. The chief equipment needed for (wet) processing consists of de-pulpers, pumps, rotary driers, hullers, catadors and vibrating graders; in addition roasters and sieves for roasting, cracking and grinding mills for grinding and some additional equipment for the manufacture of instant coffee.

- 48 -

Processing of tea involves withering, rolling, fermentation, drying and grading. The main items of equipment needed are withering troughs with blowers, rolling mechines, sorting machines, driers, graders, packers, heat exchangers and suction winnowers.

The available information on present local equipment production for these processing industries is very inadequate. The simple equipment for cocoa bean processing appears to be mostly made locally. So is some coffee processing equipment, but most of the equipment in use is very old and inefficient, especially drivers which at present account for 65 per cent of processing equipment cost. Their inefficiency is largely responsible for the poor quality and low prices that Indonesian coffee commands. Production of tea equipment is carried on in several general workshops, in Bandung and elsewhere.

In view of the similarities among processing equipment for the three crops, especially driers for cocoa and coffee, joint demand could rise to levels sufficient for economic domestic production. Total investment requirements during 1985-88 for the three processing industries are estimated at US \$14 million a year of which 80 per cent may be technically capable of local production. In addition, some US \$3 million would be needed to enlarge and upgrade equipment production capacity.

5.8 Wood Processing Equipment

More than 60 per cent of Indonesia's land area is covered by tropical forest, but conservation and reafforestion are urgently needed to maintain the country's forestry potential. Official figures indicate 45 million ha of exploitable and another 48 million ha of potentially exploitable forest, but such data need to be treated with caution. They include large areas where exploitation is uneconomic because of high transport costs (e.g. in Irian Jaya) or undesirable for environmental reasons. At present Kalimantan accounts for more than 50 per cent of forest exploitation. The main species cut for export are Meranti (53 per cent) and Ramin (15 per cent).

In 1978, after a decade of very rapid expansion of log exports chiefly to Japan and other east Asian countries for plywood and other processing, the Government of Indonesia decided to enforce increased domestic processing by, ١

in effect, drastically and progressively restricting export of logs by 1985 and promoting plywood production. The result has been an investment boom in saw mills, veneer and plywood manufacturing. In some cases production plants threatened with shutdown in overseas countries formerly dependent on Indonesian logs have relocated in Indonesia. Between 1979 and 1981, production and exports of logs dropped sharply, while plywood exports have begun to expand, partly offsetting the loss of export earnings.

In wood processing, "primary" processing commonly includes all processing which uses logs as inputs, including plywood and fibre board production as well as saw milling, while "secondary" processing is used to refer to manufacture of wood products, including furniture, joinery and structural wooden elements used in housing such as partitions and roof trusses. While saw milling equipment consists chiefly of the saws themselves, plywood production requires a wide range of partly sophisticated machinery. Wood working machining and assembly equipment can be economically produced in relatively small quantities if labour-intensive processes are employed.

Nominal capacity for saw milling has increased greatly, to 8.1 million m^3 according to official data. But much of this capacity in Kalimantan operates at only 50 cent of capacity because of outdated equipment, and the capacity figures may be inflated by the companies to secure larger export quotas. There is also a large but unknown number of small enterprises using small band or traditional hand saws. The present investment cost of a 3-line saw mill of 70,000 m³ capacity is US\$ 28.6 per m³, a relatively low figure which indicates low operational quality of the machinery, but there is a trend towards improvement of the end product.

There were in 1983 67 plywood factories in operation, with a production capacity of 3.1 million m^3 , running at very high (89 per cent) capacity utilisation and exporting 81 per cent of their output. Another 105 investment applications with a total capacity of 3.6 million m^3 were pending. Investment costs in machinery and equipment show a very wide range from US\$ 80 to US\$ 480 per m^3 . Recent technological developments overseas, may have implications for plywood production planning in Indonesia. Medium-density fibre board (MDF) is rapidly displacing plywood in North America and Europe. An assessment of the desirability of switching from plywood to MDF production for export may become necessary in the near future.

- 50 -

In Indonesia the longer-term future of plywood will depend in part on adequate supplies of the requisite kinds of tropical hardwoods and therefore on an effective reafforestation programme.

Furniture and wood working is predominantly a small-scale industry, with an estimated 4,000 establishments of which at most 10 per cent are mechanised. The industry has grown rapidly in recent years, as is indicated by a remarkable rise in imports of small (workshop type) machinery which have risen from 250-400 pieces a year in 1975 to more than 10,000 pieces in 1982/83.

As regards potential for domestic equipment production in Indonesia, much of the log intake, distribution and transport equipment for saw milling can technically be built in Indonesia, while the saws themselves which are high precision instruments carnot be recommended for local production at this stage. About 30 per cent of the equipment needed for plywood production should be capable of domestic production, and this percentage could rise gradually to 60 per cent. Whether the same would apply to fibre board production remains to be investigated. Driers for which there will be demand also from saw mills and other wood working plants might be domestically preduced to the extent of 60 per cent of content, i.e. excluding the extremely difficult control equipment. Of the general purpose machine tools needed for wood working, up to 80 per cent should be technically capable of local production.

Estimates of investment requirements for saw milling and plywood production during Repelita IV reach very high figures - US\$ 72-100 million for saw milling and US\$ 460 million for plywood. In view of the magnitude of investment requirements and the uncertainty about future demand for plywood, any decisions about domestic production of processing equipment should be preceded by a detailed sub-sectoral study.

5.9 Cement Processing Equipment

Despite very rapid growth in cement production and consumption in the past decade, Indonesia still has by far the lowest per capita consumption among east Asian market economies. While domestic production increased 13-fold to 6.8 million tons in 1981/82, it was outstripped by growth of consumption, so that 0.5 million tons had to be imported in 1982. Installed capacity of 11.7 million in 1983 was divided between 8 companies, chiefly in Java and Sumatra. Capacity utilisation was rather low, around 65-75 per cent. Most domestic production consists of Portland cement, the most widely used kind, with some specialised production, e.g. for oil wells.

Ambitions expansion plans, to raise cement production capacity to 19.4 million tons by 1987 in order to keep up with rising demand and if possible dispense with imports, have had to be scaled down by financial exigencies. Prospective expansion may now tentatively be put at 19 million for 1987 and 32 million for 1990.

Mechanical equipment accounts for about one-third of the total cost of a cement factory (the other two-thirds being construction costs and commissioning and electrical equipment). Total investment costs of a factory of 0.5 million per annum capacity is about US\$ 100 million; for a factory of 1.5 million tons capacity US\$ 155 million (implying very large economies of scale). Cement factories are highly sophisticated and technologically complex "products". Suppliers carry all technical risks which are subject to severe penalty clauses. It is therefore not easy for a new supplier to match the experience and credentials of the small number of international cement factory producers.

At present, steel ducting, chutes, tanks and bins are fabricated in Indonesia. These represent less than 40 per cent of equipment costs. The best potential for additional local production is for sheet metal products produced by automatic welding, conveyor and transport systems and for some items of electrical equipment, such as switchboards, low and medium voltage switchgears, cables, control panels, and some others. Some quarry equipment could also be supplied locally; also some spare parts, especially refractory bricks and castings.

Total required annual investment in equipment for cement production is estimated at US\$ 400 million during Repelita IV. On a long run basis, which would require much further technical and economic analysis, the local share could rise from one-half to two-thirds in the coming decade. The sophisticated technology of cement production makes it difficult to develop

- 52 -

domestic production of individual components. As in the case of sugar industry, the best strategy is likely to be to aim at the establishment of integrated engineering facilities through joint ventures, on the understanding that there will be a gradual increase of local production of equipment. In co-operation with the joint venture partners policy guidelines could be drawn up for the increase in local content, including incentives for sub-contracting of part of the equipment to domestic firms and the development of production facilities for heavy equipment and machinery. Some of these items might be included in the planning of a General Machine Shop in Surabaya.

5.10 Equipment for the textile industry

The textile industry in Indonesia is so large and diverse that it cannot be covered in any depth in the framework of the present study. An in-depth study would need to assess market prospects at home and abroad for each of the four main sub-sectors - spinning and synthetic fibre production, weaving/knitting, finishing (dyeing, printing, etc.) and garments production. It would need to examine the relevance to Indonesia of the rapid changes in modern textile technology which are going on in the world and which must have profound effects on appropriate equipment for textile plants in the next decade and beyond. Finally, it would need to concern itself with the present condition and future prospects of the small-scale and handicrafts sector and its equipment requirements. None of this has been possible in the short time available. The following analysis, therefore, is even more tentative than that in the other industry studies. It focuses primarily on two sub-sectors of the modern textile industry, yarn and fabric production; it leaves aside both the finishing industry of the modern sector and the small-scale and handicrafts sector.

Textile production increased spectacularly during Repelita II and III. Yarn production increased almost tenfold between 1973 and 1983, output of fabrics nearly sevenfold. In the spinning sub-sector there are about 70 enterprises with an installed capacity of some 200,000 tons. Synthetic fibre production began in the 1970s and now extends to some polyester (filament and fibre), nylon filament and texturised fibre, with a total capacity of about 400 tons per day. Weaving is by far the largest sub-sector of the modern textile sector. It consists of some 90 large enterprises with an average of 210 (automatic) looms, some 1,500 smaller enterprises using some 75,000 power looms and about 5,000 small and medium enterprises which produce textile fabrics using hand looms. In knitting there are 52 large enterprises, while garment manufacturing has 65 large, over 200 medium-sized and an unknown number of small enterprises. The most important development of the past decade has been the establishment, chiefly through Japanese investment, of large integrated textile mills using fairly sophisticated automatic equipment.

Employment in the textile industry has been growing relatively slowly, at 1.75 per cent per annum, largely because of displacement of labour in the informal small-scale sector. Virtually all the raw materials and many other production inputs into the textile industry are still imported. Domestic raw cotton production amounts to only 6,000 tons a year, while imports rose to nearly 120,000 tons by 1980. Rayon and synthetic fibres are also still predominantly imported, although increasing domestic production has kept imports of synthetic fibres fairly stable at about 25,000 tons a year. Considerable efforts have been made in the past decade to stimulate textile exports, chiefly garments, and some success was attained during 1979-80. After falling back during the recession years, exports are now recovering somewhat.

Repelita IV aims at an average growth rate of yarn production of 3.4 per cent a year, of 3.8 per cent for fabric and 12.4 per cent for garments. Synthetic requirements are expected to grow at 3.6 per cent. Almost one-half of garments output will, it is hoped, be exported.

There is some production of equipment, spare parts and components for the textile industry, chiefly for small and medium-scale enterprises. Simple looms are made domestically. But their quality is such that little if any of it can be used in the modern sector. Textile machinery for modern plants is imported, mainly from Japan. One reason why domestic production of spare parts and components is difficult to assess is that much of it is sold under foreign brand names to improve marketability. Domestic products have a substantial price advantage over imported ones, but their quality is much inferior.

- 54 -

The rate of technological progress in textile machinery, especially the development of shuttleless weaving and generally automated production in integrated plants, is such that the technological gap between highly industrialised and developing countries is again widening. Modern equipment is so costly and employs so little labour that it is, prima facie, inappropriate for countries with Indonesia's factor proportions; yet output from these modern plants may well be price as well as quality competitive with labour-intensive production from low-wage countries. In these circumstances, one option for Indonesia is to focus specifically on the equipment needs of the small-scale and handicrafts sector, supplying good-quality cheap equipment which may help it survive. A second, not mutually exclusive option is to secure equipment for the weaving industry by importing second-hand power looms from countries now discarding them in favour of more advanced equipment. From a strictly economic poirt of view, such redeployment may well be the best course in the short or medium run, but it makes little appeal to planners who seek to raise the country's industrial and technological capability in the long run. A third option is to follow in the footsteps of the previous generation of industrialising countries, such as Brazil, by embarking in gradual stages on domestic production of equipment for the modern textile industry.

In Indonesia, this might well begin with assembly of spinning machines including draw frames, followed by assembly and increasingly local production of looms. Scope for local assembly production may be put at (say) 285 spinning machines at US\$ 74,000 each i.e. an investment of US\$ 21 million a year, plus at a later stage US\$ 3 million for draw frames. Investment required in new capacity for assembly and component production is estimated at US\$ 15-20 million. Employment creation might be put at 1,000 new jobs.

In view of the uncertainties surrounding the future of weaving industry development, even tentative estimates of potential domestic production of weaving machinery would be inadvisable. A detailed sub-sectoral analysis is needed.

- 55 -
5.11 Recommendations

The estimates of technically feasible local production of equipment for the selected industries add up to the following aggregate totals:

- (i) Investment in equipment during Repelita IV for seven processing industries (excluding textiles) approximately US\$ 1,086 million a year; of this
- (ii) technically feasible local production of processing equipment approximately US\$ 510-600 million a year;
- (iii) investment required in additional capacity for processing equipment production approximately US\$ 380-410 million;
- (iv) direct employment generation in equipment production: 21,000-24,000 jobs.

These are very tentative estimates, subject to many uncertainties which require clarification before any firm judgements can be made. One of the most important facts to be established is the volume of effective excess capacity, both in the processing and in processing equipment producing plants. The amounts of equipment required differs greatly among the various industries considered. Requirements are very much smaller in the cash crop (cocoa, coffee, tea) and probably rubber processing industries than in the others. By far the largest potential is in wood processing. If employment creation is a major criterion, this sector would deserve priority. But very large investment, technology transfer and manpower training would be needed. In terms of employment generation, the edible oil, sugar and cement industries combined come close to wood processing. If Indonesia succeeded in mastering the highly complex technology for assembly and gradual production of textile machinery, employment generation in this sector could also be substantial. But it should once more be underlined that this task will require enormous efforts. In terms of employment, as well as overall economic growth and welfare, the net benefits would be negative if high cost and poor quality equipment imposed additional handicaps on the processing equipment using industries.

Table V.1 presents & list of items of equipment or equipment production facilities which are recommended for further consideration for local manufacture. The list should be regarded as one of "most promising candidates", in the sense that their technical feasibility seems more assured than of other machinery and equipment required by these industries.

Demand sector	Domestic Equipment Production Recommended as				
	Technically Feasible*				
Edible oil	<u></u>				
extraction	Hammer mills				
	Screw presses				
refining	GEC approach <u>a</u> /				
Rubber	Feasibility study of powered rubber process; GEC approach a/				
Sugar	Raising local content from 60 to 70 per cent under GEC $\underline{a}/$				
Estate crops					
cocoa	3 types of machinery b/				
coffee	6 types of machinery b/				
tea	10 types of machinery <u>b</u> /				
Textiles					
spinning	Ring spinning machines				
	Hank winding machines				
	Draw frames				
Wood					
Saw milling	Driers				
	Installations (up to 50 per cent local content); GEC $\underline{a}/$				
Plywood/					
fibre board	Raising local content from 30 in stages to 60 per cent, guided by GEC a/				
Wood working	Band saws				
	Circular saws				
	Planing machines				
	Milling machines				
Cement	Spare parts				
	Castings, especially grinding balls, guided by GEC a/				
* NB All these re	commendations are subject to studies of economic				
feasibility.					
a/ GEC = General	Engineering Contractor; cf. 4.6 in Part Four, Vol. III.				
D/ UI. Section /.	4 IN FAIL FOUR, VOI. III.				

Table V.1 Summary of Equipment Production Recommendations

While the equipment requirements of each demand sector have their own peculiarities and require specific approaches to the development of corresponding engineering industries, there are some measures of a general character which may be recommended for follow-up action in relation to all of them. These are: •

ŧ

- Assistance to equipment producers or industries with potential for equipment production, especially in production management, engineering design, quality control, marketing and manpower training.
- 2. Assistance in the promotion of an "General Engineering Contractor (GEC) approach" in the establishment of processing plants for sugar, cement, edible oil refining, rubber, saw milling, plywood and fibre board, where a joint venture between an international equipment producer and a domestic company acts as general contractor which sub-contracts production of equipment, with gradually increasing local production.
- 3. Feasibility studies or sub-sectoral analyses to determine the economic, as well as technical, feasibility of domestic equipment production in the areas tentatively recommended.
- Promotion of investment and industrial technology transfers through know-how agreements and joint ventures with appropriate foreign partners.
- 5. Preparation of a sectoral plan for development of the capital goods industry based upon the methodology developed by UNIDO through technical assistance projects in a number of developing countries.
- 6. Training of manpower, to meet the large new demands that would be made by an extensive programme of capital goods production.
- 7. Examination of the scope for ASEAN regional complementation arrangements in industries, such as rubber, timber, sugar, palm oil, coconut oil and textiles in which two or more ASEAN countries may be interested in developing domestic production of processing equipment.

A technical assistance programme to support Indonesia's efforts in the above areas is recommended.

Chapter VI. Objectives, Constraints and Policies

6.1 Objectives and Constraints

A number of considerations have led Indonesian policy makers to give serious consideration to the desirability of greater emphasis on manufacturing in general and capital goods production in particular. The likelihood that the oil sector will not continue to propel economic growth to the extent that it has done in the 1970s, both because of less favourable world prices and diminishing exportable surpluses, poses the need for an alternative engine of growth, and manufacturing is the most likely candidate, judging by all past development experience. In Indonesia, industrial development has lagged behind, partly because of the very abundance of oil and other natural resources; and such industrial development as has occurred has been largely confined to production of non-durable consumer goods and more recently durable consumer goods and intermediate products, with little if any production of capital goods. Almost all this development, moreover, has been for the domestic market with relatively high rates of effective protection, with little if any export. As a result, it has not been required to become internationally competitive.

A move into capital goods production is sometimes advocated on the ground that it will fill a "gap" in Indonesia's industrial structure and will achieve a more "balanced" industrial sector. But there is no intrinsic merit in gap-filling or balance. It is true that the development of complementary industries may have favourable "linkage" effects -, external economies which may help reduce costs in other industries or impart a stimulus to other new developments. But it is unrealistic to imagine that a country even as large as Indonesia can aim at a completely self-contained industrial structure, without "gaps". Even the most highly industrialised countries, while most of them produce many capital goods, rely on imports from one another for the great majority.

There is now a <u>prima facie</u> case for the development of a capital goods sector in Indonesia. Over the next two decades, such development could mean a major structural change in Indonesia's industrial economy. But unless capital goods can be produced efficiently, that is to say at or near internationally competitive prices and quality, the domestic user industries will be adversely affected. The net effect on economic growth and employment may be negative.

The best way to ensure international competitiveness is to select industries in which Indonesia is likely to have a comparative advantage, so that no very high rates of effective protection will be needed even in the early stages and some exports may be possible quite soon. It implies a shift from a generally inward-looking towards a more outward-looking industrial development strategy. In the past, Indonesia, like most developing countries in the early stage of industrialisation, has leant towards the former strategy which emphasises replacement of imports in a protected domestic market. It has increasingly come to be recognised that such a strategy is liable to run out of steam as the phase of easy import subtitution draws to a close and to perpetuate dependence on protection by insulating manufacturers from the dynamic stimulus of international competition.

There is a presumption that Indonesia is most likely to have a comparative advantage in resource-based industries and, because of her relative abundance of cheap labour, in relatively labour-intensive industries (and methods of production). A preference for resource-based industries is also likely to promote the objective of better regional balance in industrial development. An emphasis on labour-intensive industries (including, wherever possible, assistance to and involvement of small-scale enterprise) will promote the objective of employment creation (hence more equitable distribution of income) and international competitiveness. All these considerations have led Indonesian economic planners to focus on industries producing processing equipment for agricultural and forestry products.

Formidable obstacles stand in the way. This is not the place to spell out in any detail the constraints that have hampered Indonesian industrial development and the development of a capital goods or engineering sector in particular. Dutch colonial policies and subsequent decades of political instability hampered manufacturing development until Repelita I. What there was of it, as has been mentioned, was, as in most developing countries in the earliest stage of industrialisation, inward-looking import substitution, chiefly of finished consumer goods. Inadequacies of industrial, business and engineering infrastructure, of skilled manpower, of a technological/scientific base and of experienced management were, and remain, serious constraints,

- 60 -

especially in areas such as most capital goods production where more advanced technology matters. A highly regulatory environment inherited from the first two decades after independence, and the increased comparative disadvantage imposed on the whole manufacturing sector by the oil boom of the 1970s further inhibited dynamic entrepreneurial initiatives, although the existing manufacturing industries, producing under cover of high rates of effective protection for a booming home market, experienced rapid growth. If, for the reasons that have been mentioned, selective development of capital goods production is desirable for the 1980s, energetic efforts to remove some of these constraints are an essential prerequisite. Some of the required policies are briefly indicated in the remaining pages of this Main Report.

6.2 Policies

All industrial development presupposes a favourable macroeconomic policy environment - reasonable stability of prices, reasonably stable growth of aggregate demand, reasonable security from violent external shocks.

Specific policies for industrial development can be divided into primarily long-term and primarily medium-term.

Long-term (20-25 years) policies must seek to improve the preconditions i.e. to remedy the constraints mentioned above. Apart from the various kinds of physical and business infrastructure relevant to industrial development, the most important is technical/scientific capability. While in the shortand medium-term, the only way of filling the gaps is reliance on foreign technical assistance in one form or another, the longer-term answer is in technical and scientific education and research. Among the many obstacles in Indonesia are a tendency among middle-class parents and children to look to a humanities or social science rather than a scientific/technological training; and a promotion system which provides virtually no incentives to academics to undertake good academic research.

Medium-term policies, say, for Repelita IV and V, must focus on furtherance of a desirable pattern of industrial development. This means policies to upgrade the efficiency of existing industries and to encourage the development of new industries likely to meet the objectives, i.e. conform to the desired trade-offs among objectives, of national policy. Such policies can be classified in two categories, planning decisions (i.e. measures aiming at a particular allocation of resources determined by administrative decision) and market incentive measures (i.e. measures designed to promote the efficient operation of market forces in guiding investment and other resource allocation decision). While industrial policy making will in practice always employ a combination of both, there are reasons for thinking that an emphasis on the latter approach may be more conducive to economic efficiency and thus international competitiveness.

It is now widely recognised that Indonesian manufacturing industry has suffered from excessive regulation by government. Traditional attitudes and reaction against <u>laissez faire</u> liberalism have combined to impose on industrial development a straitjacket of bureaucratic regulation which has made efficient, flexible and dynamic enterprise extremely difficult. A belief that pribumi businessmen cannot compete with non-pribumi - a belief no longer necessarily justified - has reinforced these tendencies. Taking risks in deregulation may be the single most effective contribution that government can make to industrial development.

This is in no way inconsistent with a policy of giving public enterprises and government procurement an important role in supporting the development of efficient domestic capital goods production. Preference in domestic procurement may be merely a disguised form of protection for uncompetitive firms. But it can also help overcome ingrained prejudice in favour of established brand names of multinational corporations whose products may not necessarily be optimal for Indonesian conditions.

Turning from such general considerations of industrial policy to measures particularly relevant to the promotion of capital goods industries, and more particularly, industries producing processing equipment, there are a number of policies which may be helpful in promoting efficient development of whatever industries have been selected by the criteria indicated above:

a. <u>Sub-contracting</u>. There is a good deal of evidence that production of components and parts by small firms acting as sub-contractors would not only be desirable as a form of assistance to small-scale enterprise but could

- 62 -

actually increase efficiency through specialisation and because of the greater capacity of small firms to adapt and adjust. Measures should be devised to remove some of the obstacles which have largely prevented the practice of sub-contracting in Indonesia.

b. <u>Standardisation of Components</u>. Quite a number of types of equipment (or components) are used by more than one processing industry, e.g. presses, driers, pumps, etc. So long as each industry uses equipment or components with different specifications, the volume of demand for each may be inadequate for economic domestic production. Where standardisation is possible without adverse effects on the user inutry, it could be helpful in achieving an adequate volume of demand.

c. <u>Quality Control</u>. Poor quality control has been identified as one of the most serious weaknesses of almost all enterprises at present engaged in processing equipment production in Indonesia. At the same time, some outstanding exceptions of good quality production under the guidance of the Bandung Metal Indutry Development Centre came to the notice of the UNIDO field mission. The example of the Republic of Korea where the establishment of an Institute for Machinery and Metals made a major contribution to upgrading technical capability and an independent quality inspection laboratory under the "Newly Developed Innovative Machines" incentive scheme to the maintenance of high quality (see Part Three, Volume III) may have valuable lessons for Indonesia.

d. <u>Research and Development</u>. There are several institutions in Indonesia, besides the MIDC in Bandung, with a potential role in raising the technological capability of industry by the promotion of research and development (R & D). Among them are the Institute of Technology (ITB) in Bandung, the Material Testing Institute (MTI) in Bandung and the Centre for Development Research, Science and Technology (PUSPIPTEK) at Serpong near Jakarta. Besides these scientific and technical institutions, there is the Agency for the Assessment and Application of Technology (BPPT), created in 1979 and reorganised in 1982, with the task of advising government agencies and the private sector on technology development. Its chairman is the Minister of State for Research and Technology and among its 22 directorates are several with relevance to capital goods, such as the directorates for

- 63 -

machine and electrotechnical industries, for processing and engineering industries, for defence and strategic industries and for industrial infrastructure. In addition, among its technical operation units, there is a Processing Technology Unit.

Clearly, the institutional framework for R & D is expanding, but the institutes need to change their present relatively passive attitude towards industrial enterprises and play a more active part in stimulating technological development for the manufacturing sector. The UNIDO field mission observed that most enterprises were unaware of the possible R & D and operational support which could be obtained from these institutions. There is need for more promotional efforts on their part and more active co-operation with industry associations and individual enterprises.

Industry Associations. In Indonesia, industry associations function e. at present mainly as lobbying and public relations agencies. They could develop an important role in promoting the managerial and technological capability of their member companies. Their management needs to be entrusted to carefully selected professionals with managerial, financial/accounting and engineering experience. Thus qualified, the associations should extend their work to managerial and technical issues, market analysis, trends in technology (especially overseas), training and education requirements (especially apprenticeship), promotion of sub-contracting, co-operation among members and with enterprises in other sectors, support of R & D activities, promotion of standardisation, co-operation with government in such matters as local content programmes and the formulation of policies and common positions in areas such as investment regulation, credit policy, taxation, foreign trade, environmental control, deregulation and infrastructure. Such an active role of industry associations would be beneficial both to their member enterprises and to the development of their industries in the national interest.

f. <u>Education and Training</u>. Skilled labour, experienced and competent technical staff and (in less degree) commercial middle mangement are scarce in Indonesia. To overcome these deficiencies in the short term it will be necessary to rely, besides technical assistance from abroad, primarily on on-the-job training, workshops and short courses, especially for domestic enterprises without foreign partners. Wherever practicable, overseas

- 64 -

technical and management training facilities, combined with practical experience in overseas plants, should be made available to Indonesian trainees. Besides these short-term measures, it goes without saying that there is continuing need in the longer term to extend and upgrade basic and academic technical education in science and engineering.

g. <u>Exports</u>. It may be that, for certain types of processing equipment for which there is a substantial domestic demand and which is relatively simple in design, Indonesia could secure export markets in neighbouring (and perhaps other) countries with the same raw material producing and processing industries. Exploration of such export opportunities at the selection stage, and in feasibility studies, and active assistance and training in export marketing once the industry goes into production, may significantly improve prospects. As has been suggested earlier in this report, ASEAN industrial complementation arrangements may provide the ideal framework for such initiatives on a reciprocal basis.

h. <u>Technical Assistance</u>. If, as has been suggested above, Indonesian capital goods industry development must, in the short and medium run, rely heavily on technical assistance from abroad, efforts should be made from the start to involve domestic enterprises and local staff to secure maximum transfer of knowhow. The integrated approach which has already been adopted in the sugar industry and which has been recommended in Part Four, Volume III, for several other industries may often be suitable for this purpose. More generally, the involvement can take the : rm of employment of local staff in increasingly responsible positions in direct investment or management contract arrangements with multinational enterprises or as members of foreign consultancy or technical assistance teams.

There are a number of ways in which UNIDO may be able to contribute to such technical assistance and help Indonesia in the design and execution of the policy measures which have been recommended. More specifically:

a. UNIDO may be able to assist with the technical assistance programme for the development of general engineering contractor approach to equipment processing for certain industries recommended in Part Four Volume III.

- 65 -

- b. UNIDO could advise and assist the programme for technology transfer, management and the building up of engineering capability for processing equipment production recommended in Part Four Volume III.
- c. For most types of processing equipment, studies of economic, and in some cases also technical, feasibility have been recommended before any firm decisions are taken. UNIDO could assist in the preparation of such feasibility studies and sub-sector analyses as well as in the preparation of a sectoral plan for development of the capital goods industry.
- A review of overall progress and prospects of the Indonesian industrial sector and analyses of selected priority issues of industrial policy and strategy, may be desirable halfway during Repelita IV, say in 1987, with a view to providing a sound analytical basis for Repelita V. UNIDO may be able to undertake such a review.

----- 0 ------

Distr. LIMITED

UNIDO/IS.479/Add.1 20 July 1984

ŧ

ENGLISH

PROSPECTS FOR INDUSTRIAL DEVELOPMENT AND FOR A CAPITAL GOODS INDUSTRY

IN INDONESIA

Volume II. Prospects for industrial development*

Prepared by the

Regional and Country Studies Branch Division for Industrial Studies

This document has been reproduced without formal editing.

The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

Mention of company names and commercial products does not imply the endorsement of the United Nations Industrial Development Organization (UNIDO).

V.84~88636

UNITED NATIONS

153

The UNIDO INDONESIA INDUSTRY SECTOR STUDY (UC/INS/82/106) comprises three volumes:

PROSPECIS FOR INDUSTRIAL DEVELOPMENT AND FOR A CAPITAL GOODS INDUSTRY IN INDONESIA

Volume I: Main Report

ŝ

t

¥

Volume II: Prospects for Industrial Development

Volume III: Prospects for a Selected Capital Goods Industry

Part One:	Survey of capital goods and engineering industry
Part Two:	Long-term projections of demand for capital goods
Part Three:	Capital goods production in developing countries: international experience
Part Four:	Potential for development of a selected capital goods industry

(ii) Volume II: Prospects for Industrial Development

5

ł

CONTENTS

1

ø

ŧ

Chapter I	Recen	it Economic Developments in Indonesia	1
Chapter II	The I	industry Sector: Past Performance	9
	2.1	Overview of the Manufacturing Sector	9
	2.2	Growth of Value Added in Manufacturing	12
	2.3	Structural Changes in Manufacturing	15
	2.4	Employment and Labour Productivity in	
		Manufacturing	21
	2.5	Geographical Distribution of Manufacturing	23
	2.6	Ownership and Investment Pattern in	
		Manufacturing	24
	2.7	Exports and Imports of Manufactures	26
	2.8	Small-Scale and Household Industries	30
Chapter III	The l	Industry Sector: Prospects	34
	3.1	Introduction	34
	3.2	Growth Prospects for the Manufacturing	
		Sector	34
	3.3	Prospects for Development of Comparative	
		Advantage	36
	3.4	Future Composition of Domestic Demand	
		for Manufactures	41
	3.5	Priorities in I: dustrial Strategy	42
	3.6	Projections of Sectoral Growth in	
		Indonesian Manufacturing 1980-1990	45
Chapter IV Eco	nomic	Implications of Alternative Strategies	48
	4.1	Inter-Industry Linkages	48
	4.2	Factor Intensities	51
	4.3	Comparison of Strategies	57
	4.4	Combining Different Strategies	60

Statistical Annex

62

Ŧ

(iii) <u>LIST OF TABLES</u>

5

i

•

¥

.

Table number		Page
<u>Chapter I</u>		
1.1	Indicators of economic performance, Indonesia, 1968-1981	5
1.2	Balance of payments, 1974/75, 1979/80-1983/84, (\$ million)	7
Chapter II		
11.1	Indonesia: average annual rate of growth of GDP and various sectors, 1960–1980	13
11.2	Developing countries: average annual growth rates of GDP and manufacturing value added, 1960-1980 and 1970-1980	13
11.3	Contribution of selected developing countries to the increase of MVA of developing cuntries, 1973-1980	14
11.4.	Manufacturing value added by branch of industry ranked according to average annual growth, 1971-1980	16
11.5	Structural changes of value added in manufacturing, 1971 and 1980	17
11.6	Production of selected manufactures, 1968-80/1	20
11.7	Average annual growth rates of value added, employment and labour productivity, 1970-1980	. 22
11.8	Approved and realised (implemented) foreign invesLment projects by sector, 1967-1981	25
I1.9	Exports of manufactures, 1977-1982	27
11.10	Manufacturing sector, by size of enterprise, 1974/5, 1979	31
11.11	Percentage distribution of value added in small-scale (1979) and household and cottage establishments (1974)	33

2

(iv) (List of tables continued)

1

Page

Chapter III		Page
111.1	Projections of manufacturing output at 1980 prices with special reference to metal sectors, 1980-1990	46
Chapter IV IV.1	Domestic production effect	49
IV.2	Total and direct labour requirements in man-years by industry per Rp. billion of domestic final demand and rankings according to labour, skill and non-wage value added	53
IV.3	Economic effects of alternative strategies	57

LIST OF FIGURES

Figure Number

Chapter I

IJ

ţ

ł

I.	Share or GDP by economic sectors, 1960-1980	10
II.	Share of manufacturing value added in GDP	10
	1980; selected Asian and large economies	10
111.	Manufacturing value added in billion US	
	dollars, 1980; selected Asian and large	
	economies	11
IV.	Manufacturing value added per capita, 1980;	
	sclected Asian and large economies	11
v.	Structural change in Indonesian manufacturing	
	value added according to end use, 1971-1980	18
VI.	Imports and domestic production of manufactured	
	goods by end use, 1967-1980	29

(v) LIST OF ANNEX TABLES

Table number

.

Þ

5

;

and -

1.	Indicators of population, gross domestic product and manufacturing value added, selected developing countries, 1980	63
2.	GDP by industrial origin (at constant 1975 prices) in million US \$ and annual rates of growth, 1960-1980	64
3.	Indonesia: Changing share of economic sectors in GDP, 1960-1980	65
4.	Indonesia: annual growth rates of real manufac- turing value added, 1970-1980	66
5.	Indonesia: structural changes of value added in manufacturing, 1971-1980	67
6.	Indonesia: structural changes of manufacturing value added according to end use of manufactured products, 1971-1980	68
7.	Indonesia: production of selected commodities, 1970, 1975-1980	69,70
8.	Indonesia: indicators of apparent consumption of selected manufactures, 1970-72 and 1976-78	71
9.	Relative degree of industrialisation in the 1970s by industrial branch	72
10.	Indicators of net manufacturing output, 1970 and 1977	73
11.	Indonesia: number of establishments, employment, wages and salaries	74,75
12.	Gross output, value added, gross fixed capital formation	76,77
13.	Performance of manufacturing sector by branches	78
14.	Productivity index - value added per employee relative to total manufacturing, 1970 and 1980	79
15.	Regional distribution of medium and large scale manufacturing enterprises, 1974	80
16.	Number of establishments, persons engaged and value added by size and branch of industry, 1974/75	81

(vi) (List of annex tables continued)

J

١

ų

17.	Number of employees by industry and by location, Indonesia, 1974/75	82
18a.	Large and medium enterprises: number of establishments, employment, value added and average size by ownership, 1974/75.	83
18b.	Sectoral value added by ownership, 1974/75	84
19.	Approved domestic investment projects by sector 1968-1981	85
20.	Approved foreign investment projects by crigin, 1967–1981	86
21.	Indonesia: product mix of traded manufactured goods, 1970, 1975 and 1980	87,88
22.	Indonesia: indicators of export performance by product group, 1970–1972 and 1976–1978	89
23.	Indonesia: export-performance indicators	90
24.	Indonesia: import and domestic production of manufactured goods by end use, 1967-1980	91
25.	Indonesia: origin of imports of manufactures by branches, 1980	92,93
26.	Indonesia: destination of exports of manufactures by branches, 1980	94,95
27.	Indonesia: shares of exports and imports classified according to level of processing 1970 and 1980 and trend growth rates, 1970-1975 and 1975-1980	96
28.	Employment and GDP at constant market prices, by sector, 1971 and 1980	97
29.	Sectoral shares in employment and GDP at constant 1973 market prices and compound annual rates of increase in sectoral employment, gross value added at constant 1973 market prices and labour productivity, 1971-1980	98
30.	Manufactured exports in major East Asian countries	99-102
31.	Manufactured exports by type of industry and country sample, 1975	103,104
32.	Wages per worker and labour productivity for selected industries in 1974	105

(vii)

(List of annex tables continued)

۰.

IJ

ţ

• -- -•

.

L

33.	Analysis of changes in imports of labour intensive products in which developing countries market shares made their largest increases over the interval 1965 to 1975	106,107
34.	Export performance ratios for manufacturing industries, by country sample	108-113
35.	Indonesia: Elasticities of consumption for selected consumer goods, 1976	114
36.	Growth and size elasticities, 1969-1973, for . large countries	115
37.	Distribution of production of domestic manufacturing over main supply categories and distribution of domestically producted intermediate manufactures over main purchasing sectors	116
38.	Component share of demand for domestically produced goods	117,118
39.	Intermediate import requirements for industry	119,120
40.	Intermediate import requirements for groups of industries	121
41.	Projections of incremental capital and labour force requirements in manufacturing with special reference to metal sectors: 1980-1990	122
42.	Projections of incremental direct intermediate import requirements and incremental value added by manufacturing sector with special reference to	100
	metal industries: 1980-1990	123
43.	Labour-intensity of groups of industries	124

(viii)

1

EXPLANATORY NOTE

The following abbreviation have been used:

IJ

;

•

.

EEC	European Economic Community
EP	Export Performance Ratio
FI	Factor Intensity
GDP	Gross Domestic Product
IGGI	Inter-governmental Group on Indonesia
ISIC	International Standard Industrial Classification
К	Capital intensity
L	Labour intensity
LNG	Liquified Natural Gas
mbd	Million Barrels per day
MVA	Manufacturing Value Added
NAFED	National Agency for Export Development
NEI	Netherlands Economic Institute
NIC	Newly Industrializing Country or Area
OFCD	Organization for Economic Co-operation and Development
OPEC	Organization of Petroleum Exporting Countries
PD	Product Development
RCA	Revealed Comparative Advantages
RES	Resource Dependence
SITC	Standard Industrial Trade Classification
SK	Skill Intensity
UNIDO	United Nations Industrial Development Organization

Volume II. Prospects for Industrial Development

Chapter I. Recent economic development in Indonesia

The decade and a half since 1968 have been a period of rapid and sustained economic development in Indonesia such as few would have thought likely or possible in the 1950s or early 1960s.

Indonesia, the fifth largest country in the world, had passed through several decades of economic malaise and political turmoil. The troubles began with the great depression of the 1930s which severely hit the Dutch-ruled colonial economy. Then followed the scorched-earth policy and Japanese occupation during World War II, the post-war years of war against the Dutch and, after attainment of independence, years of political instability and, despite intermittent efforts by successive governments, economic stagnation or decline. They ended, in the last years of Sukarno's "guided democracy", in economic chaos with few parallels in a large country except in the aftermath of war or revolution. Inflation, fuelled by mounting budget deficits, reached an annual rate in excess of 1,000 per cent. The tax system had largely broken down, eroded by inflation and corruption. For some years no government budget had been published. Exports, throttled by a complex network of multiple exchange rates and regulations, were paying for barely one-half of imports. The country was in default on external debts the magnitude of which was unknown. The infrastructure of railways, ports, inter-island shipping and public utilities, including much indispensable irrigation, had been allowed to run down for decades. The small manufacturing sector, chiefly textile weaving, was operating at 10-30 per cent of capacity for lack of foreign exchange for materials and spare parts. Peasant agriculture had increasingly withdrawn from the cash economy into subsistence production.

The new Government under General Soeharto which took over power during 1966, in the wake of an abortive coup on 30 September 1965, made economic stabilisation, rehabilitation and development its top priorities. Within two years, inflation was brought under control by orthodox monetary-fiscal restraint, assisted by balance of payments support frow a consortium of creditor/donor countries (IGGI). Exchange controls were dismantled, the exchange rate gradually unified, foreign trade partially deregulated and efforts made to correct the worst distortions in the domestic price structure. A Foreign Investment Law was passed to provide tax and other incentives to foreign investors. Professional economists, largely from the University of Indonesia, were enlisted, first as economic advisers, later ac Ministers, to take charge of economic policy formulation, with a good deal of help from the International Monetary Fund, the World Bank, the United Nations and other agencies. In 1968, development expenditure, which had been temporarily suspended, was resumed for rehabilitation of infrastructure. On 1 April 1969, the first Five Year Plan (Repelita I) came into operation, with food production as the top priority.

Indonesia was fortunate in two respects. The Government's decision to give the highest priority to food, and especially rice, coincided with the "green revolution" in rice - development at the International Rice Research Institute of high-yielding, fast-maturing varieties; and the OPEC oil price increases of 1973-74 and 1979-80 for a decade freed Indonesia from balance of payments constraints and provided ample government revenues. Neither by itself would have ensured successful development. But combined with dynamic but by and large prudent economic policies which grasped the opportunities, the two pieces of good fortune helped lift Indonesia into the category of fast-growing, middle-income countries of East Asia.

Even before the new rice varieties became available, a rice intensification programme (Bimas or "mass guidance") had been initiated in the late 196Cs, including irrigation, fertiliser, pesticides, rural credit and agricultural extension. These measures, together with price incentives to farmers, massive expansion of domestic urea production and extension of multiple cropping, laid the foundation for a sustained expansion of rice production, only briefly interrupted by disease and credit repayment problems in the years 1975-77. Growth of rice output averaged 5 per cent a year over 13 years, 1968-81, an achievement probably unmatched in any large developing country. Its importance for Indonesia's economic development can hardly be overestimated. A more than twofold increase in output of the preferred staple food not only directly raised the living standards of the majority of subsistence farmers but increased cash income and purchasing power throughout the rural areas, especially in Java. It expanded non-agricultural employment opportunities, greatly enlarged the mass market for consumer goods and services and saved foreign exchange for rice imports. In 1982 and 1983, severe drought almost halted growth of rice output, but there are grounds for

- 2 -

confidence that the growth trend which has brought Indonesia close to self-sufficiency in rice will be resumed with more normal seasons and that the new technology for higher yields can be extended to other food crops.

Indonesia has been an oil producer for almost a century. The discovery of the large Caltex "Minas" field during the 1950s gave a spurt to crude oil production, raising Indonesia's output to about 2 per cent of world production. In the early 1960s, new agreements between the government and the foreign oil companies gave the state oil enterprise subscantial control over the industry and the government a large share in its profits in the form of oil company tax. From 1968 onwards, exploration activity revived, under production-sharing contracts between Pertamina and numerous foreign companies, and output rose rapidly.

It was at this point, in 1973/74, that the fourfold increase in the oil price by OPEC, of which Indonesia was and remains a member, transformed Indonesia's financial situation. The huge improvement in the terms of trade doubled Indonesia's export earnings and, together with renegotiation of the profit split between government and companies, more than doubled government revenue.

The oil boom was a shock to the system and, as in other oil exporting countries, brought difficulties of economic management. Large domestic deficits, which were consistent with formally balanced budgets while export revenues were rising rapidly, threatened hard-won price stability. In 1974 the inflation rate rose again to nearly 40 per cent. Over-exuberant expansion of the state oil enterprise, Pertamina, caused a major crisis which temporarily shook confidence in the Government's credit. The mid-1970s brought symptoms of the "Dutch disease", as non-oil traded goods producers, in cash crop export and import-competing manufacturing industries, were squeezed between a fixed exchange rate and domestic inflation. It was primarily this concern that led to the large devaluation of the rupiab (by 33 per cent) in November 1978, although balance of payments considerations - declining real prices of crude oil and a slump in world market prices of some of Indonesia's major non-oil export commodities - also seemed to justify such a step. In the event, the second OPEC oil price increase, of 1979-80, on the contrary, brought three more years of large balance of payments surpluses and abundance of government revenue. Inflation again threatened to get out of hand but was again well contained.

- 3 -

All these vicissitudes notwithstanding, there is no doubt that the two oil booms brought immense benefits. They made possible economic and social development programmes on a scale that would have been inconceivable without them. Whereas the first Five Year Plan, with its relatively modest overall targets, had focused on economic recovery and growth, largely neglecting social objectives for the time being, and within economic development on food production, the much more ambitious second and third Five Year Plans deliberately shifted the emphasis significantly towards social welfare, and within economic development towards industry, especially resource-based manufacturing.

Much of the additional oil revenue was used for so-called <u>Inpres</u> (Presidential Instruction) programmes for work creation on local public works, for school building, health clinics, drinking wate-, family planning and reafforestation projects. At the same time, the country's hydrocarbon, mineral and timber resources became the basis for very large, capitalintensive projects for the construction of oil refineries and other petrochemical plants, LNG trains, fertiliser and cement factories, aluminium and other smelters, saw-milling and plywood capacity, paper and sugar mills mostly state enterprises or joint ventures with foreign investors. IGGI project aid and official commercial borrowing overseas supplemented oil revenue to finance a great deal of investment in irrigation, road construction, urban renewal and other infrastructure, as well as the Bimas and transmigration programmes. Partly as an easy way of distributing more widely the benefits of the oil bonanza, large budget subsidies kept down the prices of food, fertiliser and oil products.

Table I.1 presents some indicators of overall economic performance during the years 1968-81. Economic growth, measured by GDP at 1973 prices, averaged 8 per cent a year. The inflation rate fluctuated with the two oil booms after the initial stabilisation phase but was notably brought back to single digit figures in 1978 and again in 1981 (and 1982). The investment ratio (gross fixed capital formation as percent of GDP) rose from 9 to 21 per cent, the tax ratio (government revenue, including oil tax, as percent of GDP) from 8 to 24 per cent. Rice production rose at an average annual rate of 5 per cent, total food production at 4 per cent and the contribution of the broad agricultural sector (including forestry and fisheries) to GDP at 3.5 per cent. Production of crude oil peaked in 1977 and has since then hovered around a slightly lower

- 4 -

figure, as the yield of the Minas field has declined and exports have been restrained by demand as well as the OPEC quota. Much of the growth of modern sector industrial production has been relatively capital-intensive, its direct contribution to employment has been small, estimated at almost half a million during the 1970s.

	GDP	Inflation						
Year	Growth	Rate		Gro	out	Investment	Tax	
	Rate		Rice	Food	Agricul-	Crude	GDP	GDP
					ture	0i 1	Ratio	Katio
1968	13.9	85	12.5	9.1	6.9	18.0	9	8
1969	9.0	10	5.1	1.0	1.1	23.3	12	9
1970	10.9	9	6.5	3.5	4.2	15.1	14	10
1971	6.5	2	4.7	3.4	4.0	4.3	15	11
1972	9.4	26	-3.6	1.1	2.1	21.3	19	13
1973	6.8	27	10.6	7.0	5.5	23.8	18	15
1974	7.6	33	4.7	6.9	3.7	2.8	17	16
1975	5.0	20	-0.6	0.9	0.0	-5.0	20	18
1976	6.9	14	3.9	3.5	4.7	15.3	21	19
1977	8.8	11	0.1	-1.2	1.6	11.7	20	19
1978	6.8	8	10.1	9.6	7.2	-2.9	21	19
1979	5.3	20	2.3	4.0	3.8	-2.6	21	21
1980	9.6	16	12.8	8.6	5.2	-1.1	22	24
1981	7.6	7	10.4	8.1	3.5	1.6	21	24
Annual Avera	l 1ge							
1968-8	31 8.2	20.1	5.1	4.0	3.4	7.8	3	

 Table I.1 Indicators of economic performance, Indonesia, 1968-81

 (Percentage)

.

Evidence on the distribution of income is still inadequate for firm conclusions. Inequality in urban areas, and between urban and rural areas, has almost certainly increased, chiefly because of the concentration of modern sector growth in Jakarta. But inequality within rural areas, and between Java and the outer islands, appears to have diminished. There is no doubt that the great majority, even in the bottom 40 per cent of the income distribution, have experienced an improvement in material living standards. GDP per head, according to World Bank data, in 1980 passed the \$400 mark which the Bank used to divide midile from low income countries. But this figure is deceptive. Indonesia is still a poor country, with a large proportion of the people living in poverty. Per capita household expenditure in rural Java, which contains half the population, is still within the range of \$120-150. The

- 5 -

average holding of those who own land in Java is only 0.5 ha, and estimates of landless (i.e. owning no cultivable land) range from one-quarter to one-third of the rural population.

In a country where only those who can rely on family support can afford to be unemployed, figures for open unemployment do not mean much. But a large proportion of the Indonesian labour force consists of "working poor", forced to work long hours for low wages or to scratch a living in intermittent low-income activity. With a work force growing, and expected to continue to grow, at about 2.5 per cent a year, the task of generating opportunities of productive employment for more than 2 million new entrants to the work force each year, as well as for the underemployed in the present work force, constitutes the most pressing longer-term problem for Indonesia's economic policy makers.

In the past two years, adverse trends in the world economy - prolonged recession in the OECD countries and the turnaround in the world oil market have seriously worsened Indonesia's short- and medium-term economic prospects. For some time, there had been concern about Indonesia's capacity to maintain the volume of oil exports because growth of domestic consumption of oil products, such as kerosene and gasoline, at heavily subsidised prices, was eating rapidly into exportable surpluses. World Bank projections published in May 1981, which assumed that the real world price of oil would continue to rise at 3 per cent per annum through the 1980s, indicated a recurrence of balance of payments deficits in the latter half of the decade, unless policy measures were taken to restrain domestic consumption of oil products as well as imports and to stimulate non-oil exports. The ink on these projections was hardly dry when oil prices began to fall under the impact of a world glut caused by delayed response of supply and demand to the sixfold increase in price since 1973 and aggravated by the recession. As the official OPEC price fell from \$34 per barrel in 1981 to at most \$29 per barrel in 1983, Indonesia's current account balance moved from a surplus of over \$2 billion in 1980-81 to a deficit of nearly \$3 billion in 1981-82 and nearly \$7 billion in 1982-83 (Table I.2). Declining oil export earnings also threatened a sharp cut in net oil tax revenue.

- 6 -

,

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS STANDARD REFERENCE MATERIAL 1010a (ANSI an 1 ISO TEST CHART No. 2)

	1974/75	1979/80	1980/81	1981/82	1982/83	1983/84
					est.ª	proj.
Exports	6,581	18,510	22,885	22,994	19,385	17,483
Oil and LNG (Gross)	4,548	12,340	17,297	18,824	15,630	13,182
Non-oil	2,033	6,171	5,587	4,170	3,754	4,301
Imports	-6,514	-13,205	-17,589	-22,635	-22,681	-20,502
Oil sector	-1,910	-2,940	-4,050	-5,407	-5,468	4,551
Non-oil imports	-4,341	-9,028	-11,837	-14,561	-14,803	-13,986
Non-factor services						
(net)	-263	-1,237	-1,702	-2,667	-2,411	-1,965
Factor Services	-205	-3,106	-3,165	-3,149	-3,466	-3,481
Public debt interest	-80	-635	-724	-820	-998	-1,271
Others	-125	-2,471	-2,441	-2,329	-2,468	-2,210
dalance on Current A/C	-138	+2,198	+2,131	-2,790	-6,762	<u>-6,501</u>
Capital Inflow						
Public M + LT loans					<i>.</i>	<i>i</i>
Disbursements	(1,120)	(1,939)	(2,864)	(3,203)	(4,981)	(5,600)
Amortisation	(-212)	(-1,355)	(-987)	(-1,001)	(-1,376)	(-1,699)
Net disburesments	908	604	1,877	2,202	3,605	3,901
Grants	75	52	76	67	100	100
Direct Investment	538	217	140	139	276	350
Other (net)	-1,392	-1,381	1,488	-606	-499	2,420
Change in Reserves	<u>9</u>	-1,690	-2,736	<u>988</u>	3,280	-270
Memo Itens						
Net official reserves	920	4,606	7,342	6,354	3,074	3,344
Net foreign assets of banking system		6,906	10,787	11,154	6,674	6,144

Table I.2: Balance of payments, 1974/75, 1979/80-1983/84 (\$ million)

Source: World Bank: Indonesia: Policies for growth with lower oil prices, May 12, 1983, Report No. 4279-IND.

a/	Preliminary statistics:	(\$ million)
-	Exports	18,751
	Oil + LNG (gross)	14,858
	Balance on Current A/c	-6,715
	Change in Reserves	3,280

The Indonesian Government reacted quickly and energetically to the immediate crisis. The oil price subsidy which had already been reduced in the two preceding budgets was cut further, both to relieve the budget and to discourage domestic consumption. Public sector wages and salaries were frozen for the second year in succession. The rupiah was again devalued (by 27.5 per

- 7 -

cent), in the first instance to reverse capital outflow but also to offset the fall in oil tax revenue and to provide price incentives to non-oil exports. The public investment programme was drastically pruned, many large capital and import intensive projects being dropped, deferred or reduced in scope. To stimulate domestic resource mobilisation, the banking system was partially deregulated and a major tax reform prepared.

The past year has brought a considerably better economic performance than had been expected. Real economic growth in 1983 is estimated to have reached at least 4 per cent and the balance of payments position improved dramatically, from an overall deficit of US \$ 40 million in 1982/83 to an estimated surplus for US \$ 2 billion in 1983/84. These results partly reflect an unexpectedly quick response to the various measures undertaken to meet the crisis, particularly the March 1983 devaluation and the rephasing of capital projects which have brought a sharp fall in imports. Exports have also performed well, with oil producion rising from 1.4 mbd towards 1.6 mbc and some of the major non-oil exports, especially palm oil, textiles, plywood and handicrafts registering increases of 40-50 per cent. All these improvements reflect well on the quality of macroeconomic management in a critical situation.

However, Indonesia clearly faces leaner years. There is little reason to believe that world oil prices will rise in real terms before the end of che decade, and while LNG exports will help fill the gap, exportable surpluses of oil will inevitably decline and may disappear by the end of the century. The fourth Five Year Plan, due to come into operation on 1 April 1984, envisages a 5 per cent growth rate of GDP and 9.5 per cent of manufacturing, a good deal less than that achieved during the 1970s, yet even this will strain available external and domestic resources.

In order to keep external borrowing and debt within acceptable limits, it will be essential to promote non-oil exports and, where it can be achieved reasonably economically, further import substitution. At the same time, the pattern of economic development must give high priority to the generation of productive employment for the growing work force. For both these reasons, Indonesia's economic future depends crucially on an appropriate and efficient pattern of industrial development. The main burden of providing the jobs will inevitably fall on the service sector. But manufacturing can and must make a contribution.

- 8 -

Chapter II. The Industry Sector: Past Performance

2.1 Overview of the Manufacturing Sector-

Indonesia is officially designated a "lower middle income" developing country. In 1980, the share of the Indonesian large and medium manufacturing sector^{2/} in GDP was 10.3 per cent (at constant 1975 prices), compared with 6.8 per cent in 1970 and 6.3 per cent in 1960 (Figure I). The oil price increases of 1973/74 and 1979/80, by raising the value added of the mineral (oil) sector, reduced the contribution to GDP of all other sectors including manufacturing. Thus, the share of manufacturing in 1980 which had risen to 15.3 per cent at 1973 prices was only 8.8 per cent at current prices (Annex Tables 3 and 29).

Among other large developing countries, only Bangladesh and Nigeria had a smaller manufacturing sector (8 and 5 per cent of GDP at current prices respectively) (Figure II). By contrast, the shares were 29 per cent for the Republic of Korea and Hong Kong and 28 per cent for Singapore. In absolute terms, however, the Indonesian manufacturing sector has grown to a considerable size. Manufacturing value added amounted to US\$ 6,154 million in 1980, slightly larger than in Thailand, Hong Kong and Nigeria (Figure III). Among the Asian developing countries, only the Peoples Republic of China, India (US \$ 28.5 billion), Republic of Korea (US \$ 17.4 billion), Iran (US\$ 15.0 billion) and the Philippines (US \$ 9.1 billion) had larger manufacturing sectors in terms of value added.

Another indicator of the level of industrial development which is perhaps less appropriate for large countries is manufacturing value added per capita. According to this measure, Indonesia's level of industrialisation is comparatively low, amounting to US \$ 41 in 1980, equivalent to the figure in India. Among the countries represented in Figure IV, only Sri Lanka (US \$ 30) and Bangladesh (US \$ 11) had lower per capita figures.

- 9 -

^{1/} Data used in this part are based primarily on UNIDO data sources. These sources are in turn based on data supplied by the Indonesian Government. However, UNIDO usually adjusts government sources to ensure international comparability and adherence to UNIDO standard definitions.

^{2/} Unless otherwise indicated, manufacturing refers to the modern organised sector of large and medium-scale enterprise with more than 20 employees.

Figure I: Share of GDP by economic sector, 1960-1980^{a/}

Source: UNIDO data base. Information supplied by the United Nations Statistical Office with estimates by the UNIDO secretariat.

a/ At constant 1975 prices in million US\$.

Source: UNIDO data b.se. Information supplied by the United Nations Statistical Office with estimates by the UNIDO secretariat (Annex Table 1). a/ At current prices.

- 10 -

Figure III: Manufacturing value added in billion US\$ 1980; selected Asian and large economies

i

Figure IV: Manufacturing value added per capita 1980; selected Asian and large economies

Source: UNIDO data base. Information supplied by the United Nations Statistical Office with estimates by the UNIDO secretariat (Annex Table 1).

2.2 Growth of Value Added in Manufacturing

The emergence of a modern industrial sector in Indonesia is of fairly recent origin. After decades of discouragement of manufacturing, the Dutch promoted the development of a cotton weaving industry in the 1930s, to counter the effects of the great depression. In the 1950s, efforts were made by the governments of the new Republic to add a spinning sector consisting mostly of aid-financed state enterprises, and some other modern factories producing tyres, batteries, electric bulbs and similar products. $\frac{1}{}$ But in general, as indicated in the preceding section, during the 1950s and the first half of the 1960s, the economic and political climate was unfavourable for industrial development.

The new industrial policies adopted by the Soeharto Government in 1966 marked a dramatic departure. They contributed in three major ways to an improvement of the climate for industrial growth.^{2/} First, the foreign trade regime was liberalised and simplified, thereby easing the supply bottlenecks of raw materials and capital goods. Secondly, the preferential treatment previously accorded to state enterprises was reduced and growth of the private sector encouraged. Thirdly, a new foreign investment law (1967) reversed the previous hostility to multinationals and offered tax and other incentives to foreign investors.

The new policies have provided a strategic framework for a marked acceleration in the growth of the manufacturing sector which has made it, next to construction, the most dynamic sector of the Indonesian economy since 1970 (Table II.1). In contrast to real annual growth rates of only 1.9 per cent in $1953-59, \frac{2}{1.5}$ per cent during 1960-65 and 7.3 per cent during the recovery years 1965-70, industrial growth reached 14.2 per cent during 1970-75. During 1975-80 growth slowed down somewhat, to an average rate of 10.6 per cent, and the international recession reduced it marginally further to 9 per cent during

- 12 -

^{1/} A. R. Soehoed, "Manufacturing in Indonesia", <u>Bulletin of Indonesian</u> <u>Economic Studies</u>, No. 8, October, 1967; also P. McCawley, <u>Industrialisation in Indonesia</u>, Occasional Paper No. 13, Development Studies Centre, Australian National University, 1979

^{2/} For a survey of Indonesian Economic Development during the 1970s, see A. Booth and P. McCawley <u>The Indonesian Economy during the Soeharto Era</u>, Oxford University Press, Kuala Lumpur, 1981.

1980-81. Preliminary estimates indicate a growth rate of only 1.0-1.5 per cent in 1981-82, mainly reflecting cuts in government expenditures in response to the fall in oil revenues.

	1060/65	1065/70	1070/75	1975/80	1960/70	1970/80	1960/80
	1900/05	1903/70	19/0//5	1975/00	1900/70	1970700	1900/00
Agriculture Mining and	1.1	2.8	3.3	4.5	2.0	3.9	2.9
quarrying	1.8	11.3	9.5	5.0	6.4	7.3	6.9
Manufacturing	1.5	7.3	14.2	lv.6	4.4	12.3	8.3
Utilities	8.8	12.8	12.7	11.5	10.8	12.1	11.5
Construction	-1.6	14.4	20.5	11.4	6.1	15.9	10.9
Services	2.8	5.3	9.8	9.6	4.0	9.7	6.8
Gross domestic							
product	1.7	5.6	8.2	7.4	3.6	7.8	5.7

Table II.1: Indonesia: average annual rate of growth of GDP and various sectors 1960-1980 (based on constant 1975 prices in US \$)

Source: UNIDO Data Base, information supplied by the United Nations Statistical Office with estimates by the UNIDO Secretariat. (Annex Table 2).

By international standards, the growth of the Indonesian manufacturing sector during the 1970s has been quite remarkable. As Table II.2 shows, only six developing countries exceeded the Indonesian rate for the decade 1970-80, including Rwanda (25.7 per cent), Libya (24.3 per cent), Gabon (13.5 per cent), the Republic of Korea (16.6 per cent), Bangladesh (13.6 per cent) and Iran (12.8 per cent). The Indonesian manufacturing sector also made the sixth largest absolute contribution of 3.4 per cent to the overall increase in manufacturing value added of all developing countries during 1973-80; it was exceeded only by Brazil, Mexico, Republic of Korea, India, Iran and followed by Thailand and the Philippines (Table II.3).

Table II.2:	Developing countries:	average annual	growth rates	s of GDP	and
	manufacturing value	added 1960-70 an	d 1970-80		
(ranked in	descending order of M	VA growth 1970-80	selected (countries	.)

		dir orononi mat	2
GDP		MV	Ā
1960-70	1970-80	1960-70	1970-80
4.4	7.7	21.0	25.7
23.0	3.1	9.1	24.3
9.1	10.8	2.0	19.5
8.6	9.5	17.6	16.6
3.0	5.3	5.4	13.6
9.4	2.8	10.6	12.8
3.0	7.7	3.0	12.5
	Gl 1960-70 4.4 23.0 9.1 8.6 3.0 9.4 3.0	GDP 1960-70 1970-80 4.4 7.7 23.0 3.1 9.1 10.8 8.6 9.5 3.0 5.3 9.4 2.8 3.0 7.7	GDP MV 1960-70 1970-80 1960-70 4.4 7.7 21.0 23.0 3.1 9.1 9.1 10.8 2.0 8.6 9.5 17.6 3.0 5.3 5.4 9.4 2.8 10.6 3.0 7.7 3.0

publication, sales no. E.83.II.B.6).
Indonesia is thus an active partner in the world's industrial restructuring process. Internationally Indonesia's share of world manufacturing value added more doubled from 0.10 per cent in 1970 to 0.22 per cent in 1980. In other terms Indonesia's share of total value added of all developing countries increased from 1.18 per cent in 1970 to 2.0 per cent in 1980. $\frac{1}{7}$

The period in which the Indonesian manufacturing sector grew rapidly, especially 1969-75, provided particularly favourable conditions for industrial development for a number of reasons. The initial industrial base was small and shortages of many industrial goods implied a large potential demand. Much existing capacity needed only modest replacement and repair investment to be capable of adding quickly to industrial output. The foreign and domestic investment laws of 1967 created a favourable investment climate which generally benefited the manufacturing sector as a whole. Finally, there was still ample scope for import substitution, expecially in textiles and other mass consumption goods. Many of these conditions favourable to industrial progress have gradually petered out. Since the mid-1970s, therefore, the Indonesian manufacturing sector has confronted new circumstances, problems and challenges demanding adjustment to more complex conditions.

Table II.3: Cointribution of selected developing countries to the increase of <u>MVA of developing countries, 1973-80</u> (based on costant 1975 US \$)

(percentage)

	Brazil	27.2	
	Mexico	11.2	
	Republic of Korea	8.3	
	India	7.2	
	Iron	3.6	
	Injonesia	3.4	
	Thailand	3.3	
	Philippines	2.8	
	Turkey	2.7	
	Egypt	2.5	
	TOTAL	72.2	
Source:	UNIDO Industry in a Changing World	, JNIDO (United Nations	
	publications, sales no. E.83.II.B.	6).	

a/ Based on data available for 97 developing countries.

1/ Source: UNIDO data base. Information supplied by the United Nations Statistical Office with estimates by the UNIDO secretariat. One pervasive difficulty was the emergence, especially after the first OPEC oil price increase in 1973/74, of a strong oil export sector which resulted in an appreciation of the real exchange rate. The combination of relatively high domestic inflation rates and unchanged nominal exchange rates from 1971 to 1978 put severe pressure on all non-oil traded goods industries. While the manufacturing sector benefited from government expenditure out of additional oil revenues and was given substantial shelter in the domestic market by tariff and other protection, its competitive position in export markets was weakened. Two successive devaluations of the rupiah, in 1978 and 1983, brought relief by improving, at least for a while, the competitiveness of Indonesian manufacturers but added to the problems of industries depending on imported raw materials or components.

2.3 Structural Changes in Manufacturing

The high rate of industrial growth during the 1970s greatly diversified the structure of the Indonesian manufacturing sector. As Table II.4 shows, there was very high growth in some branches which had been quite unimportant at the beginning of the decade, among them iron and steel, electrical machinery, other non-metallic mineral products (chiefly cement), rubber products and fabricated metal products. Medium growth occurred in industrial chemicals (chiefly urea), wood products (except furniture), glass products, and paper and paper products. As was mentioned before, many of these fast growing industries were relatively capital intensive. In contrast, some of the larger traditional industrial branches grew less rapidly, including food products, textiles, beverages and tobacco. Growth was also modest in industries producing transport equipment and other chemicals and in petroleum refining, but in the latter as in some other capital-intensive industries, large-scale expansion was still under way at the end of the period.

Diversification led to a marked structural shift in the composition of manufacturing value added. The traditional industries related to the agricultural sector - food processing (chiefly rice milling), beverages and tobacco - which in 1971 accounted for 63.8 per cent of total manufacturing value added, declined to 31.7 per cent in 1980 (Table II.5). The importance of the textile industry rose in the early 1970s but then declined to 12.4 per cent in 1980, a figure slightly below its share in 1971. Whereas in 1971 no other industrial branch exceeded 4 per cent of total manufacturing value added, by 1980 six new branches surps sed this figure, including other chemicals, wood products, transport equipment, other non-metallic mineral products, electrical machinery and rubber products. Fabricated metal products and iron and steel came close to it.

		Average annual
ISIC		growth rate
		Percentage
	- High growth -	
3710	Iron and steel	50.2
3560	Plastic products	33.2 <u>a/</u>
3230	Leather products	31.5 <u>a</u> /
3830	Machinery electric	30.8
36 9 0	Other non-metallic mineral products	28.7
3820	Machinery, except electrical	27.6 <u>a/</u> ,
3420	Printing and publishing	24.3 <u>a</u> /
3550	Rubber products	22.8
3810	Fabricated metal products	20.2
	- Medium growth -	
3510	Industrial chemcials	18.9
3320	Furniture, except metal	18.7 <u>a</u> /
3310	Wood products, except furniture	17.6
3620	Glass and products	17.4
3410	Paper and paper products	16.1
3110	Food products	14.1
3220	Wearing apparel, except footwear	12.6 <u>a/</u>
3850	Professional and scientific equipment	12.0 <u>a/</u>
3900	Other manufactured products	12.0 <u>a</u> /
3210	Textiles	11.8
	-Low growth -	
3240	Footwear, except rubber or plastic	10.1
3130	Beverages	9.7
3140	Tobacco	9.4
3530	Petroleum refineries	8.0
3840	Transport equipment	5.6
3520	Other chemcials	3.2
Total	manufacturing	11.8
Sourc	e: UNIDO Data Base, information supplied by the Un Statistical Office, with estimates by the UNIDO (Annex Table 4).	ited Nations secretariat.

Table II.4:Manufacturing value added by branch of industry ranked
according to average annual growth 1970-1980
(based on values in 1975 US \$ constant prices)

<u>a</u>/ 1970-76.

_ 16 _

ISIC	ISIC-description	1971	1980
<u></u>		100 08/	100 08/
10181	manufacturing	100.0=/	100.0=/
3110	Food products	33.9	11.1
3130	beverages	2.0	1.5
3140	Tobacco	27.9	19.1
3210	Textiles	13.2	12.4
3220	Wearing apparel, except tootvear	0.1	0.4
3230	Leather products	0.3	0.2
3240	Footwear, except rubber or plastic	0.6	0.8
3310	Wood products, except furniture	1.4	7.0
3320	Furniture, except metal	0.3	0.2
3410	Paper and products	2.0	1.5
3420	Printing and publishing	2.0	1.5
3510	Industrial chemcials	0.8	4.3
3520	Other chemcials	3.8	7.1
3530	Petroleum refineries	•••	• • •
3540	Misc, petroleum and coal products	0.0	0.0
3550	Rubber products	1.3	4.8
3560	Plastic products	0.5	0.7
3610	Pottery, china, earthenware	0.6	0.2
3620	Glass and products	0.5	1.1
3690	Other non-metallic mineral products	2.5	5.9
3710	Iron and steel	• • •	3.1
3720	Non-ferrous metals	• • •	0.0
3810	Fabricated metal products	2.3	3.5
3820	Machinery, except electrical	0.4	1.6
3830	Machinery electric	2.5	5.3
3840	Trinsport equipment	0.9	6.4
3850	Professional and scientific equipment	0.0	0.1
3900	Other manufactured products	0.3	0.4
Total	manufacturing in millions	135,990	2,130,000

Table II.5:Structural changes of value added in manufacturing, 1971 and 1980(percentage share in Rp. at current prices)

Source: UNIDO data base, information supplied by the United Nations Statistical Office, with estimates by the UNIDO secretariat. (Annex Table 5).

a/ 3000 - excluding 3530.

The pattern of structural change in the Indonesian manufacturing sector can be analysed by classifying manufacturing value added roughly by end use as consumer, intermediate and capital goods (Figure V). As would be expected, there was a gradual shift from consumer goods in favour of intermediate and capital goods. From 1971 to 1980 the share of consumer goods in total manufacturing value added declined from 80.8 to 47.6 per cent, while the share of intermediate goods rose from 13.1 to 35.5 per cent and that of capital goods from 6.1 to 16.9 per cent.

Figure V: <u>Structural change in Indonesian manufacturing value added</u> <u>a</u>/ <u>according to end use 1971-1980</u> (based on current Rp. prices)

Source: UNIDO data base, information supplied by the United Nations Statistical Office, with estimates by the UNIDO secretariat. (Annex Table 6).

- a/ ISIC 3000 excluding 3530.
- \overline{b} / ISIC 3110, 3130, 3140, 3210, 3220, 3240, 3320, 3420, 3610, 3900.
- c/ ISIC 3230, 3310, 3410, 3510, 3520, 3530, 3540, 3550, 3560, 3620, 3690, 3710 3720.
- d/ ISIC 3810, 3820, 3830, 3840, 3850.
- e/ Includes also some consumer durables.

In one important respect, however, the rough classification in Figure V is misleading. It includes among capital goods a range of products of engineering and assembly industries which produce predominantly durable consumer goods rather than producer goods. Among them are motor cars and cycles, sewing machines, refrigerators, air conditioners, TV sets and radios. Table II.6 presents a different classification in terms of output of physical units. It shows relative growth rates of output in four categories - intermediate goods, capital goods divided into producer and predominantly consumer durables, and other (sirgle-use) consumer goods. It confirms the general shift in the industrial structure towards relatively capital intensive intermediate goods at the expense of (single-use) consumer goods. It also shows that growth of most of the assembly industries producing consumer durables slowed down in the latter period, 1975-81. Both these trends reflect in part the slowdown in growth of domestic demand but also diminishing scope for further import substitution. $\frac{1}{2}$

Annex 8 shows that import substitution has in the past decade considerably reduced the share of imports in the Indonesian market for nitrogenous fertiliser and (printing and writing) paper and has virtually eliminated imports of wheat flour (replaced by wheat imports), cotton yarn and woven fabrics, caustic soda and insecticides. Indonesia is now self-sufficient in most food products (except sugar and, for the moment, still rice, as well as some dairy products and tinned foods), textiles (except wool) and oil products. But she continues to rely on imports for most chemical and metallic intermediate products and (not shown in the table) most producer capital goods. Domestic production of the latter is limited, largely confined to diesel engines (69,400 in 1981/82) and hand tractors (1,074 in 1981/82).

•

These findings are largely corroborated by an examination of the "relative degree of specialisation" during the 1970s. This measure indicates the average value of the ratio between observed and expected level of manufacturing value added where the latter is derived from comparison with all countries (both developed and developing), developing countries and other large developing countries (Annex Tables 9 and 10). The expected values indicate how resource endowments, country size and level of income determine changes in the industrial structure over time. They indicate feasible, though not necessarily desirable or optimal growth patterns.^{1/} The results confirm the low degree of overall industrial development in Indoresia (0.65 in relation to other large developing countries) but also the relatively high degree of industrialisation in some branches, such as petroleum refining,

- 19 -

^{1/} For an attempt to distinguish growth of demand and import substitution as sources of growth of manufacturing value added in the first half of the 1970s see H. Poot, The Development of Labout Intensive Inductries in Indonesia in: The Development of Labour Intensive Industry in ASEAN, edited by Rashid Amjad, Asian Employment Programme, ILO, ARTEP, 1981.

Table	II.6 :	Production	of	selected	manufactures	, 1968-80/1

	Unit	1968	1915/6	1980/1	Gred (Annua)	th Rate)
					1969-75/6	1975/6-80/1
Intermediate products				<u></u>		
Steel ingote	'030 tons		805/	397		123.0
Aluminum extrusion	1000 tons		2	8		27.9
Steel wire Deisforming imme	'000 tons		43	6h1		25.9
Aluminus plate	'000 tom#		- 5	12		17.5
Zinc plate Staal pipes	'000 tons '000 tons		145 97	294 154		15.2 9.7
Chemicals			_/			
Penticides	'000 teas	~	9	26		65.0
Fertiliser (urea) Sulabumia acid	1000 tone	20	396 15	1,905	21.0	21.1
Acetelene	'000 m		241	512		16.2
Oxygen	'000 n ³		4,914	8,071		10.4
Other ' Pater	'000 tons	11	47	232	23.0	37.2
Cement	'000 tons	410	1,21	5,852	17.1	36.4
Sawn timber	1000 m ²		1,819	7,362		32.2
Cardooard Mectric/Telecom. Gooda	1000 tons	-	1 <u>7</u> 4/	77 19		20.5
Yarn	'000 bales	130	445	1,060	19.2	18.9
Glass (sheet)	1000 tons		62	106		11.3
Crunb rubber Zlyvood	million sheets		525 ⁴ /	618		8.6
Unveighted Average (excluding steel ingots and pesticides)						28-5 (21-5)
Capital goods C/						
Hard tractors	op) units	•	3ch/	877	-	132.5
Etorage batteries	000 units	-	180 <u>0/</u>	3,320	-	62.2
Eprayers	000 units	-	205/	134	-	60.9
Acropianes Diesel Engines	009 units	-	Ē,	34	-	33.6
Hullers	unite	-	1,001	1,868	-	16.9
Stoel vesmels Nelicopters	000 BRT units	-	19 <u>0</u> / 13 0 /	26 12	-	10.2 -2.0
Unveighted Average (excluding hard tractors)						44.5 (31.9)
Predominantly Consumer Durables						
Colour TV sets	000 units	:	/قو	29	:	139.7
Black and white TV sets	000 units	1	100	631 125	-	20.6 26.6
Air conditioners	000 units	-	23,	74	-	26.2
Radio cassette recorders	000 units	:	325	617	-	17.4
Automotiles	000 units	2	300	170 110		16.6
Radio sets	000 units	350	1,000	1,100		2.1
Brue abt of Arounds		•	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>,</i> _,		0.2 20.6
(excluding colour TV sets)						(15.8)
Non-durable Consumer Goods						
Cooking cil Glass bottles	1000 funa 1000 tona	23	295	869		24.2
Dry batteries	million	52	210	527	24.5	17.1
Textiles	million metres	373	1,017	2,027	15.Å	14.8
Clothing Maatuläihette	Billion dosen Billion		1	15		10.5
Detergent	1000 tons		35	5		9.4
Kretek	million packets	24	33	51	4.7	E.1
Cigarettes Toothrasta	willion tubes	15	24 108	31	6.9	T-3 6-8
Washing Scap	'000 tone		165	213		5.2
Netches	million boxes		78 0	586		-4.6
Unweighted Average						19.7

1

Bourse: Control Statistical Dureau, Jakarta. See also Asmex Table 7. a/ 1979/80 b/ 1976/77 c/ Including manufacture assembly components d/ Predominantly for private and government use. very high growth rate due to low base year.

non-metallic minerals (cement), transport equipment, textiles, rubber products, other chemicals (chiefly pharmaceutical products), food products and wood products (chiefly sawn timber and plywood).

2.4 Employment and Labour Productivity in Manufacturing.

While value added in large and medium-scale manufacturing in Indonesia grew during the 1970s at an average annual rate of over 12 per cent, employment rose by only 7 per cent, from 487,000 in 1970 to 963,000 in 1980. The difference reflects a significant growth in average labour productivity, but it also indicates the failure of manufacturing growth during the decade to have a significant direct effect on Indonesia's employment problem. The increase in the number of jobs found in large and medium-scale manufacturing of 0.5 million represents only one-f²fth of the average <u>annual increase</u> in Indonesia's labour force during the period. Indirectly, of course, through the stimulus it has given to transport, trade, finance and other service employment, manufacturing growth has undoubtedly generated additional employment opportunities. Some additional employment may also have been generated in the highly labour intensive small-scale and cottage industry sector which is discussed in the last section of this chapter.

Table II.7 shows growth rates of real value added, employment and labour productivity in the various branches of (large and medium-scale) manufacturing during the decade 1970-80. The figures are in some respects incomplete and are liable to be misleading where value added has grown from a very small base. For what they are worth, they show that as much as 5 per cent of the annual growth of value added in the sector as a whole was accounted for by growth in labour productivity, leaving only 7 per cent for employment generation. The rate of growth of labour productivity was very high in some of the very capital intensive branches, such as non-metallic minerals (cement, 15.3 per cent), non-electrical machinery (17.1 per cent), fabricated metals (8.7 per cent) and industrial chemicals (chiefly urea, 8.1 per cent) and also, rather surprisingly, in food processing and textiles. It should be noted that

- 21 -

^{1/} For a detailed description of concept and methodology of relative specialization and the country coverage of large countries, see UNIDO Handbook of Industrial Statistics, ID/284, E.82.B.2, 1982.

	Total			Labour	Value Added
		Value Added	Employment	Productivity	per Employee
					1980
		Annual Gro	wth Rates (percentage)	'000 US \$
3000	TOTAL	11.8	7.1	4.7	3.5
3119	Food	14.1	5.3	8.8	2.5
3130	Beverages	9.7	13.0	-3.3	7.1
3140	Tobacco	9.4	3.8	5.6	4.1
3210	Textiles	11.8	4.9	6.9	1.8
3220	Wearing apparel,				
	except footwear	12.6	17.8	-5.2	0.9
3230	Leather products	31.5	6.8	24.7	1.7
3240	Footwear, except				
	rubber or plastic	10.1	8.6	1.5	3.5
3310	Wood products except				
	furniture	17.6	55.8	-38.2	4.1
3320	Furniture, except				
	metal	18.7	12.9	5.8	1.0
3410	Paper and products	16.1	10.3	5.8	4.3
3420	Printing and				
	publishing	24.3	5.0	19.3	2.6
3510	Industrial chemicals	18.9	10.8	8.1	10.5
3520	Other chemicals	3.2	7.3	-4.1	5.9
3530	Petroleum refineries	8.0	• • •	~ • •	•••
3540	Misc. petroleum and				
	coal products			•••	• • •
3550	Rubber products	22.8	20.6	2.2	4.4
3560	Plastic products	33.2	12.4	20.8	1.4
3610	Pottery, china.				
3010	earthenware	10.1	27.5	-17.4	1.2
3620	Glass and products	17.4	10.9	6.5	4.0
3690	Other non-metallic	27.44			
3070	mineral products	28.7	13.4	15.3	6.5
3710	Iron and steel	50.2			12.2
3720	Non-ferrous metals	,,,,		•••	
3810	Fabricated metal prod	1. 20.2	11.5	8.7	2.9
3820	Machinery, non-elec.	27.6	10.5	17.1	4.5
3830	Machinery electric	30.8	27.1	3.7	4.8
3840	Transport equipment	5.6	16.6	-11.0	7.3
3850	Prof. Sci. equipment	12.0			2.2
3900	Other	12.0	-0.8	12.8	2.3
3900	Other	12.0	-0.8	12.8	2.3

 Table II.7:
 Average annual growth rates of value added, employment

 and labour productivity, 1970-80.

Source: UNIDO Data Base, information supplied by the United Nations statistical office, with estimates by the UNIDO Secretariat. (Annex Tables 11, 12, 13 and 14).

no data are available for some of the most capital intensive industries developed in the latter 1970s, especially petroleum refining and other petrochemicals, iron and steel and non-ferrous metals.

- -

 The last column in Table II.8 shows the level of labour productivity by industry branch, as measured by value added per employee, in 1980. Compared with the average of US\$ 3,500 for the large and medium-scale manufacturing sector as a whole, very high figures are shown, as would be expected, for iron and steel, industrial chemicals, transport equipment, cement and other chemicals, but also for beverages and (at a lower level) paper, glass and electrical machinery. The lowest levels of labour productivity are in garments, pottery and furniture industries.

2.5 Geographical Distribution of Manufacturing

The most comprehensive data on the geographical distribution of large and medium-scale manufacturing at present available are those from the 1974/75 Census of Industry. They are deficient in that they do not include some of the most important industrial activities on the outer islands, those associated with the petroleum and natural gas sector, and because the past eight years have witnessed very large-scale development in these and other natural resource based industries (minera' smelting and plywood) in the outer islands. Both these deficiencies should be remedied when the results of the 1980/81 Census of industry become available. With this reservation, it is of some interest to examine the pattern that existed in 1974/75 (Annex Ta'les 16, 17 and 18).

Java accounted for 85 per cent of all medium and large-scale enterprises, for 86 per cent of persons engaged and for 83 per cent of value added (Annex Table 15). Another 12 per cent of value added was produced on Sumatra, leaving only 5 per cent for all the rest of the country. It is evident that in 1974/75 modern manufacturing remained (and to only slightly less degree remains) heavily concentrated on Java.

Even after making allowance for the distribution of population, Java is clearly much more industrialised than the other regions, primarily owing to better transport and other infrastructure, government and services. But the interaction is cumulative, in that the concentration of industry in turn promotes concentration of infrastructure investment and service industries. In Java, around 7 per thousand of the population were engaged in manufacturing in 1974/75, while in the outer islands the average was less than 2 per thousand. All efforts to decentralise industrial activity notwithstanding, rapid industrial growth during the 1970s has not lessened this imbalance.

- 23 -

The preponderance of Indonesia's natural resources outside Java, however, establishes a presumption in favour of the development of resource-based industries in the outer provinces, and a good deal of such development has undoubtedly occurred in the past decade. The Indonesian Government has, for this purpose, identified five regional industrial growth centres and has drawn up development plans for these regions, in Northern Sumatra, Southern Sumatra, South Sulawesi, East Kalimantan as well as Java-Bali.

Industrial estates and processing zones have also been set up in various regions to foster regional industrial growth. Apart from the industrial estate at Pulo Gadung (Jakarta), there are at present two others in Java, Rungkut Surabaya (East Java) and Cilacap (Central Java). Two further industrial estates are at an advanced stage of planning and implementation, in Medan (North Sumatra) and Ujung Pandang (South Sulawesi). Among others at a preparatory stage of study or development is one at Batam island, close to Singapore.

2.6 Ownership and Investment Pattern in Manufacturing

In 1974/75 almost one-half of the value added in the Indonesian manufacturing sector was produced by private domestic enterprises, but most of these were medium-size firms in the traditional branches of industry (Annex Table 18A). Their share in total value added has almost certainly declined markedly in the past eight years, while that of government enterprises and foreign-owned and foreign-government/joint ventures has increased.

Since the adoption of the domestic and foreign investment law in 1967, the manufacturing sector has attracted a good deal of foreign as well as domestic private investment. Table II.3 shows approved and realised foreign investment by industry during the periods 1967-75 and 1976-81. The share of manufacturing in approved foreign investment rose from 62.4 per cent in the earlier period to 75.6 per cent in the latter period, chiefly because of relative decline in large-scale planned investment projects in mining in the early years many of which did not reach full realisation. In regard to domestic investment the proportion channelled into manufacturing was 66 per cent for the 1967-81 period (Annex Table 19). The share of manufacturing in realised foreign investment expenditure was higher in the latter than in the former period but, somewhat surprisingly, the proportion of planned investment realised was below the average for all foreign investment. Among major

- 24 -

Table II.6 Approved and realised (implemented) foreign investment projects by sector, 1967-19814 (Williows of \$)

Sector	1967-7	5 1976	1977	1978	1979	1980	1981	Total Value P	rojec	_Imple- it men tatios rated/
		۸.	Approv	red for	eign in	vestme	nt (all :	sectors)		
Agriculture, forestry										
and fishery	303.9	34.8	57.7	64.8	108-9	114.6	231.7	916.4	151	
-Agriculture	77.1	9.2	26.3	3.1	25.9	43.3	25.9	210.8	57	
-Forestry	178.3	18.4	25.7	38.6	42.7	68.9	184.2	559.8	70	
-Fishery	45.)	1.2	2.7	23.1	40.3	Z.4	21.6	145.8	24	
Mining	1,046.6	10.9	200.5	43.0	150.0	3.0	1.8	1,455.8	16	
-Hetal	895.6	10.9	200.0	26.9	150.0		1.8	1,285.2	- 6	
-Others	151.0		0.5	16.1		3.0		170.6	10	
Menufacturing	3,015.2	346.8	<u>357.7</u>	215.4	1,530.6	712.3	873.5	7,111.5	474	
-Food -Textiles +	122.4	70.9	8.4	5.5	66.9	15.6	40.5	330.2	47	
leather	887.8	31.1	71.1	114.6	103.4	79.8	141.9	1,429.7	73	
products -Paper +	37.8	5.5		1.0	6.0	11.2	123.6	185.1	20	
paper prod. -Chemicals +	31.1	66.3	9.7	0.4	10.5	2.4	48.5	168.9	12	
rubber -Non-metallic	289.4	28.3	79.3	25.4	365.1	281.7	275.5	1,344.7	134	
minerals	357.4	71.4	98.3	19.7	78.7	22.1	20.1	867.7	32	
-Baric metals -Hetal	1,084.9	11.6	18.4	9.9	854.9		80.6	2,060.3	23	
products	198.8	61.5	72.5	92.0	45.1	98.8	142.8	711.5	126	
-Others	5.6	0.2		6.9		0.7		13.4	7	
Construction	<u>61.4</u>	<u>1.8</u>	<u>3.9</u>	<u>5.4</u>	<u>0.5</u>	<u>5.7</u>	48.8	<u>127.5</u>	<u>63</u>	
Trade +										
hotels	<u>154.7</u>	<u>13.1</u>	<u>7.0</u>	<u>9.7</u>	<u>3.0</u>	38.6	_	226.1	15	
-Trade	11.0	0.7						11.7	3	
-Notels	143.7	12.4	7.0	9.7	3.0	38.6		214.4	12	
Transportation										
+ communication	40.7	4.2			0.2	<u>32.5</u>	0.1	<u>11.1</u>	18	
-Transportation -Communication	40.7	4.Z			0.Z	32.5	0.1		18	
Services	209.8	<u>27.2</u>	<u>20.3</u>	<u>4.4</u>	<u>45.7</u>		23.4	<u>330.8</u>	<u>50</u>	
-Trøde serv.	195.1	27.2	20.3	2.4	45.7		23.4	314.1	39	
-Personal serv.	14./			2.0				16.7	11	
	4,832.3	438.8	647.1	402.7	1,838.9	906.7	1,179.3	10,245.8	787	
	3.	Realis	ed (im	lement	ed) for	eien i		t is manu	fact-	rine
Menufac- turiag										
Total	1,425.4	<u>301.2</u>	<u>186.2</u>	267.0	192.0	235.4	243.5	2,850.7	386	40.12

-food -textiles	125.6	10.8	11.9	14.9	7.1	7.4	15.8	193.5	40	58.6%
+ leather	625.2	91.8	27.9	31.4	41.7	78.7	102.5	999.1	60	69. 9 7
-wood +										
wood prod. -paper +	16.1	4.6	1.4	0.4	0.1	3.3	2.2	28.1	8	15.2%
paper prod. -chemicals	32.6	3.3	9.6	11.8	1.4	6.1	2.5	49.3	10	29.2%
+ rubber -Non-metallic	192.2	45.7	28.0	71.7	44.8	32.0	44.5	458.9	117	34.12
minerals	139.5	71.3	42.9	9.0	3.2	30.0	30.9	326.8	23	37.72
-lesic metal	81.1	30.7	27.8	37.8	47.5	23.9	7.9	256.7	19	12.51
-Metal prod.	221 0	42.4	35.4	89.9	36.0	52.0	35.3	512.0	102	72.01
-Others	10.2	0.6	1.3	0.1	10.2	2.0	1.9	26.3	7	196.3%

Sources: Bank Indonesia, Report for the Financial Year 1981/82 (approved investment). BKFM and Bea Cukai (Import) and Monthly Bulletin of Foreign Exchange Banks (cash in flows) (realised investments).

a/ After taking into account the cancellations and shifting of projects from foreign to domestic investment.
 b/ Revised figures.
 c/ Through September 1981.
 d/ Ratio of approved to realised investment.

3

.

branches of manufacturing, textiles has shown by far the largest total and one of the highest realisation rates over the period as a whole (70 per cent), while the low realisation rate for basic metals (12 per cent) shows that some ambitious early plaus did not reach fruition. Foreign investment showed the same tendency as public investment to concentrate on the capital intensive branches of the manufacturing sector in the latter period, with particularly large increases in chemical, mineral and metal processing and fabricating industries. The bulk of approved foreign investment in manufacturing originated in Japan and Hong Kong (Annex Table 20).

2.7 Exports and Imports of Manufactures

A striking feature of the Indonesian manufacturing sector is the small share of manufactures in total exports and the predominance of manufactures in total imports. The trade deficit in manufactures increased from US \$ 3.6 billion in 1975 to US \$ 6.4 billion in 1980. (Annex Table 21).

The significance of manufactures in Indonesia's exports varies with the definition adopted. A widely used broad definition which includes processed goods with only a small proportion of value added by manufacturing yields a figure of 13.4 per cent for the share of manufactures in total exports in 1980. But the share in total exports of items which would normally be regarded as manufactures, i.e. with a high degree of manufactured content, was only 2.3 per cent in the same year. Irrespective of the definition used, the share of manufactures increased only marginally during the 1970s. But it needs to be remembered that total exports increased greatly with the oil boom. In absolute terms there has been a quite impressive increase in manufactured exporte, although it chiefly occurred in two spurts, 1978-79 and 1982-83.

The first of these, mainly in textiles, garments and electronic goods, reflected partly increased capacity and favourable demand conditions in world markets, but was stimulated also by tight domestic markets, which induced manufacturers to look actively abroad, and by the November 1978 devaluation. This boomlet, however, petered out in 1980 when the second oil price increase boosted domestic demand and raised the real effective exchange rate, thus worsening the international compelitiveness of Indonesian manufactures. A second mini-boom got under way in 1982, chiefly concentrated on plywood and

- 26 -

electronic assembly products (Table II.9). How substantial and enduring a stimulus it received from the March 1983 devaluation remains to be seen.

The Indonesian Government has been conscious of the need to promote non-oil exports, especially since the decline in oil export earnings that began in 1981. A National Agency for Export Development (NAFED) has been active for some years. More recently state enterprises have been encouraged to look for export markets. A counterpurchase policy was adopted in 1981, designed to promote non-oil exports by linking contracts with suppliars of capital equipment for overseas-financed development projects with equivalent purchases of Indonesian exports. The two devaluations of the rupiah of 1978 and 1983 also partly served the same objective.

Table	II.9:	Exports of manufactures	<u>, 1977–82</u>
		(\$ million)	

	1977	1978	1979	1982
	(50%)	First	First	First
		half	half	half
abour Intensive Products				
Textile yarn	0.2	0.4	9.8	••
Cotton fabric	0.1	0.2	5.6	2.5
Woven fabric	0.1	0.1	55.6	14.5
Floor coverings	0.1	2.0	9.6	0.5
Electrical machinery	2.7	5.1	16.2	
Telecommunications app.	••	1.2	17.2	50.3
Other electrical app.	13.2	22.8	164.2	
Clothing	2.4	11.2	103.1	49.0
Leather	1.4	3.7	16.5	••
	20.2	46.7	397.8	116.8
Processed Timber				
Plywood and veneer	8.0	15.8	49.8	114.8
Wood manufactures	1.8	1.6	10.6	3.2
	9.8	17.4	50.4	118.0
Other manufactures				
Pharmaceutical	3.9	8.1	9.5	2.4
Essential oils	6.0	11.0	31.0	9.4
Pig iron	2.0	13.6	0.0	0.0
Iron rods	0.0	0.0	60.3	
Tubes and pipes	0.0	2.1	19.2	25.7
Iron and steel casings	0.0	0.0	10.1	
	11.9	34.8	130.1	37.5
Total (listed products)	41.9	98.8	588.3	372.3

Source: 1977-79: Garnaut (1979, p.34); sawn timber has been omitted from the total. 1982: Central Statistical Bureau, Ekspor Jan-Juni 1982. The limited role of manufactured exports epitomises the inward-looking character of the Indonesian manufacturing sector (Annex Table 22 and 23). It contrasts in this respect with many other Asian developing countries where exports of manufactures have performed an important function as a driving force in the industrialisation process. The performance of the four east Asian NICs is best known but, (as Annex Table 32 shows), several other Asian developing countries have also recorded much higher shares of manufactures in exports than Indonesia.

Despite the rapid industrial growth of the 1970s and the considerable progress in import substitution for particular categories of manufactures which was noted above, Indonesia's overall dependence on imports of manufactures has risen rather than fallen during the period. Whereas in 1971 imports of manufactures had been equivalent in value to 11.2 per cent of GDP, by 1980 the ratio had risen to 13.3 per cent, largely a reflection of the tendency of total imports and especially imports of capital goods to keep up with rising availability of foreign exchange. But, as Figure VI shows, by 1980 domestic production of manufactures had surpassed imports, a landmark of a kind. Somewhat surprisingly, the commodity composition of imports classified by end use showed some rise in the share of consumer goods at the expense of intermediate and capital goods, while domestic production underwent a more substantial change in the opposite direction with a tripling in the share of capital goods, from 5.7 per cent in 1971 to 17.6 per cent in 1980 ('nnex Table 24). It must again be noted, however, that the bulk of domestically produced capital goods were predominantly consumer durables.

As regards the geographical pattern of Indonesia's trade in manufactures, the main countries of origin of Indonesian imports were the developed market economies, particularly the EEC and Japan, which together provided 85 per cent of imports of manufactures (narrow definition) (Annex Table 25) in 1980. The main markets for Indonesia's exports of manufactures (narrow definition) were other developing countries (65.3 per cent), followed by EEC (15.0) and Japan (8.4 per cent) (Annex Table 26). But the share of developing country markets in this classification is inflated by the practice of classifying as exports to Singapore a substantial volume of trade (especially of electronic goods and plywood) for re-export to the USA and other developed country markets.

- 28 -

Figure VI: Imports and domestic production of manufactured goods by end use 1967-1980 (billion. Rp. current prices)

Source: Annex Table 24.

- 29 -

An examination of exports and imports according to stage of processing reveals some potential linkages between trade and industrialisation (Annex Table 27). On the export side, the high though declining share of raw materials for further processing (72.1 per cent in 1980) suggests a potential for further industrial development based on processing before export. In fact, while there was a slight increase in the relatively small volume of exports of processed goods for final use during the decade (from 4.7 to 7.5 per cent), the share of exports for further processing actually declined slightly (from 6.6 to 5.3 per cent). On the import side, similarly, the high share of processed goods for final use (69.3 per cent) might be taken as <u>prima</u> <u>facie</u> evidence of scope for further import substitution. But it need hardly be stressed that such import substitution will need to be selective, in accordance with Indonesia's capacity to process efficiently, if downstream local industries are not to be handicapped.

2.8 Small-Scale and Household Industries

This survey of the Indonesian manufacturing sector has so far dealt only with medium and large scale industry, in other words, with the modern sector. This is certainly the most important in terms of output. In 1979, it accounted for nearly four-fifths of value added in manufacturing. But there is also in Indonesia a large and diffuse traditional sector of small-scale and household or cottage industry which, while it accounts for little more than one-fifth cf value added, is overwhelmingly more important in terms of employment.

According to the official statistics summarised in Table II.10, small-scale and household-cottage industry accounted together for 87 per cent of manufacturing employment in 1974/75 and for 81 per cent in 1979, the last year for which such statistics are available. But these statistics, as the footnotes to the table point out, are for a variety of reasons to be taken as merely the roughest guide to relative magnitudes. In particular, the 1979 survey of household and cottage industries included only regular workers and therefore yielded a much smaller employment total than the 1974/75 Census. A large proportion of workers in household industry are family workers working part-time and intermittently and, by almost any criterion, are to be regarded as underemployed. Similarly, the apparent increase in the number of small-scale (and probably also household-cottage) enterprises between 1974/75

- 30 -

		<u> </u>	1974/5			····	1979				1981
		LM	S	HC	Total	LM	S	HC	Total	LM	LM
1.	Number of enterprises ('000)	7	48 :	1,235	1,290	8	113	1,418	1,539	8	8
2.	Persons engaged ('000)	662	343	3,900	4,895	870	827	2,795	4,492	977	1,012
3.	Value added (Rp. billion)	476	53	. 83	613	1,660	187	291	2,139	2,149	2,722
4.	Gross output (Rp. billion)	1,294	158	201	1,653		•			6,904	8,299

Table 11-10. Manufacturing Sector, by Size of Enterprise, 1974/5, 1979

Source: BPS, Census of Manufacturing Industries 1974/5 BPS, Small-Scale Industries 1979

a. Several weaknesses in the data should be noted. Firstly, large and medium firm data are for 1974. Data for small firms are for 1975. Data for cottage firms are for August 1974 to July 1975. The data for value added, however, has been deflated to 1974 prices by deflating data for small firms by 20 per cent and for cottage firms by 10 per cent. Secondly, BPS officials suspect that coverage of the small and cottage firms, especially, may have been rather poor and that the estimates (particularly the value added estimates) for these two groups may be substantially understated. Thirdly, while all large, medium and small manufacturing establishments throughout Indonesia were intended to be included in the Industrial Census, cottage firms in rural areas in the following provinces were not covered: Nusa Tenggara Timur, Kalimantan, Timur, Kalimantan Tengah, Sulawesi Tengah, Sulawesi Tenggara, Maluku, Irian Jaya, and the island areas of Riau. It was felt 'that this would not seriously affect the results at the national level' (McCawley, op cit., p. 15.)

1

- b. The increase in the number of enterprises, employment and value added for SE's between 1974/75 and 1980 reflects an improvement in coverage of this type of enterprises rather than a genuine expansion.
- c. The 1979 survey of household and cottage industries was based on a household survey and was carried out in the general framework of the national social economic survey programme. 1° is uncertain to what extent its results can be compared with the household and cottage industry data generated by the 1975 industry census. For example, in terms of workers this survey definition was limited, including only regular workers. It therefore, probably excluded many of the part-time workers which were included in the 1975 census.

and 1979 reflects little more than improvement in statistical coverage. The sober truth is that very little is known about the small-scale and household cottage sector that lends itself to statistical analysis.

This is not to say, however, that the small-scale and household-cottage sector can be neglected in industrial policy. As one authority has put it, "the evtreme heterogeneity of the Indonesian manufacturing sector - average value added per worker in the large and medium firms is almost forty times higher than in the cottage firms - poses a dilemma for Indonesian planners. Employment and anti-poverty objectives suggest that considerable resources should be devoted to helping the 'submerged' cottage sector about which sc little it known, while growth objectives are more likely to be served by concentrating on assisting large firms."¹/

Even in relation to production of capital goods, the small-scale and household-cottage sector is not entirely negligible. As Table II.11 shows, almost one-half of each sub-sector, small-scale and household-cottage, is concerned with food processing (especially rice milling, but also in rubber, coconut oil and other estate and small holder products). A considerable proportion of the rest consists of handicrafts (batik, wood and stone carving, etc.) and, in the case of small-scale enterprise, of production of tiles, bricks, charcoal, etc. But there is a significant volume of small-scale production of metal products, such as hand tools and small agricultural machines, as well as vehicle components and repair, which needs L be borne in mind in any policy consideration of the capital goods sector.

- 32 -

^{1/} P. McCawley, <u>Industrialization in Indonesia</u>. Occasional Paper No. 13, Development Struces Centre, Australian National University, Canberra, 1979, pp. 15 f.

Sector		Small- scale	Household/ cottage
311/312	Food	42.0	43.7
313	Beverages	0.9	0.2
314	Tobacco	1.2	1.3
321	Textiles	9.1	5.9
322	Clothing	2.4	1.7
323	Leather	1.1	0.4
324	Footwear	1.3	0.7
331	Wood products	9.5	21.1
332	Furniture	6.1	0.2
341	Paper	0.1	0.2
342	Printing	2.4	0.3
351/352	Chemicals	2.8	0.5
355	Rubber products	0.5	0.4
356	Plastics	1.4	0.5
361	Pottery	0.2	0.1
363	Cement and prod.	3.3	1.3
364	Struct. clay products	5.0	8.8
369	Other building materials	0.4	0.4
381	Metal products	4.5	3.1
382/383	Machinery	0.7	1.0
384	Transport equipment	2.2	0.5
385/390	Other manufacturing	1.1	2.0
Total		100.0	100.0

Table II.ll:Percentrge distribution of value added in small-scale (1979) and
household and cottage establishments (1974)

Sources: BPS, Small-scale Industrial Industries, 1979. BPS, Census of Manufacturing Industries, 1974/75.

Chapter III. The Industry Sector: Prospects

3.1 Introduction

The purpose of this chapter is to examine prospects and strategies for industrial growth in Indonesia during the decade of the 1980s. One of the conditioning factors for the prospects is Indonesia's volatile external economic environment. One of the major considerations that must influence industrial strategy is Indonesia's pressing employment problem.

Demand for the products of Indonesia's manufacturing sector is determined by three factors. One is the size and composition of total domestic demand for manufactures; the second is the relative share of imports in the domestic demand for manufactures; the third is the size and composition of manufactured exports. The second and third of these will depend on the development of the comparative advantage enjoyed by Indonesian manufacturing industries relative to their foreign competitors.

The next five sections deal in turn with the growth prospects for the manufacturing sector as a whole, with prospective changes in comparative advantage, with prospective changes in the composition of domestic demand for manufactures, with priorities in industrial strategy and with sectoral growth projections.

3.2 Growth prospects for the manufacturing sector $\frac{1}{2}$

During the 1970s, manufacturing employment and value added grew at an annual rate of 5.3 and 14.9 per cent, as compared with 3.0 and 8.1 per cent for the economy as a whole (Annex Tables 28 and 29). $\frac{2}{}$ These figures imply an employment elasticity with respect to output growth of 0.36 for manufacturing and 0.37 for the whole economy.

^{1/} In this Chapter manufacturing includes, in addition to the modern sector, also small-scale and household cottage industries. Data are therefore not entirely comparable with Chapter II which is confined to large and medium enterprises.

^{2/} Although these growth rates and shares were calculated in cerms of 1973 constant prices and, in the rest of the report, 1975 constant prices were used, it is a simple matter to adjust the former to the latter. Our use of 1973 constant prices here was dictated by the adoption of BPS data and the definition used therein.

The increase in Indonesia's labour force was, by and large, fully absorbed during the 1970s. Although the additional employment opportunities were, in part, of relatively low quality, this represented a major achievement. The greatest challenge to the economy in the coming decade is to find productive employment opportunities to match the growth of the labour force, as well as raising as far as possible the quality of employment for those at present underemployed. Assuming an unchanged participation rate, the annual rate of growth of the labour force is expected to be 2.6 per cent.

The fourth Five Year Plan assumes an annual rate of growth of GDP of 5 per cent. Clearly, such a growth rate through the 1980s would be inadequate to absorb the new entrants to the labour force unless the employment elasticity can be substantially increased (With an unchanged employment elasticity of 0.37, a 5 per cent rate of growth of GDP would yield an increase in employment at an annual rate of only 1.9 per cent. Or, to put it another way, to achieve a growth rate of employment of 2.6 per cent, with an employment elasticity of 0.37, would require a growth rate or GDP of 7 per cent). A growth rate of GDP of 6 per cent could meet the employment challenge if employment elasticity were to rise to 0.43. Some such rise is possible if, as seems likely, the average labour-intensity of production increases with a decline in the relative importance of the oil sector. In addition, more emphasis on the export of labour-intensive manufactures would raise average labour-intensity of production.

What are the implications of these figures for manufacturing development? Experience of other developing countries at Indonesia's present stage of development suggests an elasticity of manufacturing output growth with respect to GDP growth of 1.5, and there are reasons to believe that some such relationship will hold for Indonesia in the 1980s. In other words, for GDP to grow at 5 per cent, manufacturing output must grow at 7.5 per cent.

The question presents itself whether domestic demand for manufacturing can be expected to provide a market to absorb output of manufactures growing at this rate. Between 1975 and 1980, GDP grew at an annual rate of 7.5 per cent and domestic demand for manufactures at 10 per cent giving an income elasticity of around 1.3. If this value holds during the 1980s, a growth rate of GDP of 5 per cent, would yield a rate of growth of the domestic market for manufactures of only 6.5 per cent, not enough to absorb the hypothesised output growing at 7.5 per cent. To ensure an adequate growth of demand, the gap must be filled by either further import substitution or preferably by a sufficiently rapid growth of exports of manufactures.

At first sight, it does not matter which of these two ways supplementing growth of domestic demand is chosen. But employment considerations may argue in favour of exports. If, as seems likely, the manufacturing sector has an employment elasticity (labour intensity) below the average for the economy as a whole, faster growth of manufacturing output than of GDP as a whole will tend to reduce average employment elasticity and thus aggravate the employment problem. Yet, as has just been pointed out, manufacturing will almost certainly have to grow considerably faster than GDP as a whole if the target rate of growth of GDP (and employment) is to be attained. One way of resolving this dilemma, or at least alleviating it, would be a strong emphasis on relatively labour intensive manufacturing which, as will be shown below (section 4.3), is most likely to be feasible by means of an export oriented strategy.

For the purpose of projecting prospects and indicating policy options during the 1980s for the manufacturing sector in general and the capital goods industries in particular, an intermediate assumption of a growth rate of GDP of 6 per cent has been made in this study. Given the same elasticity of manufacturing output growth (1.5 per cent), this would imply an annual growth rate of manufacturing output of 9 per cent. To absorb this output, given an income elasticity of demand for manufactures of only 1.3, even more emphasis on import substitution and/or export promotion will be needed. On the other hand, the more ambitious GDP growth rate target would, with an unchanged employment elasticity of 0.37, get closer (2.2 per cent) to the projected growth rate of the labour force of 2.6 per cent.

3.3 Prospects for development of comparative advantage

To make reliable projections of any country's future comparative advantage at a highly disaggregated level is hardly possible. But it may be helpful in assessing likely trends in the pattern of Indonesia's future comparative advantage in manufacturing to draw on the experience of other developing countries with repect to their manufacturing export performance.

- 36 -

The first generation, after Japan, of the newly industrialising countries of east Asian (NICs) which achieved spectacular growth of export of labour-intensive manufactures in the 1960s and early 1970s have since the mid-1970s embarked on the transition from labour to capital and skill intensive products. Their success in this strategy will be relevant to Indonesia and other countries of the region because it will influence the extent to which markets for labour-intensive exports will be vacated. The second generation of NICs includes three of Indonesia's ASEAN partner countries: Malaysia, Philippines and Thailand. All three began intensive efforts to promote manufactured exports in the early 1970s. Malaysia has, with its relatively open economy, gone furthest in promoting exports. In doing so it has relied heavily on export-processing zones and foreign investment. The Philippines and Thailand have followed in Malaysia's footsteps with some years lag.

Annex Table 30 presents data on exports of manufactures for these countries in 1967 and 1975. It shows that in Malaysia almost one-half of the growth in non-resource based manufactured exports was accounted for by various types of light machinery and precision instruments. The share of textiles and clothing amounted to only 3 per cent. Most of the high-growth categories were produced by foreign companies under international sub-contracting arrangements. In the Fhilippines and Thailand the composition of exports of manufactures remains more traditional. In Thailand much of the growth in exports of manufactures was accounted for by textiles and clothing, as well as precious stores and printed matter. In the Philippines clothing and handicrafts were the most important non-resource-based categories.

Indonesia's opportunities of developing exports of labour-intensive non-resource based manufactures will depend significantly on the competition she will encounter from other Asian developing countries. Competition from the first generation of Asian NICs will diminish as they continue to shift into capital and skill intensive lines. The Republic of Korea alone, which has been exporting in 1975 ten times as much textiles in value as Malaysia, Thailand and the Philippines combined would, by vacating such labour intensive lines, create considerable export opportunities for countries such as Indonesia. Indonesia, however, will need to contend with a new generation of industrialising Asian countries likely to look for export markets for similar

- 37 -

labour-intensive products. Among them, the most formidable may be the People's Republic of China, 's well as India and other countries of south Asia.

Four other sets of data may help throw further light on the characteristics of manufacturing industries in which Indonesia is most likely to have a comparative advantage.

The first is taken from a UNIDO study¹ which 1975 export values at 3-digit (and some 4-digit) SITC categories for a group of 74 developing countries, and three samples of developed, NIC's and developing countries have been divided into resource-based ard non-resource based industries, ranked by value of exports (Annex Table 31). The table shows, as might be expected, that the share of resource-based exports declines with stage of economic development, from 60.3 per cent for other developing countries to 36.5 per cent for NICs and 30.4 per cent for developed countries. The comparative advantage due to high levels of total factor (capital plus labour) productivity which the more highly industrialised countries obtain from their endowment with human capital (skills, management, technology), less developed countries are most likely to derive from endowment with natural resources. Indonesia is still clearly in the latter fategory.

The second set of data, in Annex Table 32, compares levels of wages and labour productivity in selected industries in Malaysia, the Philippines and Indonesia in 1974. It shows that wage levels in Indonesia were very much lower than in Malaysia and only two-fifths even of those in the Philippines. But the potential comparative advantage which Indonesian manufactures enjoyed on account of low wages was largely offset (and in some industry groups outweighed) by low levels of labour productivity. In three of the six industry groups (wood, furniture, leather) the ratio of value added to wage was lower in Indonesia than in either of the other two countries, and in the other three (and total industry) lower than in one or the other. Since 1974, the wage differential between Indonesia and the Philippines has probably narrowed (wages rising in Indonesia, but not in the Philippines), but whether there has been a compensating relative gain in labour productivity i... Indonesia cannot be demonstrated from available data.

1/ UNIDO, World Industry in 1980, New York 1981.

_ 38 _

A possible explanation for the higher levels of labour productivity in Malaysia and the Philippines than in Indonesia is greater average capital intensity of industry. More likely the main explanation is to be found in other factors, such as relatively lower average levels of skill, management and organisation of production, for which the regulatory environment may be partly responsible. The conclusion to which this evidence points is that Indonesia cannot be assumed to have an automatic and across-the-board comparative advantage in labour-intensive industries. Her potential advantage due to low wage levels will only be realised in industries and plants which can show internationally comparable levels of labour productivity.

The third set of data is presented in Annex Table 33 which shows imports by the USA and other developed countries of selected labour-intensive goods and the share of LDCs in these imports. The table shows commodities for which developing countries' shares in the developed countries' imports recorded the largest increases over the period 1965-75. The commodities are ranked according to size of increase. Miscellaneous manufactures (SITC 8) are quite well represented in the list of most successful products. Among them are umbrellas (SITC 89940), leather clothing (84130) and carved manufactures (89910). Annex Table 34, by contrast, represents labour-intensive products which have performed poorly. Manufactured goods (SITC 6) and machinery and transport equipment (SITC 7) show a disproportionately high representation in this list. Some examples are precious stones (66700), textile bags (65610), mechanical goods nec (71980) and agricultural m chinery (7120).

Finally, Annex Table 34 presents UNIDO data on product characteristics of 134 manufacturing industries and the development of revealed comparative advantage (RCA) in export for three country samples during the period 1966/7 -1975/6. The data are classified according to the following typology.

The first product characteristic, RES, refers to the distinction between resource-based (R) and non-resource-based (blank) industries. The performance of resource-based industries, being dependent on natural endowment, cannot be regarded as related to the development process. UNIDO therefore classified with respect to RCA only <u>non</u>-resource-based industries. Three product characteristics are identified as likely determinants of comparative advantage. One is skilled-labour requirement (SK). The second is product development (PD). The third is factor intensity (L or K).

_ 39 _

The classification rests on the hypothesis that comparative advantage in exports of manufactures depends, apart from differences in factor proportions, chiefly on skill requirements and on the degree to which the production process is standardised. An industry with relatively high skilled labour requirements will tend to manufacture "new products". Industries producing "new products" will tend to have relatively high skill labour requirement as compared with industries producing "mature producus". It seems reasonable to assume that less developed countries will have a comparative advantage in production of the latter. Again, industries may differ in the degree to which producers are able to alter their product characteristics quickly in response to a change in demand cr to achieve significant product differentiation. It is likely that developed countries have a comparative advantage in industries with a high degree of product development in this sense.

The three type code columns in Annex Table 34 classify non-resource-based industries according to high (H) or low (L) skill requirements (SK), product development (PD) and capital (K) or labour (L) intensity. In the last three columns data on RCA are presented for the three distinct samples of countries (as in the first set of data above). As indicator of RCA, the export performance ratic (EP) is used. This does not consider import flows which are often substantially affected by the importing country's specified trade policies. (The EP ratio is defined as the relative share of exports of commodity x in a country's total exports of manufacturing as compared with the share of world exports of that commodity to total world exports of manufactures.) Values above unity therefore reflect the fact that the industry's share in the given country's marifactured exports is above the world average. The higher the EP index value, the stronger is the revealed comparative advantage of the country in that industry.

Non-NIC developing countries, such as Indonesia, are liable to have a comparative advantage in primary-product exports rather than in manufacturing,

within manufacturing in resource-based rather than non-resource based products. But within the non-resource-based range of manufactures, their comparative advantage is most likely to be in industries characterised by a low skilled-labour requirement (SK = L), a low rate of product development (PD = L) and high labour intensity (FI = L). The development of RCA over time of such countries may be expected to move generally towards that of NICs and developed countries. The most developed countries are typically characterised

- 40 -

by SK = H, PD = H and FI = K. But these are only general tendencies to which there are many exceptions.

The best indication of non-resource-based industries in which Indonesia can expect to acquire RCA is provided by the last column in the table. Industries in which, over the period 1965-76, the sample of non-NIC developing countries has shown a clear and at least not a substantially deteriorating comparative advantage, are likely candidates in this respect. In the medium term, Indonesia may also acquire RCA in industries in which the sample of NICs has shown a clear RCA during the period 1965-76.

3.4 Future Composition of Domestic Demand for Manufactures

As far as domestic demand is concerned, private consumption constitutes an important component. Demand from this source is primarily influenced by population growth and by changes in income. The latter factor can have significant influence on the pattern of consumption. Income related changes in consumption can be broadly represented by income or consumption elasticities.

Estimates of consumption elasticities of selected goods for Indonesia are presented in Annex Table 35. As is to be expected, it shows that elasticities for simple food items are generally low. However, for a number of processed foods elasticities can be fairly high. Elasticities for non-food consumer goods are usually higher than 1 and are highest for luxury and durable consumer goods.

Possibly a more general picture of future structural changes in the manufacturing sector can be derived from experiences in other similar countries. A UNIDO report $\frac{1}{}$ presents growth elasticities (with respect to per capita GDP) and size elasticities (with respect to population) of value added per capita for 3-digit ISIC industries, which were obtained 'rom cross section data for large countries, including developing and developed countries. These elasticities have been listed in Annex Table 36.

- 41 -

^{1/} UNIDO World Industry Since 1960; Progress and Prospects, United Nations, New York, 1979.

An examination of the size elasticities of Annex Table 37 reveals that increases in the market size have little effect on production in most cases. In many cases these elasticities are negative, indicating that increases in output are less than proportional to increases in market size, so that per capita output declines. Branches for which market size is important include industries for which large production runs and economies of scale are crucial, for example, machinery, professional equipment, iron and steel and chemicals. In these industries, other factors being equal, Indonesia has a certain advantage as compared to smaller countries at similar stages of development because of the size of its domestic market.

The range of growth elasticities indicates that slow growing industries are likely to include food processing, beverages and tobacco, textiles, leather, footwear, wood processing and pottery. The highest growth elasticities occur in the more capital intensive industries producing intermediate products and capital goods.

3.5 Priorities in Industrial Strategy

Official Targets. Since 1969, the Government of Indonesia has included in its Five Year plans objectives of industrial development. These objectives have undergone substantial shifts in emphasis. In Repelita I priority was assigned to industries ancillary to food production and agriculture generally, such as fertiliser, as well as rehabilitation and development of the older import-substitution industries, such as textiles. In Repelita II priorities shifted, with a greater emphasis on social objectives, especially employment creation and protection of pribumi enterpreneurs. Repelita III, with the financial resources provided by the oil boom at hand, widened objectives to include broad-based industrial development on the basis of domestic oil, mineral, timber and other natural resources and the promotion of labourintensive manufactured exports.

In Repelita IV manufacturing is expected to take the place of the oil sector as the main engine of growth. Oil and agriculture will of course remain important, but manufacturing is expected to contribute an increasing proportion of value added, net foreign exchange earnings and employment.

_ 42 _

During Repelita IV the overall economy (GDP) and manufacturing are expected to grow at 5 and 9.5 per cent annually respectively. Growth of domestic demand for industrial products is estimated at 8.5 per cent. To achieve the planned expansion of the manufacturing sector of 9.5 per cent annually, an acceleration of growth of manufacturing exports is required. In this regard the Plan envisages a real growth rate manufactured exports of 13-14 per cent annually. In terms of employment the Plan estimates that the manufacturing sector will provide new employment opportunities for 1.2 million persons. Repelita IV attaches high priority to the development of the basic chemical industry as well as metal and machinery industries, which both are expected to grow at around 17 per cent per year. Miscellaneous industry consisting mainly of basic commodities is planned to expand at 6.5 per cent while small-scale industry is slated at 3 per cent.

Industrial development, under Repelita IV, will aim at creating a balanced and strong economic structure. The Plan envisages that industrialization will involve a significant structural change in the Indonesian economy, expansion of employment opportunities, reduction of import dependency, acceleration of manufactured exports, development of industrial growth centres in the regions, and maximum utilization of natural resources, energy and manpower. Emphasis will be given to strengthen the industrial structure through acceleration of interlinkages among various branches of industry, between industry and other sectors in particular agriculture as well as between small, medium and large industry. Emphasis will also be placed on development of small industry and other labour-intensive industries.

As regards the composition of manufacturing output, promotion of export industri2s is to receive high priority in order to help fill the gap left by declining oil earnings. Current plans, however, also include further import substitution, especially in the processing of raw materials into intermediate products needed by downstream manufacturers. The development of such industries should also help correct the regional imbalance of manufacturing industries, since most of the raw materials will come from the outer islands.

<u>The Role of Small-Scale Enterprise</u>. As was pointed out in chapter 2.8 above, small-scale and household/cottage industry still accounts for a significant part of value added and the overwhelming majority of jobs in Indonesian manufacturing (Tables II.12 and II.13).

- 43 -

Most small-scale industries are rural based. Often they occur in clusters, where a group of similar types of enterprise are located in one or a few neighboring villages. They are also spread throughout the country, though they are more prevalent in some provinces, e.g. Aceh, Central Java, Jogyakarta, Central Kalimantan, North and South-Sulawesi.

In general, the economic performance of small-scale enterprises is poor. Productivity and incomes are low, and employment in such activities often has a seasonal or part-time character. Therefore, many of the workers can be classified as underemployed. These types of enterprise face a large variety of difficulties including limited access to credit, problems in marketing, poor quality of products, inefficient production techniques, primitive equipment and lack of managerial and vocational skills.

In view of the important role of small-scale enterprises in Indonesia in creating employment, their prevalence in rural areas and their regional dispersion, strategies of industrial development should include the promotion of such establishments. While in the past programmes have been implemented for small industries, the general industrial climate favoured large-scale industrial development. In such an environment these programmes had little chance of success.

Small-scale industries in a number of sectors can have considerable growth potential. They include products for which technology is still labourintensive such as clothing and footwear. Also industries which rely on closeness to markets can be organised on a small-scale basis sucn as a number of food processing industries (bakeries, <u>tahu</u>, <u>tempe</u>). Moreover, small-scale industries which are dependent on specific skills or crafts, such as batik and simple metal working and engineering industries, have potential.

<u>Alternative Strategies</u>. In the remainder of this chapter the options open to Indonesian policy makers concerned with industrial development are examined in the analytical framework of two alternative broad strategies, which will be called Strategy A and Strategy B.

Strategy A aims to reduce Indonesia's dependence on world markets and imports. The strategy emphasises the development of manufacturing industries producing for the domestic market for consumer goods, capital goods and

- 44 -

intermediate products. In so far as it relies heavily on import-substitution, it may be called an inward-looking strategy. Alternatively, it could be called a strategy of self-reliance.

Strategy B focuses on the development of industries in which Indonesia can be expected to have a comparative advantage in international trade. It tends to emphasise labour-intensive industries, export promotion and small-scale enterprise. It can be called an outward-looking or labour-intensive strategy.

Both strategies have in common a high priority for natural-resource based industries, since both acknowledge that Indonesia's natural resources provide the firmest basis for relatively competitive industrialisation at her present stage of development.

3.6 Projections of Sectoral Growth in Indonesian Manufacturing 1980-1990

Projections of production for industry branches (at the 3-digit level) for the 1980s are presented in Table III.1. The projections have been based on assumed values for growth elasticities relating the growth of each sector to the growth of the manufacturing sector as a whole. The assumed growth elasticities under each of the two strategies are based on the following considerations in relation to the metal-manufacturing branches, leaving all other manufacturing the residual share. Broadly speaking, strategy A reflects the historical development path of Indonesian menufacturing. The growth elasticities for this strategy have, therefore, been based in part on a continuation of the historical pattern, although the experience of another large country with this strategy, Brazil in the 1960s, has also been taken into account. In the specification of growth elasticities for Strategy B, the experience of export-oriented industrialising countries, such as The Republic of Korea (in the late 1960s and early 1970s) and Malaysia has been taken into account.

The effects of the two alternative strategies on value added, and the shares in total manufacturing value added, of the several metal using branches are summarised in Table III.1. It shows that under the labour-intensive strategy (B) the share of these branches in total manufacturing would remain virtually unchanged while under the import-substitution strategy (A) it would increase from 32 to 37 per cent by 1990. But the postition is different for

- 45 -

the non-electrical machinery branch (382) which would increase its share in total manufacturing under both strategies.

Table II1.1: Projections of manufacturing output at 1980 prices with specialreference to metal sectors, 1980-1990

	Realisation		ation		1990 Strategy (b)						
				Inward	looking	strategy		Outward looking strategy			
1510	Sector	Value Kp10 ⁹	Share (%)	Elas- A ticity	Value Rp10 ⁹	Value Rp10 ⁹	Share (%)	Elas- ticit	∆Value y Rp10 ⁹	Velue Rp10 ⁹	Share (%)
371	Iron, steel	700	4.3	1.5	1.436	2,136	5.6	0.8	766	1.466	3.8
372	Non-ferrou	IS			-,	-,			,	_,	
	basic meta	1 457	2.8	2.0	1,250	1,707	4.4	1.5	937	1,394	3.6
381	Metal										
	products	515	3.2	1.2	845	1,360	3.5	1.3	915	1,430	3.7
382	non-elec.	417	2.6	1.8	1,026	1,443	3.7	1.2	648	1,065	2.8
202	machinery	300	1.8	1.5	615	915	2.4	2.0	820	1,120	2.9
384	Transport equipment	2,141	13.2	1.0	2,928	5,069	13.2	0.8	2,342	4,483	11.7
3849	Repair of veh.	717	4.4	1.0	980	1,695	4.4	1.0	980	1,697	4.4
OM	Other manufac.	10,982	67.7	0.9	13,111	24,093	62.7	1.0	14,783	25,765	67.1
TOTA	L	16,229	100.0	1.0	22,191	38,420	100.0	1.0	22,191	38,420	100.0

Sources: Data from Ministry of Industry and calculations by the Netherland Economic Institute.

<u>Iron and Steel</u>. With the completion of part of the Krakatau Steel complex, steel production has become an important industrial sector. The plant, however, is still characterised by low levels of capacity utilisation and large financial losses. Under Strategy A major extensions of the steel industry would be undertaken to reduce dependence on imports. Under Strategy B, expansion of the industry would be limited to expansion of some complementary fabricating facilities. Priority would be given to raising the efficiency of forging activities in existing small-scale furnaces.

<u>Non-ferrous Metals.</u> This sector at present comprises processing of tin, copper, silver and gold. Important additions will be the Asahan aluminium smelter, and possibly later nickel smelters and an aluminium plant, all

_ 46 _

largely oriented towards export markets. Strategy A would continue development of this sector involving large capital intensive projects. Strategy B would also include such development on the ground that it involves resource-based exports, but would give it lower priority because of its high capital-intensity.

Engineering Industries. This sector comprises a large variety of activities including the metal-working, electrical machinery, non-electrical machinery and transport equipment and repair branches. In Indonesia, production (chiefly assembly) of consumer durables grew rapidly in the early 1970s and has since then slowed down. Production of capital (producer) goods has risen rapidly in more recent years but has been confined to a narrow range of products, chiefly hand tractors and other agricultural equipment. Strategy A would continue expansion of output of transport equipment (motor vehicles, aircrafts, ships, railway rolling stock) with increasing emphasis on local components. Strategy B would focus on products in which Indonesia is likely to have a comparative advantage. These include electronics and other labour-intensive production of consumer durables, increasingly for export, and production of simple producer goods, largely for processing of primary products, such as estate crops and timber, for the domestic market and for export.

<u>Other Manufacturing</u>. The main sectors in this broad category are the traditional food-processing, textiles and other non-durable consumer goods industries and a range of relatively capital-intensive industries producing non-metal intermediates, such as fertiliser and other chemicals, paper, glass, cement and other building materials and petrochemicals (including refinery products and plastics). Strategy A would continue to expand investment in the latter industries, with the stress on import substitution. Strategy B would emphasise labour-intensive exportable products, such as textiles and garments, some food and tobacco industries (tinked fruit, clove cigarettes), plywood, furniture, leather and rubber products.

- 47 -

Chapter IV. Economic Implications of alternative strategies

4.1 Inter-industry linkages

The economic effects of the establishment of new industries are not always fully apparent from value added, employment and import requirements of the industries themselves, without paying regard also to indirect effects through backward and forward linkages which are revealed by input-output analysis.

Annex Table 37 indicates the forward linkages of the Indonesian manufacturing sector according to recent input-output data^{1/}. It shows that around 37 per cent of domestic production of manufactures was destined for intermediate use and of this 60 per cent for sectors other than manufacturing. High forward linkages of individual manufacturing industries include basic agricultural processing industries, wood, textile and building material industries which produce goods used by a few sectors only, as well as chemical and engineering industries which find customers among a wider range of industries.

Backward linkages represent the share of intermediate inputs into a sector provided by domestic suppliers. Estimates of backward linkages can therefore indicate indirect output and employment effects resulting from purchases of inputs by a sector, in addition to the primary direct effects of an increase in output by that sector. Table IV.1 presents estimates of total production effects expressed as a multiple of the direct effects of an increase in domestic production in a sector. It shows that the total effects are between 1.1 and 2.5 times as high as the direct effects.

Forward and backward linkages need to be taken into account in assessing the full ecnomic effects of the establishment or expansion of an inductry, but they need to be interpreted with care. An industry with large forward linkages is assured of a domestic market. If its output (or increase in output) replaces imports, additional income and employment are generated,

^{1/} See Ministry of Industry/NEI: "Structural Analysis of the Indonesian Manufacturing Sector", Rotterdam, February, 1983, which includes a detailed examination of such linkages on the basis of the 1980 input-output table.

Table IV.1: <u>Domestic production effect</u> (multiple of the direct effects of an increase in domestic production in a sector)

32	Noodles/Macaroni	2.5394	
29	Grain Mill Products	2.4103	
26	Coconut Cook. oil	2.3656	
37	Other Food Products	2.2186	
31	Bakery Products	2.2097	
22	Meat Processing	2.2065	
48	Tann./Leather Products	2.2065	
65	Other Petrol. Products	2.1347	
57	Furniture and Fixtures	2.1116	
34	Coffee Grinding	2.0340	
28	Rice Milling	2.0256	
9	Rubber	2.0154	
89	Mus. Inst. Sports	1.9938	
86	Repair of vehicles	1.9764	
27	Other Veget/an. Oil	1.9729	
16	Slaughtering	1.9678	
82	Ship Build./Repair	1.9674	
63	Petroleum Refin./Eng.	1.9513	
90	Manufacturing NEC.	1.9227	
51	Wood and Cork	1.9114	
25	Fish Processing	1.8938	
8	Cassava Products	1.8872	
7	Handpounded Rice	1.8766	
60	Soaps and Cosmetics	1.8664	
11	Copra	1.8520	
74	Basic Metals	1.8519	
13	Processed Tobacco	1.8397	
64	Lubric. Grease Oil	1.8356	
18	Drving, Salting Fish	1,8219	
30		1.7946	
46	Made-up Textile G.	1,7908	
12	Farm Coconut Oil	1,7877	
44	Batik	1.7855	
49	Leather Products	1,7678	
35	Tea Processing	1.7668	
39	Soft Drinks	1,7495	
23	Dairy Products	1.7215	
24	Fruits/Veget. Proc.	1,7001	
50	Sawn, and other Proc.	1.6773	
17	Sawmilling in Forest	1.6752	
75	Metal Products	1.6748	
42	Weaving	1.6626	
14	Farm Proc. Coffee	1.6534	
67	Other Rubber Proc.	1,6392	
61	Other Chemical Pr.	1.6308	
73	Other Building Mat.	1.6285	
36	Sova Bean Processing	1.6134	
10	Brown Sugar	1,5775	
72	Cement	1.5463	
76	Metal Furn./Fixtures	1.5429	
33	Cocoa. Choc. Sugar	1,5414	
54	Basia Chamicala	1 6200	
20	DESIC UNEMICAIS	1.3307	

J

;
(Table	IV.1	continued)
--------	------	------------

15	Farm Proc. Tea	1.5267
57	Fertilizers	1.5197
71	Structure Clay Prod.	1.5151
53	Pulp and Paper	1.5151
85	Motorcycles, Bicycles	1.5130
80	Elec. App. Nec/Repair	1.5030
88	Profess./Scientific Pro.	1.4993
83	Railroad Equip./Rep.	1.4961
45	Knitting	1.4782
66	Tyres and Tubes	1.4442
70	Glass/Glass Products	1.4436
40	Cigarettes	1.4172
81	Accum./Dry Batteries	1.4143
55	Printing, Publishing	1.3976
54	Paper Products	1.3971
62	Pesticides	1.3908
69	Ceramics, Earthenware	1.3728
41	Spinning	1.3728
77	Structur. Metal Prod.	1.3587
43	Textile Finishing	1.3302
78	Machinery, Repair	1.3273
59	Drugs and Medicines	1.3202
47	Carpets, Rugs, Ropes	1.3177
87	Aircrafts, Repair	1.3147
38	Alcoholic Beverages	1.2980
79	Radio, TV, Appliances	1.2591
58	Paints	1.2304
84	Motor Vehicles	1.1895
68	Plastic Products	1.1594

Source: Ministry of Industry, NEI: "Structural Analysis of the Indonesian Manufacturing Sector", Rotterdam, February 1982.

although, as with all import substitution, there may be offsetting negative repercussions on the country's export industries. Again, if an import-replacing industry is able to supply cheaper products, quality for quality, than the imports it replaces, there will be a gain to the users, in the form of lower production costs in the case of producer goods, or in welfare in the case of consumer goods. The local industry may, for example, be in a better position to meet the special needs and tastes of local users. But the reverse may happen, in which case the users are adversely affected. This would almost certainly be the case, at least in the first instance, where the domestic import-replacing industry requires substantial tariff or other protection. Backward linkages suggest that a new industry may provide a stimulus to domestic industries on whose products it draws as inputs, whether intermediates or capital goods. It enlarges their domestic market. This stimulus will be greater the larger the proportion of inputs derived from domestic suppliers rather than from imports, in other words the higher the total production effects, as shown in Table IV.1. But it needs to be remembered that these total production effects (the multipliers of the initial increase in output) are inversely proportional to the proportion of the initial increase in output that accrues as value added in the new industry itself (the multiplicand). The total contribution to GDP or employment throughout the economy is no larger, but more of it accrues in other industries or sectors if the backward linkages are large.

One determinant of the total production effect which measures backward linkages is the proportion of a new industry's inputs that is obtained from abroad as imports. Annex Table 39 shows the direct import requirements resulting from intermediate deliveries for individual industries. It appears that the share of intermediate inputs obtained from imports is particularly high for Indonesian engineering industries, and also high for chemicals. Annex Table 40 presents total import requirements for main categories of manufactures, distinguishing between the actual import requirements of currently producing domestic industries and the hypothetical import requirements of domestic industries set up to replace imports of intermediates. It appears that within each group the intermediate import coefficients of currently producing domestic industries are lower than the hypothetical coefficients of import replacing industries. Both findings might be taken to present a case for further import substitution, so as to increase backward linkages (total production effects). But this is clearly an illegitimate inference. The mere fact that indirect production effects would be larger would not increase overall national gains in GDP or employment. Whether import substitution would be desirable would still need to be assessed, as always, in terms of the current and prospective capacity of the new domestic industry to produce efficiently.

4.2 Factor intensities

If employment generation is an important national objective, one criterion in determining priorities in industrial policy is the factor intensity of an

- 51 -

industry. The more labour-intensive an industry, the larger is the effect on employment of an extra unit of production. Here again, inter-industry relationships are important. The indirect employment effects, via forward and backward linkages, may be high, even though the inaustry itself is relatively capital-intensive.

In the absence of comprehensive and reliable capital stock data for Indonesian manufacturing industries, Table IV.2 uses labour-output ratios to measure labour intensity of production. It also uses skilled man-years per unit of output and non-wage value added per worker as proxies for the use of human and physical capital $\frac{1}{}$.

The table presents total as well as direct labour requirements (man-years per Rp. billion of final demand) of manufacturing industries in 1980 and ranks them according to their total labour requirements. It also shows for each industry its ranking in terms of skilled man-years and non-wage value added per worker.

A striking finding is the evidence of very high total labour requirement of many industries, especially resource-based industries, with relatively low direct labour requirements. Among these are food processing industries, such as rice and other grain milling, coconut and other cooking oil processing, but also rubber and leather processing. By contrast, some relatively labour-intensive industries in terms of the labour-output ratio of the industry itself, have relatively small additional indirect effects on employment, among them structural clay products, wood and cork, ceramics, copra and furniture industries. Relatively small indirect employment effects are found also for some more (directly) capital-intensive industries, such as metal furniture and other metal products, knitting and scientific instruments industries, and of course the highly capital intensive industries at the bottom of the list.

1/ Ministry of Industry/NEI, op.cit.

- 52 -

	r	Labour equirements		Rankings		
	Total	Direct	Labour	Skill	Non-wage value added	
Handpounded rice	2914.1	1300.0	1	81	80	
Grain mill products	2460.1	210.0	2	61	64	
Rice milling	2220.5	435.0	3	79	77	
Noodles/macaroni	2146.4	687.0	4	62	59	
Struct. clay products	2143.1	1900.0	5	67	72	
Other food products	1878.2	810.0	6	51	58	
Cassava products	1856.5	430.0	7	78	78	
Bakery products	1601.9	711.0	8	30	50	
Copra	1589.0	1000.0	9	71	71	
Soya bean processing	1573.2	890.0	10	76	79	
Wood and cork	1570.0	1240.0	11	33	39	
Ceramics, earthenware	1538.8	1410.0	12	39	69	
Furniture, fixtures	1351.6	910.0	13	2	35	
Drying, salting fish	1208.1	630.0	14	70	65	
Processed tobacco	1198.7	650.0	15	77	70	
Fish processing	1189.8	563.0	16	68	53	
Brown sugar	1144.4	750.0	17	64	68	
Coffee grinding	1126.7	516.0	18	63	61	
Made-up textile g.	1078.0	750.0	19	54	76	
Farm coconut oil	1028.5	480.0	20	74	62	
Batik	1025.8	752.0	21	59	57	
Coconut cook oil	1018.1	79.0	22	65	26	
Slaughtering	988.5	200.0	23	66	66	
Tea processing	959.3	473.0	24	69	55	
Manufacturing nec.	951.7	643.0	25	50	16	
Farm processing coffe	917.8	473.0	26	73	60	
Other veget./an. oil	914.7	72.0	27	20	24	
Fruits/vegetable processing	849.5	220.0	28	29	54	
Farm processing tea	841.6	473.0	29	76	73	
Mus. inst., sports pr.	809.7	460.0	30	14	10	
Metal furniture/fixtures	754.5	589.0	31	56	25	
Other building material	750.5	475.0	32	44	46	
Meat processing	746.4	135.0	33	65	30	
Leather products	731.6	480.0	34	16	48	
Tanneries/leather processing	700.9	100.0	35	55	38	
Sugar	691.3	231.0	36	8	32	
Metal products	680.3	470.0	37	21	15	
Soft drinks	678.8	374.0	38	6	34	
Knitting	659.1	508.0	39	52	75	
Rubber	655.6	56.0	40	60	19	
Prof./scient. pr.	629.0	453.0	41	37	42	
Cocoa. choc. sugar	628.6	277.0	42	24	67	

Table IV.2: Total and direct labour requirements in man-years by industry per Rp. billion of domestic final demand and rankings according to labour, skill and non-wage value added

Ť,

1

--- -

(Table IV.2 continue.')

		Rankings				
	re	quirements				
	Total	Direct	Labour	Skill	Non-wage value added	
Weaving	588.6	403.0	43	2 6	63	
Other rubber products	587.4	350.0	44	43	47	
ship building/repair	523.0	255.0	45	1	9	
sawmilling and other proc.	512.4	250.0	46	23	36	
Savmilling in forest	497.6	250.0	47	27	28	
Printing, publishing	468.2	300.0	48	13	49	
Repair of vehicles	466.5	286.0	49	3	7	
Carpets, rugs, ropes	465.9	281.0	50	75	75	
Soaps and cosmetics	440.4	81.0	51	11	27	
Plastic products	414.9	335.0	52	53	81	
Elec. app. nec., repair	414.4	250.0	53	7	31	
Dairy products	373.0	115.0	54	40	21	
Cigarettes	371.5	102.0	55	72	43	
Glass, glass products	344.2	188.2	56	4	41	
Paper products	337.3	160.0	57	38	45	
Spinning	335.1	155.0	58	46	56	
Puln and paper	330.4	114.0	59	31	33	
Other chemical products	311.9	142.0	60	47	13	
Machinery, repair	295.0	135.0	61	18	44	
Drugs and medicines	291.3	139.0	62	28	51	
Basic chemicals	284.6	145.0	63	12	14	
Accum./dry batteries	283.0	141.0	64	5	29	
Tyres and tubes	266.6	116.0	65	9	22	
Cement	252.9	117.0	66	34	8	
Textiles finishing	252.0	137.0	67	57	52	
Paints	229.5	138.0	68	49	37	
Pesticides	213.2	26.0	69	36	6	
Structur, metal products	204.5	85.0	70	42	18	
Motorcycles bicycles	204.5	56.0	71	58	17	
Alcoholic heverages	194 2	87.0	72	10	20	
Railroad equin /ren	182 8	64.0	73	15	11	
Radio, tv. appliances	174 6	76.0	74	32	40	
Radio, ty, appriances Radio motale	167 6	37 0	75	48	40	
Aircraft ronair	147 3	64 0	76	19	22	
niiciaic, iepail Fortilizora	135 4	26 0	70	31	5	
rereitieese Matar vahielee	107 4	(6 0	78	25	12	
Ather patroloum products	109 1	26 0	70	17	3	
Tubric grass All	07.1	26.0	80	25	2	
Detroloum ref /INC	74.4	20.0	0U 9 1	37 41	<u>د</u> ۱	
rettoreum ter./Lag	14.3	20.0	01	41	L	

Source: Ministry of Industry/NEI, "Structural Analysis of the Indonesian Manufacturing Sector", Rotterdam, February, 1983.

-

;]

1

- - - -

Generally, labour-intensive industries tend to be characterized by a relatively low level of non-wage value added and vice versa. In addition, labour-intensive industries appear to require low levels of skills and vice versa. However, the extent of negative correlation between labour and skill requirements is much lower than between labour and non-wage value added. A number of industries which are ranked in the middle ranges according to labour-intensity appear to be relatively highly ranked according to skill-intensity, such as, shipbuilding, repair of vehicles, glass and glass products, soft drinks, electrical appliances N.E.C. and printing and publishing.

Labour-intensity not only varies between industries, it also varies within industries between sizes of establishments. Generally, labour-intensity tends to decrease with the size or establishments. On the other hand, from data generated by a study on capacity utilization in manufacturing industry, it can be inferred that there is no significant correlation between labour-intensity and the efficiency of capital^{1/}. This was found by correlating data on capital per worker and value added per unit of capital. In other words, more capital-intensive industries do not necessarily generate more or less value added per unit of capital.

For the purpose of the precent study it is particularly interesting to discuss relative factor intensities in engineering industries. In the underlying input-output exercises 72 manufacturing sectors have been distinguished. Designating sectors attaining rank 1 till 18 with respect to a certain factor as highly factor intensive (++), for ranks 19 till 36 as factor intensive (+), for ranks 37 till 54 as intermediate factor intensive (+,-), and for ranks 55 till 72 as factor extensive (-), the following scheme can be formulated.

_ 55 _

^{1/} Ministry of Industry/NEI: "Project Mankap DTA-193: Harmonization report", Jakarta/Rotterdam, 1983.

ISIC	Sector	Labour	Skill	Capital (Non Wage Value Added)
37100/200	Basic metals	-	+,-	++
38111/2/3/4/40/90	Metal products	+,-	+	++
38120	Metal furn./fixture	+	+,-	+
38130	Struct, metal products	-	+,-	++
38200/330	Machinery, repair	-	++	+,-
38320	Radio,T.V., appliances	-	+	+,-
38340	Elect. app. nec., repair	+,-	++	+
38311/2	Accum./dry batteries	-	++	+
38411	Ship build./repair	+,-	++	++
n.a. <u></u>	Railroad equipment/repair	-	++	++
38430	Motor vehicles	-	+	++
38440/50	Motor cycles/bicycles	-	+	++
n.a. <u>-</u> /	Repair of vehicles	+,-	++	++
n.a. <u>a</u> /	Aircraft, repair	-	+	+
38500	Profess./scient. products	+,-	+,-	+,-

a/ n.a. = no ISIC classification available.

With the exception of metal furniture and fixtures, all metal industries can be classified according to the criterion stated as low to intermediate labour-intensive. The skill indicator used suggests that most metal industries are skill-intensive. Exceptions are basic metals, metal furniture and fixtures, structural metal products and professional and scientific equipment. The non-wage value added indicator of capital intensity points to the prevailing capital-intensive character of metal industries. Only machinery and repair, radio, T.V. and appliances and professional and scientific equipment can be classified as intermediate capital-intensive. These results should be treated with due caution. Apart from the theoretical problems of adding quantities of heterogenous products, the indicators of skill- and capital-intensity are far from perfect. The results can at best provide preliminary indications of less efficient sectors when the general level of skills and/or the availability of investment capital are serious constraints to the ongoing development process.

- 56 -

4.3 Comparison of strategies

The two strategies (A) and (B), discussed is subsections 3.5 and 3.6, have been assessed in terms of their direct implications for employment, investment needs, import requirements and value added. These effects have been presented in Annex Tables 41 and 42. The results are summarized below in Table IV.3.

Summary results		
	Incremen	ts 1980-1990
	Strategy A	Strategy B
	Inward locking	Outward looking
	strategy	strategy
Production (Rp. billion)	22,191	22,191
Employment (thousands of persons)	1,785	2,531
Investment (Rp. billion)	32,688	22,462
Value added (Rp. billion)	6,670	6,535
Imports of inputs (Rp. billion)	7,878	6,903
Incremental ratios:		
Capital-output	1.5	1.0
Capital-value added	4.9	3.4
Efficiency of capital (value added-capital	1) 0.20	0.29
Capital-labour (Rp. million)	18.3	8.9
Value added-labour (Rp. million)	3.7	2.6

Table]	[V.3:	Economic	effects	of a	lternative	strateg:	ie

<u>Employment</u>. It can easily be observed that strategy (B) has the most favourable effects on employment. It will create some 750,000 jobs or 50 per cent more than strategy (A). It should be noted that the same labour-intensities have been applied for the two strategies. This assumption may lead to somewhat biased results favouring strategy (A), since in many sectors, strategy (B) could lead to substantially higher labour-intensities than strategy (A). Examples are textiles, plastics, building materials, metal products and machinery, most notably electrical appliances (electronics).

<u>Investment needs</u>. Strategy (A) is highly capital-intensive, requiring Rp. 10 trillion or 30 per cent more investment funds than strategy (B). From these data it can also be inferred that the original programme of 52 key projects would require a substantial proportion of total investment in the manufacturing sector. Excluding the refinery and petro-chemical complexes the necessary investment funds for this programme add up to Rp. 8.5 trillion or 25 per cent of the funds needed for strategy (A).

- 57 -

<u>Import requirements</u>. The difference in import requirements of inputs between the two strategies is much less substantial. They are about 14 per cent lower for strategy (B) than for strategy (A). It appears that both capital- and labour-intensive strategies involve industries which import a substantial part of their inputs. Imports amount to 31.1 per cent of the value of production in case of strategy (B) and to 35.5 per cent in case of strategy (A).

At this stage it is not possible to assess the complete impact of the two strategies on foreign exchange earnings which would also take into account the export earnings of strategy (B). Such an assessment requires estimates of the value of output and inputs at border prices. Generally, strategy (A) requires high levels of effective protection of domestic production. As a result the difference between revenue and production cost at domestic prices for these industries would exceed the difference between revenue and costs at border prices and would, therefore, overstate the contribution to foreign exchange. As strategy (B) implies much lower rates of effective protection, value added in domestic prices will reflect more closely the net contribution to foreign exchange.

<u>Value added</u>. The share of value added in production is very similar for both strategies, namely around 30 per cent.

The effects of both strategies can also be summarized on the basis of a number of ratios (see Table IV.3 above). The capital-output and capital-value-added ratios represent the impact of a unit investment on output and value added respectively. It can be seen that strategy (B) requires less capital to produce a given amount of output (value added) than strategy (A), or a given amount of investment according to strategy (B) produces more value added than the same amount of capital invested according to strategy (A).

It follows that the volume of investment needed for strategy (A) to produce an annual rate of growth of manufacturing output and value added of 9 per cent, would result in an annual rate of growth of output and value added of 11.6 per cent if strategy (B) were implemented. The cepital-labour ratios clearly show the high capital intensity of strategy (A). Strategy (A) requires more than twice the amount of capital to create a job than strategy (B). The analysis above focuses on the development patterns of individual industries and their factor intensities. The results can also be generalized for groups of industries. It has been shown elsewhere that the capital-intensity of imports is significantly higher than that of domestic production (see Annex Table 43). In other words, continuation of import substitution strategies increases the capital-intensity of the monufacturing sector. On the other hand, export industries are highly labour-intensive.

It is possible to add other elements to industrialisation strategies. For example, promotion of small-scale industries is often included as a distinct component of an industrialisation strategy. The development of small-scale industries specifically contributes to employment generation, as they are usually significantly more labour-intensive than larger-scale enterprises (see Table II.10). Small-scale industry development can also have other desirable effects such as a wider dispersion of entrepreneurial and managerial skills and indigenisation of technological development in certain sectors. In Indonesia small-scale industries are most prevalent in the food, clothing, furniture, building materials and metal products industries. These industries are also repidly growing industries in a labour-intensive export-oriented industrialisation strategy. It seems, therefore, that the development of small-scale industries is easiest to fit in with such a strategy. Nevertheless, to some extent promotion of small-scale industries can also be combined with a capital-intensive import substitution strategy. In that case more forceful measures will probably be needed, such as reserving the production of certain goods to small-scale industries. Other measures of small-scale industry development include encouraging sub-contracting arrangements, such as the foster-parent programme and giving priority to small-scale producers in government procurement efforts, as in the current Keppres 14A programme.

An industrialisation strategy for Indonesia can also focus more explicitly on natural-resource based industries. Such resources include agriculture and various mining products. This type of development generally has low import requirements and, whereas these industries often generate little direct employment, their indirect employment effects are substantial (see Table IV.2).

- 59 -

4.4 Combining different strategies

To some extent it is of course possible to mix elements of various industrialization strategies. A more substantial contribution of the manufacturing sector towards employment and foreign exchange earnings will require the promotion of labour-intensive industries and a stronger orientation towards exports. However, certain capital-intensive industries are needed to achieve a balance in the industrial structure, to provide a stronger base for long-term development and technological deepening. The large size of the country may justify the establishment of large scale industries, since in Indonesia the economies of scale required for efficient operation are more likely to be realized. The selection of such industries, however, should be based on sound economic criteria, weighing carefully economic costs and benefits. Other things being equal, such projects are more likely to be justified if they are financed with foreign investment funds which would not otherwise be forthcoming.

Generally, a selective approach to import substitution may also be blended into a labour-intensive strategy. Priority could be give to industries which are relatively labour-intensive, or in which in the longer run Indonesia is likely to develop a comparative advantage. Currently, import substitution possibilities exist mainly for intermediate and capital goods of which still substantial amounts are imported. Important candidates could include simple engineering products. With regards to non-durable consumer goods already 92 per cent of the supply is produced locally.

As capital will remain a scarce factor in the longer term as well, Indonesia's comparative advantage might develop in the long run from labour-intensive industries to skill-intensive industries with relatively low capital-intensities. It has been demonstrated in this study that several industries in the middle ranges of capital-intensity are relatively skill-intensive. Such industries deserve attention in the next 5-10 years. However, in the short run it requires substantial efforts to improve skills and management.

The development of labour-intensive and resource-based industries has important implications for intersectoral and interregional relationships. It encourages specialization on Java in labour-intensive manufacturing, with the

- 60 -

- 61 -

other islands supplying raw materials and food for industrial growth in Java. The other islands can also be the site of the primary resource processing industries. Such a development would be consistent with the distribution of regional comparative advantage of abundant labour in Java and natural resource abundancy on the other islands.

----- 0 -----

STATISTICAL ANNEX

シ

t

Country	Popu- lation	GDP	GDP per capita	Shar	e of GDP on currer	(percentage at prices)	based	Manufacturing value added (MVA)	MVA per capita	Averag annual rate Q	e real growth f MVA
	(M111.)	M111.US\$.	US\$	Agri- culture	Indus- try	Manu- facture <mark>a</mark> /	Services and other	M111.US\$	US\$	1960-70	1970-80
Asia											
Indonesia	152	70.024	461	26	35	ò	39	6,154	41	4.3	12.3
India	695	159.872	230	37	19	18	44	28,512	41	4.8	4.5
`ran	38	81,420	2,142	15	43	19	42	15,632	411	10.0	10.2
Bangladesh	88	12,735	144	54	8	8	38	966	11	3.7	8.8
Pakistan	82	27,961	339	30	18	17	52	4,716	57	9.9	4.8
Thailand	48	32,905	690	26	21	19	53	6,146	129	10.7	11.8
Philippines	46	35,456	695	23	29	26	48	9,069	178	6.6	7.1
Norea, Rep. of	38	59,329	1,562	17	31	29	52	17,394	458	16.8	15.4
Malaysia	14	21,502	1,576	24	30	23	46	4,840	355	10.1	11.4
Sri Lanka	14	4,155	279	39	12	11	49	440	30	7.7	6.0
Hong Kong	5	21,049	4,346	1	29	29	70	6,077	1,255	11.8	6.5
Singapore	2	10,985	4,526	1	29	28	70	3,113	1,283	14.1	10.6
Other regions:											
Brazil	126	237,757	1,881	13	27	27	60	63,203	500	6.4	8.8
Sigeria	77	117,082	1,519	19	32	5	49	6,020	78	8.0	9.9
	70	168,441	2,407	9	31	25	60	41,488	593	9.5	5.9
Egypt	42	24,030	572	16	34	11	50	2,758	66	5.0	6.4

(Values in current prices)

Indicators of population, gross domestic product and manufacturing value added, selected developing countries, 1980

Source: UNIDO data base; information supplied by the United Nations Statistical Office, with estimates by the UNIDO secretariat.

A/ Manufacturing is part of industry, but is shown separately since it is often the most important part of the industry sector.

Annex Table

.

	Agric	ulture	Min. 4	Quarr.	Henufe	cturing	Util	ities	Constr	uction	8er	rices	GD	P
	Mill. US \$	Annual Rate of Growth	Nill. US \$	Annual Rate of Growth	Mill. US \$	Annual Rate of Growth	Mill. US \$	Annual Rate of Growth	Mill. US \$	Angual Rate of Growth	Mill. US \$	Annual Rate of Growth	Will. US \$	Annual Bate of Growth
1960	6,699.7	• •	2,032.5	-	911.9	-	33.2	-	308.4	-	4,661.7	-	14,427.4	-
1961	6,864.1	2.5	2,076.8	2.2	1,031.7	13.1	36.5	9.9	401.3	30.1	\$,9 21.0	10.8	15,331.2	6.3
° 62	6,975.7	1.6	2,155.6	3.8	1,029.2	-0.2	38.9	6.6	332.9	-17.0	4,871. 0	-1.0	15,403.3	0.5
1953	6,677.5	-4.3	2,073.4	-3.8	1,003.8	-2.5	44.6	14.7	250.2	-24.9	k,909.7	0.8	14,959.2	-2.9
1964	7.069.1	5.9	2,186.1	5.4	997.0	-0.7	50.9	14.1	251.9	0.7	5,058.3	- 3.0	15,613.3	k.k
1965	7,072.5	0.9	2,226.4	1.8	981. 7	-1.5	50.5	-0.7	284.8	13.0	5.089.7	0.6	15,705.7	0.6
1 966	7,479.6	5.8	2,162.5	-2.9	1,010.2	2.9	51.0	0.9	326.2	14.6	5,140.0	1.0	16,169.6	3.0
1967	7,286.3	-2.6	2,323.9	7.5	1,034.1	2.4	65.4	28.2	280.9	-13.9	5,383.6	4.7	16,374.3	1.3
1965	7,708.0	5.8	2,711.8	16.7	1,113.0	7.6	67.6	3.4	335.0	19.3	5,609.1	4.2	17,544.6	7.1
1969	7,728.6	0.3	3,272.0	20.7	1,264.6	13.6	100.6	48.7	442.7	32.1	6,173.1	10.1	18,961.7	8.2
1970	8,136.3	5.3	3,796.5	16.0	1,397.2	10.5	92.4	-8.1	558.5	26.1	6,599.8	6.9	20,580.7	8.4
:971	8,539.8	5.0	4,061.7	7.0	1,595.3	14.2	102.8	11.2	679.0	21.6	7,107.3	7.7	22.085.8	7.3
1972	8,571.8	0.4	4,910.5	20.9	1,814.9	13.8	107.8	4.8	871.2	28.3	8,148.8	14.7	24,425.0	10.6
1973	9,332.1	8.9	6,029.5	22.8	2,083.0	14.8	124.5	15.6	1,023.9	19.5	8,764.0	7.5	27,357.1	12.0
1976	9,(90.9	3.8	6,239.8	3.5	2,122.3	16.5	151.7	21.8	1,252.0	22.3	9,612.8	9.7	29,369 .5	7.4
1975	9,648.2	-0.4	5,988.4	-4.0	2,708.1	11.8	168.2	10.9	1,420.9	13.5	10,534.4	9.6	30,468.3	3.7
1976	10,068.2	b. k	6,862.8	14.6	2,960.1	9.3	188.4	12.0	1,492.5	5.0	11,115.1	5.5	32,687.3	7.3
977	10,239.3	1.7	7,743.2	12.8	3,380.6	14.2	200.2	6.3	1,807.8	21.1	12,509.2	12.5	35,880.4	9.8
978	10,817.3	5.0	7,625.6	-1.5	3,778.0	11.8	218.5	9.3	2,071.3	14.6	13,684.3	9.k	38,195.3	6.5
979	11,065.7	2.3	7,571.7	-0.7	\$,10\$.6	8.6	265.9	21.5	2,199.4	6.2	14,834.0	8.4	40,041.4	١.8
9 90	11,935.9	7.9	7,660.3	1.2	4,476.0	9.0	290.3	9.2	2,436.3	10.8	16,677.1	12.4	43,476.0	8.6
					Ā	rerage An (nual Rate Percentag	of Growt	h					
960-	65 1.	1	1.	8	1.	5	8.	6	-1.0	6	2.	8	1.7	,
965-	70 2.	8	n .:	3	7.:	3	12,	8	14.	6	5.	3	5.6	5
970-	75 3.	5	9.	5	14.:	2	12.	7	20.	5	9.	8	8.2	!
975-	80 h .	3	5.	D .	10.0	5	11.	5	12.5	k.	9.	6	7.4	ŧ
960-	70 2.	0	6.	•	h.1	•	10.	8	6.:	ı	h	0	3.6	5
970-	80 3.	9	7.	3	12.	3	12.	1	15.	9	9.	1	7.8	ł
160-	80 2.	9	6.	9	8.	1	11.	5	10.9	,	6.	8	5.7	

GDP by industrial origin (at constant 1975 prices) in Hill. US \$ and Annual Mates of Growth 1960-1980

1

ţ

Source: Unido Date Base, Information supplied by the United Mations Statistical Office, with estimates by the UNIDO Recretariat.

Annex Table 3

•

1

	Agriculture	Mining and quarrying	Manufacture	Utilities	Construc- tion	Services
gandar 10 martin 10.			Percentage sh	are -	·	· · · ·
1069	46.44	14.09	6.32	0.23	2.14	30.79
1065	45.03	14.18	6.25	0.32	1.81	32.41
1970	39.53	18,45	-6.79	0.45	2,71	32.07
1075	31.67	19.65	8.89	0.55	4.66	34.57
1076	. 30.80	21.00	9.06	0,58	4.57	34.00
1077	28.54	21,58	9.42	0.56	5.04	34.86
1978	28.32	19.96	9.89	0.57	5.42	35.83
1979	27.64	18.91	10.25	0.66	5.49	37.05
1980	27.45	17.62	10.30	0.67	5,60	38.36
	В.	Based on curr	cent prices (mi	illion US dol	<u>lar</u>)	
		- <u></u>	Percentage sha	nre		
1060	53 37	4.08	8.0	0.27	2.08	32.19
1900	58.25	2:73	7.28	0.02	1.90	29.83
1070	48 64	5.34	9.05	0.46	3.09	33.42
1975	31.67	19.65	8.89	0.55	4.66	34.57
1976	31.11	18.94	9.40	0.63	5.25	34.65
1977	31.06	18.93	9.56	0.56	5.38	34.50
1978	29.86.	19.40	9.73	0.52	5.53	34.96
1979	28.96	22.50	8.43	0.48	5.77	33.86
					e 53	33 ES

							•
 Changing	share a)	economic	sectors	in	GDP,	1960-1980

Yndonesia: Ch

Eource: UNIDO Data Base, information supplied by the United Nations Statistical Office, with estimates by the UNIDO Secretariat.

. .

_ 65 _

J

ŧ

INDONESIA				
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	• • •
	ANNUAL GROWTH RATES OF REAL MANUFACTURING VALUE (PERCENTAGES ON THE BASIS OF VALUES IN 1975 USS	ADDED, 1970-1980 Constant_Prices)		

_151¢	ISIC-DESCRIPTION			J2/13	_73/74	.74/75	75/76	76/77	77/78	18/79	79/80		••••
3110	FOUD PRUDUCTS	5.8	9.6	0.0	12.5	11.1	48.0	17.6	-0.6	16.2	16.9	14.1	
3130	BEVERAGES	26,2	41.5	13.3	_11.8	5.3	6.0	9.6	_1.2		. 5.3	9.7	
3140	TOBACCO	5.0	9,5	11.6	13.0	14.9	4.0	17.3	-0.B	0.0	21.5	9.4	
3210	TEXTILES	-4.8	47.5	35.6	12.5	11.1	8.(-1.9	4.7	4.5	5.2	11.8	
3220	WEARING APPAREL + EXCEPT FOOTWEAR	35.8	13.9	_ 11.0	5.5	4.2_						12.6	
3230	LEATHER PRODUCTS	87.0	0.0	58.1	41.2	4.2	29.0			• • •	•••	31.5	
3240	FOUTWEAR, EXCEPT RUDDER OR PLASTIC	61.0	12.1	-5.4	21.4	17.6	14.0	0.9	3.5	-5.9	16.1	10.1	
3310	NOUD PRODUCTS . EXCEPT EURNITURE	11.0	0.0	-16.0	27.9.		18.0	64.9	10.7.	0.9	78.2	17.6	
3320	FURNITURE EXCEPT NETAL	6.7	12.5	25.9	41.2	* 4.2	13.0					18.7	
3410	PAPER AND PRODUCTS	25.0	30.0	63.5	11.8	5.3	-2.0	9.2	25.2	12.7	1.3	16.1	
3420	PRINTING AND PUBLISHING	5.3	12.5	-15.6	.142.1	8.7						24.3	•
3510	INDUSTRIAL CHENICALS	15.5	7.5	25.0	5.6	5.3	-13.0	64.4	49.0	30.5	33.8	18.9	
3520	OTHER CHEMICALS	19.5	-3.3	0.0	5.6	6.4	-2.0	-3.1	9.5	-1.0	19.4	3.2	
3530	PETROLEUM REFINERIES	3.0	10.6		-11.9	-16.0					3.5	B.0	
3550	RUBBER PRODUCTS	0.0	-4.3	13.6	50.0	33.3	37.0	22.6	20.8	11.6	13.2	22.4	
3560	PLASTIC PRODUCTS	43.8	43.5	-6.1	. 90.3	69.5	-28,0					33.2	
3610	PUTTERY CHINA , L'ARTHENNARE	7.4	13.7	-10.1	42.6		29.0					10.1	
3520	GLASS AND PRODUCTS	7.1	11.1	80.0	5.0	5.3	-6.0	47.9	15.1	6.9	21.6	17.4	
3690	UTHER HUH-NETALLIC MINERAL PRODUCTS	2.6	10.0	13.6	50.0	33.3	25.0	42.4	43.3	23.1	16.9	28.7	
3710	IRUN AND STEEL	66.7	140.0	38.9				2,9	27.7	146.1	133.4	50.2	
3310	FAURICATED NETAL PRODUCTS	- 3.0	17.6	50.0	36.7	22.0	9.0	22.0	15.8	0.0	11.7	20.2	
3950	MACHINERY.EXCEPT ELECTRICAL	-3.3	6.9	58.1	69.4	20.5	-8.0					27.6	
3430	HACHINERY ELECTRIC		0.0	. 40.0	. 78.6	33.3		. 40.7	. 25.4		43.8	30.8	
3840	TRAUSPORT EQUIPHENT	11.1	20.0	.19.4	8.1	7.5	-9.0	-9.9	15.9	-15.8	55.0	5.6	
3050	PROFESSIONAL & SCIENTIFIC EQUIPMENT	16.4	12.9	64.6	-19.0	-21.9	72.0					12.0	
3900	OTHER MANUFACTURED PRODUCTS		. 12.9	. 64.6	-19.0	-21.9						12.0	
ววงด	TOTAL MANUFACTURING	6,2	12.3	14.5	6.3	4.0	21.9	14.2	8.4	8.2	17.3	1158	

.

SOURCE: UNIOU DATA BASEIINFORMATION SUPPLIED BY THE UNITED NATIONS STATISTICAL OFFICE-WITH ESTIMATES BY THE UNIDO SECRETARIAT.

HE THE INITIAL AND/OR THE END-YEAR OF THE TREND-GRAWTH, IS ALWAYS THE FIRST AND/OR THE LATEST EAR SHOWN IN THE YEAR-TO-YEAR-GROWTH NGTE: TUTAL MANUFACTURING IS THE SUM OF THE AVAILABLE COMPONENTS AND DOES NOT NECESSARILY CORRESPOND TO ISIC 300

Annex Table

1

	STRUCTURAL CHANGES OF VALUE ADD	ED IN	MANUFACTUH	ING. 1971	-1980	CURRENCY	AT CHOREN	T 001055			
1010		1071	1072	1073	1074	1075	1074	1 PRICES	······································	1070	
1910	1210-06204101104	1711	. 4776	1773	1744	1910	1910	19//	1414		1440
3000	TOTAL MANUFACTURING	100.0	AC. 309.0. A	100.0 A	~100,0.	_100.0_	100.0.	1-100.0_	A/_100.0 A	1. 100.0 1	1/ 100.0
5110	FOUD PRUDUCTS	33.9	31.5	. 24.5	26.7	21.0	16.8	18.0	16.4	18.1	11.1
3330	BEVERAGES	2.0	1.7	1.8	2.5	2.1	2.0	. 2.0	1.2	1.6	1.5
3140	TOUACCO	_27.9	15.4	17•4	16.9	11,5	<u>. 18,9</u>	15.3_	16.3_	13.9	19.1
3210	TEXTILES	13.2	15.5	25.6	17.4	15.2	15.1	12.4	12.7	13.8	12.4
0556	WEARING APPAREL EXCEPT FOOTWEAR	0.1	• 0.1	0.1	0.1	0.2	0.2	0.2	0,3	0.4	0.4
3230	LEATHER PRODUCTS	0.3.		0.4		0.2 _		<u> </u>	0.2.	S.0	
3240	FOOTWEAR, EXCEPT RUBBER OR PLASTIC	0.6	0.0	0.6	0.8	2.1	1.4	1.0	0.7	1.0	0.8
3310	WOOD PRODUCTS + EXCEPT FURNITURE	1.4	3.6	2.7	2.9	2.9	3.5	. 3.3	4.0	4.4	7.0
3320	FURNITURE, EXCEPT METAL	0.3	9.2	0.3	C,3	0.3		0.2_	0.2		. 0.2
3410	PAPER AND PRODUCTS	2.0	. 1.8	2.0	1.1	1.4	1.4	1.8	1.8	1.7	1.5
3420	PRINTING AND PUBLISHING	2.0	1.2	0.7	1.6	1.6	1.6	1.5	1.6	1.7	1.5
3510	INDUSTRIAL CHENICALS		1.6	1.8	3.4	5.8	72				4.3
3520	OTHER CHENICALS	3.8	9.2	5.3	· 4.0	4.3	5.2	6.6	5,6	4.6	7.1
3530	PETROLEUM REFINERIES					15.0			• • •		
3540	MISC. PETROLEUN AND COAL PRODUCTS	0.0	9.0					00	0.0	0.0	0.0
3550	RUBBER PRODUCTS	1.3	1.4	1.3	1.8	1.5	3.4	2.9	5.7	5.4	- 4.A
3560	PLASTIC PRODUCTS	0.5	Q.6	0.4	0.8	0.9	0.7	1.1	1.2	1.1	0.7
3610	POTTERY + CHINA + EARTHENWARE	0.6		0.2				0.2			0.2
3620	GLASS AND PRODUCTS	0.5	9.5	0.7	0.7	0.5	0.6	1.2	2.0	1.6	1.1
3645	OTHER NUN-HETALLIC MINERAL PRODUCTS	2.5	4.6	` 2 . 5	2.9	3.8	5.0	6.7	7.2	6.9	5.9
3710	IRON AND STEEL				0.2	0,2		1.2_		1.3	3.1
3720	NON-FERROUS METALS				0.6	0.8					0.0
3310	FAURICATED METAL PRODUCTS	2.3	3.2	3.6	3.0	3.0	4.0	3.8	2.9	3.2	3.5
3920	MACHINERY EXCEPT ELECTRICAL		1.0	.1.2	2.3	1.4	1.0		1.7.	2.0	1.5
3730	MACHINERY ELECTRIC	2.5	1.6	2.9	4.0	3.2	4.1	5.2	4.8	4.5	5.3
3440	TRANSPORT EQUIPHENT	0.9	4.0	3.4	5.5	3.5	5.4	6.3	5.0	5,3	6.4
3850	PROFESSIONAL & SCIENTIFIC EQUIPHENT		ų. O	0.0		0.0			0.1	0,1	0-1
3930	OTHER HANUFACTU ED PRODUCTS	0.3	v.6	0.8	0.4	0.2	0.5	0.3	0.2	0.1	Ú 🔺
TOTA	L MANUFACTURING IN MILLIONS	135990	205965	309510	381770	572400	648400	774500	1008330	1290400	2130000

.

.

المراجع والمراجع والمراجع والمراجع والمتعادية والمتعادية والمحاجي والمراجع والمراجع والمراجع

۰.

..

.

.

•

. .

SOURCE: UNIDO DATA BASE+INFORMATION SUPPLIED BY THE UNITED NATIONS STATISTICAL OFFICE, WITH ESTIMATES BY THE UNIDO SECRETARIAT.

FOUTHOTES:

.

...

.

σ

Annex Table

S

-

	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980
Consumer goods ^b /	80.8	66.6	72.0	66.8	- Percentage 60.8 (51.7)	share - 56.7	51.1	49.8	51.2	47.6
Intermediate goods ^{c/}	13.1	23.6	17.1	18.4	26.1 (37.2)	28.3	32.3	35.7	33.7	35.5
Capital goods <u>d/ e</u> /	6.1	9.8	10.9	14.8	13.1 (11.1)	15.0	16.6	14.5	15.1	16.9
Total manufacturing	100	100	100	100	100 (100) ^{<u>f</u>/}	´ 100	100	100	100	100

Indonesia: Structural change of manufacturing value added according to end use of manufactured products, 1971-1980 (Based on current prices in national currency)

Source: UNIDO data base; information supplied by the United Nations Statistical Office, with estimates by the UNIDO secretariat (see Annex Table 5).

Footnotes:

- a/ ISIC 3000 3530.
- **b**/ ISIC 3110, 3130, 3140, 3210, 3220, 3240, 3320, 3420, 3610, 3900.
- <u>c</u>/ ISIC 3230, 3310, 3410, 3510, 3520, 3530, 3540, 3550, 3560, 3620, 3690, 3710, 3720.
- <u>d</u>/ ISIC 3810, 3820, 3830, 3840, 3850.
- e/ Includes also some consumer durables.
- **f**/ ISIC 3000.

9

- 68 -

Annex Table 7

٦

	1970	1975	<u>1976</u>	<u>1977</u>	<u>1978</u>	<u>1979</u>	1980
Mainly consumer goods	3:						
Cement (tons)	514,993	1,077,179	1,809,656	2,548,545	3,648,875	4,431,530	5,259,380
Paper (tons)	11,693	45,905	49,744	53,770	69,606	74,355	78,214
Yarn (bales)	184,632	128,781	136,078	135,746	166,040	140,975	147,085
Beer (1,000 liters)	18,899b	49,861	46,991	51,284	52,187	53,842	64,403
Cigaret tes							
(million pieces)	9,694	16,194	16,840	16,910	18,899	21,425	22,429
Capital goods							
(ISIC 382, 383, 384)		•					
(Number of units):							
Engines diesel							
(382104)		8,000	24,000	25,300	30,400	25,000	34,100
Concrete mixers for u	ise						
at construction site							
(382434)	35	•••	•••	• • •	• • •	• • •	• • •
Seving machines							
(282910)	5,000	520,000	400,000	485,000	600,000	480,000	525,000
Air conditioning							
machines (382925)	• • •	8,000	24,000	23,000	8,000	36,000	•••
Pumps for liquids, ex	cl.						
líquid elevators		•					
(382942)	3,000	• • •	•••	•••	• • •	•••	• • •
Tankers, launched		2	_	_	4	_	_
(JOAIIJ) Other cos-coing morch	-	3	-	-	-	-	_
vessels launchod		•					
(384116)	1	6	10	2	7	3	3
Buses, etc., assemble	d from	•		-	•	•	-
imported parts							
(384312)		•••	44,398	69,379	65,196	61,015	
	271 \		-	•	-		
Notrie terry	3/1)						
Crude steel for	<i>·</i>						
$\frac{1}{2} \frac{1}{2} \frac{1}$	1	100 000	1 39.000	250.000	225,000	305,000	360,000
	•••	100,000	132,000		,	,	
Chemicals (ISIC 35),	352)						
(Metric tons):							
Methanol (Motherly)							
(Methyl Michonol)	0 754						
	0,734	•••	• • •	•••	•••		
(251122)	6 151						
Civerine (Civerol)	.,	•••					-
(351125)	3,188						• • •
Hydrochloril acid	-,						
(351146)	780	3,962	3,804	1,260	1,684	3,986	•••
Sulphuric acid(351147)	16,000	8,000	17,000	16,000	11,000	•••
Ammonia (351158)	2,000	•••	•••	8,000	9,000	7,000	•••
Caustic soda (351159)	2,000	-	-	-		-	•••

Indonesia: Production of selected commodities, 1970, 1975-1980.

_ --

Ų

1

- 70 -

.

Annex Table 7 (continued)

·							
	1970	<u>1975</u>	1976	<u>1977</u>	<u>1978</u>	<u>1979</u>	1980
(cont'd)							
Aluminum sulphate							
(351163)	•••	16,170	13,570	11,292	13,206	6,409	•••
Nitrogenous fertili-	-		•••				
zers (351201)	39,000	121,000	208,000	184,000	396,000	694,000	875,000
Super phosphates							5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(JJI204) Dhoophatic famtilia	_	-	-	-		-	23,000
othur (351207)	-	_	_	_	_	_	1 000
Multinutrient ferti	lizers	-	-		-		1,000
N content (351213)) -	-	-	-	-	-	1.000
Multinutrient ferti	lizers						-,
P 205 content							
(35121)	-	-	-	-	-	-	1,000
Insecticides, fungio	cides,						
etc. (351216)	20,164	• • •	• • •	•••	• • •	• • •	•••
Non-cellulosic step]	le					_	
and tow (351304)	• • •	4,200	2,500	37,200	45,400	50,300	53,900
Non-cellulosic couti	inous						
fibres (35133/)	•••	3,600	11,000	17,300	21,300	22,700	41,500
(252101)					010	0 222	
(JJ2101) Rejuta ustar (352)(•••	•••	•••	010	7,233	• • •
Painte other	~)	•••	•••	•••	177	50	•••
(352107)	7.525				15.544	8,118	
Soap (352301)	43,913	46.182	45.046	47.915	50,196	55.531	•••
Washing powder and							
detergents (352304) 2,621	33,636	33,613	37,101	38,481	43,036	43,000
Carbon black (352901) -	3,200	1,715	974	• • •	• • •	•••
Printers ink (352904) 22	762	822	1,256	1,887	2,670	• • •
Petrochemicals (ISIC	: 353, 354	356)					
(Metric tons):							
Aviation gasolene							
(353001)	20,000	21,000	15,000	13,000	16,000	15,000	18,000
Jet fucls (353004)	118,000	118,000	108,000	94,000	130,000	185,000	241,000
Motor gasolene							
(353007) 1	,421,000	1,854,000	1,531,000	1,858,000	2,082,000	2,318,000	2,812,000
Naphthas (353010)	-	392,000	3/1,000	914,000	900,000	870,000	850,000
kerosene (353013) 1	,914,000	3,200,000	2,925,000	3,902,000	3,863,000	4,482,000	4,390,000
(152016)	10.000	24 000	21 000	25 000	20,000	20 000	23 000
Distillate fuel oils	10,000	24,000	21,000	29,000	20,000	20,000	25,000
(353019) 1	248.000	2.891.000	2.703.000	3.793.000	4.385.000	4.578.000	4,719,000
Residual fuel oils	,,	-,,	-,,	2,172,000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
(353022) 5	.538.000	6.643.000	7,662,000	9.469.000	9,742,000	11,101,000	11,336,000
Lubricating oils							
(353025)	2,000	4,000	2,000	3,000	4,000	5,000	4,000
Paraffin wax							
(353028)	66,000	36,000	34,000	42,000	38,000	43,000	38,000
Petroleum coke							
(353031)	40,000	36,000	28,000	34,000	35,000	30,000	34,000
Bitumen (asphalt)		<i>51</i> 000	(> 000	en 000	60 000	95 000	80.000
(353034)	49,000	54,000	47,000	83,000	80,000	83,000	80,000
from notwork and	gas						
(3530371)	1 000	1 000	1,000	2 000	1.000	3.000	2.000
Liquefied netroleum	228	1,000	-1000	-,000	5,000	2,000	-,
from petroleum ref	ineries						
(3530372)	13.000	29.000	23.000	26.000	25.000	30,000	35,000
/	,		,			-	•

Source: UNIDO Asian Industry in Figures; A Statistical Profile of Key Sectors in Selected ESCAP Countries, UNIDO/IS.390, 15 June 1983.

Footnotes: a/ Including crude steel, ignots (ISIC 371019)

V

 $\frac{b}{b}$ / 1971. - In general, three dots (...) indicate that data are not available,

• _

- A dash (-) indicates that the amount is nil or negligible.

١

Indonesia: Indicators of Apparent Consumption of Selected Manufactures <u>1970-72 and 1976-78</u>

	Average	annual	Pred	uction	Tap	orts	Per	apita
Product (ISIC; unit of measurement)	per ci apres consus	apita rent aption	•	As a per apparent	consump	of ticn	consump ratio	tion as a to the OrdD (weighted)
	1970- 1972	1976- 1978	1970- 1972	1976- 1978	1970- 1972	1976- 1978	1970- 1972	1976- 1978
Products (211)								
Beef and yeal, fresh (101:kg) ^a /	1.3	1.3	100.C	99.5	0.0	0.5	0.042	0.038
Milk and cream, condensed (201;g) / b/	325.0	381.0	97.8	96.6	2.1	3.4	0.081	0.120
Hilk and cream, dried (204;g)a/b/	236.0	339.0	18.3	20.9	81.7	79.1	0.059	0.073
Butter (207;g) <u>b</u> /		50.0		4.1		95.9		0.013
Vegetables, tinned or bottled (322;g)a/b/	50 J	9.0	20.4	22.0	19.5	101.9 Ro 2	0.001	0.000
Fish, tinned (40(;g)4/0/	1.8	5.3	67.5	09.6	32.5	0.4	0.029	0.093
Figur, cereal, other than wheat $(607;kg)b/$		ó.4		93.8		1.2		0.010
Bread, ships' biscuits, etc. (704:kg)b/	•••	0.1		29.4		0.4		0.004
Raw sugar (801;kg)a/	6.9	7.7	100.0	99.6	0.0	0.4	0.173	0.179
Refined sugar (804;kg) a/b/	7.2	9.3	<u>91.4</u>	84.1	8.6	15.9	0.179	0.227
Prepared animal feeds (312201;kg) b/	•••	1.6	• • •	99.7	•••	0.3	•••	0.008
Vegetable oils (311)								
0il, soya bean (510 and 513;kg) c/a/	0.1		100.0	106.6	0.0	••••	0.007	
0il, ground nut (522 and 525;kg) c/a/d/	0.2	0.2	100.9	100.0	0.4	0.0 3 h	0.115	0.167
011s, other, of vegetable origin (534 and 537;kg) b/	•••	1.)	•••	303.0	•••	3.4	•••	0.105
Textiles (321)								
Wool pured and mixed (103;g)				0.0		100.0	•••	0.000
Cotton yarn, pured and nixed (109:g) <u>a/b</u> / Cotton woven fabrics (128;g) <u>c/a/</u>	478.0 380.0	528.0 722.0	58.7 92.8	96.9 99.8	41.3 7.2	1.1 0.2	0.137 0.117	0.122 0.235
Fulp and paper (341)								
Wood pulp, mechanical (101; kg) e/f/	-	•••	100.0	•••	0.0	•••	0.000	•••
Pulp of fibres other than wood (104; KG)	0.2	0.3	90.7	91.7	9.3	5.3	0.095	0.167
Consprint (119;kg) a/ Other printing and wiriting paper (122;kg) a/	0.3	0.5	7.1 15.h	67.7	A.	91.1 76.7	0.012	0.019
Industrial chemicals (351)								
Methanol (methyl alcohol) (121;g)	73.0	• • •	100.0	•••	0.0		0.009	• • •
Sulphuric acid (147;kg)		0.1		89.9	• • •	10.1		0.001
Nitric acid (149;kg) a/	-	-	0.0	0.0	100.9	100.0	0.000	0.000
Amonia (158;kg) a/g/		-	3.06	96.0	9.2	4.0	0.000	0.000
Caustic soda (159;Kg) e/f/	0.2				100.0	100.0	0.007	
Calcium cardide (1/5;4g) a/	56.0	60.0	0.0	0.0	100.0	100.0	0.117	0.109
Hitrogenous fertilizers (201;kg) a/	3.6	0.8	10.4	238.4	39.5	32.6	0.164	0.029
Phosphatic fertilizers (204 and 207;kg) b/	0.3	0.3	0.0	0.0	100.0	100.0	0.022	0.002
Potassic fertilizers (210;kg) b/	C.1	0.2	0.0	0.0	100.0	100.0	0.005	0.010
Insecticides, fungic., disinfect., etc. (216;g) a/	90.0	•••	23.7	•••	76.3	• • •	0.043	•••
Rubber, synthetic (301;kg)	•••	€5.0	• • •	0-0	•••	100.0	•••	0.008
Petroleum refineries (353)		-1 -		66 1				1 -
Distillate fuel oils (019;kg) a/ Residual fuel oils (022;kg)	13.0	24.9 59.5	199.8	93.4 112.6	9.6	6.1	0.048	0.040 0.112
Iron and steel (371)								
Wire rods (028;kg)	•••	0.9		0.0	• • •	100.0	•••	C.029
Angles, shapes, sections, 80 mm or more (036;kg)	•••	0.1		0.0	• • •	100.0	• • •	0.004
Angles, shapes, sections, under 80 mm (037;kg)	•••	0.1	•••	0.0		100.0	•••	0.002
Plates (heavy), over 4.75 mm (040;kg) r/	0.2	0.5	0.1	0.0	100.0	100.0	0.005	510.0
Plates (Medium), 3 to 4.7 MB (043;Kg) f/ Tubes semilars (076:bs) -/	- 	0.2	0.0	0.0	100.0	100.0	0.000	0.017
Dubes, wolded (079:kg) f/	0.0	-	2.0	0.0	100.0	100.6	0.012	0.000
Steel castings in the rough state (085:kg) f/	-	-	0.0	0.0	100.0	100.0	0.000	0.000
Steel forgings (039;kg) f/	-	-	0.0	0.0	100.0	100.0	0.000	0.000
Non-ferrous metals (372)		. -	.					
Copper, refined, unwrought (004;g)g/ f/ b/		1.0	0.0	5.0	100.0	100.0	0.000	0 000
Alusinus, unvrought (022;g)a/	r.0	70.0	0.0	0.0	100.0	0.001	0.000	0,004
Zinc, unvrought (033;g)a/	233.0	257.0	0.0	2.0	100.0	100.0	2.001	6.051
Tin. unvrought (049:g) a/	21.0	62.0	398.2	279.8	3.4	0.1	0.089	0.257
					-		,	

Source: UNIDO Handbook of Industrial Statistics, ID/284; E.82.IIB.2;1982.

.

ÿ

1

a/ For first period: 1971 and 1972.
b/ For second period: 1976 and 1977.
c/ Estimates.
d/ For second period/ 1976 only.
e/ Trade data for 1970 refer only to trade with OECD countries.
f/ For first period: 1970 only.
g/ For second period: 1977 only.

1 S IC	Description	All countries	Developing countries	Comparable country group <u>a</u> /
311,2	Food products	1.03	1.24	1.30
313	Beverages	0.48	0.52	0.87
314	Tobacco	1.60	1.38	1.73
321	Textiles	0.44	0.36	0.63
322	Wearing apparel	0.05	0.07	0.10
323	Leather and fur products	0.29	0.31	0.49
324	Footwear	0.73	0.82	0.96
331	Wood and cork products	1.02	1.16	1.21
332	Furniture and fixtures excluding metal(332)	0.35	0.41	0.41
341	Paper	0.68	0.68	0.74
342	Printing and publishing (342)	0.77	0.83	0.73
351	Industrial chemicals	1.29	1.30	1.34
352	Other chemicals	0.73	0.67	0.76
353	Petroleum refineries	7.77	9.25	10.92
354	Miscellaneous products of petroleum and coa	1		•••
355	Rubber products	1.75	1.26	1.46
356	Plastic products	0.86	0.89	0.90
361	Pottery, china and earthenware	0.35	0.28	0.35
362	Glass	0.50	0.37	0.54
369	Other non-metallic mineral products	1.26	1.29	1.82
371	Iron and steel	0.07	0.04	0.07
372	Non-ferrous metals		• • •	
381	Metal products, excluding machinery	0.63	0.61	0.65
382	Non-electrical machinery	0.90	0.72	0.92
3 83	Electric machinery	1.13	1.03	0.97
384	Transport equipment	1.49	1.38	1.79
385	Professional and scientific equipment,			
	photographic and optical goods	0.60	0.56	0.68
390	Other manufactures	0.27	0.23	0.18
300	Total manufacturing	0.46	0.48	0.65

Relative degree of industrialization in the 1970s by industrial branch

Source: UNIDO: Handbook of Industrial Statistics, 1D/284, E.82.II.B.2, 1982.

a/ Large countries.

Y

_ 72 _

1910 and 1911		
Branch (ISIC)	Relative Sp in Manufactu	ecialization ring Output
	1970	1977
Food products (311/2)	2.21	1.48
Beverages (313)	0.52	0.60
Tobacco (314)	9.15	9.63
Textiles (321)	1.55	1.91,
Wearing apparel (322)	0.01	$0.03\frac{0}{h}$
Leather and fur products (323)	0.16	0.400/
Fcotwear (324)	0.37	1.10
Wood and cork products (331)	1.11	1.37
Furniture and fixtures excluding metal (332)	0.10	0.15
Paper (341)	0.16	0.25
Printing and publishing (342)	0.18	0.44
Industrial chemicals (351)	0.52).94
Other chemicals (352)	1.27	ú . 58
Petroleum refineries (353)	17.20	<u>1</u> 4.37
Miscellaneous products of petroleum		
and coal (354)	• • • •	••••
Rubber products (355)	1.32	0.61
Plastic products (356)	0.12	0.31_{h}
Pottery, china and earthenware (361)	0.28	$0.37\frac{b}{b}$
Glass (362)	0.24	0.57 <u>0</u> /
Other non-metallic mineral products (369)	0.99%	2.20,
Iron and steel (371)	0.03 <u>0/</u>	0.040/
Non-ferrous metals (372)	• • • •	••••
Metal products, excluding machinery (381)	0.19	0.485
Non-electrical machinery (382)	0.05	0.140/
Electrical machinery (383)	0.17	0.27
Transport equipment (384)	0.15	0.38
Professional and scientific equipment, photographic and optical goods (385)	0.02	0.02 ^{b/}

Indicators of Net Manufacturing Output. 1070 and 1077

Source: UNIDO Handbook of Industrial Statistics, ID/284; E.82.II.B.2, 1982.

 $\frac{a}{b}$ Relative to all large countries. $\frac{b}{b}$ Estimated.

.

Y

t

INDONESIA

	NUMBER OF ES	TABLISHMENTS	EHPLO	DYMENT	WAGES AND S	ALARIES
	ESTABLISHM.	ESTABLISHN.	EMPLOYEES	EMPLOYEES	•	~ .
SIC ISIC-DESCRIPTION	1970	1980	1970	1980	1970	1980

BOOD TOTAL NANUFACTURING	<u>5049 A</u> /			<u> </u>	23045 1/	448/92
3110 FOOD PRUDUCTS	1045	10/4	¥2000	153500	7950	71370
3130 HEVERAGES	50	190	3900	7200	330	1560
3140 TOBACCO			132000	158700	3730	33563
3210 TEXTILES	1640	1957	142500	229900	5710	77249
3220 WEARING APPAREL EXCEPT FOOTWEAR	80	134	• 3000	15500	35	4881
3230 LEATHER PRODUCTS	28	40	1600			
3240 FOOTWEAR, EXCEPT RUBBER OR PLASTIC	23	57	3300	7500	250	3294
3310 WOOD PRODUCTS, EXCEP [FURNITURE	107	483	7000	58900	360	31250
3320 FURNITUHE+EXCEPT METAL	43	<u> </u>	1700	5700		
3-10 PAPER AND PRODUCTS	40	84	4450	11900	245	7467
3420 PRINTING AND PUBLISHING	196	279	12200	19900	695.	12149
3510 INDUSTRIAL CHENICALS	43		5000	13900		17067
3520 OTHER CHEMICALS	187	297	20250	40800	1570	34080
3530 PETROLEUM REFINERIES	••••					
35-0 NISC. PETROLFUM AND COAL PRODUCTS	0	. 0	0	0	0	Ó
3550 RUBBER PRODUCTS	56	222	5650	36900	750	20588
3560 PLASTIC PRODUCTS	30	221	5500	17700	270	6043
3610 POTTERY CHIJA FARTHENVARE	6	21	600	6800	70	2530
3620 GLASS AND PRODUCTS	26	49	3150	8900	140	5668
3690 OTHER NGH-METALLIC MINERAL PRODUCTS	295	570	8750	30700	880	17342
3710 TRUN AND STEEL		23		8800		8932
3720 NON-FERNOUS METALS		0		0		
3510 FAURICATED NETAL PRODUCTS	150	363	13700	40800	870	21207
3020 NACHINERY EXCEPT FLECTRICAL	47	132	4400	11900	280	4101
3330 MACHINENY ELECTRIC	19	113	3400	37400	200	2431A
3840 TRANSPORT FUULPHENT	39	176	6450	29900	420	27475
3850 PROFESSIONAL & SCIENTIFIC FOULPMENT		25		1000		340
SALA ATHER MEMBERSTINES BRADIETE						300

.

.

SOURCE: UNIDO DATA BASE, INFORMATION SUPPLIED BY THE UNITED NATIONS STATISTICAL OFFICE, WITH ESTIMATES BY THE UNIDO SECRETARIAT.

FOUTNOTES: Δ/ 3000-3530 74

Annex Table

エ

.

.

NUMBER OF ESTABLISHMENTS, EMPLOYMENT, VAGES AND SALARIES _____ BRANCH SHARES (IN PERCENT) IN TOTAL MANUFACIURING

. .

__ INDONESIA____

. . .

. ____

ľ

NUMBER OF E ESTABLISHM.	STABLISHMENTS ESTABLISHM. (FNT)	EMPLOYME EMPLOYEES E (PERCENT	NT	WAGES AND S	ALARIES
1970	1980	1970	1980	1970	1980
100.00 A	/100.00 A	/100.00	100.00_1/	<u>100.00 A/</u>	100.00 A
20.70	20.78	18.90	15.94	. 29.75	15.90
0.99	1.24	0.80	. 0.75 .	1.32	1.85
17.23	8.88	27.12	16.48		
32.48	24.30	29.28	23.87	22.80	17.21
. 1.58	1.66	0.62	1.61	0.14	1.09
0.\$5	0.50	0.33	0.32	0.32	
0.46	. 0.71	0.68	0.78	1.00	0.73
2.12	6.00	1.44	6.12	1.44	6.96
	1.70	0.35	0.59	0.36	
• 0.79	1.04	0.91	1.24	0.98	1.64
3.88	3.46	2.51	2.07	2.78	2.71
0,85	I.20	1.03	1.44	1.76	3.80
3.70	3.69	4.16	4.24	6.27	7.59
•••	•••	• • • •			
0.00	0.00	0.00	0.00	0.00	0.00
1.11	2.76	1.16	3.83	2.99	4.59
1.58	2.74	1.13	1.84	1.08	1.35
0.12	0.26	0.12	0-71	0.28	0.56
0.51	0.61	0.65	0.92	0.56	1.26
S 4.06	7.08	1.80	3.19	3.51	3.86
	0.29		0.91		1.00
	0.00		0.00		0.00
2.97	4.51	2.82	4.24	3.47	4.75
0.93	1.64	0.90	1.24	1.12	1.81
0.38	1.40	0.70	3.88	0.80	5.42
		1 22		1 40	
0.77	2.21	1.33	A. 10	1.00	N 12
0.77 NT 0.00	2.21	0-00 ·	3.10	1.00	D+12 (- 00
	1970 100.00 A ·20.70 0.99 17.23 ·32.48 1.58 0.55 0.46 2.12 0.85 0.79 3.88 0.85 3.70 0.00 1.11 1.50 0.12 0.51 FS 4.06	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

.

(Annex Table 11 continued)

1

.

.

INUONESIA

- - -

GROSS OUTPUT, VALUE_ADDED. GBOSS FIXED CAPITAL FORMATION______ NONEY VALUES IN NATIONAL CURRENCY (AT CURRENT PRICES)

.

.

.

	GROSS OUTPUT		VALUE AD	DED	GROSS FIXED	CAPITAL Ion
	PRODUCERS	PRODUCERS	FACTOR	EACTOR		<u> </u>
	ALUES	c)	VALUES			
ISIC ISIC-DESCRIPTION	1970	1980	1970	1980		1940
3000 TOTAL MANUFACTURING	300420 1/	6818400 1/	91210 A/	2130000 A/	37400	452840
3110 FOOD PRODUCTS	104970	1023600	32520	235900	15120	40790
3130 BEVERAGES	3760	78800	1725	32100	70	4580
3140 TUMACCO	93410	1204000	26240	406700	1320	13660
3210 TEXTILES	38945	841300	10780	263400	10200	107300
3220 WEARING APPAREL + EXCEPT FOOTWEAR	775	28700	655	9100	0	3690
3230 LEATHER PRODUCTS	620	18400	170 -	3300	170	1300
3240 FOOTWEAN, EXCEPT RUBBER OR PLASTIC	2530	31300	1550	16400	120	
3310 WOUD PRODUCTS+EXCEP! FURNITURE	2250	376800	785	149800	100	43730
3320 FURNITURE EXCEPT HETAL	360 .	8800	· 170	3600	0 '	1140
3410 PAPER AND PRODUCTS	765	102500	240	31900		
3420 PRINTING AND PUBLISHING	2525	89300	785	31900	290	8140
3510 INDUSTRIAL CHEMICALS	. 3060	316000	1265	90800	730	21280
3520 OTHER CHEMICALS	16100		4315	151300	1030	22210
3530 PETROLEUM REFINERIES	•••			•••	0	, ,
3540 HISC. PETROLEUM AND COAL PRODUCTS	0	0.	0.	• 0	റ്	0
3550 RUJBER PRODUCTS	8735	\$40400`		102600		13280
3560 PLASTIC PRODUCTS	1315	71200	280	15500	300	7910
3610 PUTTERY+CHINA+EARTHENWARE	215	12400	. 45	5100	0	7680
3620 GLASS AND PRODUCTS	795	48100	160		10	7210
3690 STHER NON-METALLIC MINERAL PRODUCTS	5490	245600	2865	125100	280	68430
3710 IRON AND STEEL	•••	237700	•••	67000	0	8130
3720 RON-FERROUS METALS	• • • •	0			0	0
3810 FAURICATED HETAL PRODUCTS	7540	285300	3040	74200	1130	20340
3920 MACHINERY.EXCEPT ELECTRICAL	1170	81300	415	33400	60	3541
3530 NACHINENY ELECTRIC		387200		112600	330	16020
3840 TRANSPORT EUUIPMENT	2980	402800	845	136100	1460	20340
3850 PROFESSIONAL & SCIENTIFIC EQUIPMENT	0	2800	• 0	1400	0	170
3900 OTHER MANUFACTURED PRODUCTS	920	24700	745			1940

· · ·

-

· · · · · · · · ·

.

.

.

.

. ______

SOURCE: UNIDO DATA_BASE, INCORMATION SUPPLIED BY THE UNITED NATIONS STATISTICAL OFFICE, WITH ESTIMATES BY THE UNIDO SECRETARIAT.

د. به منطقهایی بایین بایانین این این با بایک قامه به میگرد.

.

FOUTNOTES:

<u>1/</u> 3000 3530

ð

Annex

Table

12

INDQHESIA

GROSS OUTPUT, VALUE ADDED. GROSS FIXED CAPITAL FORMATION_____ Branch Shares(In Percent) in total manufacturing

.

· · · · · · · · · · · · · · · · · · ·	GROSSOUT	PUT	VALUE AD	ED	GROSS FIXED	CAPITAL
•	PRODUCERS" P	RODUCERS	FACTOR	FACTOR	FORMAT	IUN
· · · · · · · · · · · · · · · · · · ·	VALUES (PERCENT	')	VALUES (PERCENT	[)	(PERCE	NT)
SIC ISIC-DESCRIPTION	1970	1980	1970	1980	1970	1980
BOD TOTAL MANUFACTURING	100.00 1/	100.00 4/	100.00 A/	100.00 A/	100.00	100.0
110 FOOD PRUDUCTS	34.94	14.87	35.65	11.08	40.43	9.0
130 DEVERAGES	1.25	1.16	1.89	1.51	0.19	1.0
140 TUBACCO	31.09	17.66	28.77	19.09	3.53	3.0
210 TEATILES	12.96	12.34	11.82	12.37	27.27	23.7
226 WEARING APPAREL FXCEPT FOOTWEAR	0.26	0.42	0.72	0.43	0.03	0.6
230 LEATHER PRODUCTS	0.21	0.27	0.19	0.15	0.45	0.
240 FOUTWEAR. EXCEPT RUBBER OR PLASTIC	0.84	0.46	1.70	0.77	0.32	0.
310 WOOD PRUDUCTS EXCEPT FURNITURE	0.75	5.,59	0.86	7.03	0.27	
120 FURNITURE EXCEPT NETAL	0.12	0.13	0.19	0.17	0.00	0.
ATO PAPER AND PRODUCTS	0.25	1.50	0.26	1.50	0.03	5.
20 PRINTING AND PUBLISHING	0.84	1.31	0.86	1.50	0.78	1.
10 INDUSTRIAL CHENICALS	1.02	4.63	1.39	4.26	1.95	4.
20 OTHER CHUNICALS	5.36	5.42	4.73	7.10 -	2.75	4.
30 PETROLEUM REFINERIES					0.00	0.
A NISC. PETROLEUM AND COAL PRODUCTS	0.00	0.00	0.00	0.00	0.00	0.
SO RUMER PRODUCTS	2.91	7.93	1.36	4.82	12.35	2.
50 PLASTIC PROJUCTS	0.44	1.64	0.31	0.73	0.80	
10 POTTERY CHINA FARTHENWARE	0.97	0.18	0.05	0.24	0.00	1.
SZA GLASS AND PRODUCTS	0.26	0.71	0.18	1-06	0.03	
ON CTHER HOU-RETALLIC MINERAL PRODUCTS	1.03	3.60	3.14	5.87	0.75	15.
THE THE AND STEFL		3.49		3,15	0.00	1.
20 NON-FERNOUS METALS		0.00		0.00	0.00	0.
SIG FARRICATED METAL PRODUCTS	2.51	4.18	3.33	3.48	3.02	4.
SZO PACHINERY, EXCEPT ELECTRICAL	0.39	1.19	0.45	1.57	0.21	0.
30 HACHINERY ELECTRIC	0.40	5.68	0.41	5.29	0.8A	. 3.
40 TRANSPORT EQUIPPENT	0.99	5.91	0.93	6.39	3.90	4.
50 PROFESSIONAL & SCIENTIFIC EQUIPHENT	0.00	0.04	0.00	0.07	0.00	Ű.
900 CTHER MARUFACTURED PRODUCTS	0.31	0.36	0.82	0.39	0.05	0.

.

.

.

.

÷.

FOUTNOTES:

(Annex Table 12 continued)

----INDOHESIA

PERFORMANCE OF MANUFACTURING SECTOR BY BRANCHES

(THOUSA 1970 4/ 49Å/ 85 	ND US\$) 1980 4234 225 514 910 215 109 132 460 496 42 608 183 1498 815	PER 1970 27.54/ 22.9 19.1 14.2 53.0 5.3 47.1 16.1 16.1 16.1 16.1 16.1 16.1 34.8 34.8	CENT 1980 21.14/ 30.3 25.9 8.3 29.3 53.6 34.5 20.1 20.8 65.8 23.4 38.1 18.8	PE 1970 46.5 4.1 5.0 94.6 100.0 7.7 12.7 4.2 36.9 57.7	RCENT 1910 17.3 14.3 3.4 40.8 40.8 41.2 13.7 29.2 31.7 24.1 25.5 4	PER 1970 30.44/ 31.0 45.9 27.7 84.5 27.4 61.3 34.9 47.2 31.4 31.1	31.24 1980 31.24 23.3 40.7 33.8 31.3 31.7 17.9 52.4 39.6 40.9 31.1
1970 A/ 49A/ 85 95 83 18 22 17 185 20 11 16 11 81 42	1980 4234 225 514 910 215 109 132 460 496 42 608 183 1498 815	1970 27.5 <u>4</u> / 22.9 19.1 14.2 53.0 5.3 47.1 16.1 45.9 52.9 102.1 88.5 34.8	1980 21.14/ 30.3 25.9 8.3 29.3 53.6 34.5 20.1 20.8 65.8 23.4 38.1 18.8	1970 46.5 46.5 5.0 94.6 100.0 7.7 12.7 4.2 36.9 57.7	1940 17.3 3.4 40.8 40.8 40.5 41.2 13.7 29.2 31.7 24.1 25.5 4.1	1970 30.44/ 31.0 45.9 27.1 27.7 64.5 27.4 61.3 34.9 47.2 31.4 31.1	1980 31.24 23.3 40.7 33.8 31.3 31.7 17.9 52.4 39.8 40.9 31.1
▲/ 49▲/ 85 95 83 18 22 17 185 20 11 16 11 16 11 81	4234 225 514 910 215 109 132 460 496 42 608 183 1498 815	27.54/ 22.9 19.1 14.2 53.0 5.3 47.1 16.1 45.9 52.9 102.1 88.5 34.8	21.14/ 30.3 25.9 8.3 29.3 53.6 34.5 20.1 20.8 65.8 23.4 38.1 18.8	46.5 4.1 5.0 94.6 100.0 7.7 12.7 4.2 36.9 57.7	17.3 14.3 3.4 40.8 40.5 41.2 13.7 29.2 31.7 24.1 25.5 4	30.44/ 31.0 45.9 26.1 27.7 04.5 27.4 61.3 34.9 47.2 31.4 31.1	31.24 23.3 40.7 33.8 31.3 31.7 17.9 52.4 39.6 40.9 31.1
85 95 83 18 22 17 185 20 11 16 11 16 11 81	225 514 910 215 109 132 460 496 42 608 183 1498 815	22.9 19.1 14.2 53.0 	30.3 25.9 8.3 29.3 53.6 34.5 20.1 20.8 65.8 23.4 38.1 18.8	46.5 40.1 5.0 94.6 100.0 7.7 12.7 4.2 36.9 57.7	17.3 14.3 3.4 40.8 40.5 41.2 13.7 29.2 31.7 24.1 25.5	31.0 45.9 26.1 27.7 04.5 27.4 61.3 34.9 47.2 31.4 31.1	23.3 40.7 33.A 31.3 31.7 17.9 52.4 39.6 40.9 31.1
95 83 18 22 17 185 20 11 16 11 16 11 81	514 910 215 109 132 460 496 42 608 183 1498 815	19,1 14.2 53.0 5.3 47.1 16.1 45.9 52.9 102.1 88.5 34.8	25.9 8.3 29.3 53.6 34.5 20.1 20.8 65.8 23.4 38.1 18.8	4.1 5.0 94.6 100.0 7.7 	14.3 3.4 40.8 40.5 13.7 29.2 31.7 24.1 25.5	45.9 26.1 27.7 04.5 27.4 61.3 34.9 47.2 31.4 31.1	40.7 33.8 31.3 31.7 17.9 52.4 39.6 40.9 31.1
83 16 22 17 185 20 11 16 11 81 42	910 215 109 132 460 496 42 608 183 1498 815	14.2 53.0 	8.3 29.3 53.6 34.5 20.1 20.8 65.8 23.4 38.1 18.8	5.0 94.6 100.0 7.7 12.7 4.2 36.9 57.7	3.4 40.8 40.5 13.7 29.2 31.7 24.1 	28.1 27.7 04.5 27.4 61.3 34.9 47.2 31.4 31.1	33.A 31.3 31.7 17.9 52.4 39.6 40.9 31.1
18 22 17 185 20 11 16 11 81	215 109 132 460 496 42 608 183 1498 815	53.0 5.3 47.1 16.1 45.9 52.9 102.1 88.5 34.8	29.3 53.6 34.5 20.1 20.8 65.8 23.4 38.1 18.8	94.6 100.0 7.7 12.7 4.2 36.9 57.7	40.8 40.5 41.2 13.7 29.2 31.7 24.1 25.5	27.7 	31.3 31.7 17.9 52.4 39.6 40.9 31.1
22 17 185 20 11 16 11 81	109 132 460 496 42 608 183 1498 815	5.3 47.1 16.1 45.9 52.9 102.1 88.5 34.8	53.6 34.5 20.1 20.8 65.8 38.1 18.8	100.0 7.7 12.7 4.2 36.9 57.7	40.5 41.2 13.7 29.2 31.7 24.1 25.5	84.5 27.4 61.3 34.9 47.2 31.4 31.1	31.7 17.9 52.4 39.6 40.9 31.1
17 185 20 11 16 	132 460 496 42 608 183 1498 815	47.1 16.1 45.9 52.9 102.1 88.5 34.8	34.5 20.1 20.8 65.8 23.4 38.1 18.8	100.0 7.7 12.7 4.2 36.9 57.7	41.2 13.7 	27.4 61.3 	17.9 52.4 39.8 40.9 31.1
	460 496 42 608 183 1498 815	16.1 52.9 52.9 88.5 34.8	20.1 65.8 65.8 38.4 38.1 18.8	7.7 	13.7 29.2 31.7 24.1 25.5	61.3 34.9 47.2 31.4 31.1	52.4 .39.8 40.9 31.1
20 11 16 11 81	496 42 608 183 1498 815	45.9 52.9 102.1 88.5 34.8	20.8 65.8 23.4 38.1 18.8	<u> 12.7 </u>	29.2 31.7 24.1 25.5	34.9 47.2 31.4 31.1	39.8 40.9 31.1
11 16 11 81	42 608 183 1498 815	52.9 102.1 88.5 34.8	65.8 23.4 38.1 18.8	4.2 36.9 57.7	31.7 24.1 25.5	47.2 31.4 31.1	40.9 31.1
	608 183 1498 815	102.1 88.5 34.8	23.4 38.1 18.8	4.2 36.9 57.7	24.1 25.5	31.4 31.1	31.1
<u> </u>	183 1498 815	88.5 34.8	38.1 18.8	36.9 57.7	25.5	31.1	
81	1498 815	34.8	18.8	57.7	22 4		35.7
. 23	81 5	5 4 4			~J++	41.3	28.7
/ 03		30.4	22.5	23.9	14.7	26.8	41.0
·····							
, 61	739	60.5	20.1	372.6	12.9	14.2	19-0
10	112_		39.0	107.1	51.0	21.3	21.8
21	389	155.6	49.6		150.6	20.9	41.1
) 17	735	87.5	25.2	6.3	32.0	20.1	46.8
38	351_		13.9	9.8	54.7	52.2	50.9
	4661	•••	13.3		12.1		28.2
•••	• • •						
56		28,6	28.7'	37.2	27.4	40.3	26.0
24	405	67.5	24.3	. 19.3	10.6	35.5	41.1
54	1594	53.3	21.6	58.0	14.2	31.5	29.1
	1223	49.7		172.8	14.9	24.4	33.6
	90		26.3		8.6		50.0
•••	160	24.2	23.6	4.0	23.4	81.0	33.6
	24 54 59 30	24 405 54 1594 59 1223 90 30 30 160	24 405 67.5 54 1594 53.3 59 1223 49.7 90 30 160 24.2	24 405 67.5 24.3 54 1594 53.3 21.6 59 1223 49.7 20.2 90 26.3 30 160 24.2 23.6	24 405 67.5 24.3 19.3 54 1594 53.3 21.6 80.0 59 1223 49.7 20.2 172.8 90 26.3 30 160 24.2 23.6 4.0	24 405 67.5 24.3 19.3 10.6 54 1594 53.3 21.6 80.0 14.2 59 1223 49.7 20.2 172.8 14.9 90 26.3 8.6 30 160 24.2 23.6 4.0 23.4	24 405 67.5 24.3 19.3 10.6 35.5 54 1594 53.3 21.6 88.0 14.2 31.5 59 1223 49.7 20.2 172.8 14.9 24.4 90 26.3 8.6 8.6 30 160 24.2 23.6 4.0 23.4 61.0

٠

FOOTNOTES:

A/ _300<u>0</u>-353<u>0</u>

I. 78

Annex Table 13

- -

. ...

1.1.1

Annex Table 14

٠

Productivity index - value added per employee relative to total manufacturing (=100)

1970 and 1980

		1970	1980	
300	Total manufacturing	100	100	_
311	Food products	200	71	
313	Beverages	240	203	
314	Tobacco	100	117	
321	Textiles	40	51	
322	Wearing apparel, except footwear	120	26	
323	Leather products	60	49	
324	Footwear, exept rubber or plastic	260	100	
331	Wood products, except furniture	60	117	
332	Furniture, except metal	60	29	
341	Paper and products	20	123	
342	Printing and publishing	40	74	
351	Industrial chemicals	140	300	
352	Other chemicals	120	168	
353	Petroleum refineries	• • •	• • •	
354	Misc. petroleum and coal products		• • •	
355	Rubber products	120	126	
356	Plastic products	20	40	
361	Pottery, china, earchenware	40	34	
362	Glass and products	20	114	
369	Other non-metallic mineral products	180	185	
371	Iron and steel	• • •	349	
372	Non-ferrous metals			
381	Fabricated metal products	120	83	
382	Machinery, except electrical	60	129	
383	Machinery electric	60	137	
384	Transport equipment	80	209	
385	Professional + scientific equipment		63	
390	Other manufactured products	60	66	

Source: Annex Table 13.

i

	Establishmer		Persons Emple	Engaged oyees	Average Size	Value	Added	Gross	Output	Popu- lation	Persons Engaged	
Region	Number	Per- centage Share	(000)	Per- centage Share	Enpl. per Estab.	Rp. Bill.	Per- centage Share	Rp. • Bill.	Per- centage Share	Mill.	Per (000) Pop.	No. of Estab. per Mill. Pop.
Quatra	562	7.9	54.9	8.3	98	57.8	12.1	173.4	13.4	23.3	2.35	24
Java Total	6,034	85.1	572.2	86.4	94	395.2	82.9	842.2	65.1	82.7	6.92	73
Jakarta	878	12.4	27.9	13.3	100	92.9	19.5	288.0	22.3	5.6	15.70	157
Java, West	1,598	22.5	116.6	17.6	73	90.6	19.0	205.2	15.9	23.3	5.01	68
Java, Central	1,534	22.3	147.9	22.3	93	73.0	15.3	24.2	1.9	23.6	6.26	67
Yogjakarta	155	2.2	13.8	2.1	89	6.4	1.3	20.2	1.6	2.7	5.11	57
Java, East	1,814	25.7	206.0	31.1	113	132.3	27.7	304.7	23.5	27.5	7.49	66
Kalmantan	162	2.3	14.6	2.2	90	13.0	2.7	37.6	2.9	5.7	2.57	28
Sulawesi	167	2.4	9.3	1.3	50	9.2	1.9	25.2	1.9	9.4	0.88	18
Others	166	2.3	11.7	1.8	120	3.3	0.7	15.4	1.2	9.5	1.50	17
Total	7,091	100.0	661.7	100.0	93	478.5	100.0	1,093.8	100.0	130.6	5.07	54

Regional Distribution of Medium and Large Scale Manufacturing Enterprises 1974.

Source: BPS 1974-1975 Industrial Census.

I

Π

Annex Table 15

			Number of establishments					Persons engaged						Value added (Nill, Rp.)					
ISIC	Description	Cottage	Small	Nedium	Large	N and L	Çot Number	tage I	Sma. Number	<u>11</u> X	<u>Ha</u> Humber	nd L	Cottage	z	Small	1	M and L	x	
311.2	Food products	429.250	22.559	1.307	231	1.538	1. 380. 720	35.4	143.908	A1 . 9	135 641	20.5	36.053.3	43.7	24.756.2	46.7	110.114.2	21.1	-
313	Beverages	1.670	416	52	8	60	5.495	0.1	3 512	1 0	4 704	0.7	205.6	0.2	540.5	1 0	14 435.1	1.0	
314	Tobacco	3, 364	1.300	550	219	769	14.962	0.4	3 774	1 1	128 041	19 4	1 040 9	1 1	340.9	0.4	102.174.4	21.4	
321	Textiles	129.390	4.649	1.638	29R	1.936	108.855	10.2	46 757	13.6	164 008	24 9	A 807 0	5.6	A 789 A	0.1	67 807.9	14.2	
322	Wearing apparel	7.803	625	67	5	72	26.288	0.7	4.770	1.4	2 617	0 4	1 372.0	0.2	683.8	1.1	536.8	0.1	
323	Leather and products	1.018	155	22	Š	27	4.225	0.1	1.182	0.3	1 446	0.7	293.2	0.4	251 .8	0.5	749.7	0.2	
324	Tootwear	1.469	363	27	Ĩ	31	5.756	0.2	2.666	0.8	5 082	0.8	575 3	0.7	528 9	1.0	3 118.2	0.7	
331	Wood products	502.061	3.224	281	41	322	1.536.372	39.4	25.566	7.4	19.034	2.9	17 426 2	21 1	4.543.0	A . A	11. 127.6	2.4	
332	Furniture and fixtures	32.801	2.232	77	8	85	107.632	2.7	16.114	4.7	1.114	0.5	4.522.4	5.5	2.448.5	4.6	1,207.0	0.2	
341	Paper and products	1.524	65	45	15	60	5.144	ō.i	660	0.2	7.281	1.1	206.4	0.1	72.4	0.1	6.300.7	1.3	
342	Printing, publishing	1,104	802	198	n	221	4.334	0.1	7.407	2.2	14.701	2.2	274.8	0.3	1.626.1	3.1	6.396.2	1.3	
351	Industrial chemicals	-	120	51	15	66	-		1.064	0.3	4 509	0.7	-		451.7	0.9	4.714.3	1.0	
352	Other chemical products	1.984	503	172	56	228	8.013	0.2	4.255	1.2	24.292	3 7	407.6	0.5	1.020.2	1.9	16.472.8	3.4	
353	Petroleum refineries	-	-	-	•			••••	-		,		-		-		-	•••	
354	Petroleum, coal products	-	-	-	-	-	-		-		_		-		-		-		
355	Rubber products	1.541	454	329	139	468	6.275	0.2	4.141	1.2	45 745	6 9	201.8	0.4	1.277.8	2.4	38.165.7	8.0	
356	Plastic products nec	1.792	302	112	25	137	6.658	0.2	2.910	0.8	9.256	1.4	440.7	0.5	587.8	1.1	3,121.4	0.6	
361	Pottery, chima, etc.	21,010	204	18	4	22	61.549	1.6	1.428	0.4	1.068	0.2	834.9	1.0	119.2	0.2	254.5	0.1	
362	Glass and products	-	21	31	19	50	-		196	0.1	5.124	0.4	-		14.2	0.1	2.617.4	0.5	
369	Non-metal products, nec	59,589	6.524	390	20	410	201-654	5.2	45.292	13.2	18.405	2.8	8.699.8	10.5	4.349.7	8.2	13.760.4	2.9	
371	Iron and steel	· -	2	6	3	9			21	0	933	0.1	-		_		829.6	0.2	
372	Non-ferrous untals	-	4	3	6	ġ	-1		29	ō	1.127	0.2	-		7.9	0	3.169.1	0.7	
381	Natal products	13,600	2,265	181	58	239	49.531	1.3	16.165	4.7	21.292	3.2	2.540.1	3.1	. 309.7	4.4	12.183.3	2.6	2
382	Machinery mec		162	52	16	68	-		1.419	0.4	7.312	1.1	-,		301.0	0.6	9.236.3	1.9	2
383	Electrical machinery	-	63	38	28	66	-		553	0.2	12.175	1.8	-		308.7	0.6	16.058.5	3.4	Ň
384	Transport equipment	1,832	426	79	33	112	6.242	0.2	3.536	1.0	14.607	2.2	419.9	0.5	873.8	1.6	22.646.8	4.7	1
385	Professional goods	-	40	12	1	13	-		390	0.1	482	0.1	-	•••	73.2	0.1	155.4	Ó	Ē
390	Other industries	21,709	708	52	13	65	65,282	1.7	5,499	1.6	8,394	1.3	2,066.6	2.5	720.1	1.4	10,550.9	2.2	in Line
300	Total industry	1,234,511	48,186	5,790	1,301	7,09%	3,894,987	100.0	343,234	100.0	661,704	100.0	.82,564.5	100.0	53,027.5	100.0	476,947.2	100.0	'ð

.

Rumber of establishment, persons engaged and value added by size and branch of industry, 1974/75

.

.

Source: BPS 1974/75 Industrial Census.

L

1

- 81 -

1.25.26

١

	_	Java	a	Outer Is	lands	Indon	esia
ISIC	Industry	'000	z	'000	X	*000	z
31	Food, etc.	274.5	45	23.1	25	297.6	42
(311,2)	Food	(126.3)	(21)	(17.2)	(18)	(143.5)	(20)
(313)	Beverages	(4.6)	(1)	(0.2)	()	(4.8)	(1)
(314)	Tobacco	(143.6)	(24)	(5.7)	(6)	(149.3)	(21)
32	Textiles	172.7	28	7.7	8	180.3	26
(321)	Weaving	(164.3)	(27)	(7.4)	(8)	(171.7)	(24)
(322,3,4)	Wearing apparel	(8.4)	(1)	(0.3)	()	(8.6)	(1)
33	Wood Products	5.9	1	18.2	19	24.1	3
34	Paper, printing	19.1	3	3.1	3	22.5	3
35 (351,2,6) (355)	Chemical products Chemical products Rubber	58.8 (37.2) (21.6)	10 (6) (4)	29.4 (4.6) (24.8)	31 (5) (26)	88.2 (41.9) (46.3)	(6) (7)
36	Non-metals	20.4	3	5.6	6	25.9	4
37	Basic metals	1.5	••	0.6	1	2.0	••
38	Fabricated metals	51.9	9	4.4	5	56.3	8
39	Other	3.4	1	1.5	2	4.9	1
	Total	608.3	100	93.6	100	701.9	100

Number of Employees by Industry and by Location, Indonesia, 1974/75 (Thousands and Percentages)

- 82 -

ÿ

Source: The World Bank: Selected issues of industrial development and trade strategy. Annex I, The Structure of the Manufacturing Sector, 15 July 1981, p. 39 based on BPS 1974/75 Industrial Census.

	Estab	lishment	Empl	oyment	Value added	Output	Fixed capital formation	Average size
	Number	Percentage share	(000)	Percentage share	Percentage share	Percentage share	Percentage share	Number of employed persons per establishment
Government	481	6.8	126.8	19.3	25.0	19.3	13.7	264
Domestic private	6,230	87.9	450.2	68.7	47.0	56.8	39.5	72
Foreign	101	1.4	16.9	2.6	10.8	8.2	7.1	167
Government and domestic private	84	1.2	8.2	1.2	1.5	1.3	1.1	98
Government and foreign	14	0.2	4.5	0.7	2.1	1.7	1.3	320
Foreign and domestic private	177	2.4	47.8	7.3	13.3	12.5	36.5	270
Others	14	0.1	1.4	0.2	0.3	0.2	0.8	345
Total	7,091	. 100.0	655.8	100.0	100.0	100.0	100.0	9 3

Large and medium enterprises, number of establishments, employment, value added and average size by ownership <u>1974/75</u>

Source: BPS 1974/75 Industrial Census, Jakarta, 1978.

L

- 83 -

			Total			Foreign			Government		Private domest:		
		N	VA	X	N	VA	XVA	N	VA	XVA	N	VA	XVA
11.2	Food manufacturing	1,448	115.728	100	50	13.164	11.4	180	67.307	58.1	1,218	35.257	30.5
13	Beverages	59	14.438	100	4	8.424	58.4	3	0.142	1.0	52	5.872	40.7
14	Tobacco	747	105.132	100	46	39.540	37.6	37	1.181	1.1	664	64.411	61.3
21	Textiles	1,880	68.815	100	25	16.705	24.3	49	9.968	14.5	1,806	42.142	61.2
22	Wearing apparel	60	0.460	100	2	0.035	7.6	1	0.001	0.2	57	0.424	92.3
23	Leather substitutes	24	0.644	100	2	0.008	1.2	1	0.021	3.3	21	0.615	95.5
24	Footwear	29	2.966	. 100	1	1.577	53.2	-	-	-	28	1.389	46.1
31	Wood and wood products	302	10.780	100	.14	1,425	13.2	20.	0.652	6.0	268	8.703	80.8
32	Furniture (nonmetallic)	86	1.162	100	3	0.019	1.6	4	0.099	8.5	79	1.044	89.9
41	Paper and paper products	58	5.086	100	5	1.441	28.3	6	2.704	53.2	47	0.941	18.5
42	Printing and publishing	222	6.343	100	2	0.043	0.7	25	1.779	28.0	195	4.521	71.3
51	Basic chemicals	67	83.444	100	6	1.297	1.6	14	8.923	10.7	47	73.224	87.
52	Other chemical products	218	16.969	100	27	6.813	40.1	15	1.511	8.9	1.76	8.645	50.
155	Rubber	453	38.152	100	36	8.150	21.4	115	10.120	26.5	302	19.882	52.
156	Plastic wares	129	3:057	100	7	0.327	10.7	••	-	-	122	2.730	89.
61	Pottery, china and ware	19	0.245	100	-	-	-	1	0.006	2.4	18	0.239	97.
62	Glass and glass products	51	4.990	100	4	3.520	70.5	2	0.484	9.7	45	0.986	19.
63	Coment	206	1".071	100	1	0.897	7.4	17	9.461	78.4	188	1.713	14.
64	Structural clay products	147	1.079	100	-	-	-	8	0.124	11.5	139	0.955	88.
69	Other nonmetallic mineral												
	products	12	0.295	100	-	-	-	1	0.098	33.2	11	0.197	66.
371	Iron and steel	6	0.699	100	-	-	-	-		-	6	0.699	100.
12	Nonferrous metal	9	3.169	100	5	2.551	80.5	-	-	-	4	0.618	19.
381	Fabricated metal products	232	11.996	100	18	2.885	24.0	12	0.741	6.2	202	8.370	69.
382	Machinery	66	8.383	100	5	1.204	14.4	11	5.234	62.4	50	1.945	23.
183	Electrical machinery	60	15.722	100	9	9.235	58.7	3	0.113	0.7	48	6.374	40.
384	Transport equipment	103	21.894	100	6	7.519	34.3	18	5.618	25.7	79	8.757	40.
385	Measuring and ontical				•								
	eouinment	13	0.153	100	-	-	-	-	-	-	13	0.153	100.
390	Other manufacturing	52	1,477	100	4	0.841	56.9	4	0.194	13.2	44	0.442	29.
	Total	6,758	555.350	100	282	127.620	23.0	547	126.480	22.8	5,929	301.240	54.

Sectoral Value Added by Ownership, 1974/75 (Values in Bill, Pp.)

•

h

, ,

1 84 T

.

			1070		2000	1 0 0 1	Total			
	Sector	1968–1977	1978	1979	1980	1901	Value	Project		
 1	Agnioulture	181 841	100 k09	36,410	126 042	165.142	610.7 <u>b</u> b	ז 84		
1. 2.	Forestry	247,862	58,459	81,802	397,620	362,132	1,147,875	474		
3.	Mining	50,045	18,347	32,882	37,092	13,462	151,828	25	1	
4.	Manufacturing	1,701,270	531,214	502,343	861,462	1,469,529	5,065,818	2,572	1	
5.	Construction	13,006	2,590	2,060	1,531	15,076	34,263	10		
6.	Hotel and tourism	90,6 ¹ 5	11,571	12,418	1,032	52,620	168,286	127		
7.	Housing and offices	168,864	15,071	3,778	23,961	- 12,489	199,185	48	Ann	
8.	Other services	139,044	24,160	16,936	53,923	71,712	305,775	160	ex Ta	
Tot	al	2,592,577	761,821	688,629	1,503,563	2,137,184	7,683,774	3,600	ble 19	

Approved Domestic Investment Projects by Sector 1968-1981 A/

(Millions of Rupiah)

Source: Investment Coordinating Board.

a/ Includes cancellations of projects formerly under the foreigh capital investment law.
.

1

Approved Foreign Investment Projects by Origin 1967-1981 4/ (Millions of \$)

		1067_1075	1076	1077	1978	1979	1080	1081	- <u></u>	Total
									Value	Project
1.	Burope	469.3	45.1	<u>50.8</u>	<u>53.0</u>	<u>94.3</u>	<u>233.9</u>	<u>134.2</u>	1,080.6	<u>158</u>
	-Belgium	35.7	5.2	4.0	0.8	8.0	40.7	45.8	140.2	16
	-France	13.2	7.3	0.2	5.5		0.4		26.6	8
	-Germany, Fed. Rep. of	175.0	9.8	6.6	1.4	4.0	23.4	13.9	234.1	24
	-Netherlands	156.8	16.1	6.9	32.9	2.9	145.5	50.2	411.3	44
	-United Kingdom	40.0	6.7	7.8	4.9	45.3	4.6	14.9	124.4	40
	-Others	48.6		25.3	7.5	34.1	19.1	9.4	144.0	26
2.	America	209.2	14.5	<u>35.0</u>	<u>29.5</u>	<u>53.2</u>	<u>138.2</u>	<u>17.6</u>	<u>197.2</u>	<u>87</u>
	-Canada	2.4		2.4	١.6				9.4	2
	-United States of America	193.2	14.5	29.5	21.9	53.0	136.9	9.7	458.7	79
	-Others	13.6		3.1	3.0	0.2	1.3	7.9	29.1	5
3.	Asia	2.628.4	<u>330.7</u>	<u>279.4</u>	<u>225.1</u>	<u>1,191.7</u> 4/	<u>179.0</u>	<u>763.5</u>	5.597.4	423
	-Hongkong	413.7	165.6	127.3	61.9	116.6,	47.2	292.9	1,225.2	126
	-Japan	2,040.2	91.8	104.3	162.2	1,037.1	73.5	234.7	3,744.1	207
	-Malaysia	21.8	1.0			4.8		1.2	28.8	15
	-Philippines	19.8	0.8	3.8	~~~	2.9	6.2	4.8	38.2	8
	-Singspore	46.9	3.0	32.1	0.8	6.1	33.2	20.6	142.7	31
	-Thailand	2.4	0.2		0.2		1.8	3.1	7.7	h,
	-Others	83.6	68.3	11.9		23.5	17.1	206.2	\$10.6	32
١.	Africa	<u>11.4</u>			4.5	==	<u>4.3</u>		20.2	2
	-Liberia	11.4			4.5		4.3		20.2	2
5.	Australia	<u>227.0</u>	<u>11.0</u>	<u>2.2</u>		8.3	<u>1.8</u>	<u>19.3</u>	<u>269.6</u>	37
6.	Group of country	1,287.0	37.5	<u>279.7</u>	<u>90.6</u>	491.8	349.5	244.7	2.780.8	<u>80</u>
	Total	4,832.3	438.8	647.1	402.7	1,838.¢/	906.7	1,179.3	10,245.8	787

Source: Bank Indonesia, Report for the Financial Year 1981/82.

4

a/ After taking into account the cancellations and shifting of projects from foreign to domestic investment. b/ Revised figures.

			EXP	ORTS			IMP	ORTS	
	· · · ·	1970_	1975	1980	1980_	1970	1975	1980	1980
170	CESCRIPTION OF TRACE GOODS	PERCENT P	HANUF	PERCENT	(1000 US \$)	PERCENT IN TUTA	PERCENT	PERCENT	(1000 US \$
	NEAT AND MEAT PREPARATIONS	· · • • •	0.317	0.163	4779	• • •	0.048	0.060	558
2	ELIRY PRODUCTS AND EGGS		0.041	0.021	603		0.605	0.857	BOOA
32	FISH N.E.S. AND FISH PREPARATIONS		_0.001	0.017_	502		0+044	0.030.	
122	RICE.GLAZED OR POLISHED NOT OTHERWISE WORKED		0.016	0.103	3043		7.221	7.391	69042
0	MEAL AND FLOUR OF WHEAT OR OF MESLIN	• • •	0.0.0		. • • •		0.050	0.001	5/1 E
I	VEAL AND FLOOR OF CEREALSTEALERS ABOVE	* * * *	U+UU*						
8	CEREALS PREPARATE & STARLIN OF FRUITS & VEGETADE	d. 026	0.001	0.002	4001		0.008	0.017	. 154
2	CONTT. DECEMBED AND EDUIT DEEDADATIONS	0.014	0.094	/ 0.142	4183	•••	0.035	0.051	470
J .	VENETAN ES HOUTS & TUPERS PRESERVED OR PREPARED	6.100	0.013	0.127	3735		0.087	0.161	1506
	SUBAR-SUGAR PREPARATIONS AND HONEY	1.832	1.078	0.781	22976		0.759	1.749	16334
17	COFFFE EXTRACTS + ESSENCES + CONCENTRATES & SINILAR	D.001		0.079	2324			0.002	19
22	COCOA POYDER. UNSWEETENED		0.035	0.615	18077		0.002	0.018	164
23	COCOL BUTTER AND COCOL PASTE	0.000	0.117	0.054	1584		0.00%	0.000	
3	CHOCOLATE AND RELATED FOOD PREPARATIONS	····					0.009		5/
	TEA AND MATE	13,607	5.845	3.832	112669		0.001	0.002	10
1	FEEDING-STUFF FOR ANIMALS	4.852	4.929	3.547	104312		0.012	0.410	. 3A3;
	MISCELLANELUS FOOD PREPARATIONS	0.222_	0.129	0.086	25#1		0.066	0.088	
	GEVERAGES	0.066	0.019	0.012	359		0.075	0.109	1014
5	TUBLECO MANUFACTURES	0.625	1.514	0.049	1450		0.156	0.057	529
19	FLOUR AND MEAL OF DIL SEEDSINUTSIKERNELS		0.004				0.006	0.002	2'
1	CRUDE RUBBER, SYNTH. & RECLAIMED (EXCL.SITC 2311)	0.000	0.000	0.000	0		0.035	0.239	, 195'
3	WOUD, SHAPEU OR SINPLY WORKED	1.694	3.575	8.611	253202	•••	0.003	0.000	
1	FULP AND VASTE PAPER	0.000	0.000				0.112		627
26	WGCL SHUDDY						0.000	0.000	
27	NOOL OR OTHER ANIMAL HAIR, CARDED OR CONDED	0.012					0.000	·	.:
39	NOOL TOPS	•.• •.						0.014	
29	WASTE OF WOOL AND OTHER ANIMAL HAIR N.E.S.	•••		0 000			1 068		1044
3	CULING CV THETTE PEOR FRATER/ADTIFICTALL STORES	•••	•••	0.000			0.717	1.020	952
-	THE MATCH TO THE CHARTENTED WATLE FURDERSTRATE DARST		- n. n. 2	0.002	5 /	· · · · · · · · · · · · · · · · · · ·	0.031	0.025	23
2	- NATE ANTERIALS FROM TEXTILE INDRIGATIOUS CRADUP	28.144	44_819	40.383	1187453	•••	4.408	7-410	6922
-	AND AND VEGETLEDE OTLS AND FATS	27.176	18-144	9.686	284805		_ 0.060	0.095	AE
۱ ⁻	AND UTLS AND FATS	PJ'VA'V_	0.001	0-005	132		0.011	0.008	7
1	FIXED VEGETABLE OILS.SOFT (INCL.SITC 422)	27.047	18.142	9.518	279971		0.018	0.009	
	ANTINAL AND MORETANIE ON PATE PROCEEED	0.128	0.000	0.165	4801		0.031	0.078	. 72

•

.

Annex Table 21

4

٠

		EXP	ORTS			IMP	ORTS	
DESCRIPTION OF TRADE GOODS	1970 PERCENT IN TOTA	1975 PERCENT	1980 PERCENT ACTURES	1980 (1000 US \$)	1970 PERCENT IN TOT	1975 PERCENT AL MANUE	1980 PERCENT ACTURES	1990 (1000 US \$)
	4.018	2.754	2.850	83805		17.929	13.435	1255020
CHEMICALS ELEMENTS AND CONPOUNDS		0.214	0.419	12322		2.655	5.523	515953
TAR AND CHENICA'S FROM COAL PETROLEUM, NAT. GAS				1679		0.012		A37
YEING TANNING AND COLOURING MATERIALS	0.215	0.015	0.052	1540		1.267	1.043	97439
EUICINAL AND PHARMACEUTICAL PRODUCTS	2.029	1.409	0.397	11668		0.725	0.855	79871
SSENTIAL OILS AND PERFUME MATERIALS	1.570	1.090	0.734	21571			0.436	40740
FERTIL IZERS MANUFACTURED	0.001	0.020	1.187	34892		8.908	0.770	71915
FXPLOSIVES AND PYROTECHNIC PRODUCTS						0.082	0.098	9120
PLASTIC MATERIALS REGENERATED CELLUL. & RESINS		0.001		29			3.269	305400
CHENTCAL MATERIALS AND PRUDUCTS N.E.S.	0.204	0.005	0.004	105		1.921	1.432	133744
HANUFACTURED GOODS CLASSIFIED BY NATERIAL	8.166	10.433	20.905	614700		23.850	21.981	2053326
FATHER HANUFACTURED N.E.S. & DRESSED FUR SKINS	0.298	0.066	0.235	6909		0.012	0.014	1313
RUDBER MANUFACTURES N.F.S.	0.014	0.021	0.015	432		0.657	0.606	56614
KOND AND CORK NAMERACTURES (EXCL_FURNITURE)	0.084	0.123	2.500	73519		0.078	0.036	3378
PAPER-PAPER BUARD AND MANUFACTURES THEREOF	0.000	0.039	0.161	4734		1.339	1.840	171886
TEATTLE VARIA-FARRICS-MADE-UR ARTICLES	1.365	0.222	1.559	45828		3.426	2.323	216975
CON-NETALLIC MINERAL MANUFACTURES N.E.S.	0.005	0.039	1.085	31901		2.203	1.353	126362
TOUN AND STEEL		0.041	0.639	18776		10-837	10.349	966700
Whisefordis wriats	6.036	9.518	14.524	427072		1.472	2.077	194025
NAMEFACTNEES OF NETAL M.F.S.	0.364	0.369	0.188	5528		3.827	3.384	216075
HACHTHERY AND TRANSPORT FONTPHENT	2.664	3.635	3.706	108962		39.357	38.900	3633021
NACHTHEOV. NTUED THAN ELECTOR	2.664	1.674	0.130	A095		18.204	10.958	1855004
ELECTRICE MACHINERY, ADDARATIS AND ADDI TANCES	20004	1.468	3.304	07143		A. 785	H.014	744641
TOMEDOUT FOULDMENT	•••	0.443	0.263	7724		12.275	11.028	1030176
NTSCELLANFOUS MANUFACTURED ARTICLES	0.223	2.374	4.089	120242		2.213	3.053	285192
SAUTTARY DI UMBING HEATING & I IGHTNING FIXTURES		0.015	0.009	250		0.206	0.139	13007
CHENTTINE		0.025	0.106	3111	•••	0.129	0.092	85.81
TUNEL GOUDS HANDAGE AND STATI AD ADTICLES		0.000	0.019	550		0.021	0.016	1517
CENTRING	0.001	0.276	3.342	08274	•••	0.107	0.033	3005
CLUTTING	0.000	0.025	0.049	1450		0.044	0.025	2376
ODUESES INNAL SCIENT & CONTROLL INSTRUMENTS		0.856	0.124	3766		0.048	1.416	112200
MISCELLAREADLIENTS & CONTROLLS INSTRUMENTS	0.213	1.177	0.437	12941	•••	0.764	1.331	124313
4137555405003 FINIDA 4610450 MAIL45539066936	y+L13	1070	1076	1004	• • •	1070	1076	1000
		7278			• • • • • • •	131V	······································	
TUTAL FAUGRACIURES	4.3	7335 2166	96340	500436		• • •	3498363	7093394
TATAL & STTC C-D LCCC 40 44	1	4193	02220	200830			3000343	143.13.14
	DESCRIPTION OF TRADE GOODS CHEMICALS CHEMICALS ELEMENTS AND COMPOUNDS TAR AND CHEMICALS FROM COALSPETROLEUM, NAT. GAS OVEINGSTANNING AND COLOURING MATERIALS TEUTCINAL AND PHARMACEUTICAL PRODUCTS ESSENTIAL OILS AND PERFUME MATEBIALS FERTILIZERS MANUFACTURED EXPLOSIVES AND PYROTECHNIC PRODUCTS PLASTIC MATERIALS, REGENERATED CELLUL. L RESINS CHEMICAL MATERIALS AND PRODUCTS N.E.S. TANUFACTURED GOODS CLASSIFIED BY MATERIAL LEATHER HANUFACTURED N.E.S. L DRESSED FUR SKINS RUDDER MANUFACTURES N.E.S. RUDDER MANUFACTURES N.E.S. RUD AND STEEL NON-FERROUS METALS MACHINERY AND TRANSPORT EOUIPHENT MACHINERY, OTHER THAN ELECTRIC ELECTRICAL MACHINERY, APPARATUS AND APPLIANCES TRANSPORT EQUIPMENT MISCELLANEOUS MANUFACTURED ARTICLES SAMITARY, PLUMBING, HEATING & LIGHTNING FIXTURES FURNITURE TRAYEL GOODS, HANDBAGS AND SIMILAR ARTICLES CLUTHING FOUTWEAR PROFESSIONAL, SCIENT. & CONTROLL. INSTRUMENTS MISCELLANEOUS MANUFACTURED ARTICLES, M.E.S.	IESCRIPTION OF TRADE GOUDS IN 1017 CHEMICALS A.018 CHEMICALS ELEMENTS AND CONPOUNDS CAR AND CHEMICALS. FROM COALSPETROLEUM, NAT. GAS DYEINGSTANNING AND COLOURING MATERIALS 0.215 CHUICINAL AND PHARMACEUTICAL PRODUCTS 2.029 ESSENTIAL OILS AND PERFUME MATEBIALS 0.570 CHALCSIVES AND PHROTECHNIC PRODUCTS 0.001 EXALCSIVES AND PHROTECHNIC PRODUCTS 0.001 CALSTIC MATERIALS, REGEMERATED CELLUL. & RESINS CHEMICAL MATERIALS AND PRUDUCTS N.E.S. 0.204 NANUFACTURED N.E.S. 0.204 NAUDFACTURED N.E.S. 0.204 NUDBER MANUFACTURED N.E.S. 0.204 NUDBER MANUFACTURED N.E.S. 0.014 NUDBER MANUFACTURED N.E.S. 0.014 NUDBER MANUFACTURES N.E.S. 0.014 NUDBER MANUFACTURES N.E.S. 0.014 PAPER BUARD AND MANUFACTURES THEREOF 0.000 TEATILE YARN, FABRICS.MADE-UR ARTICLES 1.365 NON-FERROUS METALS 6.036 MACHINERY AND TRANSPORT EOUIPHENT 2.664 MACHINERY AND TRANSPORT EOUIPHENT 2.664 MACHINERY AND TRANSPORT EOUI	IN TOTAL MADE GOODS IN TOTAL MADE IN TOTAL MADE 4.018 2.754 IN TOTAL MADE 0.0214 IN TOTAL MADE 0.0215 IN TOTAL MADE 0.010 OYEING, TANNING AND COLOURING MATERIALS 0.215 IN TOTAL MADE 0.010 OYEING, TANNING AND COLOURING MATERIALS 0.215 IEUICINAL AND PHARMACEUTICAL PRODUCTS 2.029 IN TOTAL MADE PREFUME MATERIALS 0.010 IN ATERIALS, AND PERFUME MATERIALS 0.001 IN ATERIALS, REGENERATED CELLUL, L. RESINS 0.001 CHARTICK MATERIALS, AND PRODUCTS	DESCRIPTION OF TRADE GOUDSIN TOTAL MARGEACTORESCHEMICALSA.0182.7542.850CHEMICALSELEMENTS AND CONPOUNDS0.02140.419CHEMICALSELEMENTS AND CONPOUNDS0.0000.057TAR AND CHEHIC.'S FRON COALSPETROLEUM, NAT. GAS0.0150.005CYEINGTANNING AND COLOURING MATERIALS0.2150.0150.052CYEINGTANNING AND PHARMACEUTICAL PRODUCTS2.0291.4090.397CSSENTIAL DILS AND PERFUME MATEBIALS1.5701.0900.734CHILIZERS+MANUFACTUREDQ.0010.0201.187CHENTCAL MATERIALS, REGENERATED CELLUL.A.RESINS0.0010.001CHENTCAL MATERIALS, REGENERATED CELLUL.A.RESINS0.0040.002CHENTCAL MATERIALS, REGENERATED CELLUL.A.RESINS0.2040.005CHENTER HANUFACTUREDN.E.S.0.2040.0050.004CHENTER HANUFACTUREDN.E.S.0.0140.0210.015CAUDA AND CORK MANUFACTURES (EXCL-FURNITURE)0.0140.1232.500CAUDA AND CORK MANUFACTURES (EXCL-FURNITURE)0.0040.1232.500CAUDA AND CORK MANUFACTURES (EXCL-FURNITURE)0.0040.1232.500CAUDA AND CORK MANUFACTURES (EXCL-FURNITURE)0.0040.0221.61CAUDAR AND ANUFACTURES (EXCL-FURNITURE)0.0040.0221.64CAUDAR AND ARAUFACTURES (EXCL-FURNITURE)0.0040.0221.64CAUDAR AND ARAUFACTURES (EXCL-FURNITURE)0.0040.2232.559KOULAR AND STELLMANUFACTURES	DESCRIPTION OF TRADE GOUDS IN TOTAL MANDRACTORES CHEMICALS 4.018 2.754 2.850 R3805 CHEMICALS ELEMENTS AND CONPOUNDS 0.214 0.419 12322 CHEMICALS ELEMENTS AND CONPOUNDS 0.215 0.015 0.057 1679 DYEING, TANNING AND COLOURING MATERIALS 0.215 0.015 0.052 1540 DYEING, TANNING AND PERFUME MATERIALS 1.570 1.099 0.734 21571 SESENTIAL OLLS AND PERFUME MATERIALS 0.001 0.020 1.187 34892 CASIC MATERIALS, REGENERATED CELLUL. 4. RESINS 0.001 0.001 29 CHAILCA MATERIALS, REGENERATED CELLUL. 4. RESINS 0.001 2001 2.0050 1.877 34892 CHAILCA MATERIALS, REGENERATED CELLUL. 4. RESINS 0.001 2.001 2.001 2.001 2.001 2.001 2.005 1.877 2.850 1.870 2.905 614700 CEATHER MANUFACTURED N.E.S. 0.014 0.021 0.015 432 4.905 4.909 3.905 1.999 <	IN IN <td< td=""><td>IN 101AL PANDPACTORES 101AL PANDPACTORES HENTICALS 4.018 2.754 2.860 R3805 17.029 HENTICALS 0.215 0.200 0.057 1679 0.012 INENTICALS ELEMENTS AND COLOURING MATERIALS 0.215 0.015 0.052 1540 1.265 INENTICAL AND PHARMACEUTICAL PRODUCTS 2.029 1.409 0.397 11668 0.725 SISETITIAL OILS AND PERFUME MATERIALS 1.570 1.090 0.734 21571 0.032 CHATLERS HANUFACTURED 0.010 0.020 1.147 34892 6.082 CHATLERS MAD PROTECHNIC PRODUCTS 0.001 0.001 229 2.2020 CHATLER ANDYACTURED NEESS 0.204 0.001 0.004 105 1.921 CHATLER MANUFACTURED N.E.S. 0.204 0.003 0.004 105 1.921 CHATLER MANUFACTURED N.E.S. 0.2064 0.003 0.004 105 1.921 CHATLER MANUFACTURED N.E.S. 0.004 0.021 0.013 432 0.005 CHATLER MANUFACTURED N.E.S. 0.004 <</td><td>IN TOTAL PANDRACTORES IN TOTAL PANDRACTORES IN TOTAL PANDRACTORES HEMICALS 4.018 2.754 2.850 83805 1.929 13.435 HEMICALS 0.214 0.419 12322 2.665 5.523 TAR AND CHEHIGLY, S. EROM COALSETROLEUM, NAT. GAS 0.214 0.419 12322 2.665 5.523 TAR AND COLOURING MATERIALS 0.215 0.015 0.057 1679 </td></td<>	IN 101AL PANDPACTORES 101AL PANDPACTORES HENTICALS 4.018 2.754 2.860 R3805 17.029 HENTICALS 0.215 0.200 0.057 1679 0.012 INENTICALS ELEMENTS AND COLOURING MATERIALS 0.215 0.015 0.052 1540 1.265 INENTICAL AND PHARMACEUTICAL PRODUCTS 2.029 1.409 0.397 11668 0.725 SISETITIAL OILS AND PERFUME MATERIALS 1.570 1.090 0.734 21571 0.032 CHATLERS HANUFACTURED 0.010 0.020 1.147 34892 6.082 CHATLERS MAD PROTECHNIC PRODUCTS 0.001 0.001 229 2.2020 CHATLER ANDYACTURED NEESS 0.204 0.001 0.004 105 1.921 CHATLER MANUFACTURED N.E.S. 0.204 0.003 0.004 105 1.921 CHATLER MANUFACTURED N.E.S. 0.2064 0.003 0.004 105 1.921 CHATLER MANUFACTURED N.E.S. 0.004 0.021 0.013 432 0.005 CHATLER MANUFACTURED N.E.S. 0.004 <	IN TOTAL PANDRACTORES IN TOTAL PANDRACTORES IN TOTAL PANDRACTORES HEMICALS 4.018 2.754 2.850 83805 1.929 13.435 HEMICALS 0.214 0.419 12322 2.665 5.523 TAR AND CHEHIGLY, S. EROM COALSETROLEUM, NAT. GAS 0.214 0.419 12322 2.665 5.523 TAR AND COLOURING MATERIALS 0.215 0.015 0.057 1679

.

.

.

- 88 -

(Annex Table 21 continued)

. . . .

٠

INDONES IA

1 1

•	Esterne	1_9119519	Internal	staelle_	6
EXPORT (SITC)	Demand in world market	 Change in market composition 	Change In product corposition	Competitive- ress	ronpound rate of growth 1970-1978
Total nanufactures (5 to 8)	21.0	0.7	0.5	77.7	52.7
Chemicals (5)	42.4	-1.2	-9.5	68.3	33.A
Manufactured goods classified chiefly by material (6)	25.3	1.6	3.4	69.7	53.4
Nechinery and transport equipment (7)			• • •	•••	
Miscellaneous munufactured articles (8)	4.7	-1.0	0.9	95.4	75.5
Selected product groups:					
Leather, leather wanufactures, n.e.s. and drassed fur skins (61)	33.8	7.0	-0-3	59.5	35.8
Rubber Manufactures, n.e.s. (52)	28.0	-5.0	0.7	77.4	41.9
Wood and cork manufactures, excluding furniture (63)	5.3	4.6	1.8	54.2	95.4
Paper, paperboard and manufactures thereof (64)			•••	• • •	
Textile yarn, fabrics, mide-up articles and related products (65)	162.6	-70.4	49.1	-41.3	15.9
Non-metallic mineral manufactures.n.e.s. (66)	5.8	-4.0	1.4	95.7	152.9
Iron and steel (67)	• • •		•••	•••	
Non-ferrous metals (68)	17.3	2.7	10.4	69.7	55.9
Kanufactures of metal,n.e.s. (69)	-37.3	-2.0	7.3	132.0	19.9
Machinery,other (han electric (71)				• • •	
Electrical machinery.apparatum and appliances (72)	• • •		•••	•••	• • •
Transport equipment (73)	•••	• •••		•••	
Clothing and footwear (84,85)	• • •	• • •	•••		

INDICATORS OF EXPORT PERFORMANCE BY PRIDUCT GPOUP, 1970-1972 FND 1976-1978 (PERCENTAGE)

Source: UNIDO Handbook of Industrial Statistics, ID/284; E.82.II.B.2, 1982.

.

Annex Table 23

.

Indonesia: export-performance indicators

SUMMARY STATISTICS

YEAR	P 05-01.1 (1 H DU: 	AT JON SANDS	PZR) G (CAPIT DP(\$) IN 197	A] (() 5	NVA/GL P PER CENI RICES)	I SHARE)1 OF 1	IN WGRLD EXPO MANUFACTURES (FER CENT)	175 SH AI 14 EX	RE GF KANUFACTI IOTAL MEXCHANDI PURTS. (PER CLIIT	ME51 ISE I)
1976 1977	1 119 1 141	467 776	1	173 250	1	6.7 9-1	1	0.062 2.100	!	12.7 12.0	,

.

SITC CODE		COMMODITY DESCRIPTION	I BHARE I EXPCP RAPJEA (PER	N TOTAL (TS OF (LTURES) CERT) (MET EX AS PERCEI TUTAL	POSTS ITAGE OF TRADE	I EXPERT- I PEAFORMANCE I RATIO		
-	Š		1971	1976	1971	1976	1971	1 1976	
# 32		FISH PREPARATIONS	0.765	0.023	23.63	-96.07	3.10	0.11	
852	1	I DRIED FRUIT	į 0.003 .	j 0.901 j	-93.45	-98.52	0.04		
853	1	I FAULT, PRESERVED AND FRUIT PREPARATIONS	j 0.024	0.176 j	-83.67 j	-23.36	0.47	8.54	
065	1	I VEGETABLES, MOOTS & THEERS, PRES. OR PREP.	1 8.441	i 0.436 j	92.63	-41.81 j	31.00	1 1.43	
861,862	1 1/	J SUGAR, SUGAR FREPARATIONS AND HOMEY	2.303	0.787 ;	-63.43 (-84.89	3.45	8.65	
074	1	I TEA AND MATE	1 16.035	6.978 į	99.93 j		73.12	63.24	
180	1	1 FEELING-STUFF FOR ANIMALS	7.075	8.644 j	58.55 j	96.63	4.78	8.23	
91	1	I RARGARINE AND STORTENING	8.047	0.060 j	39.46	-33.95	9.62	8.44	
199	i i	I FOOD PREPARATIONS, N.E.S.	0.056	6.129	-91.10	-63.61	8.45	0.50	
112	1	ALCONOLIC BEVERACES	0.643	0.020 j	-87.03	-9J.27 i	8.64	6.64	
22	i	A TOBACCO MANUFACTURES	1 1.375	8.124	99.41	-79.47	4.37		
43	i	WOOD, SHAPED OR SIMPLY WORKED	1 1.048	6.481	\$7.72	49.23	1.43	4 4	
51	i	L PULP AND VASTE PAPER	0.000	6.016	-99.92	-26.55	A. A4		
32	i	PETROLEUM PRODUCTS	20.420	44.649 1	2	-4-14	7.25	10.0	
21.422	i	A FINCE VEGETABLE DILS AND PATS	25.257	17.888	95.22 (98.85	36. 67	24.40	
31	i -	A ASIMAL & VEGETABLE WILS & FATS PROFESSED		8.601	-34.71	-94.65	A.45		
32	2	A BYEING & TANNING EXTRACTS AND MATERIALS	0.064	4.417	23.71	-44.28	2.22		
41	1	A SEDICINAL AND PHEREACENTICAL PRIAMITS	8.766	1.204	-47.50	-64.43	A.64	8-74	
51	1	A PESENTIAL OILS.BERFUNE & FLAVOUR MATLS.	2.200	1.524	-2.14	21.68	11.10	0.71	
3	1	A REFERRENT & COSNETICS FICERS SOARS	8.406	4.443	-14.42			3.3/	
50	:	I CHENICAL MATERIALS & PRODUCTS M.C.S.	8.064	4.402	-94.94	-99.97			
, , , , , , , , , , , , , , , , , , ,	:	A LEATURE	4.457	4-264	74.11				
12		I MANUFACTURES OF "FAINER OR DECOMPTENTES."	0.034	4.426	2 2 . 2 8 . 1	-47.47		4.73	
70 ·	!	A ADTICITA OF AUXATE N.C. C.						0.37	
12	1	I COOR PLANTACTURES N.F.S.	A.164		-55 43				
	!	LARTICIES OF AUGURES BIDIST -			-07.04	- 41,03		1.43	
44	!	A COTTOM CARDICE WINTER OF PAPERDURAP	A 474		-77.50 1				
76	!	I TEXTLE CANDICE WITH ATURE THAN COTTON I							
7 3	<u>.</u>	A THILE FADALOFFUTCA DIALA MAA SCILM (
	!	S CALCELERCELER AND CALLER AND CIC.							
	1				-esota i	-20-10 1			
56	ļ.	I RADE-UP ARTICLES, CHIEFLY OF TEXTILES	i e.ese j	0.041 1	-99.90	-91.33 1	0.00		
57	<u> </u>	FLOOR COVERING, TAPESTRIES ETC.	0.149 ;	0.143 1	-4-13 1	-23.56 .[. 0.41 1		
12	1	I COFPER	0.000		-99.34	-11.99 (0.00	
17	1	B T SN (11.259	7.779 [38.13	29.30 j	47.91	48.93	
1 8	1	I NANUFACTURE OF RETALS N.E.S.	1.115	0.0/1 1	-62.73	-95.84	1.29	0.05	
55	1	SHIPS AND SOATS	l 0.017 j	8.818	-97.62 ' [-59.47	0.01	0.01	
u /	1	CLOTHING EXCEPT FUR CLOTHING	l 0.661 j	0.565 j	-99.90 (-29.40 (e.ee (0.20	
51	1 .	FOOTVEAR	l 0.046 j	8.886 L	-68-11 [-97.16 (8.85 (
12	1 :	PRINTED MATTER) Ø.011 j	1.636 į	-58.84 1	26.78 j	8.01 [3.31	
)7	1 1	JEVELLERY, GOLD AND SILVER VARES	0.12L j	8.88 - 1	-41.51 (-66.66 (8.49 1	0.61	
		I RANUFACTURED ARTICLES.H.C.S.	· 0.062 i	0.205 i	-95.92 i	-75.57 i	8.86 1	· · · · · · · · · · · · · · · · · · ·	

Source: UNIDO Changing Patterns of Trade in World Industry, An Empirical Study on Revealed Comparative Advantage, 1982.

a/ SITC O61 cnly.

J

ł

		1967	7			1971				1975				1950		
	Impor	rts	Pro	1.*	Imper	rts	Pro	od.	Impor	ts	Prod		Impo	orts	Prođ	•
	Bill. Rp.	(\$)	Bill. Rp.	(\$)	Bill. Rp.	(\$)	Bill. Rp.	(\$)	Bill. Rp.	(7)	Bill. Rp.	(\$)	Bill. Rp.	(%)	Bill. Rp.	(%)
Nainly Consumer Goodsb.	13.72	(9.6)) -	-	37.87	(9.6)	311.17	(81.7)	215.74	(11.5)	1,055.80	(70.6)	831.80	(17.5)	3,422.50	(52.1)
Mainly Interned. Goods <u>c</u> /	87.42	(61.2) -	-	190.82	(48.4)	47.90	(12.6)	918.00	(49.1)	262.50	(17.6)	2,745.35	(46.9)	1,990.90	(30.3)
Nainly Capital Goods <u>d/e</u> /	41.60	(29.2) -	-	165.81	(42.0)	21.60	(5.7)	735.76	(39.4)	177.00	(11.8)	2,277.50	(38.9)	1,159.40	(17.6)
Total Nanufac- tured Goods	142.74	(100.0) -	-	394.50	(100.0)	380.67	(100.0)	1,869.50	(100.0)	1,495.30	(100.0)	5,845.65	(100.0)	6,572.80	(100.C)
Source:	UNIDO D	nta Bas	e.													Anne
* Not Av <u>a</u> / Exchar	vailable nge rate	s used:	1967 1971 1975	23	35.00 78.00 15.00									:		x Tuble 2
b/ ISIC	3110, 31 3230, 33	30, 314	0, 321	0,3	220, 324 520, 353	0, 3320, 0, 3540,	3420, 3550,	3610, 39 3560, 36	00. 20, 3690,	3710, 3	720.					44

Indonesia: Import^a and Domestic Production of Manufactured Gocis by End Use 1967-1980 (Billica Rupians, Current Prices and Percentage Shares)

.

۰.

<u>d</u>/ ISIC 3910, 3820, 3830, 3840, 3850. <u>e</u>/ Includes also some consumer durables.

1 91 I.

1.71.84

INDONESIA , ORIGIN OF IMPORTS OF MANUFACTURES BY BRANCHES; 1980 2/

		WORLD	DEVELOPING
		TOTAL	COUNTRIES
SITC	CESCRIPTION OF TRADE GOODS	(1000 US\$)	(PERCENT)
01	HEAT AND HEAT PREPARATIONS	5581	48.70
62	DAIRY PRUDUCTS AND EGGS	80080	0.93
032	FISH N.E.S. AND FISH PREPARATIONS	2815	15,29
0422	RICE, GLAZED OR POLISHED NOT OTHERWISE WORKED	690424	62.03
046	HEAL AND FLOUR OF WHEAT OR OF HESLIN	5714	0.12
047	MEAL AND FLOUR OF CEREALS, EXCEPT ABOVE		54,83
048	CEREALS PREPARAT. & STARCH OF FRUITS & VEGETAB.	6644	19.69
C22	DRIED FRUIT	1549	85.70
053_	FRUIT PRESERVED AND FRUIT PREPABATIONS		30.51
055	VEGETABLES, ROOTS & TUBERS, PRESERVED OR PREPARED	15063	47.57
05	SUGARISUGAR PREPARATIONS AND HONEY	163368	88.14
0713	COFFEE EXTRACTS+ESSENCES+CONCENTRATES & SINILAR	198	
0722	CUCCA PUNDER, UNSWEETENED	1661	61.64
0723	COCOA BUTTER AND COCOA PASTE	. 9	4.68
073	CHOCOLATE AND RELATED FOOD PREPARATIONS		16.34
074	TEA LUD HATE	162	82.06
081	FEEUING-STUFF FOR ANIHALS	38313	93.12
09	HISCELLANEOUS FOOD PREPARATIONS	8174_	19.71
11	BEVERAGES	10145	31.67
155	TOBACCO NANUFACTURES	5297	0.90
2219	FLOUR AND HEAL OF OIL SEEDSINUTSIKERNELS	219	16.77
537	CRUDE RUBBER.SYNTH. & RECLAINED (EXCL.SITC 2311)	19558	1.46
243	NUOD, SHAPED OR SIMPLY WURKED	22	99.71
251	PULP AND WASTE PAPER	62766.	11.02
2526	KOUL SHUDDY	6	0.00
2628	WOOL TOPS	1311	0.00
2629	WASTE OF WOOL AND OTHER ANIMAL HAIR N.E.S.	2	100.00
253	COTTOR	190886	17.22
256	SYNTHETIC AND REGENERATED (ARTIFICIAL) FIBRES	95252	12.48
5.7	WASTE MATERIALS FROM TEXTILE FADRICS (INCL.RAGE)	2381	13.49
335	PETROLEUM PRODUCTS	692224	\$2.30
4	ANIMAL AND VEGETABLE OILS AND FATS	8348	13.83
411	ANIMAL UILS AND FATS	748	17.58
421	FILED VEGETABLE OILS, SOFT (INCL.SITC 422)	859	35.17
▲31	ANINAL AND VEGETAULE VILS AND FATS PROCESSED	7241	10.91

)

DEVELOPED MARKET ECONOMIES, DEVELOPED L USA EEC JAPAN COUNTRIES NT) (PERCENT) (PERCENT) (PERCENT)	DEV
3 16,19 4,27 1,09 0,04	51.03
6 3.50 16 10 0.3A 1.51	97.46
96.180.3055.140.00	84.69
12.27 0.00 11.27 0.00	· 25.84
38 99.85 0.00 0.00 0.00	99.88
1715.1525.4'0.00 0.00	45.17
)9 5.54 9.87 0.98 0.01	80.09
26 7.74 0.01 0.00 0.00	14.26
837.103.582.250.0A	<u></u>
7 2.50 0.51 0.56 0.00	4.47
34 0.18 1.24 3.15 0.01	*•84
358.634.6627.59 0.00	91.03
36 0.68 37.56 0.00 0.00	38,36
12 22.64 2.40 34.36 0.00	95.12
23 24,80 43.10 3.28 0.43	83.23
9.31 5.46 2.45 0.00	17.94
18 4,65 0,74 1.0A 0.00	6.78
9626.8531.735.92 0.05	79.96
07 7,65 54,80 1,40 0,14	68.07
10 21.03 74.47 1.70 0.00	99.10
0.92 32.41 0.50 0.00	33,96
24 11.51 6.90 73.74 0.75	92.24
29 0.29 0.00 0.00 0.00	0.29
0819.041.363.61 0.07	
00 0.00 65.45 0.00 0.00	100.00
0.00 0.00 0.00 0.00 0.00	100.00
0.00 0.00 0.00 0.00 0.00	
95 69.65 0.54 0.12 A.04	73.95
37 10.52 4.66 50.66 0.06	75.37
97 45.31 13.65 19.52 0.19	
35 3.68 1.30 1.50 0.00	7.35
76 4.41 30.35 32.82 0.00	84.76
51 12.45 32.65 1.36 0.60	
30 28.44 23.39 2.59 0.00	64.80
16 0.73 30.94 39.66 0.00	87.46

- 92 -

e. 194

1

Annex Table 25

;

....

.

,

Incult51n URIGIN OF INPORTS OF HANUFACTURES BY BRANCHES' 1980 1/

- *

· ··· ···		WURLD	DEVELOPING	TOTAL	ELNPED AARK	ET ECONOMIE	S - JAPAN	PLANNED DEVELOPE COUNTHIE
SITC	DESCREPTION OF TRADE JODUS	(1040 US\$)	(PERCENT r	(PERCENT)	(PERCENT)	(PERCENT)	(PERCENT)	(PERCENT
· ` د	LARLI LUIL	1255020	12.66	82.30	21.65	25.19	28.41	1.28
51	CHEMICALS ELEMENTS AND COMPOUNDS	515953	14.26	80.48	17.90	22.56	34.55	1.48
οć _	TAN AND UNCHICALS FRUIT CUAL PLTBULEUN INAT. GAS		26.42	72+04	18.82	39.62	12.25	0.00
L C	DYE SHOR FARMATING AND COLOURING DATERIALS	97439	10.45	85.67	2.72	39.31	25.93	2.06
5	REDICTIONE AND PRAKRACEUTICAL PRODUCTS	79871	12.15	86.08	21.48	43.22	9.17	1.03
ະ 	ESSENTIAL DILS AND PERFURE HATERIALS	40740	15.30	81.40	13.59	34.90	20.52	0.10
<u> </u>	FLICE LILLING CHAINFACTURED	71915	24.28	71.39	12.40	40.85	7.61	3.16
	EAPLISIVES AND PYROTICINIC PRODUCTS	9120	1.88	91.89	4.32	59,28	22.01	0.00
<u>.</u>	PLASTIC VALERIALS HEURICHATLU CELLUL. 6 RESINS	305400	8.27	84.34	33.56	13.39	33.38	1.01
	CHEMICAL MATERIALS AND MNUUUCIS N.E.S.	133744	12.18	84.11	31.22	27.41	18.99	0.13
`	MARGEACTURED OUUS CLASSIFICD BY NATERIAL	2053326	18.45	76.11	7.59	10.22	47.16	1.02
4	LEATHER HARDEACTURES HALLS & DRESSED FUR SKINS	1313	19+24	54.22	9.70	21.67	18.91	1.35
ς, γ	RUBULIC INNUTALIURES NOLOSO	56614	10.59	75.26	14.74	20.27	30.64	0,01
4	HOUD AND CURR MANUFACTURES (EXCL.FURNITURE)	3378	37.50'	59.62	26.58	4.54	20.40	1.09
	PAPERSPAPER SUAND AND MANUFACTURES INCREDE	171806	12.42	85+13	10.29	19.72	15.63	0.50
5	TLATILL TARGERADRILDSHADE-UP ARTICLES	216975	37.43	44+63	4.75	2.38	36.67	0.02
5	INU - ILLIALLIG MINERAL KANOFACTURES	120302	20.62	72+35	6.91	19.84	34,39	2.10
\mathbf{r}_{\perp}	Irlan with Stuble	966700	17.45	78,97	6.64	5.59	60.82	1.01
3	Guit-1 Liknuus Mutals	194025	14.09	61.09	4,85	8,35	31.11	1.72
Se .	HALVERLIVES OF HETALSHEESS	316075	13.31	82.78	11.43	20.10	40.76	1.34
	BACHILLAY AND TRANSPORT LOUIPOLIAT	3533951	5,45	90.65	13.51	21.95	49.63	0.38
	HAUNLOLHYEVINER THAN ELECTRIC	1055004	6.74	67.24	18.35	21.24	41.24	0.34
ζ.	ELECTIONE DAUMINERTARPARATUS MID APPLIANCES	740641	5.+2	88.29	11.56	29.99	43.12	0.40
'3 <u> </u>	TRADOURT ENUIPAINT	1030176	3.14	94.82	6.16	17.38	69.47	0.42
	HISCLLERICOUS MANUFACTURED ARTICLES	285192	13.76	77.31 - "	17.09	19.39	36.56	0.20
4	SAULTARY PLUGOLIUS HEATING & LIGHTHING FIXTURES	13007	23.33	69.63	10.40	34.44	21.59	0.36
. Se	FUnitIVit	8581	44.24	34.67	9.54.	13.08	13.20	0.27
3	TRAVEL COUDSONANDBAUS AND SIMILAR ARTICLES	1517	29.37	10.25	3.10	2.70	3.64	0.00
1.	CLU faitu	3075	20.95	61+47	24.49	5.23	15.56	0.12
<u>_</u> ب	FUUTULAI	2376	14.18	65.40	16.76	19.04	12.58	0.42
5 ċ	HAURLES WALSELLINT. & CUNTROLL. INSTRUMENTS	132299	b;73	89.50	23.30	24.84	37.30	0.22
	Nidell-Angula Analofalturia Articlesfilles.	124317	17.51	64.09	13.00	13.02	40.34	0.17
	TUTAL OF UPACTURES		22.45	72.26	15.46	15.28	36.37	
	TUINCE SITE SHE LESS OUT LY	7033334	10.03	84.65	13,64	19.37	45.10	0.68
	TUTAL TURNER OUUST SITE 0-9	10034394	30.25	05.02	13.01	13.33	31.50	0.67
	Bennen i tamper in dit dan berginan terminan bertikan bertikan bertikan bertikan bertikan bertikan bertikan ber							

AN 4-01011 COULS CONTRIBUTED A WIDE RANNE OF FROCESSING STADES OF THEMOST OFTEN FOUND. المن المالية المالية (Could and Anthe In Manufactures Site 5-8 Less of is one of the Most often Found. المالية Could and Recognized as Exclusively Nandfactured Goods, I.E. With a High Level of Manufacturing Content. Source: Union unit descriptionnation Supplied by the United Nations Statistical Office.

1 3 I.

(Annex Table 25 continued)

.

INDONESIA

DESTINATION OF EXPORTS OF HANUFACTURES BY BRANCHES: 1980 2/

		WORLD	DEVELOPING_
	•	TOTAL	COUNTRIES
SITC	DESCRIPTION OF TRADE GOODS	(1000 USS)	(PERCENT)
01	HEAT AND HEAT PREPARATIONS	4779	4.46
02	DAIRY PRODUCTS AND EGGS	603	99.14
032	FISH R.E.S. AND FISH PREPARATIONS	502	1.39
0422	RICE, GLAZED OR POLISHED NOT OTHERWISE WORKED	3043	09.01
048	CEREALS PREPARAT. & STARCH OF FRUITS & VEGETAB.	4001	12.41
520	DRIED FRUIT	67	95.02
053	FHUITAPRESERVED AND FRUIT PREPARATIONS	4183	73.85
055	VEGETABLES, ROOTS & TUBERS, PRESERVED OR PREPARED	3735	12.50
06	SUGAPISUGAR PREPARATIONS AND HONEY	22976	42.78
0713	COFFEE LXTHACTS+ESSENCES+CONCENTRATES & SIMILAR	2324	15.85
0722	CUCUA POWDER, UNSWEELENED	18077	99.74
_ 0723	COCOA BUTTER AND COCOA PASTE	1584	100.00
074	TEA AND HATE	117669	45.72
081	FEEDING-STUFF FOR ANIMALS	104312	18.44
09	HISCELLANEOUS FOOD PREPARATIONS	2541	39.22
11	BEVERAGES	359	7.43
122	TOGACCO NANUFACTURES	1450	62.39
S31	CRUUE RUBBER, SYNTH. & RECLAINED (EXCL.SIIC_2311)		
243	WUGD.SHAPED OK SINPLY WORKED	25 3202	36.98
263	COTTON	4	0.00
266	SYNTHETIC AND REGENERATED (ARTIFICIAL) FIBRES	46.	
267	WASTE MATERIALS FRON TEXTILE FADRICS(INCL.RAGS)	58	3.35
332	PETROLEUN PRODUCTS	1187458	4.33
4	ANIMAL AND VEGETABLE OILS AND FAIS	284805	
411	ANINAL UILS AND FATS	132	48.88
421	FISED VEGETABLE OILS.SOFT(INCL.SITC 422)	279871	32.63
. 431_	ANIMAL_AND_VEGETABLE_OILS_AND_EATS_PROCESSED	4801	£6.18

DEV TOTAL (PERCENT)	ELQPED HARK USA (PERCENT)	ETECOHOMIE EEC (PERCENT)	S JAPAN (PERCENT)	CENTRALLY PLANNED DEVELOPED COUNTRIES (PERCENT)
95.54	0.00	95.154	0.00	0,00
0.86	0.01	0.69	0.00	0.00
98+61		20.51	7.8.10	
0.09	0,00	0.09	0.00	0,00
87.59	0.13	39.12	47.99	0.00
4.98	0.00	4,98		0.10
26.15	0.01	23.30	1.30	0.00
65.81	0.00	0.79	65.03	0_00
			44.53	0.00
84.15	0.00	0.00	84.15	0.00
0.26	0.00	0.00	0.26	0.00
	0.00			0.00
54.28	18.08	17.29	0.24	0.00
79.66	0.00	72.14	6.58	1.39
58.76				0.00
85.35	28,98	50,76	5.61	0.00
37.61	30.06	0.18	0.00	0.00
0+00		0.10	0.00	. 0.00
56.94	1.20	42.71	10.17	0.09
100.00	0,00	0.00	100.00	0.00
100.00		0.00	100.00	0.00
96.65	0.00	0.00	96.65	0.00
95.30	12,35	1.49	80.89	0.00
66.32			2.62	0.00
51.12	0.00	0.06	51.06	0.00
. 67.37	7,20	55.65	2.57	0.00
5.70	0.00	1.59	4.11	0.00

•

- 94 -

1.17

Annex Table 26

ļ

USA ERCENT) (P 14.55 2.70 0.00 0.03 14.60 46.93 0.00 0.00 0.00 1.00 1.00 2.44 0.00 13.03 0.00 13.03 0.00 2.46 0.00 0.11 0.02	EEC PERCENT) 15.67 9.37 0.00 35.82 32.29 35.52 0.00 0.03 33.83 7.24 0.00 11.60 0.06 11.24 0.00 45.36 0.46	JAPAN (PERCENT) 55.73 0.00 2.94 0.00 2.06 0.00 0.08 29.01 18.09 64.09 0.05 13.29 0.05 13.29 0.00 17.36 10.40 21.48 19.13 0.15	COUNTRIE (PERCENT 0.00 0.10 0.00 0.00 0.00 0.00 0.00 1.76 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.0
14.55 2.76 0.00 0.03 14.00 46.93 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 2.46 0.00 2.46 0.00 0.00 0.00 0.00 0.00 1.00 0.0	$\begin{array}{c} 15.67 \\ 9.37 \\ 0.00 \\ 35.62 \\ 32.29 \\ 35.52 \\ 0.00 \\ 0.03 \\ 33.63 \\ 7.24 \\ 0.00 \\ 11.60 \\ 0.06 \\ 11.24 \\ 0.00 \\ 45.36 \\ 0.46 \\ \end{array}$	8.61 55.73 0.00 2.94 0.00 2.06 0.00 0.08 29.01 18.09 64.09 0.05 13.29 0.05 13.29 0.00 17.36 10.40 21.48 19.13 0.15	0.00 0.10 0.10 0.00 0.00 0.00 0.00 0.00
2.70 0.00 0.03 14.00 46.93 0.00 0.00 1.08 2.44 0.00 13.03 0.00 2.46 0.00 0.0	9.37 0.00 35.82 32.29 35.52 0.00 0.03 33.83 7.24 0.00 11.60 0.06 11.24 0.00 45.36 0.46	55.73 0.00 2.94 0.00 2.06 0.00 0.08 29.01 18.09 64.09 0.05 13.29 0.00 17.36 10.40 21.48 19.13 0.15	0.10 0.00 0.00 0.00 0.00 0.00 0.00 1.76 0.10 0.00
0.00 0.03 14.00 46.93 0.00 0.00 1.08 2.44 0.00 13.03 0.00 2.06 0.00 0.00 0.00 0.00 13.03 0.00 0.	$\begin{array}{c} 0 \cdot 00 \\ 35 \cdot 62 \\ 32 \cdot 29 \\ 35 \cdot 52 \\ 0 \cdot 00 \\ 0 \cdot 03 \\ 33 \cdot 63 \\ 7 \cdot 24 \\ 0 \cdot 00 \\ 11 \cdot 60 \\ 0 \cdot 06 \\ 11 \cdot 24 \\ 0 \cdot 00 \\ 0 \cdot 00 \\ 45 \cdot 36 \\ 0 \cdot 46 \\ \end{array}$	$\begin{array}{c} 0.00 \\ 2.94 \\ 0.00 \\ 2.06 \\ 0.00 \\ 0.08 \\ 29.01 \\ 18.09 \\ 64.09 \\ 0.05 \\ 13.29 \\ 0.05 \\ 13.29 \\ 0.00 \\ 17.36 \\ 10.40 \\ 21.48 \\ 19.13 \\ 0.15 \end{array}$	0.00 0.00 0.00 0.00 0.00 0.00 1.76 0.10 0.00
0.03 14.60 46.93 0.00 0.00 1.00 2.44 0.00 13.03 0.00 2.46 0.00 2.46 0.00 0.11 0.02	35.62 32.29 35.52 0.00 0.00 33.63 7.24 0.00 11.60 0.06 11.24 0.00 45.36 0.46	2.94 0.00 2.06 0.08 29.01 18.09 64.09 0.05 13.29 0.05 13.29 0.00 17.36 10.40 21.48 19.13 0.15	C.00 0.00 0.60 0.00 1.76 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.0
14.00 46.93 0.00 1.00 1.00 2.44 0.00 13.03 0.00 2.06 0.00 0.11 0.02	32.29 35.52 0.00 0.00 33.83 7.24 0.00 11.60 0.06 11.24 0.00 45.36 0.46	0.00 2.06 0.00 0.08 29.01 18.09 64.09 0.05 13.29 0.00 17.36 10.40 21.48 19.13 0.15	0.00 0.00 0.00 0.00 1.76 0.10 0.04 0.04 0.05 0.02 0.00 0.00 0.00 0.00
46.93 0.00 0.00 1.08 2.44 0.00 13.03 0.00 2.46 0.00 2.46 0.00 0.11 0.02	$\begin{array}{c} 35.52 \\ 0.00 \\ 0.03 \\ 33.63 \\ 7.24 \\ 0.00 \\ 11.60 \\ 0.06 \\ 11.24 \\ 0.00 \\ 45.36 \\ 0.46 \end{array}$	2.06 0.00 24.01 18.09 64.09 0.05 13.29 0.00 17.36 10.40 21.48 19.13 0.15	
0.00 0.00 1.00 2.44 0.00 13.03 0.00 2.46 0.00 2.46 0.00 0.11 0.02	$\begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 3 \\ 3 \\ 3 \\ 8 \\ 3 \\ 7 \\ 2 \\ 4 \\ 0 \\ 0 \\ 1 \\ 6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	0.00 0.08 29.01 18.09 64.09 0.05 13.29 0.00 17.36 10.40 21.48 19.13 0.15	0.60 0.00 1.76 0.10 0.04 0.05 0.02 0.02 0.00 0.00 0.00
0.00 U.UU 1.0H 2.44 0.00 13.03 U.U0 2.05 U.U0 0.00 U.U0 0.11 0.02	$\begin{array}{c} 0.00 \\ 0.03 \\ 3.83 \\ 7.24 \\ 0.00 \\ 11.60 \\ 0.06 \\ 11.24 \\ 0.00 \\ 0.00 \\ 45.36 \\ 0.46 \end{array}$	0.08 29.01 18.09 64.09 0.05 13.29 0.00 17.36 10.40 21.48 19.13 0.15	0.00 0.00 1.76 0.10 0.00 0.04 0.00 0.02 0.00 0.00 2.52
U.UU 1.00 1.00 2.44 0.00 13.03 U.00 2.05 C.00 U.00 0.11 0.02	$\begin{array}{c} 0.03 \\ 33.83 \\ 7.24 \\ 0.00 \\ 11.60 \\ 0.06 \\ 11.24 \\ 0.00 \\ 0.00 \\ 45.36 \\ 0.46 \end{array}$	29.01 18.09 64.09 0.05 13.29 0.00 17.36 10.40 21.48 19.13 0.15	0.00 1.76 0.10 0.04 0.00 0.02 0.00 0.00 0.00 0.00
1.08 2.44 0.00 13.03 0.00 2.46 0.00 0.00 0.11 0.02	33.83 7.24 0.00 11.60 0.06 11.24 0.00 0.00 45.36 0.46	18.09 64.09 0.05 13.29 0.00 	1.76 0.10 0.00 0.04 0.02 0.02 0.00 0.00 2.52
2.44 0.00 13.03 0.00 2.06 0.00 0.00 0.11 0.02	7.24 0.00 11.60 0.06 11.24 0.00 0.00 45.36 0.46	64.09 0.05 13.29 0.00 17.36 10.40 21.48 19.13	0.10 0.00 0.04 0.02 0.00 0.00 2.52
0.00 13.03 0.00 2.06 0.00 0.00 0.11 0.02	0.00 11.60 0.06 11.24 0.00 0.00 45.36 0.46	0.05 13.29 0.00 17.36 10.40 21.48 19.13 0.15	0.00 0.04 0.00 0.02 0.00 0.00 0.00 2.52
13.03 0.00 2.06 0.00 0.00 0.11 0.02	11.60 0.06 11.24 0.00 0.00 45.36 0.46	13.29 0.00 17.36 10.40 21.48 19.13 0.15	0.04 0.00 0.02 0.00 0.00 0.00 2.52
0.00 2.06 0.00 0.00 0.11 0.02	0.06 11.24 0.00 0.00 45.36 0.46	0.00 	0.00 0.02 0.00 0.00 2.52
2.06 0.00 0.00 0.11 0.02	11.24 0.00 45.36 0.46	17.36 10.40 21.48 19.13	0.02
0.00 0.00 0.11 0.02	0.00 0.00 45.36 0.46	10.40 21.48 19.13	0.00
0.00	0.00 45.36 0.46	21.48 19.13 0.15	0.00
0.11	45.36	19,13	2.52
0.02	0.46	0.15	
		~ ~ ~ ~ ~	0.4170
0.04	3.47	0.86	0.04
0.24	1.15	2.19	1.06
. u.u.	0.53	0.76	0.00
0.20	41.74	1.40	0.00
7.40	36.65	3.29	0.00
1.50	0.05	0.00	0.00
1.50	18.70	32.16	0.00
0.41	74.95	11.06	0.00
7.50	37.d6	C.72	0.00
16.04	4.93	17.93	0.00
0.03	0.09	19.83	0,00
9.02	°45.06	9.17	0.00
7.61	22.24	36.02	0.43
6.40	15.02	8,35	0.02
14.04	6.33	49.26	0.65
	16.04 0.03 9.82 7.61 6.46 19.84 19.84	16.04 4.93 0.03 0.09 9.02 45.06 7.61 22.24 6.46 15.02 19.04 5.33 40 SPECIFICALLY IDI LEVEL OF MANUFACTUR	16.04 4.93 17.93 16.04 4.93 17.93 0.03 0.09 19.83 9.02 45.06 9.17 7.61 22.24 38.62 6.40 15.02 8.35 14.04 5.33 49.26

· .

• •

٠

.

- 95 -

1.7.44

.

.

١

(Annex Table 26 continued)

		E X P	0 R T S			I M. P.	.0. R. T. S	
	CLASS SHARE	OF TOTAL	CLASS GROU	TH RATE	CLASS SHARE	OF TOTAL	L CLASS GRO	WTH RATE
CLASSES	(PERCE) 1970	NTAGE) 1980	(PERCE)	NTAGE) 1975-1980	(PERCEN 1970	TAGE) 1980	(PERCE 1970-1975	NTAGE) 1975-198
A : 1011-PROCESSED GOODS FOR FURTHER PROCESSING	85.58	72.13	56.74	19.01	0.00	13.81	66.57	45.71
PROCESSED GOUDS FOR FURTHER PROCESSING	6.59	5.32_	45.66	34.28_		16.08		24.48
: NON-PROCESSED GOODS FOR FINAL USE	3.18	15.04	36.62	83.39	0.00	0.82	11.15	5.57
) : PROCESSEU GOODS FOR FINAL USE	4.65	7.52	74.51	27.30	0.00	69.28	49.1A	10.69
SUM OF CLASSES: A+B+C+D IN 1000 CURRENT USS		<u>1970</u> 1054739	2190	1980 8890		<u>1970</u> 0	104	19 <u>00</u> 134394
TOTAL TRADE SITC 0-9 IN 1000 CURRENT USS		1055090_	2190	8890			10	34394

.

- 96 -

Annex Table 27

	Employme ('00)	ent D)	GDP at constant 197 market prices (Rp. billion)		
Sector	1971	1980	-1971	1980	
Agriculture, forestry fishery	24,963	28,834	2,441	3,425	
Mining and quarrying	91	387	551	1,035	
Manufacturing	2,950	4,680	490	1,705	
Electricity, gas, water	38	66	25	78	
Construction	741	1,657	171	639	
Irade, banking, insurance	4,230	6,981	988	2,060	
Fransport, storage, communication	919	1,468	210	609	
Other services	3,940	7,166	669	1,619	
Unclassified		313			
All Sectors	39,474	51,553	5,545	11,169	

Employment and GDP at constant market prices, by sector, 1971 and 1980.

Note: Totals do not add due to rounding. The 1971 employment data are based on the C series of the 1971 population census. These estimates are considered best comparable with the results of the 1980 population census. The final results of the 1971 census give lower employment estimates, especially for manufacturing and would therefore lead to higher growth rates over the period 1971 to 1980.

Source: BPS, various publications.

Annex Table 29

1

.

Sectoral shares in employment and GDP at constant 1973 market prices and compound annual rates of increase in sectoral employment, gross value added at constant 1973 market prices and labour productivity; 1971-1980

		Sectoral	l Shares ()		Compound annual increase over 1971-1980 (%)			
	Employment		GDP at constant		_			
Sector	1971	1980	<u>1973 marr</u> 1971	1980	Employ- ment	Labour produc-2/ tivity	Real produc tion	
Agriculture, forestry fishery	65.9	56.3	44.0	30.7	1.6	2.2	3.8	
Mining and quarrying	0.2	• 0.8	9.9	9.3	17.4	-8.4	7.3	
Manufacturing	7.8	9. l.	8.8	15.3	5.3	9.1	14.9	
Electricity, gas, water	0.1	0.1	0.5	0.7	6.3	6.7	13.5	
Construction	2.0	3.2	3.1	5.7	9.4	5.9	15.8	
Trade, banking, insurance	11.2	13.6	17.8	18.4	5.7	2.6	8.5	
Transport, storage, communication	2.4	2.9	3.8	5.4	5.3	6.9	12.6	
Other services	10.4	14.0	12.1	14.5	6.9	3.2	10.3	
All sectors	100.0	100.0	100.0	100.0	3.0	4.9	8.1	

Source: BPS, various publications.

1/ In the calculation of the growth rates the category unclassified for 1971 was distributed proportionally among the different sectors.

_2/ At constant 1973 market prices.

_ 98 _

Manufactured exports in major East Asian Countries (US \$ million -, and percentage sh

		Kor		Fhillipines -		
SITC	Commodity	1967	1975	1967	1975	
	Total manufactured goods	221.0	1,255.9	US \$ Mi: 75.9	11ion 371.0	
•		4.2	102 7	14.6		
U	Manufactured 100d	- 4.2	102.7	14.0	00.7	
	Maal and flows of wheat	2.0	37.0	0.0	0.9	
	Meal and flour of corecie		0.0	-		
	Meal and libur of cerears	0.0	0.0 A A	<u> </u>	0.0	
	Deled fends	0.5	4.4	0.0	20.4	
	Diled link	0.0	0.1	12 2	30.4	
	Vegetable roots tubere	1 2	27 9	13.2	43.1	
	Cocos butter and mete	1.2	27.7	1 0	0.5	
	Miscellaneous food production	0.0	23.4	0.2	1.1	
1	Manufactured beverages/tobacco	0.4	<u>1.3</u>	2.5	2.1	
	Alcoholic beverages	0.4	1.1	2.1	1.3	
	Tobacco manufactured	0.0	0.2	0.5	0.7	
2	Manufactured crude materials	2.9	25.1	6.4	29.4	
	Wood shaped/simply worked	2.7	15.9	6.4	27.2	
	Plup/waste paper	-	0.0	-	2.0	
4	Manufactured animal and vegetable					
	(oils and fats) Animal/vegetable oil/fats	$\frac{0.1}{0.1}$	$\frac{0.6}{0.6}$	$\frac{0.0}{0.0}$	$\frac{1.0}{1.0}$	
E		• •				
2	<u>Chemicais</u>	2.4	74.6	4.0	21.2	
	Urganic chemicals	0.3	31.5	1.3	5.3	
	Inorganic cnewicals	0.1	9.6	1.4	0.9	
	Dyeing and Colour materials	0.1	2.0	0.2	1.0	
	negical/pnaimaceuticals	0.1	9.7	1.0	2.2	
	riastic materials Other chemicals	0.0	8.8	~_,	4.4	
	viner chemicars	0.0	12.4	0.1	/.3	

•.

.

ares)

Th	ailand	Malav	sia	Indo	nesia
1967	1975	1967	1975	1967	1975
<u>50.9</u>	<u>582.6</u>	100.0	<u>933.4</u>	<u>16.6</u>	<u>135.0</u>
$\frac{28.1}{0.0}$	$\frac{68.4}{1.0}$	$\frac{23.1}{0.8}$	$\frac{58.9}{10.3}$	1.7	<u>4.6</u> 0.0
0.6	0.1	3.3	0.0	-	0.3
4.5	9.3	0.0	0.0	-	0.1
0.0	2.9	0.0	0.1	0.1	0.0
0.3	18.2	14.5	24.8	0.0	0.8
21.8	23.6	v 1.7	6.1	1.2	0.1
-	-	-	0.5	-	1.0
0.2	2.5	1.4	10.3	0.3	1.1
<u>0.1</u>	0.5	3.2	<u>11.0</u>	<u>0.1</u>	<u>13.5</u>
0.1	0.4	2.9	3.9	0.1	0.2
0.0	0.1	0.3	6.8	0.1	13.4
<u>6.9</u> 6.9	<u>27.4</u> 27.2	23.1 23.1 0.0	<u>184.0</u> 183.6 0.2	<u> </u>	<u>31.5</u> 31.5
<u>0.0</u> 0.0	$\frac{0.1}{0.1}$	$\frac{0.1}{0.1}$	$\frac{15.1}{15.1}$	$\frac{0.2}{0.2}$	<u>0.0</u>
0.8 0.1 0.0 0.0 0.4	12.0 1.5 0.5 0.4 4.9 3.1	$ \begin{array}{r} \underline{13.1} \\ 1.0 \\ 0.3 \\ 2.6 \\ 2.0 \\ 0.1 \\ 6.8 \end{array} $	$ \begin{array}{r} 33.1 \\ 2.7 \\ 2.8 \\ 1.0 \\ 7.2 \\ 4.5 \\ 13.0 \\ \end{array} $	$\frac{1.9}{-}$	$ \begin{array}{r} 24.3 \\ \hline 1.1 \\ 0.7 \\ 0.1 \\ 12.4 \\ 0.0 \\ 9.7 \\ \end{array} $

.

ş

- 99 -

••

: 1 1 :

ţ

Annex Tuble 30

		Kor	ea	Philippines		
SITC	Commodity	1967	1975	1967	1975	
					(US \$ M	
6	Manufactured goods	99.6	1,471.1	41.2	119.8	
	Leather	-	0.7	-	0.0	
	Rubber manufactured	2.0	90.9	0.4	0.7	
	Kood and cork manufactures	36.6	227.5	35.9	59.8	
	Paper and manufactures	1.8	36.8	0.1	0.7	
	Textile, yarn and threads	3.1	205.0	0.1	4.3	
	Cotton fabrics	12.6	50.5	0,2	1.7	
	Textile fabrics (no cotton)	19.5	271.7	0.2	0.6	
	Building materials	0.4	73.1	0.0	27.2	
	Glass/glassware	0.5	7.9	0.2	1.9	
	Pearls, semi-precious	0.0	1.6	-	-	
	Iron and steel ingots	0.2	34.6	-	0.2	
	Iron and steel bars	0.2	46.5	-	0.0	
	Iron and steel plates	1.0	74.3	0.0	0.0	
	Iron and steel tubes	0.2	59.5	-	0.7	
	Tools	0.5	6.3	-	0.2	
	Other manufactured goods	20.4	260.4	4.1	19.9	
7	Machinery and transport equipment	14.2	700.7	0.7	12.8	
	Power generating machinery	1.0	2.4	-	0.0	
	Office machines	0.0	44.1	-	0.0	
	Electrical machinery	7.4	440.9	0.0	5.3	
	Road motor vehicles	0.9	3.4	0.0	1.6	
	Aircraft	0.5	14.3	-	0.0	
	Ships and boats	1.3	137.8	0.6	1.2	
	Other machinery and equipment	2.9	36.7	0.1	4.6	
8	Miscellaneous manufactured articles	97.2	1,879.7	2.7	104.1	
	Furniture	0.1	10.8	6.6	5.2	
	Clothing and textile fabrics	59.2	1,131.6	0.3	33.1	
	Footwear	8.1	191.2	0.2	3.0	
	Scientific and medical instruments	0.3	23.0	-	8.0	
	Watches and clocks	0.1	43.0	-	0.1	
	Sound recording and medical instruments	0.1	83.2	0.0	1.4	
	Printed matter	0.5	16.3	0.1	0.4	
	Toys, sporting games	0.8	69.0	0.0	-	
	Others	27.6	293.5	1.5	58.3	

	Thails	ind	Malays	ia	Indonesia		
	1967	1975	1967	1975	1967	1975	
il	1.)	· <u>·</u> ··································					
·	12.5	195.6	23.4	171.9	1.2	8.1	
	0.2	2.4	0.0	0.1	0.1	0.4	
	0.1	3.0	4.7	18.1	-	0.2	
	0.8	22.7	4.2	85.6	0.1	1.1	
	0.0	4.2	1.0	3.5	0.0	0.3	
	0.1	9.6	0.6	5.3	-	0.0	
	0.3	17.1	3.1	20.0	0.5	0.4	
	2.2	27.2	0.0	4.0	0.1	0.1	
	0.8	25.9	4.1	3.3	-	0.0	
	0.2	1.0	0.1	2.7	-	-	
	4.5	38.7	-	0.2	0.0	0.3	
		-	0.0	0.1	-	-	
	0.0	0.1	0.0	0.9	-	0.1	
	0.1	0.9	1.2	1.0	-	0.0	
	0.3	4.1	0.8	2.8	-	0.2	
	0.0	1.2	0.1	0.7	-	1.8	
	2.8	35.3	2.7	19.0	0.4	3.0	
	0.5	28.5	3.9	238.8	<u>10.4</u>	32.1	
	0.0	0.2	0.0	6.7	-	8.0	
		0.4	0.0	31.9	-	0.3	
	0.4	23.3	2.3	126.6	-	12.9	
	0.1	1.0	0.1	12.8	-	0.2	
	~~~	0.0	0.0	10.1	-	ں.د ۱	
	0.0	3.6	1 3	3.4	10 4	7.7	
	0.1	5.4	1.5	43.4	10.4	0.5	
	<u>1.9</u>	250.2	10.2	220.6	0.3	20.9	
	0.0	3.1	1.3	4.0	- 20	0.2	
	0.9	53.5	3.2	42.2	-	2.4	
	0.0	0.7	1.8	14.7	-	0.2	
	0.0	1.5	0.1	130.1	-	2.6	
	~~~	2.1	0.0	2.9	-	0.0	
	0.0	160 0	1 2	2.0	<u> </u>	U.4 g /	
	0.0	107.0	0.1	2.0	0.1	0.4	
	0.8	17.5	1.9	12.5	0.3	6 4	

- 100 -

-4

i

(Annex Table 30 continued)

		Kor	ea
SITC	Commodity	1967	1975
·	· · · · · · · · · · · · · · · · · · ·		
	Total manufactured goods	100.0	100.0
0	Menufactured food	1.9	24
•	Fish air-tight containers	$\frac{1}{1}$	0.9
	Meal and flour of wheat	-	0.0
	Heal and flour of cereals	0.0	0.0
	Cereals preparation	0.2	0.1
	Dried fruit	0.0	0.0
	Fruit, preserved and prepared	0.0	0.0
	Vegetables, rocts, tubers	0.5	0.7
	Cocoa butter and paste	-	-
	Niscellaneous food production	0.0	0.6
1	Manufactured beverages/tobacco	0.2	<u>0.0</u>
	Alcoholic beverages	0.2	0.0
	Tobacco manufactured	0.0	0.0
2	Manufactured crude materials	<u>1.3</u>	0.6
	Wood shaped/simply worked	1.2	0.4
	Pulp/waste paper	-	0.0
4	Manufactured animal and vegetable (oils and	fats) 0.0	0.0
	Animal/vegetable oils/fats	0.0	0.0
5	Chemicals	<u>1.1</u>	1.8
	Organic chemicals	0.1	0.7
	Inorganic chemicals	0.1	0.2
	Dyeing + color materials	0.1	0.1
	Nedical/pharmaceuticals	0.1	0.2
	riastic materials	0.0	0.2
	Other chemicals	0.0	0.3
6	Manufactured goods	45.1	34.6
	Lealner Pubben menufactured		0.0
	Nudder manulactured Vood and oork manufactures	0.9	2.1
	NOOD ZHG COIK MANUIACTURES	10.0	2.3
	Tayer one manufactures	0.8	0.9
	rectire yains and thread Corton fabrics	1.4	4.0
	VVLLVN IBVILJ	2.1	* • 4

Phili	ppines	Thail	and	Malay	sia	Indon	esia	
1967	1975	1967	1975	1967	1975	1967	1975	
100.0 ^E	. Perc 100.0	entage 100.0	Share 100.0	100.0	100.0	100.0	100.0	
$\frac{20.0}{0.0}$	$\frac{21.7}{0.2}$	$\frac{55.2}{0.0}$	$\frac{11.7}{1.7}$	$\frac{23.1}{0.3}$	$\frac{6.3}{1.1}$	$\frac{10.2}{1.2}$	<u>3.4</u> 0.0	•
-	0.0	1.2	0.0	3.3	0.0	-	0.2	
0.0 - 18 2	8.2	0.0	0.3	0.9	0.6	0.5	0.4	
0.0 1.4 0.3	0.1	μ _{2.9} 0.5	4.0	1.7	0.7 0.1 1.1	7.3	0.1 0.8 0.8	
$\frac{3.5}{2.8}$	0.6 0.4 0.2	$\frac{0.3}{0.3}$	$\frac{0.1}{0.1}$ 0.0	$\frac{3.2}{2.9}$ 0.3	$\frac{1.2}{0.4}$ 0.7	<u>0.9</u> 0.4 0.5	<u>10.0</u> 0.1 9.9	
<u>8.8</u> 8.8	7.9 7.3 0.5	<u>13.5</u> 13.5 -	4.7	$\frac{23.1}{23.1}$ 0.0	<u>19.7</u> 19.7 0.0	$\frac{4.3}{4.3}$	23.4	
$\frac{0.1}{0.1}$	$\frac{0.3}{0.3}$	$\frac{0.0}{0.0}$	$\frac{0.0}{0.0}$	$\frac{0.1}{0.1}$	$\frac{1.6}{1.6}$	$\frac{1.2}{1.2}$	$\frac{0.0}{0.0}$	(Ar
6.3 1.9 1.9 0.3 1.4 - 0.2	5.7 1.4 0.3 0.3 0.6 1.2 2.0	$ \begin{array}{r} 1.6 \\ 0.3 \\ 0.1 \\ 0.0 \\ 0.8 \\ \hline 0.4 \end{array} $	2.1 0.3 0.1 0.1 0.8 0.5 0.3	$ \begin{array}{r} 13.1 \\ \hline 1.0 \\ 0.3 \\ 2.6 \\ 2.0 \\ 0.1 \\ 6.8 \end{array} $	3.5 0.3 0.1 0.8 0.5 1.4	<u>11.5</u> 	18.0 C.B 0.5 0.1 9.2 0.0 7.2	nnex Table 30 cer
56.6 0.5 49.3 0.2 0.1 0.3	32.3 0.0 0.2 16.1 0.2 1.3 0.5	24.6 0.3 0.2 1.5 0.1 0.2 0.6	33.6 0.4 0.5 3.9 0.7 1.7 2.9	23.4 0.0 4.7 4.2 1.0 0.6 3.1	18.4 0.0 1.9 9.2 C.4 0.6 2.1	7.2 0.3 0.3 0.0 3.3	6.0 0.3 0.1 0.8 0.0 0.0 0.3	ntinued)

.

- 101 -

MIGROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS STANDARD REFERENCE MATERIAL 1010a (ANSI and ISO TEST CHART No. 2)

			Korea		Philippines		Thailand		Malaysia		esis
SITC	Commodity	1967	1975	1967	1975	1967	1975	1967	1975	1967	1975
					(Perc	entage	Share)	·			
	Textile fabrics (noncotton)	8.8	6.4	0.3	0.1	4.3	4.7	0.0	0.4	0.6	0.1
	Building materials	0.2	1.7	0.0	7.3	1.6	4.4	4.1	0.3	-	0.0
	Glass/glassware	0.2	0.2	0.2	0.5	0.4	0.2	0.1	0.3	-	••
	Pearls, precious (and semiprecious) stones	0.0	0.0	-		8.8	6.6		0.0	0.1	0.3
	Iron and steel ingots	0.1	0.8	-	0.1	· · ·	-	0.0	0.0	-	-
	Iron and steel bars	0.1	1.1	-	0.0	0.0	0.0	0.0	0.1	-	0.1
	Iron and steel plates	0.4	1.7	0.0	0.0	0.3	0.1	1.2	0.1	-	0.0
	Iron and steel tubes	0.1	1.4	-	0.2	0.6	0.7	0.8	0.3	~	0.2
	Tools	0.2	0.1	-	0.1	0.0	0.2	0.1	0.1		1.3
	Other manufactured goods	9.3	6.1	5./	5.4	5.4	6.1	2.7	2.0	2.6	2.2
7	Machinery and transport equipment	6.4	16.5	1.0	3.4	1.1	4.9	3.9	25.6	62.8	23.8
	Power generating machinery	0.4	0.1	-	0.0	0.0	0.0	0.0	0.7		5.9
	Office machines	0.0	1.0	-	0.0	-	0.1	0.0	3.4	-	0.2
	Electrical machinery	3.3	10.4	0.0	1.4	0.8	4.0	2.3	13.6	-	9.6
	Road motor vehicles	0.4	0.1	0.0	0.4	0.1	0.2	0.1	1.4	-	0.2
	Aircraft	0.2	0.3	-	0.0	-	5.0	0.0	1.1		2.3
	Ships and boats	0.6	3.2	0.8	0.3	0.0	0.0	0.0	0.3		0.8
	Other machinery and equipment	1.3	0.9	0.1	1.2	0.2	0.6	1.3	4.9	62.8	4.8
8	Miscellaneous manufactured articles	44.0	44.2	3.7	28.1	3.7	42.9	10.1	23.6	1.9	15.5
	Furniture	0,1	0.3	0.9	1.4	$\overline{0.1}$	0.5	1.3	0.4	<u> </u>	$\frac{1}{0}$
	Clothing and textile fabrics	26.8	26.6	0.4	8.9	1.8	9.2	3.2	4.5		1.8
	Footwear	3.7	4.5	0.2	0.8	0.0	0.1	1.8	1.6	-	0.2
	Scientific and medical instruments	0.1	0.5		0.2	0.0	0.3	0.1	14.6	-	2.0
	Watches and clocks	0.0	1.0		0.0	-	0.5	0.0	0.3	-	0.0
	Sound recording and medical instruments	0.1	2.0	0.0	0.4	0.0	0.0	0.5	0.3	-	0.3
	Printed matter	0.2	0.4	0.1	0.1	0.0	29.0	1.2	0.3	ດ້າ	6.2
	Toys, sporting goods	0.4	1.6	0.0	-	0.2	0.1	0.1	0.1	-	0.2
	Othera	12.5	6.9	2,1	15.7	1.5	3.0	1.0	1.7	1 4	1. 7

a/ SITC categories, i.e., excluding mineral and agro-processing industries.

Notes: (1) Major commodity groups as one-digit SITC level are underlined and should add up to 100% except for mounding off. Within a commodity group, only those commodities with a share of 1% or more in any year has been listed. (2) Entries of 0.0 show either a zero or negligible value.

Source: World Bank, Philippines Industrial Development Strategy and Policies, Washington 1980.

1 102 I.

Manufactured exports by type of industry and country

(millions dollars and percentage²⁾

			Exports of 74 devloping count		
Ind	lustry	SITC	(including oil	NICS	
۸.	Resource-tased industries				
	Petroleum products	332	13,545.1 (41.0)	2,032.5	(24.9)
	Sugar and honey	061	4.040.7 (12.2)	1,604.1	(19.7)
	Other fixed vegatable oils	422	1,420.1 (4.3)	215.7	(2.6)
	Copper	682	1,246.8 (3.8)	39.6	(0.5)
	Animal feeding stuff	081	1,099.4 (3.3)	718.9	(8.8)
	Tes and mate	074	783.1 (2.4)	34.2	(0.4)
	Tin	687	753.3 (2.3)	28.2	(0.3)
	Rice, glazed or polished	0422	693.2 (2.1)	6.8	(0.1)
	Wood, shaped	243	320.5 (1.9)	169.1	(2.1)
	Fixed vegetable oils, soft	421	516.7 (1.6)	240.1	(2.9)
	Veneer, plywood	631	497.6 (1.5)	331.2	(4.1)
	Fruit, preserved, prepared	053	373.у (1.1)	182.2	(2.2)
	Fertilizera	561	351.6 (1.1)	30.9	(0.4)
	Mineral tar etc.	521	335.2 (1.0)	21.6	(0.3)
	Cocoa powder (unsweetened),				
	butter and paste	0722/3	317.0 (1.0)	13.5	(0.2)
	Inorganic chemicals	513	287.5 (0.9)	103.1	(1.3)
	Silver, plantinum etc	681	285.0 (0.9)	6.0	(0.1)
	Organic chemicals	512	256.4 (0.8)	176.8	(2.2)
	Neat, tinned, n.e.s.	013	255.6 (0.8)	198.3	(2.4)
	Aluminium	684	200.7 (0.6)	18.2	(0.2)
	Total resource-based indus	tries	33,0>5.9 (100.	6, 147.1	(100.0)
B.	Non-resource-based industrie	8			
	Clothing	841	4,255.4 (20.6) 3,428.8	(24.2)
	Electrical machinery	729	1,003.0 (4.9)	900.9	(6.4)
	Cotton fabrics	652	943.9 (4.6)	437.0	(3.1)
	Textile yarn	651	899.9 (4.4)	507.9	(3.6)
	Road motor vehicles	732	855.9 (4.1)	545.6	(3.5)
	Woven textiles, non-cotton	653	763.8 (3.7)	433.3	(3.1)

1

.

٠

.

sample, 1975

Comparative sample	Comparative sample
of developing	of developed
countries	countries
$\begin{array}{c} 330.7 \ (6.1) \\ 1,677.9 \ (12.6) \\ 347.9 \ (6.5) \\ 1.9 \ (0.0) \\ 192.4 \ (3.6) \\ 567.2 \ (10.5) \\ 112.2 \ (2.1) \\ 31.8 \ (0.6) \\ 113.0 \ (2.1) \\ 87.9 \ (1.6) \\ 63.0 \ (1.2) \\ 106.6 \ (2.0) \\ 54.3 \ (1.0) \\ 16.1 \ (0.3) \\ \end{array}$ $\begin{array}{c} 107.5 \ (2.0) \\ 58.7 \ (1.1) \\ 273.0 \ (5.1) \\ 30.6 \ (0.6) \\ 0.5 \ (0.0) \\ 45.2 \ (0.8) \\ \hline 5,389.9 \ (100.0) \end{array}$	542.8 (12.1) $50.5 (1.1)$ $23.0 (0.5)$ $182.3 (4.1)$ $46.8 (1.0)$ $b -$ $10.8 (0.2)$ $20.5 (0.5)$ $143.7 (3.2)$ $156.5 (3.5)$ $62.6 (1.4)$ $241.1 (5.4)$ $133.0 (4.1)$ $2.2 (0.0)$ $20.8 (0.5)$ $178.6 (4.0)$ $40.8 (0.9)$ $213.9 (4.8)$ $58.6 (1.3)$ $225.3 (5.0)$ $4,466.7 (100.0)$
435.2 (12.3)	784.5 (7.7)
40.4 (1.1)	197.0 (1.9)
289.7 (8.2)	99.2 (1.0)
232.7 (6.6)	352.9 (3.4)
85.1 (2.4)	518.4 (6.0)
223.1 (6.3)	201.2 (2.0)

ı

- 103 -

--- +-

ł

l

{

A

		Exports of 74 developing countrie	8	Comparative sample of developing	Comparative sample of developed	
Industry	SITC	(including oil coun	tries) NICS			
Telecommunications equipment	724	761,2 (3.7)	688.5 (4.9)	16.1 (0.5)	217.8 (2.1)	
Footwear	851	610.1 (3.0)	440.5 (3.1)	76.1 (2.1)	698.7 (6.8)	
Machines, n.es., non-electric	a1719	505.6 (2.4)	356.4 (2.5)	60.4 (1.7)	449.9 (4.4)	
Toys, sporting goods	894	481.3 (2.3)	426.7 (3.0)	18.6 (0.5)	94.0 (0.9)	
Textile goods, n.e.s.	656	436.9 (2.1)	137.3 (1.0)	192.5 (5.4)	152.0 (1.5)	
Office machines	714	429.0 (2.1)	382.9 (2.7)	8.7 (0.2)	90.6 (0.9)	
Leather	611	389.2 (1.9)	110.4 (0.8)	198.8 (5.6)	80.0 (0.8)	
Other manufactured goods	899	358.7 (1.7)	263.7 (1.9)	57.8 (1.6)	47.9 (0.5)	
Floor covering, tapestry	657	344.2 (1.7)	37.6 (0.3)	79.2 (2.2)	63.1 (0.6)	
Instruments, apparatus	861	334.2 (1.6)	160.3 (1.1)	10.7 (0.3)	54.0 (0.5)	
Cement etc.	661	330.2 (1.6)	126.5 (0.9)	103.0 (2.9)	260.8 (2.5)	
Ships, boats	735	327.2 (1.6)	296.0 (2.1)	11.6 (0.3)	758.1 (7.4)	
Medicinal products	541	318.6 (1.5)	179.4 (1.3)	50.5 (1.4)	145.2 (1.4) -	
Power-generating machines,					40	
non-electric	711	305.9 (1.5)	237.5 (1.7)	40.5 (1.1)	125.1 (1.2)	
Printed matter	892	302.6 (1.5)	155.7 (1.1)	30.8 (0.9)	205.0 (2.0)	
Electric power machines	722	298.3 (1.4)	157.4 (1.1)	29.9 (0.8)	220.7 (2.2)	
Articles of plastics, n.e.s.	893	273.0 (1.3)	219.6 (1.6)	17.7 (0.5)	45.0 (0.4)	
Iron and steel tubes and pipe	es 678	272.5 (1.3)	184.2 (1.3)	45.6 (1.3)	216.2 (2.1)	
Travel goods	831	256.7 (1.2)	201.1 (1.4)	34.7 (1.0)	36.2 (0.4)	
Machines for special			. ,			
industries	718	251.4 (1.2)	172.0 (1.2)	19.4 (0.5)	83.8 (0.8)	
Watches, clocks	864	238.4 (1.2)	228.2 (1.6)	3.8 (0.1)	24.9 (0.2)	
Total non-resource based in	dustries	20,677.9 (100.0)	14,161.0 (100.0)	3,551.5 (100.0)	10,254.8 (100.0)	

Source: Data supplied by the United Nations Statistical Office a/ Value of exports in million dollars and the industry's share in the group's total exports of resource-based industries (A) or h non-resource-based industries (B). b/ Value less than \$1,000,000

Totals include other industries এ

Source: UNIDO, World industry in 1980, New York, 1981.

Annex Table 32

Sector		Malaysi	la (1973)	Philippi	ines (1974)	Indonesia	(1974)					
		Wage/ worker	Value added/ worker	Wage/ worker	Value added/ worker	Wage/ worker	Value added/ worker					
Clothing		455	1,187	309	609	190	388					
Textiles		647	1,924	53C	2,010	242	824					
Wood		938	3,152	530	1,673	288	845					
Furnitur	e	843	1,719	456	961	254	457					
Leather		513	1,678	412	1,156	240	860					
Metal pro	oducts	1,40)	2,538	677	2,816	326	857					
Total in	dustry	896	3,561	692	4,329	280 l	,245					
Sources:	Malaysia:	<u>Census</u> manufac	of Manufac	turing Ind	dustries, 197	'3 (coverage	al1					
	Philippines:	<u>Census</u> enterpr	of Manufactises with	turing Inc 5 or more	iustries, 197 emplcyees).	4 (coverage						
	Indonesia:	Census of Manufacturing Industries, 1974/75 (data in table cover small, medium, and large-scale enterprises).										

Wages per worker and iabour productivity for selected industries in 1974 (in US \$)

- 105 -

i

:

.

	<u></u>	1965 imports 1975 imports													
		IJ.S.	۸.	Othe deve	r loped	U.S.A	•	Other devel	oped	LDCs the U	share in .S.A.	1	LDCs other	share in Jevelo	a pedi
SITC	Description	LDCs	Total	LDCs	Total	LDCs	Total	LDCs	Total	1965	1975 -	Cl ange	1965	1975	Change
(89940)	Umbrellas	1.3	7,6	1.1	17.5	14.9	18.1	45.8	104.5	17.1	82.6	65.5	6.3	43.8	37.6
(84130)	Leather clothing	9.2	42.9	1.7	35.1	160.9	216.9	235.9	656.8	21.0	74.2	53.2	4.8	35.9	31.1
(89910)	Carved manufactures	0.8	2.6	1.2	12.7	5.4	15.3	23.6	58.3	30.8	61.5	30.7	9.4	40.4	30.9
(89920)	Basketwork and brooms	5.0	24.1	3.6	53.9	38.4	74.0	77.1	256.8	20.7	51.8	31.1	6.7	30.0	23.3
(83100)	Travel goods	18.6	50.0	5.9	91.4	163.2	217.9	158.6	612.8	37.2	74.9	37.7	6.5	25.9	19.4
(84200)	Fur clothing	0.2	2.0	Ç.3	28.7	8.0	14.8	73.7	383.5	10.0	53.9	43.9	1.0	19.7	18./
(63110)	Venna: sheets	16.6	45.8	6.3	101.8	14.5	51.1	64.5	2/1.1	30.2	28.4	-/.9	0.2	14 6	14.0
(71420)	Calculating machines	0.2	53.7	0.1	347.1	111.7	339.4	101.1	904,4	12 2	32.9	32.3	6.0	20.4	16.4
(72420)	Radio receivers	19.8	149.0	8.2	201.3	294.2	001.0	2/0.1	1,303.1	13.3	44.3	31.2	17 1	20.4	16.1
(84110)	Clothing not knitted	100.5	214.2	104./	611.3	830.1	1,022.5	1,032.3	2,200.7	40.9	70 4	34.3	16 6	20.6	15 1
(63120)	Plywood	56.0	124.9	27.7	191.4	208.7	202.1	212.4	11/.1	44.0	27 1	34.0	19.3	29.0	14 5
(3200)	Canned fish	20.0	63.0	30.0	304.0	44,9	103.7	423.4	205 8	30 0	50 1	20 1	5 0	20.5	14.4
(65550)	Cordage	19.0	48./	. 4.2	42.1	/3.0	123.4	42.0	202.0	20 0	83 0	54 0	15.0	20.4	17 7
(84140)	Kaitted Accussories	04.2	221.5	94.7	144 7	77 /	206 9	127 5	780 2	11.8	37.8	26.0	3.0	16.3	13.3
(63200)	wood products, nes	7.1	91 7	11 7	144.7	9/ 3	04.7	62 7	180 0	69 1	89.5	21.2	23.0	34.8	11.8
(39990)	Other Manufactures, des	15 5	61.7 /8 /	11.5	127 9	79.3	130 2	99.0	516.8	12.0	57.0	25.0	9.0	19.2	10.2
(84120)	Ciotning accussories	12.2	13.0	0.9	45.6	18 0	36 5	19.3	150.5	6.9	52.4	45.4	2.0	12.2	10.2
(34130)	Tedbahien implant	5.0	17.5	1 5	32 4	50.1	81.8	38.8	186.6	28.6	61.3	32.7	10.8	20.8	10.0
(63720)	leither menufactures	1 7	10.2	2.4	45.8	18.0	32.5	33.1	226.5	16.7	55.5	36.9	5.2	14.6	9.4
(86410)	Vatches	0.8	79.3	0.7	141.0	98.9	298.1	87.5	914.1	1.0	33.2	32.2	0.5	9.6	9.1
(86140)	Photographic cameras	1.1	37.4	1.6	101.7	22.8	175.3	66.5	624.5	2.9	13.0	10.0	1.6	10.6	9.1
(60140)	Cultery	1.5	43.1	3.2	110.3	16.7	119.5	45.9	412.7	3.5	13.9	10.5	2.9	11.1	8.2
(72930)	Thermionic meterials	9.2	63.2	0.8	375.2	729.9	910.7	223.4	2,738.3	14.6	80.2	65.6	0.2	8.2	7.9
(65100)	Textile varm	5.9	63.6	21.1	1,035.1	21.7	130.4	386.9	4,030.3	2.3	16.6	7.4	2.0	9.6	7.6
(65350)	Synthetic fabrics	0.6	28.1	1.6	239.0	13.9	172.8	164.5	2,018.6	2.1	8.0	5.9	0.7	8.1	7.5
(69700)	Household equipment	4.8	33.2	3.4	175.7	56.6	135.6	67.7	767.5	14.5	41.7	27.3	1.9	8.8	6.9
(24300)	Shaued wood	25.3	375.2	162.7	1,466.0	55.4	792.2	596.0	3,378.7	6.7	7.0	0.3	11.1	17.7	6.6
(63180)	Simply worked wood	8.6	20.7	0.3	18.5	22.1	46.7	39.8	501.2	41.5	47.4	5.8	1.6	7.9	6.3
(89110)	Tape recorders	0.0	100.6	0.2	211.6	76.6	603.3	76.9	1,228.1	0.0	12.7	12.7	0.1	6.3	6.2
(73310)	Bicycles and parts	0.3	30.9	0.1	42.7	23.6	136.6	18.6	309.6	1.0	17.3	16.3	0.2	6.0	5.8
(61100)	Leather	20.4	67.5	73.6	313.9	44.4	89.2	324.5	1,110.7	30,2	49.8	19.0	23.4	29.2	5.8
(85100)	Footwear	10.6	159.9	26.6	367.9	545.1	1,301.4	334.2	2,612.8	.0.0	41.9	35.3	7.2	1,2,8	5.0
(61300)	Tanned fur skins	0,1	11.2	1.8	105.5	0.7	10.5	27.2	377.3	0.9	20.0	0.2	1./	/	5.3
(83710)	Gold jewelry	1.1	12.9	3.5	115.0	20.2	140.1	30.3	3/4.5	1.0	30.0	43.1	3.3	0,1 4 0	2,4
(66130)	Building stone	0.4	15.1	0.1	42.9	2.4	32.0	24.0	440.7	2.0	1.3	4.0	1,0	5.0	4.7
(65360)	Other fabrics	0.7	25.0	2.5	334.7	8:9	12.7	34.0	202.5	12.0	3/ 1	20.0	1 7	5.0	4.1
(64400)	Tulle or lace	2.2	10.5	2.0	155.1	177.0	19.0	107.9	2 6 2 3 9	3.4	14.1	11 0	0.4	5.6	4.0
(89100)	Musical instruments	1.9	50.0	0.7	100.3	111.0	/02.0	107.J	210 4	11 7	× 2		21 7	25 4	1.0
(41110)	Ulis of flen	0.7	0.U 74 9	28.9	133.1	53.7	98:1	198 B	1.007.0	18.7	54.6	36.0	16.0	19.7	3.7
(0.000)	THUS-UP CERCIIS IADRICS	2.2	140 6	21.0	170.5	297 2	636 A	201 7	1 990 9	16.8	46.7	29.9	11.0	14.8	3.7
(89400)	Sporting goods	23.0	20 0	40.1	110 7	1A /	128 2	17.6	454 4	0.0	29.9	29.9	0.4	3.9	3.5
(01420)	CLOCLE	0.0	71 2	0.4	133 7	13 4	187.2	17 5	440.8	0.1	7.4	7.2	0.4	3.9	3.5
(/1/30)	Several textile fabric	4.3	15 0	1 2	212 5	83.0	215.1	57.4	1.473.3	27.0	39.0	11.9	0.6	3.2	3.3
(7)400)	Special textile tepric	4.5	31.2	1.1	360 1	99 5	449.4	60.9	1.958.8	3.5	22.1	18.6	0.1	3.1	3.0
(11470) TOTAT	AFILET WECKTHEE	551.2	2.882.7	740.4	10.146.1	5.707.1	12.507.9	0.458.3	51.201.2	19.1	45.6	26.5	7.3	16.5	9.2
TOTAL			-,	,											

Analysis of changes in imports of labour intensive products in which developing countries market shares made their largest increases over the interval 1965 to 1975 (values in \$ million)

`

.

٠

 ∇

Source: A.D. Tuong and A. Yeats, "On factor proportions as a guide to future composition of developing countries exports", Journal of Development Economics, Vol. 7 (1980), pp. 521-539. - 106

T

....

. . .

Amies Table 33

.

.

<u></u>		1965 importa				1975 1	BOTTS								······
		U.S.A.		Other de	rveloped	U.S.A.		Other deve	loped	LDCs si	are in	the USA	LDCe sh oped	are in	other devel-
SITC	Description	LDCs	TOULI	-00.6	TOTAL	LDCB	19641	LUCE 1	TOTA!	1392	1975	Change	1962	-1975	Change
(66700)	Precious stones	14.4	46.0	36.4	117.2	329.2	851.5	628.6 4	,183.9	35.7	38.7	3.0	32.8	15.0	-17.7
(8140)	Fish or meat meal	2019	34.9	127.9	267.8	17.7	27.8	116.7	373.9	65.5	63.7	4.8	47.8	31.2	-16.6
(41100)	Fish oils	0.7	0.0	28.9	133.1	10.2	12.3	24.7	478 2	41.0	1.2	-10.5	21.7	7.7	-11.9
(33100)	Ter 11a bass	10.0	45.0	50 4	104.0	0.7	1 2	61.3	103.7	57 1	57.5	-2.5	67 0	61.0	-/./
(63340)	Noven juta fabrica	174.0	186.7	55.9	76.5	123.2	124.1	66.9	97.3	93.2	99.3	6.1	73.1	68.8	
(65700)	Floor coverings	15.7	54.3	120.7	415.1	45.4	106.0	465.8 1	1.787.0	28.9	42.8	13.9	29.1	26.1	-3.0
(\$1240)	Lighting fixtures	4.8	33.0	8.0	106.1	19.2	59.3	7.5	533.1	14.5	32.4	17.6	7.4	5.2	-2.2
(63300)	Cork manufactures	0.1	3.9	2.4	43.9	0.0	10.3	3.8	102.0	2.6	0.4	-2.2	5.5	3.7	-1.8
(66180)	Cement building														
	material	1.0	5.8	0.8	46.0	2.6	6.8	0.8	180.0	17.2	38.6	21.4	١.7	0.4	-1.3
(63140)	Improved wood	0.1	0.8	0.6	53.5	0.0	4.3	1.1	366.2	12.5	0.0	-12.5	1.1	0.3	-0.8
(89960)	Orthopaedic goods	0.3	3.1	0.4	26.4	0.9	15.5	2.0	245.8	9.7	5.7	-4.0	1.5	3.0	-0.7
(62100)	Rubber materials	0.0	0.0	2.3	119.6	0.0	0.4	8.0	554.3	0.0	2.1	2.1	1.9	1.4	-0.5
(3300)	Properod Vegetables	23.1	43.3	32.0	238.0	78.7	183.8	230.0 1	1,104.0	51.0	42.8	~6.1	22.0	21.5	-0.5
(45110)	Trans	0.1	7.9	3.2	109.2	1.3	49.1	12.4	671.3	1.1	4.0	1.5	1.7	1.4	-0.3
(4300)		0.0	16 6	1 1	58 1	15.0	79.4	1 C.C	171 2	2.0	18 0	16.5	7 2	2.0	-0.5
(\$5190)	Textile varm. nes	1.2	2.0	11.2	35.5	6.6	7.3	16.6	44.4	60.0	90.7	30.2	37.2	17.1	0.1
(71980)	Nohanical goods, bas	0.3	55.6	0.4	447.0	18.3	316.6	5.4.2	2.303.0	0.5	5.8	5.2	0.1	0.2	0.1
(84160)	Rubber clothing	0.0	0.0	0.1	9.9	0.0	0.0	0.7	60.2	0.0	0.0	0.0	1.0	1.2	0.2
(89950)	Toilet articles	0.7	8.7	2.1	57.2	1.7	26.9	8.1	210.0	8.0	6.2	-1.9	3.7	3.9	0.2
(71200)	Agricultural machiaes	0.5	194.5	0.1	935.7	9.7	872.1	8.1 3	3,698.8	0.3	1.1	0.9	0.0	0.2	0.2
(71520)	Netal working								•						
	nachines	0.0	7.4	0.1	145.2	0.8	41.2	1.7	715.4	0.0	1.8	1.8	0.1	0.2	0.2
(71830)	Tood processing		_			_									
	mechines	0.1	14.7	0.2	90.0	1.8	49.1	1.6	418.6	0.7	3.7	3.0	0.2	0.4	0.2
(87730)	Carties and Escaines	0.8	19.2	2.0	0.00	9.1	eu.z	11.9	322.5	4.2	13.1	10.9	3.3	3.7	0.3
(1010)	Paper Hill Mchihery	0.0	22.4	0.1	1/3.9	0.0	8J.Y	40	78:7	0.0	0.7	0.7	0.1	0.3	0.3
(71710)	Testile Machinery	0.0	81.4	0.3	347.3	2.2	329.3	8.8 1	1,990.2	0.0	0.7	0.7	0.1	0.4	0.4
(73100)	Factions mettales	0.1	7.4	0.3	507.9	2.1	104.1	2.0 1	1,790.1	0.0	7.0 3 A	2.3	0.2	0.5	0.4
(13100)	ALLINEY VELICION		1.4		114.5	2.4	30.0	2.9	400.0	0.0	3.0	3.0		0.0	0.4
(73290)	Notorcycles and parts	0.0	141.0	0.0	77.6	4.4	744.4	3.6	658.3	0.0	0.6	0.6	0.0	0.5	0.5
(71950)	Power tools, nes	0.1	34.3	0.2	261.8	8.1	220.1	7.6 1	1,338.5	0.3	3.7	3.4	0.1	0.6	0.5
(71992)	Taps and valves	0.2	12.2	0.5	309.1	11.7	167.9	11.0 1	1,756.6	1.6	7.0	5.3 '	0.2	0.6	0.5
(65310)	Silk fatrics	2.3	29.7	2.5	45.5	1.6	16.7	15.4	251.4	7.7	9.4	1.7	5.5	6.1	0.6
(65390)	Woven fabrics, nes	1.3	37.4	0.2	16.4	3.6	21.7	0.3	18.9	4.0	16.4	12.4	1.2	1.8	0.6
(72940)	Automotive equipment	0.0	9.1	0.7	142.0	22.7	112.2	8.8	837.1	0.0	20.2	20.2	0.5	1.0	0.6
(/1310)	Macaine Cools	0.3	20.1	0.5	204.1	7.9	320.5	15.3 4	2,300.7	0.5	2.4	1.9	0.1	0.0	0.6
(97670)	Statistics) meddings	3.3	4 7	1.0	200.3	20.1	179.0	10./ 1	1,243.0	6.0	1.4	-0.6	0.8	1.2	0.7
(73280)	Notor webicle bodies	0.0	197 4	1.0	1.770.0	97.1	2 507 2	100,4 L	9,774.3 9 706 B	0.0	1.9	1.7	1.2	1.3	0.0
(86160)	Photographic apparatu	0.0	A.1	0.6	119.8	0.7	25.1	17.1	1.201.2	0.4	2.7	2.7	0.5	1.4	0.9
(86170)	Nedical instruments.	0.2	13.2	0.8	67.7	7.1	99.9	14.0	772.7	1.5	7.1	5.6	0.9	1.8	0.9
(69880)	Miscellaneous matal an	rt. 1.1	3.9	0.3	72.4	4.1	40.4	4.5	341.7	28.2	10.1	-18.1	0.4	1.3	0.9
(71920)	Pumps	0.2	34.7	0.9	643.8	7,3	344.3	42.2 3	3,655.8	0.6	2.1	1.6	0.1	1.2	1.0'
(66300)	Mineral products, nes	3.9	16.6	0.9	240.9	9.0	83.2	15.7 1	1,119.9	23.5	11.5	-12.0	0.4	1.4	1.0
(66400)	Glass	2.4	56.6	0.4	278.4	6.3	119.3	12.1 1	1,015.9	4.2	5.3	1.0	0.1	1.2	1.0
Total		299.7	1,575.6	562.1	10,2/3.9	938.3	5,821.0	2,204.7	54,731.2	19.0	10.6	-8.4	5.5	4.0	-1.4

Analysis of changes in imports of labour intensive products in which developing countries market shares fell or showed only slight increases over the intervel 1965 to 1975 (values in million)

:

Source:

H.D. Tuong and A. Yeats (1980), op.cit

- 107 -

(Anner Table 33 continued)

Annex Table 34

.

•

Export performance ratios for manufacturing industries, by country sample

						Export performance ratio (1966-1967/1975-1976)				
	Commodity	Т	уре	codes	<u>,a</u> /	Developed countries,		Developing countries, comparative		
SITC	(industry)	RES	SK	PD	Fl	sample	NICs	sample		
012	Meat, dried, salted							 >/		
	or smolled	R				- <u>D</u> /	- 0/	- "		
013 ·	Meat and meat preparations	R				5.1/4.0	24.3/18.4	-		
022	Milk and cream	R				-	-	0.0/0.4		
J23	Eutter	K				-		-		
024	Cheese and curd	R				-	-	-		
032	Fish and fish preparations	R				18.6/8.2	2.3/2.5	0.4/3.6		
0422	Rice, glazed or polished	R				-	-	12.4/3.4		
046	Meal and flour of wheat									
	or of meslin	R				-	0.9/3.0	-		
047	Meal and flour of cereals	k				-	•• • • • • •	-		
048	Cereal preparations	R				0.1/0.7	0.8/0.9	0.7/0.9		
052	Dried fruit	R				131.9/61.2	73.4/87.7	2.0/6.0		
053	Fruit, preserved and fruit	_								
	preparations	R				13.1/12.3	6.6/3.4	10.4/13.8		
055	Vegetables, preserved or	_						11 2/20 0		
	prepared	R				19.1/11./	1.4/2.1	14.2/30.9		
061	Sugar and honey	R				0.2/0.5	19.8/10.1	49.2/24.0		
062	Sugar contectionery	ĸ				2.9/1./	-	-		
0/13	Coffe extracts,						10 6/20 2	62 8/27 6		
	essences etc.	ĸ				-	10.4/30.3	03.0/2/.0		
0/22/3	Cocoa powder (unsweetened)	' 、				0 2/2 1	•	72 7/161 /		
070	butter and paste	K D				0.2/2.1	0.214 5	2 1/26 0		
073	Chocolate etc.	K D				-	2 1/3 2	131 3/207 2		
074	lea and mate	R D				0.6/0.5	2.1/J.2 0 7/14 0	6 3/4 4		
031	Reeding stuff for animals	R D				0.0/0.3	9.7714.0	-		
091	margarine and shortening	ĸ				-	-	-		
099	also preparations not	Ð				1.0/0.8	1 5/1.3	0.4/0.7		
	Non-alcoholic heverages	K				1.0,0.0		011/01/		
111	not elsewhere enecífied	R				_	-	-		
1:2	Alcoholic heverages	R				6.7/5.6	C.5/0.8	3.5/1.9		
122	Tobacco manufactures	R				-	÷	0.8/1.2		
2219	Flour and meat of oil									
	seeds etc.	R				-	-	-		
2312	Synthetic rubber etc	R				-	-	-		
243	Wood, shaped or simply	•								
	worked	R				1.5/2.1	4.7/1.7	5.4/3.9		
251	Pulp and waste paper	R				0.6/2.0	0.1/0.2	-		
2626-8	Wool shoddy, wool or other									
	animal hair, wool cops	R				-	-	-		
266	Synthetic and regenerated									
	fibres	R				0.6/0.8	-	-		
332	Petroleum products	R				1.2/1.6	9.7/7.0	0.9/1.4		

Annex Table 34 (continued)

- -

						Ехро (19	ice ratio -1976)		
SITC	Commodity (industry)	Type codes ²				Developed countries,		Developing countries, comparative	
		RES	SK	- FD	Fl	sample	N1Cs	sample	
<u> </u>									
411	Animals oils and fats	R				-	-	-	
421	Fixed vegetable oils, soft	R				14.1/4.7	9.2/11.0	35.9/27.1	
422	Other fixed vegetable	Ð				_	19 1/9 9	76 7/74 9	
431	Animal and wagetchla	ĸ							
4J1	oile processed atc	P				-	9.2/2.0	-	
512	Organic chomicals	Ð				0 6/0 7	0 6/0 5	0.1/0.2	
512	Inorganic chamicals	Ð				3 6/1.7	2 4/2 1	1.1/4.0	
515	elements etc	ĸ				5.0/1.7	2.4/2.1	,	
514	Other inorganic								
514	chemicals	R				0.8/1.7	0.4/1.0	0.1/0.6	
515	Radioactive materials etc	R			-	-	-	-	
521	Mineral tar etc	R				-	~	1.9/20.1	
531	Synthetic organic	••	8	I.	ĸ	-	-	0.0/0.3	
	dvestuffs etc.			2					
532	Dveipe and tanning		Н	L	ĸ	-	38.7/36.1	-	
232	extracts etc.		-	-			•••••		
533	Pigments, paints, etc.		H	L		1.0/1.5	0.5/0.3	0.2/0 4	
541	Medicinal and pharma-								
	ceutical products		H	1.	ĸ	0.6/0.8	1.3/0.9	0.4/0.5	
551	Essential oils etc.		H	Ľ	L	1.7/0.9	3.5/2.0	1.3/7.1	
553	Perfumery and cosmetics		H	L	ĸ	1.0/0.8	-	1.5/6.6	
554	Soaps, cleansing and						•		
	polishing preparations		H	н	ĸ	0.7/0.7	~	0.3/0.5	
561	Fertilizers, manufactured	R		•-		2.0/2.9	C.2/0.2	2.1/1.3	
571	Explosives etc.		H	L	ĸ	2.1/8.7	-	-	
581	Plastic materials etc.		Ĺ	н	ĸ	0.3/0.4	0.1/0.1	0.1/0.2	
599	Chemical materials and							·	
	products not elsewhere								
;	specificd					2.0/1.6	0.7/0.6	0.2/0.6	
611	Leather		L	L	L	2.0/2.1	2.3/6.3	16.8/21.2	
612	Manufactured of leather no	ot							
	elsewhere specified		L	H	L	5.0/3.4	0.8/2.2	0.3/2.6	
613	Fur sains, tanned or								
	dressed		L	L	L	20.9/17.6	-	-	
621	Materiais of rubber		ï.	L	L	0.3/0.8	-	-	
629	Articles of rubber not								
	elsewhere specified		L	Н	K	1.6/2.7	0.3/1.1	0.8/0.3	
631	Venners, piywood etc.	R				2.9/1.5	22.1/8.1	17.4/5.4	
632	Wood manufactures	R				7.6/2.5	0.9/1.6	1.2/6.2	
	not elsewhere specified								
633	Cork manufactures	R				100.7/160.5	-	-	
641	Paper and paperboard	R				0.3/0.5	0.0/0.1	-	
642	Articles made of								
	paper etc	R				0.8/1.0	0.6/0.6	5.9/1.4	
651	Textile yain and thread		L	L	L	2.5/3.0	1.1/3.0	4.2/5.6	
652	Cotton fabrics		L	L	L	4.2/2.8	8.2/6.5	4.9/8.3	

Export performance ratios for manufacturing industries, by country sample

						Expor (196)	t performanc 6-1967/1975-	ice ratio · 5-1976)		
	Com: od i tv	Type codes ^a /			<u>a</u> /	Developed countries,		Developing countries,		
SITC	(industry)	RES	SK	PD	Fl	sample	NICs	sample		
653	Textile fabrics, other									
	than cotton		L	L	L	. 0.8/1.1	1.0/2.1	7.9/2.4		
654	Tulle, lace, embroidery									
	etc		L	L	L	1.0/1.5	1.6/5.2	-		
655 ·	Special textile fabrics									
	etc		L	L	L	3.7/1.6	1.1/1.2	0.5/1.3		
656	. Made-up articles of									
-	textile materials not			•						
	elsewhere specified		L	H	L	4.1/7.7	5.1/3.0	22.6/12.7		
657	Floor coverings									
	tapestries etc		L	H	L	0.9/2.6	0.6/2.2	4.0/5.9		
661	Line, cement etc		L	L	K	2.6/10.3	0.7/3.1	4.1/4.4		
662	Clay construction		L	L	L	1.1/2.3	0.8/0.6	0.3/0.5		
	materials etc									
663	Mineral manufactures			-	_		0 0 0 0	0 2/0 2		
	not elsewhere specified		Н	L	L	1.0/0.9	0.2/0.6	0.2/0.3		
664	Glass		L	L	ĸ	0.5/0.7	0.3/0.9	-		
665	Glassware		L	L	L	1.5/1.6	1.3/2.3	0.2/0.8		
666	Pottery		L	L	L	0.6/1.4	-			
671	Pig iron etc		L	H	ĸ	1.8/4.0	2.0/4.4	3.2/3.2		
672	Primary forms of iron and			-		0//0/	0 2/0 2	0 0/0 3		
	steel		L	۲.	ĸ	0.4/0.4	0.2/0.3	0.0/0.3		
6/3	Iron and steel bars etc.		L	н	ĸ	0.372.0	0.4/0.3	0.7/0.9		
6/4	Universals etc of iron						0 6 / 0 2	0 0/0 1		
	and steel		L	n	ĸ	0.0/0.5	0.0/0.3	0.0/0.1		
6/3	Hoop and strips of iron		-				_	<u>.</u>		
171	and steel		ь •	n 11	K W	2 7/1 2	-	0 7/2 1		
670	Kalls etc.		ւ 1	n T	K V	5.7/1.0	-	-		
670	Tron and steel wire		Ŀ	L	K	-	-	-		
0/0	lubes, pipes of from			ដ	v	06/08	_	_		
; 6 70	And steel		ч	п	ĸ	0.0/0.0	_	_		
0/9	from and steel castings		Ŧ	т	v	2 6/1 5	_	_		
691	elc, not elsewhere	D	L	L	ĸ	0 5/0 6	-	1.7/18.0		
493	Copper	10				2 3/2.8	1.0/0.2	-		
602	Nickel	5				-	_	0.0/8.3		
684	Aluminium	R				3.4/3.8	0.1/0.2	17.1/6.0		
685	Load	R				6.4/4.5	24.8/17.8	-		
696	Zinc	R				1.6/4.1	2.2/10.5	-		
687	Tin	R				-	0.5/2.6	100.6/114.0		
689	Miscellaneous non-ferrous									
007	hase metals	R				-	-	-		
691	Finished structural parts									
	not elswhere specified		H	н		1.1/1.2	0.2/0.3	0.1/0.3		
692	Metal containers		H	Ĺ		1.4/2.0	2.5/0.9	-		
693	Wire products		Н	L	L	2.1/1.9	0.4/1.1	0.4/0.8		
	(excluding electric)			-	_*					
694	Nails, screvs. etc		H	L	K	1.0/1.7	0.2/0.6	0.2/0.5		
695	Tools		L	L	K	1.1/1.4	0.3/0.5	0.2/0.6		
696	Cultery		L	L	L	1.2/1.9	1.1/3.6	-		

Export performance ratios for manufacturing industries, by country sample

)

• • •

.

Annex Table 34 (continued)

					Expor (196	t performance ratio 6-1967/1975-1976)			
SITC	Commodity	Ту ре	cod	<u>a/</u>	Ecveloped countries, comparative		Developing countries, comparative		
	(industry) R	ES SK	PD	Fl	sample	NICs	sample		
 697	Household equipment	. н	L	L	1.7/3.8	3.6/2.8	0.4/1.4		
698	Manufactures of metal not								
	elsewhere specified	н			1.6/5.2	1.1/0.8	0.2/0.3		
711	Power generating	H	L		0.3/0.4	0.1/0.7	0.0/0.1		
·• .	machines, non-electric								
712	Agricultural machinery	H	L	L	0.4/0.5	0.0/0.4	-		
714	Office machines	H	H	L	0.2/0.4	0.6/1.0	-		
715	Metal-working machinery	E	L	L	0.8/1.0	0.1/0.2	0.0/0.1		
717	Textile and leather								
	machinery	н	L	L	1.4/0.6	0.2/0.2	0.1/0.1		
718	Machines for special								
	industries	H	L	L	0.2/0.3	0.2/0.4	0.1/0.1		
719	Machinery and appliances	-		_					
	not elsewhere specified	н	T.	ī.	0.2/0.5	0.1/0.3	0.1/0.1		
777	Flectric nover machinery	••	-	-			•		
166	etc	я	L	T.	0.7/0.9	0.1/0.4	0.0/0.2		
777	Ecc. Equipment for distributing		5	Ð	•••••	••••			
125	electricity	u	T	T	5 3/3 1	0.3/0.4	0.1/0.4		
77/		. п		1	0 2/0 8	1 2/1 5	0.0/0.1		
724	Telecommunications apparatus	s n		Ь	0.2/0.0	1.2/1.3	0.0,0.1		
125	Domestic electrical		•		0 2/1 1	0 //1 1	0 1/0 1		
	equipment	n	L	Ь	0.2/1.1	0.4/1.1	0.1/0.1		
/26	Electric apparatus,			-					
	medical etc.	H	և -	L			0 1/0 2		
729	Other electrical machinery	н	L	L	0.2/0.5	0.7/1.9	0.1/0.3		
731	Railway vehicles	L	L	L	5.0/2.7	0.0/0.9	0.1/0.7		
732	Road motor vehicles	L	н		0.2/0.4	0.1/0.3	0.0/0.1		
733	Road vehicles other	-				0 2 10 1	0 2/1 1		
	than motor vehicles	L	H		1.9/1.5	0.3/0.6	0.3/1.1		
73 <u>4</u>	Aircraft	Н	L		0.2/0.6	0.2/0.2	-		
735 👘	Ships and boats	H	L	L	2.8/1.3	0.2/1.0	0.0/0.1		
812	Sanitary, plumbing heating				_				
•	fixtures	L	L	L	2.2/1.5	4.6/2.4	0.1/0.6		
321	Furniture	L	L	L	4.3/2.9	1.4/0.7	0.3/0.6		
831	Travel goods	L	L	L	1.6/1.9	6.4/10.6	0.5/5.5		
841	, Clothing	L	L	L	2.5/2.9	14.1/13.2	0.3/2.9		
842	Fur clothing	L	L	L	4.1/6.8	0.8/8.6	-		
851	Footwear	L	L	L	5.4/7.5	4.6/4.9	1.6/1.5		
861	Scientific etc. instruments	H	L	ĸ	0.2/0.3	0.1/0.4	0.0/0.1		
862	Photographic cinematographic	2							
	supplies	H	Н		-	0.1/1.0	-		
864	Watches and clocks	L	H	κ	0.0/0.3	0.8/4.3	-		
891	Musical instruments etc	H	н	L	0.2/0.3	0.2/1.6	-		
892	Printed matter	H	H	L	4.1/2.7	1.4/1.6	0.3/1.3		
893	Articles of artifical								
96.	plastic materials	L	H	L	1.0/1.1	1.5/3.3	0 1/0.5		
074	rerambulators, toys, sportin	۳ <u>8</u>		•	1 0/1 4	11 0/10 2	0 0/0 /		
	goods	L	Ľ	L	1.0/1.0	11.3/10.2	0.0/0.4		
872	Urrice and stationery supply	les	-			•			
	not elsewhere specified	_	L	_	-	-	-		
897	Jewellery etc.	L	L	L	1.0/1.8	3.0/6.0	0.6/0.9		
899	Manufactured articles not						a		
	elsewhere specified	1.	1.	L	1 4/0.9	17.7/5.1	0.5/4.3		

Empert performance ratios for manufacturing industries, by country sample

J

ţ

٠

-- ---

- 112 -

Annex Table 34 (continued)

Note: The SITC items listed are understood to be "trade in manufacturers" as defined in the first section of Chapter II, with the addition of the following seven SITC groups or subgroups: fresh, chilled or frozen meat (Oll), $\epsilon_{\rm egg}$ s (025), reclaimed rubber (2313), waste and scrap of unhardened rubber (2314), waste of wool and other animal hair, not elsewhere specified (2629), cotton (263) and waste materials from textile fabrics (267). Because of the high proportion of primary items included in SITC 011, 025, and 263 and the waste character of the other trade categories, they were excluded from the detailed presentation. For a description of each product category, see <u>Standard International Trade Classification</u>, <u>Revision 2</u>, (United Nations publication, Sales No. 75.XVII.6).

- a/ In the columns headed "Type codes", industries are classified by four different criteria:
 - (a) Resource dependence (RES): The ider* cation of resource-based industries (R) relied heavily on the work of S. Hirsch, "Capital or technology? Confronting the neo-factor proportions and neo-technology accounts of international trade", <u>Weltwirtschaftliches Archiv</u>, Band CX, Heft 4, p. 343. All products included in SITC classifications 0, 1 and 4 and part of SITC 2 were considered to be resource-based.
 - (b) Skill intensity (SK): The designations of a high (H) or low (L) level of skill intensity for industries that were not resource-based drew upon the work of H.B. Lary regarding the percentage of the skilled labour force in the United States. See Imports of Manufactures from Less Developed Countries (New York, National Bureau of Economic Research, 1968). Use was also made of the work by S. Hirsch, "The product cycle model of international trade - a multicountry cross-section analysis", Oxford Bulletin of Economics and Statistics, vol. 37, No. 4 (November 1975), and G.C. Hufbauer, "The impact of national characteristics and technology on the commodity composition of trade in manufactured goods", in The Technology Factor in International Trade, R. Vernon, ed. (New York Bureau of Economic Research, 1970). The dividing line between the two designations was taken to be the arithmetic mean of the sampled skill ratios.
 - (c) Product development (PD): Following J.M. Finger, "A new view of the product cycle theory", <u>Weltwirtschaftliches Archiv</u>, Band CXI, 1975, p. 79, industries were classified according to high (H) or low (L) rates of "product development". Rates of product turnover (defined as the number of items that appeared or disappeared over a given period as a percentage of the total number of items in the SITC group or subgroup) derived from United States data for the period 1965-71 and presented in Finger's article, were used for this classification. Again the simple above-mean (H) or below-mean (L) criterion was applied.
Annex Table 34 (continued)

- (d) Factor intensity (FI): The sources used for classifying industries into a labour-intensive (L) and a capital-intensive (K) subgroup were the following (listed in priority order of use):
 - (i) A.H.M. Mahfuzur Rahman, <u>Exports of Manufactures</u> from Developing Countries, A Study on Comparative <u>Advantage</u> (Rotterdam University Press, 1973), p. 131 (based on 1965 data from India on capital per man);
 - (ii) Lary, op. cit., p. 191 (based on 1965 United States data on value added per employee);
 (iii)Hirsch, loc. cit., pp. 311, 317;
 - (iv) G.C. Hufbauer, loc. cit., table A-2.
- b/ A dash (-) in one of the last three columns of the table indicates that the 1975/76 value of exports of that industry accounted for less than 0.1 per cent of total manufacturing exports of the respective country group.

Source: UNIDO, World industry in 1980, New York, 1981.

Indonesia: Elasticities of consumption for selected consumer goods, 1976.

	Elasticity ^{1/}
Low elasticities < 1	
Cassava flour	0.16
Salted and dried fish	0.60
Fish paste	0.49
Brown sugar	0.53
Cane sugar	0.98
Tea	0.65
Coffee	0.93
Laundry soap	0.89
High elasticities > 1	
Wheat flour	1.70
Canned fish	1.93
Soya sauce	1.53
Vegetable cooking oil	1.10
Soft drinks	2.40
Toiletscap	1.29
Cosmetics	1.50
Medicines	1.45
Stationery and books	1.21
Clothing	1.22
Footwear	1.63
Furniture	2.92
Household utensils	1.61

Source: Calculated from BPS Socio-Economic Survey, 1976.

<u>1</u>/ Estimated through the use of the equation, lny = a + b ln x, where y, is consumption of good i, x is total consumption and b is the consumption elasticity.

ISIC	Sector	Growth	Size	
311	Food products	1.07	- 0.11	
313	Beverages	1.15	- 0.62	
314	Tobacco	0.65	- 0.12	
321	Textiles	1.02	- 0.04	
322	Wearing apparel	1.55	- 0.59	
323	Leather and fur products	1.15	- 0,28	
324	Footwear	1.14	- 0.57	
331	Wood and cork products	1.19	- 0.31	
332	Furniture and fixtures	1.57	- 0.23	
341	Paper	1.77	- 0.17	
342	Printing and publishing	1.50	- 0.17	
351	Industrial chemicals	1.67	0.18	
352	Other chemicals	1.35	0.10	
353	Petroleum refineries	1.05	- 0.04	
354	Miscellaneous products of			
	petroleum and coal	1.13	0.10	
355	Rubber products	1.22	0.27	
356	Plastic products	1.49	- 0.12	
361	Pottery, china and earthenware	1.13	- 0.41	
362	Glass	1.58	- 0.13	
369	Other non-metallic mineral products	1.22	- 0.19	
371	Iron and steel	1.81	0.27	
372	Non-ferrous metals	1.4	0.09	
381	Metal products, excluding machinery	1.48	- 0.15	
382	Non-electrical machinery	2.05	0.40	
383	Electrical machinery	1.77	0.11	
384	Transport equipment	1.86	0.25	
385	Professional and scientific equipment	5		
	photographic and optical goods	2.10	0.40	
390	Other manufactures	1.29	- 0.11	

Growth and size elasticities, 1969-1973, for large countries

Source: UNIDO, World Industry since 1960: Progress and Prospects, United Nations, New York, 1979

Note: The equation for the regression analysis had the form $\ln (V/N) = a + b \ln Y + c \ln B$, where V is value added in millions of 1970 dollars, Y is per capita GDP and N is population in millions. Data includes that for both developing and developed market economies.

1

.

Distribution of production of domestic manufacturing over main supply categories and distribution of domestically produced intermediate manufactures over main purchasing sectors

Units	4
0111.02	~

Distribución cotal domescie producción	
of manufactures	
Intermediates	37
Consumption	47
Capital formation	8
Stocks	4
Exports	4
Total	100
Distribution domestic production of intermediate manufactures	
1. Agriculture	7
2. Mining	3
3. Agriculture processing	_
4. Main manufacturing	40
5. Oil refinery/LNG	L
6. Electricity	1
7. Construction	24
8. Trade	12
9. Transport	8
10. Financial	-
11. Public adm.	-
12. Other services	4
13. Unspec.	-
Total	100

.

Source: Ministry of Industry/NEI, "Structural Analysis of the Indonesian Manufacturing Sector", Rotterdam, February, 1983.

(Industry Sectors)		190	302
N z.	Suctor	Total Interu. Output	Private Consump- tion	Govern. Consump- tion
7	Bandpounded rice	29.63	64.94	0.00
8	Cassava products	12.74	77.31	0.00
9	Rubber	17.48	0.00	0.00
10	Brown sugar	44.46	47.76	3.48
11	Copra	89.65	0.00	0.00
12	Farm coconut oil	32.95	69.47	0.00
13	Processed tobacco	18.80	87.43	0.00
14	Farm proc. cottee	84.93	0.20	3.69
13	Farm proc. team	12.23	90.14	0,00
17	Saughtering Saughtling is forest	79 38	0.00	0.00
13	Drvine saltine fish	2.98	91.56	0.00
22	Mest process: pr	17.44	79.94	0.00
23	Dairy products	33.26	66.22	0.00
24	Fruits/veret. prot	33.47	5.19	0.00
25	Fish processing	4.82	94.58	0.00
26	Coconut cook. oil	9.98	62.79	0.00
27	Other veget/an. oil	54.03	35.51	0.00
28	Rice milling	10.34	83.44	0.00
29	Grain mill products	73.64	16.14	0.00
30	Sugar	31.82	64.42	0.00
31	Lakery products	30.66	60.27	0.00
32	Noodles/Macaron1	20.83	19 30	0.00
33	Cocca, cnec., sugar	11,44	48 00	6.00
24	Tet procession	30.00	67 13	55
36	Sous been processing	4.34	91.88	0.00
37	Other food products	21.03	74.12	0.00
38	Alcoholic beverages	38,97	54.49	0.00
39	Soft drinks	51.04	45.85	2.92
40	Cigarettes	.09	80.07	0.00
41	Spinning	80.32	18.09	0.00
42	Weaving	32,24	63.43	0.00
43	Textile finishing	87.98	0.00	0.00
54	Batik	36,62	54.66	0.00
45	Knitting	12.42	83.96	0.00
46	Made-up textile g.	12.38	68.45	4.83
47	Carpets, rugs, ropes	116.21	6,52	4.22
48	Tann./leather proc.	85.97	0.00	0.00
49	Leather products	9.04	78,72	17.61
50	Sawm, and other proc.	90,71	0.00	0.00
51	wood and cork	84.23	5.97	4.04
52	Furniture, Fixtures	50.C	10.81	0.00
55	Paner produces	04.1U RA /3	. 39	21.10
55	Printing, publishing	30.42 37 Ac	2,00	10,43
56	Basic chemicals	145.13	2.91	15.71

Component shares of demand for domestically produced

.

-			
303 Gross	304 Net	305+306 Exports	310
Capital Form.	1u Stocks	Goods/ Serv.	Total Demand
0.00	5.43	0.00	100.00
0.00	.75	9.00	100.00
0.00	-6.01	88.54	100.00
0.00	4.30	0.00	100.00
0.00	-5.22	15.58	100.00
0.00	-2.41	0.00	100.00
0.00	-6,26	.04	100.00
0.00	5.09	0.00	100.00
0.00	-3.63	1 40	100.00
0.00	.27	19 97	100.00
0.00	4.39	1.07	100.00
0.00	2.46	. 16	100.00
0.00	.45	.07	100.00
0.00	3.41	57.94	100.00
0.00	.26	. 34	100.00
0.00	.03	27.21	100.00
0.00	.00	10.45	100.00
00.0	5.78	.44	100.00
0.00	2.50	7.72	100.00
0.00	.82	2.94	100.00
0.00	3.22	.00	100.00
0.00	.02	69.15	100.00
0.00	2.21	.80	100.00
0.00	2.22	.09	100.00
C.UO	3.77	.00	100.00
0.00	4.23	.62	100.00
0.00	1.62	4.92	100.00
0.00	.02	.17	100.00
0.00	19.77	.07	100.00
0.00	.71	.88	100.00
0.00	.13	4,20	100.00
0.00	12.02	10.00	100.00
0.00	-2.19	10.91	100.00
0.00	-1.19	11.40	100.00
0.00	-2.97	17,30	100.00
1.40	-33.01	4.65	109.00
0.00	1.69	12.34	100.00
0.00	-6.39	1.02	100.00
1.57	1.60	2 58	100.00
20.28	2.46	. 78	100.00
0.00	-7.72	4.13	100.00
0.00	-8.91	.01	100.00
0.00	62	.03	100.00
0.00	-84.30	20.54	100.00

goods (total demand = 100)

.

- 117 -

f

Annex Table 38

!

(Industry Sectors)			190	302	303 Gross	304 Net	305+306 Exports	310
Nr.	Sector	Total Interm. Output	Private Consump- tion	Covern. Consump- tion	Fixed Capital Form.	Char.ge in Stocks	of Goods/ Serv.	Total Demand
57	Fertilisers	86.45	.87	0.00	0,00	4.55	8.12	100.00
58	Paints	104.59	.90	0.00	0.00	-5.57	.07	100.00
59	Drugs and medicines	33.92	49.66	8.12	0.00	.25	8.04	100.00
60	Soaps and cosmetics	27.42	68.87	.23	0.00	3.44	.04	100.00
61	Other chemical products	27.28	65.89	4.61	0.00	.09	2.12	100.00
62	Pesticides	72.83	19.61	11.47	0.00	-3.95	. 04	100.00
63	Petroleum refin./lng.	26.55	4.18	2.54	0.00	.14	66.59	100.00
64	Lubric., grease oil	93.35	4.17	2.77	0.00	30	.01	100.00
· 65	Other petrol. products	85.81	2.54	0.00	0.00	9.01	2.64	100.00
66	Tyres and tubes	88.35	0.00	0.00	0.00	11.49	.15	100.00
67	Other rubber products	31.64	46.32	8.29	3.03	10.55	.17	100.00
68	Plastic products	63.71	33.62	5.45	0.00	-3.09	.31	100.00
69	Ceramics, earthenware	66.01	21.75	.67	11.49	0.00	.08	100.00
70	Glass, glass products	83.88	.99	3.94	4.04	.35	6.81	100.00
71	Structur. clay products	99.73	0.00	0.00	0.00	.21	.06	100.00
72	Cement	89.08	0.00	0.00	0.00	6.85	4.07	100.00
73	Other building materials	98.15	0.00	0.00	0.00	.72	1.14	100.00
74	Basic metals	70.38	0.00	0.00	0.00	.82	28.80	100.00
75	Metal products	79.11	6.21	2.30	11.90	.29	.20	100.00
76	Metal furn./fixtures	29.83	17.73	5.08	47.27	.07	.03	100.00
77	Structur. metal pi ducts	102.57	0.00	0.00	0.00	-4.71	2,19	100.00
78	Machinery, repair	36.82	4.63	5.06	30.23	22.60	.61	100.00
79	Radio, TV, appliances	41.07	19.55	2.62	5.12	1.34	30.29	100.00
80	Elec. app. nec. repair	62.26	9.37	11.86	5.40	10.49	.62	100.00
81	Accum./dry batteries	22.99	41.89	17.29	0.00	14.11	3.71	100.00
82	Ship build./repair	23.76	0.00	2.96	73.12	.00	.15	100.00
83	Railroad equip./repair	49.58	0.00	0.00	41.20	9.22	0.00	100.00
84	Motor vehicles	10.69	34.54	7.55	45.22	.79	.20	100.00
85	Motorcycles, byciles	29.32	55.04	9.20	4.05	2.38	.01	100.00
86	Repair of vehicles	83.33	5.29	10.87	0.00	0.00	0.00	100.00
87	Aircraft, repair	25.55	0.00	17.48	51.10	4.19	1.68	100.00
88	Profess./scientf. pr.	40.26	20.34	3.94	11.30	19.42	4.74	100.00
89	Mus. inst., sports pr.	45.49	25.39	10.45	8.98	5.55	4.13	100.00
90	Manufacturing nec.	26.31	49.37	22.56	0.00	54	2.30	100.06

Component shares of demand for domestically produced goods (total demand = 100) (continued)

•, -

Source: Ministry of Industry/NEI, op.cit.

•

.

٠

Intermediate import requirements for industry (excluding petroleum refining/LNG.)

•

1

ł

. .

87	Aircraft, repair	.6437
79	Radic, TV, appliances	.5868
68	Plastic products	.5499
77	Structur. metal products	.5337
78	Machinery, repair	.5300
83	Railroad equipment/repair	.5290
85	Motocycles, bycicles	.5198
43	Textiles finishing	.5189
54	Paper products	.5183
45	Knitting	.5103
88	Professional/scientific products	.5082
80	E ¹ ectrical app. nec., repair	. 5069
84	Motor vehicles	. 5009
59	Drugs and medicines	.4887
55	Printing, publishing	.4879
58	Paints	.4878
61	Other chemical products	.4586
41	Spinning	.4541
76	Metal furn./fixtures	.4482
47	Carpets, rugs, ropes	.4374
62	Pesticides	.4129
53	Pulp and paper	.4097
75	Metal products	.3964
42	Weaving	.3951
60	Scaps and cosmetics	.3885
70	Glass, glass products	.3816
57	Fertilisers	.3686
81	Accum./dry batteries	.3645
33	Cocoa, choc., sugar	.3609
66	Tyres and tubes	.3540
56	Basic chemicals	.3444
44	Batik	.3363
46	Made-up Lextile g.	.3305
86	Repair of vehicles	.2956
67	Other rubber products	.2914
23	Dairy products	.2837
36	Soya bean processing	.2778
74	Basic metals	.2512
65	Other petroleum products	.2490
89	Mus. instruments, sports products	.2431
82	Ship building/repair	.2310
69	Ceramics, earthenware	.2194
24	Fruits/veget. proc.	.2152
90	Manufacturing nec.	.1780
38	Alcoholic beverages	.1610
39	Soft drinks	.1521
77	Cement	.1422
49	Leather products	.1421

-119 -

Annex Table 39 (continued) 1

3

Intermediate import requirements for industry (excluding petroleum refining/LNG.)

40	Cigarettes	.1415
51	Wood and cork	.1370
48	Tann./leather proc.	.1287
64	Lubric., grease oil	.1132
73	Other building materials	.1098
52	Furniture, fixtures	.1030
13	Processed tobacco	.1013
27	Other veget./an. oil	.1012
26	Ccconut cook. oil	.0771
37	Other food products	.0681
30	Sugar	.0630
31	Bakery products	.0607
21	Structur. clay products	.0540
50	Sawm. and other proc.	.0519
35	Tea processing	.0507
25	Fish processing	.0476
22	Meat processing	.0413
9	Rubber	.0334
17	Sawmiiling in forest	.0318
11	Copra	.0315
18	Drying, salting fish	.0301
14	Farm proc. coffee	.0285
12	Farm coconut oil	.0284
34	Coffee grinding	.0280
28	Rice milling	.0260
10	Brown sugar	.0234
8	Cassava products	.0215
15	Farm proc. tea	.0207
7	Handpounded rice	.0200
16	Slaughtering	.0134
32	Noodles/macaroní	0670
29	Grain mill products	2639

Source: Ministry of Industry/NEI, op. cit.

· · -

Type of industries	Import ^{a/} requirements	
Intermediate		
currently produced domestically	0.219	
currently imported	0.409	
Consumer goods		
currently produced domestically	0.387	
currently imported	0.392	
Cepital goods		
currently produced domestically	0.399	
currently imported	0.517	
Exports	0.137	

Intermediate import requirements for groups of industries

Source: Ministry of Industry/NEI, "Structural Analysis of the Indonesian Manufacturing Sector", Rotterdam, February 1983.

 \underline{a} / Import requirements resulting from intermediate deliveries.

ł

-

*

			Projections 1990							
ISIC	Labour coeff. 1980 g (Rp 10 / manyear)	Employment elasticity /	Empl inc 198 scen.a (x1000	oyment crease 0-1990 scen.b) (x1000)	ICOR	Increa requi 199 scen.a (Rp 10	n. capital irements 80-1990 a ₉ scen.b ₉ 0) (Rp 10)			
371	26	0.05	2	1	6.0	8,616	4,596			
372	50	0.10	6	5	4.0	5,000	3,748			
381	40 5	0.55	187	203	0.6	507	549			
382	135	0.35	48	31	0.8	821	518			
383	121	0.65	48	64	0.5	308	410			
384	118	0.15	52	41	1.0	2,928	2,342			
3849	286	0.40	112	112	0.4	392	392			
OM	329	0.26 (0.43)	1,130	2,074	1.1 (0.7)	14,116	9,907			
TOTAL	272	0.30 (0.42)	1,785	2,531	1.5 (1.0)	32,688	22,462			
<u>Source</u> :	NEI calculations.									
	1)	The figure be figure to sce	tween brac nario (a).	kets appl	ies to scen	ario (b)	, the other			
Note:	1. 1	Labour coeffi output ratio' Analysis of t February, 198	cients wer s presente he Indones 3.	e derived d in Mini dan Manuf	from more stry of Ind acturing Se	detailed lustry/NE ector", R	labour- I, "Structura otterdam,			
	2.	Employment el Industrial Su source were c sectoral whol	asticities rveys, for onverted i esale pric	were obt 1975 and n constan e indices	ained from 1980. The t prices th for manufa	data pre e output nrough ap ncturing.	sented in BPS data from thi plication of			
	3.	Capital-outpu Ministry of I report", Jaka	t ratios w ndustry/NE rta/Rotter	vere, amon 21, "Proje 3dam, 1983	g others, c ct Mankap I	obtained MTA-193:	from data fro Harmonisation			

5

Projections of incremental capital and labour force requirements in manufacturing with special reference to metal sectors; 1980-1990

- 122 -

Projections of incremental direct intermediate import requirements and incremental manufacturing sector with special reference to metal industries; 1980-1990

	Import share 1980	Import Projections increm. share import requirements 1980 1980-1990		n. Value adde ts share 1980	ed Projecti val 198	Projections increm. value added 1980-1990	
ISIC	<u>a</u> /	scen.a	scen. 1	<u>b</u> /	scen. a	scen. b	
371	0.35	503	268	0.28	402	214	
372	0.05	63	47	0.28	350	262	
381	0.51	431	467	0.25	211	22 9	
382	0.68	698	441	0.25	257	162	
383	0.66	406	541	0.23	141	189	
384	0.58	1,698	1,358	0.33	966	773	
3849	0.15	147	147	0.22	216	216	
OM	0.30 (0.25)	3,932	3,634	0.31 (0.30)	4,127	4,490	
Total	0.36 (0.31)	7,878	6,903	0.30 (0.29)	6,670	6,535	

Source: NEI calculations.

1

▲/ Share of imported inputs in production.

 $\overline{\mathfrak{V}}$ / Share of value added at factor prices in production.

Type of industries	Labcur intensity <u>a</u> /				
Intermediates					
currently produced domestically currently imported	736.5 283.9				
Consumer goods					
currently produced domestically currently imported	464.4 441.3				
Capital goods					
currently produced domestically currently imported	367.1 303.2				
Exports	594.9				
Natural-resource processing industries	1,613.1				
Large scale sector	235.3				
Mixed sectors	793.8				
Small scale sectors	834.0				

Labour-intensity of groups of industries

Source: Ministry of Industry/NEI, "Structural Analysis of the Indonesian Manufacturing Sector", Rotterdam, February 1980.

a/ Manyears per Rp. billion of domestic final demand.

.

3925 (3 of 3)

Distr. LIMITED

UNIDO/IS.479/Add.2 23 July 1984

ENGLISH

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION

PROSPECTS FOR INDUSTRIAL DEVELOPMENT AND FOR A CAPITAL GOODS INDUSTRY

IN INDONESIA

Volume III. Prospects for a Selected Capital Goods Industry*

Prepared by the

Regional and Country Studies Branch Division for Industrial Studies

* This document has been reproduced without formal editing.

The designations employed and the presentation of material in this document do noc imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

Mention of company names and commercial products does not imply the endorsement of the United Nations Industrial Development Organization (UNIDO).

V.84-88695

Ð

The UNIDO Indonesia Industry Sector Study (UC/INS/82/106) comprises three volumes:

PROSPECTS FOR INDUSTRIAL DEVELOPMENT AND FOR A CAPITAL GOODS INDUSTRY IN INDONESIA

Volume III : Prospects for a Selected Capital Goods Industry

CONTENTS

Page

.

1

•

Part	one	:	Survey of capital goods and engineering industry	1
Part	two	:	Long-term projections of demand for capital goods	91
Part	three	:	Capital goods productic. in developing countries	
			international experience	195
Part	four	:	Potential for decelopment of a selected capital	
			goods industry	305

(ii)

ij

í

;

(iii)

EXPLANATORY NOTE

The following abbreviation have been used:

2

AAC	Annual Allowable Cut
ASEAN	Association of South-east Asian Nations
BKPM	Investment Co-ordinating Board
BPS	Central Bureau of Statistics
CKD	Compietely Knock-down (kits)
D.W.	Durbin-Watson Statistics
FFA	Free Fatty Acid
FFB	Fresh Fruit Bunches
GDP	Gross Domestic Product
GEC	General Engineering Contractor
но	High Off-trend
HT	High Trend
ICOR	Incremental Capital Output Ratio
ISIC	International Standard Industrial Classification of all
	Economic Activities
LNG	Liquified Natural Gas
LO	Low Off-trend
LT	Low Trend
MDF	Medium-density Fibre Board
MIDC	Metal Industry Development Centre
MO	Medium Off-trend
MVA	Manufacturing Value Added
NDIM	Newly Developed Innovative Machines
NIC	Newly Industrializing Country or Area
OPEC	Organization of Petroleum Exporting Countries
RSS	Rubber Smoked Sheet
SIR	Standard Indonesian Rubber
SITC	Standard International Trade Classification
TCD	Tons of Cane F:r Day
UNIDO	United Nations Industrial Development Organization

Part One: Survey of Capital Goods and Engineering Industries

- - -

1

,

13

:

Part One. Survey of Capital Goods and Engineering Industries

CONTENTS

1

-- -

Chapter	Ι.	An Overview	7
Chapter	11.	Structure and Performance of Capital Goods and Engineering Industry	10
Chapter	111.	Review of Key Capital Goods Industries	22
Chapter	IV.	Planned Developments ~ Repelita III and IV	31
Chapter	v.	Summary of Main Features and Constraints	46

Statistical Annex

49

- 2 -

J

;

•

LIST OF TABLES

Table Number		Pa
Chapter I		
1.1	Component shares of domestically produced goods, 1980	8
Chapter II		
11.1	Value added, employment and labour productivity in capital goods and engineering industries, 1970–1980	11
11.2	Number of establishments, persons engaged, and average size of establishment, ISIC 371 iron and steel basic industries and ISIC 38 metal products machinery and equipment, 1975, 1980 and 1981	13
11.3	Value added, share of wages and salaries in value added and value added per employee (Rp.) and index, 1975, 1980 and 1981	14
11.4	Location of engineering enterprises, 1979 (ISIC 38 except 385)	15
11.5	Engineering inductry: distribution of output and employment by size class of industry, 1979 (output in million Rp.)	16
11.6	Establishments by dominant ownership category, 1980	17
11.7	Gross fixed capital formation in ISIC 39 metal products, machinery and equipment, 1975, 1980 and 1981 (million Rp.)	18
11.8	Approved and implemented foreign investment in the metal products sector, 1967-1981	19
11.9	Reliance on imported raw materials, engineering industries, ISIC (38), 1980	21
Chapter III		
111.1	Domestic production and repair of non-electric machinery and equipment (382) in Indonesia, 1980	23
111.2	Domestic production of electric machinery (ISIC 383) in Indonesia, 1980	27

Page

×__

-

ł

•

LIST OF ANNEX TABLES

Table Number		Page
	Explanatory note: definition of ISIC (371) and ISIC (38)	50
1.	Gross output, value added, share of wages and	
	salaries in value added, 1975, 1980 and 1981	51
2.	Value added per person engaged in million Rp.	
	and index, 1975, 1980 and 1981	52
3.	Average annual rate of growth of value added,	
	employment and labour productivity, 1975-80	
	and 1980-81	53
4.	Number and size of establishments in ISIC 371	
	iron and steel basic industries and ISIC 38	
	metal product, machinery and equipment, 1975,	
	1980 and 1981	54
5.	Employment in ISIC 371 iron and steel basic	
	industries and ISIC 38 metal products, machinery	
	and equipment, 1975, 1980 and 1981	55
6.	Value added in ISIC 371 iron and steel basic	
	industry and ISIC 38 metal products, machinery	
	and equipment, 1975, 1980 and 1981	.56
7.	Gross ouput for ISIC 371 iron and steel basic	
	industry and ISIC 38 metal products, machinery	
	and eqipment, 1975, 1980 and 1981	57
8.	Ratio of value added of gross output, 1975,	
	1980 and 1981	58

- 4 -

X____

1

---- - -

15

1

٠,

.

LIST OF ANNEX TABLES

- 5 -

(Continued)

J

4

.

-

9.	Wages and salaries and labour intensity ISIC	
	371 iron and steel industry and ISIC 38 metal	
	products, machinery and equipment, 1975, 1980	
	and 1981	59
10.	Labour productivity in ISIC 371 iron and steel	
	industry and IS1C 38 metal products, machinery	
	and equipment, 1975, 1980 and 1981	60
11.	Employment cost: total and per person engaged,	
	1981	61
12.	Geographical distribution of ISIC 371 iron	
	and steel basic industries, 1981	62
13.	Geographical distribution of ISIC 381,	
	metal products, 1981	63
14.	Geographical distribution of ISIC 382,	
	non-electrical machinery, 1981	64
15.	Geographical distribution of ISIC 383,	
	electrical machinery, 1981	65
16.	Geographical distribution of ISIC 384,	
	transport equipment, 1981	66
17.	Geographical distribution of ISIC 385,	
	scientific, photographic equipment, 1981	67

LIST OF ANNEX TABLES (continued)

18.	Domestic production of electric machinery and								
	equipment (ISIC 383) in Indonesia, 1980	68							
19.	Nominal and effective protection in Indonesian								
	manufacturing, 1975	69-70							
20.	Industrial projects cited in 16 August 1982								
	State Address	71-76							
21.	Supply and demand estimates ISIC (37) and								
	ISIC (38), 1982–1987	77-90							

- 6 -

1

- -

C

-

:

:

.

ì

1

Part One: Survey of Capital Goods and Engineering Industries

- 1 -

Chapter I. An Overview

Capital goods constitute an important pert of engineering goods industries classified under ISIC 38 "Fabricated metal products, machinery and equipment". The engineering sector includes five main industrial groups: fabricated metal products (ISIC 381); machinery, except electrical (382); electrical machinery (383); transport equipment (384), and professional scientific and photographic equipment (385). Manufacture of parts and components as well as assembly operations are included in the engineering industry.

Viewed as 1 group, the engineering industry is one of the most heterogeneous branches within the entire manufacturing sector. It is composed of a wide range of manufactured products, parts and components covering both consumer durables (cutlery, radios. TV-sets, electrical household goods, motor cycles, private passenger cars); intermediate goods (parts and components for assembly operations) and all capital goods (machiner;, plant equipment, metal products and some transport equipment). $\frac{1}{}$ The distinction is important because market conditions and production processes vary widely among products depending upon whether demand is consumer oriented (both household and government consumption) or dependent upon investment demand. Policy approaches ro the three product groups may also be quite different.

Indonesian industrial statistics do not permit an exact statistical definition of capital goods. Ideally such definition ought to be based upon ISIC 38, but "sifted" for consumer durables and intermediate goods. A broad ' imate however may be derived from th provisional 1980 input-output table, wuich contains information on the structure of production according to major demand components (Table I.1). The input-output table distinguishes between: inputs into gross fixed capital formation which may serve as an approximation for capital goods; for intermediate output; and for private (household) and government consumption, which may be equated with consumer durables. Based

^{1/} The distinction between consumer durables and capital goods is by no means always clear, since some products, for example sewing machines, can be either consumer goods (for private use) or capital goods (for use in textile industry).

upon Table I.1 an estimate may be derived of the distribution of capital, intermediate and consumer durables within the engineering industries. Accordingly the (weighted) share of capital goods within the engineering goods industry (ISIC 38) is estimated at 28.2 per cent while that of consumer goods is put at 21.5 per cent of total production. Noteworthy is the high share of intermediate goods of 50.3 per cent, primarily consisting of production of materials (such as metal products), semi fabricated products (such as steel rods, wires), components and parts as well as sub-assemblies, sub-contracting and repair. These intermediate goods, in turn, serve as inputs into the capital goods or consumer durable producting industries.

Sector		Intermed- iate	Private consump-	Govern- ment	Gross fixed	Change in	Export	Total Produc-	
ISIC		Output	tion	consump- tion	capital formation	Stock		tion	
			*****	-Percentag	9				
381	Metal products	71.59	7.78	2.48	18.53	-1.03	0.66	100.0	
382,383	Machinery and								
	repair	39.02	11.67	5.93	19.39	1.5.36	8.73	100.0	
384	Transport								
	equipment	33.92	20.28	7.76	37.19	0.69	0.16	100.0	
38	Total								
	(excl. 38)	-	-	-	-	-	-	-	

Table I.1: Component shares of domesticaly produced goods, 1980

Source: Provisional Input-output Table, 1980.

Assuming, that capital goods account for around 28.2 per cent of all engineering goods which in turn account for 17.0 per cent of total manufacturing gross output, it follows that the share of capital g_ods within the Indonesian manufacturing sector was about 5 per cent of gross output in 1980. While this figure undoubtedly is only indicative, it may be claimed that an "embryonic" capital goods industry has emerged in recent years.

Since an operational statistical definition of the capital goods industry is not feasible, this chapter will initially survey the entire engineering goods industry (ISIC 38) and subsequently place particular emphasis upon those sub-groups which encompass most capital goods, namely, non-electrical machinery and equipment (382), electrical machinery (383) and metal products (ISIC 381). The key focus of the analysis will be on capital goods intended for industrial use, especially plant processing equipment and machinery (ISIC 382). These products are <u>inter alia</u> required for processing raw materials from agriculture and forestry into semi-finished and finished products. Additional information is provided on the iron and steel sector (ISIC 371) which supplies part of an important raw material for the engineering industry.

This broad approach to analysing the capital goods industry is useful since there is a potential for substitution in the product-mix among many sub-groups within the engineering industry. The survey would therefore be indicative of the potential base for development of the capital goods industry in general.

- 9 -

Chapter II. Structure and Performance of Capital Goods and Engineering Industry

Overall performance

The capital goods and engineering industry ranks among the fastest growing industries within the entire Indonesian manufacturing sector. During the period 1970-80 value added of the engineering industry grew at 17.6 per cent annually compared with 11.8 per cent for the whole manufacturing sector. Table II.1 shows that particularly high growth of value added was recorded for electric assembly, which grew at an average annual rate of close to 30 per cent during the 1970s followed by non-electrical machinery (27.6 per cent) and metal products (20.2 per cent). During the same period the number of medium and large scale engineering enterprises grew from 255 to 811 enterprises (Annex Table 4). This rapid growth, which was in part related to the low initial base, but also owed something to favourable developments in the national economy raised the share of engineering goods in total manufacturing value added from 6.1 per cent in 1970 to 16.9 per cent in 1980.

The most important subgroups within the engineering industry in 1980 were transport equipment (6.4 per cent of total manufacturing value added) electrical machinery (5.3 per cent) and metal products (3.5 per cent). The non-electrical machinery industry, which accounted for only 1.6 per cent of total manufacturing value added, has lagged behind in growth of other engineering industries. The production of plant equipment included in this category is still very small. Noteworthy is the small size of the professional and scientific equipment sector (0.1 per cent).

					•				
ISTC	Ave annua 197 MVAª/	rage 1 growth 0-1980 Em- ploy-	Share of value added in total manufac- turing		Share Emplo in f man tu	e of oyment total nufac- ring	Value added per em- ployee 1980	Contribution to overall employment growth of total	
		ment	1971	1980	1970	1980	(000 US \$)	manufacturing 1970-80	
381 fabricated metal									
products 382 Machinery, except	20.2	11.5	2.3	3.5	2.8	4.2	2.9	5.7	
electrical 383	19.5	10.5	0.4	1.6	0.9	1.2	4.5	1.6	
Electrical machinery 384	30.8	27.1	2.5	5.3	0.7	3.9	4.8	7.1	
Transport equipment 385	5.6	16.6	0.9	6.4	1.3	3.1	7.3	5.1	
Scientific and profes- sional									
equip. ISIC 38	12.0 <u>b</u> /	-	0.0	0.1	0.0	0.1	2.2	2.1	
sub-total	17.6	15.8	6.1	16.9	5.8	12.6	4.7	21.6	
Total manufac.	11.8	7.1	100.0	100.0	100.0	100.0	3.5	100.0	

Table II.1:Value added, employment and labour productivityin capital goods and engineering industries1970 - 1980

Source: Part II, Tables II.4; II.5 and Annex Table 11.

 a/ Trend real growth rates based on estimated index numbers for value added for the entire industry as provided by UN Statistical Office, New York.
 b/ 1970-1976.

Employment, labour productivity and labour intensity $\frac{1}{2}$

The contribution of the engineering industry to employment creation has been quite impressive, which is indicative of the labour intensive nature of many of these manufacturing activities. During the priod 1970-80 employment in the large and medium-scale engineering industry grew by 15.8 per cent annually. In absolute terms employment in the enginering industry grew by 93,050 persons from 27,950 in 1970 to 121,000 in 1980, which corresponds to

^{1/} Factor intensities in the engineering industry (ISIC 38) are discussed in Part II.

21.6 per cent of the overall increase in employment of the entire manufacturing sector during the 1970s. Concomitantly the share of engineering industries in total manufacturing employment grew from 5.8 per cent in 1970 to 12.6 per cent in 1980. Employment grew substantially in electrical machinery by 27.1 per cent average annual rate of growth from 1970-80, followed by transport equipment (16.6 per cent), metal products (11.5 per cent) and non-electrical machinery (10.5 per cent).

Labour productivity in the engineering industries, especially in the automotive and electrical machinery industries, is generally higher than in the manufacturing sector as a whole. This may be due to the circumstances that many engineering products are sold in protected markets and the fact that productivity in the overall manufacturing sector is somewhat depressed by the low productivity of traditional industries. The highest levels of labour productivity were in the following sub-sectors: motor cycles and three wheel vehicles, motor vehicle manufacture and assembly, electrical apparatus and supplies, and storage batteries (Annex Table 10).

The scanty data available on skill composition of the labour force in the engineering industry suggests that the majority is unskilled. The number of skilled workers, technical and engineering personnel is very small. This lack of skilled labour severely restricts the range of products that can be produced in Indonesia. Skill development is therefore one of the major prerequisites for further development of these industries.

Information on 1.bour intensity provided in Table II.3 shows that the share of wages and salares in value added in the engineering goods industry was 29.2 per cent in 1975. By 1980 the share had fallen to 22.8 per cent and in 1981 even further to 20.0 per cent. This decline was entirely due to a drastic fall in labour intensity in the transport equipment sector from 36 per cent in 1975 to 14 per cent in 1981. In other words there was a substantial increase in capital intensity and/or profit in this sector, particularly in motor vehicle assembly and manufacture, ship building and repair. However labour intensity did not decline in other engineering sectors and remained high particularly in the following sub-groups: kitchen apparatus, transport equipment n.e.c., scientific equipment, dry cell batteries, bicycle, becak assembly and manufacture, and motor vehicle body and equipment. (Annex Table 9).

- 12 -

********		Number of Establishments			Number of Persons Engaged						Number of		
					1975		19	1980		1981		Fersons Per Establishment	
ISIC		1975	1980	1981	Number	%	Number	%	Number	*	1975	1980	1981
371	Iron and Steel Industries	13	23	22	2,883	-	8,822	-	9,483		222	384	4 31
381	Metal Products	282	363	355	22,434	36.5	41,055	33.8	44,037	33.2	80	113	124
382	Non-electrical Machinery	98	132	128	8,833	14.4	12,055	9.9	12,658	9.6	90	91	99
383	Electrical Machinery	77	113	115	10,463	17.0	37,388	30.8	38,778	29.3	136	331	337
384	Transport Equipment	118	178	188	19,356	31.4	29,991	24.7	35,949	27.1	254	168	207
385	Scientific, Photographic Equipment	15	25	27	460	0.7	990	0.8	1,023	0.8	66	40	38
	Total ISIC 38	590	811	813	61,546	100.0	121,479	100.0	132,445	100.0	104	150	163

Table II.2Number of establishments, persons engaged, and average size of establishment,
ISIC 271 iron and steel basic industries and ISIC 38 metal products, machinery
and equipment, 1975, 1980 and 1981

Source: Survey of Manufacturing Industries, BPS, Indonesia, 1975, 1980 and 1981. See also Annex Tables 4 and 5. - 13 -

•

ISIC	Value Added (billion Rp.)						Share of			Value	
	19	75	19	30	1	981	Wages and			Added	
	Value	Per-	Value	Per-	· Value	e Per-	Sal	aries	in	per em-	
	Added	cen-	added •	cen-	- Added	cen-	Val	ue Add	ed	Fluyee	
		tage	2	tage	2	tage	1975	1980	1981	1981	
							Per	centag	e	(000 Rp.)	
371											
Iron and Steel											
Industries	1.1	-	70.0	-	79.5		32	13	12	8,383	
381											
Metal products	16.9	26.5	74.2	20.7	85.4	16.1	32	29	33	1,939	
382 Non-elec-										-	
trical mach.	8.0	12.6	33.4	9.3	42.9	8.1	24	24	24	3,389	
383 Electrical										-	
machinery	18.3	28.7	112.6	31.5	125.9	23.6	20	22	23	3,247	
384 Transport										-	
equipment	20.3	31.9	136.2	38.1	277.8	52.1	36	20	14	7.728	
385 Scientific,										•••	
rnocographic	0.2	03	1 4	0 4	07	0 1	40	26	56	69/	
eda there is	0.2	0.5	* • •	0.4	0.7	0.1	40	20	50	004	
Total ISIC 38	63.7	100.0	357.8	100.0	533.0	100.0	29.2	22.8	20.0	4,025	

Table	11.3:	Value	added	, sha	nre o	f wa	ges	and	sala	ries	in	value	added	and
		value	added	per	emple	oyee	, 19	75,	1980	and	198	1		
			()	value	es in	cur	ren	t pr	ices)			_		

Source: Survey of Manufacturing Industries, BPS, Indonesia, 1975, 1980 and 1981.

See also Annex Tables 1, 2, 3, 6, 7, 8 and 11.

Geographical location

The geographical concentration of engineering enterprises follows the general pattern of the overall manufacturing sector. Table II.4 show that most engineering enterprises, around 86 per cent, are located in Java. Almost one-third of the 790 enterprises in operation in 1981 were located in Jakarta (258 enterprises). Almost one-fourth, or 174 enterprises, were concentrated in East Java, while another 141 enterprises were located in West Java, 95 in Central Java and 11 in Yogyakarta. Outside Java there were a few enterprises in Sumatra (71 enterprises), but in the other regions the incidence of any organised engineering industry is very restricted.

ISIC	Jakar- ta	East Java	West Java	Cen- tral Java	Yogy- karta	Suma- tra	Sula- wesi	Kali- mantan	Others	Total
		Numl		er of	Enterpr	ises				
381 Fabricated metal products	- <u> </u>	93	45	33	8			1		355
382 Machinery, except elec.	20	30	34	30	1	13	0	0	0	128
383 Electrical machinery	55	10	34	9	1	б	0	0	0	115
384 Transport equipment	58	41	28	23	1	18	5	7	11	<u>a</u> / 192
Total	258	174	141	95	11	71	13	8	19	790

Table II.4:Location of engineering enterprises 1981(ISIC 38 except 385)

Source: BPS (unpublished data) (Annex Tables 12-17).

a/ Alternative figure reported: Table II.2 (188).

Size structure of enterprises

The average plant size of engineering enterprises has increased from 104 persons per establishment in 1975 to 163 in 1981 (Table II.2). Industrial enterprises are particularly large in the electrical machinery and transport equipment industries especially in the following sub-groups: dry cell batteries, motor cycles, 3 wheel vehicles, radio, TV-sets, communication equipment, motor vehicle assembly and manufacture, and electrical apparatus and supplies (Annex Table 4). These are mainly assembly operations characterised by large production runs, standardised products and economies of scale.

Table II.5 contains additional information on the distribution of engineering output and employment by size class in 1979. The table reveals that small scale and cottage enterprises are important in regard to production of metal furniture, fixtures and in the production of agricultural hand tools, cutlery, screws and bolts, kitchen appartus, metal containers and metal products n.e.c. Undoubtedly many of these small-scale industrial activities provide a breeding ground for entrepreneurial activities and skill development required by medium and large enterprises. Many small industries could enter into foster parent relationships with medium- and large-scale enterprises

·····		Outp	ut			 Empl	loyment		Share of Share a Small Small Enter- Fater- prises prises		0f
Sector Code ^{a/} ISIC	Code Medium Code and Large Enterprises		Household and Small Cottage Enter- Enter- prises prises		Medium and Large Enterprises	Small Enter- prises	liousehold and Cottage Enter- prises	Total	hold and Cottage Enter- prises output	hold an Cottage Enter prises Empl.	id Size class- fica- tion
		-million	Rp				umber		P	ercenta	3e
38111/2/3/4/ 40/90	64,903	13,007	6,928	84,838	21,713	19,820	20,639	62,172	23	65	м
38120	3,165	5,136	3,961	12,262	2,025	4,314	6,400	12,739	74	84	8
38130	116,279	3,019	-	119,298	11,769	2,311	-	14,080	3	16	L
38200/330	129,474	2,761	-	132,235	23,879	3,112	-	26,991	2	12	L
38320	114,537	172	-	114,709	9,379	95	-	9,474		1	L
38340	496	10	-	506	204	19	-	223	2	9	L
38311/2	41,457	707	-	42,164	5,677	270	-	5,947	2	5	L
38411	24,046	3,131	1,060	28,237	6,912	2,524	2,042	11,478	15	40	L
	n.a.	n.a.	n.a.	-	n.s.	n.a.	n.a.	-			L
38430	75,825	1,506	-	77,331	9,706	1,186	-	10,892	2	11	L
38440/50	109,350	1,465	-	110,815	6,655	1,245	-	7,900	1	16	L
	n.a.	n.a.	n.s.	-	n.a.	n.a.	n.a.	-			м
38500	1,900	1,277	-	3,177	791	912		1,703	40	54	M
Total 38	681,432	32,191	11,949	725,572	98,710	35,808	29,081	163,599			

Table II.5: Engineering industry; distribution of output and employment by size class of industry, 1979 (output in million Rp.)

Source: BPS, Industrial Survey, 1974, 1979.

Survey of Small Scale Industries, 1979 (tentative results)

NEI calculations

n.a. = not available.

a/ See explanatory note in b/ M = medium enterprises See explanatory note in Annex.

L = large enterprises

S = small enterprises.

through sub-contracting arrangements, training schemes and thus expand their operations and gradually be upgraded to medium-scale enterprises.

Ownership pattern

Recent data on ownership structure based upon a sample survey of 96 enterprises shows that local non-pribumi enterprise is the predominant ownership form in all engineering industries, particularly in electrical machinery (50.0 per cent of all enterprises), metal products (38.5 per cent), transport equipment (35.7 per cent) and non-electronical machinery (27.3 per cent) (Table II.6).

Sector	Number of re- F porting ¿stab- lishments	oreign ^{a/}	Government ^{_b/} Local ^{_c/} Pribumi ^{_d/} Non- Pribumi					
	Number		Percentage	Share				
381 Fabricated metal products, except machinery			-					
and equipment 382 Machinery,	26	23.0	11.6	38.5	26.9			
except electrical	22	22.7	22.7	27.3	27.3			
machinery 384 Transport	20	30.0	5.0	50.0	15.0			
equipment	28	3.6	25.0	35.7	35.7			

Table II.6: Establishments by dominant ownership category 1980

Source: MANKAP survey, 1980.

a/ "Foreign" if foreign participation in equity is at least 20 per cent.

 \overline{b} / "Government" if not "Foreign" and if Government participation in equity is at least 20 per cent.

c/ If neither "Foreign" nor "Government" and if equity participation is reported to be predominantly by local non-indigenous persons.

d/ Remaining cases.

The second most important ownership category is pribumi enterprises which play a crucial role in the fields of transport equipment (35.7 per cent), non-electrical machinery (27.3 per cent) and fabricated metal products (26.9 per cent). The role of pribumi enterprises however is limited in electrical machinery. Most Government enterprises operate in transport equipment and non-electrical machinery industries. In these branches, they account for around one-fourth of all enterprises of the sample surveyed.

Foreign enterprises are important in electrical machinery, metal products and non-electrical machinery. Their share of the number of enterprises in these branches lies between 23 and 30 per cent.

Investment

The proportion of gross fixed capital formation in the manufacturing sector channeled into the engineering industry increased from 8.0 per cent in 1970 to 13.3 per cent in 1980. The data presented in Table II.7 on gross fixed capital information in the engineering industry shows that large investments were channeled into the transport equipment and metal products industry as well as the electrical machinery industry. Investment in the non-electrical machinery industry, which accounted for only 5.9 per cent of gross fixed capital formation in the entire engineering in ustry in 1980 increased to 13.1 per cent in 1981. The low investment activity in this branch during the second half of the 1970s explains in part the lagging performance of this industry. Major investments have thus been channeled into assembly operations while investments in plant equipment and machinery for processing agricultural products, wood products, textile marufacture, etc. have been very meagre.

ISIC		1975		1980		1981		
		Million Rp.	X	Million Rp.	×	Million Rp.	X	
381	Metal Product	9,190	29.3	20,345	33.7	18,428	23.8	
382	Non-electrical					-		
	machinery	1,338	4.3	3,544	5.9	10,173	13.1	
383	Electrical					·		
	machinery	4,070	13.0	16,015	26.5	24,009	31.0	
384	Transport							
	equipment	16,760	53.3	20,341	33.7	24,798	32.0	
385	Scientific, Photo-							
	graphic equipment	11	0.1	119	0.2	164	0.2	
38 1	Total ISIC	31,369	100.0	60,364	100.0	77,572	100	

 Table II.7:
 Gross fixed capital formation in ISIC 38 metal products, machinery and equipment 1975, 1980, 1981 (million Rp.)

Source: Survey of Manufacturing Industries, BPS, Indonesia, 1975, 1980 and 1981.

Considerable foreign investment activity occurred in the metal products industry. The amount of approved foreign investment by the BKPM (Investment Co-ordinating Board) since 1967 was US \$711.5 million. However, owing to the often considerable gestation period of some investment and the postponement and/or cancellation of a few large scale projects, only US \$512 million (102 projects) were implemented during the same period. This represented 18.0 per cent of all foreign investment implemented in the manufacturing sector (Table II.8).

 Table II.8:
 Approved and implemented foreign investment in the basic metals

 and metal products sector, 1967-1981

								Total	1967-75
	1967-75	1976	1977	1978	197 9	1980	1981	Value	Frcjects (Number)
Approved foreign					<u> </u>			······	
investments									
million US 💲									
-basic metals	1,084.9	11.6	18.4	9.9	854.9		. 80.6	2,060.3	23
-metal products	198.8	61.5	72.5	92.0	45.1	98.8	142.8	711.5	126
Implemented foreign	ı	r							
investments									
million US \$									
-basic metals	81.1	30.7	27.8	37.8	47.5	23.9	7.9	256.7	19
-metal products	221.0	42.4	35.4	89.9	36.0	52.0	35.3	512.0	102
Implementation									
ratio (%)									
-basic metals	8	-	-		-	-	-	12.5	-
-metal prod.	112	-	-	~-	-	-	-	72.0	-
Implemented foreign	n								
investment as % of	Ē								
total menufacturin	ng								
-basic metals	5.7	10.2	15.0	14.2	24.7	10.2	3.2	5.0	-
-metal products	15.5	14.1	19.0	33.7	18.8	22.1	14.5	18.0	· -
Foreign investment									
as % of total									
foreign investment	<u>-</u>								
implemented									
-basic metals	3.6	7.2	10.7	9.3	14.9	6.9	2.1	5.8	5
-metal prod.	9.7	10.0	13.7	22.2	11.3	15.0	9.3	11.6	1

Source: Bank Indonesia, keport for the Financial Year 1981/8".

In the basic metals industry the amount of approved foreign investment was considerably higher, US \$2,060 million. However, since a few very large approved projects did not come into fruition the low implementation ratio of 12.5 per cent resulted in only US \$256.7 million of implemented foreign investment.
Import dependence $\frac{1}{}$

In 1980 Indonesia's imports of machinery and equipment (SITC 7) amounted to US \$3,633.8 million which is close to two-fifths of total manufactured imports. Some of the simpler machinery and equipment products are obvious candidates for import substitution provided feasibility studies prove that they are economically viable and can be efficiently produced at or near internationally competitive prices in Indonesia.

Export of machinery and equipment is extremely limited and almost exclusively confined to elertronic components. In 1980 exports of electrical machinery amounted to US \$108.9 million which corresponds to 3.7 per cent of total manufactured exports.

Domestic demand for machinery and equipment is therefore overwhelmingly met by imports. It is estimated that the share of imports in apparent consumption of machinery and equipment is 66 per cent. Domestic production is almost exclusively oriented towards the domestic market, its share of apparent consumption is estimated at 34 per cent. In 1980 domestic production of the entire engineering industry was 1,159 billion rupiahs which compares with imports in the magnitude of 2,277.5 billion rupiahs. $\frac{2}{}$ Thus in 1980 Indonesia's imports of machinery and equipment was almost double the value of its domestic production.

Since much of the present engineering production consists of assembly operation, the incidence of import dependence of machinery and equipment is particularly high in regard to intermediate goods viz parts, components and other inputs. In 1980 the share of imported raw materials and components in relation to total raw material requirements of the engineering goods industry was 76.1 per cent. Import dependence was particularly high (above average) in the following sub-groups: storage batteries; dry cell batteries; radio, TV. communication equipment; structural metal products; non-electrical machinery; metal containers; motor vehicle assembly and manufacture (Table II.9).

- 1/ Industrial linkages are discussed in Part II of the Industry Sector Study.
- $\overline{2}$ / Exchange rate conversion US \$1 = Rupiah 626.75.

- 20 -

Table II.9: Reliance on imported raw materials, engineering industries,ISIC (38) 1980.

ISIC] · a	Imported Raw Materials and Components as Percent of Total Raw Materials
37100	Iron and Steel Basic Industry	58-0
38111	Agriculture, hand tools	60
38112	Cutlery, screws, bolts	20.3
38113	Kitchen apparatus	65.6
38120	Metal furnicure and fixture	37.6
38130	Structural metal products	86.6
38140	Metal containers	81.9
38190	Metal products n.e.c.	61.4
38200	Machinery and repair	82.6
38311	Storage batteries	96.1
38312	Dry cell batteries	89.7
38320	Radio, TV, communication equip.	87.9
38330	Elec. apparatur/supplies	75.2
38340	Repair of elec. appl.	18.2
38411	Shipbuilding and repair	45.4
38430	Motor vehicles ass./manu.	81.2
38440	Motor cycle/3 wheel veh.	64.7
38450	Bicycle, becak ass./manu.	49.7
38460	Motor vehicle body + equipment	57.5
38490	Transport equip. n.e.c.	59.2
38500	Manu. of scientific equip.	34.9
38	Metal products, machinery + equipme	ent 76.1

Source: Survey of Industries. BPS, Indonesia, Vol. II, 1980.

Domestic supplies to the engineering goods industry, however, were important for some sub-groups. For example the domestic industry supplied more than half of all raw material requirements in the following sub-groups: repairs of electrical equipment; cutlery screws, bolts; manufacture of professional and scientific equipment; ship-building and repairs; and bicycle and becak assembly and manufacture.

- ----

Chapter III. Review of Key Capital Goods Industries

The following review highlights the main features of those engineering goods industries which contain predominantly capital goods for industrial use, particularly non-electrical machinery, as well as electrical machinery and fabricated metal products.

Non-electrical machinery (ISIC 382)

The non-electrical machinery branch consists of the following subgroups: engines and turbines; agricultural machinery and equipment; metal and wood working machinery; special machinery and equipment; office, computing and accounting machinery; and other non-electrical machinery and equipment.

Most capital goods for industrial use are included in the non-electrical machinery branch which is the smallest of the three key industries. In 1981 there were 128 enterprises providing employment for 12,700 implying an average size of 99 employees per enterprise. The branch's share of total manufacturing value added and employment was 1.6 per cent and 1.2 per cent respectively in 1980. Value added and employment grew rapidly at a rate of 19.5 per cent (1970-80) and 10.5 per cent (1970-80) respectively, which is indicative of a very substantial improvement of labour productivity.

The non-electrical machinery branch has lagged behind the growth of other engineering industries from 1975-1980 as reflected in its declining share of employment, output and value added within the engineering industry. There was however a significant increase in investment and value added from 1980-1981. The reasons for the lagging performance can be traced to the meagre investments resources channeled into this branch and the inherent supply problems. Undoubtedly these problems are rooted in lack of skilled labour; insufficient marketing and management skills and inadequate technological capacity to master the highly complex technology involved in producing capital goods. Only very few enterprises have the capability of manufacturing complete parts of products. The quality of products is generally poor and production is greatly dependent upon imports of parts of complete products. These problems have been further compounded by preference for imported capital goods being of superior quality and subject to agressive marketing strategies and credit policies of suppliers in developed countries. Table III.l depicts the emergence of an embryonic capital goods industry producing plant equipment and machinery for agricultural processing industries. These capital goods include <u>inter alia</u> sugar cane milling machines, rice press machines, corn grinders, coconut oil milling machines, coffee milling machines, tea processing machines, rice press machines, as well as weaving machines, rubber machines and brick processing machines. However, the extremely low unit value of many items is suspicious and points towards the predominance of assembly operations and/or repair activities, while the actual fabrication of complete products is still limited.

Machinery	Unit	Physical	Value	Unit
		Production	(000 Rp.)	Value
				(000 Rp.)
Generator	unit	58,705	26, 369, 491	449.2
Radiator	000 units	: 130	4,231,169	32.6
Stone crusher	ton	102	1,300,500	12,750.0
Generator sets	set	1,645	962,549	585.1
Cranes	unit	37	673,719	18,208.6
Tile press	set	2,578	207,540	80.5
Tile roofing machines	set	206	181,902	883.0
Rice press machines	set	451	175,891	390.0
Tile press machines	set	250	153,000	612.0
Tea processing machines	unit	27	142,598	5,281.4
Mixing machinery	set	37	77,000	2,081.1
Rubber machinery	ton	27	60,937	2,256.9
Sugar cane milling machines	ton	241	58,319	242.0
Brick processing machines	number	1,002	47,600	47.5
Weaving machine apparatus	number	5,205	45,018	8.6
Rubber rollers machines	number	33	35,600	1,078.8
Sondir/special machines	number	24	28,800	1,200.0
Corn grinder mill	number	142	22,120	155.8
Coconut oil milling machines	number	40	21,000	525.0
Brick pressing machine	number	3	17,000	5,666.7
Maize press/roller machines	set	1 34	16,623	121.8
Tapioca milling machines	set	2	15,000	7,500.0
Moulding machines	number	75	11,250	150.0
Kloss machines	number	15	11,250	750.0
Finishing textile machinery	unit	12	11,100	925.0
Saw machines	unit	1	9,000	9,000.0
Coffee milling	number	33	8,500	257.6
Excenter press machines	number	13	1,500	115.4
Bean curd processing machine	es number	7	980	140.0
Chili processing machines	number	2	270	135.0
Other machines	-	-	18,429	. –
Total all machines		-	34,915,661	

Table III.1: Domestic production and repair of non-electric machinery and equipment (ISIC 382) in Indonesia, 1980

Source: Survey of Manufacturing Industries, Indonesia, Vol.II, 1980.

Production processes in the non-electrical machinery branch are predominantly assembly activities using imported parts. The incidence of import dependence is relatively strong as reflected in the high share of imports of 82.6 per cent of total raw material requirements (Table II.9). However most intermediate goods from the basic metal industry are from domestic origin (76 per cent) except metal products serving as intermediate goods which are mainly imported with cnly 9.3 per cent supplied by domestic industries. The predominant use of old machines, simple tools and traditional production technology is characteristic for this branch.

Contrary to most other engineering goods industries, the average size of enterprises in this branch is relatively small, with an average of 99 persons per enterprise, which in Indonesia is at the borderline between medium and large scale enterprises. The majority of the 128 enterprises in 1981 are located in West Java (34 enterprises), followed by East Java (30 enterprises), Central Java (30 enterprises), Jakarta (20 enterprises) and North Sumatra and Riau (13 enterprises) (Annex Table 14). Many of these enterprises were initially established as agricultural supporting repair workshops. In Surabay and the Probolinggo area in East Java they started as the service basis for the sugar industry; in Tegal, West Java, they developed as centres for supporting rice cultivation; and in the Medan area they originally supported the plantations.

Many of the workshops were originally established by the Dutch. Today the non-electrical machinery enterprises are fairly evenly distributed among pribumi (27.3 per cent of all enterprises) and non-pribumi (27.3 per cent), and between government (22.7 per cent) and foreign ownership (22.7 per cent). A majority of enterprises have the legal status of PT (Perusahaan Terbatas = limited company) while a minority, 14 per cent, have legal status of PD (Perusahaan Dagang).

All products of the non-electrical machinery branch are sold in the domestic market. The virtual absence of exports may be explained by adequate profits in protected home markets (i.e., lack of incentives to look for export markets), lack of international competitiveness (price, quality) and lack of export marketing capacity.

Government banks have so far not played any major role in providing financing for the non-electrical machinery industry. The share of working

- 24 -

capital in total capital is high, while the levels of capital utilisation and capital coefficient are low. The non-electrical machinery sector received only a modest degree of protection against competing imports. The effective rate of protection is estimated at 18 per cent (Annex Table 19). $\frac{1}{}$

The potential demand for many non-electrical machinery products is growing rapidly to levels at which economic production in Indonesia may gradually be visualised. Undoubtedly there is widespread preference for purchasing imported equipment, which tends to be cheaper and of better quality. Improvement of product quality, competitiveness and marketing skills is therefore a prerequisite for the further development of this industry, which could also be supported by the procurement policy of public industrial enterprises acting as purchasers of the products of the industry.

The main problems of expanding output of non-electrical machinery are likely to be on the supply side cwing to the predominant use of outdated, traditional technology and old equipment. The production of non-electrical products involves higher skills which is greatly lagging. This points to the urgent need for management training and education, on-the-job and vocational training, and special programmes to enhance skill development in general.

Electrical machinery (ISIC 383)

The electrical machinery industry branch consists of enterprises producing: storage batteries; dry cell batteries; radios, TV and communication equipment; electrical apparatus and supplies, as well as repair of electrical appliances. The most important sub-sectors are communication equipment and apparatus (3832) and electrical apparatus and supplies (3833) which include such products as radios, TV-sets, recorded casette tapes, and also integrated circuits, transformers, electrical cables, lamps and refrigerators. Obviously many of these products are consumer durables, but there are a large number of potential capital goods products.

The electrical machinery industry has emerged as the fastest growing branch within the entire engineering goods industry. Value added and

^{1/} The effective rates of protection reported here were based on 1975 data that were published in 1979. Unfortunately, no more recent data are available.

employment grew at an average annual rate of 30.8 and 27.1 per cent respectively from 1970-80. Growth in labour productivity was very modest. The branch's share in total manufacturing value added and employment was 5.3 and 3.9 per cent respectively in 1980. The electrical machinery industry provided employment for close to 39,000 persons in 1981 and made the largest absolute contribution of all engineering industries to overall employment growth in manufacturing during the 1970s.

Table III.2 shows that in 1980 there was quite considerable assembly and domestic production of TVs; integrated circuits and parts; cables, wires and rods; dry cell batteries; casette and tape recorders; and radios, transceivers, high equipment (see also Annex Table 18). Obviously many of these products are consumer durables and intermediate goods but an "infant capital goods industry" also exists. Undoubtedly the established production capacity and existing skills represents a potential basis for future inclusion of capital goods in the product mix. Notable among the relatively few capital goods are: sewing machines (110,000 units); transformers (1,863,000 units); exhaust fans (31,000 sets) and electrical tools (533 million Rp.). Some of these also serve as consumer durables. The low level of capital goods production of electrical machinery reflects the technologically more complex production requirements. These products usually require more sophisticated technology than mechanical machinery.

Production processes are in most cases quite up to date. In many cases they consist of assembly operations based upon imported parts for radio and TV sets, or the assembly of completely knocked down kits (CDK-kits), usually using unskilled or semi-skilled labour. Efforts are being made to standardize products and parts in order to speed up the process of increasing the proportion of domestic content.

The majority of the 115 enterprises operating in this branch in 1981 are located in Jakarta (55 enterprises) and West Java (34 enterprises). A few enterprises are located in East Java (10), as well as Central Java and Yogyakarta (10) and Sumatra and Piau (6). These enterprises are typically large scale with an average size of 337 persons, which is double the average size of the Indonesian engineering goods industry. The average size of enterprises in the industry more than doubled since 1975. Enterprises are particularly large scale in sub-sectors producing: dry cell batteries (692

- 26 -

employees per enterprise); radio, TV-sets and communication equipment (448 persons per enterprise); and electrical apparatus and supplies (274 persons per enterprise) (Annex Table 4). The assembly of electronic products entails many labour intensive operations and require large production runs of relatively standardized products.

Table III.2:	Domestic production of electric machinery and	equipment
	(ISIC 383), in Indonesia, 1980	

		<u>Unit</u>	Physical production	Value (<u>000 Rp.</u>)	Price per unít (Rp.)
1.	TV, black and white/coloured	000 units	607	103,141,491	169,920
2.	Integrated circuits and panels	COG units	487,745	52,835,488	108
3.	Cables, wires and rods	tons	30,172	45,800,899	1,518,000
4.	Dry cell Batteries	-	-	38,925,621	-
5.	Cassette and tape recorders	000 units	29,091	33,739,484	1,160
6.	Radios, transceiver, Hi-Fi	000 units	3,10^	21,954,185	7,061
7.	Refrige ators	000 units	82	13,248,519	161,567
8.	Other cables	000 meters	121,853	11,213,519	92
9.	Storage batteries (accummula-				
	tor), and parts	-		9,373,158	-
10.	Bulb and tube lamps	000 units	107,753	9,465,528	88
11.	Air conditioners	000 units	37	7,985,937	215,836
12.	Fans	000 unit	245	5,504,210	22,466
13.	Transformers	000 units	1,863	3,826,032	2,053,000
14.	Plugs, sockets, switches	000 units	11,870	3,850,878	324
15.	BC	tons	1,656	2,919,108	1,763,000
16.	Melamine sheets	000 sheets	603	2,413,644	4,003
17.	Sewing machines	000 units	110	2,028,843	18,444
18.	Trafo TL	000 units	1,929	1,027,385	533
19.	PVC wires	tons	216	1,528,099	7,075,000
20.	Gas appliances	000 sets	22	886,680	40,304
21.	Electric tools	-	-	532,971	-
22.	Rice cookers	000 sets	32	463,376	14,480
23.	Condensors	000 units	501	422,243	843
24.	Others	-	~	14,056,757	-
*	Total (gross output ISIC 383)	-	-	387,144,415	-

Source: BPS: Survey of Industries, 1980.

The predominant ownership form is non-pribumi (50 per cent of all establishments), followed by foreign ownership (30 per cent). The role of private pribumi and Government is therefore relatively modest. The majority

- 27 -

of firms have the legal status of PT (perusahaan terbatas = limited company). Many establishments in the branch have been accorded special tax facilities.

The electrical machinery industry is the only engineering goods industry which has penetrated export markets with around 14 per cent of its production being exported. Exports of electronic components increased from US \$52.3 million in 1981 to US \$ 75.6 million in 1982. Export products are mainly integrated electrical circuits produced by domestic branches of foreign owned (US) companies which conduct a bond processing operation i.e., import components and re-export of assembled products back to the US via Singapore and where Indonesian value added represent only about 20 per cent. Transnational corporations have therefore played a significant role in the development of exports in this industry.

Most inputs for the electrical machinery industry originate from other engineering enterprises, mainly metal products (ISIC 381). However, only 8.4 per cent of these inputs originate from domestic sources. The proportion of imported raw materials and components is very high, particularly in regard to input into the production of storage batteries (96.1 per cent); radio, TV-sets and communication equipment (89.7 per cent); as well as electrical apparatus and supplies (87.9 per cent) (Table II.9). Domestic inputs originate mainly from non-metallic mineral products (ISIC 36) (89 per cent) primarily glass bulbs and tubes for lamps.

Investments through branches of foreign banks seem to play a leading role in the provision of finance. Government banks do not provide any significant credit to enterprises of the sector. Domestic machinery products are highly protected against competing imports through high rates of effective protection estimated at 111 per cenc (Annex Table 19).

Fabricated metal products (ISIC 381)

A highly heterogeneous group which consists of: agricultural hand tools and equipment: cutlery, screws, and bolts; kitchen apparatus; metal furniture and fixtures; structural metal products; metal containers; and other metal products. The main products are: galvanized corrugated and flat sheets (for roofing purposes); pipes; construction works; and aluminum extruded products. Other products include machine parts, hand tools, and gas lamps, bars, wire rod, wires, nuts, pipes, and sheets.

In 1981 there were some 355 enterprises employing around 44,000 persons or 4.2 per cent of total manufacturing employment. The corresponding share of value added was 3.5 per cent. Manufacturing value added and employment grew during 1970-80 at an average annual rate of 20.2 per cent and 11.5 per cent respectively, implying a yearly growth rate of labour productivity of 8.7 per cent. The average labour productivity, however, is still very low for all sub-groups of this branch.

The average plant size, 124 persons per enterprise in 1981 has been increasing since 1975. The small scale and cottage industries play an important role in employment and output of metal products, as indicated in Table II.5. The number of persons engaged in small and cottage industries in fabricated metal products in 1979 was 26,445 persons and 27,039 persons respectively which compares with 35,507 persons engaged in medium and large industry.

Most medium and large enterprises are located in Jakarta (125 enterprises) and East Java (93 enterprises), followed by West Java (45), Central Java (33), North Sumatra and Riau (34), Yogyakarta (8) and Sulawesi (8 enterprises).

Almost all fabricated metal products are sold domestically. There are virtually no exports. Backward linkages to the domestic iron and steel industry have not been fully developed. Most inputs, mainly intermediate goods from the basic steel industry, are still imported, except in the case of production of cutlery, screws and bolts as well as metal furniture and fixtures where domestic raw materials predominate (Table II.9). However as far as inputs from the chemical sector (mainly paint) is concerned, almost 50 per cent is from domestic origin.

Production processes in the metal products industry are quite diverse. Some factories use traditional and outdated technology and product quality is often questionable. But there are also some modern plants using new and sophisticated technology. The fabricated metal products branch exhibits a low average level of capital invested per plant, and a low capital intensity.

- 29 -

Non-pribumi ownership is the largest category (38.5 per cent), followed by pribumi enterprises (26.9 per cent); foreign enterprises (23.0 per cent), while Government enterprises are few in numbers (11.6 per cent). A majority have legal status of PT (perusahaan terbatas = limited company). Government banks play an important role in providing capital for this sector and thus have a major influence on decisions concerning this sector. The rates of capital utilization vary widely from 10-20 per cent to 60-70 per cent due to the heterogeneous character of the branch. Fabricated metal products enjoy a relatively high degree of protection against competing imports through high rates of effective protection estimated at 56.6 per cent (Annex Table 19).

Chapter IV. Planned Developments - REPELITA III and IV

Major planned investment prospects

REPELITA IV (1 April 1984 - 31 March 1989) assumes an economic growth (GDP) rate of 5 per cent per annum. Industry is expected to grow at a rate of 9.5 per cent a year while growth of agriculture is put at 3 per cent per annum. The industrial sector will assume a more prominent place in Indonesia's economic structure.

The machinery and basic metals industry will command high priority during REPELITA IV. The planned growth rate for this industry is 17.0 per cent per year and it is expected that 30,000 new employment opportunities will be created. Special attention will be directed towards the development of industries that produce industrial machinery, with the intention that Indonesia will gradually be able to meet her own needs for machinery including spare parts - in further development of industry.

Industrial development will also be intensified to produce equipment for agriculture, agricultural implements and agricultural processing machinery. REPELITA IV is thus expected to strengthen the important nexus between industry and agriculture. It is in this context that the present study assumes crucial importance by identifying opportunities for domestic production of capital goods required for processing agricultural and forestry resources.

During REPELITA III and REPELITA IV a number of key projects (52) were planned for the basic metals sector, the basic chemical industry sector and the sub-sector multifarious industry. The total investment requirements for these 52 key projects were estimated at US \$11,791.28 million. A complete list of these key projects is contained in Annex Table 20.

Among the 52 key projects, 18 projects were planned for the basic metals industry sector with total investment requirements estimated at US \$2,226 million. Some of these investment projects were initiated during REPELITA III and will go into operation during the last year of REPELITA III and/or the first years of REPELITA IV, while others are under negotition or still open for negotiation. In early 1983 the Government decided to review the whole public investment programme following the general economic slowdown and the deteriorating balance of payments situation. As a result a number of projects were either postponed, rescheduled, "deferred", or reconsidered.

The original 1982 investment schedule for the <u>basic metals</u> industry, which will no doubt be further reconsidered, includes the following 18 investment projects, $\frac{1}{}$ some of which have been implemented while others are being negotiated or rescheduled (See also Annex Table 20):

- "1. The establishment of a <u>Pellet Factory</u> in Cilegon, West Java, with an investment of approximately US\$ 130 million and a production capacity of 3,000,000 tous/year. This project was to commence in 1982 and should be completed in 1984.
- 2. The establishment of a <u>Slab</u> Factory and a <u>Hot Strip Mill</u> in Cilegon, West Java. The establishment of this project has been realized.
- 3. The establishment of a <u>cold Sheet Mill</u> Factory in Cilegon, West Java, with an investment of approximately US \$490 million, to produce 500,000 tons/year of cold rolled sheet. This project is being carried out.
- 4. The establishment of a <u>Tin Plate</u> Factory in Cilegon, West Java, with an investment of approximately US \$56.90 million to produce 60,000 up to 100,000 tons/year of tin plate. This project is to start in 1983 and will be completed in 1985.
- 5. The establishment of a <u>Seamless Pipe</u> Factory, free location with planned investment of approximately US \$186.05 million to produce 150,000 tons/year of seamless pipes. This project is to commence in 1983 and should be completed in 1985.
- 6. The establishment of a <u>Diesel and Petrol Engine</u> Factory in the regions of Java with planned investment of approximately US \$448 million, to produce 200,000 units/year of diesel/petrol engines. This project is to be completed in 1984.
- 7. The establishment of <u>Ship Yards</u> in Jakarta, Surabaya (Java), Ujung Pandang (South Sulawesi) and Palembang (South Sumatra) with an investment of approximately US\$ 49.60 million to produce/construct

1/ Development Program for Basic and Key Industries and Some Ideas on Industrial Development in the Fourth Repelita, Jakarta, April 1982, Ministry of Industry. new ships: 21,000 BRT and to conduct repair works: 540,000 BRT. This project has commenced in 1981 and should be completed in 1984.

- 8. The establishment of a <u>Casting Products (Blanks)</u> Factory for Machines in Cilegon, West Java, with an investment of approximately US \$90.57 million an the capacity to produce:
 - Gray Iron Castings : 44,000 tons/year
 - Aluminium Alloy Castings : 4,200 tons/year

This project is to be completed in 1984.

9. The establishment of a <u>Forging Products (Blanks</u>) Factory for Machines in Cilegon, West Java, with an investment of approximately US \$74.89 million, and the capacity to produce:

- Parts, chassis and transmision : 31,000 tons/year

This project is to be completed in 1984.

10. The establishment of a <u>Machine Tools</u> Factory in Cilegon, West Java, with an investment of approximately US \$4 million, and the capacity to produce:

: 650 units/year

This project is to be completed in 1984.

- lathes

11. The establishment of a <u>Heavy Fquipment</u> Factory in the regions of Java with an investment of approximately US \$147.22 million and the capacity to produce:

-	Wheel Loaders	:	2,980	units/year
-	Crawler Tractors	:	700	units/year
-	Exacavators	:	100	units/year

This project is being carried out.

12. The establishment of a <u>Railway Carriage</u> Factory in Madiun, East Java, with an investment of approximately US \$96 million, and the capacity to produce:

-	Cargo Carriages	:	200 carriages/year
-	Passenger Carriages	:	42 carriages/year

This project has commenced in 1981 and should be completed in 1984.

13. The establishment of a <u>Power Train</u> Factory, Suspension and Steering System for Motor Vehicles in Jakarta or Surabaya, East Java, with an investment of approximately US \$38.40 million, and a production capacity of 150,000 units/year. This project was to commence in 1982 and is to be completed in 1985.

- 14. The establishment of an Engine Factory for Motorcycles in Jakarta or Surabaya, East Java, with an investment of approximately US \$16.80 million, and a production capacity of 200,000 units/year. This project was to commence in 1982 and is to be completed in 1985.
- 15. The establishment of a <u>General Machinery Shop for Manufacturing</u> in Surabaya, East Java, with an investment of approximately US \$235 million and capacity to produce:
 - for Sugar Mills : 6,500 tons/year
 for Palm Oil Factories : 8,000 tons/year
 for Crumb Rubber Factories : 450,000 tons/year
 This project commenced in 1982 and is to be completed in 1985.
- 16. The establishment of a <u>Copper Cathode</u> Factory outside Java with an investment of approximately US \$130 million and a production capcity of 40,000 tons/year. This project is to be completed in 1985.
- 17. The establishment of a Factory m king <u>Heavy Electrical Machinery and</u> <u>Equipment</u> with an investment of approximately US\$ 28 million. The location of this factory is recommended in one of following three locations: Jakarta, Bandung or Surabaya. This project is planned to commence in 1983 and will be completed in 1985.
- 18. The establishment of a <u>Dies and Mould</u> Factory with an investment of approximately US \$5 million. Location of the factory has not been decided. The project was to commence in 1983 and is to be completed in 1985."

Demand and supply balances and Repelita IV development programmes

Capital investment realised during REPELITA I and II through the first and second years of REPELITA III mostly went into production of consumer goods for the domestic market through import substitution. During the third, fourth and fifth years of REPELITA III a series of important projects were launched in inter alia the field of machinery and basic metals industry.

The investment realised in development projects of the basic metals industry from the first through the fourth years (1979/80-1982/83) of the REPELITA III period totalled Rp. 2,263.4 thousand million and US \$1,369.7 million. This investment consisted of Rp. 150.2 thousand million non-domestic foreign investment schemes; Rp. 2,113.2 thousand million domestic investment schemes and US \$1,369.7 million ! ign investment schemes. The investment realised in these projects would result in a significant increase in the sectoral capacity and production.

The Government has formulated programmes for development of national capacity for certain key industrial products. Estimates of demand and supply in terms of capacity, production and domestic demand have been elaborated for a number of important industrial products at the five digit ISIC level for the period 1982/83 - 1986/87. The estimated supply and demand position for engineering products (ISIC 38) are indicated in Annex Table 21. These estimates are based on the above mentioned investments implemented in the basic metals industry during the first four years of REPELITA III.

The programmes for development and utilization of national capacity in selected machinery and basic metals industries including capital goods and engineering industries during Repelita IV is briefly outlined in the following paragraphs (see also Annex Table 21): $\frac{1}{2}$

Industrial and factory equipment

The factory machinery and equipment industry has reached a capacity of 60,000 tons per annum. It is capable of producing machinery for palm oil mills, sugar mills, and - to a certain extent - also for cement factories, fertilizer plant, steel industry, petroleum refinery and mining.

Commodities that have been produced locally include, steel construction of various sizes, boilers with a capacity of 20 tons of steam per hour, farm tanks, pumps, silos, etc. The demand in 1989 is estimated to reach 409,000 tons.

 ^{1/} This review is based upon:
 <u>The Development of National Capacity in Industry for 1983-1986</u> - <u>Summary</u>, Ministry of Industry, Republic of Indonesia, 1983 (unofficial translation)
 Repelita IV (unofficial translation).

The development programme of Repelita IV is aimed at supporting the development of factories processing agricultural products, plantation, basic chemical, basic metal and mining industries. The manufacture of standard machinery and equipments is primarily directed towards machinery most commonly used like boilers, heat exchangers, compressor pumps, blowers, transport equipment, etc. The manufacture of specialised machinery and equipment is geared towards the production of equipment for processing of palm oil, sugar, crumb rubber, coffee, tea, plywood, cement, pulp and paper, fertilizer, timber and metal processing. Workshops for maintenance of machinery will be developed utilizing the existing factory workshops.

Government owned factories such as P.T. Barata ad P.T. Bona Bisma Indra will be rehabilitated so as to enable them to reach a production capacity of 85,000 ton per annum and provide new employment cpportunities for about 9,000 persons. Improvement and acceleration of the private sector's capacity and its interlinkages will be promoted ~hrough sub-contracting.

Mechanical equipment industry

The mechanical equipment industry in Indonesia began to develop, with activities in machinery reconditioning, and production of certain types of mechanical utensils on a job-order basis. The Government is constructing a lathe plant (in Cilegon) with a capacity of 300 units per annum which would be completed in 1983. Mechanical utensils to an amount of 10,126 units valued US \$35.3 million were imported in 1981. The demand in 1989 is estimated (in units) at 5,950 lathes, 6,250 drillers, 9,600 sawing machines, and 1,000 milling machines.

The development of industrial machinery requires not only basic materials such as iron and steel products, but also capital goods like scrap machine, frais machine, lathe, saw doctor machine, cutting machine, rolling machine, etc. Repelita IV is directed at meeting the demand for such machinery particularly for large, downstream, small industries and also for vocational schools and job training centres. The development of a mechanical equipment industry is also directed at improving the structure of industry and at reducing imports. This objective is to be reached by fostering optimum capacity utilization, by strengthening existing industry, and by promoting basic and strategic projects.

Projects to be given priority include scrap machine with 100 units capacity, and expansion of existing industrial capacity such as lathe from 300 units to 1,000 units per annum, frais machine from 250 units to 1,000 units per annum and drilling machines from 1,000 units to 1,500 units per annum.

Agricultural machinery and equipment industry

Agricultural machinery and equipment has been produced locally in considerable quantity, including tractors, water pumps, threshers, polishers, hullers, rice milling units and sprayers. Basically, capacity has been sufficient to meet the domestic demand, such as 10,000 tractors, 2,500 threshers, 6,100 hullers and rice milling 1,570 units per annum.

The demand for agricultural machinery and equipment is steadily increasing. In 1989 demand for tractors is expected to reach 27,000 units, threshers 2,540 units, polishers 83,750 units, hullers 84,881 units and rice milling 30,000 units.

The development of these industries in Repelita IV is directed at meeting the needs for agricultural machinery by expanding capacity, protecting domestic industry and reducing imports of agricultural equipment. Projects which are being promoted include: a large tractor project with a capacity of 2,000 units per annum; expansion and improvement of the rice milling industry; expansion of mini hand tractors; and other agricultural equipments like irregation pumps, sprayers, threshers, hullers, polishers, sicles, etc.

4. Heavy equipments and construction industry

A heavy equipment industry has developed in Indonesia since the period of Repelita I; it involves the production of road rollers (1,140 units per annum capacity), stone crusher (565 units per annum), concete mixers (2,000 units per annum), and asphalt mixing plants (eight units per annum). This industry also include products such as wheel loaders, motor graders, excavators, bulldozers, diesel and petrol engines (non automotive). In particular, the wheel loader, motor grader excavator and bulldozer have low local contents as these industries are still new and their components industry have not yet developed.

The demand for heavy duty equipment is growing at an average rate of 10 per cent per annum and, in 1989, is estimated to reach 726 road rollers, 3,000 bulldozer and 360 wheel loaders. To meet this demand, construction of new plants has commenced under the Foreign Investment Scheme (PMA) with a capacity of 2,290 units per annum as follows:

- bulldozer	:	1,240 units/annum
- excavator	:	450 units/annum
- wheel loader	:	335 units/annum
– motor grader	:	265 units/annum

There are at present six plants for the production of non-stationary diesel motors, with a capacity of 88,664 units per annum. The annual capacity for each type of diesel motor is as follows:

> above 20 HP : 19,264 unit /annum below 20 HP : 69,400 units/annum

Demand in 1983/84 is expected to reach 192,000 units.

The development of this industry in Repelita IV is aimed at raising the local content, increasing value added, improving the structure of industry, and accelerating interlinkages with the medium- and small-scale industry. Priority projects include petrol engines (non automotive) with 30 horse powers with a capacity of 50,000 units per annum; and, hydraulic component project.

Electric equipment machinery

The main products of the electric equipment industry in the near future are generators and electric motors. The generator in demand is one of small capacity (2 to 10 KVA) for household purposes, and also of a capacity above 10 KVA for industrial purposes as well as for the development of national electric supply network (for rural areas). The electric motor demanded is particularly one for industry/factory equipment, the demand for which now reaches 220,000 units per annum as against a present national capacity of only about 17,000 units per annum.

The development programme of electric equipment in Repelita IV is primarily directed at me ting requirements for network expansion, the national electricity system, electric machinery energy, and electric equipment for industrial purposes. The products include among others turbine, steam power kettel generator, high voltage isolator, power transformer, high voltage panel, circuit breakers, distribution transformer, medium/low voltage panel, KWH meter, mini circuit breakers, electricity mast, electromotor, and electric home appliances.

It is planned to expand capacity of existing industry in terms of designing and engineering, as well as manufacturing of electric appliances for which requirements are substantial, among others generators for rural electricity development, electromotors for industry and transport equipment, electro instruments and safeguard appliances. Priority will be given to new projects and to capacity expansion of existing industries.

Electronic industry

The development of an electronic industry in Repelita IV is primarily aimed at supporting the expansion of a national telecommunication network, national broadcasting/information programme, electronic equipment for industry in general (EDP/computer), education appliances, and acceleration of export potentials.

The electronic industry includes the production of telephone apparatus, PABX, analog and digital central telephone, teleprinter, telephone centre, data communication centre, HF-SSB, VHF/UHF transceiver, mini satlite, radio broadcast, airbone radar, marine radar, direction finders, micro computers, electronic components, television receiver apparatus, and radio cassettes.

- 39 -

In manufacturing electronic appliances, the role of software appliances is crucial. However, the domestic capacity of software appliances is limited, and relies much on imported design. In order to strengthen the industry, a centre for electronic industry development will be established to provide research facilities for the development of an electronics industry. Attempts will also be initiated to build semi conductor devices and integrated circuits for acceleration of export potentials and for meeting domestic requirements of component technology.

In order to meet the country's need for telecommunication and broadcasting equipments (TV and radio), and to accelerate the export potentials during Repelita IV, attempts will be made to expand the capacity of existing industry.

Motor vehicle industry

The supply of four-wheel vehicles is currently in the hands of 22 Sole Agents/Authorized Dealers covering 20 Assembling Plants which actively produce 31 makes of vehicle consisting of 78 types. The capacity of domestic production of four-wheel vehicles is currently 350,000 units per annum consisting of commercial as well as passenger vehicles. The motor vehicle industry, which in recent years has attracted attention for its performance, has been developed to meet domestic demand, and to encourage the growth of supplier industries.

The procedure governing the use of spare parts for commercial four-wheel motor vehicles is reflected in the Decree issued by the Minister of Industry No. 168 year 1979 which required the use of only locally made spare parts, including engines, not later than the end of 1988. A statement has also been issued authorizing seven assembling establishments to produce motor vehicle engines with a total capacity of 460,000 units per annum.

The development programme of motor vehicle industries in Repelita IV is aimed at meeting the country's need for commercial vehicles by utilizing domestic industrial components. The objective is that by 1986/87 all components of commercial vehicles are to be manufactured in the country. Measures to be taken, in this regard, include maximization of existing capacity and the promotion of key motor vehicle projects, as well as supporting projects such as foundry and forging for manufacturing of machines. Key projects to be developed include a machinery project using fuel and diesel for motor vehicles having a capacity of 425,000 pieces per annum; "power train", suspension and steering system, each having capacity of 360,000 pieces per annum, foundry and forging projects to meet the need of the country's iron casting capacity of 32,600 tons per annum, aluminium casting (3,540 tons per annum) and forge blanks (12,400 tons per annum).

Measures will also be taken to develop component industries such as cabin, rear body, chassis/frame, fuel tank, wheel rim, left spring, muffler and tail pipe, radiator, shock obsorber, regulator and ignition coil.

Railway equipment industry

PT INKA is so far the only industrial establishment in the railway rolling stock industry. It is located in Madium and has been capable of producing railway carriages. The plant commenced production in 1981, assembling imported CKD raw material. The output of this plant mainly goes to the domestic market. Production capacity at present reaches 300 cargo carriages per annum. By the middle of Repelita IV, production capacity is to be increased to 600 cargo carriages and 50 passenger carriages per annum. Electrically Operated Train (KRL) and Diesel Operated Train (KRD) are to be produced early in Repelita V, each with production capacity of 20 units per annum.

The development of the railway industry in Repelita IV is aimed at meeting the country's need for increased transport facilities for industrial products such as cement, fertilizer and asphalt.

Attempts will be made to meet the need for most railway equipments, accessories and components thereby reducing the country's reliance upon imports. To achieve this objective, the development of the railway industry is directed at increasing capacity utilization of existing industry, and developing railway workshops for the maintenance of carriages, rails, etc.

- 41 -

Projects which are to be constructed include pasengers carriages, diesel railways, electric railways and locomotives, as well as acceleration of capacity of commodities carriages.

Aircraft industry

The only industrial establishment in aircraft production is PT Nurtanto Aircraft Industry which is capable of producing various types of aircraft.

The output of this plant is intended not only to meet domestic demand, but also for export to Burma, Pakistan, etc.

The production capacity for the fixed wing aircraft, is 24 units per annum for C-212 type, and 1. units per annum for CN-235 type . Production capacity for rotary wing helicopter, is 36 units per annum for BO-135 type, and 12 units per annum for PUMA type.

Projects which will be given priority in Repelita IV include production of C-212 planes, BO-105 helicopters, Puma helicopters, CN-235 and BK-117 helicopters.

10. Shipbuilding industry

The objective of ship building industry development is to increase the capacity of the industry so as to meet domestic demand, both for new boat construction and for repair. The development of the shipbuilding industry in Repelita IV is aimed at gradually meeting the need of the national shipping fleet. In line with this, attempts will be made to develop industry which will meet the need for shipping equipments and accessories. In this way the country's reliance upon imports could be reduced gradually and it will aslo strengthen th existing structure of industry.

There are at present 82 shipyards for steel boats, 68 for wooden vessels and 1,500 for traditional vessels located in many different places of the country, but with 75 per cent on Java. The capacity is 1,150,000 DWT per annum for repair and 195,000 DWT for new construction. Repelita IV includes programmes to develop the industry's capability in mastering technology, rehabilitation of existing equipment, and construction of new ship docks. The new ship docks to be constructed are with capacity of up to 10,000 Dwt., divided into the following categories: 501 - 2,000 Dwt (14 ship docks), 2001 - 5,000 Dwt. (9 ship docks), and 5,001 - 10,000 Dwt. (4 ship docks). Concomittantly, facilities for repair of ships will be accelerated up to 30,000 Dwt. Particularly for East Indonesia, the facility at Ujung Pandang shipyard is to be accelerated from 500 Dwt. to 5,000 Dwt. and the facility for repair from 500 Dwt to 7,000 Dwt.

Basic metal industry

a) Iron and steel industry

The capacity of steel bar plants in 1982/83 was 2 million tons, while the production of steel bars was 391,000 tons, meaning a capacity utilization rate of only about 20 per cent. The consumption of steel bars during the same period was 350,500 tons, the excess quantity of 40,500 tons was intended for the export market. The capacity for concrete iron bars production in 1982/83 was 1,200,000 tons, while the production was 745,000 tons, or about 62 per cent of the capacity. The demand for concrete iron bars during the same period was 695,800 tons. The excess production of 49,200 tons was destined for exports.

The development of the iron steel industry in Repelita IV is aimed at meeting the country's need for iron and steel products in order to reduce import and to strengthen the industrial structure. In line with this, attempts will be made to invite investments in key and strategic projects, and to fully use existing capacity. Key projects to be built include an iron and steel plant (lembaran baja canai dingin) to meet the need of down stream industry, with a capacity of 850,000 tons per annum; a tin plated steel sheet project (lembaran baja lapis timah) to meet the need of tin industry, with capacity of 130,000 tons per annum; and a pump (without wrap) project to meet the country's need for iron pumps, mostly used in oil drilling, with capacity of 160,000 tons per annum. The development programme also includes a large scale steel plant project to meet the need of the construction industry for buildings and bridges, with a capacity of 10,000 tons per annum, and a steel plant to support the development of a machinery industry. Foundry and forging industries will also be developed to support the development of these industries.

b) Metal industry (non iron and steel)

The aluminium ingot industry of Asahan had commenced production at the end of 1982 with 115,000 tons output, while the capacity per annum was 225,000 tons. The demand for aluminium ingots during the same period was 24,000 tons. The excess production was 91,000 tons.

Additionally, copper rod had also been produced at a capacity of 50,000 tons, while the production in 1982 was 24,000 tons using imported raw material.

The development of the metal industry in Repelita IV is aimed at meeting the domestic needs for metal products, improving the structure of industry, and reducing import dependency. Expansion of capacity of existing industry and promotion of key strategic industries are envisaged. The key projects to be established include: a copper cathode plant to meet the need of the country's copper cathode with capacity of 100,000 tons per annum; aluminium plant to produce aluminium ingot; an aluminium slab plant/project to meet the need of the aluminium sheet industry with a capacity of 40,000 tons per annum; an aluminium wire stem project with capacity of 15,000 tons per annum; an aluminium billet project, with a capacity of 15,000 per annum, an aluminium casting project, needed for the production of engineering products such as motor cycle spare parts, diesel motors, four wheels motor vehicles, ships equipments/accesories, etc. with capacity of 6,000 tons per annum; and expansion of capacity of the wire stem industry from 36,000 tons to 50,000 tons per annum.

Location

The basic metal industry is mainly located in Java and in northern Sumatra, including the aluminum industrial centre in Asahan. The basic metal and metal fabricating industry is concentrated in the Cilegon area (West Java) and to a less extent Jakarta, East Java and north Sumatra.

The factory machinery industry is found in East Java, Jakarta, West Java, Central Java and North Sumatra. Machinery workshops of the basic chemical industrial estates will also be developed into engineering plants.

Electric and professional electronic equipment industries are found in West Java and Jakarta. While ship building is scattered throughout almost all areas of Indonesia, the motor vehicle industry is concentrated in Jakarta area.

1

Chapter V. Summary of Main Features and Constraints

The salient features of the structure and performance of capital goods and engineering industries may be summarized as follows:

- i) The base of the entire capital goods and engineering industry is very nerrow both in regard to the number of establishments and the range of products they produce.
- ii) An embryonic capital goods industry has emerged in recent years which is estimated to account for around 28.2 per cent of the engineering goods sector, the equivalent of around 5 per cent of the entire manufacturing sector in cerms of output.
- iii) The number of plant equipment and machinery industry products produced remain small but is increasing; they are mainly used for processing agricultural crops.
- iv) The capital goods and engineering industry sectors rank among the fastest growing industries within the entire Indonesian manufacturing sector both in regard to employment, and value added. The high growth rates are in part attributable to the low initial base.
- v) Assembly operations using imported parts and components predominate, especially in the electrical machinery and transport equipment industries. While actual production and fabrication of complete industrial products, is limited and confined to a narrow range of products, there is some production of components and parts.
- vi) Assembly operations in the transport equipment industry (cars, motorcycles, bicycles) and electrical machinery (radios, TV sets, and various consumer durables) account for a very large part of growth in the engineering industry. These manufacturing activities usually involve unskilled or semi-skilled labour.
- vii) There is some indication that the engineering and capital goods industry has become more capital intensive and/or generated more profit since 1975 as reflected in the declining share of wages and salaries in value added, which in 1980 amounted to 20 per cent.
- viii) Production of non-electrical machinery, which includes most capital goods, has lagged behind i.e. its share of employment and value added has declined within the engineering industry. Production of capital

goods in this branch involves higher skills, which are in very short supply and their shortage is one of the main impediments for the further development of this sector. Other constraints are rooted in the low of investment levels and the predominant use of outdated technology and old equipment as well as inadequate management and marketing skills.

- ix) Most capital goods and engineering industries supply "e domestic market, the only exception being electronic equipment where some foreign firms export part of their production.
- x) The incidence of import dependence for raw materials is very high; around three-quarters of total material requirements are imported. Backward linkages to the domestic iron and steel industry and linkages within the engineering industry itself have not yet been fully developed.
- xi) Most engineering industries, except non-electronic machinery, enjoy high levels of protection against competing imports through high rates of effective protection.
- xii) Most engineering enterprises belong to the medium and large scale category. The average plant size has been increasing from 104 persons in 1975 to 163 persons in 1981. However, small enterprises are important in fabricated metal products. Many small enterprises provide a breeding ground for entrepreneurial and skill development and could be expanded and be upgraded to medium scale level through sub-contracting and other arrangements with medium and large enterprises.
- xiii) Almost one-third of all engineering enterprises are located in Jakarta, and close to one-fourth in East Java. Nearly to one-fifth are located in West Java. Outside Java there were a few enterprises in Sumatra but in the other regions the incidence of any organised engineering industry is very restricted.
- xiv) Considerable investments were channelled into the transport equipment, metal products and electrical machinery industries while investments in the non-electrical machinery and professional scientific equipment industries were sluggish. This partly explains the lagging performance of the latter two branches.

- 47 -

- xv) Public enterprises are particularly important in the transport equipment and non-electrical machinery industy, where they account for around one-fourth of all enterprises. Many of these enterprises are very old and in need of rehabilitation and upgrading of their management system and technological base. Their institutional linkages to Government supervisory and control agencies need to be made more business oriented. A complete management review of their operations and decision making procedures would appear to be prerequisite for performance improvement.
- xvi) The engineering and capital goods industry will command high priority during REPELITA IV. The planned growth rate for this industry is expected to be substantially higher than the 9.5 per cent growth rate envisaged for the overall manufacturing sector.
- xvii) During REPELITA III and REPELITA IV 18 key projects were planned in the basic metals industry sector with total investment requirements estimated at US \$2,226 million. Some of these have been implemented while others are under negotiation or open for investment.
- xviii) The realised and planned investment in the engineering and capital goods industry during REPELITA III and REPELITA IV would result in a significant increase in national capacity. In this context the Government has formulated programmes for the development of national capacity for certain key industrial products and estimates of supply and demand have been elaborated covering the period 1982/83-1986/87.
 - xix) Repelita IV contains specific programmes for development of: mechanical equipment industry; agricultural machinery and equipment; heavy equipment industry; electric equipment industry; electronic equipment; motor vehicle industry; railway industry; aviation industry; shipping industry; as well as iron and steel and metal industry.

STATISTICAL ANNEX

- 49 -

 $|\mathcal{V}|$

t

ļ

Annex

EXPLANATORY NOTE

Definition of ISIC 371 and ISIC 38

ISIC Iron and Steel Basic Industry 37100 38111 Agriculture, hand tools 38112 Cutlery, screws, bolts 38113 Kitchen apparatus 38120 Metal furniture and fixture 38130 Structural metal products 38140 Metal containers 38190 Metal products n.e.c. 38200 Machinery and repair 38311 Storage batteries 38312 Dry cell batteries 38320 Radio, TV, comm. equip. 38330 Elec. apparatus/supplies 38340 Repair of elec. appl. Ship building and repair 38411 38430 Motor vehicles ass./manu. 38440 Motor cycle/3 wheel veh. 38450 Bicycle, becakass./manu. 38460 Motor vehicle body + equip. 38490 Transport equip. n.e.c. 38500 Manu. of scientific equip.

i

38 Metal products, machinery and equipment

			Gross Output					Value Added					% Share of Wages and			
		191	75	1980		1981		1975		1980		1981				
SIC		Value	*	Value	%	Value	2	Value	*	Value	%	Value	*	1975	1980	1981
71	Iron and Steel Industries	5.0	-	237.7	-	249.4	-	1.1	-	70.0	-	79.5	-	32	13	12
51	Metal Products	65.8	37.2	285.3	24.6	338.7	22.6	16.9	26.5	74.2	20.7	85.4	16.1	32	29	33
32	Non-electrical Machinery	20.1	11.4	81.3	7.0	110.4	7.4	8.0	12.6	33.4	9.3	42.9	8.1	24	24	24
3	Electrical Machinery	53.5	30.2	387.1	33.5	,42.9	29.6	18.3	28.7	112.6	31.5	125.9	23.6	20	22	23
54	Transport Equipment	37.1	21.0	402.8	34.7	604.8	40.3	20.3	31.9	136.2	38.1	277.8	52.1	36	20	14
35	Scientific, Photographic Equipment	0.5	0.2	2.8	0.2	2.1	0.1	0.2	0.3	1.4	0.4	0.7	0.1	40	26	56
	Total ISIC 38	177.0	100.0	1,159.3	100.0	1,498.9	100.0	63.7	100.0	357.8	100.0	533.0	100.0	29.2	22.8	20.0

Gross output, value added, share of wages and salaries in value added,

1975, 1980 and 1981 (values in Rp. thousand million, current prices)

Source: Survey of Manufacturing Industries, BPS, Indonesia, 1975, 1980 and 1981.

Annex Table

Annex Table 2

•

Value added per person engaged in million Rp. and index 1975, 1980 and 1981

		Value Added Per Person Engaged (million Rp.)			Value Added Per Ferson Engaged (Index=Total ISIC 38= 100)			
		1975	1980	1981	1975	1980	1981	
371	Iron and Steel Industries	0.4	7.6	8.4	38.9	257.9	208.2	
381	Metal Products	0.8	1.8	1.9	77.2	61.3	48.3	
382	Non-electrical Machinery	0.9	2.8	3.4	93.1	94.1	34.1	
38 3	Electrical Machinery	1.7	3.0	3.2	144.1	102.2	80.7	
384	Transport Equipment	1.0	4.5	7.7	107.3	154.2	192.0	
3 85	Scientific, Photographic Equipment	0.4	1.5	0.7	39-7	49.4	17.6	
	Total ISIC 38	1.0	2.9	4 0	100.0	100.0	100.0	

Source: Statistical Yearbooks of Indonesia (various issued).

V

Ì

Average annual rate of growth of value added, employment and labour productivity 1975-80 and 1980-81

		Value A	dded ^{a/}	Empl	.oyment	Labour Productivity		
ISIC		1975-80	1980-81	1975-80	1980-81	1975-80	1980-81	
		Percent	age	Perc	entage	Perce	ntage	
371	Iron and Steel Industries	93.9	12.2	25.1	7.5	68.8	4.7	
381	Metal Products	13.5	13.7	12.8	7.3	0.7	6.4	
382	Non-electrical Machinery	12.5	26.9	6.4	5.0	6.1	21.9	
383	Electrical Machinery	21.5	10.5	29.0	3.7	7.5	6.8	
384	Transport Equipment	23.6	101.5	9.2	19.9	14.4	81.6	
385	Scientific, Photographic Equip.	24.7	-50.6	16.7	3.3	8.0	-47.3	
Tota	1 ISIC 38	19.3	47.2	14.6	9.0	4.7	38.2	

<u>Source</u>: Survey of Manufacturing Industries, BPS, Indonesia, 1975, 1980 and 1981. Statistical Yearbooks of Indonesia.

a/ Real growth rates, using the general manufacturing price index.

ω

	Numi Establ	per of Lishment	;s	Average Plant Size (Persons Eng ag ed Per Establishment)
ISIC	1975	1980	1981	1975 1980 1981
37100	13	23	22	222 384 431
3111 12 13 8120 58120 58130 38140 38190 38310 38312 38320 38340 38340 38411 38450 38460	14 345 2552 59014 18 32 325 86 29	22 41 53 46 93 46 132 11 34 3 22 53 50	22 39 51 45 60 28 13 96 55 26 88 13 55 26 81 35 55 26 81 35 55 26 81 35 55 26 81 35 55 26 81 35 52 52 51 55 52 51 55 52 55 52 55 55 55 55 52 55 55 52 55 55	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
38490 38500 38	- 15 590	25 811	2 27 813	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Number and Size of Establishments in ISIC 371 Iron and Steel Basic Industries and ISIC 38 Metal Products, Machinery and Equipment 1975, 1980 and 1981.

Y

Source: Survey of Industries, BPS, Indonesia Vol. I, 1975, 1980 and 1981.

- 55 -

١

	······		1975-80	1980-81					
	.97	5	198	30	195	1	- Average Annual	Average Annual	
ISIC	No.	%	No.	%	No.	%	Rate of Growth	Rate of Growth	
37100	2,883	-	8,822	-	9,483	-	25.1	7.5	
38111	803	1.3	1,782	1.5	1,492	1.1	17.3	-16.3	
38112	2,537	4.1	4,096	3.4	4,285	3.2	10.0	4.0	
38113	5,040	0.2	5,915	4.9	6,434	4.9	3.2	0.0	
30120	1,255	2.0	2,000	2.1	3,321	2.5	4.7	29.4 6 7	
20130	2,028	12.2	13,240	10.9	14,129	T0.1	12.0	18 5	
38100	2,920	4.0 3 9	6 851	5.6	6 551), 9), 0	23 7	_4 4	
38200	8 833	1հ.հ	12,055	9.9	12 658	ч.у о б	6.4	5.0	
38311	545	0.9	1,029	0.8	1,147	0.9	13.6	11.5	
38312	3.689	6.ó	5,932	4.9	6,229	4.7	10.0	5.0	
38320	4,815	7.8	14,527	12.0	16,142	12.2	24.7	11.1	
38330	1,364	2.2	15,706	12.9	15,095	11.3	63.0	-3.9	
38340	50	0.1	194	0.2	165	0.1	31.2	-14.9	
38411	7,357	12.0	7,034	5.8	7,261	5.5	-0. 9	3.2	
38430	8,727	14.2	11,424	9.4	14,250	10.8	5.5	24.7	
38440	_		5,568	4.6	6,869	5.2	-	23.4	
38450	1,260	2.0	1,614	1.3	1,795	1.4	5.1	11.2	
38460	2,012	3.3	4,284	3.5	5,740	4.3	16.3	34.0	
38490	-		67	0.1	34	-	-	-49.2	
38500	460	0.8	990	0.8	1,023	0.8	16.6	$\frac{3.3}{2}$	
38	61,546	100.0	121,479	100.0	132,445	100.0	14.6	9.0	

Employment in ISIC 371 Iron and Steel Basic Industries and ISIC 38, Metal Products, Machinery and Equipment 1975, 1980 and 1981.

j

t

Source: Survey of Industries, BPS, Indonesia Vol. I, 1975, 1980, 1/81.
- 56 -

	1975		198	80	1981		
ISIC	Mill. Rp.	%	Mill. Rp.	%	Mill. Rp.	%	
371	1,097.0	-	66,996.9		79,487.9		
38111	145.7	0.2	1,660.3	0.5	1,178.9	0.2	
38112	1,127.8	1.8	6,453.6	1.8	9,660.8	1.8	
38113	1,087.7	1.7	2,672.0	0.8	3,919.0	0.7	
38120	639.3	0.7	1,882.7	0.5	3,528.6	0.7	
38130	11,410.0	17.9	44,898.9	12.6	47,080.3	8.8	
38140	1,878.2	3.0	11,902.7	3.3	15,557.9	2.9	
38190	800.3	1.3	4,681.3	1.3	4,776.3	0.9	
38200	8,034.4	12.6	33,418.0	9.3	42,858.2	8.1	
38311	860.9	1.4	3,608.6	1.0	5,939.0	1.1	
38312	2,721.5	4.3	10,682.3	3.0	12,134.8	2.3	
38320	10,476.7	16.4	39,330.0	11.0	46,061.5	8.7	
38330	4,200.1	6.6	58,776.0	16.4	61,398.2	11.5	
38340	17.3	0.1	171.2	0.1	409.2	0.1	
38411	6,199.3	9.7	20,197.6	5.6	26,864.8	5.0	
38430	12,204.3	19.2	77,386.8	21.6	101,277.6	19.0	
38440	55.2	0.1	30,595.4	8.6	137,426.7	25.8	
38450	977.5	1.5	1,068.5	0.3	1,274.3	0.2	
38460	893.2	1.4	6,853.3	1.9	10,993.6	2.1	
38490	-	-	46.0	0.1	35.7	-	
38500	177.6	0.3	1,440.9	0.4	724.3	<u> 0 1 </u>	
38	63,701.9	100.0	357,726.1	100.0	533,099.7	100.0	

Value Added in ISIC 371 Iron and Steel Basic Industry and ISIC 38 Metal Products, Machinery and Equipment 1975, 1980 and 1981.

•.

مر

. . .

3

•

•

•

Source: Survey of Industries, BPS, Indonesia, Vol. I, 1975, 1980, 1981.

Gross Output Mill. Rp.									
ISIC	1975	1980	1981						
371	5,027.3	237,707.1	249.405.9						
38111	257.7	2,825.2	2,578.1						
38112	7,692.3	42,355.5	47,272.5						
38113	4,041.0	9,679.9	12,878.9						
38120	1,245.5	5,446.7	9,416.4						
38130	44,493.3	180,979.9	209,553.6						
38140	5,839.1	30,631.2	42,889.0						
38190	2,223.0	13,401.2	14,117.6						
38200	20,137.7	81,291.0	110,433.5						
38311	1,905.0	9,707.0	13,451.4						
38312	11,900.0	39,204.9	43,215.4						
38320	27,862.9	191,951.3	230,177.7						
38330	11,805.4	145,727.7	155,466.2						
38340	20.5	553.5	621.5						
38411	12,691.6	34,767.5	43,547.4						
38430	20,476.0	196,627.5	242,479.5						
38440	304.0	147,03 7 ,0	284,674.7						
38450	1,843.4	3,574.4	4,016.3						
38460	2,076.2	20,692.0	29,923.0						
38490	-	75.1	110.8						
<u>38500</u>	461.9	2.816.1	2.016.9						
38	177,276.4	1,159,344.6	1,498,885.4						

Gross Output for ISIC 371 Iron and Steel Basic Industry and ISIC 38 Metal Products, Machinery and Equipment 1975, 1980 and 1981

Source: Survey of Industries, BPS, Indonesia Vol.I, 1975, 1980 and 1981.

5

••

1

ISIC	1975	1980	1981
371	21.8	28.2	31.8
38111 38112 38113 38120 33130 38140 38190 38200 38311 38312 38320 38320 38320 38340 38411 38430 38411 38450 38450 38460	56.6 14.7 26.9 35.2 25.6 32.2 36.0 40.0 45.2 22.9 37.6 35.6 84.3 48.8 59.6 - 53.0 43.0	58.8 15.2 27.6 34.6 24.8 38.8 34.9 41.1 37.2 27.2 20.5 40.3 30.9 58.1 39.4 20.8 29.9 33.2 40.2	45.7 20.4 30.4 37.5 22.5 36.3 33.8 38.8 44.2 28.1 20.0 39.5 65.8 61.7 41.8 48.3 31.7 36.7
38490 38500	38.h	51.2	32.2 35.1
38	35.9	30.9	35.6

Ratio of Value Added to Gross Output, 1975, 1980 and 1981

Source: Survey of Industries, BPS, Indonesia, 1975, 1980 and 1981.

j.

ι.

- · · · · ·

ISIC	Tot (We	al Employmen ges and Sala (million Rp.)	t Costs ries)	Shar and in Va	e of W Salar lue Ad	ages ies ded
	1975	1980	1981	1975	1980	1981
371	356	8,932.0	9,190.5	32.4	13.3	11.6
38111	63.7	515.6	649.1	43.8	31.0	55.1
38112	431.0	1,925,7	2,424.6	38.2	29.8	25.1
38113	581.5	1,572.7	2,367.6	53.5	58.9	60.4
38120	178.9	765.1	1,376.8	40.8	40.6	39.0
38130	2,774.9	10,059.8	12,151.1	24.3	22.4	25.8
38140	1,154.4	4,541.0	7,120.4	61.4	38.2	45.8
38190	257.2	1,917.6	1,993.0	32.1	41.0	41.7
38200	1,899.4	8,101.4	10,172.6	23.6	24.2	23.7
38311	176.8	651 .1	947.5	20.5	18.0	16.0
38312	828.6	4,527.5	5,934.3	30.4	42.4	48.9
38320	1,456.5	9,062.1	10,765.4	13.9	23.0	23.4
38330	400.4	9,998.0	11,563.2	9.5	17.0	18.8
38340	10.1	79.3	92.0	58.4	46.3	22.5
38411	3,169.9	5,917.8	7,206.2	51.1	29.3	26.8
38430	3,344.0	13,446.7	17,723.5	27.4	17.4	17.5
38440	-	5,097.8	8,479.5	_	16.7	6.2
38450	26 ¹ .1	636.4	601.2	27.0	59.6	47.2
38460	511.7	2,352.6	4,403.3	57.3	34.3	40.1
38490	-	23.8	21.3	_	51.9	59.6
38500	69.8	368.1	405.4	39.3	25.5	56.0
38	17,572.9	81,560.1	106,398.0	27.6	22.8	20.0
	13	-				

Wages a	and Sa	larie	s and	Labour	Intensity	ISIC	371	Iron	and	Steel
Ind	lustry	and	ISIC	38 Metal	Products.	, Mach	iner	y and	1	
		E	quipm	ent 1975	5, 1980 and	1 1981				

(values in million Rp.)

Source: Survey of Industries, BPS, Indonesia, 1975, 1980 and 1981.

IJ

į

÷

4

	Value Added per Ferson Engaged (000 Rp.)			Value Added pma Person Engaged (Index total ISIC 38=100)			<u>00)</u>
	1975	1980	1981	19,5	1980	1981	
371	380	7,594	8,382	-	-	-	
3 8111	181	932	790	18	32	20	
38112	444	1,598	2,254	43	54	56	
38113	216	452	609	21	15	15	
38120	350	734	1,063	34	25	26	
38130	1,519	3,391	3,332	147	115	83	
38140	641	1,802	1,988	62	61	49	
38190	339	683	729	33	23	18	
38200	910	2,772	3,386	88	94	84	
38311	1,580	3,507	5,178	153	119	129	
38312	738	1,801	1,948	71	61	43	
38320	2,176	2,707	2,854	210	92	71	
38330	3,079	3,742	4,067	298	127	101	
38340	345	882	2,480	33	30	62	
38411	843	2,871	3,700	81	98	9 2	
38430	1,398	6,774	7,107	135	230	177	
38440	-	5,495	006, 20	-	187	497	
38450	776	662	710	75	23	18	
38460	կկկ	1,600	1,915	43	54	48	
38490	-	686	1,050		23	26	
38500	<u>386</u>	1,455	708	_ 37_	<u>49</u>	<u>18</u>	
38	1,035	2,945	4,025	100	100	100	

Labour Productivity in ISIC 371 Iron and Steel Basic Industry and ISIC 38 Metal Products, Machinery and Equipment, 1975, 1980 and 1981

Source: Survey of Industries, BPS, Indonesia, Vol. , 1975, 1980 and 1981.

1)

:

١

ISIC	Total Employment Cost Annually	Employment Cost Pe (000 Rp	r Person Engaged .)
	(million Rp.)	Annually (000)	Per Month
371	_		
38111	649	435	36.2
38112	2,425	566	47.2
38113	2,368	368	30.7
38120	1,377	415	34.6
38130	12,151	860	71.7
38140	7,120	910	75.8
38190	1,993	304	25.3
38200	10,173	804	67.0
38311	947	826	68.8
38312	5,934	953	79.4
38320	10,765	667	55.6
38330	11,563	766	63.8
38340	92	558	46.5
38411	7,206	992	82.7
38730	17,724	1,244	103.6
38440	8,479	1,234	102.9
38450	601	335	27.9
38460	4,403	767	63.9
38490	21	625	52.1
38500	405	396	33.0
38	106,397	803	66.9

Employment Cost: Total and Per Person Engaged, 1981

Source: Survey of Manufacturing Industries, BPS, Indonesia, 1981.

- 61 -

4

:

Geographical distribution of ISIC 371, iron and steel basic industries, 1981

	Number of Establishment	r s E	ersons ngaged	Avg. Plant Size	Gross Output	Value Added
Area	<u>No.</u>	No.	X	Persons En- gaged per Enterprise	·	
1. Jakarta	10	2,688	28.3	269		
2. Java	8	6,241	65.8	780		
-Yogyakarta	0	0	0	-		
-East Java	4	1,699	17.9	425		
-West Java	1	4,141	43.7	4,141		
-Central Java	3	401	4.2	134		
3. Sumatra	3	479	5.1	160		
4. Sulawesi	1	75	0.8	75		
5. Kalimantan	0	0	0	-		
6. Others	0	0	0	-		
Total	<u></u>					
(Indonesia)	22	9,483	100	431	n.a	. n.a

Source: BPS, unpublished figures.

11

ţ

١

Geographical distribution of ISIC 381, metal products, 1981

	Number of Establishmen	nts En	rsons gaged	Avg. Plant Size	Gross Output	Value Added
Area	No.	No.	ž	Persons En- gaged per Enterprise		
1. Jakarta	125	17,798	41.2	142		
2. Java	179	23,227	53.7	130		
-Yogyakarta	8	357	0.8	45		
-East Java	93	12,699	29.4	137		
-West Java	45	7,212	16.7	160		
-Central Java	33	2,959	6.8	90		
3. Sumatra	34	1,594	3.7	47		
4. Sulawesi	8	213	0.5	27		
5. Kalimantan	1	85	0.2	85		
6. Others	8	324	0.8	41		
Total (Indonesia)	355	43,241 (44,037)	100	5,405	n.a	. n.e.

Source: BPS, unpublished figures.

ÿ

÷

į

1

Geographical distribution of ISIC 382, non-electrical machinery, 1981

	Number of	F	ersons	Avg. Plant	Gross Output	Value
	Establishment	s Ei	ngaged	Size		Added
	No.	No.	z	Persons En-		
Area				gaged per Enterprise		
1. Jakarta	20	2,493	19.7	125		
2. Java	95	9,381	74.1	99		
-Yogyakarta	1	655	5.2	655		
-East Java	30	4,744	37.5	158		
-West Java	34	2,420	19.1	71		
-Central Java	30	1,562	12.3	52		
3. Sumatra	13	784	6.2	60		
4. Sulawesi	0	0	-	-		
5. Kalimantan	0	0	-	-		
6. Others	0	0	-	-		
Total						
(Indonesia)	123	12,658	100	99	n.a	. n.a.

Source: BPS, unpublished figures.

IJ

ì

• - • •

1

	Number of Establishme	f <u>P</u> ents E	ersons ngaged	Avg. Plant Size	Gross Output	Value Added
Area	<u>No.</u>	No.	ž	Persons En- gaged per Enterprise	-	
1. Jakarta	55	23,712	61.1	431		
2. Java	54	13,564	35.0	251		
-Yogyakarta	1	239	0.6	239		
-East Java	10	2,845	7.3	285		
-West Java	34	9,433	24.3	277		
-Central Java	9	1,047	2.7	116		
3. Sumatra	6	1,502	3.9	250		
4. Sulawesi	0	0	-	-		
5. Kalimantan	0	0	-	-		
6. Others	0	0	-	-		
Total						
(Indonesia)	115	38,778	100	337	n.a	. n.

Geographical distribution of ISIC 383, electrical machinery, 1981

Source: BPS, unpublished figures.

1

I

1

Geographical distribution of ISIC 384, transport equipment, 1981

	Number of	Pe Fr	rsons	Avg. Plant Size	Gross Output	Value Added
Area	No.	No.	X X	Persons En- gaged per Enterprise		
1 Takarta	58	22,318	62.1	385		
1. Jakorca 7. Tava	93	11,174	31.1	120		
_Vocuskarts	1	151	4.2	151		
-Togyakarta	41	4.885	13.6	119		
-East Java -Wost Isva	28	3,484	9.7	124		
-Central Java	23	2,654	7.4	115		
3 Sumatra	18	1,122	3.1	62		
/ Sulavesi	5	504	1.4	101		
5 Kalimantan	7	189	5.3	27		
6. Others	11	642	1.8	58		
Total (Indonesia)	192 (188)	35,949	100	188	n.a	n.a.

Source: BPS, unpublished figures.

---- -

ÿ

Geographical distribution of ISIC 385, scientific, photographic equipment, 1981

· · · · · · · · · · · · · · · · · · ·	Number of	P	ersons	Avg. Plant	Gross	Value
Area	<u>Establishments</u> No.	No.	z Z	Persons En- gaged per Enterprise	στρατ	Added
1. Jakarta	2	92	9.0	46		
2. Java	24	918	89.7	38		
-Yogyakarta	10	263	25.7	26		
-East Java	6	326	31.9	54		
-West Java	4	230	22.5	58		
-Central Java	4	99	9.7	25		
3. Sumatra	1	13	1.3	13		
4. Sulawesi	0	0	-	-		
5. Kalimantan	Ō	0	-	-		
6. Others	0	0	-	-		
Total						
(Indonesia)	27	1,023	100	38	n.a	. n.a.

Source: BPS, unpublished figures.

1

ţ

1

1

Domestic Production of Electric Machinery and Equipment (ISIC 383), in Indonesia, 1980

		Unit	Physical productior	Value (000 Rp.)	Price/Unit (Rp.)
	Plack and white TV	000 units		53 240 486	112 708
1.	Transported circuits		- /87 7/3	51 237 109	105
2.			· 407,745	/9 901 005	369 637
). //		000 units	5/9 3/7	37 329 520	68
4. 5	Flootric coblo		16 / 23	22 031 80/	1 396 323
5.		tons	10,423	22,951,004	1,590,525
7	Radio tana recorders		540	19 994 025	37 026
8	Radios	000 units	990	16 814 324	16 984
0. 0	Refrigerators	000 units	s ,,,0 s 82	13 248 482	161,567
10	All other cables	000 meters	121 853	11 213 519	92
11		000 units	s 653	8,307,066	12.721
12	Air conditioners	000 units	37	7,985,937	215,836
13	Tare recorders	000 units	296	6 479 291	21,889
14	Cassette recorders	000 units	270	5 711 360	239
15	Fanc	000 units	23,070	4 896 054	22 878
16	I amp hulbs 1	000 units	29 171	4 197 489	144
17	Transformers	unite	1 745	3 492 548	2.001 460
19		000 unite	11 457	3,718,541	2,001,400
10.	r rugs BC	tons	1 656	2 \$19 108	1 762 746
20			4 964	2,717,100	1,702,740
20.	IL lamps Malamina shoots		5 4,704 5 603	2,750,550	4 002
21.	Franci wire	tone	817	2,415,044	2 759 542
22.	Souine machines		· 110	2,234,340	18 666
23.	Other dry calls	-	-	1 596 101	
24.	Spockars	000 pieces	- 1367	1 2/1 015	908
25.	Speakers Flootric popole	unite	1 020	1 178 370	1 145 169
20.			1,029	1 1/3 506	4 725 603
27.		000 upita	- 1 020	1 027 385	4,725,005
20.			5 1,727 - 70	1,027,505	40.304
27.	Gas appliances	000 sets	- 20	910 792	40,004
21	Ampillier Tava daaka	000 units	5 20 5 10	911 225	90,707 81 133
27.				600 633	3 230
22.	Switches	000 units	- /.9	672 000	14 000
27.	Speakers Bulb long 2			620 / 97	14,000
24.	buib ramps z		34,772	622,407	2 070 700
26			1 069	600 286	2,970,700
20.	Casselles, recorded		- 21	609,200	10 619
20			- JI	5/6 601	17,010
20.			5 0,732 - 01 755	5/3 977	25
J9.	DVC EM	000 sneets		525 000	262 500
40.			5 <u> </u>	492 211	202,300
41.	luners		- 2 20/	402,011	2,721
42.	Accumulator plates		- 2,294	404,030	1/ / 91
43.		000 sets	- 120	403,370	14,401
44.	Iransceivers	units	- 700	433,000	600,000
43.	Switch board panels		5 /00 	420,000	19
40.	Lamp base		5 22,024	413,114	10 6 / 10
47.			5 J/ - 110	222,290	0,410
48.	Iransformers		5 110 - /	333,404	2,020
49.	Lamp talan		- 4	320,8/8	70,220
50.	rvu AM Decementing lengt		5 4 . ว.เวว	515,000	/0,/00
51.	Decorative lamps	000 units	5 2,000	401,400 114 057	100
52.	Raulo Sender/transmitter	oou units	5 OOC	240,907	441
<u>. رر</u>	ULINETS			13,249,202	
	Total (gross output, ISIC 383)		-	387,144,415	-

4

J

.....

Source: BPS: Survey of Industries, 1980.

t

MICROCOPY RESOLUTION TEST CHART

NATICINAL BUREAU OF STANDARDS STANDARD REFERENCE MATERIAL 10104 (ANSI and ISO TEST CHART No. 2)

Nominal and effective protection in Indonesian manufacturing, 1975

IC code	Sector name	Nominal rate of protection (%)	Effective rate of protection (%)
Expo	rtable Sectors		
5	Dried cassava and tanioca flour	-10.00	-10 75
13	Smoking and remilling of rubber	-11.00	-10.90
18	Farm coconut ail	-10.00	-10.00
19	Palm Oil	-15.00	-4.51
22	Processed tobacco	-11.00	-11.89
26	Farm processed tea	-1.00	-11.89
34	Slaughtering	-4.00	-5.26
43	Fish slating and drying	0.00	-1 19
62	Coconut and cooking oil	-10.00	-11 04
69	Cocoa, chocolate and sugar confectionary	8.00	15.02
73	Other food products, not elsewhere classified	0.00	4.90
80	Batik industries	0.00	-35,19
85	Tanneries and leather finishing	0.00	1 89
88	Sawmills, planing and other wood processing	0.00	13.38
89	Wood and cord products	0.00	+1.20
01		0.00	1.20
Nonc	ompeting Import Sectors		
118	Iron and steel basic industries	13.43	18.14
124	Non-electrical machinery	15.70	18.00
125	Electrical industrial machinery and apparatus	12.46	10.30
129	Other electrical apparatus, supplies and		
	repair	15.55	-4.11
135	Aircraft industry	-4.33	-24.07
136	Professional and scientific instruments and		
	repair	8.92	3.54
137	Photographic and optical goods	19.97	14.37
94	Basic industrial chemicals, excluding		
	fertilizer	15.31	26.03
101	Pesticides and agricultural chemicals	17.26	30,65
102	Other chemical industries	47.55	411.05
Impo	rt-Competing Sectors		
58	Canning and preserving meat	61.91	neg. IVA
59	Diary products	40.00	221.36
60	Fruits and vegetables	68.2!	208.87
61	Canning and preserving fish and other sea food	58.94	neg. IVA
63	Other vegetables and animal oils and fats	13.30	403.22
64	Rice milling, cleaning and polishing	-23.72	0.93
65	Wheat flour and other grain mill products	-15.00	neg. IVA
66	Sugar refinery	-7.44	-9.32
67	Bread and bakery products	16.12	82.69
68	Macaroni noddle and similar products	14.00	623.03
74	Alcoholic beverages	83.84	116.48
75	Soft drinks and carbonated water	56.61	106.08
76	Cigarettes	18.00	4.22
77	Spinning industries	14.00	56.00

10	Sector name	Nominal	Effective
code		rate of	rate of
		protection (%)	protection (%)
78	Weaving industries	41.00	191.59
79	Textile bleaching, prirting, dyeing		
	excl. batik	22.00	42.01
81	Knitting industries	53.00	331.49
82	Made-up textile goods, excluding wearing		
	apparel	58.69	297.63
83	Wearing apparel, excluding footwear	51.00	110.04
84	Carpets, rugs, ropes and others	27.54	101.42
86	Leather products, excluding fcotwear	57.62	152.65
87	Leather footwear	69.40	174.53
90	Furniture and fixtures, excluding those		
	primary metal	15.00	51.90
91	Pulp, paper and cardboard	23.50	45.78
92	Paper products	51.04	87.29
93	Printing, publishing and allied industries	28.12	32.55
96	Paints, varnishes, lacquers	18.13	21.77
97	Drugs and medicines	73.88	150.49
98	Soap and cleaning preparations	48.67	neg. IVA
99	Cosmetics	77.55	315.21
100	Matches	34.23	77.17
109	Other petroleum and coal products	55.69	neg. IVA
110	Tyres and tubes	107.87	4,314.91
111	Other rubber products	46.82	406.40
112	Plastics	51.57	533.82
113	Ceramics	90.90	143.61
114	Glass and glass products	412.15	neg. IVA
115	Structural clay products	15.63	26.08
116	Cement	40.00	63.57
117	Other non-metallic mineral products	45.77	83.20
120	Cutlery, hand tools and general hardware	21.74	36.30
121	Furniture and fixtures, mainly metal	36.81	113.90
122	Structural metal products	15.15	17.47
123	Other fabricated metal products	32.10	66.10
126	Radio, television, communications equipment	67.90	210.01
127	Electrical appliances and housewares	70.00	340.82
128	Accumulators and dry batteries	39.07	116.37
130	Ship and boat building and repair	15.31	44.89
131	Railroad equipment	3.57	1.71
132	Mctor vehicles	80.00	717.73
133	Motorcycles, bicycles and other vehicles	65.00	88.05
138	Jewellery and related articles	40.73	238.21
139	Musical instruments	49.84	122.90
140	Sports and athletic gcods	24.84	31.46
141	Other manufacturing industries	62.14	430,23

Source: World Bank, 1979.

,

ł

2

5

•

Industrial Projects Cited in 16 August 1982 State Address

No.	Category/project/factory	Loca- tion	Sta- tus	Products	Сара	city	Target completion date	Est. cost (\$m)	Remarks
1.	BASIC CHEMICALS: 27 pro	jects, tot	al inv	vestment \$9,198 m	n.				
1.	Fertilizer distribution	Multiple	New	Fertilizer marketing		-	n.a.	357	Capital cost involves purchase of bulk carriers and railway rolling stock, construction of packaging plants and ware- houses. Project underway.
2.	Kaltim Fertilizer I	E. Kal	New	Urea Amonia	570,000 165,000	tons/yr tons/yr	1982	367	Trial operation has commenced.
3. 4.	ASEAN Fertilizer Iskandar Muda Ferti- lizer	Aceh Aceh	New New	Urea Urea Amonia	570,000 1,725 1,000	tons/yr tons/da tons/da	1983 у 1984 у	313 385	Under construction. Site being prepared.
5.	PT Petrokimia	Gresik	Exp.	TSP	500,000	tons/yr	1983	117	(Includes harbour and water
6.	PT Petrokimia	Gresik	Exp.	Phosphoric and sulf. acid, gypsum	1.5m.	tons/yr	n.a.	256	(Both plants under (construction.
7.	Kaltim Fercilizer II	E. Kal.	New	Urea Amonia	570,000 165,000	tons/yr tons/yr	1984	375	Represents first phase expansion of Kaltim I. Now under construction.
8,	PN Leces Pulp and Paper	E. Java	Exp.	Writing/ priting paper	260	tons/da	y 1984	220	(Represents 3rd and 4th phase (expansion of Leces. Raw material: No (bagasse. Phase III already (under construction.
9.	PN Leces Pulp and Paper	E.Java	Exp.	Newsprint	90,000	tons/yr	1985	220	

No.	Category/project/factory	Loca- tion	Sta- tus	Products	Capacity	Target completion date	Est. cost (\$m)	Remarks
10.	Cilacap Pulp and Paper	W.Java	New	Kraft paper/ cement bags	90,000 tons/y	r 1985	200	
11.	Integrated forest- based industry	E.Kal.	New	Plywood/timber Pulp	prods. 203,500m 165,000 tons/y	³ /yr 1985 r	650	
12.	Olefin Centre ^{a/}	Aceh	New	Ethane Ethylene Caustic soda Other	450,000 tons/y 340,000 tons/y 251,000 tons/y 540,000 tons/y	r 1988 r r r	2,800	Exxon has tentatively agreed to major equity investment in ethane extraction-phase (est. \$300 m.) Japanese and local partners envisaged for VCM, caustic soda, and EDC phase. Preliminary studies still in course.
13.	Aromatics Centre	S.Sum.	New	Benzone PTA Cyclohexana Other	256,000 tons/y 225,000 tons/y 180,000 tons/y 66,000 tons/y	r 1986 r r r	1,785	Main constrators: Thyssen/Pullman Kellog; design work underway. N I
14.	. PT Semen Padang	W.Sum	Exp.	Cement	600,000 tons/y	r 1983	138	Unit IIIA under construction.
15.	. PT Semen Padang	W.Sum	Exp.	Cement	600,000 tons/y	r 1984	132	Unit IIIB under construction.
16.	. PT Semen Tonasa	S.Si.	Exp.	Cement	590,000 tons/y	r 1984	144	Under construction.
17.	. PT Semen Cibinong	W.Java	Exp.	Cement	800,000 tons/y	r 1984	120	Site being prepared.
18.	. Kupang Cement	NTT	New	Cement	120,000 tons/;	r 1984	35	Described as 'mini' plant; under Construction.
19.	. Madura Cement	Madura	New	Cement	2m. tons/y	r n.a.	438	č
20.	. PT Semen Baturaja	S.Sum	Exp.	Cement	500,000 tons/y	r n.a.	130	

.

No.	Category/project/facto	bry Loca- tion	Sta- tus	Products	Capacity	Target completion date	Est. cost (\$m)	Remarks	
21.	Industrial Rubber	Cilegon	New	Industrial rubbe products, heavy tyres	er n.a. duty	n.a.	160	License issued.	
22.	Soda ash project	Gresik	New	Soda ash	200,000 tons/y	r n.a.	120		
23.	Industrial salt proj.	NTT	New	Industrial salt	n.a.	n.a.	90		
24.	Polyester Factory ^{a/}	Gresik	New	Polyester	n.a.	n.a.	(Index (enstruction	
25.	Polyester Factory <mark>a</mark> /	Cilegon	New	Polyester	n.a.	n.a.	(braer construction.	
26.	Ammonium nitrate factory	W.Java	New	Amm. nitrate for explosives	n.a.	n.a.	56		I
27.	Dissolving pulp proj.	S.Sum	New	Rayon fibre	n.a.	n.a.	400		73 -
11.	BASIC METALS: 18 pro	ojects, total	inves	tment \$2,226m.					
28. 29.	Pellet factory <u>b</u> / Slab factory and Hot Strip Mill <u>b</u> /	Cilegon Cilegon	n.a. n.a.	Iron pellets Slab and hot sti	3m. tons/y: rip n.a.	r 1984	130 n.a.	Under construction ^{b/} . Project completed ^{b/} .	(Annex J
30.	Cold Sheet Mill	Cilegon	n.a.	Cold rolled sheet	500,000 tons/y	r 1983	490		[abie 2
31.	Tin plate factory	Cilegon	n.a.	Tin plate 60-	-100,000 tons/y	r 1985	57		<u>9</u> 0 cc
32.	Seamless pipe factory	n.a.	new	Seamless pipe	150,000 tons/y	r 1985	186		ontii
33.	Diesel/gasoline engine factory	e Java	New	Diesel/gasoline engines	200,000 units	1984	448	License issued.	nued)
34.	Shipyards Ji Ui	ct/S'baya P/Palbg	New	(New ships (Repairs	21,000 BRT 540,000 BRT	1984	50	Construction underway.	

/.

....

No.	Category/project/factory	Loca- tion	Sta- tus	Products	Capacit	у	Target completion date	Est. cost (\$m)	kemarks
35.	Casting prods. factory	Cilegon	n.a.	Casting products	48,000 t	ons/yr	1984	91	
36.	Forging prods. factory	Cilegon	n.a.	Parts, chassis, transmissions	31,000 t	ons/yr	1984	75	
37.	Machine tool factory	Cilegon	n.a.	Lathes	650 u	nits	1984	4	License issued.
38.	Heavy equipment fact. ^{a/}	Java	New	Wheel loaders Crawler tractors Excavators	2,980 u 700 u 100 u	nits nits nits	n.a. ((147	
39.	Railway carriage fact.	Madiun	New	Freight cars Passenger cars	200 u 42 u	nits nits	1984	96	Under construction.
40.	Power train factory J	kt. or Sby.	New	Suspension/ steering systems for motor vehicl	150,000 u es	nits	1985	38	
41.	Motorcycle engine J factory	kt. or Sby.	New	Motorcycle engines	200,000 u	nits	1985	17	
42.	General Machinery J	kt. or Sby.	New	Sugar, palmoil mill and crumb rubber	465,000 t	ons/yr	1985	235	
43.	Copper cathode fact.	0.1.	New	Copper cathodes	40,000 t	ons/yr	1985	130	
44.	Heavy elect. Jl machinery	kt. or Sby	New	Heavy elect. eqpt.	n.a.		1985	28	
45.	Die and Mould factory	n.a.	New	Dies and moulds	n.a.		1985	5	

A

. 🥊

No.	Category/project/factor	Loca- ^y tion	Sta- tus	Production	Capacity	Target completion date	Est. cost (\$m)	Remarks	
III	LIGHT MANUFACTUIRNG:	7 projects,	total	investment \$369	m •				
46.	PT Sandang I	W.Java	Exp.	(Weaving yarn (and improve-	n.a.	1983	74	Expansion to 90,000 spinifes.	
47.	Pï Sandang II	E. Java	Exp.	(ment in (quality	n.a.	1983	99	Expansion to 120,000 spindles.	
48.	PT Primissima	Yogya	Exp.	(n.a.	1982	50	Expansion to 60,000 spindles	
49.	Pinda Sandang	C.Java	Exp.	Ċ	n.a.	1983	25	Expansion to 30,000 spindles.	
50.	PN Garam	Madura	Exp.	Salt	300,000 tons/y	r 1986	25	Rehabilitation (production includes present output). Contract signed.	ł
51.	Science-based Indust. Park	Jkt./Bdg.	New	Electronics	n.a.	1985	19		- 75 -
52.	Electronic Component Plt.	Bdg.	New	Electronics components	n.a.	1985	75		
IV.	PERTAMINA REFINERY AND	PETROCHEMI	CAL PL	ANNED PROJECTS N	OT INCLUDED ABOV	<u>Æ</u> : 6 proje	ects \$	6,387m.	(An
1.	Cilacap Refinery	Cilacap	Ехр.	Refinery produc	ts 215 MBSD	1983 1	178,	Pertamina share \$223m, main con- tractor Fluor Eastern Inc. Construction 31% completed.	nex Tabl
2.	Balikpapan Refinery	E.Kal	Exp.	Refinery produc	ts 228 MBSD	1983 1	,509	Pertamina share \$385m, main con- tractor Bechtel Internat1. Construction 13% completed.	e 20 cont
3.	Dunai Hydrocracker	Riau	New	Refinery produc	ts 82 MBSD	1983]	,521	Pertamina share \$370m, main con- tractor Tecnicas-Reunidas/ Centurion. Construction 7% completed.	tinued)

No.	Category/project/factory	Loca- tion	Sta- tus	Products	Capacity	Target completion date	Est. cost (\$m)	Remarks
4.	Methanol Project	E.Kal	New	Methanol	330,000 tons/yr	1985	341	Land clearing almost completed.
5.	Aron LNG Refirery	Aceh	Exp.	LNG	3.3m. tons/yr	1984	842	Main contractor Choyoda Chem. Eng. Construction 2% completed.
6.	Badak LNG Refinery	E.Kal	Exp.	LNG	3.3m. tons/yr	1983	996	Main contractor Bechtel Internatl. Construction 28% completed.

Source: Ministry of Industry, 'Long Range Development Plan of Indonesia', Jakarta, 14 October 1982; and Pertamina.

Notes: a/ Planned as joint venture.

b/ Not clear whether these and other projects in Cilegon are to be regarded as extensions of PT Krakatau Steel.

I.

ISIC	Commodity	CCCN	Unit	1982/1983 -Capacity -Production -Demand	1983/1984 -Capacity -Production -Demand	1984/1985 -Capacity -Production -Demand	1985/1986 -Capacity -Production -Demand	1986/1987 -Capacity -Production -Demand
38391	Storage battery and its components industry:							<u></u>
	- Storage battery	85.04.191	Thousand pleces	4,059 3,521 4,700	7,646 6,116 5,097	8,288 6,630 5,525	8,986 7,189 5,990	9,748 7,799 6,499
38392	Battery industry: - Dry battery	84.93.110	Thousand pieces	682,420 576,600 632,345	1,028,871 823,097 685,914	1,115,452 892,362 743,635	1,209,450 967,560 806,300	1,312,263 1,049,810 874,842
	Two-wheel motor vehicle industry:							
38411	- Motor Bicycle	87.09	Thousand pieces	750 577.4 488.5	1,050.0 609.3 529.3	1.170 660.5 574.3	1,170 716.1 622.7	1,470 776.9 675.6
37101	Basic iron and steel ind	lustry:						
	- Pellet		Thousand tons		-	-		-
				704	1,440	1,980	2,340	2,700
	- Sponge iron	73.05.200	Thousand tons	2,000 391 350.5	2,000 800 700	2,000 1,100 900	2,000 1,300 1,100	2,000 1,500 1,300
	- Slab	73.07.930	Thousand tons	1,100 	1,100 200 1,100	1,100 400 1,300	1,100 600 1,545	1,100 900 1,700
	- Ingot billet	73.06.200/ 73.07.100	Thousand lons	1,175 693.5 950	1,175 762 1,271	1,175 800 1,398	1,175 1,000 1,538	1,175 1,100 1,690

Supply and Demand Estimates ISIC (37) and ISIC (38), 1982-1987

I. 77 ١

Annex Table 21

ISIC	Commodity	CCCN	Unit	
37102	Metal foundry engineeri Industry: - Iron smelting	ng 73.01.200	Thousand	tons
	- Steel smelting	73.01.200	Thousand	tons
37103	Steel rolling and milli - Hot coil	ng industry: 73.11.200	Thousand	tons
	- Cold rolled sheet	73.15.900	Thousand	tons
	- Tin plate	73.13.100	Thousand	tons
	- Reinforced steel/ light profile	73.10.932	Thousand	tons
	- Steel wire	73.10.100/ 73.15.300	Thousand	tons
	- Zinc plate	73.10.900	Thousand	tons

.

1982/1983 Capacity	1983/1984 -Capacity	1984/1985 -Capacity Broduction	1985/1986 -Capacity Broduction	1986/1987 -Capacity	
-Demand	-Demand	-Demand	-Demand	-Demand	-
71	71	71	71	71	
93 .5	110	140	170	200	
6.5 2.5 2.7	6.5 2.8 3.4	6.5 3.23 4.25	6.5 3.72 5.3	6.5 4.3 6.62	
1,100 10 865	1,100 241 1,000	1,100 432 1,150	1,100 650 1,530	1,100 970 1,500	
 	- 600	 700	- - 845	850 255 950	- 78 -
- 146.20	- - 174	_ _ 192	130 210	130 78 225	(Ani
1,200 745 743.8	1,200 1,026 976	1,200 1,200 1,100	1,200 1,200 1,243	1,200 1,200 1,405	nex Tabi
416 257.4 257.4	416 300 300	416 340 340	416 384 384	416 416 434	le 21 co
490.8 329.5 329.5	490.8 419 419	490.8 474 474	490.8 490.8 535	490.8 490.8 604	ontinued

.

ļ

ł

C

ISIC	Commodity	CCCN	Unit	
38194	Pipe industry: - Straight welded pipe	73.17.100	Thousand	tons
	- Spiral welded pipe	73.17.900	Thousand	tons
	- Seamless pipe	73.18.100	Thousand	tons
37201	Non iron metal making in - Aluminium ingot	dustry: 76.01.200	Thousand	tons
	- Copper rod	74.03.200	Thousand	tons
	- Copper cathode	74.01.400	Thousand	tons
	- White tin ingot		Thousand	tons
37203	Non iron metal rolling i - Aluminium sheet	ndustry: 76.03.100	Thousand	tons

1982/1983	1983/1984	1984/1985	1985/1986	1986/1987	
Capacity	-Capacity	-Capacity	-Capacity	-Capacity	
Production	-Production	-Production	-Froduction	-Production	l –
Demand	-Demand	-Demand	-Demand	-Demand	<u> </u>
375	375	375	375	375	
237	345	375	375	375	
300	345	396	448	506	
60	60	60	60	60	
46.10	50	60	60	60	
46.19	50	85	115	140	
-	-	-	-	160	
-	-	-	-	48	
113.75	130	150	175	200	
					1
225	225	225	225	225	9
12	115	175	225	225	i -
20.4	24	27.6	31.7	36.5	
36	36	36	36	36	
18.5	26	30	34.5	36	\sim
20	26	30	34.5	40	An
-	-	-	-	-	nex
-	-	-	-	-	н
44.6	49.5	51.5	59	65	abj
33	33	33	33	33	ė
33	33	33	33	33	21
0.43	0.5	0.575	0.66	0.76	8
	01	01	21	21	nti
21	21	21	21	21	лц
10.5	21	21	21	22	led
T9.2	22	25	29	22	<u> </u>

ISIC	Commodity	CCCN	Unit	1982/1983 -Capacity -Production -Demand
37204	Non iron metal extrusio - Aluminium extrusion	n industry: 76.02.900	Thousand tons	17 12.3 15.7
38212	Combustion engineering – Diesel stationer	industry: 84.06	Unit	88,664 70,455 170,000
38220	Agricultural machinery a - Mini tractor	and accessor 87.01.921	ies industry: Unit	200 116 2,000
	- Hand tractor	87.01.942	Unit	2,150 1,271 5,500
	- Big tractor	87.0.122	Unit	- 1,350
	- Tresher	87.02.530	Unit	2,500 1,274 825
	- Huller	84.29.119	Unit	6,100 1,654 33,000
	- Polisher	84.25.400	Unit	3,520 338 33,000

1983/1984	1984/1985	1985/1986	1986/19	87
-Capacity	-Capacity	-Capacity	-Capac	lty
-Production	•Production	-Production	-Produc	tion
-Demand	Demand	-Demand	-Demano	<u>1</u>
17	17	17	17	
16.5	17	17	17	
16.8	21	23	26	
88.664	88.664	88.664	88 664	
70,455	67.160	69,220	80,640	
192,000	210.000	222,000	233,000	
•		,	,	
5 000	6 000	7 000	C 250	
3,000	4,500	6,000	8 250	
5,000	10,000	13,000	13,000	1
			13,000	, œ
5,000	10,000	15,000	18,790	õ
3,000	8,000	13,000	18,750	I
5,000	10,000	14,000	19,000	
-	-	-	2,000	\sim
-	-	-	-	A
1,500	1,650	1,800	1,900	De.
2,500	2,500	2,500	2,500	,, 13
1,279	1,400	1,550	1,700	a da
1,025	1,025	1,416	1,670	le
6.100	6.100	6.100	6.100	N
1.687	1.800	1,900	2.050	~
34,000	39,000	46.000	54,000	ğ
2 5 2 2	2,500	- ,		ıti
3,520	3,520	3,520	3,520	nu
338	370	410	450	led
34.000	39.000	46.000	54.000	

•

ISIC	Commodity	CCCN	Unit	1982/1983 -Capacity -Production -Demand
	- Rice milling unit	84.29.190	Unit	1,570 372 1,000
	- Rice Milling plant		Unit	8,000 372 5,000
	 Irigation water pump 	84.10.300	Unit	7,200 2,110 4,600
38231	Metal processing/working	machinerv	industry:	
	- Lathe machine	84.45.200	Unit	300 27 2,500
	- Bench drinlling machine	84.45.400	Unit	1,000 71 4,900
	– Sawing machine	84.45.500	Unit	4,000 120 6,900
	- Milling machine	84.45.610	Unit	250 25 500
	- Bending machine		Unit	100 25 600
38292	Heavy equipment industry - Road/vibro roller	: 84.09	Unit	1,140 404 200
	- Stone crusher	84.09	Unit	590 18 100

-	1983/1984	1984/1985	1985/1986	1986/1987	
	-Capacity	-Capacity	-Capacity	-Capacity	
	-Production	-Production	-Production	-Productio	n
	-Demand	-Demand	-Demand	-Demand	
	1,570	1,570	1,570	1,570	
	800	1,000	1,200	1,500	
	1,300	1,500	1,700	1,900	
	8,000	8,000	8,000	8,000	
	372	400	430	460	
	6,000	7,200	8,700	10,400	
	7,200	7,200	7,200	7,200	
	2,110	2,230	2,450	2,700	
	5,300	6,600	8,000	9,500	
	300	300	300	300	
	327	327	327	327	۱ ~
	3,010	3,360	3,780	4,200	31
	1,000	1,000	1,000	1,000	I.
	100	120	140	160	
	5,500	5,750	5,875	6,000	
	4,000	4,000	4,000	4,000	Â
	120	120	120	120	ıne
	8,400	8,800	8,960	9,120	×
	250	250	250	250	Tal
	25	25	25	25	ble
	560	600	650	700	N
	100	100	100	100	
	25	50	100	100	ğ
	650	700	750	800	itin
	1,140	1,140	1,140	1,140	Ine
	404	424	445	467	Ľ
	500	525	551	579	
	590	590	590	590	
	18	20	22	25	
	100	110	1?2	134	

Ż

ISIC	Commodity	CCCN	Unit	1982/1983 Capacity Production Demand
	- Concrete mixer	84.09	Unit	2,000 1,200 1,300
	- Compactor plate	84.09	Unit	500 400 450
	- Wheel loader	84.09	Unit	335 270
	- Motor grader	84.09	Unit	265 120
	- Excavator	84.09	Unit	450
	- Buldozer	84.09	Unit	1,240 1,360
38312	Electric motor industry: - Electromotor	85.01	Piece	16,830 1,470 456.265
38313	Transformer industry: - Transformer	85.01	Piece	9,350 4,964 5,660
38314	Electric panel and switc - Electric panel	h gear ind 85.01	ustry: Piece	15,600 10,656 64,166

1983/1984	1984/1985	1985/1986	1986/1987	
-Capacity	-Capacity	-Capacity	-Capacity	
-Production	-Production	-Production	-Production	
-Demand	-Demand	-Demand	-Demand	
2.000	2.000	2.000	2.000	
1,200	1,300	1,430	1,570	
1,500	1,650	1,800	1,900	
1,500	1,050	1,000	1,,,00	
500	500	500	500	
400	440	480	520	
500	550	600	660	
335	335	335	335	
-	134	201	300	
300	335	360	400	
265	265	265	2ó5	
-	106	159	239	
150	188	234	290	1
450	450	450	450	82
-	180	279	405	1
490	579	683	806	·
1,240	1,240	1,240	1,240	
	496	744	1,116	~
2,000	2,140	2,280	2,420	A
				ney
17,000	18,700	20,500	22,627	, H
5,530	5,710	5,990	6,290	a l
501,670	551,830	607,020	667,720	Ĕ
				N
9.350	10,285	11.310	12,440	2
5,450	5,990	6.590	7,250	ğ
6.620	7.280	8.010	8,820	lt i
,	,	.,	-,	נים.
17,160	18.876	20.750	22.825	r, L
11.840	12,430	13,050	13,700	
70 580	77 640	85 400	93 940	
10,000	77,040	0,400	73,740	

ISIC	Commodity	CCCN	Unit		
38316	Other electrical machine	ry industry	:		
	- Generator and generator set	85.01	Piece		
38321	Radio, TV, entertainment - Colour TV set	electronic 85.15.219	equipment and Set		
	– Black & white TV set	85.15.221	Set		
	– Radio/radio cassette		Set		
	- Cassette record	92.11.931	Set		
	- Amplifier	92.11.990	Unit		
	- Cassette Deck	85.14.130	Set		
	- Loudspeaker	85.14.120	Unit		
	— Car radio	85.15.319	Set		
1982/198	1983/1984	1984/1985	1985/1986	1986/198	7
-------------	----------------	-------------	-------------	-----------	--------
-Capacity	-Capacity	-Capacity	-Capacity	Capacity	
-Producti	on -Production	-Production	-Production	-Producti	on
-Demand	-Demand	-Demand	-Demand	-Demand	
62,520	62,575	68,830	75,710	83,280	
26,357	29,080	31,990	35,190	38,610	
50,383	55,420	60,960	67,050	73,750	
accessories	industry:				
700,000	700,000	700,000	700,000	700,000	
225,000	275,000	315,000	342,000	371,000	
300,000	313,000	340,000	360,000	380,000	
1,400,000	1,400,000	1,400,000	1,400,000	1,400,000	
425,000	468,000	514,000	566,000	622,000	
650,000	690,000	732,000	775,000	822,000	
4,950,000	4,950,000	4,950,000	4,950,000	4,950,000	
1,500,000	1,750,000	1,925,000	2,115,000	2,326,000	۱ ۳
1,750,000	1,855,000	1,966,00	2,084,000	2,189,000	ü
781,500	781,500	781,500	781,500	781,500	1
355,900	392,000	430,000	474,000	521,000	
390,000	415,000	440,000	465,000	493,000	\sim
143,000	143,000	143,000	143,000	143,000	Anı
12,600	13,900	15,300	16,800	18,500	າຍ
14,000	14,900	15,700	16,700	17,000	
41,000	41,000	41,000	41,000	41,000	a b]
22,100	24,500	27,000	29,500	32,500	e
24,000	25,500	27,000	28,500	30,000	13
2,368,000	2,368,000	2,368,000	2,368,000	2,368,000	ŝ
1,035,000	1,100,000	1,163,000	1,233,000	1,307,000	ont
1,115,000	1,182,000	1,253,000	1,328,000	1,408,000	in
126,000	126,000	126,000	126,000	126,000	ued
69,000	73,000	77,500	82,000	87,000	- C
75,000	79,500	84,500	89,500	95,000	

ISIC	Commodity	CCCN	Unit	1982/1983 Capacity Production Demand
38322	Communication equipment	industry:		
	– Telephone set ^{e/}	85.13	Unit	40,300 32,000 90,000
	- Radio mobile <u>a</u> / telephone	85.15.400	System (base/ mobile)	20/4,000 10/2,000 40/8,000
	- Rural telephone ^{4/}	85.13	System (base/ subs)	30/1,500 15/750 50/2,500
	- Central telephone (Analog)	85.13.113	Line Unit	40,000 22,000 45,000
	- Small earth satellite	-	Unit	130 50 50
	- High frequency - Single side band	-	Unit	3,500 950 2,250
	 Very high frequency/ Ultra high frequency Single channel 	-	Unit	5,500 1,400 2,000
	- TV relay station	-	Unit	600 50 100
	– Radio Broadcast	-	Unit	100 10

g

,

I

1

100

r

1983/1984	1984/1985	1985/1986	1986/1987	
-Capacity	-Capacity	-Capacity	-Capacity	
-Production	-Production	-Production	-Production	
-Demand	-Demand	-Demand	-Demand	
				-
40,300	46,300	53,200	61,200	
40,000	46,000	53,000	61,000	
100,000	115,000	132,000	152,000	
20/4,000	23/4,600	26/5,200	30/6,000	
15/3,000	20/4.000	23/4,600	26/5.200	
50/10,000	60/12,000	70/14,000	80/16,000	
30/1 500	30/1 500	30/1 500	25/1 750	
20/1,000	23/1,500	26/1 300	30/1,750	
60/3,000	70/3 500	20/1,300	90// 500	
00/3,000	7075,500	80/4,000	9074,000	I.
40,000	40,000	40,000	40,000	8
25,000	29,000	33,000	38,000	
50,000	57,000	66,000	76,000	•
130	130	130	130	
50	60	65	70	
50	60	65	70	
3 500	3 500	3 500	2 500	
1,050	1,150	1 250	5,500	_
2,500	1,150	1,250	1,400	Æ
2,500	5,000	5,500	4,000	B
5,500	5,500	5,500	5,500	×
1,550	1,800	1,950	2,200	Ë
2,500	3,000	4,500	5,000	101
600	600	600	600	'n
70	90	100	120	13
120	130	140	150	Q
100	100	110	120	ont
301 301	50	75	100	Ë
100	110	120	120	JUE
100	110	120	1.30	å

ł

į.

1510	Commodity	LCCN	Unit	1982/1983 Capacity Production Demand
	- Radio transmitter	-	Unit	50
				- 20
	Multiplex		Channe l	5,000 - 6,00\`
	- Radio head		System	200 100 350
	- Radio and wind send transmitter	er/	Unit	15,000 2,000 5,000
	- PABX 2 /		Line Unit	36,500 - 80,000
38330	Household electrical	equipment indu	stry:	
	- Refrigerator	84.15.391	Unit	340,000 153,000 161,000
	- Air conditicner	84.15.310	Unit	142,000 55,000 57,500
	- Fan	85.06.219	Unit	878,000 756,000 815,000
	- Electric iron	85.12.400	Unit	550,000 33,700 35,500

1983/1984	1984/1985	1985/1986	1956/1987	-
-Capacity	-Capacity	-Capacity	Capacity	
-Production	-Production	-Production	-Production	
 -Demano	-Demand	-Demand	-Demand	
50	50	50	50	
10	15	30	40	
30	35	40	45	
5,000	5,000	5,500	6,000	
2,500	3,000	3,500	4,000	
6,000	6,000	6,500	7,000	
200	250	300	350	
150	200	250	300	
375	400	425	450	
15,000	15,000	15,000	15,000	
2,500	3,000	3,500	4,000	
6 ,000	7,000	8,000	9,000	
36,500	42,000	48,000	55,000	1
36,000	41,500	47,500	55,000	8
90,000	100,000	120,000	135,000	1
				•
340,000	340,000	340,000	340,000	~
162,000	172,000	182,000	193,000	A
171,000	181,000	192,000	203,000	nex
142,000	142,000	142,000	142,000	F
58,300	61,800	65,500	69,500	8- 8-
61,000	65,000	68,500	73,000	le
930,000	987,000	1,045,000	1,108,000	2
801,000	849,500	900,500	955,000	0
864,000	916,000	971,000	1,029,000	ont
550,000	550,000	550,000	550,000	i n
35,700	37,900	40,200	42,500	ue
38,000	40,000	42,500	44,800	d)

ISIC	Commodity	CCCN	Unit	1982/1983 -Capacity -Preduction -Demand
	- Rice cooker	85.12.520	Unit	53,200 49,000 51,500
38394	Electric and telepho	ne cable industry	·:	
	- Electric cable	85.23.110	Ton	53,170 40,000 70,000
	- Telephone cable	85.23	Ton	8,000 7,000 14,000
38411	Shipbuilding and shi	pyard industry:		
	New ship	89.01		
	- up to 500 GRT		GRT	33,650 - -
	- from 501 to 2,0	00 GRT	CRT	40,600 - -
	- from 2,001 to 5	,000 GRT	GRT	19,500 - -
	- from 5,001 to 1	0,000 GRT	GRT	13,000 - -
38414	Ship repairs industr	y:		
	- Ship repairs	89.		
	- up to 500 GRT		GRT	16,048 -

٠

.

1983/1984	1984/1985	1985/1986	1986/1987	
-Capacity	-Capacity	-Capacity	-Capacity	
-Production	-Production	-Production	-Production	
-Demand	-Demand	-Demand	-Demand	_
58,300	64,500	70,800	78,000	
52,000	55,000	58,500	62,000	
55,000	58,000	61,500	65,000	
56 500	60,000	63 500	67 000	
42 500	45,000	<i>47</i> 500	50,500	
80,500	92,500	106,500	122,500	
00,500	0,000	0,500	10,000	
8,500	9,000	9,500	10,000	
7,500	8,000	8,500	9,000	
18,000	18,500	21,500	24,500	
				۰ ش
				5
22 650	22 360	33 650	33 650	I
26 920	26 920	26 920	48 456	
19 047	11 761	20,920	30,142	
12,047	11,701	20,470	50,142	
40,600	40,600	40,600	40,600	(A
28,420	28,420	28,420	50,210	'n
40,353	44,401	47,801	52,570	ex
19,500	19,500	19,500	19,500	12
11,700	11,700	11,700	20,280	Ę
29,682	31,245	32,696	44,041	'n
13,000	13,000	13,000	13,000	21
6,500	6,500	6,500	9,100	Q
15,301	15,658	16,044	21,464	ont
				- 5, a
				ine
				فق
16,048	16,048	16,048	16,048	
160,319	160,319	160,319	180,540	
198,131	208,505	217,500	230,768	

t

i

1510	Commodity	CCCN	Unit	1982/1983 -Capacity -Production -Demand
	- from 501 to 2,00	OO GRT	GRT	13,940
	- from 2,0001 to 5	5,000 GRT	SRT	12,920
	- from 5,001 to 10),000 GRT	GRT	8,840 - -
	- from 10,001 to 3	0,000 GRT	GRT	42,160 - -
38421	Railway, parts and th	ain accessorie	s industry:	
	- Frieght car	86.07.000	Piece	300 50 800
	– Passenger car≞′	86.05.000	Piece	- 168
	– Diesel rail <u>a</u> /	86.03.120	Piece	- - 16
	- Electric rail <mark>a</mark> /	86.02.000	Piece	- - 27
	- Locomotive ⁴	86.03.110	Piece	- - 36

1983/1984	1984/1985	1985/1986	1986/1987	
-Capacity	-Capacity	-Capacity	-Capacity	
-Production	-Production	-Production	-Production	
-Demand	Demand	-Demand	-Demand	
13,940	13,940	13,940	13,940	
119,332	119,332	119,332	139,380	
385,850	411,727	439,080	492,200	
12,920	12,920	12,920	12,920	
110,595	110,595	110,595	119,380	
271,007	295,896	328,996	362,107	
8,840	8,840	8,840	8,840	
75,670	75,670	75,670	81,682	
227,454	248,868	267,971	295,291	
42,160	42,160	42,160	42,160	
316,200	316,200	316,200	337,280	
1,317,838	1,393,335	1,462,511	1,560,212	1
				87
	(((1
300	600	600	600	
300	512	512	512	
900	950	994	1,000	
-	50	50	50	
-	50	50	50	Â
173	188	195	208	סנות
-	-	-	-	×
-	-	-	-	Te
20	26	32	36	e T q
-	-		-	N
-	-	-	-	-
36	44	51	55	tcop
-	-	-	-	ti
-	-	-	-	nu.
45	55	60	65	e d
				~~

ł

۱

.

ISIC	Commodity	CCCN	Unit	1982/1983 -Capacity -Production -Demand
38431	Four- or more wheel mo	otor vehicle	industry:	
	– Passenger venicle	87.02.221	Unit	52,515 29,710 29,710
	- Commercial vehicle	87.02	Unit	297,585 196,550 196,550
38432	Four- or more wheel mo	otor vehicle	equipment and b	ody industry:
	- Fuel engine	-	Thousand uni	ts - - 81.0
	- Diesel engine ⁴	-	Thousand uni	ts – – 83
	- Cabin	-	Thousand uni	ts 149.6 94.9 145.5
	- Chassis/frame	87.061.60	Thousand uni	ts 178 94.9 140
	- Axle ⁴		Thousand uni	ts – – 180
	- Transmission-/		Thousand uni	LS - - 155.0
	– Propeller shaft ^{_/}	-	Thousand uni	ts – – 151.0

1983/1984	1984/1985	1985/1986	1986/1987	
-Capacity	-Capacity	-Capacity	-Capacity	
-Production	-Production	-Production	-Production	
-Demand	-Demand	-Demand	-Demand	
50 515	50 516	50 616	53 515	
24, 170	20, 200	72,010	51 050	
34,170	20,200	45,180	51,930	
54,170	39,290	43,180	J1,9J0	
297,585	297,585	297,585	297,585	
226,070	259,940	297,585	297,585	
226,070	259,940	298,930	343,770	
_	_	425	425	
_	_	36.5	149.2	
92.4	103.0	114.9	128.1	
7214	105.0		12000	
-	185.5	185.5	185.5	I.
-	77.0	82.0	94.0	80
85.9	87.2	97.2	108.4	ω,
149.6	149.6	149.6	149.6	'
105.0	115.0	126	139.0	
165.5	184.6	205.8	229.5	
178	178	178	178	5
105	115	126	139	E
178.0	198.5	221.3	246.8	ē
-	_	294	294	Ч
_	-	256.6	286.2	6
206 - 4	230.2	256.6	286.2	le
				2
-	-	-	-	0
-	- 109 F	-	- 2/4 9	ğ
1/8.0	(98.)	221.3	240.8	۲.
-	-	264	294	n
-	-	221.3	246.2	ed
178.0	198.5	221.3	246.2	Ξ

-

ISIC	Commodity	CCCN	Unit	1982/1983 Capacity Production Demand
	- Rear body <mark>-</mark> /		Thousand un	its 137.6 99.7 97.7
38451	Aeroplane and accessor	ies industry: b	/	
	- Aeroplane (fixed win	g)		
	- C.212		Unit	24 12 30
	- CN.235		Unit	
	- Helikopter			
	- BO-105		Unit	36 12 5
	- Puma		Unit	12 7
	- BK 117		Unit	- - 14
38131	Prefabricated metal bu	ilding materia	l industry e	xcept aluminium:
	- Steel construction	73.32.220	Ton	25,000 17,500 64,000
	- Steel tank	73.40.390	Ton	11,097 8,145 54,000

1983/1984	1984/1985	1985/1986	1986/1987
-Capacity	Capacity	-Capacity	-Capacity
-Production	-Froduction	-Production	-Production
-Demand	-Demand	-Demand	-Demand
137.6	137.6	137.6	137.6
105.6	117.9	137.4	137.6
105.8	i17.9	131.4	146.6
24	24	24	24
15	16	18	24
32	34	36	38
	11	11	11
-	1	3	7
-	15	20	د 2
36	36	36	36
17	18	20	22
20	22	24	26
12	12	12	12
6	7	3	10
-	-	-	-
-	18	18	18
-	1	6	10
16	18	20	22
28,000	36,000	47,000	60,000
25,000	32,500	43,000	55,000
70,750	77,820	85,000	94,000
16,000	21,000	28,000	35,000
15,930	21,000	28,000	35,000
42,000	46,000	51,000	50,000

ISIC	Commodity	CCCN	Unit	1982/1983 -Capacity -Production -Demand	1983/1984 -Capacity -Production -Demand	1984/1985 Capacity Production Demand	1985/1986 -Capacity -Production -Demand	1986/1987 Capacity Production Demand
	- Boiler	73.37.000	Ton	10,200 3,105 14,000	10,200 4,000 16,000	10,200 5,200 18,000	10,200 7,000 20,000	10,200 9,000 22,000
	- Material handling	73.27.400 73.29.190 73.16.210	Ton	3,800 3,800 10,200	3,800 3,800 11,300	4,500 4,500 12,400	5,400 5,400 13,600	6,500 6,500 14,900
	- Milling equipment	84.10.100 84.10.200 84.10.300	Ton	3,000 1,000 8,200	3,000 2,000 9,000	3,500 3,500 9,700	4,200 4,200 10,900	5,000 5,000 12,000
	- Pumps	84.10.100 84.10.200 84.10.300	Ton	-	500 500 8,400	1,000 1,000 9,300	1,200 1,200 10,?00	1,500 1,500 11,000
	- Other standard equipments	-	Ton	1,000 700 1,200	1,000 700 1,400	1,000 1,000 1,600	1,300 1,300 1,800	1,600 1,600 2,000

Source: The Development of National Capacity in Ludustry for 1983-1986, Summary, Ministry of Industry, Republic of Indonesia, 1983 (unofficial translation).

Notes: a/ New investment/development.

-

 $\overline{\mathbf{b}}$ / Production and demand depend upon orders.

(Annex Table 21 continued)

- 90 -

Part Two. Long-term Projections of Demand for Capital Goods

1

Part Two. Long-term Projections of Demand for Capital Goods

		CONTENTS	Page
	Sum	ary	95
Chapter I	Some	: Theoretical Considerations	97
Chapter I	. <u>The</u>	Methodology Underlying the Indonesian Capital	
	Good	is Forecasts	101
	2.1	General Framework	101
	2.2	The Forecasts of the Demand for Capital	
		Goods	101
		2.2.1 The Conceptual Framework	101
		2.2.2 The Forecasting Equations	104
	2.3	The Forecasts of Sectoral GDP	111
		2.3.1 The General Framework	111
		2.3.2 The GDP Forecasts	111
	2.4	Forecasts of Non-oil Sectoral GDP	113
	2.5	U.S. Dollars	116
Chapter I	11 <u>Indo</u> <u>Resu</u> 3.1 3.2 3.3	Denesian Future Demand for Capital Goods. The11ts of the Forecasting ExerciseThe BackgroundThe Historical Trend Forecasts3.2.1The Short-term Forecasts (1985)3.2.2The Medium-term Forecasts (1990)3.2.3The Long-term Forecasts (2000)The Off-Trend Forecasts3.3.1The Short-term Forecasts (1985)3.3.2The Medium-term Forecasts (1990)3.3.3The Long-term Forecasts (1990)	117 117 118 118 127 127 128 129 129 129
	3.4	Summary of Main Features of Demand Forecasting Results	138
	3.5	Concluding Observations	141
	Foot	tnotes	142
	Арре	endixes	143

1

÷

LIST OF TABLES

7 -

_

Table Number		Page
<u>Chapter II</u>		
11.1	The forecasting equations	106
11.2	Historical growth rates and forecasting equations for oil, non-oil and total GDP	112
11.3	Estimates of the non-oil GDP share equations	114
11.4	Forecasts of sectoral GDP shares, Indonesia	115
Chapter III		
111.1	Trend forecast of the apparent demand for capital goods, Indonesia, (millions of constant 1980 US dollars)	119
111.2	Trend forecast of the apparent demand for capital goods, Indonesia, (millions of current US dollars)	123
111.3	Off-trend forecast of the apparent demand for capital goods, Indonesia, (millions of constant 1980 US dollars)	130
111.4	Off-trend forecast of the apparent demand for capital goods, Indonesia, (millions of current US dollars)	134
111.5	Five largest expected demands for capital goods in Indonesia, 1985, 1990 and 2000 based on off-trend low forecast	139
111.6	Five largest expected demands for capital goods in Indonesia, 1985, 1990 and 2000 based on trend low forecast	140
111.7	Five fastest growing expected demands for capital goods in Indonesia 1985, 1990 and 2000	140
111.8	Expected demands for capital goods in Indonesia that are insensitive to GDP growth rate fluctuations	141

- 93 -

X.____

LIST OF APPENDIXES

Appendix No.

Page

1.	Sector classification	144
2.	Historical gross domestic product	145
3.	Trend forecast of sectoral GDP	146
4.	Off-trend forecasts of sectoral GDP	147
5.	Gross domestic product forecasts	148
6.	Gross domestic product forecasts	149
7.	Comparison of forecasting equations for imports	
	in current and constant prices	150
8.	"Trend" growth rates calculated from the forecast	
	of the apparent demand for capital goods in	
	Indonesia	153
9.	"Off-trend" growth rates calculated from the	
	forecast of the apparent demand for capital goods	
	in Indonesia	174

Part Two. Long-term Projections of Demand for Capital Goods in Indonesia

Summary

Capital goods are required to produce consumer, intermediate or other capital goods. For any technology, a particular stock of fixed capital (e.g. machines) is required to produce a particular annual flow of output of finished products.

In this part an attempt is made to forecast future demand for capital goods in Indonesia. The forecast covers the demand for a selected group of capital goods by product for the years 1985, 1990 and 2000 on alternative hypotheses about the rates of growth of GDP and sectoral shares.

The problem is approached in two stages. In the first stage forecasts of major macroeconomic variables at a highly aggregative level are generated for the economy. On this basis the second stage attempts detailed forecasts of the demand for capital goods.

The approach adopted makes use of the available time series data on capital goods imports, production and exports and sectoral value added. The demand for capital goods, calculated as production plus imports minus exports, is related to changes in value added in the appropriate capital using sector or sectors. This procedure implies econometric estimation of incremental capital-output ratios for capital goods sector disaggregated in relatively great detail (61 categories of Division 7 of SiTC Rev. 1). Annual observations over the period 1967-1978 were used to estimate the demand equations. Most of the equations proved to be statistically significant and adequate for the forecasting exercise.

Time series extrapolations were used to forecast GDP and sectoral shares. The time series procedure was broken down into steps. In the first step forecasts were generated for oil and non-oil GDP, taking into account the impact of oil and LNG revenues on both components of GDP. Three alternative forecasts, based on alternative assumptions about future oil revenues were generated. These forecasts are denoted High, Medium and Low. In the second step, sectoral shares of non-oil sectoral shares by the forecast of non-oil GDP in order to obtain forecasts of non-oil sectoral GDP levels. To use the forecasting equations oil reveneus had to be forecasted. The period of the 1970s saw rapid increases in oil revenues in Indonesia. However, the early 1980s have been characterized by falling demand for OPEC oil and falling nominal oil prices. The basic assumption made here is that the world oil market will recover by 1985, as the world economy recovers from the severe recession which began in 1981, but continues to expand thereafter. The three assumptions made about the rate of expansion after 1985 describe the "High", "Medium" and "Low" growth scenarios. Oil production in mbd was forecast to increase from a level of 1.34 in 1983 to 1.65 in 1985, 1.9 in 1990 and 2.0 in the year 2000. Three alternative assumptions were made concerning oil prices. In the "Low" scenario the oil price was held constant at US\$ 28 per barrel for the entire forecasting period. In the "Medium" scenario the oil price rises to US\$ 34 in 1987 and continues to increase at US\$ 2 per year until 2000. In the "High" scenario che oil price is US\$ 32 in 1985, US\$ 52 in 1990 and US\$ 75 in 2000.

Two sets of share forecasts were generated. The first set was based on an extrapolation of historical data and thus is referred to as the "Trend" forecasts. The second set of share forecasts modified the trend forecasts to take account of official development plans for increased from the manufacturing sector. This set of share forecasts is referred to as the "Off-trend" forecasts.

Six sets of sectoral GDP forecasts were thus produced. Combination of trend and off-trend shares with high GDP level forecasts gives the high-trend (HT) and high off-trend (HO) sectoral GDP forecasts, etc.

Total demand for non-electrical machinery in Indonesia was US\$ 1.9 billion in 1980. In 1985, the lowest historical projection puts at US\$ 3.6 billion in constant 1980 dollars. Under off-trend postulates it could reach US\$ 4.3 billion. In 1990, both the trend and the off-trend forecasts indicate a substantial increase in the demand in capital goods with non-electrical machinery demand rising to US\$ 8.2 billion under the trend forecast and to US\$ 11.7 billion under off-trend conditions. These demands rise almost exponentially throughout 1990s. Thus, there exists a strong demand for capital goods in Indonesia to substantiate a major effort to produce these goods locally.

- 96 -

Chapter I. Some Theorectical Considerations

All economic forecasting is difficult, and forecasting the demand for capital goods particularly so.

<u>Capital requirements and investment</u>. The first point to note is the distinction between "needs" and effective demand, between capital (goods) requirements and actual investment. Investment decisions are influenced by a variety of factors, psychological ones such as business confidence in the case of private investors and planning errors in the case of public investment, as well as cost and availability of finance, which cause the rate of investment to be only loosely related to capital requirements, certainly in its timing. Even were it possible to forecast capital requirements reasonably accurately, therefore, this would not necessarily provide precise guidance on the flow of orders to the capital goods producing industry and to the capacity needed in that industry in any short period.

<u>The acceleration principle</u>. Capital goods are required to produce consumer, intermediate or other capital goods. For any given technology, a particular <u>stock</u> of fixed capital (e.g. machines) is required to produce a particular annual <u>flow</u> of output of finished products. This relationship underlies the acceleration principle according to which the rate of investment (i.e. of additions to the stock of capital) is a function of the <u>increase</u> of output of finished products,

$$I = (\triangle K) = f (Y_{t+1} - Y_{t})$$

where I is the rate of investment, K the capital stock and Y the level of output or income.

The investment determined by the acceleration principle is only one component of total investment. Another component is inventory investment. The capital stock consists of fixed capital and stocks or inventories (of ram materials, work in process and finished products awaiting sale). Since inventory investment does not involve capital goods, this component can be ignored here. A third component is replacement investment, to make good depreciation and obsolescence of the existing stock of fixed capital. This component clearly cannot be ignored, since the demand for capital goods in any period is the sum of demand for expansion of existing capacity, or <u>net</u> investment (as determined by the acceleration principle), and replacement investment. It is <u>gross</u> fixed capital formation, net investment plus replacement investment, that determines the demand for capital goods. Forecasting the demand for capital goods, therefore, requires estimates of future demand for both net investment and replacement investment.

<u>Net Investment</u>. The coefficient in the above equation which relates the increase in capital stock required to sustain a given increase in output or income to that increase is sometimes called the incremental capital-output ratio (ICOR). It is possible to make statistical estimates over some past period of the ICOR for a whole economy or for particular sectors (such as agriculture or manufac:uring) or sub-sectors (such as the textile or engineering industries). What determines the ICOR (interpreted in terms of capital requirements rather than actual investment)?

In any given capital-using activity, the ICOR is determined, in the first instance, by the method of production or "technology". The more capital-intensive the method of production, the higher, cet. par., will be the ICOR. A high ICOR does not, in itself, say anything about the economic efficiency or inefficiency of the industry. Whether a high ICOR is efficient depends on relative factor prices; it will be efficient to use capital-intensive technology if labour is relatively expensive (and capital cheap) but not if labour is plentiful (cheap) and capital scarce (expensive). A high ICOR may, however, be an indication of inefficient use of the existing capital stock. The extra output obtained from a given increase in capital stock may be relatively small, either because the capital stock remains underutilised or because of other sources of inefficiency (most of which derive from under-utilisation or inappropriate use of capital or labour). One determinant of the ICOR, therefore, is the efficiency with which capital is used (since, appropriately defined, the ICOR is the reciprocal of the marginal productivity of capital).

Since different industries (and different firms within industries) employ widely different methods of production (with different degree of capital intensity) and employ their capital and labour with different degrees of

- 98 -

efficiency, there will evidently be considerable differences between statistically estimated average ICORs for different industries in any given past period and probably also in different past periods. Estimates of average ICORs for whole national economies vary generally between ? and 6. ICORs for different industry branches range from 1 or less in relatively labour-intensive manufacturing industries to as high as 8-10 for very capital-intensive industries.

<u>Replacement investment</u>. Capital equipment wears out, through time and use. Each piece of capital equipment, therefore, has a certain physical life-span which can be measured by a rate of depreciation. Replacement investment is required to make good depreciation. (Current expenditure on repair and maintenance may prolong the life of a machine, so that there is some trade-off between current and capital expenditure). In addition to the effects of time and use, there is the effect of technical change. Some of the existing fixed capital stock may be rendered obsolete or uneconomic to use because a new type of equipment, embodying new technolgy, makes it possible to produce the same output (quality for quality) at lower cost, allowing for the capital charges on the new equipment.

While the rate of replacement of any given piece of equipment is determined by the rate of depreciaton and obsolescence, the rate of required replacement investment in a whole industry is also determined by the average age of its capital stock. If much of it is of recent vintage, the rate of required replacement in the near future will be relatively low, and vice versa.

<u>Aggregate demand</u>. If the task is to estimate demand for capital goods in the economy as a whole, not merely for individual capital-using industries, there remains the further problem of forecasting future rates of growth of demand for the final products of the whole range of capital-using industries. The methodological problems are familiar but formidable. In a closed economy, the problem can be stated formally in terms of forecasting the rate of growth of GDP and income (or output) elasticities of demand for the various categories of final product. In an open economy, allowance must also be made for that part of the domestic demand for each category that is expected to be met by imports and the addition to domestic demand likely to be made by exports.

- 99 -

<u>Determinants of demand</u> <u>ior capital goods</u>. The purpose of the preceeding brief exposition has been to identify the elements that must enter into any estimates of future demand for capital goods.

To estimate future demand for <u>net investment</u>, it is necessary to estimate (a) future growth of output of finished products and (b) the relevant ICORs. Future growth of output will depend on future growth of domestic demand for the product, less that part of doemstic demand that is met by imports, plus demand for export. The relevant ICORs will depend on the average capital intensity and average efficiency of resource use among the firms of an industry sub-sector or among the sub-sectors of an industry branch. To estimate demand for <u>replacement</u> investment, it is necessary to estimate the future rate of depreciation and obsolescence and the average age of the capital stock of industries and branches.

For all these variables it may be possible to obtain statistical data for some past period, although this cannot be taken for gratted. It is another matter to project from such past experience into the future. Various econometric techniques exist for doing so, from simple extrapolation of time series to more sophisticated estimation on the basis of assumed functional relationships. But it is clear that a very large margin of error necessarily attaches to any such estimates, whatever the technique used.

If the ultimate purpose of estimates of future demand for capital goods is to guide planning for the establishment of domestic capital goods (producing) industries, precise estimates of future demand for capital goods are not really necessary for an open economy. Domestic demand can be met by imports and supplemented by exports. All that is needed, therefore, for each type of capital good is to determine, as far as possible, whether (a) domestic demand is likely to be sufficient for economically efficient (optimum scale) domestic production and, if not, (b) whether there are prospects for export sufficient to enable domestic production to reach this volume; and (c) whethe. domestic production is likely to be competitive with imports, subject to some maximum rate of effective protection (say, 20 or 30 per cent).

The purpose of the following chapters is to provide an economic study of future demand for capital goods in Indonesia. The forecast covers the demand for a selected group of capital goods by product for the years 1985, 1990 and

- 100 -

2000 under alternative hypotheses about the rates of growth of GDP and sectoral shares. These forecasts are to be used in formulating a strategy for domestic capital goods production.

Chapter II. The Methodology Underlying the Indonesian Capital Goods Forecasts

2.1 General Framework

The objective is to provide forecasts of the demand for capital goods (the 61 categories of "engineering products" included in the published data for the SITC category ?). Demand is calculated as production plus imports minus exports. As such, it represents domestic demand only.

Ideally, these forecasts should be generated by comprehensive, consistent, and detailed models for each industry, which are then integrated into a model of the country. However, a model of this type capable of generating forecasts of the demand for capital goods at the level of detail desired in this study would have to be very large. Models of this type are rarely found, even in the major developed countries. For example, Informetrica, a private consulting firm in Ottawa, maintains a 5,000 equation model of the Canadian economy which, despite its large size, does not provide the detailed forecasts envisioned in this study. It is clear that, such as approach would te inappropriate. A much more practical approach, ad^oted here, is to attack the problem into two stages. In the first stage forecasts of major macroeconomic variables at a highly aggregated level are generated for the economy. In the second stage, detailed forecasts of demand for capital goods are based on the much less detailed forecasts of macroeconomic variables. Since the macroeconomic variables which are generated in the first stage must fit into the second stage, we will discuss the second stage first.

2.2 The Forecasts of the Demand for Capital Goods

2.2.1 The Conceptual Framework

Capital goods imports are of primary concern because there is very limited production of most capital goods in Indonesia. This fact has two implications. The first is that possibilities for increased domestic production of capital goods (import substitution) should be of primary concern. This provides the basic orientation of this study. The second implication is much more practical; namely, that for many products imports can be viewed as identical to total demand. For products where there is production of capital goods and/or exports the commodity balance equation was used to generate the apparent demand. Thus, or forecasts can be interpreted as forecasts of demand for the capital goods considered in the study.

What, then, is the most appropriate method for forecasting the demand for specific capital goods in Indonesia? Some of the classifications are narrowly defined so that the capital goods can be identified with one particular sector; for example, pulp and paper machinery (SITC 718.1). Others are not specific to particular sectors, being broadly used throughout the economy, such as machine tools (SITC 715.1). Where possible, it would seem desirable to relate the demand for specific capital goods to economic variables relevant to the using sector or sectors. The major difficulty in this regard is the absence of readily available time series data on economic activity at a detailed sectoral level in Indonesia. Two input-output studies have been completed, but these provide two observations only. There are no time series vata on the price of output by sector, on input prices by sector, or on investment or capital stock by sector, although some of these variables might be constructed from other available data. Thus the scarcity of relevant data is a significant constraint on the preparation of these forecasts.

A second important consideration is the nature of the choice of sectoral investments in these countries. In Indor_sia the Government has a substantial impact on both the overall quantity and the sectoral pattern of investment. This impact may be direct through investment by public agencies, or indirect through licensing (control) of private investment through BKPM, or the allocation of loans to finance investment. The impact of Government on the decisions to use and import capital goods in Indonesia is more decisive than the impact of private decisions.

The above considerations rule out the use of a neo-classical framework which attempts to explain investment in terms of profitability. Considerations of profitability based on the prices faced by the private sector may not be appropirate if goverment decisions and plans are based on other criteria, such as the social opportunity costs of inputs or the externalities generated by the development of capital goods industries. The

- 102 -

above argument may suggest a planning model framework, to explain government decisions; but, as indicated in the introduction to this chapter, the detailed application of that approach is beyond the scope of this project. Equally compelling factors in the decision not to follow either of the above approaches are the absence of the detailed time series data required to implement the neoclassical approach and the detailed structural data required to implement the planning approach.

The approach adopted makes use of the available time series data on capital goods imports, production and exports and sectoral value-added. Here demand for capital goods are related to changes in value-added in the appropriate capital-using sector or sectors.¹/ We interpret this procedure as the econometric estimation of incremental capital-output ratios where the capital goods are disaggregated in relatively great detail (the 61 available SITC categories) while the outputs are more highly aggregated (the 8 sectoral breakdown of GDP). This interpretation is strictly valid only if the ratio of value-added to the value of output remains constant over time.²/ This may not be the case if other inputs are withdrawn from the using sector. In these circumstances we would not be able to estimate incremental capital-output ratios, which are based on the assumption of a fixed coefficient technology.

Some of the "engineering products" are clearly durable consumer goods, such as passenger motor cars (732.1) and therefore are excluded in this study.Other categories, such as ships and boats (735) or sewing machinery (717.3) may include both capital goods and/or consumer goods. For these products, a consumer demand equation may be an appropriate basis for forecasts. Such an equation has been used for these products, using the current level of GDP (in current kupiah) as a proxy for consumer income.

Even for products which are clearly capital goods, the use of the current level of GDP as the basis for forecasts may be justified. GDP can be interpreted as representing the ability of a country to import. (This measure may be crude but the lack of data precludes more sophisticated measures). Under this interpretation the current level of GDP determines the level of imports of capital goods which in some cases represents the entire demand for a given capital goods, which in turn determines the changes of sectoral GDP in the future.

- 103 -

2.2.2 The forecasting equations

The forecasts of demand for specific capital goods were computed using an cquation of one of the following forms:

$$(1)^{D}_{it} = a_{0} + a_{1}(GDP_{j,t+1} - GDP_{j,t}) + a_{2}(GDP_{j,t+2} - GDP_{j,t+1})$$

where D_{it} is the value of demand for capital goods i in period t and $GDP_{j,t}$ is the value-added in sector j in period t.^{3/} or

(2)
$$D_{it} = a_0 + a_1 GDP_t$$

where GDP, is the current level of GDP.

Because some product categories are aggregates, such as construction and mining machinery (SITC 718.4), or include products which may be used in several sectors, such as pumps (SITC 719.2), the identification of the using sector cannot be based solely on a priori engineering judgement. For such products equations were estimated for each potential using sector.

The above equations were estimated using annual observations over the period 1967-1978. The estimation period could not be extended past 1978 as the GDP data must be available for two years after the end of the estimation period. The limited number of observations available made it impossible to introduce any longer lags between the demand for capital goods and changes in output. Each additional lag uses up two degrees of freedom, one for the additional parameter introduced and one for data point lost. Demand and GDP could be measured either in current or constant prices, since the demand data can be converted to constant prices using a price index for capital goods from the supplying countries and GDP data are available in both current and constant Rupiah. The results when current price data were used were superior to those obtained using constant data. $\frac{4}{2}$ Thus, it was decided to use current price values for all variables in the forecasting equations. $\frac{5}{}$ The demand data were obtained from U.N. and domestic (BPS) sources, whereas the GDP data were obtained from the U.N. Statistical Yearbook for the Far East and Asia. For capital goods U.S. dollar values were used, since the prices of

these goods are primarily determined in supplying countries. GDP data was measured in domestic currency (Rupiahs), since this most accurately reflects changes in domestic activity. Several major devaluations over the data period have altered the US dollar/Rupiah conversion, so that changes in GDP measured in US dollars do not reflect changes in domestic activity.

There are several reasons why the relationships measured by the above equations might change over time, leading to errors in the forecasts. Firstly, the nature of technology may change so that the same sector uses a different mix of capital goods. Secondly, the mix of industries within a sector may change over time, having the same result. Finally, the price of the capital good may change relative to the price of output of the using sector. These potential biases in the forecasts are difficult to evaluate because we have no historical data describing the relationships in question.

The forecasting equations are described in Table II.1. Coefficient estimates, R^2 values, and Durbin-Watson statistics (D.W.) are presented and the using sector or sectors are identified. (The sectoral numbering scheme is described in Appendix Table 1.) These equations will be discussed in the following section.^{6/}

Table II.1: The forecasting equations

	Coefficient Estimates , GDP					
Products	(a ₀)	(a ₁)	(a ₂)	D.W.	R ²	Components
Total Engineering Products 7	231.813	0.001538	.002433	1.83	.78	GDP3
Total Machinery non-electric 71	93.9861	.000761	.001096	1.81	.76	GDP 3
Total Electrical Machinery 72	91.9756	.0000199	-	.68	.76	GDP (current level)
Power Generating Machinery 711	31.5118	.0001307	.0001949	2.0	.64	GDP3
Boiler, Steam Genera ting Machinery 711.1	-2.96117	.0000019	-	2.55	.90	GDP (current level)
Steam Engines 711.3	1.60648	.000027	0000036	2.44	.41	GDP3
Aircraft Engines 711.4	. 30145.	2 .000002	2 -	1.23	. 34	GDP (current level)
Other Internal Com- bustion Engines 711.5	-3.82251	.0000097	-	1.08	77	GDP (current level)
Nuclear Reactors 711.7	.763494	4 .000157	-	2.44	.76	GDP4
Engines, nes 711.8	-47.4401	.000289	0000271	2.47	,71	GDP3
Agricultural Machinery 712	11.8243	.0000011	3 -	1.45	. 16	GDP (current level)
Office Machinery 714	3.37534	.0000009	1 -	1.19	.90	GDP (current level)
Typewriters 714.1	1.12701	.0000003	27-	2.23	.93	GDP (current level)

1

- -

7-----

Table II.1 (continued)

Products	(a ₀)	(a ₁)	(a ₂)	D.W.	R ²	GDP Components
Office Machines, nes 714.9	1.71982	.000000102	-	. 99	.71	GDP3
Metal Working Machinery 715	2.59641	.0000676	00000247	2.10	.76	GDP3
Machine Tools 715.1	.147325	.0000595	00000416	2.95	.51	GDP3
Textile and Leather Machinery 717	24.3762	.00008638	.00009937	1.46	.70	GDP3
Textile Machinery 717.1	-3.27485	.000291	00000326	1.00	.75	GDP3
Skin, Leather Working Machinery 717.2	688028	.000000105	-	3.34	. 98	GDP (current level)
Sewing Machinery 717.3	1.15705	.00000068	-	1.36	. 95	GDP (current level)
Special Industrial Machinery 718	19.9178	.0001523	.0001853	1.74	.75	GDP3
Paper and Pulp Machinery 718.1	-3.12895	.00000063	-	1.58	. 86	GDP (current level)
Food Processing Machinery 718.3	4.98328	.0000159	.0000127	1.10	.43	GDP3
Construction, Mining Machinery 718.4	13.7734	.000005135	-	1.20	. 89	GDP (current level)
Mineral and Glass Working Machinery 718.5	4.54722	.0000557	-	1.63	.51	GDP3
Other Special Machinery 719	11.8940	.0003296	.0005347	1.75	. 79	GDP3

I

,

.

J

×____

Table II.1 (continued)

Products	(a ₀)	(a ₁)	(a ₂)	D.W. R ²	GDP Components
Heating, Cooling Equipment 719.1	3.88216	.0000528	.0000957	1.91 .70) GDP3
Pumps and Centri- fuges 719.2	5.65528	.00006265	.0000876	1.50.79	GDP3
Mechanical Handling Equipment 719.3	-1.59283	.0000605	.0000902	1.40.78	GDP3
Powered Tools, Other 719.5	11.6129	.0000407	0000132	1.82.72	2 GDP5
Spraying, Vending Other Machinery 719.6	1.64850	.0000256	.000028	1.42 .8	5 GDP5
Ball, Roller Bearings 719.7	1.45242	.0000003	-	3.17 .93	GDP 3 (current level)
Machinery and Mech- anical Appliances nes 719.8	,16.1207	.0000348	.0000954	1.77 .8	5 GDP3
Parts and Accessori of Machinery, nes 719.9	es -9.85155	.0000634	.0001039	1.71 .68	B GDP3
Electrical Power Machinery 722	13.1268	.000007338	-	.72 .8	GDP 5 (current level)
Power Transforming Machinery 722.1	13.2241	.00000564	-	.64 .79	GDP 9 (current 1evel)
Switchgear, etc. 722.2	1.33627	.00000192	-	.95 .8	GDP 5 (current level)
Equipment for Dis- tributing Elec- tricity 723	11.3279	.00000353	-	.72 .80	GDP 6 (current level)

Table II.1 (continued)

Products	(a ₀)	(å ₁)	(a ₂)	D.W.	R ² C	GDP omponents
Insulated Wire and Cable 723.1	11.9265	.0000031	-	.70	. 84	GDP (current level)
Electric Insulated Equipment 723.2	-3.90489	. 000000695	-	2.56	. 88	GDP (current level)
Electrical Machinery Other 729	18.6848	.00000442	-	1.49	.77	GDP (current level)
Batteries and Accumulators 729.1	10.9191	.00000169	-	1.26	.95	GDP (current level)
Electric Lamps 729.2	398094	.000000497	-	1.29	.91	GDP (current level)
Valves, Tubes, etc. 729.3	-3.4687	. 000000606	-	1.71	.81	GDP (current level)
Automotive Electrica Equipment 729.4	1 1.15065	00000332	.0000434	1.79	.78	GDP6
Measuring Apparatus 729.5	-22.0655	.000134	0000152	3.20	.49	GDP3
Electro-Mechanical Hand Tools 729.6	812592	.00000911	-	2,62	.60	GDP3
Other Electrical, nes 729.9	-1.92848	.0000507	.0000715	2.10	.94	GDP5
Railway Vehicles 731	-1.27096	.000095	.0000475	.92	.59	GDP6
Locomotives, Other 731.3	-1.32654	.0000095	.000035	1.87	.70	GDP6
Passenger: Railway, Tramway Cars 731.5	.581687	.0001777	0000776	1.45	.61	GDP6

Table II.l (continued)

	Products	(a ₀)	(a ₁)	(a ₂)	D.W.	R ²	GDP Components
*	Railway, Locomotive Car Parts, next 731.7	2.12409	.0000038	-	1.90	. 11	GDP6
*	Buses 732.2	15.7461	.00002	-	2.06	.05	GDP6
	Lorries and Trucks 732.3	-40.4429	.000445	.000878	1.25	.85	GDP6
	Special Purpose Lorries, Trucks and Vans 732.4	2.78519	.000000729	-	1.81	.51	GDP (current level)
*	Tractors for Trailers 732.5	10.8594	00006694	.00005416	1.00	. 25	GDP6
	Ships and Boats 735	.995856	.0001677	.000149	1.78	.74	GDP6
	Ships and Boats non-war 735.3	520072	.0000465	.000017i	1.85	. 52	GDP6
	Ships and Boats nes 735.9	.0308921	.000145	.0001214	1.82	.65	GDP6

Source: Econometric Research Ltd.

Note: No forecasts were generated for products marked with an *, since the statistical fit of the forecasting equations is poor.

. __ __ -

2.3 The Forecasts of Sectoral GDP

2.3.1 The General Framework

In order to use the forecasting equations described in the previous section, forecasts of GDP by sector must be generated. These could potentially be generated with a medium scale econometric model (50-100 equations would be necessary). However, generation of such a model is a major undertaking, particularly when the data required are not readily available. Thus econometric models were not used for this purpose. Instead, time series extrapolations were used.

The time series procedure was broken down into steps. In the first step forecasts were generated for oil and non-oil GDP, taking into account the impact of oil revenues on both components of GDP. Three alternative forecasts, based on alternative assumptions about future oil revenues were generated. (These forecasts are denoted High, Medium and Low.) In the second step, sectoral shares of non-oil GDP were forecast, again based on time series extrapolations. The third and final step was the multiplication of non-oil sectoral shares by the forecast of non-oil GDP in order to obtain forecasts of non-oil sectoral GDP levels.

The short time series precluded any more sophisticated time series procedures.

2.3.2 The GDP Forecasts

It might be argued that relatively simple econometric models could have been used to generate these forecasts. However, these results would be sensitive to forecasts of exogenous variables, particularly the price of oil or oil revenues. Here we relate GDP directly to oil prices, in order to make this dependence explicit.

The historical growth rates of oil, non-oil and total GDP (in current Rupiahs) together with the forecasting equation. are presented in Table II.2. In contrast to other OPEC countries, the impact of oil revenues on non-oil GDP has been relatively small (the estimated elasticity is only 0.04).^{7/} The impact of oil revenues on oil-GDP is predictably high (the estimated

elasticity is 0.94). After the impact of oil revenues is taken into account, the trend growth rate of non-oil GDP was 22.7 per cent (in current Rupiah).

 Table II.2 Historical growth rates and forecasting equations for oil,

 and total GDP

A. Historical Growth rates: $\frac{a}{b}$

GDP	Time Period	Growth rate
<u>0i1</u>	1967-1980	43.87
Non-oil	1967-1980	24.87
Total	1967-1980	27.00

B. Forecasting Equations: <u>c</u>/

LN(Oil-GDP) = Ln(a)+b Ln(Oil-Revenue) LN(Non-oil GDP) = Ln(c)+d Ln(Oil Revenue)+f time

Total GDP = Oil GDP + Non-oil GDP

Coefficient Estimates:

Coefficient	Estimated Coefficient	Standard Error	T Statistic	
a	3.17642	1.74860	1.81655	
Ъ	0.944862	0.0416108	22.7071	
с	681502.0	598649.	1.13840	
d	0.0395049	0.0892481	0.442642	
f	0.227837	0.0403213	5.65053	

Notes: <u>a</u>/ Growth rates were determined from econometric estimates of the following equation: Ln $X_t = a + bt + t$

where b is the estimated annual growth rate.

b/ All values are in Current Rupiah.

c/ The above equations were estimated as a system using the

full-information maximum likelihood method.

In order to use the above equation systems, forecasts of oil revenues must be made. The period of the 1970's saw rapid increases in cil revenues in Indonesia. However, the early 1980's have been characterised by falling demand for oil and falling oil prices. The basic assumption made here is that the world oil market will recover by 1985, as the world economy recovers from the severe recession which began in 1981, and continue to expand thereafter. Three assumptions are made about the rate of expansion after 1985, leading to the "High", "Medium" and "Low" growth scenarios. Oil production (in million barrels per day) was forecast to increase from a level of 1.34 in 1983 to 1.65
in 1985, 1.90 in 1990 and 2.0 in 2000. (These production forecasts are consistent with World Bank forecasts.) Three alternative assumptions were made concerning oil prices. In the "Low" scenario the oil price was held constant at \$ 28 (US per barrel) for the entire forecasting period. In the "Medium" scenario the oil price rises to \$ 34 in 1987 and continues to increase at 2 per cent until 2000. In the "High" scenario (based on World Bank forecasts) the oil price is \$ 32 in 1985, \$ 52 in 1990 and \$ 75 in 2000.

The above assumptions concerning oil revenues may appear to be somewhat arbitrary, but they are based on the best judgements of Econometric Research. When the forecast oil revenues are substituted into the forecasting equations in Table II.2, forecasts of Oil GDP, Non-oil GDP and Total GDP (in millions of Rupiah) are generated. (see Appendix)

2.4 Forecasts of Non-oil Sectoral GDP

The forecasts of non-oil sectoral GDP were based on forecast shares of non-oil GDP. Two sets of share forecasts were generated. The first set was based on an extrapolation of historical data and thus is referred to as the "Trend" (or T) forecasts. The second set of share forecasts modified the trend forecasts to take account of official development plans for increased growth of the manufacturing sector. This set of share forecasts is referred to as the "Off-trend" (or O) forecasts.

The trend share forecasts were based on a system of logistic equations whose parameters were estimated from time series data (the estimation periods are the same as those shown in Table II.2). The system of equations is given below:

(3)
$$S_{j}T = A_{j} / (1+B_{j}EXP(-C_{j*}T)) \qquad j = 1, ..., 6$$
$$S_{7T} = 1 - \sum_{j=1}^{6} S_{jT}$$

where S_{jT} is the share of non-oil GDP generated in sector j in year T. Formulating the final share as a residual forces the fitted values for the shares to sum to one, as well as forcing the forecast shares to sum to one.

- 113 -

Oil GDP is forecast separately so that only non-oil GDP was allocated to sectors using the above system. The above equation system was estimated by full information maximum likelihood, using the FIML precedure in the TSP econometrics package. This method produced reasonable share forecasts. The coefficient estimates are presented in Table II.3. $\frac{8}{}$

	Estimated	Standard	T	D.W.
	Coefficient	Error	Statistic	
Agriculture:Sl				
al	1.45594	3.90285	0.373045	2.27
ы	1.50021	6.59162	0.227594	
cl	0.0554643	0.0677187	0.819040	
Manufacturing:S2				
a2	0.116087	0.0021028	55.2041	2.26
52	0.740302	0.129859	5.70081	
c2	-0.397212	0.0848223	-4.68288	
Electricity:S3				
a 3	0.00738778	0.00107177	6.89308	1.69
ь3	1.01474	0.278164	3.64801	
c3	-0.206212	0.128080	-1.61003	
Construction:S4				
a 4	0.0928245	0.00916033	10.1333	1.73
Ь4	4.58040	0.463740	9-87708	
c4	-0.223693	0.0328150	-6.81679	
Transportation:S5				
a5	0.0542478	0.00285832	18.9789	2.74
Ե 5	2.43425	0.941303	2.58604	
c5	-0.442732	0.139033	-3.18437	
Wholesale + Retail				
Trade:S6				
a6	0.197761	0.00378765	52.212	1.59
b6	0.209263	0.147611	1.41767	
có	-0.510215	0.442427	-1.15322	

Table II.3 Estimates of the non-oil GDP share equations

Source: Econometric Research Ltd.

Note: The coefficients al, bl, etc. correspond to aj, bj, etc. in equation (3).

In order to produce the "Off-trend" (or 0) share forecasts, the manufacturing and agriculture shares of GDP were forecast separately. $\frac{9}{}$ The trend shares for each of the other sectors were then reduced by the same

- 114 -

proportion, in order that the sum of all sectoral shares equals one. The trend and off trend shares for manufacturing are reported (for 1985, 1990 and 2000) in Table II.4.

Table II.4: Forecasts of sectoral GDP shares, Indonesia (Percentage of non-oil GDP)

A: Off-trend forecast

YEAR	514861	SHAREZ	544RE3	SHARES	54ARE5	SHARE6	SHARE?
1753 1735 1775 1775 2020	.343372300 257552000 20054000 157652000 157652030 15306020	.11934300 .13232090 .14523100 .17553030 .21763700	.005759450 .007110770 .007359220 .00515550 .005532540	Lām .07700260 .04555760 .08757880 .08757880 .02587273 .08176710	. 353731300 . 353238430 . 052271500 . 050534893 . 048011800	-196314000 -194183000 -194567000 -190567000 -184226000 -175027000	.203570303 .255327303 .304219393 .335240393 .352424039
L 75 3 L 75 5 L 77 3 L 77 3 L 79 5 L 79 5 2 3 3 3	. 34 309 2000 . 25 393 1000 . 2094 39 020 . 157 39 2030 . 1 13 22 2000	.11334300 .13414330 .15933400 .17838703 .21848100	• 005 35 99 50 • 007 3 7 3 50 • 007 3 4 6 2 3 0 • 005 8 5 2 1 1 0 • 005 5 2 5 7 7 0	REDIUM • 07700250 • 06534773 • 07730600 • 06571730 • 08186490	. 35 37 31 32 0 .05 3 10 7 7 00 .05 2 1 2 8 8 6 2 .05 0 4 4 3 2 0 0 .04 7 9 6 3 5 0 3	- 1963 1 000 0 - 1937 3 7000 - 1837 7 000 - 1833 7 200 - 1745 200 - 1745 200	- 20 55 70 300 - 30 76 95 300 - 33 32 7 200 - 33 55 30 00 30 - 35 5 30 00 30 - 35 5 30 00 30 - 35 5 30 00 30 - 35 20 7 1 30 30
1780 1735 1735 1770 1775 2000	.343092030 .266655000 .2381353:0 .15974300 .15974300 .1179280:0	-1194303 -1344633 -1565330 -1517530 -1517530 -1517530 -2342100	• 005 757950 • 007 3875 40 • 007 303 320 • 005 12 420 • 005 509770	H1CH • 07730240 • 05527310 • 05677470 • 08536800 • 08166170	- 253731300 - 053055100 - 051791700 - 051791700 - 051791700 - 051791700 - 051791700	.195314900 .193535000 .188818000 .183143000 .183143000 .174413000	.205570000 .257486000 .301425000 .331425000 .351197030
			B: <u>1</u>	rend foreca	ist		
1735 1755 1795 1795 2725	- 34157105C - 274525000 - 217932020 - 171413060 - 133711600	. 11575300 .11575300 .11575200 .11575700 .11573700 .11573700	.0(5)992250 .007251690 .297335310 .097362870 .007381020	.07736030 ; C67;3260 .09353143 .09213150 .09213150 .07261340		.197728000 .19775400 .19775600 .19775000 .197751000 .197751000	.265511000 .265511000 .31573200 .31573200 .35374200 .35074200

Source: Econometric Research Ltd.

- 115 -

Six sets of sectoral GDP forecasts were produced. Combination of the trend and off-trend shares with the high GDP level forecasts gives the high trend (H-T) and high off-trend (H-O) sectoral GDP forecasts, while combination of these forecast shares with the medium and low GDP level forecasts gives the medium and low trend (M-T and L-T) and medium and low off-trend (M-O and L-O) sectoral GDP forecasts. These forecasts are presented in the Appendixes 3 and 4.

2.5 Conversion of Demand Forecasts to Constant 1980 US Dillars

The insertion of the forecast levels of GDP and changes in sectoral GDP into the forecascing equations (1) and (2) produces forecasts of the demands for capital goods in current US dollars. However, in order to examine the size of the Indonesian market for capital goods, it is necessary to convert these forecasts into constant dollar terms. Forecasts of a price deflator for capital goods are required for this conversion.

Capital goods in Indonesia are imported mainly from developed countries such as Japan, those in Western Europe and North America. Ideally, a weighted average of capital goods price indexes from these supplying countries should be used as a basis for forecasting the price deflator for capital goods in Indonesia. However, such indexes are readily available for only a few countries. Thus data from the ".S. were used (Data from Canada produced very similar results). The period of the 1970's has demonstrated clearly the impact of oil prices on the prices of all products in the developing countries. The following equation was estimated using U.S. data for the period 1972-82.

(4) $L_n PE_t = 3.52 + 0.0575 t + 0.0765 Ln PO_{t-1}$ (83.3) (6.94) (2.33)

 $R^2 = 0.988$ D.W. = 1.41

where PE_t is the price index for equipment in period t (1980 = 100) and PO_{t-1} is the price index of oil lagged one period (1980 = 100). The coefficient of the oil price in the above equation is statistically significant (at the 5 per cent level in a one-tail test), indicating a measurable relationship between the lagged oil-price and the capital goods

price. The above equation was used to generate forecasts of the price index for equipment, using the same assumptions about oil prices used in generating the "Low", "Medium" and "High" forecasts of oil revenues. Thus three forecasts of the price deflator for capital goods were generated. The annual rates of growth of capital goods prices between 1980 and 2000 which are implied by these three forecasts are 7.24, 7.34 and 7.61 per cent.

Chapter III. Indonesian Future Demand for Capital Goods. The Results of the Forecasting Exercise

3.1 The Background

Simple forecasting exercises usually involve the use of mechanical trend extrapolation for some variables of interest. Such a simple procedure may be useful in the case of some limited subset of problems where accuracy and explanation are not essential or where the growth process of the underlying phenomena is strongly stable.

These conditions are certainly inapplicable to the case of the demand for capital goods in Indonesia, both because the underlying phenomena is not stable and because explanation of behaviour is very essential given your interest in policy prescriptions.

Thus, a more refined approach is employed here. We begin by postulating a set of hypotheses about the demand for capital goods relationship and proceed to test them empirically as was described above. The assignment of specific capital goods to sectors employed engineering and other technical data, whereas the set of explanatory variables chosen, their signs and the structure of the equation were modeiled along the <u>a priori</u> restrictions of economic theory.

Three target years were chosen to represent the short-run (1985), the medium-run (1990) and the long-run (2000). The actual demand values in 1980 are also presented to provide a bench-mark against which the forecasts may be checked. For each forecast alternative (trend and off-trend) we present a special table which displays the forecast values of demand for low, medium and high GDP scenarios. Although we presented the demand forecasts in both current and constant dollars, only the latter was analysed.

3.2 The Historical Trend Forecasts

History enters our system through its influence on the structure of production. The historical trend forecasts represent the projection of past logistical curves into the future. Logistic curves were used to prevent the share of any one sector from becoming too large. The historical shares and their historical trend projections are presented in the Appendixes 2 and 3. Coupling these fore asts of sectoral shares with our forecasts of GDP growth rates under alternative hypotheses of oil and LNG revenues results in the projected demands for the various capital goods presented in Table III.1 for the constant dollar forecasts and Table III.2 for the current dollar forecasts. The corresponding growth rates for constant dollar trend forecast are indicated in Appendix 8.

The analysis of the results is divided into the short-run (1985), the medium-term (1990) and the long-term (2000). We begin first with the short-run forecasts.

3.2.1 The Short-term Forecasts (1985)

Total demand for non-electrical machinery in Indonesia was \$ 1,948 billion om 1980. In 1985, the lowest forecast, is for \$ 3,628 billion in constant 1980 dollars, whereas the highest forecast is for \$ 3,787 billion. Thus, demand for non-electrical machinery is expected to double over the five year period between 1980 and 1985.

Special industrial machinery, particularly construction and mining machinery, other special machinery, electric machinery, and transport equipment represent the major components of the forecast demand for capital goods in Indonesia in 1985.

Demand for paper and pulp machinery is slated to rise from \$ 21 million in 1980 to over \$ 38.8 million under the medium forcast in 1985. This represents a 13.8 per cent annual rate of growth. Demand for food processing machinery is projected to increase at about twice the rate of growth of pulp and paper machinery or at 25.7 per cent. On the other hand, construction and mining

				CALL TO	INDONES	IA NSTANT 19	140 J.S.						
	1980		1985			1390			1995			2000	
PRODUCTS	ACTUAL	LOW	HED	HIGY	LON	1:0	HIGH	LOW	MED	HIGH	LOW	MED	HIGH
TOTAL ENGINEERING PRODUCTS	3957.	7957.2	8221.?	93)2.0	17149.8	17995.0	19208.3	37394.7	40092.6	40610.0	AL823.7	89641.4	98975.1
TOTAL MACHINERY NON-ELECTRIC	1948.	3627.9	3748.2	3796.8	7817.7	92)2.9	8304.5	17045.3	18275.0	14520.9	37298.5	40859.4	41498.1
POATR GENERATING MACHINERY (711)	425.	639.1	56 0. 2	657.5	1360.5	1427.5	1446.4	2954.4	3167.6	3213.4	6456.5	7873.1	7189.7
JOILER, STEAM SENERATING MACHINERY	156.	116.0	120.7	121.2	232.3	247.1	256.6	485.5	522.7	535.5	1048.1	1147.3	1167.0
ŠTŽAN ^I , NGINES (711.3)	з.	36.5	\$7.7	37.9	78.3	32.1	82.9	170.3	192.4	184.5	372.3	407.6	412.9
ALR CRAFT ENGINES (711-4)	11.	13.9	14+4	: 4.5	27.2	:8.9	30.0	56.4	60.7	62.2	121.5	132.9	135.2
OTHER INTERNAL COMBUSTION INGINES (711-51	34.	58.2	60.5	50.5	115.5	126.1	131.0	249.2	268.3	274.9	539.0	598.0	600.2
NUJIIAR REACTORS (711-7)	6.	16.1	16.5	16.8	34.5	36.2	36.6	75.1	80.5	81.4	164.3	173.9	182.3
LNGINES.NES (711.8)	38.	368+2	380.4	333.8	\$ 52 . 3	574.2	3 03.6	1899.8	2035.9	2059.6	4135.8	4582.3	4644.0
AGRICULTURAL NACHINERY	36.	79.0	82.)	32.3	145.4	135.5	161.2	297.1	319.7	327.4	634.8	694.8	706.7
OFFICE MACHINERY	40.	59.5	61.9	52.0	114.3	122.1	126.7	236.9	255.0	261.2	509.1	557.3	566.8
TYPEnRITERS (71441)	12.	21 - 3	22.1	22.2	41.2	.3.7	45.4	54.9	91.4	93.6	192.6	199.8	203.3
OFFICE MACHINES, NES (714.3)	8.	7.5	7.3	7.9	13.5	14.3	14.8	27.0	29.1	29.7	57.4	62.8	63.9
AFTAL ADRKING MACHINERY (715)	49.	102.5	136.1	136.9	222.2	233.0	235.4	484.8	519.5	525.3	1061.1	1161.7	1177.2
HACHIN: TOOLS (715.1)	36.	85.1	87.3	39.5	186.0	135.0	197.0	407.2	436.3	441.3	892.1	976.7	989.7
TEXTILE MACHINERY (717-1)	170.	447.4	461.3	455.7	381.7	1)29.6	1040.2	2152.2	2305.4	2333.0	4717.4	5165.3	5234.2

Table III.1: TREND FORECAST OF THE APPARENT DEMAND FOR CAPITAL GOODS

119 -

1

_

ter

22200613	ACTUAL VALUES	LOW	KED	HEGN	LON	420	HIGH	LOW	MED	HIGH	LOW	C3N	HIGH
SCIN.L.ATHER WORKINS 42341N.RT (F17.2)	3.	5.8	5.4	5.4	12.8	:3.6	14.1	27.0	29.1	29.8	58.6	54.1	65.2
52 AING MACHINERY (717-3)	31.	43.5	45.2	\$5.3	85.1	10.5	93.9	176.4	189.8	194.5	379.7	415.6	422.7
SPICIAL INDUSTRIAL MACHINIRY (713)	325.	667.6	589.5	535.1	1435.4	1534.0	1923.2	3127.3	5352.8	3394.7	5841.5	7496.4	7602.8
PAPER AND PULP NACHINERY 17:3-10	21.	37.3	38.5	33.0	76.5	12.4	84.6	161.2	173.6	177.9	349.1	382.1	388.7
PRINTING MACHINERY (715-2)	27.	49.0	50.5	33.9	134.6	139.7	116.8	227.4	243.7	246.4	497.0	544.2	551.4
FOOD PROCESSING MACHINERY	19.	57.6	59.3	33.9	121.1	127.1	128.1	261.9	200.7	283.3	571.5	625.9	632.9
C) 15 T LUCTION, MINENS C) 15 T LUCTION, MINENS C) 15 T LUCTION, MINENS C) 15 T LUCTION, MINENS	22).	331.5	344.5	345.7	644.6	615.3	711.2	1332.9	1434.8	1469.7	2867.0	3130.2	3192.0
MINERAL AND GLASS MORING MACHINERY UT13.51	38.	73.5	75.3	76.J	151.8	159.2	160.5	326.1	349.4	353.8	710.0	777.4	786.9
STHER SPECIAL MACHINERY (2:3)	368.	1692.8	1749.2	1737.8	3681.9	3353.6	3912.5	1092.2	\$633.4	8751.4	17637.2	19321.4	19623.1
ALAFING, CODLING COJIPHINT IZIALI	171.	294.3	304.1	317.6	538.4	659.9	678.9	1394.9	1495.6	1517.2	3354.4	3346.1	3481.1
SUNSSIAND CENTRIFICES (7:3-2)	124.	299.1	389.1	311.8	548.3	510.2	687.6	1416.1	1518.2	1536.3	3188.5	3396.4	3443.4
HE CHANICAL MANDLING EQUIP	124.	293.5	303.4	336.4	642.7	574.4	682.4	1488.4	1510.1	1529.6	3097.8	33 81.7	3431.9
POWERED-TODLS+0THER (7.9.5)	53.	37.7	38.9	39.8	71.4	74.7	75.3	148.3	158.8	160.4	319.3	349.4	353.7
SPRAYI IG, VINJING, JINIT AACAINIRY (Zianif	29.	76.6	79.1	79.6	166.4	174.6	, /5.9	363.4	389.6	393.1	795.7	871.6	881.8
SALLIFOLLER SEAFINGS	19.	19.5	20.4	20.5	37.6	40.0	41.5	77.4	63.3	85.3	166.1	181.8	184.9
NACHINERY AND MECHANICAL Apolis Aces Nes Aces A	143.	200.2	289.4	232.4	597.1	626.5	634.4	1297.2	1398.8	1489.9	2635.2	3186.8	3155.0
PÁRÍS (N) ACCESSORIES DE 1401INER7, NES (713, 9)	201.	308.3	318.7	322.8	679.9	713.5	724.2	1493.6	1601.5	1826.9	3276.1	3569.1	3653.2

(continued) (NILLIONS OF CONSTANT 1990 U.S. DOLLARS)

INJONESIA

1 98 5

L 9 80

Table III.1: TRENJ FORECAST OF THE DEMAND FOR CAPITAL GOODS

1990

1 995

2888

M

	(00		u /			NCTANT 1	948 U.S.	0011485	•				
	1980		1 98 5			1390			1 995			2000	
>?DUCTS	ACTUAL VALUES	LOW	HED	AIGH	LON	45 D	HÌGH	LOW	HED	HIGH	LOW	MED	HIGH
TOTAL	82.	1309.6	1360.7	1365.2	2514.9	2673.2	2773.1	5175.5	5570.6	5705.8	11113.5	121 64. 4	12372.9
ALCHINAL POWER	297.	469.3	487.3	439.6	918.1	376.2	1013.2	1902.7	2048.1	2098.1	4095.5	4482.9	4559.9
PONER TRANSFORMINS MACHINERY	224.	366-1	380.5	391.8	709.5	734.3	782.7	1465.1	1577.1	1615.4	3149.9	3447.8	3506.9
SATTCH GEAR, ETC. (722.2)	73.	121.2	126.0	150.2	238.9	254.0	263.7	496.4	534.4	547.4	1369.5	1178.7	1190.8
EQUIPMENT FOR DISTRIBUTIN	158.	229.3	238.3	239.1	444.4	472.4	490.2	917.7	987.8	1011.8	1973.0	21 57.6	2196.6
INSULATED AIRE AND CABLE (723.1)	135.	201.3	209.J	210.6	389.7	414.3	429.8	803.5	864.9	685.9	1726.6	1889.8	1922.2
ELECTRIC INSULATED	24.	41.0	42.7	+2+9	84.5	30.0	93.5	178.5	192.2	197.0	386.7	423.3	430.6
LISTRICAL MACHINERY	141.	289.6	300.7	331.9	337.5	532.6	614.8	1148.3	1236.0	1266.0	2466.7	2699.9	2746.2
ŘATITES AND ACCUMULATORS ACCUMULATORS	81.	113.1	117.5	117.9	214.7	2:8.2	236.7	440.0	473.5	485.0	943.3	1832.4	1050.1
21351313 _A4PS (729-2)	18.	30.3	32.2	32.3	61.6	55.5	68.0	128.4	138.3	141.6	277.1	303.3	308.5
VAL /:S, FJ3ES, :TC, :723, 31	15.	35.7	37.2	37.3	73.7	78.4	81.5	155.6	167.5	171.6	337.0	368.9	375.3
ÁJTÍNÍTIVE ELECTRICAL Egyipatent (Zégen)	25.	38.3	39.5	.0.0	82.5	\$6.6	87.6	179.9	192.9	195.3	393.7	431.4	437.6
NE AŠJEING APPERATUS (723-3)	29.	164.6	170.1	171.6	182.0	430.7	404.9	851.9	913.0	923.5	1877.4	2055.5	2082.8
ELECTRO-NECHANICAL HAND TOOLS (723.61	6.	13.7	14.2	14.3	30.5	32.3	32.7	68.1	73.0	73.6	149.6	163.8	166.0
ðimeði ves (729.9)	57.	172.6	178.3	179.5	380.1	398.9	402.4	834.2	694.4	903.0	1829.0	2003.7	2026.9
TOTAL TRANSPORT EBJEPHENT	1227.	2800.3	2994.7	2921.3	6115.4	6417.7	6488.1	13391.8	14359.1	14529.6	29345.1	32148.7	32592,6
ANTENAY VENILLES (731)	296.	112.4	116.1	117.1	246.8	258.9	261.7	541.3	580.3	587.2	118 E. S	1299.9	1317.7

Table III.1: TRENJ FORECAST OF THE DEMAND FOR CAPITAL GOODS (continued) INJONESIA

1

- 121 -

- C. L.

-

.

	Tab (co	le III ntinue	.1: 1 d)	REND FOR	LECAST OF Injonesi IS JF Com	THE DEP (A (Stant 17	14 ND FOR	60 00 5					
****	1980	•••••	1985			1390			1 995			2888	
PRODUCTS	AC FUAL VALUES	LOW	460	HIGH	- ÓW	410	HIGH	_ 2 W	MED	4IGH	- 2M	MED	HIGH
LOCONJIIVES. OIMER,	6.	34.2	39.5	19.9	86.7	36.9	69.9	186.4	199.9	202.4	40 9. 2	448.3	454.7
ASSENSERSE RAILAAV. TRAINAY CARS	12.	59.1	64.3	31.2	128.9	135.1	136.2	281.9	301.8	384.9	617.3	675.2	683.5
ALL MAY, LOCONOTIJE CLA PARTS, NES	2.	4.3	5.1	3.1	8.6	9.0	9.1	17.4	18.5	18.8	37.1	48.6	41.2
₩ŞES (732.2)	31.	28.3	29.7	29.9	47.5	¥9.7	50.2	93.1	99.7	108.8	196.2	214.9	217.9
LJRRIES AND TRUCKS (732.3)	186.	1099.4	1136.7	1148-0	2441.2	4362.2	2591.9	5374.6	5763.2	5834.5	11797.5	12925.1	13109.4
SPESIAL PJAPOSE LORALES, TRUSKS AND VANS (732.4)	33.	47.6	49.4	¥9×6	91.8	37.6	101.3	189.4	203.9	208.8	487.8	445.4	453.1
TRACTORS FOR TR-	12.	6.1	8.4	9.5	6.8	7.1	7.3	7.3	8.0	8.2	10.7	12-1	12.7
(732.5) SHIPS AND BOATS (735)	35.	259.1	267.5	259.6	565.2	513.1	598.2	1237.3	1326.5	1339.1	2710.8	2969.5	3003.3
SHIPS AND BOATS Hon-war	16.	49.3	51.5	32.0	109.5	114.9	116.1	240.2	257.4	260.5	526.5	576.6	584.5
(735.3) Smips inj 304ts Nes (735.9)	17.	72.2	74.6	75.4	147.6	135.0	156.8	316.4	339.4	343.7	688.5	756.8	766.1

SOURCER ECONOMETRIC RESEARCH LTD.

Note: The growth rates corresponding to the trend forecast in this table (based on constant 1980 US dollars) are contained in Appendix 8. 8.723

				CHI-LION	S DF CUR	RENT U.S	. DOLLA	RSI					
	1 980		1 98 5			1390			1 995			2000	
PRODUCTS	ACTUAL VALUES	LOW	MEO	HEGN	LOW	450	HIGH	LOW	NED	4IGH	LOW	MES	HIGH
TOTAL ENSINE RING PRODUCTS	3957.	11 92 6.	12067.	12241.	36 62 3.	37148.	37994.	113780.	115877.	119174.	354750.	362735.	374881.
TOTAL MACHINLRY NON-ELECTRIC	1948.	5437.	5511.	5583.	16695.	16334.	17329.	51963.	52819.	54351.	. 161708.	165338.	170968.
POATR STNERATING NACHINLRY	425.	958.	971.	384.	2 90 5.	2947.	3018.	8989.	9155.	9430.	27991.	28621.	29627.
ĐỘ LỆ RUSTEAN GENERATING MẠCHINERY (711.11	15E.	174.	178.	179.	496.	510.	536.	1477.	1511.	1 57 2 .	4544.	4643.	4809.
ŠTĒĀN (NJINES (711.3)	3.	55.	55.	56.	167.	169.	173.	518.	=27.	541.	1614.	1649.	1702.
AIR CRAFT ENSINES (711-4)	11.	21.	21.	21.	58.	60.	63.	172.	176.	183.	3 27.	538.	557.
OTHER ENTERVAL COMBUSTION	34.	57.	89.	¥0.	253.	260.	273.	758.	775.	807.	2337.	2387.	2473.
NUCLEAR REACTORS (711.7)	6.	24.	24.	25.	74.	7,5.	76.	229.	233.	239.	712.	728.	751.
ENGINE 3. NES 1711.31	38.	552.	559.	566.	1520.	1146.	1886.	\$780.	. 884.	6844.	13147.	18545.	19137.
AGRICULTURAL HACHINERY (7.2)	36.	118.	121.	121.	313.	321.	336.	904.	924.	961.	2752.	2812.	2912.
OFFICE MACHINERY (714)	40.	69.	91.	91.	245.	252.	264.	721.	737.	767.	2207.	2255.	2336.
TYPEWRITERS (714+1)	12.	32.	33.	33.	88.	80.	95.	258.	264.	275.	792.	887.	538.
DFFICE MACHINES, MES (714.3)	8.	11.	12.	15.	29.	30.	31.	82.	84.	87.	249	25%.	263.
NETAL HORKING MATHINERY (715)	49.	154.	156.	158.	475.	+81.	491.	1475.	1 502.	1542.	4608.	4781.	4851.
AACHIN: TOOLS (715-1)	36.	125.	129.	131.	397.	403.	411.	1239.	1261.	1295.	3568.	3952.	4078.
TIKTILE HADHINEPP (TLT+1)	170.	671.	679.	587.	2096.	2126.	2171.	3549.	6666.	5846.	20452.	28981.	21569.

Table III.2: TREND FORECAST OF THE APPARENT GENAND FOR CAPITAL GOODS

INDONESIA

- 1 C

Sec.3

.

t

~ 113 -

Table Ill.2:	TREND FORECAST OF THE APPARENT DEMAND FOR CAPITAL GOODS	
(continued)	INDONE SIA	

				(HILLION	S OF CUR	RENT U.S	. DOLLA	RS)					
•••••	1980		1 985			1390			1995			2000	
PRJOJCTS	ACTUAL VALUES	LOW	MEO	HIGH	.0w	120	HIGH	. J M	MEQ	NÎGN	- 2M	4ED	HIGH
SKIN, LEATHER WORKING	3.	э.	9.	10.	27.	29.	30.	52.	84.	88.	254.	260.	269.
SEATNG MACHINERY (717.3)	31.	65.	66.	57.	182.	187.	196.	537.	549.	571.	1645.	1682.	1742.
SPECIAL INDUSTRIAL MACHINERY 17141	325.	1001.	1014.	1326.	3065.	3109.	3179.	9515.	9690.	9962.	29660.	30326.	31329.
ŘÁŘĚŘ ING PJLP Macřinstv 17:4.11	21.	56.	57.	57.	163.	168.	177.	491.	502.	522.	1513.	1546.	1602.
PATNTING MADNINERY (713-2)	27.	73.	74.	75.	223.	227.	231.	692.	704.	723.	2155.	2202.	2272.
FOOD PROCESSING HACHINERA 1714-11	19.	86.	68.	55.	259.	\$62.	287.	797.	811.	831.	2477.	2533.	2608.
ČÓŇŠŤĚ JCTION, VINIVJ VACNINE V IZIVEN	220.	497.	507.	510.	L377.	1415.	1484.	4056.	4147.	4313.	12429.	12699.	13154.
MÍNÉRAL AND GLASS ADRÉING HACHINERY (714-51	38.	110.	112.	113.	324.	329.	335.	992.	1010.	1036.	3075.	3146.	3243.
ÚTŘEŘ ŠPECIAL MACHINIRY	368.	2 53 7.	2 572 .	2507.	7863.	7976.	\$164.	24500.	24953.	25682.	76462.	78184.	80861.
ALITING, CODLING COLING COLING COLING	171.	441.	447.	¥54.	1363.	1583.	1417.	4244.	4323.	4452.	13248.	13540.	14015.
ŠŲĀŠŠIŲNO CENTRIFUGES (719.1)	124.	448.	454.	¥60.	1384.	1+04.	1435.	4309.	4388.	4508.	13441+	13744.	14189.
HECHANICAL HANDLING EQUIP (713-3)	124.	ددنا.	446.	452.	1372.	1392.	1424.	4295.	4364.	4489.	13363.	17684.	14142.
P) (TRT)- TOOLS, OTHER (/13,5)	53.	57.	57.	59.	152.	154.	157.	451.	459.	471.	1384.	1414.	1458.
SPRAYING, V. NJING, VINER NACHINERY	29.	115.	116.	117.	355.	360.	367.	1106.	1126.	1154.	3447.	3527.	3630.
ALL AOLLER BEARINGS	19.	29.	30.	30.	80.	83.	87.	235.	241.	250.	729.	736.	762.
ADDLIANERY AND MECHANICAL ADDLIANEES NES 17:33	1 43.	420.	426.	*31 *	1275.	1293.	1324.	3947.	4020.	4138.	12292.	12569.	13081.
ATTS AND ADDESSORIES OF MACHINERY, NES (7. 4. 4)	201.	462.	469.	+76.	1452.	1+73.	1511.	4544.	4629.	6774.	£4203.	14523.	15854.

.

 \mathcal{V}

- 124 -

	Table	e III.	2: 1)	RENJ FO	RECAST D	F TH <u>E</u> AP Ta	PARENT D	EMANN FO	R CAPITA	L G000S			
	(com	. Indea	,	(HI_LIO	NS OF CU	RRENT U.	S. DOLLA	RSI					
	1980		1985			1 9 9 0			1 9 9 5			2080	
61DLOCE	ACTUAL VALUES	LOW	NED	HISH	_0W	420	HIGH	L J M	MED	4ÎGH	. 3W	MED	HIGH
TOTAL ELECTRICAL MACHINERY	782.	1 963.	2001.	2313.	3370.	5318.	5787.	13747.	16101.	16744.	48183 .	49224.	50985.
ÉLÉSTRISAL POWER Machinist (722)	297.	703.	717.	722.	1961.	2)15.	2114.	3789.	5920.	6157.	17755.	10140.	18790.
РОЙІХ ТХАНБРОКНІНІ Насмінікт (722.1)	224.	549.	560.	563.	1515.	1357.	1633.	4458.	4558.	4741.	13656.	13951.	14451.
SAITCH SEAR, ETC. (722.2)	73.	182.	185.	157.	510.	524.	550.	1510.	1544.	1607.	4637.	4737.	4907.
EQUIPMENT FOR DISTRIBUTIN	158.	344.	350.	353.	949.	375.	1023.	2792.	2855.	2969.	6553.	6739.	9952.
ÎNSĴĹATED WIRE AND CABLE (723.1)	135.	303.	309.	310.	832.	* 355.	897.	2445.	2500.	2608.	7485.	7647.	7921.
ELECTRIC INSULATED Soutement (723.2)	24.	62.	63.	53.	181.	186.	195.	543.	556.	578.	1677.	1713.	1775.
ELECTRICAL HACHINERV Stuff (729)	141.	434.	442.	\$\$5.	1190.	1223.	1263.	3494.	3 572.	3715.	L8594.	10925.	11316.
BATTERIES AND Accumulators (729.1)	81.	170.	173.	174.	659.	+71.	494.	1339.	1369.	1 42 3.	40 89.	4178.	4327.
ILISTRIC LAMPS (729.2)	18.	46.	47.	48.	132.	135.	142.	391.	400.	416.	1201.	1227.	1271.
VALVIS.TJJIS. 1784.3)	15.	54.	55.	35.	157.	162.	170.	473.	484.	504.	1461.	1493.	1547.
AUTOMOTIVE ELECTRICAL EQUIPMENT (729-4)	25.	57.	58.	39.	176.	179.	183.	547.	558.	573.	1707.	1746-	1803.
4- 45JƏINJ APPARATJS (723.5)	29.	247.	250.	253.	81 6.	527.	345.	2592.	2639.	2710.	8139.	8319.	8583.
ELECTRJ-MESHANICAL Hand Todls (723.6)	6.	21.	21.	21.	66.	67.	68.	207.	211.	217.	649.	663.	684.
)TMER, 485 (729.9)	57.	259.	262.	265.	812.	323.	843.	2538.	2585.	2650.	7929.	8198.	8352.
TOTAL TRANSPORT LAJIPHENT (73)	1227.	4198.	4256.	4307.	13059.	13248.	13538.	40747.	41501.	42639.	127219.	1 30090.	134704.
RAILHAY VEHICLES (731)	296.	168.	171.	173.	527.	535.	546.	1547.	1677.	1 72 3 .	5145.	5268.	5430.

- 125 -

F

Table III.2: TREND FORECAST OF THE APPARENT DEMAND FOR CAPITAL GOODS (continued) INDONESIA

(MI_JONS OF CURRENT U.S. DOLLARS)

	1980		1 985			1990			1995			2000	
\$12L2C5<	ACTUAL VALUES	LOW	MED	HEGH	- 0 W	NED.	HIGH	L 24	MEO	4IGH	_ 3 M	E3	HIGH
LOCONOTIVES, DIMER (731-31)	6.	57.	58.	39.	181.	184.	188.	567.	578.	594.	1776.	1814.	1874.
PÁŠŠĚŇŠERSI RAIL4444, Tradna v Jars (731.5)	12.	59.	90.	30.	275.	279.	284.	858.	872.	895.	2676.	2732.	2816.
À Î CĂĂY, LOCOMOTIVE CAR PARTS, NES (731.71	2.	7.	7.	5.	18.	19.	19.	53.	54.	55.	161.	164.	170.
5 S S S S S S S S S S S S S S S S S S S	31.	43.	44.	44.	101.	L03.	105.	283.	288.	296.	151.	870.	898.
LORRIES AND TRUCCS (732.3)	186.	1648.	1671.	1693.	5213.	5299.	5408.	16353.	16657.	17.22.	51145.	52302.	54028.
SPECIAL SURPOSE LORRIES, TRUCKS AND VANS (732.4)	33.	71.	73.	73.	196.	202.	211.	576.	589.	613.	1766.	1883.	1667.
TRACTORS FOR TR-	12.	12.	12.	13.	15.	15.	15.	22.	23.	24.	47.	43.	53.
(732.5) SHIPS AND BOATS (735)	35.	388.	394.	398.	1207.	1224.	1248.	3765.	3 834.	3930.	11752.	12016.	12376.
SHIPS IND BOATS	16.	75.	76.	77.	234.	237.	242.	731.	744.	764.	2283.	2333.	2489.
(735.3) S4185 AND BDATS NES (735.3)	17.	10a.	110.	111.	315.	320.	327.	963.	981.	1009.	2985.	3055.	3157.

SOURCE ECONOMETRIC RESEARCH LTD.

1

.

-her

machinery demand is expected to grow at the relatively low rate of growth of 9.4 per cent during the same period.

In short, despite low rates of growth of the economy at large the demand for machinery, even under the lowest growth scenario, is expected to grow at high rates and the dollar volume is, by any standards, substantial.

3.2.2 The Medium-Term Forecasts (1990)

The medium-term forecast is more optimistic for the economy and for the capital goods sector than that of the short-term. Both oil prices and GDP are expected to display vigorous growth and this is automatically reflected in the demand for capital goods forecast.

The total demand for non-electrical machinery in Indonesia is forecast to reach \$ 8.2 billion under the medium forecast conditions in 1990. This represents over a four-fold increase over the 1980 actual demand. Not surprisingly the rate of growth of this demand between 1980 and 1990 is projected to exceed 15.5 per cent -- or about two percentage points above the expected rate for the 1980-1985 period.

The special emphasis group (plant processing equipment) shows comparable dynamism. Food processing machinery shows the highest rate of growth of about 21 per cent per year. This is a bit lower than that expected for the period 1980-1985, but still a very rapid rate indeed. Demand for pulp and paper machinery is expected to reach \$ 81.4 million which translates into an annual rate of increase of over 14.5 per cent between 1980-1990. This rate is higher than that projected for this sector between 1980-1985.

3.2.3 The Long-Term Forecasts (2000)

The long-term forecast of the demand for capital goods is optimistic. The growth trend expected in the medium-trend is expected to accelerate further in the long-term particularly as the oil market tightens and LNG revenues reach peak levels.

The long-term demand for non-electrical machinery is expected to top \$ 37.3 billion under the most pessimistic forecast and to approach \$ 41.5 billion under the most optimistic conditions. In either case, the projected demand for the year 2000 is about 20 times the actual 1980 volume in constant 1980 US dollars. Such a volume is large enough to support a broad production programme of all types of non-electrical machines in Indonesia. Almost half the expected demand for engineering products in Indonesia will be accounted for by non-electrical machinery in the year 2000. This is despite the fact that under the historical trend assumptions demand for capital goods is slated to grow at slower rates than those projected for engineering products.

Special industrial machinery demand is projected to reach about \$ 7.5 billion (under the medium forecast). Demand for pulp and paper machinery will account for \$ 382 million, whereas the demand for food processing machinery will account for \$ 626 million. The largest component of this product group is the demand for construction and mining equipment which is projected to account for about one-half of the total demand for this category (\$3.2 billion).

3.3 The Off-Trend Forecasts

The historical trend is not expected to hold as Indonesian planners will certainly intercede to alter the course of the economy and re-structure it to meet their target vectors of output. Repelita IV is already on the drawing boards and the current low ratio of manufacturing value added to GDP and the limited production of non-electrical machinery are the focus of the planners interest and consideration.

If planning has any meaning it is its vision and ability to change the historical course of the economy. This is why our forecasts are adjusted to reflect planners preferences and as such our forecasts become consequences of what might be expected if planners are to realise their targets.

Two primary changes were introduced to alter the historical trend forecasts. First the share of manufacturing is raised to 17.5 per cent of the total GDP and thus all other shares were scaled accordingly. Second, a different rate of growth for GDP was envisioned to correspond to the expected new structure of the economy. The results of such changes are drastic indeed, as is evident in Tables III.3 and III.4. The corresponding growth rates for constant dollar off-trend forecast are indicated in Appendix 9.

3.3.1 The Short-term Forecasts (1985)

The forecast demands for capital goods are highly sensitive to the underlying assumptions about sectoral shares in the structure of GDP. Although the forecasts are sensitive to GDP, they are more markedly sensitive to the assumptions about sectoral shares. The magnitude of sensitivity grows over time, but it is still visible in the short-term.

The demand for non-electrical machinery is projected to reach \$ 4.7 billion under the high GDP scenario, and about \$ 4.3 billion under the low GDP scenario in 1985. Regardless of the GDP forecast, the off-trend demand forecasts are substantially higher than the corresponding values under the historical trend assumptions.

Demand for special industrial machineryeweals the same profile, showing a forecast value of \$ 841 million under the melium GDP scenario in 1985. Demand for food processing machinery is expected to exceed \$ 70 willion and demand for pulp and paper machinery \$ 39.8 million. Whereas the demand for food processing machinery is slated to rise under the off-trend scenario, that for pulp and paper appears invariant to this change.

3.3.2 The Medium-Term Forecasts (1990)

The medium-term forecasts reveal more clearly and distinctly the influence of growing off-the-trend. Demand for non-electrical machinery is projected to reach \$ 11.7 billion (or about \$ 3.5 billion above the historical tread projection) by 1990. Similar substantial increases are also noted in the various sub-components of non-electrical machinery. Demand for special industrial machinery will likely exceed \$ 2.1 billion; and demand for other special industrial machinery could exceed \$ 5.4 billion. This argues for a major increase in the demand for plant processing equipment.

Some sub-components of machinery demand will not increase however, as much as the general increase in the group demand. This is particularly evident in the demand for pulp and paper machinery and mining equipment. On the other hand, substantial increases are noted in the demand for food processing machinery, mineral and glass working machinery, and pumps and centrifuges.

- 129 -

				(HE.LIO	INJONES NS JF CO	IA N3TANE 1	990 U.S.	DOLLAPS	1				
	1980		1 985			1390			1995			2000	
10UCC13	ACTUAL VALUES	LOW	MED	41GH	. ON	910	HIGH	. SW	MED	4IGH	LOW	MED	WIGH
TOTAL THUTNELRING PRODUCTS ICE.	3957.	9183.4	9753.3	10222.4	23075.2	25214.9	25941.4	64922.9	69756.8	71105.6	177690.8	194750.2	198055.4
ACHINIAN NON-ELECTRIC	1948.	4254.0	4532.3	47%L+8	11374.1	11635.8	12049.4	30124.6	32367.4	33839.5	82456.9	90372.2	92033.4
00223 JENERATING NACHIN_RY (711)	425.	758.3	807.1	\$+3.8	1354.0	2053.6	2125.5	3301-4	5696.0	5813.7	1.500.8	15892.7	16183.9
901,12,57544 31,12741[NG 442H14227 1211,141,14	136.	116.3	120.7	121.2	232.3	247.1	256.6	485.5	\$22.7	535.5	L948.1	1147.3	1167.0
4711-3)	3.	44.1	47.3	1	113.5	119.9	123.9	308.1	330.9	337.3	842.5	922.9	937.6
ALR CRAFT INSINES (Pling)	11.	13.9	14.4	14.5	27.2	? 8.9	30.0	56.4	60.7	62.2	121.5	132.9	135.2
OTHER INTERNAL COMBUSTION ENGINES (711,5)	34.	38.2	60.6	50.8	118.5	1?6.1	131.0	249.2	268.3	274.9	539.0	590.8	680.7
WOLIAR READTORS (711.7)	6.	15.7	16.1	16.1	32.4	14.0	34.2	67.8	71.7	72.4	136.6	149.5	151.4
ENGEN: 5. NES (711.3)	38.	454.3	487.3	510.7	1253.9	1325.6	1365.7	3464.9	3722.5	3795.8	9520.0	10427.3	18596.6
AJRICULTURAL MACHINERY	36.	79.0	#2.J	32.3	146.4	135.5	161.2	297.1	319.7	327.4	634.8	694.0	786.7
OFFICE NACHINERY (715)	40.	59.3	61.9	32.0	114.9	1?2.1	126.7	236.9	255.0	261.2	50 9. 1	\$57.3	566.8
TYPEWRITERS (7.4.1)	12.	°1.J	22.1	22.2	41.2	.3.7	45.4	84.9	91.4	93.6	192.6	199.8	203.3
OFFICE MACHINES, NES (7.4.3)	8.	7.6	7.5	7.9	13.5	14.3	14.8	27.0	29.1	29.7	57.4	62.8	63.9
N-TAL HORKENG HADAINERY (715)	49.	125.1	133.5	139.4	324.9	343.3	393.4	863.7	949.4	967.6	2418.5	2643.5	2692.0
4104 INE TOOLS (715+1)	36.	103.7	110.7	115.7	271.8	217.2	235.7	741.1	7 96 . 2	911.5	2029.5	2223.3	2254.9
TERTILE MAININERY (717-1)	170.	547.3	584.4	613.9	1440.4	15?2.4	1547.4	3933.1	4229.3	4386.6	10773.4	11003.0	11992.5

Table III.3: SFFREND FORECAST OF THE APPARENT SEMAND FOR CAPITAL GOODS

THROMESTA

C

Q

• -

I. 130 -

-6

	(cor	ntinued)		INDONES	TA							
				(41.110	15 3F CO	NSTANT 19		OOLLARS	•				
	1988		1985			1990			1995			2000	
{10C6><	ACTUAL VALUES	LOW	MED	YESH	LOW	450	HIGH	LOW	MED	HIGH	LJW	MED	HIGH
3410,L.41422 40P41N5 44641N24 (717.21	з.	6.2	6.4	6.4	12.4	13.6	14.1	27.0	29.1	29.8	58.6	64.1	65.2
SI AING MACHINERY (717.3)	31.	43.5	45.2	.5.3	85.1	30.5	93.9	176.4	189.8	194.5	379.7	415.6	422.7
SPESIAL INDUSTRIAL Machinery (715)	325.	789.6	841+2	876.6	2052.2	2157.5	2223.9	5580.4	5995.8	6094.6	15273.0	16738.5	16973.4
ATCHINISA ATCHINISA (1:3-1) Dible music miles	21.	37.3	38.9	39.0	76.5	31.4	84.6	161.2	173.6	177.9	349.1	382.1	366.7
(7.8.2)	27.	59.5	63.3	56.3	153.1	+ 151+7	166.5	415.2	446.1	454.6	1133.5	1244.0	1264.0
F003 PR3CESSING MACHIN_RY {7:3.31	19.	66.3	70.5	72.7	168.2	177.7	180.1	454.4	488.2	498.2	1241.4	1368.4	1362.4
CONSTRUCTION.MINING MACHINERY (713.4)	220.	331.5	344.5	3.5.7	644.6	ò \$ 9 . 3	711.2	1332.9	1434.8	1469.7	2867.0	3138.2	3192.8
MINERAL AND GLASS Adreins Machinery 1213-31	38.	109.2	116.4	122.1	280.2	296.0	306.8	759.6	816.0	837.8	2376.9	2275.3	2329.5
01424 SP10141 MACHINIRY (718)	368.	1969.0	20 98 . 7	2515+0	5166.4	5436.6	5636.2	14884.0	15132.9	15486.7	3 \$ 572 . 2	42275.7	43163.8
NEAFING.200LING 20184:NT Triall	171.	341.1	363.3	395.0	\$ 7 2 . 6	9+2.7	975.5	2431.5	2612.6	2678.8	6658.1	7297.4	7465.4
PUMPS AND SENTRIFUSES (719.2)	124.	343.7	366.2	311.8	\$97.5	947.9	972.5	2443.5	2625.6	2668.3	6598.1	7332.3	7434.8
1.C44NICAL HANOLINS EQJIP (719.3)	124.	339.1	361.3	379.4	994.4	344.7	975.7	2441.6	2623.5	2684.4	6589.4	7331.7	7484.1
PONER: O-TOOLS, OTHER (719.5)	53.	37.0	37.3	37.9	67.7	70.8	71.1	133.7	143.0	144.2	258.9	294.1	297.5
3244113.41NJING. 37M22 14341N224 1713.61	29.	74.6	76.6	76.8	156.2	153.7	164.7	323.4	346.5	349.6	658.5	721.2	729.9
AALL.ADLLER BEARIN'S	19.	19.6	20.4	20.5	37.6	+0.8	41.5	77.4	83.3	85.3	166.1	161.6	184.9
MACHIN, RY AND MEDHANICAL App.Iandes.nes (7:3-3)	143.	313.1	333.2	350.9	903.5	84844	888.5	2176.8	2338.9	2405.8	5952.2	6524.1	6696.7
PARTS AND ACCESSORIES OF MACHINERY,NES (713-3)	201.	371.3	396.1	418.3	989.3	10+5.8	1086.1	2708.1	2909.9	2996.8	7424.7	8137.6	\$359.1

Table III.3: DFFRENO FORESAST OF THE APPARENT DEMAND FOR CAPITAL GOODS

Į

-

-her

Table	111.3:	OFFILEND	FORECAST	OF	THE	APPARENT	DEMAND	FOR	CAPI

(continued)

Ľ

V

TAL GOODS

INDONESIA

(HILLIONS OF CONSTANT 1980 U.S. DOLLARS) 19.80 1 190 1985 1 995

	1980		1985			1990			1 995			2000	
\$10L0C2<	ACTUAL VALUES	LOW	NED	HIGH	LOW	120	HIGH	LOW	MEO	HIGH	LĴŴ	MEG	NIGH
TOTAL LESTRICAL MACHINERY	782.	1309.6	1360.7	1365.2	2514.9	2673.2	2773.1	5175.5	5570.6	5705.8	11113.5	12164.4	12372.9
ÉLÉČTRIDAL POWER NACHINERY (722)	297.	69. 3	487.3	437.6	918.1	776.2	1813.2	1902.7	2048.1	2098.1	4095.5	4482.9	4559.9
HOMER TRANSFORMINS MACHINERY TREELS	224.	366.1	380.5	331.8	709.5	734.3	782.7	1465.1	1577.1	1615.4	5149.9	3447.8	3506.9
SATTON GEAR, TTC. (722.2)	73.	121.2	126.0	126.5	238. 3	234.0	263.7	496.4	534.4	547.4	1069.5	1178.7	1190.8
EQUIPALAT FOR DISTRIBUTIN ELECTRICITY (723)	:58.	229.3	238.3	239.1	446.4	472.4*	490.2	917.7	987.8	1011.8	1973.0	2159.6	2196.0
INSILATED HIRE AND DABLE	135.	201.)	209. J	210.6	389.7	414.3	429.8	803.5	864.9	885.9	1726.6	1889.8	1922.2
ELECTRIC INSULATED EQUIPMENT 1723-21	24.	41.0	42.7	42.9	84.5	9 0. 0	93.5	176.5	192.2	197.0	396.7	423,3	430.6
ČLČŠTŘÍCAL HACHINERY DTHER 17231	141.	289.6	300.9	321.9	357 .5	392.6	614.8	1148.3	1236.8	1266.8	2466.7	2699.9	2746.2
ŠATTĚLIS AND Accumulators Accumulators	81.	113.1	117.5	117.9	214.7	2:8.2	236.7	440.0	473.5	485.0	943.3	1832.4	1050.1
TZALC LANPS	18.	30.9	32.2	32.3	61.6	55.5	68.0	128.4	138.3	141.6	277.1	303.3	308.5
(723.3) 41(4:3.7)313,	15.	35.7	37.2	37.3	73.7	78.4	81.5	155.6	167.5	171.6	337.0	369.9	37 5. 3
AUTONOTIVE ELECTRICAL EQUIPMENT 1729.41	25.	37.0	38.0	39.2	76.7	30.4	51.1	158.3	169.7	171.5	321.5	352.3	357.0
HE ISURING APPARATUS (729.5)	29.	203.2	217.3	2:3.2	561.3	573.3	611.4	1551.6	1667.0	1599.5	4263.6	4670.8	4745.6
LLLCTRD-NECHANICH, HAND TODLS (729.6)	6.	16.9	18.1	18.9	45.4	+8.0	49.4	124.7	133.9	136.5	342.0	374.7	388.7
01459, VES (729,9)	57.	168.5	173.1	173.5	358.0	375.2	377.7	744.5	797.8	505.3	1518.2	1662.9	1683.5
TOTAL TRINSPURT EQUIPHENT (73)	1227.	2729.4	2005.7	2814+4	5749.2	60 ? 4 • 9	6070.6	11929.0	12782.9	12914.8	24307.3	26624.8	26977.6
RAILHAY VEHICLES (731)	296.	108.3	111.5	112+1	230.8	2 • 1 • 8	243.5	480.1	514.4	519.5	190.2	1073.4	1087.1

i

Table III.3: OFFREND FORECAST OF THE APPARENT JEMAND FOR CAPITAL GOODS (continued) INDOMESIA

(HILLIONS OF CONSTANT 1980 U.S. DOLLARS)

	1980		1 98 5			1390			1995			2090	
i j decea	VALUES	LOW	ME D	HIGH	LOW	10	HIGH	LON	MED	HIGH	LOW	MED	HIGH
LJCJAJII4:5, JIAER (731.3)	6.	36.9	37.3	39.0	78.9	32.7	63.3	164.4	176.2	178.1	335.4	367.5	372.4
PASSENGERST RAILIAY, TRAAMAY CARS (731.5)	12.	57.8	59.2	53.2	122.3	1?8.0	128.5	255.0	272.8	274.9	523.4	572.4	578.8
RAILMAY, LOCOMOTIVE CAR PHRTS, NES (731.7)	٤.	4.8	4.9	4.9	8.1	8.5	8.5	15.4	16.5	16.6	30.4	33.3	33.7
305-5 (732.2)	31.	26.2	29.J	29.0	44.7	+6.7	47.0	82.5	88.4	89.2	161.1	176.4	178.6
LURRIES AND TRUCKS (732.3)	186.	1070.3	1101.1	1134.9	2294.0	2434.4	2423.5	4785.9	5128.9	5183.3	9769.0	10708.9	10845.3
SPLCIAL PURPOSE LORRIES, TRUCKS AND VANS 1732.4)	33.	47.5	49.4	49.6	91.5	37.6	101.3	189.4	203.9	208.8	407.0	445.4	453.1
TRACIORS FOR TR-	12.	7.8	8.1	9.1	5.8	6.1	6.2	4.3	4.7	5.0	2.2	2.7	3.2
(732,5) SHIPS 4ND BOATS (735)	35.	252.3	259.2	259.7	531.0	336.4	559.9	1101.9	1180.6	1191.4	2246.4	2460.2	2490.0
210CE CV1 251HC Friendy	16.	48.3	49.5	.9.7	102.4	1)7.3	108.1	213.2	228.4	530.0	435.3	475.6	482.7
(735,3) Smips ind Boats Nes (735,9)	17.	69.5	71.5	71.9	136.7	1 + 3 - 3	144.6	276.3	296.3	299.6	556.0	607.5	618.2

SOURCE ECONDHETRIC RESEARCH LTD.

Note:

The growth rates corresponding to the off-trend forecase in this table (based on constant 1980 US dollars) are contained in Appendix 9. •

Table III.4: Offiting forecast of the apparent Jimand for Capital Goods imponesta

1

				MIL. TONS	OF CURA	ENT U.S.	DOLLAR	2)	8 8 9 9 8 9	8 8 8 8 8 8			
	1986		1985			1990			1 995			2008	
P30JCT5	ACTUAL	LON	HED	HOIH	10,			30	160	1917	NC J	NED	HIGH
TITAL TVGING PRODJSTS (7)	3957.	13764.	14383.	15172.	53985.	52)53.	54130.	137539.	201614.	209667.	7/0348	788059.	
TOTAL Machiver Non-Elstric 17:1	1948.	6376.	6 664 .	6192.	23648.	24144.	25143.	91659.	93550.	96 9 3 6 .	357474.	365632.	379242.
PORTA STRAFTING Abcatre at 12112	• 5 5 •	1136.	1187.	1244.	4173.	4260.	4435.	15130.	16463.	17061.	62965.	64310.	66689.
301524 51244 6242 Patt NG 42 H 42 2 7 (7 11 - 1)	156.	174.	178.	173.	496.	310.	536.	1477.	1511.	1572.	4544.	4643.	4809 .
572ÅM_243INES (711.3)	ч.	66.	.63	12.	242.	• 8 4 2	258.	937.	926.	.066	1652.	3734.	3864.
412 CR1FT _4GT NES (711+4)	.1.	21.	21.	21.	58.	60.	63.	172.	176.	103.	527.	536.	557.
DINER INTERNAL COMBUSTION	. 4 E	87.	8 9.	.04	253.	:60.	273.	758.	775.	607.	. 1882	2387.	2473.
111111 1211111 171111	•	24.	24.	24"	69.	70.	71.	204.	207.	213.	592.	605.	624.
EX6125 5. 855	36.	682.	716.	.53.	2678.	2736.	2950.	10543.	10759.	11137.	41272.	42282.	43665.
AGALCJL FJRAL MACHINERY (712)	36.	118.	121.	121.	313.	121	336.	904.	924.	961.	2752.	2812.	2912.
DEFICE MACHINERY (714)	.64	.68	.16	91.	2 4 5 .	252.	264.	721.	737.	767.	2201.	2255.	2336.
77914217145 (7.4.2)	12.	32.	33.	33.	85.	• 0 6	95.	258.	264.	275.	. 92.	.683.	. 34 .
FFLSE 44041NES.455 (7.4.3)		11.	12.	12.	29.	30.	31.	82.	• 3 .D	87.	249.	254.	2 63 .
MLTAL +DRAINS MALHINERY (7.5)	49.	183.	196.	206.	694.	.09.	737.	2689.	2744.	2940.	10485.	10721.	11093.
MACHIVE TOOLS 1715.11	36.	155.	163.	171.	560.	593.	617.	2255.	2301.	2382.	. 6676	. 1996	.9388.
T. XFIL. 4404ENERT	1 70.	820.	6 59.	•10E	3077.	3143.	3271.	11967.	12212.	12638.	467 66 .	47751.	.7464

- 134 -

1

					ſ	SUALLAR	4 n - 2 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	ISBNOCNI	SNUT TI	•1 •1	ənuşqu	00)	
	5000			566 T			CPF1					UN C 1	
нотн	G3N	MCJ	HIGH	() JW	MOT	HICH	034	۲0 <u>۳</u>	HICH	0 3H	۲0 <u>م</u>	AVENEZ VCLOVE	5100055c
•692	566.	• • 5 2	•••	••¥	•29			•15	• 0 1	•6	•6	31	CNIDADM FINIS
• 2 • 2 1	1682.	•9491	•125	*6 * 5	1255	•961	•291	192.	•29	•99	•59	37.	1717.451 1717.451 1717.451
.54668	• 5 5 4 2 9	99573*	*5 99 2 T	.95211	.01001	•0794	• • 1 2 • •	4382.	.293.	.7851	1:83.	•551	25-514L - 193057812C
.5081	*9 *5 T	1212.	·225	•205	• 16 1	.772	• 99 7	1 63.	.16	.12	•95	•12	4571757 Abinibar 1792577 barb
•6025	• • 2 0 5 + •	4923.	12241	*5 8 2 1	1263.	•2 • 5	120	.7 55	•86	• 66	*6 P	.75	REATENS ARCHENERY 17:4.21
* 7 1 9 5	* 5 8 5 5	5382.	1438.	• 1 1 • 1	1392*	.978	•291	•6 5 8	• 1 0 1	• 4 0 T	•66	•61	1214-31 1901 - 44 1902 - 400522140
• 45 1 2 1	156331	124291	12721	*2474	.9504	• 7 8 7 1	*51*1	12251	*01£	•20£	•264	520.	12,9,41 12,4142 23,512,001134,91145
.9939	.1159	• 4006	*6542	5328*	1162	•0+9	1119	• 86 5	.061	•121	* 4 9 1	.65	12-1-1 1084 100 4704 105 44 1184 100 20 423
. 286571	*698723	122291	*1 4454	+3738.	+5883+	•19411	*59211	11033*	•2 • 2 •	·990£	•1562	• 8 9 5	1113) 47041454 11041454
.29705	. 6 3 8 9 .	.20865.	•1982	*1552	.8621	5036.	• 5 4 6 1	• 9 06 1	•£9 <u>¢</u>	****	•115	.171	171-11 101-14 101-14 102-14 10 10 10 10 10 10 10 10 10 10 10 10 10
20634.	. 8 7 9 6 5		*7292	.9855	• 9 2 4 2	.esos	*25ET	• 1 16 1	• 2 9 5	•615	•5 15	154.	211112 201422 747 JENLEILIZE
. 84882		• 60062	.8781	• 2 9 5 1	16272	·9E03	• 05 E T	•0161	•655	• 215 •	• 8 0 5	1241	1113-31) 4564741376 4740F140 EJ116
1556.	.0611	•9911	42.34	+12*	•201	*843	•9+1	*5 * 1	•95	•95	•55	.52	2111121 2042320-10062,01423
3006.	. 8165	• 5 5 9 2	1026.	• 1 0 0 1	• • 86	• • • • 5	138.	**25	113*	113.	.511	•62	10+5+10 145+112+110 145+112+1
• 291	•982	• • 2 1	• • sz	• 1 • 2	533.	•2•	.28	• 0 9	• 0 5	.05	•6 2	•6 T	1113*11 11114201154 9581402
• 56 542		*\$0652	•0901	•0929	e es 3.	1837.	•1523	*9723	•215	• 06 +	•69 •	1+3.	1213*11 150*17.125*12 170*17:54 740 HE34VAICVE
*54445	12 65 3 .	257 98 *	•2618	.014 8	• 0 • 7 •	5566.	•2572	\$113.	•215	• 2 8 5	•155	•102	(113*3) 35 480414544482 37412 780 80052235152

Table III.4: SFFTERN FORECAST OF THE APPARENT SEMAND FOR CAPITAL GOODS

1

Table III.4: JFFTRENJ FORECAST OF THE APPARENT JEMAND FOR CAPITAL GOODS(continued)INJONESIA

(HIL.)	IONS OF	CURRENT	U.S.	JOLLARS		

.

	1980		1 98 5			1990	-		1995			2000	
212L0084	AUTUAL VALUES	LOW	MEO	HIGH	LOW	1:0	HIGH	L D W	MEO	41GH	LOW	MED	HIGH
TOTAL ELECTRICAL MACHINERY	,85°	1963.	2301.	2313.	3376.	5718.	5767.	15747.	16101.	15744.	48188.	49224.	50985.
ACHINITY POHER	297.	703.	717.	722.	1961.	2315.	2114.	5789.	5920.	6157.	17755.	18148.	18790.
-0727 TRANSFORMINS MACHINIRY (722-1)	224.	549.	560.	563.	1515.	1357.	1633.	4458.	4558.	4741.	13656.	13951.	14451.
SALTON SEAR, ETC. (722.2)	73.	182.	185.	197.	510.	524.	550.	1510.	1544.	1607.	4637.	4737.	4907.
LAUIPALNI FOR DISIRIBUTIN	158.	344.	350.	353.	949.	375.	1027.	2792.	2 855.	2 96 9.	8553.	8733.	9052.
INSULATED HERE AND CABLE (723.1)	135.	303.	309.	310.	832.	155.	897.	2445.	2 500.	2600.	7485.	7647.	7921.
ELICTRIC INSULAT.) EQUIPMENT (723.21	24.	62.	63.	63.	181.	186.	195.	543.	556.	578.	1677.	1713.	1775.
LLISTRICAL MACHINERY	141.	434.	442.	445.	1190.	1353.	1283.	3494.	3 572.	3715.	10694.	10925.	11316.
SATTERIES AND ACCUMULATORS	81.	170.	173.	174.	459.	+71.	494.	1339.	1369.	1423.	408 3 .	4175.	4327.
CLESTRIC LAMPS	13.	46.	47.	48.	132.	135.	142.	391.	400.	416.	1201.	1227.	1271.
441413+13413+ 1793 - 34	15.	54.	55.	55.	157.	162.	170.	473.	484.	504.	1461.	1493.	1547.
AUTONOTIVE ELECTRICAL	25.	55.	56.	56.	164.	166.	169.	482.	490.	503.	1394.	1426.	1471.
MEASURING APPARALIS (729.5)	29.	305.	320.	337.	1199.	1225.	1276.	4721.	4818.	4 987.	15484.	18908.	19555.
ELECTRO-MECHANICAL MAND FOSLU	6.	25.	27.	28.	97.	97.	103.	379.	387.	401.	1483.	1516.	1569.
DTME9, HES (729.9)	57.	253.	255.	256.	765.	775.	784.	2265.	2306.	2363.	6582.	6723.	6937.
TOTAL TRANSPURT LOUIPHINT	1227.	4091 .	4125.	4150.	12277.	12.38.	12667.	36296.	36 946.	37900.	105379.	107737.	111167.
ALLAAY VENICLES (731)	296.	163.	164.	155.	493.	. 39.	508.	1461.	1487.	1524.	4243.	4343.	4480.

ŧ

أنبع ستستعر الأ

	(cc	ontinue	ed)		INDONESI	A							
			!	HIL.IONS	OF CURR	ENT U.S.	DOLLARS	5)			*******		
	1980		1 98 5			1390			1995			2400	
PRIDUCTS	ACTUAL VALUES	FOM	MED	HIGN	LOW	NE D	HIGH	LOW	NEO	HIGH	LOW	MED	HIGH
LJCOMOTIVES, JTHER IZBIRN	6.	55.	56	56.	168.	171.	174.	500.	509.	523.	1454.	1487.	1534.
PASSINGIRSI RAILAAY. TRAMAAY CARS 1731-31	12.	87.	87.	A7.	261.	264.	268.	776.	786.	657.	2263.	2316.	2385.
ALILWAY, LOCOMOTIJE CAR PARTS, NES (731.7)	2.	7.	7.	7.	17.	15.	18.	47.	48.	49.	132.	135.	139.
M 25 S (7 3 2 + 2)	31.	42.	43.	43.	95.	97.	98.	251.	255.	262.	699.	714.	736.
LORRIES AND TRUCCS 1732+31	186.	1605.	1619.	1529.	4899.	4764.	5057.	14 562 .	14824.	15211.	42351.	43301.	44690.
SPECIAL PURPOSE LURRIES. TRUCKS AND VANS (732.4)	33.	7⊥.	73.	73.	198.	202.	211.	576.	589.	61 3.	1764.	1803.	1867.
TRACTORS FOR TR-	12.	12.	12.	12.	12.	13.	13.	13.	14.	15.	9.	11.	13.
(732.5) SAIPS AND BOATS (735)	35.	378.	381.	353.	1134.	1149.	1163.	3353.	3412.	3496.	9739.	9955.	10261.
SHIPS AND BOATS	16.	72.	73.	73.	219.	?22.	226.	649.	660.	677.	1587.	1929.	1989.
(735.3) Saips and Boats Nes (735.9)	17.	104.	105.	136.	292.	296.	302.	841.	856.	879.	2418.	2465.	2547.

Table JII.4: OFFICEND FORECASE OF THE APPARENT DEMAND FOR CAPITAL GOODS TNOONESTA

SOLICE EUDNOMETRIC RESEARCH LTD.

1

.....

3.3.3 The Long-Term Forecasts (2000)

Manufacturing value added is projected to reach 25 per cent of total GDP in the year 2000, and this assumption seems to result in some very substantial and perhaps infeasible demands for machinery. The total demand for non-electrical machinery is put at \$ 82 billion for the low GDP scenario but jumps to \$ 92 billion for the high GDP scenario. This translates into an annual rate of growth of over 20 per cent for the low GDP scenario between 1980 and 2000 and an annual rate of growth of 21.3 per cent for the high GDP scenario. Both of these rates are perhaps too high to sustain over such a long period. However, it is clear that any restructuring of the Indonesian economy with higher shares for manufacturing will <u>ipso facto</u> translate into large demands for machinery which would either be produced locally or have to be imported.

The demands for the various types of machinery are also projected to rise sharply; the demand for special industrial machinery is projected to exceed \$ 16.7 billion for the medium GDP scenario in the year 2000; and that for other special machinery is put at \$ 42.3 billion.

The off-trend forecasts are particularly tied to the specific assumptions about the structure of production envisaged, but such assumptions can be changed (scaled down) and other sets of forecasts generated. This is why we explained in detail the methodology and our assumption in the preceding sections. Indonesian planners may prefer a different profile or might be interested in the sensitivity of the forecasts to different assumptions. $\frac{10}{10}$ These experiments can be easily performed.

3.4 Summary of Main Features of Demand Forecasting Results

There are three major dimensions to the forecasting results that reveal a number of interesting features of the expected pattern and structure of the demand for capital goods in Indonesia.

The first relates to the largest demand volumes expected. This aspect singles out the size of the expected market. Not surprisingly trucks and lorries dominate other demands for capital goods in the eighties and early nineties but fall to second rank below textile mechinery in the year 2000 (see Table III.5). Almost the same set of products dominate the list of the five largest demands for capital goods under both trend and off-trend hypotheses. However, there remains some important differences between the two, particularly in the lower ranks (see Tables III.5 and III.6).

Table III.	5 Five	larg	gest	expect	ted dei	nanc	is tor	capi	tal	goods	10
Indonesia,	1985,	1990	and	2000,	based	on	off-t	rend	low	foreca	ast
			(Ra	nked b	y volu	me)					

	Year 1985		<u>1990</u>		2000
1.	Lorries and trucks 732.3	1.	Lorries and trucks 732.3	1.	Textiles machinery 717.1
2.	Textile machinery 717.1	2.	Textile machinery 717.1	2.	Lorries and trucks 732.3
3.	Engines, NES 711.8	3.	Engines, NES 711.8	3.	Engines, NES 711.8
4.	Parts and accessories of machinery, NES 719.9	4.	Parts and accessories of machinery, NES 719.9	4.	Parts and accessories of machinery, NES 719.9
5.	Power transforming machinery 722.1	5.	Pumps and centrifuges 719.2	5.	Mechanical handling equipment 719.3 and Pumps and centrifuges 719.2

Source: Based on Table III.3 of Part Two.

	Table III.6 Five	Larges	t expected demands i	for ca	pital goods in
	Indonesia, 1985,	1990,	and 2000, based on	trend	low forecast
	Year 1985		1990		2000
1.	Lorries and trucks 732.3	1.	Lorries and trucks 732.3	1.	Lorries and trucks 732.3
2.	Textile machinery 717.1	2.	Textile machinery 717.1	2.	Textile machinery 717.1
3.	Engines, NES 711.8	3.	Engines, NES 711.8	3.	Engines, NES 711.8
4.	Power transforming machinery 722.1	4.	Power transforming machinery 722.1	4.	Parts and accessories of machinery, NES 719.9
5.	Construction, mining machinery 718.4	5.	Parts and accessori of machinery, NES 719.9	es 5.	Power transforming machinery 722.1

Source: Based on Table III.1 of Part Two.

Although market size is an important indicator of magnitude and importance, the rates of growth of demand over the planning horizon is equally illuminating. The result of ranking demands for capital goods by their rate of growth show a number of product demands that are likely to assume importance in the next decade or two. Of particular importance are engines, ships, locomotives, measuring apparatus and food processing machinery (see Table III.7).

Table III.7 Five fastest growing expected demands for capital goodsin Indonesia, 1985, 1990 and 2000

		(Ran	ked by growth rates;			
	Year 1980-1985		1980-1990	1980-2000		
1.	Steam engines 711.3	1.	Steam engines 711.3	1.	Steam engines 711.3	
2.	Engines, NES 711.8	2.	Engines, NES 711.8	2.	Engines, NES 711.8	
3.	Ships and boats 735	3.	Ships and boats 735	3.	Measuring apparatus 729.9	
4.	Measuring apparatus 729.9	4.	Ships and boats 735	4.	Food processing 718.3	
5.	Locomotives, other 731.3	5.	Lucomotives, other 731.3	5.	Ships and boats 735	

Source: Based on the tables in Appendix 9 of Part Two detailing off-trend low growth rates.

Industrial planners will also be interested in the degree of sensitivity of expected demands for capital goods to the pace of overall economic growth. Of specific interest are those stable demands that will remain high irrespective of the general level of GDP growth. Almost 11 demands for capital goods in Indonesia over the period 1985-2000 will likely exhibit limited sensitivity to GDP growth fluctuations. These demands are presented in Table III.8. Among the most notable demands distinguished in the table are those for food processing machinery, engines, textile machinery, machine tools, mechanical tools, and transportation vehicles and boats.

Table III.8 Expected demands for capital goods in Indonesia that are insensitive to GDP growth rate fluctuations

- 1. Steam engines (711.3)
- 2. Engines, NES (711.8)
- 3. Textile machinery (717.1)
- 4. Machine tools (715.1)
- 5. Food processing machinery (718.3)
- 6. Pumps and centrifuges (719.2)
- 7. Measuring apparatus (729.5)
- 8. Electro-mechanical hand tools (729.6)
- 9. Passenger railway and tramway cars (731.5)
- 10. Lorries and trucks (732.5)
- 11. Ships and boats (735)

Source: Based on Table of Growth Rates 1980-2000 in Appendix 9.9 of Part Two.

3.5 Concluding Observations

There are two ways to illustrate the utility of our forecasts and the elements of a strategy for the development of a viable plant processing industry in Indonesia. The first involves drawing a master matrix which lists the products to the smallest available detail and then classifies each product according to the complexity of technology, the factor intensities involved, the infrastructure required, the size of the respective domestic, sub-regional and regional market, and the minimum viable scale of production. It is only within this broad framework that a comprehensive and comparative picture may be obtained. Alternatively, a detailed product by product discussion may be undertaken taking into consideration the relevant criteria developed above.

Footnotes

- 1/ Although it would have been desirable, it was not possible to treat replacement and new investment separately. Replacement investment will undoubtedly become more important when Indonesia expands its manufacturing sector. However, probably because replacement investment has been relatively unimportant over the data period, there is no data which can support separate treatment of these two types of investment. To the extent that replacement investment becomes more important, these forecasts may understate the future demand for capital goods.
- 2/ It is also necessary that the mix of inputs not change over time. Fixed ratios of capital goods input to gross output and gross output to value added are assumed.
- 3/ The demand for each capital good is measured in current US dollars, while GDP is measured in current Rupiah.
- 4/ See Appendix 7.
- 5/ The use of constant price data for the forecasts also requires conversion of export and domestic production data to constant prices, for products where these are significant. This conversion is difficult since there is no time series data on price indexes for capital goods for Indonesia. A second problem with forecasting in constant price terms is the difficulty of incorporating changes in the relative price of oil into forecasts of constant price GDP and GDP components. Changes in oil prices can be incorporated very naturally into forecasts computed in current prices.
- 6/ Poor results for two equations deserve special mention. The demand for agricultural machinery (SITC 712) is difficult to forecast by these methods because rapid mechanisation of agriculture (substitution of machinery for labour) may take place while, at the same time, agricultural output grows slowly (or not at all). Thus there is no strong relationship between output growth and demand for machinery in this sector. A second product where results are relatively poor ($R^2 =$ 0.43) is food processing machinery. The forecasting equation for imports of this product was substantially better ($R^2 = 0.64$) than the equation for demand, suggesting possible problems with the data on domestic production.
- 7/ This result is surprising and may result from collinearity between the time trend variable and the oil-revenue variable. This collinearity will not seriously affect the forecasts so long as the growth of oil-revenues does not depart drastically from past trends.
- 8/ The forecasting equations fit well, as indicated by low estimated standard errors and high t-ratios, except for the agricultural sector. The output of this sector is extremely volatile, as a result of variation in weather conditions.
- 9/ These forecasts were based on targets desired by Indonesian planners.
- 10/ The differences between these forecasts and those presented in Tables III.1 and III.2 (the "Trend" forecasts) give some indication of the sensitivity of the results to changes in the forecast share of manufacturing.

APPENDIXES

►

_

5

APPENDIX 1

SECTOR CLASSIFICATION

GDP1:	Agriculture, hunting, forestry and fishing
GDP2:	Mining and quarrying
GDP3:	Manufacturing
GDP4:	Electricity, gas and water
GDP5:	Construction
GDP6:	Transport, storage and communication
GDP7:	Wholesale and retail trade
GDP8:	Services

1

---- ---

ž

، ا

V66ENDIX 5

1205005

ECONDMETRIC RESEARCH LTD.

1 145 1

			1923) FO	APPENDIX 3 DRECASTS OF GE INDONESIG CLLICNS OF RJP	CTORAL GOP IA450				
YEAR	GDP1	GO P2	GOP3	G D P 4	50P5	G)P6	60P7	GOPB	
1 3 8 5 1 3 8 5 1 3 3 7 1 3 3 7 1 3 3 7 2 8 0 8		11673000. 15651300. 1633003. 17600900. 17722700.	36460]]. 9099550. 29649913. 893136]]. 2766790]0.	LOW 22301. 567302. 180377. 5669393. 17718300.	2524000. 6631840. 22426400. 70921860. 22328000.	17060000. 132515300. 13736400. 13736400.		6379968 29991398 27769368 277769368 277769368 277769368 277769368 277769368 277769368 277769368 277769368 277769368 277769368 277769368 27776937 277776937 277776937 27777600000000000000000000000000000000	
139 138 138 138 138 138 2010	11253000 	11673000. 17236900. 2362:800. 24753303. 2640.400.	3446030. 31353.3. 24323130. 93562838. 243703033.	NEDIUM 22500. 1827 198. 1827 190. 5768690. 18035300.	2524000. 25549460. 22649700. 71913700. 226335000.	1706000. 195100. 195100. 197500. 197500.		63700000 69710000 7467500 7315000 973140000	
	112530000. 216387000. 15877000. 15877000. 15877000. 15877000.	11673000. ;7750303. 33449000. 40724600. 49627103.	3 54 60)) . 3 : 4 67 30 . 2 3 5 5 3 3 0 . 2 4 67 0 0 . 2 3 2 5 7 3 1 3 . 2 3 2 8 7 3 1 3 .	HIGH 22300. 570303. 19547773. 5666. 16520533.	2524000. 6868010. 23915300. 23236000. 23236000.	1706000. 4273640. 1716600. 136119000.	6168080. 15587693. 55066780. 49688800.	6370000. 207301400 794301400 794301400 794301400 794301400	

SOURCEI ECONOME

7

ECONDHETRIC RESEARCH LTD.

aria 16

APPENDIX 4									
OFFICIND FORECASTS OF SECTORAL GDP INDONESIA									
(MILLIONS OF RIPIAIS)									
	TEAR	60 P 1	GOPZ	SOP3	GDP4	GOPS	GJP6	GDP7	GDPS
	1330 - 385 1330 1335 295 200	11253000. 3135700. 3135700. 122654060. 22654060. 28488600.	11573030. 15651300. 18638003. 17760000. 17722768.	386010. 1351610. 13577011. 13595011. 522603010.	LOW 2500. 577539. 1744140. 5281390. 15682000.	2524000. 6706350 21610700 66068000. 136770000.	1706000. 5174290. 12898400. 38880000. 15237000.		6378883 28254888 75864483 258693000 646029000
	1 7 9 4 1 7 9 4 1 7 9 5 1 7 7 7 5 2 0 0 0	11253J00. 21169100. 1249100. 12497000. 28991000.	11673000. 17236900. 236900. 24758300. 26404600.		HEDIU4 	2524300. 6718963. 66870600. 200116000.	17060000 12952308 197217000		
	1 350 1 325 1 330 1 335 2 3 3 3	11253000. 21164000. 12644000. 235936300.	116730\0. ;7758300. ;3749003. 40724603. 40724603.	38600)). 12629910. 3965910. 1475080910. 551492910.	HIGH 22300. 558666. 1770-00. 5435720. 16334437.	2524000. 6721910. 67398500. 214966000. 214956000.	1706000. 13096300. 40016100. 120052003.	6168000. 15756200. 15756200. 1576200. 1576200. 1576000.	6370808. 20295700. 26625200. 881226000.

SOURCEI ECONONETRIC RESEARCH LTD.

SOURCER ECONOMETRIC RESEARCH LTD.

¢
APPENDIX 6

j-j

GRJSS DJMESTIC PROJICT FJRECASTS Indovesia (Millions of Rjames)

(MILLIONS OF ZJ>IAHS)

011 602	HI 3H 11673000.	12450 13450 13450 1557 1557 15560 155500 1555000 155500 155500 155500 155500 155500 155500 1555000 1555000 1555000 1555000 1555000 1555000 1555000 1555000 1555000 1555000 1555000 1555000 155500000000		16231737 37598828 37598828 6724688 6724688 74698 74698	45869171. 47710794. 49627061.
	450104 • 00005	11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2005 2005 2005 2005 2005 2005 2005 2005	NGMNGNG NGCNN 400 NGCNN 400 NGCN NGCN NGCN NGCN NGCN NGCN NGCN NG	25686711 260354440 260354440
	. 010	0.0.00 0.0.00 0.0.00 0.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1		17430475 177324475 177225700
	7 E A 3 0 8 0 1 0 8 0 1	40 martin 90 martin 91 mar	L S & S & S & S & S & S & S & S & S & S	₩ ₽ ₩@⊾, ØØØØØØ ØØØØØØ ¶⊣₩₩₩₩	5667 5666

SOURCES ECONOMETRIC RESEARCH LTD.

Appendix 7

Comparison of Forecasting Equations for Imports in Current and Constant Prices

		F	32
Products	GDP Component	Current Price	Constant Price
Total Engineering Products (7)	GDP3	.90	. 82
Total Machinery non-electric (71)	GDP 3	.90	.84
Total Electrical Machinery (72)	GDP (current level)	.88	.83
Power Generating Machinery (711)	GDP3	.82	. 88
Boiler, Steam Generating Machinery (711.1)	GDP (current level)	.90	.80
Steam Engines (711.3)	GDP3	.41	. 22
Aircraft Engines (711.4)	GDP (current level)	. 34	. 19
Other Internal Combustion Engines (711.5)	GDP (current level)	.90	.73
Nuclear Reactors (711.7)	GDP4	.76	.80
Engines, nes (711.8)	GDP3	.71	. 89
Agricultural Machinery (712)	GDP (current level)	.16	. 09
Office Machinery (714)	GDP (current level)	.90	.87
Typewriters (714.1)	GDP (current level)	.93	. 79
Office Machines, nes (714.9)	GDP (current level)	.54	. 14
Metal Working Machinery (715)	GDP 3	.76	.78
Machine Tools (715.1)	GDP3	.51	. 31
Textile and Leather Machinery (717)	GDP 3	.77	.66
Textile Machinery (717.1)	GDP3	.74	.64
Skin, Leather Working Machinery (717.2)	GDP (current level)	.98	.94
Sewing Machinery (717.3)	GDP (current level)	.91	. 59
Special Industrial Machinery (718)	GDP3	.84	. 86
Paper and Pulp Machinery (718.1)	GDP (current level)	.86	.70
Food Processing Machinery (718.3)	GDP3	.64	. 48
Construction, Mining Machinery (718.4)	GDP (current level)	.67	. 65
Mineral and Glass Working Machinery (718.5)GDP3	. 76	. 83
Other Special Machinery (719)	GDP3	.93	. 81
Heating, Cooling Equipment (719.1)	GDP3	.95	.61

Z

لز

Appendix 7 (con't) ...

9

Ļ

		R	2
Products	Component	Current Price	Constant Price
Pumps and Centrifuges (719.2)	GDP3	. 89	.79
Mechanical Handling Equipment (719.3)	GDP3	.86	.77
Powered Tcols, Other (719.5)	GDP5	.72	. 16
Spraying, Vending Other Machinery (719.6)	GDP5	.78	.10
Ball, Roller Bearings (719.7)	GDP (current level)	.93	.65
Machinery and Mechanical Appliances nes (719.8)	GDP 3	.86	.74
Parts and Accessories of Machinery, nes (719.9)	GDP 3	.97	.77
Electrical Power Machinery (722)	GDP (current level)	.90	.87
Equipment for Distributing Electricity (723)	GDF (current level)	.93	.88
Insulated Wire and Cable (723.1)	GDP (current level)	.90	.86
Electric Insulated Equipment (723.2)	GDP (current level)	.88	,76
Electrical Machinery Other (729)	GDP (current level)	.95	.86
Batteries and Accumulators (729.1)	GDP (current level)	.78	.48
Electric Lamps (729.2)	GDP (current level)	.88	80
Valves, Tubes, etc. (729.3)	GDP (current level)	.81	.70
Automotive Electrical Equipment (729.4)	GDP6	. 78	.55
Measuring Apparatus (729.5)	GDP3	. 49	.48
Electro-Mechanical Hand Tools (729.6)	GDP3	.60	,74
Other Electrical, nes (729.9)	GDP5	.93	,20
Railway Vehicles (731)	GDP6	.59	,09
Locomotives, Other (731.3)	GDP6	,70	,56
Passenger: Railway, Tramway Cars (731.5)	GDP6	.61	.03
Railway, Locomotive Car Parts, nes (731.7)	GDP6	.11	.14
Buses (732.2)	GDP')	.05	.02
Lorries and Trucks (732.3)	GDF6	. 88	. 49
Special Purpose Lorries, Trucks and Vans (732.4)	GDP (current lovel)	. 51	.48
Tractors for Trailers (732.5)	GDP6	.24	.003

Appendix 7 (con't) ...

- -

?

		R ²	
Products	GDP Component	Current Price	Constant Price
Ships and Boats (735)	GDP6	.69	.57
Ships and Boats (non-war) (735.3)	GDP6	.52	.44
Ships and Boats, nes (735.9)	GDP6	.51	.41

Note: These equations forecast imports and, as a result, may differ from those reported in the text, which forecast domestic demand.

APPENDIX 8

"TREND" GROWTH RATES CALCULATED FROM THE FORECAST OF THE APPARENT DEMAND FOR CAPITAL GOODS IN INDONESIA (BASED ON CONSTANT US DOLLAR) (SEE TABLE III.1)

· —

GROWTH RATES CALCULATED FROM THE FOFECAST OF THE APPARENT DEMAND FOR CAPITAL GOODS FOR INDONESIA TABLE:

1980	TO 1985 Low	MED
TOTAL ENGINEERING PRODUCTS (7)	•149950	•157481
TOTAL MACHINERY NON-ELECTRIC	.132435	.139848
ÞÓRÍF GENERATING Machinery (711)	•085015	.092087
BOILERUSTEAN Genefating Machinery (7:1-1)	057290	049772
STEAM ENGINES (711.3)	.637096	.647722
AIR CRAFT ENGINES (711.4)	.056902	.064399
OTHER INTERNAL COMBUSTION ENGINES (711-5) Decorded	•113496	. 122 532
(711.7)	.234110	.238664
ENGINES.NES (711.8)	• 578598	.588923
AGRICULTURAL HACHINERY	.170083	.178838
OFFICE MACHINERY (714)	.084837	.093097
TYPEWRITERS (71+.1)	.122166	.130472
OFFICE MACHINES,NES (714.9)	.000079	.005288
METAL WORKING MACHINERY (715)	.158416	.165759
MACHINE TOOLS (715.1)	.190141	.197599
TEXTILE MACHINERY (717.1)	.213384	.221149
SKIN, LEATHER WORKING Machinery (717.2)	.123136	.135322

-.049986 .649465 .065873

.142186

.094492

- - - - -.159747

HIGH

.123272 .241634

- . 591754 .179699
- .093803
- .131493
- .007853
- .167512
- .193502
- .223152
- .135322

I 154 - į

GOODS FOR INDENESIA			
	1980 TO	1985 LOW	MED
SEWING MACHINERY (717.3)	******	.070103	.078339
SPECIAL INDUSTRIAL MACHINERY (713)		.154853	.162366
PAPER AND PULP Machinery {713.1}		•119314	.128175
PRINTING MACHINERY (713.2)		•128521	•135347
FOOD PROCESSING HACHINERY (713-3)		.248343	.256472
ĊOŇŚŤŔÚCTION,MINING Machinery (713.4)		.085456	.093839
MINERAL AND GLASS Working Machinery (713.51		.141350	.148396
OTHER S pecial Nachinery (719)		.142924	.150440
HEATING,COOLING EQUIPMENT (719.1)		.114702	.122029
PUMPS AND CENTRIFUGES (719.2)		.192556	.200426
MECHANICAL HANDLING EQU (719.3)	IPMENT	.188057	.195966
POWERED-TCOLS,OTHER (719.5)		067471	062091
SPRAYING.VENDING. OTHER HACHINERY (719-6)		•214412	. 222238
BALL, ROLLER BEARINGS		.005287	.013363
MACHINERY AND MECHANICA Appliances, Nes	L	.144001	•151417
PÁŘÍŠ ÁND ACCESSORIES Of Machinery, NES (719,9)		4089320	• 096 572
TOTAL ELECTRICAL MACHINERY (72)		•108629	-117149

TABLE:

GROWTH RATES CALCULATED FROM THE FORECAST OF THE APPARENT DEFAND FOR CAPITAL GOODS FOR INDONESIA

HIGH

- .079816
- •164549
- .129335
- .137140
- .253156
- .094600
-
- •149604
- .152876
- .124600
- .202516
- . 199 322
- -.061126
 - .223779
 - .014354
 - .153794
 - .099379
 - .117887

- 155 -

GROWTH RATES CALCULATED FROM THE FORECAST OF THE APPARENT DEMAND FOR CAPITAL GODDS FOR INDENESIA TABLET

198	10 TO 1985 Low	MED
ELECTRICAL POWER HACHINERY (722)	.095819	.104371
DÓN ÉR TRANSFORMING MACHINERY (723.1)	.103241	.111786
ŚWĪŦĊĦ GEAR+ ETC+ (722+2)	.105838	.114462
EQUIPMENT FOR DISTRIBUTING ELECTRICITY (723)	.077332	• 085659
ÍNSULATED WIRE AND CABLE (723.1)	.083828	.092284
ELECTRIC INSULATED Equipment (723.2)	•116608	•125718
ELECTRICAL MACHINERY Other 1729)	•154824	.163699
BATTERIES AND Accumulators (729.1)	• 069044	.077235
ELECTRIC LAMPS (72).2)	•114133	•123354
VAL VES, TUBES, ETC. (729.3)	.197292	.207189
AUTOMOTIVE ELECTRICAL Equipment (729.4)	.087239	.094522
NEASURING APPARATUS 1729.5)	•413703	. 423027
ELECTRO-MECHANICAL Hand Tools (709.6)	.180529	.189023
0THER.NES (729.9)	.248053	.256190
TOTAL TRANSPORT EQUIPMENT (73)	.179472	.187276
RAILHAY VEHICLES (731)	176061	170707
LOCOMOTIVES; Other (731.3)	· 445120	.454824

.093012 .126771

.105139

.112545

.115345

.086387

HIGH

.164471

.077968

.124051

.207837

.095724

.425528

.199693

.257876

.189450

-.169283

.457759

I 156 - 1

TABLE: GROWTH RATES CALCULATED FROM THE FORECAST OF THE APPARENT DEMAND FOR CAPITAL GOODS FOR INDENESIA

•

I

19	1985 Low	MED
PASSENGERSI RAILWAY, TRAJHAY CARS	. 371025	.379277
RAILWAY, LOCONOTIVE CAR PARTS, NES (731-7)	.160593	.170017
BUSES (732.2)	011237	005823
LORRIES AND TRUCKS (732.3)	. 42 56 87	. 436239
SPECIAL PURPOSE LORRIES, TRUCKS AND VANS (732.4)	.077259	.085286
TRACTORS FOR TR- Thailers	078347	071619
(732,5) Ships and Joats (735)	.492382	.502272
SHIPS AND BOATS	.248495	.256401
(735.3) Ships and boats Nes (735.9)	.341309	.350111

٠.

HIGH

- .389633
- .170017
- --004487
 - .439083
 - .036163
- -.069419
 - .504286
 - .255831
 - .352994

I

4

GROWTH RATES CALCULATED FROM THE FORECAST OF THE APPARENT DEMAND FOR CAPITAL GOODS FOR INDONESIA TABLET

44

MED

1980 TO 1990 Low

1014 ENGI (7)	L NEERING PRODUCTS	•157949	.163533
101A HACH (71)	INERY NON-ELECTRIC	.149077	.154617
PON: MACH (711	R GENERATING INERY)	•123391	.128804
801L Gene (711	ER, STEAM Rating Hachinery	.040754	.047202
STEA (711	ŇĒNGINES •3)	.380969	- 387529
AIR (711	CRAFT ENGINES •4)	.099443	.106129
0 THE ENGI (711	R INTERNAL CONBUSTION NES .51	.132984	.140049
NUCL (711	EAR REACTORS	.197424	.203197
E NG I (711	NES, NES .8)	.366428	.373001
AGRI (712	CULTURAL HACHINERY	.150535	.157494
0FFI (714	CE MACHINERY	•112404	.119185
T YPE (714	WRITERS	•131567	•138253
0FFI (714	CE MACHINES, NES .9)	.059179	.065294
META (715)	L WORKING MACHINERY }.	.162538	.168069
MACH (715	INE TOOLS	•179662	.185249
TEXT (717	ILE MACHINERY	•191592	.197282
SKIN Mach	LEATHER WORKING	.141991	•148935

I

9

HIGH

- .164905
- .156039
- .133290
- .051160
- .385875
- .113269
- .145404
- .204520
- .374458
- .161668
- .123332
- .142605
- .063961
- .169267
- .186459
- .195509
- .153091

- 158 -

GROWTH RATES CALCULATED FROM THE FORECAST OF THE APPARENT DEMANU FOR CAPITAL GOODS FOR INDONESIA 1980 TO 1990 Low NED SEMTIG MACHINERY

(717.3)	.105259	.113086
SPECIAL INDUSTRIAL Machinery (713)	.160136	.165720
PAPER AND PULP MAGRINERY (713-1)	•136766	.143846
PRINTING MACHINERY (716.2)	-146010	.151478
FOCD PROCESSING Machinery (715.3)	.203480	.209314
CONSTRUCTION, MINING Machinery (713.4)	-113491	.120330
MINERAL AND GLASS WORKING MACHINERY (713.5)	.148547	.154027
OTHER SPECIAL Machinery (719)	.155461	.161040
HEATING.COOLING EQUIPHENT (719.1)	-140800	•146308
PUMPS AND CENTRIFUGES	.179873	.185554
MECHANICAL HANDLING EQUIPHENT (719.3)	•178850	.184540
POWERED-TOOLS.OTHER (719.5)	.029359	.034021
SPRAYING, VENDING, OTHER MACHINERY (719.6)	.190901	.196643
BALL, ROLLER BEARINGS (719.7)	.070134	.076776
MACHINERY AND MECHANICAL Appliances, Nes (71 J. R)	.153642	.159200
PARTS AND ACCESSORIES OF MACHINERY, NES (71 4-9)	.129601	.135063
TOTAL ELECTRICAL MACHINERY (72)	.123910	.130791
• • • • •		

TABLE

HIGH ••••••

- .157044
- .149265
- .152628
- .219262
- .12+493
- .15.966
- .162501
- .147839
- .186838
- .195937
- .034848
- .197531
- .083747
- .160654
- .136753
- .134948

TABLE: GROWTH RATES CALCULATED FROM THE FORECAST OF THE APPARENT DEMAND FOR CAPITAL GOODS FOR INDONESIA

.

MED

1980 TO 1990 Low

ELECTRICAL POWER MACHINERY (722)	.119472	. 126363
PCWEP TRANSFORMING Machinery (722.1)	.122200	.129093
SHITCH GEAR, ETC. (722.2)	.125427	.132345
EQUIPMENT FOR DISTRIBUTING Electricity (723)	.108949	.115746
INSULATED WIRE AND CABLE	.111833	.118660
ELECTRIC INSULATED EQUIPHENT (723-2)	.135946	.143132
ÈLECTRICAL MACHINERY DIMER (729)	.147368	.154395
BATTÉRIES AND Accumulators (729-1)	.102389	.109132
ÉLÉCTRIC LAMPS (729.2)	.130917	.137881
VAL VE S. TUBE S. ETC. (729.3)	.176468	.183763
ĂŬŤÓŇŎŤIVE ELECTRICAL Equipment (729.4)	.125870	.131344
REASURING APPARATUS	• 293429	.299625
ELECTRO-MECHANICAL HAND TOOLS (729-5)	.178206	.183822
0TH = R. NES (729.9)	• 20 8933	.214784
TOTAL TRANSPORT EQUIPMENT (73)	*174243	.179923
ŘAŤLHAY VEHICLES (731)	018014	013302
LOCOH otives, Otmer (731,3)	. 301769	.308084

0

HIGH • 130 561 • 133 273 • 135 597

• 119880 • 122776 • 147501

•158648

.142151

.189363

.132643

.300981

-185280

.215845

.181210

-.012241

.309548

- 160 -

TABLE: GROWTH RATES CALCULATED FROM THE FORECAST OF THE APPARENT DEMAND FOR CAPITAL GOODS FOR INDONESIA

	1980 TO 1990 Low	MED
PASSENGERS: RAILWAY, TEA HHAY CARS (731.5)	•265871	.271831
RAILWAY,LOCOMOTIVE CAP PARTS, NES (731.7) Dug-S	.139696	.144889
(732.2)	•045022	•049765
LORRIES AND TRUCKS (732.3)	• 293627	.299900
SPECIAL PURPOSE LORRIES Trucks and vans (732.4)	• .108367	.115178
TRACTORS FOR TR- TFAILERS	056621	052540
(732.5) Ships and boats (735)	• 320728	.327107
SHIPS AND BOATS	.208718	.214550
(735.3) SHIPS AND BOATS NES (735.9)	• 243997	.250098

- HIGH
 - .272863
 - .146155
 - .050816
 - .301399
 - .113336
 - -.049904
 - .323244
 - .215813
 - .251 542

- 161 -

ł

ł

GROWTH RATES CALCULATED FRON THE FORECAST OF THE Apparent dehand for capital Goods for indenesia TABLE

x., ;

MED

1980 TO 2000 Low

TOTAL ENGINEERING PRODUCTS	•163528	.168846
MACHINERY NON-ELECTRIC	•159058	.164354
POWER GENERATING MACHINERY (711)	•145725	.150962
BOILER.STEAM GENERATING MACHINERY (711.1)	.099998	.104983
STEAM ENGINES (711.3)	• 270 424	.276191
AIR CRAFT ENGINES (711.4)	.130022	.135100
OTHER INTERNAL CONBUST: ENGINES (711.5)	ION .148168	.153370
NUCLEÁR REACTORS (711.7)	•183082	.188460
ENGINES.NES (711.8)	.265764	.271513
AGRICULTURAL NACHINERY (712)	.154263	.159487
OFFICE MACHINERY (714)	•136202	•141352
TYPEWRITERS (714.1)	•145962	•151132
OFFICE NACHINES, NES (714.9)	•106403	.111388
METAL WORKING MACHINER (715)	Y .165881	.171173
MACHINE TOOLS (715.1)	.174691	.180025
TEXTILE MACFINERY (717.1)	.180728	.186095
SKIN, LEA ther Horking Machinery (717.2)	.153097	•158280

HIGH

- .169709
- .165246
- .151903
- .105924
- .277015
- .136074
- .154359
- -109248
- .272355
- .160 472
- .142317
- .152132
- .112354
- .171950
- .180805
- •185881
- .159266

- 162 -

ţ

.....

• ...

TABLE: GROWTH RATES CALCULATED FROM THE FORECAST OF THE APPARENT DEMAND FOR CAPITAL GOODS FOR INDENESIA

1980 TO 2000 Low

	LOW	MED
SEWING MACHINERY (717.3)	.133454	.138586
SPICIAL INDUSTRIAL MACHINERY (713)	•164564	•169884
PAPER AND PULP Maghintry (719.1)	•150271	•155477
PPINTING MACHINERY (718.2)	•157272	•162534
FOOD PROCESSING MACHINERY (713.3)	•185532	•190934
CONSTRUCTION, MINING HACHINERY (713.4)	•136973	.142123
MINERAL AND GLASS Working Machinery (713.5)	• 157641	.162902
OTHER SPECIAL MACHINERY (719)	•162507	•167820
HEATING, COOLING EQUIPMENT (719.1)	.155039	.160318
PUMPS AND CENTRIFUGE	·174628	•179994
HECHANICAL HANDLING (713.3)	EQUIPMENT . 174372	.179738
POWERED-TOOLS.OTHER (719.5)	.093474	.098411
SPRAYING, VENDING, OTHER MACHINERY (719.6)	.180097	.185485
BALL, ROLLER BEARINGS (719.7)	.114239	.119282
APPLIANCES, NES	11CAL .161081	.166389
DF MACHINERY, NES	.149762	.155020
TOTAL ELECTRICAL MACHINERY (72)	.141911	.147081

HIGH

- .139550
- .170724
- .156467
- .163298
- .191596
- .143094
- .163608
- .169725
- .161265
- .180805
- .183608
- .099083
- .186121
- .120228
- .167302
- .156043
- .149056

- 163 -

ţ

• * × ×

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS STANDARD REFERENCE MATERIAL 1010# (ANSI and ISO TEST CHART No. 2)

TABLE: GROWTH RATES CALCULATED FROM THE FORECAST OF THE Apparent Demand For Capital Goods for Indonesia

1980	TO 2000 Low	MED	HIGH
ELECTRICAL POWER MACHINERY (722)	.140191	. 1 4 5 3 5 5	•146331
POWER TRANSFORMING Machine?y (722.1)	.141307	.146475	.147450
SWITCH GEAR, ETC. (722.2)	- 143423	.148603	.149581
EQUIPMENT FOR DISTRIBUTING Electricity (723)	.134550	.139688	.147656
INSULATED WIRE AND CAPLE	.135907	.141048	.142019
ELECTRIC INSULATED Equipment (723.2)	.150018	.155230	.155218
ÉLÉČÍŘÍCAL HACHINERY Othér (729)	. 153838	.159061	.160047
BÀTTÉRIES AND Accumulators (729-1)	.130598	.135712	.136678
ÈLECTRIC LAMPS (779-2)	.146485	.151675	.152654
VALVES,TUBES, TC. (729-3)	.170302	.173607	.176618
ÁÚTÍMŐTIVE ELECTRICAL Eguipment (729.4)	.147307	.152565	.153387
NEASURING APPARATUS (723.5)	• 231 533	.237126	.237942
ELECTRO-MECHANICAL Hanj tools (729.6)	.174707	.180046	.180833
ÓTH Ř. NES (723.9)	.189370	.194807	.195495
TOTAL TPANSPORT EQUIPMENT	.172019	.177378	.173186
ŘATÍ WAY VEHICLES (731)	· 071 9 00	.076790	.077522
LOCOMOTIVES, Other (731.3)	- 234439	.240084	. 243 964

164 -

1

-

TABLES GROWTH RATES CALCULATED FROM THE FORECAST OF THE Apparent Demand For Capital Goods for Indenesia

1

. .*

.

	1980	TO 2000 Noj	MED
PASSENGERS: RAILWAY, TRAMWAY CARS (731.5)		•216765	• 22 22 32
ČATLWÁY, LOCOMOTIVE Car Parts, nes (731.7)		• 148519	.153708
80555 (732.2)		.097395	-102402
LORRIES AND TRUCKS (732.3)		.239591	.236221
SPECIAL PURPOSE LORRIES TRUCKS AND VANS (732.4)	•	•134173	.139298
TRACTORS FOR TR- Trailers		006457	000329
(732.5) Ships and boats (735)		.212944	.248621
SHIPS AND BOATS Non-War		89218	.194636
(735.3) Ships and boats Nes (735.9)		• 20 46 21	.213172

SOURCE: ECONDMETRIC RESEARCH LTD.

Į

0

HIGH
. 222 979
.154 554
.103166
.237096
.143274
• 0 0 2 0 9 3
. 249328
.195449

•

.211071

- 165 -

•

GROWTH RATES CALCULATED FROM THE FORECAST OF THE APPARENT DEPAND FOR CAPITAL GOODS FOR INDONESIA TABLET

1985	TO 1990 LCW	MED
TOTAL ENGINEERING PRODUCTS	•166093	.169616
MACHINERY NON-ELECTRIC	•165963	•169577
POWER GENERATING Machinery (711)	•163124	•166756
BCILER,STEAN CFNERATING MACHINERY ((1:.1)	•148995	.154073
STEAM ENGINES (711.3)	• 164914	•168424
AIR CRAFT ENGINES (711.4)	.143697	.149495
OTH-R INTERNAL COMBUSTION Engines (711.5)	.152814	.157840
NUCLEAR REACTORS (711.7)	.164659	.168746
ENGINES,NES (711.8)	.182774	.186421
AGRICULTURAL MACHINERY (712)	•131313	•136536
OFFICE HACHINERY (714)	.140672	.145897
TYP:WRITERS (71%+1)	.141047	.146088
OFFICE MACHINES+NES (714.9)	.121771	.128881
NETAL WORKING MACHINERY (715)	.166676	.170383
MACHINE TOOLS (715.1)	.169275	.173027
TEXTILE MACHINERY (717.1)	~ 170190	.173881
SKIN, LEATHER WORKING Machinery (717.2)	.156015	.162711

î

HIGH
.170085
.170060
.167260
.161852
•169454
.156513
.165933
.168515
.186791
.143913
.153658
.153827
.133775
.171024
.173558
.174362
. 171 137

-

.

Appendix 8.13

1

BLE	GROWTH RATES CALCULATED FROM THE FORFCAST OF THE
	APPARENT DEMAND FOR CAPITAL GOODS FOR INDERSIA

1985 TO 1990 Low	MED
.143637	.148952
.165444	.169084
• 15 4 4 9 1	.159734
•163770	.167839
.160231	.163927
.142250	.147462
. 1: 57 90	.159686
.158136	.171738
.167510	,171113
.167325	.170867
UIPMENT .169715	.173223
•136243	.139931
.167844	.171584
.139164	.144158
AL .163364	.167037
•171371	.174904
•139401	.144600
	LOW .143637 .165444 .154491 .163770 .160231 .142250 .1:5790 .158136 .167510 .167325 UIPMENT .169715 .136243 .167844 .139164 AL .163364 .171371 .139401

TA

- ----
- .149633
- .171846
- .151486
- .167554
- .175398
- .152269

GROWTH RATES CALCULATED FROM THE FORECASI OF THE APPARENI DEMAND FOR CAPITAL GOODS FOR INDONESIA TABLES

1	985 TO 1990 LOw	MED
ELECTRICAL POWER MACHINERY (722)	. 143636	. 148793
POWER TRANSFORMING MACHINERY (723-1)	•141486	.146669
(722.2)	.145362	.150516
EQUIPMENT FOR DISTRIBUTIN ELECTRICITY (723)	•141495	.146667
INSULATED WIRE AND CABLE (723.1)	.140562	.145673
ELECTRIC INSULATED EQUIPMENT (723.2)	•155619	.160815
ELECTRICAL MACHINERY OTHER (729)	•139959	.145165
BATTERIES AND Accumulators (729,1)	.136773	.141972
ELECTRIC LAMPS (729.2)	•147954	• 1 52 596
VAL VES, TUDES, ETC. (729.3)	-156005	.160793
ÁUŤŎŇŎŤIVE ELECTRICAL Equipment (729.4)	• 165872	.169404
MEASURING APPARATUS (729.5)	.183387	•186924
ELECTRO-MECHANICAL Manj tocls (729.6)	• 17 58 88	.178645
07H=R.NES (723.9)	.171039	.174742
TOTAL TRANSPORT EQUIPMENT (73)	.169038	.172614
RAILWAY VEHILLES	.170350	.173978
LOCOMOTIVES, Other (731.3)	.172638	.176145
HIGH • 156567 • 154388 • 159254 • 154406

•153351 •169613

- .152854
- .149574
- .160543

.169203

• 169739

.197315

.179892

.175219

.173028

.174490

.175406

- 168 -

TABLES GROWTH RATES CALCULATED FROM THE FORECAST OF THE APPARENT DEMAND FOR CAPITAL GODD'S FOR INCONESIA

1

	1985 TO 1990 Low	MED
PASSENGERS: RAILHAY, TPAMHAY CARS (731.5)	.168781	.172756
RAILWAY.LOCOMOTIVE Cap parts, nes (731.7)	.119078	.120300
(732.2)	.104483	-108460
LORRIES AND TRUCKS (732.3)	.172977	.176504
SPECIAL PURPOSE LORRIES TPUCKS AND VANS (732.4)	• .140374	.145894
TRACTORS FOR TRA Trailers	034383	033068
(732-5) Ships and Bgats (733)	.168818	.172367
SHIFS AND BOATS	.170207	.174093
(735.3) Ships and boats Nes (735.9)	.153745	.157454

HIGH	
.173506	
.122779	
•109191	
.175888	
.153521	
029980	
.172804	

.

• = • = • • • •

.174264

.157697

Appendix 8.16

- 169 -

GROWTH RATES CALCULATED FROM THE FORECAST OF THE APPARENT DEMAND FOR CAPITAL GOODS FOR INDENESIA TABLE:

2

1

	1990 TO 2000 Low	NED
TOTAL ENGINEERING PRODUCTS	•169135	.174183
TOTAL MACHINERY NON-ELECTRIC	•169126	.174174
ÞÓWÍR GENERATING Machinery (711)	.168503	.173555
ROILER, STEAM Generating Machinery (711-1)	.162613	.165951
ŠTĒĀM ENGINES (711.3)	.168727	.173786
AIR CRAFT ENGINES (711.4)	.161451	.164830
OTHER INTERNAL COMBUSTI Engines (711.5)	N .163555	.168846
ŇŮČĽĽĂŘ REACTORS (711.7)	.168912	.173903
ENGINES.NES (711.8)	•17251ò	.177526
AGRICULTURAL MACHINERY (712)	.158003	•161483
OFFICE MACHINERY {71+}	•160508	•163958
TYPEWRITERS (714.1)	.160541	.164157
OFFICE HACHINES,NES (714.9)	. 155734	.159478
NETAL WORKING MACHINERY (71.5)	•169233	.174286
MACHINE TOOLS (715.1)	,169742	.174824
TEXTILE HACHINERY (717.1)	.169964	.175013
SKIN, LEATHER WORKING Machinery (717.2)	. 164310	.167702

HIGH .174533 .174527 .173930 .163540 .163540 .174165 .162480 .164401 .174169 .177854 .159276 .161623 .161738

.157508

.174639

.175178

.175367

.165475

- 170 -

TABLE: GROWTH RATES CALCULATED FROM THE FORECAST OF THE APPARENT DEMAND FOR CAPITAL GOODS FOR INDENESIA 1990 TO 2000 Low MED

 SEWING MACHINERY (717.3)	•161318	•164669
SPECIAL INDUSTRIAL MACHINERY (713)	.169009	.174062
PÁPÉF AND PULP Machinery (713-1)	• 163935	.167227
PRINTING MACHINERY (719-2)	•168645	.173695
FOOD PROCESSING MACHINERY (713-3)	.167850	.172332
CONSTRUCTION,MINING MACHINERY	.160951	.164340
MÍŇĨŘĂĹ AND GLASS Working Machinery	.166806	.171845
OTHER SPECIAL HACHINERY	•169596	.174640
HEATING.COOLING EQUIPMENT	.169454	.174500
PUNPS AND CENTRIFUGES (719.2)	.169407	.174460
MECHANICAL HANDLING EQUIPME (719.3)	NT .169911	.174956
POH:RED-T00LS.OTHER 1719.5)	.161583	.166810
SPRAYING, VENDING, OTHER MACHINERY (719-6)	• 16 93 91	.174430
BALL, ROLLEB. BEARINGS (719.7)	•160161	.163465
HACHINERY AND HECHANICAL APPLIANCES NES	•168567	.173621
PARTS AND ACCESSORIES OF MACHINERY.NES	.170284	.175328
TOTAL Electrical Machinery	.160200	.163606

HIGH
.162349
.174415
.164728
.174067
.173218
.162003
.172315
.174982
.174847
.174803
.175302
.167304
.174819
.161151
.173988

- .175659
- .161317

- 171 -

,

TABLE: GROWTH RATES CALCULATED FROM THE FORECAST OF THE Apparent demand for capital Goods for Indonesia

1990 TO 2000

< 0 t

	LOW	NED
ELEGTRICAL POWER MACHINERY (722)	.161293	.164668
POWER TRANSFORMING Machinery (722.1)	.160739	.164125
SWITCH GEAR, ETC. {722.2}	.161707	.165095
EQUIPPENT FOR DISTRIBUTING Electricity (723)	.160741	.164143
ÎNŜŬLATED WIRE AND CABLE (723.1)	-160503	.163885
ELECTRIC INSULATED Equipment (723.2)	•164265	.167456
ÉLÉÇTŘICAL MACHINERY Other (729)	.160345	.163747
BATTERIES AND Accumulators (729.1)	•159529	.162929
ÉLÉCTRIC LANPS (729.2)	.162266	.165636
VAL VES, TUBE S, ETC. (729-3)	.154170	.167506
ÀŬŢĴŇŎŢIVE ELECTRICAL Equipment (729-4)	.169152	.174184
ŇĒĀŠŪŘÍNG APPARATUS (729.5)	.172599	.177633
ELECTRC-MECHANICAL Hand Tools (729.6)	.171219	.176281
0TH2R.NES	.170123	.175160
TOTAL TRANSPORT EQUIPHENT (73)	•169799	.174839
RAILWAY VEHICLES (731)	.170047	.175108
LOCOMOTIVES, Other (731.3)	.170591	.175619

HIGH
• 100 9 5 1
.161804
.162714
.161817
. 161 591
.165001
.161448
.160655
.163254
•164990
.174512
.177958
.175403

- .175486
- .175169
- .175442
- .175971

- 172 -

-

TABLE: GROWTH RATES CALCULATED FROM THE FORECAST OF THE APPARENT DEMAND FOR CAPITAL GOODS FOR INDERSIA		
1990 TO 200	вгон	MED
PASSENGERS: RAILWAY, TPAMHAY CARS (731.5)	.169565	.174567
ŘATĚNÁÝ,LOCOMOTIVE Car Parts, nes (731.7)	.157411	.162595
BUSES (732.2)	•152393	.157679
LORRIES AND TRUCKS (732.3)	.170627	.175661
SPECIAL PURPOSE LORRIES, Trucks and vans (732.4)	.160580	.163939
TRACTORS FOR TR- TFAILERS	.046375	.054758
(732.5) Ships and boats (735)	.169741	.174777
SHIPS AND BOATS Non-War	.170034	.175048
(735.3) Ships and boats Nes (735.9)	.166492	.171521
SOURCE: ECONOMETRIC RESEARCH LTD.		

HIGH	
•175049	
.163016	
•159125	
.175971	
•161605	
.056935	

.175101

.175426

.171909

Appendix 8.20

- 173 -

.

"OFF-TREND" GROWTH RATES CALCULATED FROM THE FORECAST OF THE APPARENT DEMAND FOR CAPITAL GOODS FOR INDONESIA (BASED ON CONSTANT US DOLLAR) (SEE TABLE III.3)

TABLET GROWTH RATES CALCULATED FROM THE FORECAST OF THE APPARENT DEMAND FOR CAPITAL GOODS FOR INDERSIA

•

1	1980 TO 1985 Low	MED
TOTAL Enginzering products (7)	.183389	.198454
TOTAL MACHINERY NON-ELECTRIC	.169073	.183984
PORTER GENERATING MACHINERY (711)	.122680	.136862
BOILER, STEAM GENEPATING HACHINERY	057290	049772
STEAN ENGINES (711.3)	.700213	.722008
AIR CRAFT ENGINES (711.4)	• 056902	.064399
OTHER INTERNAL COMBUSTION Engines (7:1.5)	•113496	. 122532
NUCLEAR REACTORS (711-7)	•224931	.231110
ENGINES.NES (711.8)	.646789	.669607
AGRICULTURAL NACHINERY (712)	.170083	.178838
OFFICE MACHINERY (714)	.084837	.093097
TYPEHRITERS {714+1}	•122166	.130472
OFFICE MACHINES,NES (714.9)	.000079	.005288
METAL WORKING NACHINERY (715)	•204807	.220568
NACHINE TOOLS (715.1)	.233136	.254417
TEXTILE MACHINERY (717-1)	• 263293	.279974
SKIN, LEATHER WORKING Machinery (717,2)	•136136	•135322

HIGH

- .209031
 - .194733
- .147018
- -.045986
 - .737129
 - .065873
 - .123272
 - .231110
 - .685342
 - .179599
 - .093803
 - .131493
 - .007853
 - .231171
 - .265549
 - .291377
 - .135322

- 175 -

GROWTH RATES CALCULATED FROM THE FORECAST OF THE APPARENT DE MAND FOR CAPITAL GOODS FOR INDENESIA TABLES

1980 TO	1985 Low	MED
SEWING MACHINERY (717.3)	.070103	.078339
SPECIAL INDUSTRIAL Macyinery (713)	.194276	.209493
PAPER AND PULP HACHINERY (713-1)	• 119314	.128175
PRINTING MACHINERY (713.2)	.173204	.188571
F000 PROCESSING MACHINERY (718.3)	•283961	.308200
ĆÓŇŠŤŘÚCTION,MINING Máchinery (7:3,4)	.085456	.092839
MÍNERAL AND GLASS Working Machinery (7:3-5)	.235059	.250933
OTHER SPECIAL Hachinery 1719)	.178000	.193125
Ĥ LÂTÍNG.COOLING E OUIPHENT (719-1)	•148093	.162791
PUMOS AND CENTRIFUGES (713.2)	• 22 61 72	.241822
MECHANICAL HANDLING EQUIPHENT (719.3)	.222873	.238618
POWERED-TOOLS,OTHER (719-5)	070960	066483
SPRAYING, VENDING, OTHER MACHINERY	•208003	• 214412
BALL, ROLLER BEARINGS (71).7)	•005287	.013363
MACHINERY AND MECHANICAL Appliances, Nes	•169686	.184333
PARTS AND ACCESSORIES OF MACHINERY, NES	•130592	.145307
(719.9) Total Electrical Machinery (72)	.108629	•117149

HIGH .079816 .219505 .129335 .198873 .307845 .094606 .262951 .204646 .174393 .252226 .259648

-.065483

.215046

.014354

.195656

.157866

.117887

- 176 -

Appendix 9.2

GROWTH RATES CALCULATED FROM THE FORECAST OF THE Apparent demand for capital Goods for Indenesia

Ũ

•

1980	TO 1985 Low	NED
ELECTRICAL POWER MACHINERY (722)	.095819	.104371
POWŻŔ TRANSFORNING Machinery (722.1)	.103241	.111786
SWITCH GEAR, ETC. (722.2)	.105838	.114462
EQUIPMENT FOR DISTRIBUTING Electricity (723)	.077332	.085659
INSULATED WIRE AND CABLE (723.1)	.083828	.092284
ELECTRIC INSULATED Equipment (723.2)	•11 66 08	.125718
ÉLĚČŤŘÍCAL MACHINERY Other (729)	•154824	•163699
ŠAŤŤĖRIES AND Accumulators (728-1)	.069044	.077235
ÉLÉCTRIC LANPS (729-2)	•114133	.123354
VALVES, TUBES, ETC, (724-3)	.197292	.207_89
ĂŬĨŎŇŎĬIVE ELECTRICAL Equipment (729.4)	.079756	.085531
NEASURING APPARATUS (723.5)	.474542	.495147
ELECTRO-HECHANICAL HAND TOOLS (729.6)	. 231147	.248154
0 TH _ R . NE S (729.9)	.242067	.248776
TOTAL TRANSPORT EQUIPMENT	.173396	.179884
RAILWAY VEHICLES (731)	181408	176943
LDCOMOTIVES. Other (731.3)	. 435147	.442843

TABLE

HIGH
.105139
.112545
.115345
.085387
.093012
.126771
•164471
.077968
.124051

.207837

.036671

.509160

.253997

.249352

.189 615

-.176502

.443603

1

TAƏLER	GROWTH FROM T APPARE GOODS	RA HE NT I For	TES CALCULATED FORECAST OF TH DEMAND FOR CAP INDONESIA	ETAL
	1980	TO	1985 LOw	MED
PASSENGERSI RAILWAY, Teamway Cars (735)			.364940	.371489
RAILWAY, LOCOMOTIVE Car Parts, Nes (73?)			155916	.160693
9US-S (732-2)			016074	010554
LORRIES AND TRUCKS (732.3)			.419212	. 477127
SPECIAL PURPOSE LORRIES TRUCKS AND VANS (732.4)	S.		.077259	.085286
TRACTORS FOR TR-			085277	078347
(732-5) Ships and boats (735)			. 484465	. 492 497
SHIPS AND BOATS Non-War			.240384	.246991
(735.3) Ships and Boats Nes (735.9)			.331507	.339073

1

İ

HIGH . 371489 .163693 -.019554 .423111 .085163 -.073347 .493072

> •247493 •340193

- 178 -

- '

~

TABLE	GROWTH RATES CALCULATED From the forecast of the
	APPARENT DEMAND FOR CAPITAL Goods for Indonesia

	1980 TO 1990 Low	MED
TOTAL Engineering products (7)	•196901	.203453
TOTAL Hachinery Non-Electric (7:)	• 189794	.196311
PORER GENERATING Machinery (711)	•164806	.171160
BOILER, STEAM GENERATING' MACHINERY	•040754	.047202
ŠTĒĀMĒNGINES (711.J)	.433202	.441085
AIR CRAFT ENGINES (711.4)	.099443	.106129
OTHER INTERNAL COMBUST	ION .132984	.140049
NUCLEAR REACTORS	.139927	.195677
ENGINES.NES (711.8)	.420214	.428133
AGRICULTURAL MACHINERY (712)	.150535	•157494
OFFICE MACHINERY (714)	•112404	.119185
TYPEWRITERS (714.1)	.131567	.138253
OFFICE MACHINES, NES (714.9)	.059179	.065294
METAL HORKING NACHINER (715)	• 207558	.214228
MACHINE T OOLS (715.1)	•225268	.232040
TEXTILE MACHINERY (717-1)	.238193	.245038
SKIN, LEATHER WORKING Machinery (717.2)	.141991	.148935

HIGH

- .206876
- .199880
- .174647
- .051160
- 4 4 3 3 5 5
- .113269
- .144404
- .196378
- .432396
- .161668
- .123332
- .142605
- .068961
- .217754
- .235638
- .248670
- .153091

	1980	TO 1990 Low	NED
SEWING MACHINERY (717.3)		.106259	•113086
SPECIAL INDUSTRIAL Machinery (713)		.202358	.208948
PAPER AND PULP Machinery (713-1)		.136766	•143846
PRINTING MACHINERY (713.2)		-190509	.197033
FOOD PROCESSING MACHINERY (713.3)		.243676	.250528
CONSTRUCTION,MINING MACHINERY (713.4)		.113491	.120330
MINIRAL AND GLASS WCRKING MACHINERY (713-5)		. 221148	.227866
OTHER SPECIAL MACHINERY (719)		.195272	.201822
HEATING.COOLING EQUIPMENT (713.1)		.173685	.186145
PUMPS AND CENTRIFUGES		.218881	. 225559
(719.3)	IPMEN	.218459	.225144
(719.5)		.023896	• 028491
OTHER NACHINERY (719.6)		.183391	•188954
(719.7)		.070134	.076776
APPLIANCES, NES (719.6)	L	.188406	•194886
OF MACHINERY,NES (719.9)		.172771	.179212
ELECTRICAL MACHINERY (72)		.123910	.130791

TABLE

GROWTH RATES CALCULATED FROM THE FORECAST OF THE APPARENT DEMAND FOR CAPITAL GODDS FOR INDCNESIA

HIGH .117199 .212057 .148265 .200540 .252207 .124493 .232274 .205721 .190209 .228703

.229106

.025926

.189678

.083747

.193332

.183770

.134948

- 180 -

.

TABLES GROWTH RATES CALCULATED FROM THE FOPECAST OF THE Apparent demand for Cap Goods for Indonesia	TAL
--	-----

	1980 TO 1990 Low	MED
ELECTRICAL POWER MACHINERY (722)	•119472	.126363
POW_R TRANSFOPMING MACHINERY {722.1]	•122200	.129093
SHITCH GEAR, 1TC. (722.2)	.125427	.132345
EQUIPTENT FOR DISTRIBUT	ING •108949	•115746
INSULATED WIRE AND CABLE (723.1)	E •111833	.118560
ELECTRIC INSULATED EQUIPMENT (723.2)	•135946	.143132
ELECTRICAL MACHINERY OTH_R (729)	•147368	.154395
ÀATTÉRIES AND Accumulators (723.1)	•102389	.109132
ELECTRIC LAMPS (729.2)	•130917	.137881
VAL VES, TUBE S, TC. (72). 3)	•176468	.183763
AUTOMOTIVE ELECTRICAL Equipment (729.4)	.117692	•122970
MLASURING APPARATUS (723.5)	.344174	.351648
ELECTRO-HECHANICAL Mand Tools (723.6)	. 22 4819	.231 659
(723.9)	.201713	.207366
TOTAL TRANSPORT EQUIPMENT (73)	•167015	.172494
RAILNAY VCHICLES (731)	024574	020022
LOCONOTIVES, Othir (731,3)	• 292568	• 298662

c

HIGH .130561 .133273 .136597 .119860 .122776 .147501 .158648 .113195 .142151 .189363 .123944 .355716

.233205

.208168

.173380

-.013335

.293601

- 181 -

TABLE: GROWTH RATES CALCULATED FROM THE FORECAST OF THE Apparent Demand For Capital Goods for Indonesia			TAL	
	1980 TO	1990 Low	MED	
 PASSENGERSI RAILWAY, Tramway Cars (731.5)		.259235	.264984	•
RAILWAY,LOCOMOTIVE Car Parts, Nes (73:.7)		-132889	.138363	
(732.2)		.038693	.043249	
LORRIES AND TRUCKS (732.3)		.285606	.291663	
SPECIAL PURPOSE LORRIE TRUCKS AND VANS (732+4)	5,	.108367	.115178	
TRACTORS FOR TR- TFAILERS		071508	066814	
(732.5) Ships and 90ats (735)		.312510	.318657	
SHIPS AND BOATS		.200642	.206267	
(735.3) Ships and boats Nes (735.9)		.234490	.240325	

HIGH

- .265477
- .139363
- .043917
- .292686
- .119336
- -.065295
 - .319484
 - .207163
 - .241445

-

TABLES	GROWTH RAT FROM THE P APPARENT (GOODS FOR	ES CALCULATED ORECAST OF THE DEMAND FOR CAP INDONLSIA	ĨTAL
	1980 TO	2000 LOW	NED
TOTAL Engineering products [7]		.209525	.215082
KACHINERY NON-ELECTRIC	;	•205957	.211497
POWER GENERATING Machinery (71:)		.193027	.198507
BOILER, STEAN Generating Machinery (7:1), Normer		.099998	•104983
(711.3)		.323373	.329418
AIR CRAFT ENGINES (711.4)		.130022	.135100
DTHER INVERNAL COMBUST Engines (711.5)	I ON	.148168	.153370
NUCLEAR REAGTORS (711.7)		. 172210	.177511
ENGINES, NES (711.8)		.318850	.324880
AGRICULTURAL MACHINERY (712)	,	•154263	•159487
OFFICE HACHINERY (714)		.136202	.141352
TYPEWRITERS (714.1)		.145962	.151132
OFFICE MACHINES.NES (714.9)		.106403	.111388
METAL HORKING HACHINER (715)	Y	-214909	.220463
NACHINE TOOLS (715.1)		223975	.229569
TEXTILE MACHINERY		.230502	.236131
SKIN, LEATHER WORKING Machinery (717, 2)		.153097	• 1 5828 0'

HIGH .216105 .212601 .193595 .105924 .333469 .136074 .154359 .173255 .325934 .160472 .142317

.152132

.112354

.221435

.23)546

.237115

.159266

183 -

í

TABLE	GROWTH RATES CALCULATED FROM THE FORECAST OF THE APPARENT DEMAND FOR CAPITAL GOODS FOR INDERESIA
-------	---

1980 TC	LOM 1000	MED	HIGH
SEWING HACHINERY (717.3)	.133454	.138586	.139550
SPECIAL INDUSTRIAL MACHINERY (7:5)	•21227A	.217844	.215693
PAPER AND PULP MACHINERY (713-1)	.150271	.155477	.155467
PPINTING MACHINERY (715.2)	.206082	• 211 598	.212565
FOOD PROCESSING MACHINERY (713.3)	.232418	.238071	.238162
ĊĊŇĴŤŔŮĊŢĬŎŇţĦĬŇĬŇĠ Máchinery V713.40	.136973	.142123	.143094
ŇÍŇĹŘÁĽ AND GLASS HOPKING MÁCHINERY (713.5)	.221467	.227051	.225497
OTHER SPECIAL Machinery Machinery	. 20 88 93	.214447	.215710
HÉATING.COOLING EQUIPMENT (719-1)	.200930	.206448	.207822
ÞÚMÞŚ ÁND CENTRIFUGES (719.2)	.220676	. 226284	.227129
MECHANICAL HANDLING EQUIPMENT (719.3)	. 22] 6 7 0	.226279	. 227 541
POWERED-TOOLS.OTHER (713.5)	.084122	.088989	.089615
SPRAYING, VENDING, OTHLR MACHINERY (719.6)	•168982	.174310	.175015
BALL ROLLER BEARINGS (719-7)	• 11 4 2 3 9	.119282	. 12) 228
MACHINERY AND MECHANICAL Appliances, NES (7:9-8)	•204945	.210484	•212066
ÞAFTŠ ÁND ACCESSORIES Of Machinery, në s (719.9)	.197772	.203275	.204892
TOTAL ELECTRICAL MACHINERY (72)	.141911	.147081	.149056

- 184 -

-

TABLE: GROWTH RATES CALCULATED FROM THE FORECAST OF THE Apparent de pand for capital Goods for indonesia

:	1980	TO 2000 Low	MED
ELECTRICAL PCHER HACHINERY (722)		•140191	.145355
POJËP TRANSFORMING Machinery (722.1)		•141307	.146475
SWITCH GEAR, ETC. (722-2)		.143423	.148603
EQUIPMENT FOR DISTRIBUTI	NG	.134550	•139688
INSULATED WIRE AND CABLE	E	.135907	.141048
ELECTRIC INSULATED EQUIPMENT (723.2)		•150518	•155230
ĚLĒČŤŘÍCAL MACHINERY Other (729)		.153838	.159061
BÁTTÉRIES AND Accumulators		•130598	.135712
ELECTRIC LAMPS (729.2)		.146485	.151675
VALVES.TUBES. 7734 av		.170302	.175607
AUTONOTIVE ELECTRICAL Equipment		.135744	•140951
MÉASURING APPARATUS (729.5)		.283089	.288955
ELECTRO-MECHANICAL Hang Tools 1729 Ed		.224290	. 229893
0TH_R, NES (729,9)		.178346	.183722
TOTAL TRANSPORT EQUIPMENT		•161033	.166332
ŘÁŤĹWAY VEHICLES (731)		•061698	.060531
LOCOMOTIVES. DTHER (731.3)		•22224	. 227823

ſ

HIGH

.146331

.

- •140331
- •147450
- .149581
- .149 656
- .142019
-
- .156218
- .160047
- .136678
- .152654
- .176618
- .141707
- .289979
- .239870
- .184450
- .167100
- .067208
- .223636

- 185 -

U

. .

ſ

TABLES GA Fr Ag Ga	ROWTH ROM TH PPAREN OODS F	RATES C E FOREC IT DEMAN OR INDC	ALCULATED AST OF TH D FOR CAP Nesia	TTAL
	1980	TO 2000	LOW	MED
PASSENGERS: RAILWAY, TRAMMAY CARS (73:45)			.206768	.212180
ŘATĽWÁÝ,LOCOMOTIVE Car Parts, nes (731.7)			.137138	.142330
9USIS (732.2)			.086633	.091574
LORVIES AND TRUCKS (732.3)			.219037	. 224 603
SPECIAL PURPOSE LORRIES Trucks and vans (732.4)	•		.134173	.139298
TRACTORS FOR TR- TFAILERS		-	.082008	072560
(732.5) Ships and boats (735)			.231320	.236930
SHIPS AND BOATS Non-War			.177962	.183312
(733.3) Ships and boats Nes (735.9)			.191816	.197303

SOURCE: ECONOMETRIC RESEARCH LTD.

HIGH .212854 .143013 .C92250 .225424 .143274 -.064648 .237675 .184065

,198152

Appendix 9.12

- 186 -

TABLE: GROWTH RATES CALCULATED FROM THE FORECAST OF THE Apparent Demand For Capital Goods for "Ndonesia

1985 TO 1990 Low

MED

	204	
 TOTAL ENGINEERING PRODUCTS (7)	.210567	. 208473
TOTAL Machinery Non-Electric (71)	.210883	.208766
PÔNER GENERATING Machinery (71)	.208512	.206534
BOILÉR, STEAM Generating Machinery	.148995	.154073
STEAN ENGINES	.208124	.205992
AIR CRAFT ENGINES (711.4)	•143697	.149495
OTHER INTERNAL COMBUSTION Engines (711.5)	•152814	.157840
NUCLEAR REACTORS (711.7)	•155923	.161263
ENGINES.NES (711.8)	.224812	.221584
AGRICULTURAL MACHINERY (712)	.131313	•136536
OFFICE MACHINERY (714)	.140672	.145897
TYPEWRITERS (714.1)	•141047	.146088
OFFICE MACHINES,NES (714,9)	121771	.128881
METAL WORKING MACHINERY (715)	.210315	.207921
MACHINE TOOLS (715.1)	.212535	.210061
TEXTILE MACHINERY (717-1)	.213600	.211055
SKIN,LEATHER WORKING Machinery (717.2)	.156015	.162711

HIGH .204726 .207048 .202941 .161852 .202589 .156513 .165933 .162626 .217413

- •143913
- .153658
- .153827
- .133775
- .204483
- .206434
- .207374
- .171137

- 87 -

Appendix 9.13

TABLE	GROWTH RATES CALCULATED
	APPARENT DE MAND FOR CAPITAL

1985 TO	1990 Low	MED	HIGH
SEWING HACHINERY (717.3)	.143637	.148952	.156947
SPECIAL INDUSTRIAL Machinery (718)	.210494	.208403	.204655
PAPER AND PULP MACHINERY (715-1)	.154491	.159734	.167511
(713.2)	.208069	.205556	.202209
FODD PROCESSING Machinery (718.3)	•204654	.202753	.193936
COÑSTRUCTION,MINING Machinery (713.4)	.142250	.147462	.155203
MINERAL AND GLASS WORKING MACHINERY (713.5)	. 20 73 94	.205224	.202342
MACHINERY (719)	.212798	.210582	.205796
ĤĚĂŤÍNG,COOLING EQUIPMENT (719.1)	• 212146	.209968	.206237
PUMPS AND CENTRIFUGES {{19·2}	.211633	.209508	.205621
MECHANICAL HANDLING EQUIPHENT (719.3)	.214062	- 211817	.207936
POWERED- T COUS, OTHER (719.5)	.128437	.133128	.134086
SPRAYING, VENDING, Other Machinery (713.6)	•159280	.164029	.164841
BALL,ROLLER BEARINGS (719.7)	.139164	.144158	• 151 485
MACHINERY AND MECHANICAL Appliances, NES (719.8)	.207426	.205533	.202013
PARTS AND ACCESSORIES OF MACHINERY, NES {719,9}	•216524	.214122	.219254
ELECTRICAL MACHINERY	.139401	.144600	.152269

TABLES	GRONTH PATES CALCULATED FRON THE FORECAST OF THE Apparent demand for capital GOODS FOR INDONESIA

1985 T	0 1990 Low	NED
 ELECTRICAL POWER MACHINERY (722)	.143636	.148793
PONER TRANSFORMING Machinery (722-1)	.141486	.146669
SHIICH GEAR, ETC. (722-2)	.145362	.150516
EQUIPMENT FOR DISTRIBUTING ELECTRICITY (723)	.141495	•146667
INSULATED WIRE AND CABLE (723.1)	.140562	.145673
ELECTRIC INSULATED EQUIPMENT (723-2)	.155619	.160815
ELEGTRICAL MACHINERY OTWER (729)	.139959	.145165
ŠÁŤŤĚRIES AND Accumulators (729.1) Fletřic Lamos	.136773	.141972
(729.2)	.147954	.1 32 5 96
VAL VE S, TUBE S, E TC. (729.3)	.156005	.160793
AUTINUTIVE ELECTRICAL EQUIPMENT (729.6)	•156961	.161781
NEĂ SUR ÎNG APPARATUS (729.5)	.225333	.221921
ELECTRO-NECHANICAL HANJ TOOLS (723.6)	.218523	.215381
014-R. NES (723.9)	.162670	.167329
TOTAL TRANSPORT EQUIPMENT (73)	.160668	.165150
KALLWAY VEHICLES (731)	,162308	.166817
LOCONOTIVES, Other (731,3)	.164153	.168889

HIGH
.156567
.15+388
.158254
•154406
.153351
.169613
.152854
.149574
.160543
.169203
.162496
.217873
•211862
.169341
.166190
.167827

.169963

- 189 -

1 -----

Appendix 9.15

TABLET	GROWTH PATES CALCULATED From the forecast of the
	APPARENT DEMAND FOR CAPITAL GOODS FOR INDENESIA

	1985 TO 1990 Low	MED
PASSENGERSI RAILWAY, TEAMWAY CARS (731.5)	•161715	.166750
RAILNAY, LOCOMOTIVE Car Parts, Nes (731.7)	•110322	•116464
(732.2)	• J96508	.099977
LORRIES AND TRUCKS (732.3)	•164579	.169058
SPECIAL PURPOSE LORRI TRUCKS AND VANS (732.4)	ES, .140374	.145894
TPACTORS FOR TR- TPAILEPS	057532	055137
(732.5) Ships and boats (735)	.160474	•165066
SHIFS AND BOATS	.162172	.166873
(735.3) Ships and boats Nes (735.9)	.144542	.148859

HIGH .167660 .116464 .101387 .170103 .153521 -.052059

.166078

.168137

.149974

Appendix 9.16

- 061 -

TABLE	GROWTH RATES CALCULATED From the forecast of the
	GOODS FOR INDENESIA

1990 TO 2000 LOW MED ------..... TOTAL ENGINEERING PRODUCTS .222283 .226823 (7) TOTAL MACHINERY NON-ELECTRIC (71) POWER GENERATING MACHINERY (711) BOILER, STEAM GENERATING MACHINERY (711.1) STEAM ENGINES (711.3) .222340 .226875 .221931 .226471 .162613 .165951 .221961 .226404 AIR CRAFT ENGINES (711.4) .161451 -164830 OTHER INTERNAL COMBUSTION Engines (711.5) Nuclear Reactors (711.7) .163555 .166846 .159621 .154757 ENGINES, NES (711.8, . 22 47 22 .229092 AGRICULTURAL MACHINERY (712) .158003 .161483 OFFICE MACHINERY (714) .160508 .163958 TYPEWRITERS (714.1) .160541 .1641/7 OFFICE MACHINES, NES (714.9) .155734 .159478 METAL WORKING MACHINERY (715) .222305 .226730 NACHINE TOOLS (715.1) .222683 .227104 TEXTILE MACHINERY .222855 .227288 SKIN, LEATHER WORKING MACHINERY (717.2) .164310 .167702

HIGH .225404 .225457 .225674 .163540 .224715 .162480

.164401

.163406

.227386

.159276

.161623

.161738

.157508

.225126

.223475

.225 067

.165475

- 191 -

-

Appendix 9.17

TABLE: GRONTH PATES CALCULATED FROM THE FORECAST OF THE Apparent de pand for capital Goods for Indonesia

1990	TO 2000 Low	MED
SEWING MACHINERY (717.3)	.161318	.164669
SPECIAL INDUSTRIAL NACHINERY (713)	•222279	• 226 80 6
PAPER AND PULP NACHINERY (718.1)	•163935	.167227
PRINTING MACHINERY {718.2}	• 221859	.226340
FOOD PROCESSING MACHINERY (718.3)	• 221261	.225739
CONSTRUCTION, MINING MACHINERY (714.4)	•160951	.164340
WORKING MACHINERY	• 2217 85	.226238
MACHINERY (719)	•222668	•227204
HEATING.COOLING EQUIPMENT (719.1)	• 222558	.227099
(719.2)	•222475	.227009
(719.3)	•222885	.227414
(719.5)	.147890	.153045
OTHER MACHINERY (719-6)	.154749	.159847
(719.7)	.160161	.163465
ACTINERT AND HECHANICAL APPLIANCES, NES (719.8)	•221713	.226287
OF MACHINERY, NES (719.9)	.223306	.227829
LECTRICAL HACHINERY	-160200	.163606

HIGH	
• 162 349	
• 225365	
.164728	
.224710	
.224275	
• 162 0 03	
.224731	
.225782	
• 225 695	
.225556	
• 225 977	
.153883	
.160 532	
.161151	
.224935	

.226391

.161317

- 192 -

Appendix 9.18

GOODS FOR INDENESIA			
1990	10 2000 Lon	MED	
ELECTRICAL POWER MACHINERY (722)	.161293	.164668	
POWER TRANSFORMING Machinery (722.1)	.160739	.164125	
SWITCH GEAR, ETC. (722.2)	.161707	.165095	
EQUIPMENT FOR DISTRIBUTING ELECTRICITY (723)	.160741	.164143	
ÎNȘULATED WIRE AND CABLE (723.1)	.160503	.163885	
ELECTRIC INSULATED EQUIPMENT	.164265	.167456	
ÈLECTRICAL MACHINERY	.160345	.163747	
BATTERIES AND Accumulators (729-1)	.159529	¹	
(729.2)	•162266	.165636	
VAL VE S, TUBE S. E TC (729.3)	•164170	.167506	
AUTONUTIVE ELECTRICAL Equipment (729.4)	-154087	•159219'	
Ř≟ĂŠŨRÍNG APPARATUS (729+5)	•224780	.229169	
ELECTRO-MECHANICAL Hang tools (729-6)	•223762	.228130	
0 THÉR, NES (729.9)	.155433	.160541	
TOTAL TRANSPORT EQUIPMENT	.155082	.160202	
ŘÁŤĹHAY VEHICLES (731)	. 1 5 56 0 1	.160728	
LOCONOTIVES, Other (731.3)	.155709	.160848	

TABLET

GROWTH RATES CALCULATED FROM THE FORECAST OF THE Apparent demand for capital Goods for indenesia

HIGH .162321 .161804

- .162714
- .161817
- .161591
- .165001
- .161448
- .160 655
- .163254
- .164990
- .159751
- .227430
- .226551
- .161199
- .169853
- .161387
- .161546

- 193 -

Appendix 9.19

TABLEI GR Fr Ap Go	OW THE PAREN DDS FO	RAT E F T D Or	ES CALCULAYED OPECASI OF THE E MAND FOR CAPI INDENESIA	TAL
	1998 1	T O	FOM 5000	MED
PASSENGERS: RAILWAY, TALMWAY CARS (731.5)			•156487	.161530
RAILŴÁY,LOCOMOTIVE Car Parts, Nes (731.7)			.141403	.146311
(732.2)			.136786	.142137
LORRIES AND TRUCKS (732-3)			•155914	.161024
SPECIAL PURPOSE LORRIES, 15UCKS AND VANS 1732.4)			.160580	.163939
TRACTORS FOR TR- Trailers			092390	078271
(732.5) Ships and boats (735)			.155152	.160268
SHIPS AND BOATS Non-War			.155710	.160795
(735.3) Ships and boats Nes (735.9)			.150617	.155774

SOURCE ECONOMETRIC RESEARCH LTD.

.

HIGH .162419 .147681 .142821 .161662 .161605 -.064000 .160938 .161409 .156368

Appendix 9.20

- 194 -

Part Threee: Capital Goods Production in Developing Countries: International Experience ١

Part Three. Capital Goods Production in Developing Countries: International Experience

CONTENTS

Page

Chapter	I.	Experience	at the macro level	198
		1.1	International Trends in Capital Goods	198
			1.1.1 International Trade	198
			1.1.2 Production and Consumption	199
		1.2	Latin American Experience	200
Chapter	11.	Two Case Si	tudies	203
		2.1	The Role of Multinationals: Brazil	203
		2.2	Technological Innovation: the Rep. of Korea	204
Chapter	111.	Experience	at the Micro Level	206
		3.1	Introduction	206
		3.2	Cost Considerations	206
			3.2.1 Task-Level Productivity	207
			3.2.2antwide Productivity	209
			3.2.3 Subcontracting Network	210
		3.3	Backward Linkages	211
		3.4	Government Policies	213
		3.5	Export Prospects of Machinery	215
		3.6	Design Adaptation and Indigenous Research	
			and Development	216
		3.7	Conclusion	217

Statistical Annex

219

232

References: Selected UNIDO Studies on Capital Goods Industry

ł

LIST OF ANNEX TABLES

Table number		Page
1.	World exports and invorts of engineering products, 1978	220
2.	Development of trade in engineering products between economic regions (millions of current US \$), 1970 and 1978	221
3.	Machinery and transport equipment: production and trade in selected developing countries (1980 or latest year available)	222
4.	Indicators of the development of the capital goods sector in selected developing countries (1980 or latest available year)	- 223
5.	Manufacturing value added (MVA) of ISIC-groups 382, 383 and 384 (machinery and transport equipment), 1970, 1975 and 1980	227
6.	Growth of industrial production in 15 Latin American Countries, 1960-1980	228
7.	Latin America (15 countries): structure of the manufacturing industries, 1950-1977	229
8.	Share of metal working industry in the manufacturing industry in Latin America and selected sub-regions, 1950-1977	230
9.	Transnational enterprises in the capital goods sector in Brazil, 1977	231

LIST OF FIGURES

Figure I	Share of engineering industry (ISIC 38) in total manufacturing value added, 1950–1980		
Figure II	Share of non-electrical machinery industry (ISIC 382) in total manufacturing value added, 1950-1980	202	

▼ ...

ノ

....

13

i.

-

Part Three. Capital Goods Production in Developing Countries: International Experience

This Part begins with an overview of international trends in trade, production and consumption of capital goods. It then focuses more specifically on Latin American experience and on two particularly interesting cases: the role of multinationals in Brazil and of technological innovation in the Republic of Korea. The third chapter of examines a range of problems that have been encountered by developing countries at the micro level.

Chapter I. Experience at the macro level

1.1 International trends in capital goods

1.1.1 International trade

Annex Table 1 presents a summary picture of world trade in engineering products in 1978. Not surprisingly, the developed market economies dominate the scene, accounting for 88 per cent of exports and 60 per cent of imports. The USSR and other developed socialist countries account for another 10 per cent of more or less balanced trade. The developing countries are overwhelmingly net importers, with 30 per cent of imports but only 2.6 per cent of exports.

Annex Table 2 shows that, between 1970 and 1978, the developing countries raised their share in world trade in engineering products only marginally, but in absolute terms their exports of engineering products increased almost tenfold, to US \$9.4 billion. As in the case of the developed countries, a relatively small number of developing countries account for the bulk of export trade in engineering products. As Annex Table 3 shows, only six developing countries recorded exports of machinery and transpor. equipment in excess of \$500 million in 1979: Singapore, the Republic of Korea, Hong Kong (1978), Brazil, Yugoslavia and Argentina (1978). More than one-half of the exports of the three leading exporting countries fell into class 71 (electrical machinery) and consisted chiefly of electronic components and products, although the Republic of Korea has been developing rapidly as an exporter of other machinery. More than 50 per cent of their exports went to the developed market economies. Brazil and Argentina have become significant exporters of non-electrical machinery and transport equipment, in Brazil's case at a level comparable to those of several OECD countries.

1.1.2 Production and consumption

In addition to the trade statistics to which reference has been made, Annex Table 3 provides data on value added, number of employees, gross output and the domestic procurement ratio in the production of machinery and transport equipment for the 46 developing countries which collectively account for virtually the whole output of capital goods in the Third World. Seven countries, those in Group I, account for almost 90 per cent of total gross output. They meet approximately 60 per cent of their requirements from domestic production and have substantial, though widely varying, export ratios. Group II includes traditional (e.g. Argentina, Colombia, Chile, Egypt) as well as new capital goods producing countries with domestic procurements ratios in excess of 40 per cent or (as in the cases of Hong Kong and Argentina) substantial export ratios. Among them are two aSEAN countries, the Philippines and Thailand (no figures for Thailand). Indonesia, with all the rest, is classified in Group III, mostly with domestic procurement ratios of less than 25 per cent and little if any export of engineering products.

Annex Table 4 provides more detailed data on the capital goods industries of selected developing countries. Tanzania represents the large number of developing countries with virtually no capital goods sector and limited prospects, as indicated by very small imports (and presumably domestic consumption) of capital goods and shortage of skilled labour. Thailand and Peru appear as newly emerging capital goods producers, each with over 1,000 establishments and a significant core of scientifically or technically trained personnel. By far the largest domestic producers of capital goods among developing countries in terms of number of establishments and employees are the People's Republic of China and India, but Brazil surpasses India in value of gross output, apparent consumption and exports (no trade figures for the Peoples Republic of China are available). In Brazil, capital goods already account for 29 per cent of exports of manufactures, as compared with only 19 per cent in the Republic of Korea. Brazil had the advantage of a long prior period of engineering industry development for the domestic market, but the Republic of Korea has been rapidly catching up from a starting point of export-oriented industrial development concentrated initially on consumer goods.

- 199 -

Annex Table 5 provides data on growth of engineering value added in Asian countries. It confirms the predominance of India but also brings out the remarkable ascendance of the Republic of Korea and Singapore, with annual growth rates even during the second half of the 1970s of over 25 per cent.

1.2 Latin American Experience

In the years after World War II, much of Latin American embarked on a deliberate policy of industrialization based on import substitution, in the belief that manufacturing industry could serve as the dynamic engine of growth, creating employment for rural surplus labour, absorbing modern technology, reducing dependence on world markets for primary products and on imports of manufactures and thus overcoming chronic balance of payments problems. By the end of the 1950s, the most influential exponent of this strategy, Dr. Raul Prebisch, had come to the conclusion that the strategy was largely failing to achieve the hoped-for objectives. Import dependence was not being reduced, unemployment was not being significantly alleviated. balance of payments problems remained. He concluded that Latin American countries had to seek export markets for manufactures. His first approach was to recommend schemes of regional integration, to expand the horizons of manufacturers from domestic to regional markets, but none of these schemes (LAFTA, CACM, Andean Group) proved very successful. In his proposals for UNCTAD I he emphasised the need for developing countries to look to the large and growing markets of the advanced industrial countries and urged the latter to assist through preferential trading schemes. Some Latin American countries, especially Brazil, have followed this strategy with considerable success. The majority have continued to rely in their industrial development primarily on production for the domestic markets. Both the less and the more export-oriented Latin American countries, however, in contrast to the east Asian NICs, have from the beginning put considerable emphasis on engineering industries and domestic production of capital goods.

Along with sustained, though not very rapid, growth of total industrial production (annex table 6), averaging 6.3 per cent a year over the period 19.0 to 1980, there have been considerable changes in the structure of manufacturing industries in Latin American countries. Annex Table 7 shows

- 200 -

that, while in 1950, production of non-durable consumer goods accounted for almost two-thirds of industrial value added (food and beverages alone accounting for one-third), by 1977 their share had fallen to little more than one-third. The share of engineering industry (ISIC branch 38) had risen from 11 to 25 per cent, the value added of the chemical (other than petrochemical) industry form 5 to 15 per cent, and basic metals (iron and steel and non-ferrous) from 4 to 9 per cent. Within the engineering branch, the largest increases in relative shares were recorded by the electrical machinery (from 1 to 6 per cent) and transport equipment (2 to 8 per cent) sub-sectors. Data are not available to indicate what proportions of output consisted of consumer durables and capital goods.

Annex Table 8 and Figures I and II gives a further breakdown of the engineering industries of three sub-regions, Brazil, the Andean Group countries and Central America. All three groups show a gradual increase in the relative importance of engineering industry, with Brazil most and Central America least advanced. Whereas in Brazil the share of the engineering industry had already passed 15 per cent by 1960, it did not reach this figure in the Andean Group until 1977; similarly, the share in the Andean Group had passed 10 per cent by 1965, a figure not yet reached in Central America in 1975. Among sub-sectors, tranport equipment moved ahead of others in Brazil in the 1970s, followed by non-electrical machinery (the sub-sector containing most capital goods). In the other two sub-regions, fabricated metal products still recorded the largest share in 1977.

These figures reflect the fact that Brazil's dynamic growth in engineering industry has relied heavily on development of its automotive sub-sector. The Andean Group have also sought to develop automotive production beyond mere assembly of passenger cars but as yet with indifferent success. The prospects for any such development in Central American are meagre, since the minimum scale of production is far larger than the small domestic market and realistic export prospects combined.

Latin American governments have all given high priority to industrial development of one kind or another and have sought to pursue this objective with a variety of industrial policies, including various forms of promotion such as, protection and support activities, including investment in infrastructure, technical education, development finance, and in varying degree in different countries also more direct intervention by the state

- 201 -

Figure I: Share of Engineering Industry (ISIC 38) in Total Manufacturing. Value Added, 1950-1960

Source: UNIDO (based on Annex Table 8).

acting as entrepreneur or as buyer of industrial products. Direct state ownership has been important in steel production (accounting for 60-100 per cent in Argentina, Mexico, Brazil, Chile, Venezuela and Peru) and in petroleum refining and petrochemicals in most of these countries. But governments have generally refrained from competing with the private sector in most other branches of manufacturing, except in instances where governments have taken over weak companies to maintain employment. The role of foreign investment by multinationals has been contentious, but most ccuntries have seen the need for their participation in industrial development requiring high technology, large investments and efficient management.

Because of the importance of the role of multinationals and technological innovation in engineering development, it is instructive to look at two case studies, the first from Latin America, the second from east Asia.

Chapter II. Two case studies

2.1 The role of multinationals: Brazil

Transnational companies in Brazil have a production share of 46 per cent in the capital goods sector and 56 per cent in durable consumer goods. Both figures are far higher than for the other two major branches of engineering industry, production of intermediate products (35 per cent) and non-durable consumer goods (16 per cent). The difference is largely explained by the advantage which multinationals enjoy in advanced technology and access to export markets. Both of these are of greater importance in automotive and electrical machinery production than in other branches of manufacturing (if allowance is made for the major role of state enterprise in steel and petrochemical production).

Annex table 9 shows that capital goods production accounted for 41 per cent of investment by multinationas but for only 35 per cent of the number of multinational enterprises, indicating the relatively large investment per company in capital goods production. Again, this applies particularly to the transport equipment sub-sector, and to a less extent to electrical and telecommunications equipment production. In both sub-sectors, the 10 largest companies account for 60-80 per cent of multinational turnover, compared with less than one-half in the mechanical equipment sector which shows a

- 203 -

significantly smaller average investment per enterprise. The relatively large number of enterprises in this sub-sector reflects in part the wide and diversified range of products.

2.2 Technological innovation: Republic of Korea

Korean production of capital goods began in 1960 with legislation to establish shipbuilding, motor vehicle, general machinery and electronics industries. During the 1970s further policies were adopted to expand machinery production, including a scheme to promote the heavy electrical machinery sector, a plan to develop machine tool and textile and agricultural machinery industry, the selection of 85 key kinds of machinery and of 35 types of specialized machinery for early development, the designation of 72 small machinery makers and a second long-term plan for the machinery sector. These measures were in most cases accompanied by low-interest finance and tax concessions. An Institute for Machinery and Metals, was established to upgrade the technical capability of Korean machinery industries.

Between 1960 and 1975 the share of the machinery industry in total manufacturing output doubled, with an average annual growth rate of 21 per cent, as compared with 13 per cent for manufacturing as a whole. This growth performance is attributable in large degree to the incentives provided by government to create a technology base for the machinery industry. In 1979 the Korean Government took further steps to facilitate the development of industrial technology in the capital goods industry. Capital goods developed by 70 enterprises were designated as "Newly Developed Innovative Machines" (NDIM) and special incentives offered for their production and purchase. The criteria used in designating NDIMs included:

- the NDIM must have been developed with local patents or with a new technology;
- 2. local components content must be at least 60 per cent;
- the NDIM must have been developed in the Republic of Korea without technical co-operation from abroad;

- the quality must be certified by an independent quality inspection laboratory;
- 5. the NDIM must not be an exact copy of a foreign product;
- 6. no foreign components must be used for critical functions.

In other words, the objective was to promote local technological innovation in the capital goods industry.

A sample study of innovative entrepreneurs under the scheme showed that 85 per cent of them consisted of small- and medium-sized companies. This finding corresponds with similar findings in other industrializing countries suggesting that small companies tend to respond more flexibly to opportunities for innovation. Approximately two-thirds of the technological innovations arose in response to market needs and only one-third from more technical feasibility. In more than half the cases, the innovative company had outside technical assistance, either from research institutions or from potential users of the product. In most cases, catalogues and technical descriptions compiled by foreign machine producers were drawn upon for guidance.

The Korean case study underlines the importance of government incentives, market demand and technically competent and innovative entrepreneurs as necessary ingredients in the environment needed for the development of an indigenous technological capability in specific areas.

Chapter III. Experiences at the Micro Level

3.1 Introduction

This chapter draws on the experience of selected newly industrialising countries or areas (NICs) in producing capital goods and examining the problems experienced in association with such production. Capital goods are defined here to comprise industrial and agricultural machinery but excluding vehicles and electrical equipment. The selected group of NICs includes: Argentina, Brazil, India, the Republic of Korea, Mexico, Pakistan and the Province of Taiwan. Although the evidence is still far from systematic or conclusive, many of the issues raised are important.

Developing countries embark on the production of capital goods for a variety of reasons but four among them seem to assume special importance: the comparative advantage accruing from low costs of skilled labour; the capacity to produce machines embodying specifications and designs appropriate to their countries' factor proportions; the prospect of externalities (spin-off) from the capital goods sector to increase the efficiency of the entire manufacturing sector and economy; and to ensure a steady and realiable supply of this critically needed factor of production.

Indonesia's policy-makers have embarked on a strategy to adjust the manufacturing sector's structure of production by undertaking to produce the capital goods requirements of processing industries. To survive, the programme to produce capital goods domestically must be cost efficient. Thus, the considerations of cost efficiency are discussed first.

3.2 Cost Considerations

To describe and analyse the costs of production in the capital goods producing sector, we draw on the recent experience of the principal producers among developing countries: Argentina, Brazil, India, the Republic of Korea, Mexico, Pakistan and the Province of Taiwan. We consider both the producers of equipment and their suppliers in the metal products sector, particularly foundries and forges. Iron and steel operations are excluded, although costs of these products can drastically influence the cost of capital goods. The typical experience of capital producers in developing countries suggests that the correct use of skilled labour can be as important in reducing costs as the optimal use of equipment. Thus, the competitiveness of developing countries in capital goods production is contingent on maintaining high productivity on individual tasks; alternatively, factor prices or material costs must be sufficiently low to offset firmwide productivity differences. These considerations will be addressed in terms of: the productivity of workers on tasks; the productivity of whole plants; the sub-contracting network; the record of some supplying sectors, and policies of government.

3.2.1 Task-Level Productivity.

Although skilled operatives in developing countries receive lower wages than those in developed countries, the obvious question is whether labour productivity is proportionately lower, allowing for the smaller quantity of capital per worker, and thus nullifies the wage differentials. Two aspects of labour productivity need to be distinguished. The first is the number of items produced per minute by a worker on a set task, assuming all complementary inputs are available, machines in good order, and so on. The second is output per operating day, which depends on the first aspect and also on the rate at which complementary inputs are made available, the frequency of mechanical failures not attributable to the operative, the time the operatives spend moving materials among work stations, the number of different tasks assigned to each worker, their respective set-up times, and so on.

Most observations of factories operating in NICs indicate that the performance of operatives on tasks is rather high, despite the use of less sophisticated machinery. In many activities their performance equals that of factory workers in developed countries, and it is rarely less than 30 per cent of their level.^{1/} Productivity on a plantwide basis, however, is often much lower. In India, for example, labour productivity in the textile-machinery sector was estimated at a third of that in European countries in the best firms and, at a tenth in the worst. Similarly, a study in the Republic of Korea of the entire mechanical engineering sector found labour productivity to be 20 to 30 per cent of that in Britain and the United States, whereas wages were less than 10 per cent of those in Britain and the United States.

- 207 -

^{1/} Among the studies relevant to this issue are that on machinery industries in the Republic of Korea (World Bank, 1978), and those for foundries (World Bank, 1974), and textile machinery (World Bank, 1975) in India.

Lower productivity at the task level in the NICs, when it was observed, was attributed to a number of causes: inadequate instruction about the potential effectiveness of a machine tool; poor working conditions such as clogged floor space on which to begin a job; the use of poor quality tools; the absence of technical aids to operatives; and the failure to use jigs and fixtures in setting-up operations. $\frac{1}{2}$

Indonesian planners need to distinguish here between those aspects which reflect a movement along a production function in response to a low wage-rental ratio (the use of poor quality cutting tools and the absence of jigs) and those that result in a failure to reach the production function due to X-efficiency (e.g. misestimation of a machine's potential). This distinction is not easy, but it is quite relevant, for the first group probably reduces production cost, whereas the second group increases them.

Although the quotation below is taken from a study about the Republic of Korea, similar examples are found in descriptions of other countries. $\frac{1}{2}$

In the best-run Western machinery and metal working establishments, there is an abundance of technical material available to the machine operator and the first-line supervisors. These materials take the form of wall charts, tabular materials, condensed handbooks of technical information, etc., all of which are designed to assist the man in making proper measurements, making conversions from one type of system to another (e.g., English measures into metric), to choose the right feed and speed for the machine based on the type of material being worked and the type of operation, and a variety of other technical information to assist in day-to-day standard operations in the plant. This kind of material was noticeably lacking in the plants visited. There is, of course, a good deal of documentation available to the front office management, the plant engineer, the production manager, etc., on the characteristics, design, functions, speeds and feeds for the specific machines in the shop, but that kind of information is at a different level from the kind being described here, which is standardised technical information that is necessary on the shop floor so that the operators and first-line supervisors will not have to do standard calculations, nor make guesses than can lead to mistakes when there is a simple way to look it up.

^{1/} See <u>Machinery Industries in the Republic of Korea</u> (World Bank, 1978, Chapter 3).

3.2.2 Plantwide Productivity.

Plant layout and scheduling have significant impacts on productivity. Since in many machine-producing activities neither the order nor the placement of machines is inherent in the process, difficulties are raised by this wide latitude of choice, particularly for the NICs machinery industries. The typical plant in Mexico, Brazil or India exhibits a poor layout in which the movement of the work in process interferes with operations at the different work stations, so that an accumulation of partly finished pieces is held until workers return to them. Poor scheduling is also noted. In a study of forging in India^{1/} it was observed that such poor scheduling had resulted in reduced use of labour and equipment, in delays in identifying and correcting errors and in high interest charges on carrying substantial semi-finished inventories.

A general characteristic of production of machinery in most of the NICs is low capacity utilisation. Mechanical engineering plants usually employ a number of costly individual items, such as machine tools, fixtures, and welding equipment. Each can be fully utilised if a plant produces a large batch of items of a single type or a range of products that require a similar opelation such as stamping. At low volumes of output low utilisation rates are unavoidable. This problem will become (and has already become) less severe with growth of the domestic market and, as efficiency and marketing ability increase, with the growth of exports.

Materials management is a related area to be monitored. In Indian foundries it was often found that scraps and castings were not returned to their proper place for storage and that sand accumulating on the floor was removed only when little working space was left. The same phenomenon was observed in the Republic of Korea, Egypt, Mexico and Brazil. In an example from the Republic of Korea the World Bank reports "...as much as 50 per cent of the total floor area (was) occupied with heaps of discarded sand which had been knocked away from pervious castings."^{2/}

Here is another description of the effects of poor scheduling on labour productivity:3/

> The common pattern was one of machine placement that is haphazard rather than allowing for an orderly flow of work. Floor space is very crowded and the operation

)

Machinery Industries in the Republic of Korea, World Bank, 1978.

- 209 -

Steel Forging in India, World Bank, 1974.

Machinery Industries in the Republic of Korea, World Bank, 1978, (p. 67). 3/

of machining, fabrication of components, assembly of parts are scattered in any place that happens to have available room. Too much time is spent finding work, or the next job, or material. In some cases the men have to find their own area in which to work, perhaps make up some form of fixtures of their own, or find the means to obtain levels or measurements to work from. The almost universal characteristic is one of congestion and a mixing of operations that frequently leads to deterioration of quality because of improper floor planning. There is no adequate provision for working space around the main machines and the aisleways that are normally used to carry the flow of work are completely congested with work-in-process. There are typically about double the number of machines per square unit of floor space than there would be in an efficient layout. This is exacerbated by another condition, namely, wherever there is some vacant space because of temporary slowing down of poor operating practices, the tendency is for any small operations to settle in as "squatters" doing assembly of small components, or a welding and/or cutting operation.

3.2.3 Sub-contracting network.

In the machinery producing sectors of the advanced industrialised countries, sub-contracting has proved to be important in reducing costs. Small firms concentrating on a few operations or components common to a large number of producers are able to utilise special purpose equipment fully, as well as obtain the benefits of learning over time as a result of , specialisation in a narrow area. If the volume of output were sufficient, such specialisation could occur within large firms, but quantities currently produced in most NICs and those expected to be produced in Indonesia in the near future are too small to allow this.

Two preconditions must be satisfied to reap the potential benefits of sub-contracting. First, the mother firm must be able to coordinate multiple sources of supply so that production is not interrupted by the absence of components. Second, the sub-contractors must be efficient and reliable.

The evidence from NICs suggests that sub-contracting in these countries is limited. There is, to be sure, some sub-contracting in some countries (Mexico) and in some sectors, but it is the exception, not the rule. This is the result partly of unreliability of existing sub-contractors in meeting delivery dates and quality specifications and partly of relatively high costs.

The two conditions combined imply that sub-contracting is cost effective when the organisational costs of sub-contracting are less than the cost reductions to be derived from it, i.e., from better factor utilisation and learning by doing. A further implication is that improved sectoral division of labour is contingent upon the accumulation of adequate organisational ability.

Related to the weakness of sub-contracting networks is the absence of an ability to rebuild equipment. This ability increases productivity because the cost of rebuilding typically is low relative to the price of new machines. In many cases rebuilding does not involve going back to the original design, yet it often leads to the addition of newly available features. While in developed countries numerous firms specialise in rebuilding, there is none in the Republic of Korea, the Province of Taiwan, the Philippines, etc.

3.3 Backward Linkages

Production of machinery does not operate in a vacuum. It necessitates the prior existence of well developed casting and forging activities. The production of these inputs is intensive in skilled labour, and mechanisation is not economical, except at very high volumes. Two sets of questions arise here about the performance of most NICs in this production. First, there are narrow questions about intra-plant efficiency. Second, there are broad questions arising from the high costs of domestic production and import substitution policies.

To establish the relative labour intensity of foundry and forging operations in NICs, consider the typical fixed-capital/labour ratios in India and the developed countries: in India it is \$3,500 per worker, in the developed countries it is \$25,000. But despite the savings in fixed capital, the price of Indian forgings simi ar in quality to imported forgings is, on the average, 50 per cent above the c.i.f. price of comparable imports. Half this difference is attributable to factors external to the firm such as the high price and erratic supply of raw materials. The remainder is attributable to internal inefficiency and small production runs. It has been calculated that Indian foundries and forges could, at internationally competitive prices (mainly of iron and steel) and improved and achievable levels of internal efficiency, sell their products at about 90 per cent of the world price. This could certainly contribute to the efficiency of the machinery producing sector. Similar difficulties are encountered in the Republic of Korea and Mexico. A typical finding in the Republic of Korea is that the forging blauks weigh two to two-and-a-half pounds per pound of the net weight of the forged part. The wastage of material is twice or more that occurring with good practice. One interesting possibility noted in the study of technical development in Argentina is that faster technical upgrading may occur if supplier industries initially sell to high-quality producers of consumer durables such as automobile manufacturers. $\frac{1}{2}$

Indonesia faces a number of structural challenges in its quest to build its non-oil sectors. Among them are the re-structuring of the manufacturing sector by developing capital goods producing activities, balancing agriculture and industry by furthering the integration of the joint dependencies, and balancing the regional mix of economic activity. Structural considerations are not separable, however, from efficiency considerations as these two aspects reinforce one another. Through efficiency resources are saved and more can be accomplished from any given volume of investment. Through efficiency, moreover, it is possible to maintain structural achievements which otherwise may not be sustainable without intolerable burdens. On the other hand, efficiency is not meaningful independent of the chosen structures within which it operates. Efficiency is desirable only in relation to effecting desirable objectives. What is not worth doing at all is not worth doing well.

Indonesia can save herself enormous waste by securing high task productivity, through proper training, specialisation and standardisation of work, and high plant-wide productivity by ensuring a clean and clear working space, by using jigs and fixtures, by proper material handling, by using proper tools, by understanding the potential of the machines, by productive layout of machines, by the development of reliable and specialised sub-contracting networks, by minimising the cost of coordinating parent and sub-contracting relationships and by the development of a competent and cost-efficient input supply network that feeds efficiently and reliably into the using sectors producing machinery.

To learn from the experience of others presupposes the existence of the will to learn and the will to apply the new knowledge and this presupposes the

- 212 -

^{1/} Mariluz Cortes, "Argentina: Technical Development and Technology Exports to other LDC's", <u>World Bank</u>, February 1978.

existence of an educated core of policy-makers with a clear vision of the future and a strong sense of determination to effect change and progress. Indonesia is fortunate in having such a core, but policies adopted under pressure have not always, in retrospect, proved sound. Here again, the experience of other NICs may be useful and helpful.

3.4 Government policies

Superimposed on the technical difficulties faced by an infant capital goods producing sector may be additional difficulties induced by a policy designed to foster that sector's development. For example, in the Republic of Korea, Mexico and India there has been an early emphasis on the encouragement of large-scale firms by using a variety of incentives, including low-interest loans, investment credits and tax concessions. The outcome has frequently been the purchase of equipment that is several-fold too large for the domestic market. This is different from the problem faced by medium-sized firms which may initially possess equipment that can be efficiently used with a doubling of demand. The larger machines, we are emphasising here, may not initially be used for more than one-tenth of their capacity. Production is then saddled with inordinately high fixed costs and often leads to a diversified production base which competes with the product lines of small and medium-size firms, thereby reducing these firms production runs and raising social costs of production for the economy. Although this phenomenon is not limited to the capital goods' producing sector, it is more significant than in the capital goods using industries, given the much larger range of products that can be manufactured with a given set of equipment and the larger setting costs for each run.

The emphasis on size often leads to laxity about quality. This is particularly evident in the case of machine tools, such as cutters and shapers of metal which are used in the production of all equipment. But if locally produced tools are not adequate for the high precision needed in much of the equipment-producing sector they may compromise the effectiveness and competitiveness of the latter sector.

In such circumstances government policy must address this problem at two levels. First, emphasis on quality should be paramount and second, some

- 213 -

imports should be admitted. The effect of restrictions on imports in India is well documented in this quotation: $\frac{1}{2}$

With few exceptions, machine tools and equipment are 10-25 years old and in poor condition due to both difficulty of importing spare parts and bad maintenance. This is particularly so in the heavy machine tool sectors where little if any replacement has taken place. Single purpose, non-automatic light machine tools dominate throughout, with consequently variable operator workmanship. In the early 1950s, when most Indian firms commenced manufacture, machinery was of low speed simple construction and had remained virtually unchanged for the previous 50 years. For these models, and with abundant cheap labour, the original machine tools were adequate. In the early 1960s there was a revolution in textile machinery design leading to machines 3-4 times faster than 1950 models. Within a few years this sophistication in design had out-moded all existing machine tools, as tolerance became critical, and extensive investment in re-tooling became the order of the day in Europe and Japan. Indian textile machinery makers did not follow suit and today expect to manufacture modern products with obsolete machinery. This leads to lower quality. In a large number of cases rejection rates are reportedly so high that, unless defects are overlooked and faulty parts used, production would be halted. The sad state of machinery has a disastrous cascading effect. Varying tolerance and modest operational ability necessitates intensive inspection. Usually costly remedial action has to be taken to patch up machines. Most machines have to be erected in plant and far too much filing was undertaken to ensure that all the parts fit. The lack of standardisation is also a constant concern for textile mills since it is very difficult to find spare parts that fit their machinery.

1/ The Textile Machinery Industry in India (World Bank 1975), pp. 20-21.

3.5 Export Prospects of Machinery

Firms in the developed countries have found it increasingly difficult to produce simple standard universal machines at competitive prices and are, therefore, obliged to concentrate on the production of more sophisticated machines. This trend has opened up the possibility of developing countries penetrating international markets. In 1979, the developed market economies imported machines valued at \$196 million from developing countries, a substantial increase over the \$4.3 million in 1970. More promising perhaps is the trade in machinery among developing countries which has grown from \$13 million in 1970 to \$98 million in 1978. $\frac{1}{2}$

There are regional characteristics that affect the pattern of machine exports from developing countries. For instance, the distance between suppliers and markets appears to be an important factor. For users in Europe, Africa and, to a less extent, West Asia, standard machines are available at relatively low costs in the neighbouring developed countries such as Spain, Yugoslavia and in Centrally Planned Economies. On the other hand, major suppliers to South and East Asian markets are India, The Republic of Korea, and Singapore. Canada and the United States have easy access to Latin American suppliers in Argentina, Brazil and Mexico.

Developed countries import primarily conventional lathes, drilling machines and grinding machines demand for all of which is price-elastic. For instance, Japan's imports of machines from developing countries accounted for only 8.5 per cent of the value of her machine imports, but for about half the number of machines imported. These figures suggest that machines imported from developing countries were much cheaper than those imported from other developed countries; the average unit price per machine supplied by firms in the developing countries was \$2,480 as compared to \$28,530 from those obtained from suppliers in other developed countries. $\frac{2}{}$

The foregoing evidence is particularly relevant for the machine tool industry but carries with it significant lessons for the capital goods sector at large. Indonesia's export chances are best in conventional, standardised and cheap machinery and should be directed primarily to the Asian rim and/or Middle East and North America.

- 215 -

^{1/} UN, Statistical Office.

^{2/} Ministry of Finance, Customs Statistics, Tokyo, Japan.

3.6 Design adaptation and indigenous research and development

Given that the wage-rental ratio, however distorted it may be, is considerably lower in the NICs producing equipment than in the developed countries and given a cost minimisation objective, locally produced machinery should be labour-intensive. The rather thin evidence on this matter from NICs, however, suggests otherwise. But, the production of vintages of equipment no longer produced by more advanced countries shows responses to domestic factor proportions.

There are two sets of evidence on which to draw. First, there are detailed studies of specific sectors in developing countries, such as the Indian textile-machinery industry. Because these are focused on machine production, considerable information is available about the character and significance of technical design changes of the final product as well as the production of older designs, usually under licence. Much of the evidence on this matter is drawn from the experience of large firms and as such is applicable only to this class of firms.

A second set of studies describes the design activities of NICs equipment producers as a by-product of other interests, including analysis of export performance, the choice of technique, and the efficiency of small-scale enterprises.

Large firms often produce under licence and behind protected tariff walls They consequently face weak incentives to obtain the cost advantage that more labour-intensive equipment would confer. Smaller producers of equipment are more likely to sell to firms facing more competitive factor and product markets and, as a result, to undertake greater adaptation of imported designs or to produce their own. Indonesia would be well advised not to overlook this evidence. As long as large firms continue to rely on licences, only smaller firms are expected to be interested in copying and adapting existing equipment. Indians and Koreans continue to produce semi-automatic looms which have proved more desirable in the local market, partly because of only sporadic availability of the high-quality yarn necessary to realize the fast speeds of modern looms and partly because of the lower initial cost of equipment and low wages in the textile sector.
Relying solely on equipment of older vintage, may end up giving the developed countries technological dominance. Design research is then a very crucial complement to considerations of efficiency elaborated above.

There are a number of instances of companies modifying imported designs, upgrading them, and producing a machine that permits a lower capital-labour ratio in the using sector. For example, Argentine companies are currently producing food-processing equipment that is less mechanised than advanced-country equipment designed for the same product. Other pieces of evidence indicate that smaller firms in many countries, usually not manufacturing under licence, have produced simple equipment that is often used for the production of goods whose quality is too low for international trade.

There is also ample evidence that developing countries in general do not devote much effort or resources to research, and that is true even in the NICs. Much of the limited research undertaken in developing countries is process related and pertains primarily to de ign. Research and development in developing countries suffer from a major comparative disadvantage within the prevailing structures. Structural and institutional changes are required to elevate this activity to the level needed to match the continuous breakthroughs in the advanced economies. In simple terms, Indonesian policy-makers must approach this area by treating technology development as an infant industry that requires necessary but temporary nurturing.

3.7 Conclusion

The long-term competitiveness of Indonesia's capital goods production will ultimately depend on three conditions: first, reducing exceas production costs attributable to the types of inefficiencies cited earlier; second, undertaking research to reduce production costs and to alter designs; and third, expanding the domestic market and venturing into the world market.

Some of the excess production costs attributable to inefficiencies will decline of their own accord through greater experience and a growing level of output. Labour productivity on set tasks will improve with learning by doing. Plant-wide productivity should also grow as a consequence of an increase of individual plants and management training. In addition, augmented

- 217 -

organisational experience should increase the ability of both the firm and the sector to gain from sub-contracting.

On the other hand, X-inefficient practices -- the absence of conversion guides for machine operators, the misuse of existing machinery and problems of layout -- are likely to require special attention, foreign consultants, visits to foreign firms and upgrading of both firm level and country-wide research organisations to enhance knowledge of the best practice.

STATISTICAL ANNEX

.

X__

リ

5

-

١

	Expor	ts	Impor	ts	
	10 ⁶ US \$	Z	10 ⁶ US \$	X	
Developed market					
economy countries	324,771	88.2	220,404	59.9	
of which:	-		-		
West Germany	66,847	18.2	23,895	6.5	
U.S.A.	60,156	16.3	44,871	12.2	
Japan	55,511	15.1	4,518	1.2	
France	27,822	7.6	19,319	5.3	
U.K.	24,432	6.6	17,665	4.8	
Italy	18,400	5.0	10,765	2.9	
Canada	14,698	4.0	19,233	5.2	
Developed planned					
economy countries	36,410	9.3	37.492	10.1	
of which:	•				
U.S.S.R.	9,906	2.7	17,491	4.8	
Czechoslovakia	5,603	1.5	3,557	1.0	
Developing countries	9,385	2.6	110,326	30.0	
World Total	370,565	100.0	370,565	100.0	-

World Exports and Imports of Engineering Products, 1973

Source: Bulletin of Statistics on World Trade Engineering Products, 1970 ECE, United Nations, New York, 1980.

Annex Table 2

Development of Trade in Engineering Products between Economic Regions, <u>1970 and 1978</u> (Millions of Current US \$)

To	Developme	nt market	Develop	ed planned	Develop	ing countri	ies Worl	ld
From	economy c 1970	1978	<u>economy</u> 1970	countries 1978	1970	1978	1970	0 1978
Develope	ed	<u> </u>						
market economy countrie	57,617.9 28	211,722.9	2,376.7	12,677.2	18,419.6	100,300.6	78,414.2	324,770.7
Develope planned economy countrie	ed 800.1 es	3 ,282. 5	7,202.7	24,819.6	2,065.7	5,965.6 1	10,072.2	34,067.7
Developi countrie	ing 28 504.5	5,439.0	7.6	5.6	455.6	4,030.0	967.7	9,384.6
World	58,922.5	220,404.3	9,587.0	37,492.4	20,940.9	110,326.2	89,454.1	368,222.9
Source:	Bulletin United N	of Statis lations, New	tics on W York,	World Trad 1980.	le in Eng	ineering Pr	oducts, 1	1978, ECE
<u>a</u> / Excl	ludes expo	rts of Rom	ania not	distribut	ed by de	stination c	of 2,342.3	3.

5

Machinery and Transport Equipment: Production and Trade^a/ in Selected Developing Countries (1980 or latest year available)

	•								
		(1)	(2)	(3)	(4)	(5)	(6)	(1)	(8)
Country		Value	Runber	Groee	le-	Br-	Apper-	Dom.	Export
00		Added	lo	Output	ports	porte	ent	Pro-	Ratio
Territory			Impl.				Concump-	CRL6-	(5):(3)
							tion	nent	
							(3-5+4)	Intio	•
								<u>(3-5)(6</u>	L
	-	\$	Thou-	\$	* *			Per	Per
	Iear	Mil.	sands	Mill.	Mill.	M111.	Mi11.	Cent	Cent
فالموالي المتعالية المتعالية ا									
CROUP I									
Chine <u>b</u> /	1960	27.700_/	13,600	51,800_/	n.s.	n.a.			m.
Brazil	1979	2 ,500 2	P.S.	16,900	4,COO	2,400	18,500	78	18
Tugoslavia	1979	6,902	673	19,162	-5,236	2,100.	22,300	77	n
Republic of		•			_				
Kores	1979	4,591	596	13,024	6,153	3,233	15,944	<u>6</u>	25
Lodie Newden	1911	2,300	1,244 /1	0.63	1,23	315	9,495	87	•
MEXICO	13000	(700)	(100-	3,437	8,530	245	5,719	56	7
Siensen	1070	1 (109)	11007	1 ana				_	
ormenter	4313	4,741	140	4,02Y	2*130	3,101	5,452	5	93
Rong Long	1978	1.113	271	1 041	3 500	A 800		~	1.
Venezuela	1070	1.26	88 .	A.050	5,770	≤,770 alt	2,033	30	03
Urmeney	1911	154	51 ° /	162	107	14	51777	61	- t
Kenya	1978	96	31	162	691	1	1.14	10	,
•	(1979)	(137)	(30)		-20	•			-
Colombia	1977	589 /	80,	1,361,7	763	63	2.061	63	5
Iran	1974	553 ²⁷	662/	1,5979/	2.072	33	3,636	43	ź
	(1977)		e/	el	(6,300)	(41)			-
Argentine	1978	3.8.	70-2/	1,090	1,476	510	2,056	28	47
Theiland 🚮	1976	8.8.	B.	R.S.	1,637	137	•	•	-
	(1917)	(476)							
Chile	1911	433	44	123	700	21	1,395	50	- k
TOTA .	1917	315	B.C.	845	595	21	1,413	58	3
	1006	13307	(34)	8				• •	
Mary Po	1077	300	100	1 100	1,175	11	1,964	40	1.4
	*311	v	100	1,123	1,107	22	2,111	49	,
GROUP III							•		
Indonesia."	1978	235	92	TLO	2.11	71	3,101	22	10
Cube.	1976	8.4.	N.E.	665	1.327		1.992	11	-
	(197.)		(91)		-12-1		-1//-	35	-
Nigeria	1976	154	23	582	3,896	-	4,478	13	-
Ivory Coast	1976	127	T	415	902	35	1,262	30	5
Tunisia	1978	2	15_/	337	742	31	1, 048	29	9
Iraq	1975	94-	20-	201	1,724	-	1,925	10	-
	1974	12	10	179	255	•	- 197	41	-
and the set	1910	(68)		741	245	3	309	31	2
Trundor	1976	60	10	114	66.5		c 85		1
Kumit	1977	66	R.A.	108	9 306	975	6 0.28	21	9
	(1976)	(45)	(6.6)			e()	e,v,jv	-0-	637
United Areb								-	
Inicator	1978	51	4.3	511	2.364	126	2.149	_1¥	114
Nelta	1978	52	5.3	94	93	48	139	33	51
Papus New		1	-1						
Guines	1976	182/	72/	1119/	130	-	249	15	•
Сургия	1979	36		85	236	28	293	19	33
Costa Rica	1978	8.6.	B , 4 .	175	363	30	508	29	17
	(1975)	(29)	/ (1) /						
Ficeregue	1976		· · · ·		236	2.8	294	20	.5
Jorges	TÀIO	20-		61-	451	40	492	8	49
Benchlie	1078		•	76	ant			~	
United	4910		3	16	204	T.	201	20	TÀ
Republic of	1								
Tessenia d	1974			55	170	•	21	sk	-
	(1977)	(27)	(1)		- 12				
Panama	1977	19	1.8	39	166	k	201	17	10
Helegescar	1976	9.6	r 3	30.7.	10.5	2.1	99	29	1
Neuritius	1976	9.1	A.S.	21.54	86.1	10.9	91	11	51
F1J1	1917	9.3	1.4	24.9	54.6	5.1	7h.i	27	20
JAT DEGOS	1917	•	7.	16	51	щ.	56	?	69
SUBJOP18	1077	3.1	2.1	8.4 - L	120	3.4	125		40
form14+	1974	6.2	6 1	7.4	2	•	40,4 5-	174	
				V•7		1.0	-3		790

Source: United Nations, <u>Tearbook of International Trade Statistics, 1979</u> (United Nations publication, Sales No. E/F.80.XVII.5) vol.1., United Nations <u>Tearbook of Industrial</u> <u>Statistics, 1978 Edition</u> (United Nations publication, Sales No. E.80.XVII.9) and <u>Ibid: 1979 Edition</u> (United Nations publication, Sales No. E.81.XVII.8).

9/ Value added, gross extput and employment refer to ISIC 36; imports and exports refer to SITC 7 (Rev.1).
9 See table 1.3 for the method used in Chinese statistics.
9/ Capital goods only (see table 1.3 for explanation of data).
9/ For the United Republic of Tanzania and Thailand see table 1.3.
9/ Including ISIC 390.
9/ Including ISIC 372.
1/ Including ISIC 371 and 372.
1/ The ratio is magnific owing to imports that are re-exported.

Indicators of the Development of the Capital Goods Sector in Selected Developing Countries (1980 or latest available year)

		China, Peoples Rep. of	India	Brazil	Rep. of Korea
1.	Number of establishment ⁴ engageo in capital goods manufacturing (thousands)	107.2	17.9	11.2	6.0
2.	Number of workers engaged / 1 in capital goods manufac- turing (thousands)	13,600	1,230	838	417
3.	Number of scientists and <u>c</u> / engineers	n.a.	698	541	800
4.	Number of engineering <u>d</u> / graduates	n.a.	13,611	8,140	32,193
	(per cent increase over 10 years earlier)	n.a.	14	148	539
5.	Gross outpute/ (\$billion)	51.8	8.5	16.9	9.2
6.	Imports ^f / (\$billion)	n.a.	1.2	4.0	6.1
7.	Exportsg/ (\$billion)	n.a.	0.4	2.4	2.4
8.	(7) : (5) (per cent)	n.a.	4.7	14.2	26.5
9.	<pre>(7) as per cent of all manufactured exports (SITC 5 to 8-(67 + 68)</pre>	n.a.	15.0	29.0	19.0
10.	Apparent consumption of capital goods (\$billion) ((5)+(6)-(7))	n.a.	9.3	18.5	12.9
11.	Domestic supply ratio ((5)-(7) as per cent of (10))	n.a.	87.1	78.4	52.0
12.	Value added ^{h/} (\$billion)	15.5	2.2	7.2	3.3
13.	Production of machine tools <u>i</u> / (\$million)	420	156	380	130
14.	of which exports	28	27	46	25
15.	Imports of machine tools1/ (\$million)	60	48	8.9	360
16.	Apparent consumption <u>k</u> / of machine tools (\$million) ((13)+(15)-(14))	452	177	423	465
17.	Domestic supply ratio for machine tools ((13)-(14) as per cent of (16)	86)	73	79	23

リ

	Peru	Thailand	United Rep. of Tanzania	
Number of establishment ^a / engaged in capital goods manufactureing (thousands)	1.5	1	0.1	
Number of workers engaged ^b / in capital goods manufac- turing (thousands)	51	n.a.	7	
Number of scientists and ^c _/ engineers	85	20	n.a.	
Number of engineeringd/ graduates	346	2,131	53	
(per cent increase over 10 years earlier)	31	470	n.a.	
Gross outpute/ (\$billion)	0.8	n.a.	n.a.	
Imports I/ (\$billion)	0.6.	1.6	0.4	
. Exports <u>&</u> / (\$billion)	0.03	0.1	n.a.	
. (7):(5)(per cent)	3.0	n.a.	D.a.	
. (7) as per cent of all manufactured exports (SITC 5 to 8-(67 + 68)	25.0	16.2	n.a.	
Apparent consumption of capital goods (\$billion) ((5)+(6)-(7))	1.4.	n.a.	n.a.	
l. Domestic supply ratio ((5)-(7) as per cent of (10))	58.0	n.a.	n.a.	
2. Value added ⁿ / (\$billion)	0.4	0.77	0.027	
3. Production of machine tools1/ (\$million)	n.a.	n.a.	n.a.	
• of which exports	n.a.	n.a.	n.a.	
. Imports of machine tools <u>1</u> (\$million)	64	95	18	
5. Apparent consumption ^K / of machine tools (\$million) ((13)+(15)-(14))	1.2.	n.a.	n•2•	
7. Domestic supply ratio for machine tools ((13)-(14) as per cent of (16)	n.æ.	n.a.	n.a.	

Indicators of the Development of the Capital Goods Sector in Selected Developing Countries (1980 or latest available year)

Note: The data are not strictly comparable owing to differences in coverage of years, number of establishments and goods produced and traded. The information for India and the Republic of Korea in this table differs from that shown elsewhere because consumer goods are excluded from production and trade data. For details see following notes and sources.

Notes and sources

a/ Brazil, Republi f Korea, Peru: establishments employing five or more workers; India: Establishments with 10 or more workers using electric power, or 20 or more workers not using power; China: all establishments (wholly people-owned and collectively-owned enterprises); Thailand: small shops with fewer than 10 employees are included in the estimate provided in a case study of Thailand (TD/B/C.6/AC.7/4 of UNCTAD); United Republic of Tanzania: estimate from a case study (TD.B/C.6/AC.7/5 of UNCTAD).

The information relates to 1980 (China), 1979 (Republic of Korea), 1977 (India, United Republic of Tanzania and Peru), 1974 (Brazil). Sources: United Nations Yearbook of Industrial Statistics, 1978 edition and 1979 edition, vol. 1 for Brazil, the country case studies for the other countries and <u>Report on Mining and Manufacturing 1979</u>. Economic Planning Board, Republic of Korea, 1981. Establishments making radio and TV sets (ISIC 3832) were excluded in India and Republic of Korea but not in the other countries.

- b/ Same coverage as for a/. With respect to China, in the United Nations Yearbcok of Industrial Statistics, 1979 edition, vol. 1, p.86, it is reported that the total number of employees in ISIC 382- the only subsector reported under ISIC 38- was 9,175,000 and includes only employees of wholly-owned enterprises with independent accounts. In the case of the United Republic of Tanzania the figure is an estimate based on the 1974 figure given in a UNCTAD case study of 5,300 and an estimated growth rate of 14 per cent per annum extended to 1977.
- c/ The number of scientists and engineers in taken from <u>Statistical Yearbook</u> of <u>UNESCO</u>, 1981. Data are given for following years: 1977 (India and Republic of Korea), 1975 (Thailand), 1974 (Peru), 1970 (Brazil).
- d/ The information relates to 1979 for the Republic of Korea, 1978 for Brazil, 1977 for Peru, and 1976 for India, United Republic of Tanzania. Source: Statistical Yearbook of UNESCO, 1972, 1975 and 1981 editions.
- e/ Excluding electrical appliances and passenger cars in Brazil, India and Republic of Korea; ISIC 38 for Peru. For China, gross output is expressed in 1970 prices converted into US dollars at the 1970 rate of exchange.

The information relates to 1980 for China, 1979 for the Republic of Korea and Brazil, and 1977 for Peru and India.

- f/ Imports are SITC 7, Rev. 1 for India, Peru, Thailand and United Republic of Tanzania, SITC 7 minus 781 (following SITC, Rev. 2) for the Republic of Korea. For Brazil data concerning capital goods imports were taken from the Brazilian case study (TD/B/C.7/AC.7/6). The information relates to 1980 for the United Republic of Tanzania, 1979 for Brazil and Repulic or Korea, 1979 for Thailand and 1977 for India and Peru.
- g/ Exports are SITC 7, Rev. 1 for India, Peru and Thailand, SITC 7 minus (761+762+763+781), following SITC, Rev. 2 for the Republic of Korea. For Brazil, they were taken from the case study. The information relates to the same year as for imports (see note (b) above).

- h/ Value added for India, Brazil and Republic of Korea refer to the same coverage as gross output; for China, value added was estimated to be 30 per cent of gross output. For Brazil, value added has been estimated on the basis of the share of value added in gross output of ISIC 382 to 385 and 390 in 1974 (as reported in the <u>United Nations Yearbook of Industrial Statistics</u>), applying it to the 1979 figure (reported in the Brazilian case study). For Thailand, the information was taken from the Thailand case study. For the United Republic of Tanzania, the figure was obtained by applying the ratio of ISIC 38 to GDP in 1974 to the GDP estimates for 1977, assuming that this ratio stays more or less constant. The information relates to 1960 for China, 1979 for Brazil, Thailand and Republic of Korea, and 1977 for India, United Republic of Tanzania and Peru.
- i/ Estimates for 1980 as shown in National Machine Tool Builders' Association (McLean, Virginia, USA), Economic Handbook of the Machine Tool Industry 1981-1982, United States, 1981, page 165.
- j/ 1980 for China, India, Republic of Korea and Brazil, as shown in National Machine Tool Builders' Association, "Economic Handbook ..." (op. cit.) page 165. For Peru, Thailand and United Republic of Tanzania the figures represent the accumulated imports in the period 1972-1977 (SITC 715.1 Rev.1). Imports of machine tools into Peru and Thailand in 1977 were only US \$9 millic: and \$24 million respectively; into the United Republic of Tanzania they were \$14 million in 1975 and \$2 million in 1976.
- k/ Since in Peru, Thailand and the United Republic of Tanzania local production is very small or non-existent, the accumulated imports in the 1972-1977 period can give a rough idea of the recent stock. For the other countries the figures for apparent consumption relate to 1980.

١.

	1970	1975	1981	
Rangladesh		10,600	32,186	
	1,844,181	2,187,300	3,149,934	
Indonesia	64,203	159,300	335,938	
Hong Kong	292,420	423,900	569,523	(1976)
Korea, Republic of	115,324	519,203	1,593,632	(1980)
Malaysia (Western part only)	119,274	190,100	335,947	(1980)
Dakistan	75,637	140,600	138,994	(1976)
Dhilinnines	232,743	302,000	464,321	
Singanore	188,491	426,000	1,385,528	
Sri Ianka	27.078	28,700	••••	
Thailand	88,384	196,900	••••	

Manufacturing value added (MVA) of ISIC-groups 382, 383 and 384 (machinery and transport equipment) 1970, 1975 and 1980 (in 1000 US \$, at constant 1975 prices)

Source: UNIDO: Industrial Strategies and Policies in Developing South, Southeast and East Asia: A Review.UNIDO/IS.412, 15 November 1983.

Annex Table 6

1

	GDP	Industrya
	Z	z
Argentina	3.3	4.0
Bolivia	5.0	5.8
Brazil	7.4	7.8
Columbia	5.6	5.4
Costa Rica	5.8	8.0
Chile	3.7	3.5
Ecuador	6.4	9.0
El Salvador	4.4	5.4
Guatemala	5.5	7.1
Honduras	4.5	5.6
Mexico	5.8	7.8
Nicaragua	4.1	6.0
Paraguay	6.5	8.7
Peru	4.0	4.4
Venezuela	5.2	6.3
Unweighted average	5.1	6.3

<u>Growth of Industrial Production in 15 Latin</u> <u>American Countries, 1960-80</u> (Average compound rates of growth)

Source: ECLA, based upon Official Statistics.

 \underline{a} / Includes mining and construction.

ISIC	Industry	1950 <u>b</u> /	1955 <u>b</u> /	^{رع} 1960	1965	1970	1975	1976 ^{<u>d</u>/}	1971 ª/e/
311-312)	Food, beverage	31.0	28.6	26.7	24.4	23.0	20.7	19.8	18.9
313-314)	and Tobacco								-
321	Textiles	15.9	14.7	11.9	10.2	8.8	8.2	7.9	7.8
322-324	Wearing apparel and footwear	8.1	7.1	5.5	4.5	3.6	3.5	3.2	3.0
323	Leather	1.0	0.9	0.7	0.6	0.8	0.4	ō.4	0.3
332	Furniture	2.2	1.9	1.7	1.5	1.3	1.3	1.3	1.5
342	Printing and publishing	4.2	4.0	3.5	3.3	3.2	2.6	2.7	2.8
390	Other manufactures	1.0	0.9	0.9	0.9	1.1	0.9	0.9	0.9
	Subtotal Group A	63.4	<u>58.1</u>	50.9	45.5	41.8	37.6	36.2	35.1
331	Wood and cork products	2.9	2.4	2.3	2.1	1.8	1.7	1.8	2.1
341	Paper and paper products	2.2	2.4	2.1	2.5	2.6	2.3	2.4	2.4
351-352)	Industrial chemicals, other	5.4	7.3	8.8	10.0	11.3	12.6	13.5	14.7
356 🕽	chemicals and plastic products	•							
353-354	Petroleum refineries and misc.	4.8	5.6	6.0	6.6	6.3	5.6	5.8	4.3
	products of petroleum and coal								
355	Rubber products	1.5	1.8	1.8	1.9	2.0	2.2	2.3	2.3
361-362]	Manufacture of non-metallic	5.3	5.6	4.9	4.6	5.1	5.4	5.4	6.1
369 J	mineral products								
371-372	Iron and steel and non-ferrous	3.6	4.6	5.7	7.0	7.3	7.6	7.4	8.5
	metals								
	Subtotal Group B	<u> 25.7</u>	<u> 29.7</u>	<u>31.7</u>	<u>34.6</u>	36.4	37.4	38.6	40.4
381	Metal products	4.3	4.6	4.6	5.6	5.8	5.6	5.4	5.0
382	Non-electrical machinery	2.9	3.5	4.2	4.4	4.5	5.4	5.8	5.1
383	Electrical machinery	0.9	1.1	3.0	3.8	4.3	4.7	5.0	5.7
384	Transport equipment	2.4	2.6	5.1	5.5	6.7	8.7	8.3	7.9
385	Professional equipment	0.4	0.4	0.5	0.6	0.4	0.6	0.6	0.8
	Subtotal Group C	<u>19.9</u>	12.2	17.4	<u>19.9</u>	<u>21.8</u>	25.0	<u>25.3</u>	24.5
	Total	<u>100.0</u>	100.0	<u>100.0</u>	<u>100.0</u>	100.0	100.0	100.0	100.0

Latin America (15 countries)^{E/}: Structure of the Manufacturing Industries, 1950-1977 (Percentages of Value Added)

Source: ECLA, based on official statistics.

A/ Argentina, Bolivia, Brazil, Colombia, Costa Rica, Chile, Ecuador, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Faraguay, Peru and Venezuela.

b/ Excluding Bolivia, Chile, Paraguay and member countries of the Central American Common Market (Costa Rica, El Balvador, Guatemala, Honduras and Nicaragua).

c/ Excluding Paraguay.

d/ Excluding member countries of the Central American Common Market.

e/ Excluding Argentina.

Annex Table

~

(Percentages of Value Added)													
ISIC	Product Group	1950	1955	1960	1965	1970	1971	1972	1973	1974	1975	1976	1977
Latin A	merica												
202	Fabricated matel products	1. 2)ı 6). 6	5 6	F 8	57	5 8	57	5 հ	56	5 h	5 0
301	Ner electrical machinery	4.3	4.0	4.0)	5.0 h h), 5	5 0	5.1	5 0	5 6	5 1	5.8	5 1
302	Non-electrical machinery	2.9	2.2	9.2		4.7).U	1.6	J. 9	1.5).4 h 7	5.0	57
303 201	Electrical machinery	0.9	26	5.0	5.0	67	7 0	75	8.2	8.0	8.7	8.3	7.0
304 395	Transport machinery	0 h	2.0	0.5	0.6	0.1	0 6	0.7	0.7	0.6	0.6	0.6	0.8
202	Subtotal	10.9	10.7	17 h	10.0	21 8	23.0	24 0	25.4	25.0	25.0	25.2	24.5
	SUDCOLAL	10.9	16.6	<u>+ [• • •</u>	17.7	<u>er.</u> 0	23.0	24.0	<u></u>	<u> </u>	27.0	<u>-/</u>	
<u>Brazil</u>									•				
381	Fabricated metal products	-	2.9	3.4	3.9	4.3	4.7	5.0	5.4	5.2	5.2	5.2	5.0
382	Machinery except electrical		5.5	6.4	6.8	7.0	7.6	8.1	8.8	8.4	7.4	7.5	6.9
383	Electrical machinery	10.9	1.2	3.2	4.3	5.3	5.7	6.0	6.5	5.4	5.6	5.9	5.9
384	Transport equipment		1.2	5.2	5.1	8.0	8.9	9.6	10.3	11.7	11.5	10.9	10.4
385	Professional equipment		0.2	0.4	0.5	0.6	0.7	0.7	0.7	0.7	0.7	0.7	0.7
	Subtotal Group C	<u>10.9</u>	<u>11.1</u>	<u>18.6</u>	20.6	25.2	<u>27.6</u>	29.4	<u>31.7</u>	<u>31.3</u>	<u>30.5</u>	<u>30.2</u>	<u>28.9</u>
Andean	Grouna/												
381	Fabricated metal products	1.2	1.6	2.8	3.5	3.7	3.8	3.8	3.8	3.6	4.4	4.1	4.8
382	Machinery except electrical	0.8	0.9	1.3	1.9	1.8	1.9	2.2	2.2	2.1	2.6	2.7	3.6
383	Electrical machinery	1.0	1.0	1.3	2.1	2.6	2.7	2.9	2.9	3.0	3.7	3.7	4.1
384	Transport equipment	1.4	2.0	2.0	3.3	3.0	3.1	3.3	3.5	3.2	3.9	3.6	2.8
385	Professional equipment		0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.4	0.2	0.3
547	Subtotal	4.4	5.6	7.5	10.9	11.3	11.7	12.4	12.6	12.2	15.0	<u>14.3</u>	15.7
	b/												
Central	America				• •	1. 0	1. 0	1. 0	F 0	F 0). 6		
381	Fabricated metal products			T'5	3.1	4.0	4.0	4.9	2.0	7.0	4.0		
382	Non-electrical machinery			0.7	7.7	1.2	1.5	1.2	1.2	1.2	1 0		
383	Electrical machinery			0.3	0.7	1.7	1.7	1.1	1.0	1.9	1.0		
384	Transport equipment			T.0	1.5	T.0	1.7	0) ¹	1.7	1.0	T • (
	Subtotal			4.0	0.3	9.3	<u>2.2</u>	<u>y.4</u>	<u> 7.2</u>	2.1	2.2		

Share of Metal Working Industry in the Manufacturing Industry in Latin America and Selected Sub-regions 1950-1977

Source: UNIDO: The Capital Goods Industry in Latin America: present situation and prospects (draft dated 15 November 1983 UNIDO/IS)

a/ Bolivia, Colombia, Ecuador, Peru and Venezuela. b/ Costa Rica, El Salvador, Guatemala, Honduras and Nicaragua.

I 230 1

Annex Table

ယ

	Transnational enterprises		Transnational	l investment	Major tra	Investment	
	Number	% of Total	Million of US \$	*	Number	Share in sales of all TNG of same product group (%)	per enter- prise Million of US \$
Mechanical industry	106	16.4	825	8.1	10	48.1	7.8
Electrical equipment and telecommunications	71	11.0	1,639	16.0	10	59.6	23.1
Transport equipment	46	7.1	1,726	16.9	10	82.1	35.5
Total of above	223	34.5	4,190	41.0	30	63.3	18.8
Total of transnational enterprises in manufacturing industries	в 647	100.0	10,217	100.0	105	62.5	15.8

Transnational Enterprises in the Capital Goods Sector in Brazil, 1977

Source: UNIDO: The Capital Goods Industry in Latin America: present situation and prospects (draft dated 15 November 1983 UNIDO/IS).

J

REFERENCES

SELECTED UNIDO STUDIES ON CAPITAL GOODS INDUSTRY

Potentialities and possible progress of the capital goods industry development in the developing countries including the small and medium-size developing countries	UNIDO/ID/WG.342/1
Technology in the service of development	UNIDO/ID/WG.342/2
Forms and conditions of international co-operation including long-term arrangements between developed and developing countries and among developing countries themselves for capital goods production	UNIDO/ID/WG.342/4
First global study on the capital goods industry: Strategies for development	UNIDO/ID/WG.342/3
Technology in the service of development	UNIDO/ID/WG.342/5
Forms and conditions of international co-operation including long-term arrangements between developed and developing countries and among developing countries themselves	UNIDO/ID/WG.342/6
Report of the Seminar on Strategies and Instruments to Promote the Development of Capital Goods Industries in Developing Countries, Algiers, 7-11 December 1979	UNIDO/ID/WG.314/8
Report of the Global Preparatory Meeting for the First Consultation on the Capital Goods Industry, Warsaw, 24-28 November 1980	UNIDO/ID/WG.324/14 /Rev.1
Manual for planning the development of capital goods industries	UMIDO/10.548
Capital Goods in Perspective: Definition, delimitation and factors affecting demand with specific reference to Arab countries	UNIDO/IS.420
Arab Trade in Capital Goods	UNIDO/IS.421
Arab Demand for Capital Goods in the Short, Medium and Long Terms	Forthcoming
The Capital Goods Industry in Latin america: Present Situation and Prospects	Forthcoming
System on Food Proces Machinery and Technology for Developing Countries	Forthcoming

Part Four. Potential for Development of a Selected Capital Goods Industry 1

IJ

Part Four. Potential for Development of a Selected Capital Goods Industry

Contents

Pa	ge

,

Chapter I	Introduction	2 39
Chapter II	Criteria for Selection	243
Chapter III	Indonesia's Present Processing Equipment Industry: Inadequacies and Constraints	248
Chapter IV	Edible Oil Processing Equipment	254
Chapter V	Rubber Processing Equipment	275
Chapter VI	Sugar Processing Equipment	286
Chapter VII	Processing Equipment for Estate Crops: Cocoa, Coffee and Tea	292
Chapter VIII	Wood Processing Equipment	305
Chapter IX	Cement Processing Equipment	318
Chapter X	Equipment for the Textile Industry	326
Chapter XI	Conclusions and Recommendations	335

シ

9

7

- 235 -

リノ

LIST OF TABLES

Chapter IV		rage
Table IV.1	Ages of Indonesian coconut palms	256
Table IV.2	Coconut seed gardens and selected seed production	256
Table IV.3:	Production of copra 1975-1981	257
Table IV.4	Area development of oil palm plantation, 1977-1981	258
Table IV.5	Production of palm oil and palm kernel 1977-1982	258
Table IV.6	Exports of palm oil and palm oil kernel 1977-1982	259
Table IV.7	Production, exports and consumption of copra 1984-1988	259
Table IV.8	Production of coconut oil and domestic copra residue 1984-1988	260
Table IV.9	Production of refined coconut oil and crude oil residue 1984–1988	260
Table IV.10	Projected production and exports of palm oil, 1984-1988	261
Table IV.11	Process equipment required for crude palm-oil extraction	267
Table IV.12	Production and consumption of vegetable cooking oil, refined coconut and palm oil, 1984-1988	268
Table IV.13	Planned increase in crude palm oil processing units 1984–1988	268
Table IV.14	Additional capacity required for coconut oil refining over period 1984/85	269
Table IV.15	Number of refinery units required for coconut oil 1984-1988	270
Chapter V		
Table V.1	World production of natural rubber, 1978-1981	275
Table V.2	Area of rubber plantations in Indonesia, 1978-1982	276
Table V.3	Indonesia's production of natural rubber, 1978-1982	276
Table V.4	Standard Indonesian rubber (SIR) with various specifications	2776
Table V.5	Volume of rubber exports by kind	277
Table V.6	Value of rubber exports by country of destination, 1978-1982	278

Page

LIST OF TABLES (CONTINUED)

Table	۷.7	Volume of rubber imports by kind, 1978-1982	278
Table	V.8	Apparent domestic consumption of rubber, 1978-1982	278
Table	V.9	Production, exports and consumption of natural rubber, projections 1984-1988	279
Chapt	er VI		
Table	VI.1	Sugar consumption in Indonesia, 1976-1981	286
Table	VI.2	Sugar production in Indonesia, 1976-1981	287
Table	VI.3	Extent of sugar plantation area, 1976-1981	287
Table	VI.4	Projected extension of sugar plantations and sugar production during Repelita IV, 1984–1988	288
Chapt	er VII		
Table	VII.1	Cocos production by type of estates, 1978-1982	292
Table	VII.2	Cocoa exports by value and volume, 1978-1982	293
Table	VII.3	Cocoa exports by type of cocoa, 1978-1982	293
Table	VII.4	Domestic consumption of cocoa, 1978-1981	293
Table	VII.5	Coffee production, 1975-1981	294
Table	VII.6	Coffee exports, 1975-1981	294
Table	VII.7	Growth of Indonesian tea production, 1974-1981	295
Table	VII.8	Growth of Indonesian tea exports, 1974-1978	296
Table	VII.9	Projections of cocoa production and exports, 1984-1988	296
Table	VII.10	Projection of coffee production and exports, 1984-1988	297
Table	VII.11	Projected production and exports of tea, 1984-1988	297
Chapte	er VIII		
Table	VIII.1	Timber production, 1976-1981	306
Table	VIII.2	Exports of timber, 1976-1981	307
Table	VIII.3	Saw mills - number, capacity, production and export, 1979-1983	308
Table	VIII.4	Plywood factories - number, capacity, production and export	309

.

IJ

- 237 -

1

IJ

Û

(iv) LIST OF TABLES (CONTINUED)

			١.
Table	VIII.5	Industrial establishments in wood products and wooden furniture	310
Table	VII1.6	Market data on woodworking machinery	311
Ta b le	VIII. 7	Export prospects for wood products, 1982-1990	312
Table	VIII.8	Equipment required for plywood rpoduction	314
Chapte	er IX		
Table	IX.1	Per capita cement consumption in Asia	318
Table	IX.2	Production of cement in Indonesia 1978/79-1982/83	318
Table	IX.3	Plant installed cement capacities and location (1983)	319
Table	IX.4	Estimated development of installed plant capacity and production of cement, 1984-1990	320
Table	18.5	Main categories of cement plant equipment and share in investment cost	322
Table	IX-6	Estimation of possible annual production value of equipment and parts for the cement industry	324
Chapte	er X		
Table	X.1	Production of cloth, weaving yarn and fibres in Indonesia	327
Ta ble	X.2	Employment in textile industry, (spinning, weaving, and garment) 1980	329
Table	X.3	Cotton imports, 1975-1980	329
Table	X. 4	Imports and exports of textile fabric and garments, 1975-1980	330
Ta ble	X. 5	Projected production, imports, exports and apparent consumption of yarn, 1984-1988	330
Table	X.6	Projected production, imports, exports and apparent consumption of fabric, 1984-1988	331
Table	X. 7	Projected production, imports, exports and apparent consumption of garments, 1984-1988	331
Table	X.8	Projected requirements of rayon, polyester and cotton 1984-1988	331

1

LIST OF TABLES (CONTINUED)

Chapter	XI
---------	----

Ç

IJ

Table XI.l	Tentative estimate of investment in equipment production and employment generation	336
Table XI.2	Summary of recommendations	338

LIST OF FIGURES

Figure IV.l	Coconut disposition 1972	255
Figure IV-2	Simplified general flow disgram copra oil extraction	263

Part Four. POTENTIAL FOR DEVELOPMENT OF A SELECTED CAPITAL GOODS INDUSTRY

Chapter I Introduction

The Government of Indonesia, within the context of planning further development of capital goods production during Repelita IV, has requested UNIDO to report specifically on the potential for domestic production of equipment for the following in industries:

- 1. Coconut and palm oil
- 2. Rubber
- 3. Sugar
- 4. Cocoa, coffee, tea
- 5. Wood
- 6. Cement
- 7. Textiles

UNIDO was asked to address the following questions: Which engineering industries within this group could be developed relatively easily and why? Which types of equipment could be produced domestically, how, where and by whom? Could examples of (say) 25 projects be given which would be promising candidates for promotion? What sub-sectoral, feasibility studies or other follow-up studies would be required? Part Four of this report takes up these questions.

It should be said at the outset that, for lack of data and time, only very tentative and partial answers can be given to these questions at this stage. On many relevant and indeed essential aspects, even of the present situation in Indonesia, the required statistical data have not been available or have proved inadequate.

This applies, for example, to aspects of current production of the products of the equipment using industries, such as sugar, textiles or wouprocessing. It also applies to the degree of capacity utilisation of existing plant in these industries, the effective reserve capacity and the technical and economic efficiency of the equipment in use. It applies equally to the sources of equipment at present in use, whether imported (e.g. from which

countries or firms) or domestically produced (where and by whom). It applies even more to the information needed to make projections of future output, and hence capital requirements, of these industries. In general, Repelita IV target figures have been taken as the starting point where such figures have been available. The Repelita IV period 1984-89 has also been taken as the investment planning period. But it needs to be recognized that production of equipment in most cases is unlikely to become effective before Repelita V especially where prior investment in production capacity is needed.

Adequate assessment of the potential for future domestic production of equipment for these industries requires detailed knowledge of current technology and expert assessment of technological trends. Every effort has been made to draw on the experience and specialised expertise of international equipment supplying companies in developing countries to make the best possible judgements, but such matters are clearly subject to much uncertainty.

Finally, and most serious of all, hardly any of the economic data are available which are needed to assess whether domestic production of the many hundreds of items of equipment would not merely be technically possible in Indonesia but would also be economic, in the sense of not requiring very high rates of effective protection from import competition (by tariffs, subsidies or controls) with consequent economic burdens on the Indonesian user industries.

The data needed are, in effect, those required for a cost-benefit analysis of the establishment of any one of the potential equipment producing industries under consideration. Among these data are the price at which a particular piece of equipment (of adequate quality) could be produced in Indonesia as compared with the price at which it can be imported; the components of investment costs for plants of different size, alternative technologies and alternative locations; the size of the domestic market for each type of equipment (and potential export market, e.g. under megional complementation arrangements within ASEAN) that can be expected over the next (say) decade which, in turn, depends on such factors as the likely growth of demand for the finished product (rubber, sugar, etc.), the degree of capacity utilisation and likely rate of replacement demand for existing equipment and the likely rate of obsolescence due to technical change. It will be apparer' that the detailed analysis needed to answer the questions posed in the terms of reference for this study not only presented major data problems but also an analytical task which could not be attempted in the few man months available. In general, the discussion in the industry chapters focuses on technical feasibility. (At various points, to emphasize this fact, the phrase that production of such and such an item is or may be "technically" possible in Indonesia has been used). All recommendations for the establishment or expansion of equipment producing facilities in this report should therefore be regarded as provisional, subject to confirmation by means of detailed sub-sectoral studies of economic, as contrasted with merely technical, feasibility.

The next two chapters present a brief review of theoretical criteria for selection of industries for domestic equipment production and a report of impressions on the present state of the Indonesian equipment producing industry found by a UNIDO mission during field work in October - November 1983. The industry chapters deal each with one of the selected industries except the first which deals jointly with coconut and palm oil. A concluding chapter brings together the main findings and recommendations.

The next two chapters deal respectively with selection criteria for local production and with the present condition of equipment production in Indonesia. Then follow seven industry studies. For ease of reference, each of these has as far as possible the same structure, as follows:

- X.1 Raw material production (e.g. sugar, natural rubber)
 - X.1.1 The present situation
 - X.1.2 Future prospects

X.2 Processing

X.2.1	Processing	technology
X.2.2	Processing	equipment

X.2.3 The processing industry

- X.3 Equipment Production (in Indonesia)
 - X.3.1 The present situation
 - X.3.2 Future prospects
- X.4 Investment implications
- X.5 Recommendations

シ

.

Č,

.

4

Chapter II Criteria for Selection:

Most of this part of the report is devoted to an examination of the potential for development of domestic production in Indonesia of equipment for a number of industries which the Government of Indonesia has suggested to UNIDO as most appropriate in terms of economic and technical criteria. The purpose of this preliminary chapter is briefly to review the criteria that must guide policy makers in planning future development of processing and processing equipment producing industries.

2.1 Processing Industries

Indonesia already has a wide range of industries processing domestically produced raw materials. Among them are industries processing foodstuffs (such as rice, other staple foods, and cash crops including sugar, tea, coffee, etc.); agricultural raw materials, such as rubber, palm oil; timber; crude oil and minerals.

Processing may be for export or for the domestic market. If raw materials are at present exported in unprocessed form, a policy of further domestic processing before export is called "export substitution". If a domestically produced raw material is processed abroad for reimport into Indonesia in processed form (e.g. crude oil refined in Singapore or rubber processed abroad for import into Indonesia of the processed product), a policy of domestic processing implies import substitution.

The question whether export or import substitution through the establishment of additional processing industries is desirable depends on the prospects of efficient domestic production. The mere fact that a new industry processes domestically produced raw materials does not, in itself, prove that its establishment constitutes a more efficient use of scarce resources than some alternative industrial development. But there is a presumption that import substitution in the case of domestically produced raw materials reimported in processed form will be economic, other things being equal, if only because of saving in transport costs.

In the case of export substitution, there is much less ground for such presumption. The question whether further processing (e.g. mineral smelting or rubber processing) at home of products intended for export is an economic use of resources cannot be answered a priori. If the domestic processing industry can be made to operate more efficiently (in terms of costs and quality) than the foreign processing industry it replaces, the domestic export industry will benefit by improved international competitiveness. If it operates less efficiently, the domestic export industry will suffer. Even in terms of net foreign exchange saving, the effect on the balance of payments may be negative. (An example is import replacement in shipping, if the net effect is higher freight charges which reduce the competitiveness of the country's export industries.)

2.2 Processing equipment industries

Similar but distinct questions are raised by a policy of import substitution through the domestic production of processing equipment (machinery, etc.). The question is whether an existing (or prospective) processing industry should be supplied with machinery through domestic production instead of imports. An example might be domestic production, instead of imports, of crumb rubber plants or rice mills or petroleum refinery equipment.

Clearly, the last example almost certainly rules itself out. Petroleum refinery equipment is extremely capital and technology intensive, beyond the present capacity of domestic production in Indonesia. Any attempt to undertake import substitution in this kind of activity would have extremely adverse effects on the user (refinery) industry.

The case of crumb rubber factories or edible oil processing plants is quite different. Except for some components (such as screw presses and hydraulic systems), crumb rubber factories employ relatively simple kinds of machinery, with no very high requirements in terms of skills, capital or technology. Much the same applies to a good deal, though not all, of the equipment used in processing staple food or cash crops. The great advantage in selecting such processing equipment for import substitution, in preference to other engineering industries, is that by assumption a substantial market exists. A large volume of output is produced in Indonesia by the user industries and most of this output requires machinery-using processing. Future demand prospects depend on the expected rate of growth of demand and productive capacity for products and on the demand for machines for replacement of existing stock in the processing industries.

Here again, it cannot be taken for granted that import replacement will necessarily be an economic proposition. If a new domestic processingequipment producing industry (e.g. producing rice mills or crumb rubber plants) is uncompetitive with imports in price and/or quality of product and can operate only under cover of considerable tariff or other protection, the effects on the raw material producing (rice or rubber) industries may be disastrous. Conversely, if the new industry is able to adapt its machines knowledgeably to the special requirements of the domestic raw materials and the tastes and needs of (foreign and domestic) markets, it may yield external economies in the agricultural sector.

In general, in a country at Indonesia's present stage of industrial development, prospective volume of demand (depending on prospective productive capacity for the raw material and demand for the processed product) and relatively low requirements in terms of capital, advanced skills and sophisticated technology will be prime criteria in the selection of particular processing equipment industries.

There are some other considerations, often called "developmental" of "social", although economists would prefer to think of them as dynamic or involving externalities, which may reasonably modify conclusions reached on the basis of the preceding criteria.

There are, first, the external economies which may be yielded by the development of new industries in a developing country. These may take the form of videning of the market for complementary inputs, for infrastructure and, through the additional income generated, for finished goods. They may also include the favourable effects on skills of management and workers which are sometimes referred to by the phrase "learning by doing". There is no doubt that such externalities may justify, from a longer-term social point of view, investment that would not appear economic in the short-run or attractive to private investors. But the uncertainty of such external effects, and the virtual impossibility of quantifying them, make reliance on them as a guide toinvestment decisions dangerous - at best an act of faith, at worst an excuse for malinvestment of scarce capital and protection of vested interests.

Secondly, it is arguable that domestic capital goods production in a developing country, such as Indonesia, may help overcome the difficulty that most modern machinery is made in advanced industrial countries, designed primarily with a view to their factor proportions and available skills, and may be unsuited to the very different conditions of developing countries. In principle, domestic production could aim at producing machinery of a simpler kind, embodying a more labour-intensive technology (sometimes called "intermediate" technology) and could develop the skills needed to adapt imported equipment to local conditions. Here again, the case has merit but experience in various parts of the world where attempts have been made to develop "intermediate technology" equipment has not been very convincing. The most efficient "simple" machines for developing countries tend to be produced in advanced industrial countries with the technology and facilities for high-quality, cheap mass production. The case for developing, even at some cost, the skills needed to adapt, maintain and repair imported machinery is much stronger.

Thirdly, it has been argued that equipment producing industries ought to be developed for their employment-creating effects, even if the equipment cannot compete, in quality or price, with imported kinds. This is a dubious and potentially dangerous argument. There is no particular advantage, from the point of view of employment creation, in import substitution for capital rather than consumer goods. Indeed, it can be argued that in the case of consumer goods the costs, in terms of price and quality, of inefficient import subscitution for the sake of employment generation merely falls on consumers, while in the case of capital goods it may damage the competitiveness of user industries and end up destroying rather than creating jobs.

Finally, there is the case for the development of equipment producing industries which rests on the potential location of such industries in less developed regions of a country. In Indonesia's case, it can be argued that, if for reasons of transport costs, equipment producing industries for timber, rubber, sugar and cash crop processing industries are economically located near the (processing) user industries on the outer islands, such development can usefully contribute to regional development. This case may have some validity, but here again, it needs to be demonstrated that the user industries (and indirectly the producers of the rubber, cash crops and other raw materials) would not be disadvantaged by such location of equipment production.

Chapter III Indonesia's Present Processing Equipment Industry: Inadequacies and Constraints

Some of the metal working enterprises in Surabaya, Jakarta, Bandung and Medan that are either already producing equipment or spare parts for processing industries or have the potential to do so, were visited by a UNIDO mission in October-November 1983 in order to assess their current capability. The following is a brief outline of the mission's impressions.

Plant and machinery

The most striking impression was that most of the machine tools and other equipment used are very old and of obsolete design. In many machine shops the machines are driven by overhead power shafts. With such machines it is not possible to achieve the necessary tolerances, working accuracies, surface finishes, or rates of metal removal required in the machining and production of components for modern machinery.

The machine shops generally lack the necessary families of machine tools, particularly milling, grinding and boring machines, which are required for their products. The same applies to production machines such as turret lathes, production aids and accessories on machines, and jigs and fixtures. Some of the units had their own foundries. These, however, were also ill equipped. It was evident that investment in machine tools and equipment had been completely neglected over long periods.

Plant layout

The older establishments suffer from very poor layout of the plants which in some cases was designed as long as fifty years or longer ago. In some of the shops the space around the machines was so cluttered with rejected and scrapped parts of which seemed not to have been cleared for years, that it was unsafe to move around. There is clearly inadequate appreciation of the fact that orderly work flow, productivity and costs of handling to a large extent depend on the plant layout.

Production Engineering

With one exception, none of the establishments visited practised production planning or production control. There were no operation layouts accompanying the drawings and components, giving instructions on the selection and size of raw material, sequence of operations, selection of speeds, feeds and depths of cut, tolerances, selection of tooling, jigs and fixtures and machines, etc. Without such instruction proper production of the components and even control of production itself is difficult if not impossible. Nor were there job cards, recording the timing of the operation workers. Without such records it is impossible to arrive at the number of labour hours and machine hours spent on the manufacture of a component or assembly of a group of equipment from which, together with labour and machine hour rates, the costs of production can be ascertained. All these engineering practices are clearly essential for proper financial and production management.

Engineering design

The designs for the equipment were invariably obtained from the foreign contractors of the processing plants. In the case of joint venture establishments, the foreign partner provided the designs which were never altered or modified by the local enterprise. The design personnel often did not know the reason why certain equipment has been designed the way it was. There was not enough time during the mission visits to study design activity in detail. It certainly appeared to be much below that required or normally found in enterprises of similar production activity.

Some of the problems of the user industry were evidently related to design aspects of the equipment. For example, the locally produced furnaces used for burning of sulphur in the sugar processing plants were of ancient design and gave endless trouble. In the same sugar mill a domestically made pump was not functioning because the hydraulic head was too small. The result was frequent breakdowns with production losses. The mission concluded that design capability is a major constraint. Another is lack of standardisation. Equipment is being manufactured to too many different standards depending upon the source of knowhow. The establishment of national standards should be given high priority.

- 249 -

Production processes

<u>Casting</u>. The basic metal forming processes are casting and forging. The mission visited foundries within enterprises in Surabaya, Bandung, Medan, etc. and one modern foundry in Gresik. The captive foundries in the old metal working establishments were ill equipped and turned out rather poor quality castings. There was no sand control or metal control. The rejection rate was very high and at places extremely poor quality castings, which should normally be rejected, were salvaged by welding and used. By contrast, in one of the metal working workshops in Bandung, engaged in the manufacture of boilers and tea processing equipment, the relatively larger size castings required for the tea rolling machines and rotor vane machines were found to be of surprisingly good quality inspite of the fact that the foundry was not properly equipped. This was the result of the work of Metal Industry Development Centre (MIDC) Bandung. The example bears witness to the latent potential of staff and workers and their ability to acquire skills quickly.

The Gresik foundry is a modern foundry with ferrous (including steel) and non-ferrous casting facilities and with automatic sand mixing, moulding, continuous moulding and casting machines. The quality of the castings is good. The foundry is able to make complicated steel castings such as the screw for an oil extraction screw press (prototype). However, its capacity is under-utilised. Utilisation is only about 40 per cent.

There is good potential to improve the quality of castings in various establishments through the efforts of MIDC or its regional branches. There is also ample scope for putting to use the existing underutilised capacity in the modern foundries.

<u>Machining</u>. The quality of machining in general appears to be poor. The main reason is, as already pointed out, the age of the machine tools in these establishments. In one workshop flat surfaces are generated by a very old shaping machine driven by an overhead power shaft, instead of on a milling machine.

The helical grooves on a sugar crushing roll are cut manually by hand grinding wheels. (The grooves look machine cut - the skill of the workers is highly commendable). Except in one establishment manufacturing road roller equipment, the machine tools in all establishments visited in Surabaya and Bandung are old. In Medan, a joint venture enterprise producing boilers and palm oil processing equipment has a good machine shop. Among the low st quality of machining noticed was a metal working workshop in Medan engaged in making, among other metal fabricated products, some equipment for palm oil extraction plants. The few very old machines tools in use were in open sheds, guideways and spindles sand laden.

It is quite clear that unless new machines are installed in these plants, production of equipment for processing plants of the required quality cannot be expected.

<u>Welding</u>. In most of the shops visited, the quality of welding, both in arc welding and gas welding, is very high. Automatic submerged arc welding is used in the boiler manufacture in a Medan enterprise. The welding done on parts and components required for equipment ranging from simple tanks, bins, hoppers, etc., to low pressure vessels and boilers, appears to be satisfactory and appropriate to the functional requirements of the equipment. It can be said that the skills required for welding in the fabrication of equipment for the processing industries is available in most of the existing establishments.

Quality

The quality of the product in most of the establishments visited was unsatisfactory. Judging by the machine tools and other equipment used in the enterprises, and the lack of any quality control, it was doubtful whether dimensional and form accuracies, tolerances and fits of mating parts were adhered to. The consequences could be observed in the user industry. For example, the digesters in the palm oil extraction process and the screw conveyers and elevators in the kerne? recovery station in a palm oil factory were found to be of extremely poor quality. The digester was subject to many breakdowns. The screw conveyers were rickety and far below their functional requirement.

Another deficiency is in the heat treatment, such as hardening, tempering, toughening, required for some of the components. It was noticed that some establishments claim to be able to produce equipment for processing of one or the other product but because they lack basic facilities are in fact producing and supplying products of extremely poor quality. As a result the processing industry, burdened with unproductive machinery, is liable to deteriorate into an inefficient and uneconomic industry, with serious consequences particularly in the export markets.

Management

Management in most of the establishments visited had no systems for production control and cost control. Few had any idea about the cost of production of their products. The product mix was at random. The lack of adequate production management and financial management can adversely affect the long-term development of the equipment manufacturing industry.

Maintenance

In one of the plants visited there was some machine tool reconditioning activity but in the older establishments there was no systematic maintenance of machines. Perhaps the old machines were beyond any maintenance. But, unfortunately, the same attitude was shown towards more recent machines.

Marketing

A deficiency of which the field mission was made aware in interviews relates to the marketing of products where these are not produced on order or commission. Marketing could present special problems if attempts were made to direct production of processing euqipment to exports as well as home markets. The need to build up a marketing capability, including international contacts, experience in assessing market opportunities and design requirements in overseas countries, as well as export credit and other promotion facilities, represents a key prerequisite for effective export orientation of manufacturing industry. All but the largest manufacturers will depend for effective marketing on the co-operation of specialised trading companies.
Major constraints and requirements

The foregoing discussion of the existing situation highlights the following constraints:

- 1. Lack of equipment
- 2. Absence of production engineering (planning and production control) practices
- 3. Inadequate engineering design capability
- 4. Inadequate machining skills
- 5. Absence of quality control
- 6. Low level of management capabilities (production, marketing and financial)
- 7. Almost complete absence of systematic maintenance.

It is a formidable list. This assessment of the present capability is not meant to conclude that no processing equipment can be or should be domestically produced. The object is to ascertain what is required for efficient domestic production.

Apart from lack of equipment which can be remedied only by new investment, the other technical constraints point to the following requirements:

- Development of adequate engineering and management skills, for production planning, quality control, general management, marketing, etc.
- 2. Development of design personnel, establishment and application of standards; acquisition and development of tool, jig and fixture design.
- 3. Development of machinists and line personnel, such as supervisors, foremen, etc.
- 4. Introduction of quality control systems, including inspection and quality control personnel.
- 5. Development of higher quality production and financial management.
- 6. Introduction of maintenance procedures, including preventive maintenance and personnel to carry out maintenance.

1

Chapter IV Edible Oil Processing Equipment

4.1 Edible oil production

4.1.1 The present situation

A chart published in 1974 shows schematically (and with data relating to 1972) the complex structure of the Indonesian edible oil industry and the place of coconut and palm oil in this structure (Figure IV.1). Nearly one-half of domestic coconut production went direct into household consumption, in the form of fresh nuts or <u>klentek</u> oil. The other half was processed into copra of which a small proportion was exported as such, the rest domestically processed, partly into copra cake for domestic consumption or export, partly into coconut oil for domestic consumption, in the form of cooking oil, margarine and other cooking fats, soap, etc. Fresh coconut, as well as ground nut and palm oil were other inputs for these purposes.

In the past decade, the main change has been a fourfold increase in domestic palm oil production (since 1969), largely for export, while domestic production of coconut has failed to keep up with domestic demand, so that Indonesia has become a net importer. Crude palm oil was expected to become one of the major foreign exchange earners among the country's non-petroleum exports. However, faced with severe shortages of crude palm oil in the domestic market and rising prices, the Government has reversed its policy by clamping down on crude palm oil exports. In the long run the Government is planning to raise coconut oil production channelled primarily for domestic consumption, thus freeing more crude palm oil for export markets. It is against this background that the present situation and future prospects of the edible oil industry must be viewed.

<u>Coconut Growing</u>. Indonesia is the second largest coconut producer in the world (after the Philippines) with 2.2 million ha. Smallholders account for virtually all (98 per cent) of total production.

After decades of failure to replace aging trees (Table IV.1) and consequent decline in yields - the current national average yield is less than

Figure 1V.1 Coccent Disposition 1972 (based on household consumption survey data) (tone)

Source: Bulletin of Indonesian Economic Studies, November 1974.

one ton per ha - the Government has embarked on a rejuvenation-replanting programme with an annual goal of 35,000 ha. For successful replanting, coconut varieties are needed that are hardy and tolerant of a wide range of environmental conditions and give satisfactory yields (2-4 tons of copra per ha per year with low inputs). The coconut breeding programme has developed varieties with these characteristics. Coconut palm planting is also being linked to the family planning programme through the provision of seedlings as an inducement to acceptors under the programme.

ļ

Age (years)	Palm numbers (million)	X
Under 7	24	
8 - 60	166	72
Over 60	39	17

Table IV.1: Ages of Indonesian coconut palms

Source: Department of Agriculture.

In addition to experimentation with new strains, there is need for a large production of coconut seed varieties. Since the life cycle of coconut is long, testing cf strains and seed production should run simultaneously. Four seed gardens (490 ha) have been planted for mass production of seed (Table IV.2).

Location	Seed production in '000 of nuts				
	Dwarf x Tall	Tall x Tall	Total		
Pakuwon, West Java	642	251	893		
Paniki, N. Sulawesi	520	390	910		
Bone Bone, S. Sulawesi	952	342	1,294		
Paya Gajah, Aceh	445	192	637		
Total	2,559	1,175	3,734		

Table IV.2: Coconut seed gardens and selected seed production

Source: Department of Agriculture.

<u>Coconut processing.</u> With declining yields of the existing stands of copra palms and long lags before the rejuvenation programme can show results, production of copra and coconut oil has been outstripped by domestic demand. This has changed Indonesia from being a substantial exporter in 1970 (185,000 tons) to that of a net importer. In 1980, the diversion of palm oil to the domestic market allowed some 19,000 tons of copra to be exported, and some results of replanting are now beginning to show. But the increase in output continues to be fully absorbed by the domestic market; there were no exports in 1981 and 1982. Copra production over the years 1975-81 is shown in Table IV.3. (The figures for crude and refined coconut oil equivalents are based on an assumed yield of 55 per cent for the extraction o. oil from copra and 94 per cent for the refining of the crude oil). Exports of copra cake amounted to 317,000 tons in 1979. Total employment in coconut oil refining in 1981 was 5,428 in 99 establishments producing a value added of about Rp. 256 thousand million.

Difficulties in maintaining the quality of copra supplied by smallholders have led the Government to favour a shift towards wet processing of coconut into coconut oil. This encourages the location of processing plants in rural area, especially in conjunction with nucleus estates. Such wet processing is already being undertaken in North Sulawesi and West Sumatra. It produces a raw edible oil which can be stored pending transport to the refinery. In so far as it concentrates processing, it has the further advantage of facilitating the monitoring of credit repayment by smallholders under the nucleus estate programme.

Year	Production of Copra	Crude coconut oil	Refined coconut oil
1975	1,375	756	711
1976	1,532	843	792
1977	1,518	835	785
1978	1,575	866	814
1979	1,582	870	818
1980	1,759	967	909
1981	1,812	997	937
	•		

Table IV.3: Production of copra 1975-1981 ('000 tons)

Source: Quarterly Economic Review Indonesia Annual Supplement, 1983 Economic Intelligence Unit, London.

<u>Palm oil growing</u>. Indonesia's palm oil industry consists of large estates. By 1981, the total area covered by oil palm estates had risen to almost 290,000 ha. Recent development of the area under oil palm is shown in Table IV.4. The total number of estates is 53. They are concentrated in North Sumatra (more than 90 per cent of total area), the remainder being located in Aceh, Riau, Lampung, West Java and Kalimantan.

Since harvested fresh fruit bunches (FFB) must be processed within a specified time, all estates have a primary processing facility. After extraction the crude oil can be stored without damage for a considerable time and transported to central secondary processing units. This fact also

determines the structure of the industry. In all cases, plantation and processing are combined in a single company. There were 31 locally owned companies in 1982. The sector is also open for foreign investment.

Year	Extent	Increase (%)	
1977	223		
1978	244	9.5	
1979	251	2.4	
1980 <u>a</u> /	271	8.3	
1981 <u>a</u> /	288	6.2	

Table IV.4: Area development of oil palm plantation, 1977-1981 ('000 ha)

Source: National Agency for Export Development, Palm Commodity Note - 1979. a/ Estimates.

Palm oil processing. Palm oil production grew extremely repidly from 189,000 tons in 1969 to 497,000 tons in 1977. Since then growth has continued at a steady though slower rate (Table IV.5). Gross value of output was Rp. 73.6 billion and value added Rp. 19.2 billion. The proportion of palm oil output exported fell from 85 per cent in 1977 to 25 per cent in 1981 (Table IV.6). The 31 palm oil processing units operating in 1982 have a total capacity of 944,260 tons of refined oil; but the policy change of 1980 led to a fall in output to only 526,926 tons in 1982, since domestic demand did not increase sufficiently to offset the fall in exports.

Year	Pal	m Oil	Palm Kernels		
		Increase (%)		Increase (%)	
1977	497		92.		
1978	525	5.5	99.	7.7	
1979	600	14.3	113.	14.1	
1980	691	15.2	121.	6.8	
1981	707	2.3	126.	4.4	
1982	807	14.1	144	14.3	
Source:	Economic Indicator	s, Central Bureau of	Statistics, Au	gust 1982. 198	
	Figures: Quarterly	Economic Review of]	indonesia, No.	2, 1983, The	

Table IV.5: Production of palm oil and palm kernel 1977-82 ('000 tons)

Economist Intelligence Unit.

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS STANDARD REFERENCE MATERIAL 1010a (ANSI and ISO TEST CHART No. 2)

Year	Volume ('000 tons)			Value (US \$ million)					
	0il	Kernels	Total	Change	0i1	Kernels	Total	Change	
1977	421.0	26.5	447.6		192.8	5.8	198.7		
1978	412.3	7.0	419.3	-6.3%	208.4	1.5	209.8	+5.6%	
1979	437.8	30.6	468.4	+11.7%	253.7	11.0	264.7	+26.1%	
1980	434.3	32.9	467.2	-0.37	215.4	8.1	223.5	-15.6%	
1981	176.4	23.6	200.0	-57.5%	78.1	4.8	82.9	-62.9%	
1982	230.0								

Table IV.6: Exports of palm oil and palm oil kernel 1977-1982

Source: Bank Indonesia, Weekly report No. 1236, dated January 6, 1983. 1982 Figures: Quarterly Economic Review of Indonesia, No.2, 1983, The Economist Intelligence Unit.

4.1.2 Future prospects

Repelita IV target figures for <u>copra</u> production, exports and consumption over the period 1984-88 are given in Table IV.7. (As yet, no data for wet processing are available). The planned increase by 61 per cent between 1981 and 1988 is reported to be based on the number of seedlings planted in earlier years and the assumed gestation period and production volume of the hybrids planted. Target production of crude coconut oil would leave more than one million tons of copra per year for other uses (Table IV.8).

	1984	1985	1986	1987	1988	
Production	2,065	2,177	2,316	2,657	2,914	
Exports	378	365	459	649	746	
Consumption	1,687	1,882	1,857	2,008	2,168	

Table IV.7:	Production, exports and consumption of copra	<u> 1984–1989</u>
	('000 tons)	

Source: Directorate General of Multifarious Industries.

	1984	1985	1986	1987	1988
Coconut oil	374	335	400	412	428
Copra required					
for above	680	609	727	749	778
Copra left for other consump-					
tion	1,007	1,273	1,130	1,259	1,390

Table IV.J: Production of coconut oil and domestic copra residue 1984-1988 ('COO tons)

Source: Directorate General of Multifarious Industries.

Table IV.9 presents the projected production of refined <u>coconut oil</u> over the period 1984-88. Up to 1986, not all of the crude oil is to be refined; for 1987 the figures balance; beyond 1987, the crude oil deficit for refined oil producton is to be covered from accumulated stocks.

Table IV.9:Production of refined coccnut oil and crude oil residue 1984-1988('000 tons)

	1984	1985	1904	1987	1988
Production of					
refined oil	277	305	353	387	424
(Crude) coconut oil					
required for above	235	324	376	412	451
Surplus (deficit) above					
refinery requirements	79	11	24	-	(-23

Source: Directorate General of Multifarious Industries.

During Repelita III new oil palm plantations totalling 96,000 ha were planted which will start production during Repelita IV. Crude palm oil output will, it is hoped, more than double from 1984 to 1988 (Table IV.10) and reach more than five times the output of 1982. Most of this crude oil will be available for export, since local consumption is estimated to rise by only about five per cent per annum.

	1984	1985	1986	1987	1988
Total crud palm oil production	1,230	1,540	1,920	2,500	2,850
Crude palm oil for exports Crude palm oil for domestic	120	310	650	1,180	1,490
processing Refined palm oil for	1,110	1,230	1,270	1,320	1,360
domestic consumption	670	740	760	790	820

Table IV.10:: Projected production and exports of palm oil, 1984-88 ('000 tons)

Source: Directorate General of Multifarious Industries.

4.2 Precessing

4.2.1 Processing technology

The processing of coconut and palm oil proceeds in two stages:

- (i) the extraction of oil from coconut, copra, palm fruit or kernel (primary processing);
- (ii) the refining of the oil (secondary processing).

Primary processing: coconut oil. The first stage of the traditional method of primary processing of coconuts is production of coprs. After harvesting, the coconuts are cut into pieces and sun-dried for one day. Drying is then continued in simple kilns of varying design in different regions. Coconut husk or other traditional fuels are used for firing. The kilns are made locally of available wood or bamboo. A normal drier has a batch capacity of 1,000 nuts (moisture content: about 50 per cent) giving after two to three days about 220 kg of copra with 6 per cent moisture content. The investment in the kiln is estimated at US \$200 for 100 tons annual dry copra. The quality of copra depends upon the maturity of the nuts, the extent and conditions of drying, the storage and handling conditions and, to some extent, the variety of the coconut palms. An alternative method, wet processing, involves extraction of oil from fresh coconut.

There are three general methods of oil extraction from copra: the full-press or mechanical method, the prepress-solvent method, and the full-solvent method. In the full-press method the prepared material is

pressed between the screws (worm) and the cage (slitted steel bars). In the prepress-solvent process, the copra is partially de-oiled by preliminary low-pressure mechanical extraction and then subjected to solvent extraction to remove most of the oil left. The oil comment of the prepressed cake ranges from 16 to 20 per cent for optimum operations. The equipment used for prepressing may be similar to expellers for full-pressing (with adjustments for higher throughputs) or a special prepressing expeller with single pressing screw. The equipment for solvent extraction consists of two general types: the roto-cell type with cells revolving around a vertical axis; and the basket type, with baskets travelling horizontally, while the dissolving liquid is sprayed over the material in counter-current flow. In the full-solvent process, the prepared copra is first subjected to a first extraction (percolation), using the weak miscella from the second extractor as starting solvent, and producing the strong miscella for oil recovery. The extracted meal is first flaked and then subjected to a second extraction (immersion) which uses fresh solvent as starting solvent and produces the weak miscella solvent for the first extractor.

The oil from the expellers contains substantial quantities of solids that have to be removed before the oil is pumped to the storage tanks. The oil is cleaned in two stages: first, by settling and screening, and then by filtration. The screening equipment is a rectangular steel tank equipped with a continuous drag chain conveyor with scraper blades which scoop the settled solids and lift them over a fine screen for irainage at one end of the screening tank and convey them back to the expellers to be mixed with the copra. The filtering equipment is generally a plate and frame filter press with canvass filtering media. Some plants use leaf filters with perforated steel filtering leaves. The foots or filter cake from the filters are recycled to the expellers for oil extraction.

The copra cakes which leave the expellers at about 100°C. are further processed in cake coolers. The cakes cascade down the cooler baffles and are cooled by a cross-flow of cool air from blowers. After cooling they are ground to fine particles by harmer mills or disk mills. The ground cakes may be bagged for the local market or pelletised for export. The coconut oil is stored in vertical cylindrical storage tanks usually made of steel. Since they are normally installed outside the buildings, they are equipped with covers, usually conical. Top and bottom manholes are provided for cleaning.

The following simplified flow diagram illustrates the stages of processing described in the preceding paragraphs (Figure IV.2).

The technology for wet processing of coconut is basically similar to the mechanical process of the extraction from copra. The main difference is the need to reduce the water content by heating to accelerate evaporation.

Figure IV.2: Simplified general flow diagram copra oil extraction

ļ

<u>Primary processing: palm oil</u>. Oil-palm cultivation and processing must always be organised together because of the need to process the fruit as soon as possible after harvesting.

In good growing conditions, commercial plantings of oil palm can yield annually up to 32 tons of fresh fruit bunches (FFB) per ha during their 25 year life. There are considerable variations in fruit, oil and kernel owing to climate and soil conditions. Although there are peaks and troughs in fruit production, oil-palm yield throughout the year and a permanent work force and reliable processing facilities are essential.

The initial objective in processing the FFB is to get the saleable products into a stable form in which they can be transported and marketed. Extraction rates of 21 per cent and 4 per cent for refined oil and kernels respectively can be expected from a well-run factory. Recent research has shown that other useful by-products can be recovered from factory residues. Empty bunches are burnt to provide an ash rich in potash that can be used as a fertilizer. Dried fibre and kernel-shell are used for boiler fuel.

At tropical temperatures palm oil is a fluid that, with a little heating, can be pumped into tankers for transport by road, rail and sea. Provided care is taken to avoid excessive exposure to air, heat or impurities, crude palm oil can be stored and transported for several months without its quality deteriorating materially. These characteristics that enable it to be handled easily, have contributed greatly to the popularity of palm oil in world markets.

Kernels are usually packed in polythene-lined hessian sacks and, provided care is taken to ensure that they are not subjected to heat or moisture, can be stored for prolonged periods without undue loss of quality.

It is generally accepted that harvesting is the most important economic and qualitative factor in the processing of fresh fruit bunches (F.F.B.). The standard of ripeness of the bunch to be harvested influences, in turn, both the rate of extraction and the level of free facty acid (F.F.A.) in the oil extracted. It is of course desirable to achieve the highest possible extraction of oil, while its F.F.A. content should be as low as possible. In practice, these aims conflict, since the riper the fruitlets are on a palm bunch the more easily they become bruised and this in turn causes F.F.A. to develop.

The primary process involves sterilising the F.F.B. for about 70 minutes at a steam pressure of 3 kg/cm². This arrests the build-up of the free fatty acid content and loosens the fruit from the bunches. Thereafter, the fruit is stripped from the bunches and stirred into a homogenized mass to rupture the oil-bearing cells. The crude oil is expelled from this mass by presses and passed through a series of cleaning or clarification stages where moisture and other impurities are removed. The residual fibre and nut mixture is passed from the presses through an air column where the nuts are separated prior to cracking for recovery of the kernel.

<u>Secondary processing:</u> edible oils. The main objectives of secondary processing or refining are to turn the crude oil into a bland, neutral, colourless and odourless product that can then be made into consumer goods according to the tastes of the markets to be served. While traditionally the processes for palm oil and coconut oil refining have been different, there is one type of processing which is the same for both: physical refining. An obvious advantage of this process for Indonesia is that it reduces the technological variables in the domestic production of oil refining equipment.

Physical refining is basically a steam distillation process in which crude oil (palm or coconut) is, after degumming but without treatment with alkalis, heated to 250°C under high vacuum This distils off both fatty acids and odiferous compounds and the heat bleaches the oil.

Fractionation involves the splitting of crude oil into two main fractions. A liquid fraction, olein, and a solid fraction, stearin. The distinction between the two fractions is not a sharp one; much depends on the efficiency of fractionation. Frocessing is designed to meet the specifications of customers, particularly in regard to cloud and melting points.

4.2.2 Processing equipment

To illustrate the considerable range of equipment needed by the edible oil processing industry, Table IV.11 lists the major items needed by the palm oil extraction industry alone. Similar lists could be given for the coconut oil extraction and the edible oil refining industries.

4.2.3 The processing industry

The installed capacity in the Indonesian <u>coconut oil extraction</u> industry was 853,870 tons per annum in 1980, spread among 379 enterprises. Actual production was only 325,000 tons. The small average capacity per enterprise indicates that a large proportion of the processing units are small-scale. There is also substantial excess capacity. Assuming 80 per cent normal capacity utilisation, production could be raised up to 683,000 tons per annum with existing capacity, equivalent to a copra intake of 1,242,000 tons per annum. Since the volume of copra to be milled over the period 1984-1988 does not exceed 778,000 tons per annum (Table IV.12), it appears that no additional capacity in coconut oil extraction is required during Repelita IV and beyond, until the requirement reaches at least 1 million ton⁷. A shift to wet pricessing could require additional capacity in the outer islands regions where the coconut is grown. Projected capacity for wet processing units is 1,000 tons/year of end product, operating on a two-shift basis.

Quantitiy Type of Equipment Fruit reception station 1 bunch hopper 2 steriliser cages 30 bogies Sterilising station horizontal steriliser 2 1 inspection platform Threshing station 2 threshing machine 1 traverse screw conveyor Empty bunch incinerator 2 conveyors 1 incinerator Processing station elevator and conveying equipment set 3 digester 3 screw presses equipment for conveying oil and press cake, screened fibre, crude oil tanks, set vibrating screen Clarification station continuous oil clarification tank 1 sludge tank 1 2 sludge separator clarified oil tank 1 2 centrifuge purifier structurals set collecting tank for oil sludge 1 hot process water tank 1 Depericarping steam hacketed cake breaker conveyor 1 vertical pneumatic depericarping 1 penumatic fibre transport 1 1 fibre cyclone ducting set structurals set Kernel recovery station elevators 4 8 screw conveyors 4 silos ducting structure1. _ 1 dryers 2 cyclones Storage 2 storage tanks structural, piping, etc. set

Table IV.11: Process equipment required for crude palm-oil extraction

1

	1980)	1984	1985	1986	1987	1988
Coconut oil						
-production of						
copra	591	680	609	727	749	778
-crude oil	325	374	.335	400	412	428
-crude oil for						
refining	276	295	324	376	412	451
-refined oil	232	277	305	353	387	424
Palm oil						
-crude oil	533	1,110	1,230	1,270	1,320	1,360
-refined oil	320	670	740	760	790	820
Total refined						
oil	552	947	1,045	1,113	1,177	1,244
Domestic a/						
consumption of						
cooking oil		812	882	958	1,040	1,129
Surplus		135	163	155	137	115

Table IV.12:Production and consumption of vegetable cooking oil,
refined coconut and palm oil, 1984-1988
('000 tons)

Source: Computations based upon Tables IV.7 - IV.10.

a/ Based on 1983 consumption of 748,000 and growth rate of 8.6 per cent per annum.

The increase in <u>palm oil extraction</u> capacity required to process the output of newly producing plantations during the period of Repelita IV is shown in Table IV.13.

Year	Number of New Processing Units	Total investment <u>a</u> / (in Million US \$)
1984	5	37.5
1985	9	67.5
1986	8	60
1987	6	45
1988	4	30

Table IV.13:Planned increase in crude palm oil processing units
(unit capacity: 60 FFB/hr), 1984-1988

Source: Computations based upon Tables IV.10, 12 a/ Constant prices of 1982/83.

Existing installed capacity for <u>edible oil</u> (coconut and/or palm oil) <u>refining</u> is 282,060 tons per annum in 105 plants. Actual production in 1982 was reported to be 254,000 tons, which implies a very high (90 per cent) capacity utilisation. Additional capacity for 200,000 tons per annum will be required during 1984-88, i.e. installed capacity of 250,000 tons per annum, assuming normal 80 per cent capacity utilisation. Table IV.14 shows the required expansion of installed capacity. Table IV.15 translates these requirements into number of refinery units of various capacities and alternative technologies.

		1984	1985	1986	1987	1988
Projected production of refined						
coconut nil		278	305	353	387	424
Existing installed capacity as						
of 1982	282					
Existing production capacity at 90 % utilisation (1982)	254					
Assume 80 % for future existing	224					
production capacity	225					
Additional new production capacity						
required (incremental)		53	27	48	34	37
Cumulative addition production						
capacity required		53	80	128	162	199
Additional installed capacity						
required at 80 % utilisation.		66	34	60	43	46
Cumulative additional capacity for refining	<u> </u>	66	100	160	203	249

Table IV.14:Additional capacity required for coconut oil refiningover period 1984/85('000 tons per annum)

Source: Computation based on data from Directorate General of Multifarious Industries.

	1984	1985	1986	1987	1988	Total
	<u> </u>	003')	tons	per annu	.m.)	
Additional refining capacity						
required	66	34	60	43	46	249
rounded off	70	40	60	50	50	270
		(u	nits)			
Alternative number of units						
1. continuous precleaning and bleaching						
50 tons/day(12,500 tons/annum)	6	3	5	4	4	22
100 tons/day(25,000 tons/annum)	3	2	2	2	2	11
2. Physical Refining						
100 tons/day(25,000 tons/annum)	3	2	2	2	2	11

Table IV.15: Number of refinery units required for coconut oil 1984-1988

Source: Computation based on data from Table IV.14.

4.3 Equipment production

According to Ministry of Industry data, there is a limited production of coconut processing equipment in Indonesia. In 1980, 40 items of equipment, valued at Rp. 21 million, are reported to have been produced. For the palm oil sector, the field work mission identified seven producers of equipment. Of these, five were in Medan and two in Surabaya. The technology used consisted of manual welding and machining on general purpose machine tools.

Of the seven palm oil equipment producers, only three are capable in principle of acting as general contractors for equipment for crude oil extraction, two in Medan and one in Surabaya. All three need strengthening of their engineering capability in varying degree. In addition, there are four companies acting as sub-contractors, three in Medan and one in Surabaya. Their engineering capability and quality of product, however, are unsatisfactory. Poor quality of machining and finishing are mainly responsible.

None of the following items of equipment for primary processing of palm oil is as yet produced in Indonesia: screw presses, sludge separators, hydrocyclone wear-resistant separator heads, balanced impellers for centrifugal forms, sub-assemblies or components such as variable drive for nut crackers, air heating batteries for nut and kernel drying, hydraulic cylinders and pump for hydraulic door operations in the fruit unloading ramp, dished ends and steriliser doors made from boiler plate, recording and control systems for the steriliser, conveyor belting, idler supports for empty bunch conveyors, agitator arms in digestors, level indicators in the tanks for crude oil.

As to coconut oil extraction, similar data were not obtainable during field work. There has been traditional manufacture of equipment for copra production and also for small and medium scale oil extraction. In view of the similarities in the processes for primary processing of coconut and palm oil, it may be assumed that domestic production (or local content) is at much the same level. This would suggest that some equipment categories, such as hammer mills, filter presses and pellet mills, are still imported.

The equipment for refining, both of palm oil and of coconut cil, is still wholly imported, except for local civil works and some mechanical steel structure components.

4.4 Investment implications

The unit price of domestically produced palm oil extraction machinery and equipment is Rp. 9 billion, equivalent to US \$ 7.5 million, for a plant with a capacity of 60 FFB/hour.

The price of a mechanical extraction plant for coconut oil (full-press proces:) is about US \$35,000 for a capacity of four tons of copra per day, US \$800,000 for fifty tons per day and US \$2.5 million for 250 tons per day. The price of a pre-press solvent extraction plant is about US \$2.5 million for 150 tons per day.

The investment cost of equipment for an edible oil refining plant amounts to approximately US \$1.3 million for a plant of 100 tons per day capacity (25,000 tons per annum). The auxiliary installations, such _s cooling towers, boiler houses, etc. require an additional investment of US \$400,000, and for erection and commissioning (say) US \$500,000. Thus, total investment for

equipment and installation, for a 100 tons per day plant amount to US \$2.2 million. A plant of 200 tons per day capacity costs approximately US \$3.4 million.

The investment implications of the required expansion of coconut and palm oil processing are therefore as follows:

<u>Coconut oil extraction</u>. No new investment is required for copra processing; investment requirements for wet processing are similar to dry processing. Replacement of machinery is estimated at seven per cent of installed capacity (60,000 tons per annum), i.e. approximately five plants of 50 tons per day (12,000 tons per annum) at US \$0.8 million or US \$4 million a year.

<u>Palm oil extraction</u>. The required annual investment (arithmetic mean value) is US \$48 million for new extraction plants. In addition, seven per cent of 394,000 tons per annum have to be replaced annually, giving 66,000 tons per annum capacity or US \$45 million. Total, in round figures: US \$93 million per year.

Edible oil refining. Eleven new refineries of 100 tons per day capacity will be required. If four refineries of 200 tons per day and three refineries of 100 tons per day capacity are installed during 1984-88, total investment costs, at the previously indicated price, will be 4 x 3.4 + 3 x 2, i.e. US \$20 million, or US \$4 million annually for new investment. Because of the durability of the plants, the replacement investment is calculated at only four per cent of installed refining capacity of 600,000 per annum, i.e. 24,000 tons per annum or one plant of 100 tons per day, representing in round figures US \$2 million. Total investment required for the refining industry is therefore US \$6 million a year.

The foregoing estimates suggest that, during Repelita IV, the edible oil (coconut and palm oil) processing industries will require investment in equipment, whether imported or dowestically produced, of about US \$103 million annually.

4.5 Recommendations

Some crude oil extraction equipment is already produced locally and domestic production of most of the rest may be expected in due course. The situation for refining equipment is different. Some items and components present no major manufacturing problems; the reason why they are not yet produced domestically is lack of engineering capacity and knowhow in thisspecialised area. Even for crude oil extraction equipment, however, upgrading of the quality of production is extremely important for the equipment using industries.

As in the case of the sugar and cement industries, the key to further development is what in this report will be called the "general engineering contractor" (GEC) approach. This involves the establishment of one or more general engineering facilities functioning as general contractors. They would not necessarily themselves produce equipment, but would act as general contractors for local tender and sub-contracting. They should be of the joint venture type, in order to draw on the experience and knowhow of a leading international edible oil refining equipment producer for the high technology involved. Such a joint venture could at the same time cover other areas of edible oil processing, such as ground nut. One of its tasks would be to assist the government in determining the sequence in which additional equipment production should be taken up, whether through sub-contracting or through the establishment of new specialised production units.

Assuming that by 1985 some thirty per cent of <u>refining equipment</u> can be manufactured locally, it should be technically possible to raise the local content gradually by (say) ten per cent a year, giving the following schedule of domestic manufacture of processing equipment:

	Local content	Annual Value of Refining Equipment Output
	<u> </u>	US \$ million
1985	30	1.9
1986	40	2.4
1987	50	3.0
1988	60	3.6

- 273 -

Ì

It is assumed that 90 per cent of <u>oil extraction</u> equipment can technically be produced domestically, i.e. US \$87 million. Total equipment production for the edible oil sector would therefore be of the order of US \$87 million a year. This would represent employment of some 4,000 persons, assuming US \$15,000 per employee.

Chapter V Rubber processing equipment

5.1 Raw material production

5.1.1 The present situation

Although synthetic rubber have become increasingly important, natural rubber still has advantages as a raw material because of its versatility and for special applications (e.g. where heat resistance is important) and the steep rise in the cost of synthetic production which followed the oil price increases of the 1970s has improved the competitive position of natural rubber in world markets.

Indonesia is an important producer of natural rubber, with an average share of 25 per cent in world production. It ranks second to Malaysia among rubber producers (Table V.1).

Table V.l:	World production of natural rubber, 1978-1981	Ł
	(000 tons)	-

Country	1	978		1979			19	80	1981			Average	
,	Vol.	Share Z	Vol.	Δ2	Share Z	Vol.	Δz	Share I	Vol.	D x	Share I	<u> </u>	Share 1
Malavsia	1,607	43.3	1,617	0.6	41.8	1,600	-1.1	42.1	1,590	-0.6	41.8	-0.4	42.2
Indonesia	885	23.8	964	8.9	24.9	989	2.6	26.1	963	-2.6	25.3	3.0	13.4
Theiland	469	12.6	540	15.1	14.0	510	-5.6	13.4	510	-	13.4	3.2	13.4
Srilanka	156	4.2	153	-1.9	4.0	133	-13,1	3.5	133	-	3.5	-5.0	3.8
Others	597	16.1	593	-0.7	15.3	564	-4.9	14.9	611	8.3	16.0	0.9	15.6
Totai	3,714	100.0	3,867	4.1	100.0	3,796	-1.8	100.0	3,807	0.3	100.0	0.9	100.0

Source: FAO Production Yearbook, Directorate General of Estates.

About four-fifths of the area under rubber in Indonesia consists of smallholdings which account for some two-thirds of output (Tables V.2 and V.3). A programme of extension, rejuvenation and upgrading has succeeded in significantly increasing productive capacity. But actual production declined in 1981 and 1982, owing chiefly to a fall in world market price and drought which affected output. The replanting and upgrading programme follows years during which existing stands of rubber trees were allowed to age, so that productivity declined, especially in the smallholder sector, and it will take some years for the programme to become effective in terms of output. Of the large rubber estates, about half (in area and output) are state owned, the other half by private companies. The rejuvenation programme in part takes the

- 275 -

form of nucleus estate development, largely promoted and financed by the World Bank, under which new technology is to be transmitted by estates to smallholders in the surrounding region.

Table V.2:	Area of rubber	plantations	in	Indonesia,	-978-1982
		(000 ha)			

Year	Small	holder	s Estates	Large	private	estates	Govern	cent own		Total		
	Area	<u>۸</u> ۲ –	Share X	Area	V z	Share X	Area	Δ×	Share X	Area	Δx	Share Z
1978	1,871		80.9	253		10.9	189	-	8.2	2.313	-	100.0
1979	1,926	2.9	80.8	271	7.1	11.4	187	1.1	7.8	2.384	3.1	100.0
1980	1,947	1.1	81.7	246	-9.2	10.3	190	1.6	8.0	2.383	-	100.0
1981	1,994	2.4	81.7	244	-0.8	10.0	202	6.3	8.3	2.440	2.4	100.0
1982	1,996	0.1	80.7	245	0.4	9.9	232	14.9	9.4	2.473	1.4	100.0
Average		1.6	81.2		-0.6	10.5		5.4	8.3	-	1.7	1.0.0

Source. Directorate-General of Estates.

Table V.3:Indonesia's production of natural rubber, 1978-1982
(000 tons)

Year	Smallhold	ers Estates	Large private	estates	Government owne	d estates	T	Total		
	Output D	Share X	Output A I	Share X	Output A ^T	Share X	Output	Δz	Share Z	
1978	612 -	69.2	110.1 -	12.3	162.5 -	18.4	885.0		100.0	
1979	673.1 9	.9 69.8	121.3 10.2	12.6	169.6 4.4	17.6	964.0	8.9	100.0	
1980	689.1 2	.4 69.6	114.5 -5.6	11.6	185.8 9.6	18.8	989.4	2.6	100.0	
1981	642.3 -6	.8 66.7	127.5 11.4	13.2	193.4 4.1	20.1	963.2	-2.6	100.0	
1982	549.1 -14	.5 63.8	121.8 -4.5	14.1	190.1 -1.7	22.3	861.0	-10.6	100.0	
Average	2	.3 67.8	- 2.9	12.8	- 4.1	19.4		-0.4	100.0	

Source: Directorate-General of Estates.

The rubber which is obtained after the first stages of treatment is ranked in different qualities known as Standard Indonesian Rubber (SIR) with various specifications (Table V.4). While in the past smallholder rubber has tended to be variable and generally low in quality, upgrading, especially in processing, has greatly improved the quality and international marketability of Indonesian rubber.

Specifications		Qualities									
	SIR-5L	SIR-5	SIR-10	SIR-20	SIR-50						
Maximum dirt content (%)	0.05	0.05	0.10	0.20	0.50						
Maximum dust content (%)	0.50	0.50	0.75	1.00	1.50						
Maximum vaporizer content (%)	1.00	1.00	1.00	1.00	1.00						
Plasticity Retention Index	C C										
Consumer limits minimum	60	60	50	40	30						
Producer limits minimum	70	70	60	50	40						

Table V.4: Standard Indonesian rubber (SIR) with various specifications

More than two-thirds of Indonesian natural rubber is exported as crumb rubber and about 20 per cent as rubber smoked sheet (RSS). The share in exports of crepe rubber, latex and other types has been declining, from almost 15 per cent in 1978 to 12 per cent in 1982 (Table V.5). More than two-thirds of rubber exports go to two countries (USA and Singapore), but the share of Singapore has fallen markedly in recent years (from 40 per cent in 1978 to 25 per cent in 1981) while the residual group of "other countries" increased its share from 11 to 23 per cent, a reflection in part of Indonesian efforts to diversify rubber markets (Table V.6). The value of rubber exports declined sharply in 1981 and 1982, on account of both declining producti n and falling prices, but they have begun to benefit from recovery in the industrial countries.

Table V.5: <u>Volume of rubber exports by kind</u> (000 tons)

fiel of	19	1978		1979		1960				1981			1961			AV47.8.99	
Rubber	WI .	Mare X	WI.		there I	to!		mere I	¥01.		Stere 2	Vel.		Share X	<u> </u>	Sare 1	
Crush	540.4	66.0	571.6	0.5	66.5	658.3	15.2	67.4	363.5	-14.4	6.3	579.8	2.9	72.4	1.	4.5	
155	167.6	19.7	167.4	-0.1	19.4	191.4	14.4	19.7	163.5	-14.8	20.1	136.8	-1.9	19.8	-0.8	19.7	
Crepe	67.7	7.9	72.2	6.6	8.4	60.8	-15.4	6.2	49.9	-17.9	6.2	21.9	-56.1	2.7	-20.8	6.3	
Laten	36.9	4.3	27.2	-26.3	3.2	43.9	61.4	4.5	28.1	-36.0	3.5	36.9	31.3	4.6	7.6	4.0	
Others	29.5	2.4	22.4	10.2	2.6	21.3	-5.6	2.2	7,7	-63.8	0.9	4.0	-44.1	0.5	-26.8	1.7	
Total	- #1.3	100.0	- 1 1 1	- न.ग	100.0	976.1	13.4	100.0	817.7	-16.7	100.0	801.4	-14	308.8	-1.2	100.0	

Sevree: Control Burary of Statistics, Export Statistics.

Country of	1	978		197	•			780	194	1981		1981			Average	
destination	Vol.	Share I	Vol.	Δ1	Share	t Vol.	Δ×	Share I	Vol. Al	Share I	Vol.	ΔI	Share Z	<u>V 1</u>	Share 2	
¥.5.A.	264.2	36.9	309.7	17.2	33.1	398.0	28.5	34.2	301.2 -24.3	36.0	256.5	-14.8	42.2	1.7	36.5	
Singapore	292.1	40.8	397.Z	36.0	42.4	447.4	12.6	38.4	186.7 -35.9	34.3	151.6	-47.1	25.0	-8.5	36.2	
Seviet Daion	41.7	5.8	48.6	16.5	5.2	72.8	49.8	6.2	67.2 -7.7	8.1	5.9	-91.2	1.0	-8.2	5.2	
Jaron	22.4	3.1	33.6	50.0	3.6	43.6	48.8	3.7	31.0 -28.9	3.7	20.1	-35.2	3.3	8.7	ز.3	
West Cermany	16.1	2.2	29.3	83.0	3.1	40.2	37.2	3.5	20.7 -48.5	2.5	Z8.9	37.6	4.8	27.6	3.2	
Others	80.0	11.2	118.4	48.0	12.6	163.3	37.9	14.0	179.0 -21.0	15.4	144.2	11.8	23.7	19.2	15.4	
Total	716.5	160.0	936.8	30.7	100.0	1,165.3	24.4	100.0	835.8 -28.3	100.0	607.2	-27.4	100.0	-0.2	100.0	
Courses Conf	cal Buck	af the		Russer	Craniari.											

Table V.6:Value of rubber exports by country of destination, 1978-1982(\$ US millions)

Source: Contral Bureau of Statistics, Export Statistics.

Indonesia imports small quantities of rubber for its comestic needs (Table V.7). These imports consist mainly of synthetic rubber (43 per cent) and finished goods (32 per cent). Rubber imports have been growing recently at 12 per cent per year. Table V.8 presents statistics of apparent domestic consumption. The sharp fluctuations from year to year clearly reflect stock changes. The growth in domestic demand for natural and synthetic rubber reflects increasing processing capacity in Indonesia for tyres, inner tubes, household goods and office supplies, among others.

Table V.7: Volume of rubber imports by kind, 1978-1982 ('000 tons)

Kind of	19	78		1979			198	0		_1981			1981		Â	ersge
Bubber	Vol.	Share I	Vol.	11	Share I	Vol.	<u> </u>	Share X	Vol.	<u>_ 1</u>	Share I	Vol.	_ 1	Stare I		Share X
Netural																
Rubber	1.2	4.5	1.2	-	3.8	2.0	66.7	4.7	2.5	25.0	5.3	0.5	-60.0	1.3	2.9	3.9
Synthetic																
Rubber	11.5	43.2	14.6	27.0	45.6	16.2	11.0	37.8	20.7	27.8	43.6	18.4	-11.1	46.0	13.7	43.3
finished .																
goods	9.1	34.2	10.2	12.1	31.9	14.6	43.1	34.0	14.5	-0.7	30.5	12.4	-14.5	31.0	10.0	32.2
Others	4.8	18.1	6.0	25.0	18.7	10.1	68.3	23.5	9.8	-3.0	20.6	8.7	-11.2	21.7	19.8	20.5
Total	26.6	100.0	32.0	20.3	100.0	42.9	34.1	100.0	47.5	10.7	100.0	4.0	-15.1	100.0	12.3	100.0

Jource: Contral Bureau of Statistics, Import Statistics.

Table V.8:	Apparent	domestic	consumption	of	rubber	. 1978-1982 ^{a/}
				~-	TOPOCT	

(000 tons)

Year	Production	Imports	Exports	Apparent Consumption	<u>a</u> / 2
1978	885 - 0	26.6	861.5	50.1	-
1979	964.0	32.0	861.0	135.0	169.5
1980	989.4	42.9	976.1	56.2	-58.4
1981	963.3	47.5	812.7	198.0	252.3
1982	861.0	40.0	801.4	99.6	-49.7
Average	-	-	-	107.8	78.4
Source:	Directorate and Import S	General of Est tatistics.	ates, Central B	ureau of Statist	ics, Expo

a/ Apparent consumption = Production + Imports - Exports.

5.1.2 Future prospects

The area under rubber trees has grown in recent years at an average annual rate of 1.7 per cent. Together with the replanting programme and improvement of yields, the expansion of area under rubber should result in a considerable increase in output by 1988 (Table V.9). The Repelita IV target for 1988 is 1.5 million tons. If the world market expands as projected (1983: 3.6, 1985: 5.7 million tons) prospects for Indonesian rubber exports are favourable. Assuming continuation of present trend of imports, domestic absorption will be about 61,000 tons in 1984 and 86,000 tons in 1988.

The projections provided by the Directorate-Ceneral of Estates and presented in Table V.9 may not yet fully take into account planned production under the nucleus estates programme. During Repelita III, an average of 60,000 ha per year was planted under this programme. During Repelita IV, the planting target is 120,000 ha per year. Production from these newly planted trees will begin within 6 years. At an average yield of 1 ton of dry rubber per year per hectare, the first 60,000 tons are expected to be available in 1984, rising to 120,000 tons in 1090.

Table V.9:	Production,	exports	and	consumption	of	natural	rubber,	,
		projecti	ors	1984-88				
		('00	0 to	ns)				

Year	Production	F	Consumption		
		Volume	Percentage Increase		
1984	1,107	1,022		85	
1985	1,150	1,057	3.6	93	
1986	1,226	1,124	6.4	101	
1987	1,350	1,240	10.3	109	
1988	1,515	1,397	12.7	118	

Source: Directorate General of Estates.

5.2 Processing

5.2.1 Processing Technology

<u>Primary processing</u>. The natural latex obtained by tapping rubber trees consists of water (60-66 per cent), rubber hydrocarbons (30-36 per cent) and

- 279 -

minor constituents. (The composition of the latex is affected marginally by type of soil, quality of cone and season of the year.) The rubber is present in the form of discrete micro particles. Fresh latex, flowing from the tree, is almost neutral but tends to coagulate, as enzymatic and bacterial action increases its acidity. For this reason preservatives (expecially ammonia) and bactericides are added as soon as possible after tapping.

The latex is usually stabilised and concentrated before being exported. In order to reduce transport costs, and for easier use, most latex is sold as either centrifugated or creamed latex. The former is produced by treating the fresh latex with a stabilising agent (mainly ammonia, 0.3 per cent) and then passing it through a centrifuge where 80-85 per cent of solids content remains in the concentrate. After centrifugation, the armonia content is readjusted (0.6 per cent) to ensure good storage. To produce creamed latex, the latex, after desludging (allowing it to remain in an unstirred condition for several days), is treated by adding creaming agents (mainly sodium or ammonium salts). It is then allowed to stand again while it separates in two layers. After the removal of the skin, the concentrate is again agitated, and a second separation takes place. Ammonia is added to the remaining concentrate which is then ready for shipping.

Secondary processing. In the traditional technology which yields <u>slab or</u> <u>smoked sheet</u>, the latex is coagulated in long tanks with removable plates across the width of the tank. The dilute fresh latex is poured into the tank where dilute formic acid is stirred in and the divider plates inserted. After about sixteen hours, the slags of coagulum are removed and passed through smooth moving rolls. The sheets are then allowed to hang, first for a few hours in open air and then for 3-5 days in a drying shed or smoke house where the temperature is regulated at $50-60^{\circ}$ C. Historically, wood has been the fuel for drying rubber, and the smoke was thought to have a positive effect. After drying and grading into six different qualities, the smoked sheets are laid up into bales, and squeezed into standard size.

<u>Crumb rubber</u> is a method designed to process smallholder rubber into a product of better and more uniform quality. The latex is first strained through a sieve made of perforated plate in order to remove impurities such as leaves, bark and dirt, and then diluted with water, so that non-strainable

- 280 -

materials such as sand and sludge are allowed to settle. The next step is chemical coagulation, often with the addition of white colouring matter. The rubber is then crumbed in a machine with rotary knives or a pelletiser, then washed, dried, sorted by quality (dirt content being the main criterion), and packed. In practice, the quality of crumb rubber has proved to depend greatly on the quality of coagulum delivered by smallholders.

<u>Crepe rubber</u> is a product of high quality, and requires high quality latex. It is processed from latex after refining and determining the dry rubber content. Before coagulation, a retarder is added to inhibit discoloration and softening. After coagulation, the substance is passed through a creping machine which consists of two rollers with longitudinal grooves. A shearing and masticating action takes place, exposing new surfaces to washing as water is sprayed over it. Several such machines are used in sequence, sometimes with a smooth rolling machine as the last step in order to get a more uniform surface. The sheets are dried in a shed for five to seven days. The crepe sheets are then sorted in different qualities (white, pale, brown, thin brown, etc.) and packed.

<u>Powdered rubber</u>. This processing technique has not yet been used in Indonesia but it has high potential because of its advantages for further processing. It is therefore briefly described here.

The powdered rubber is a free-flowing granular form of natural rubber with particle size ranging from 1 to 12 mm in diameter. Powdered rubber can be produced by spray-drying latex or by granulating crumb rubber bales. (The uses of powdered rubber produced by spray-drying are limited, mainly to the preparation of rubber solutions for adhesives. This process is used in Malaysia). Powdered rubber has the advantages of simpler handling in factories and saving of energy and labour in mixing and compounding. The powdered rubber and the compounding ingredients can be metered into powder mixers and continuously fed to the hoppers of extruders and injection moulding machines. Although at present the use of powdered rubber (mostly synthetic) is quite small (about 1-2 per cent of total use), there is considerable potential for this intermediate product which is ideally suited for automatic processing. The disadvantage of powdered rubber is its low density (one-eighth of that of based rubber) with consequent high storage and transport costs. It is therefore unsuitable for export.

5.2.2 Processing equipment (N.A.)

5.2.3 The processing industry

From 1968 onwards, the Government of Indonesia made determined efforts to rehabilitate the rubber industry which had fallen into sericus decline and to upgrade the quality of smallholder rubber for export. After various unsuccessful attempts, a major initiative was directed at the development of crumb rubber as the means of redirecting processing from Singapore to Indonesia and of producing a product of uniform, internationally marketable ouality. $\frac{1}{2}$

In the 1970s, the export of low quality smoked sheet and slab having been banned, some 150 crumb rubber plants were established, mainly by private enterprise. As a result, however, demand for the raw material outran supply, and competition among processors resulted in deterioration in the average quality of coagula delivered to the factories. Considerable excess capacity developed, leading to bankruptcy by many firms and a runnng down of installed capacity.

At present, approximately 100 companies are engaged in crumb rubber production. Installed capacity has declined from about 950,000 tons in the late 1970s to about 700,000 tons in recent years. Production in 1982 was only 580,000 tons, implying a capacity utilisation of only 56 per cent. The condition of equipment is not known, so that effective spare capacity cannot be determined. In 1980, the crumb rubber industry employed 13,000 people.

No corresponding data are available on the rest of the Indonesian rubber processing industry most of which still consists of smallholders and small-scale enterprises producing smoked sheet, slab and other traditional products.

Som² information is available on the rubber manufacturing industry (ISIC 355) which produces intermediate or finished rubber products. According to this, there were in 1974-75 in total some 450 establishments, of which 115 were government owned, 302 domestic private and the remaining 35 foreign. Total value added was Rp. 38.2 thousand million. The total number of

1/ See Bulletin of Indonesian Economic Studies, November 1972 and July 1982.

- 282 -

employees was 46,300, of whom 21,600 were in Java and 24,800 on the other islands. The number of establishments rose by 166 during the period 1970-80, employment by 31,250. The industry's share in total manufacturing value added rose from 1.3 per cent in 1971 to 4.8 per cent in 1980.

5.3 Equipment production

Most of the simple equipment, such as tanks, for the traditional methods of rubber processing into smoked sheet and slab is locally produced by traditional methods. It is uncertain whether they give rise to demand for modern manufacturing facilities, or might require technological improvements.

The main equipment for <u>concentrated</u> (centrifuged) <u>latex</u> production is the centrifuge; tanks and packing equipment are also required. The centrifuges have usually been imported from Germany. In view of the technological compexity of these machines, and the declining demand for the product, domestic production is unlikely.

The main categories of equipment used in the <u>crumb rubber</u> process are shredders, washing tanks, conveyors, driers and compactors. Most of this equipment is fairly simple and there are manuiacturers in Indonesia, but in recent tenders they have been uncompetitive with Malaysian firms. The spare parts also are mostly imported, although hammer, knives, rollers and some other components are made locally. If the data on installed capacity and utilisation obtained during field work are correct, increased production could hardly be obtained by higher capacity utilisation, and will require new capacity. If the additional production of 68,000 tons of natural rubber in 1984 and 37,000 tons in 1985 (and so on for later years) is going to be derived from new areas distant from the existing crumb rubber plants, additional new capacity will be required. More precise information is needed to confirm this.

In conjunction with the nucleus estates programme, the Government is planning to develop processing near the estates. Average plant size of planned crumb rubber factories is 20 tons/day or 6,000 tons/year. This implies that 10 new crumb rubber plants per year will be required during Repelita IV.

- 283 -

The equipment of the existing crumb rubber industry is now on average 10 years old. Replacement demand will therefore increase strongly in the near future. Assuming annual replacement demand equal to 10 per cent of installed capacity, the need will be for 12 plants of 6,000 tons/year capacity. Total annual required investment demand will therefore be for 22 crumb rubber plants. There will also be a requirement for spare parts, especially rollers, for NES (Nucleus Estate and Smallholder scheme) rubber processing. This is estimated at 50 cast iron rollers per week or 2,600 per year

The machines required for <u>crepe rubber</u> production are shredders, tanks, creping machines, driers and compactors. These require medium-size steel castings and considerable machinery, tooling and patterns investment. Here again, demand for the limited number of new units to be installed in Indonesia is unlikely to warrant domestic manufacture. This is the kind of machinery, however, for which the possibility of manufacture for the regional market under ASEAN complementation arrangements may be worth investigating. Driers involve mere fabrication and can be economically manufactured in small quantities. At a later stage, if and when demand expands, domestic manufacture of shredders and crepe mills, with later design models, may be considered.

The new technology of <u>powder rubber</u> processing may prove to be of value to Indonesia for local production of rubber products and deserves preliminary study.

5.4 Investment implications (N.A)

5.5 Recommendations

A crumb rubber factory of 6,000 tons/year capacity involves investment in machinery and equipment of about US\$ 600,000. The estimated demand for crumb rubber factories therefore implies an investment requirement of the order of US\$ 13.2 million per year. It is estimated that 75 per cent of this can technically be produced locally, or in round figures US\$ 10 million per annum. Production of rollers, at US\$ 1.00 per kg of cast iron, amounts to US\$ 2.6 million of annual demand. Since a good deal of manufacturing capacity is already installed in Indonesia, it is estimated that US\$ 5 million of investment in additional capacity will suffice to produce the crumb rubber equipment and rollers. Of this, US\$ 1.5 million is accounted for by foundries to produce the rollers. Some 600 new jobs would be created in the equipment and replacement production units.

Two further planning efforts are recommended: first, a general screening study to establish exact data on capacity installed and utilised and investment requirements for replacement of old machinery as well as new capacity for the various kinds of rubber processing. If plans currently under consideration to upgrade quality by requiring smallholders to deliver unsmoked theet to the crumb rubber plants are realised, mechanical equipment of the factories may need to be adjusted to the differen raw material. A GEC approach may well be the most suitable way of handing these tasks. Secondly, preliminary study of powdered rubber processing for local manufacture of rubber products.

Since the ASEAN countries between them account for a very large proportion of world rubber products, rubber processing euqipment of various kinds should be a prime candidate for intra-ASEAN industrial complementation arrangements. Production for the wider regional market should certainly improve the prospects for economic viability of equipment production industry.

- 285 -
Chapter VI Sugar processing equipment

6.1 Cane sugar production

6.1.1 The present situation

Note:

- Exports.

Although sugar consumption grew by almost 50 per cent between 1976 and 1981, on by about 8.5 per cent per annum (Table VI.1), per capita sugar consumption in Indonesia remains with 14.9 kg/capita among the lowest among the ASEAN countries. Thailand stands at 13.6, while it has reached 25.2 in the Philippines, 36.4 in Malaysia and 50.4 in Singapore (1980).

Sugar production grew from 1.3 million tons in 1976 to 1.9 million in 1981, an average by 8 per cent per annum, however, it could not match the increase in consumption. Preliminary figures for 1983 indicate likewise a production of 1.9 million tons. Imports doubled between 1976 and 1980 from 202,000 to 400,000 tons. Taking variations in stock into consideration, net consumption stood at 81 per cent in 1981. The value of sugar imports rose from US \$108 million in 1976 to US \$161 million in 1980 and US \$573 million in 1981.

Year	Consumption	Production	Import	Commencing Stock	Latest Stock
1976	1,600.4	1,318.4	202.2	327.3	247.5
1977	1,656.0	1,360.4	222.8	247.5	174.7
1978	1,816.7	1,497.0	430.8	174.7	285.8
1979	1,948.4	1,828.5	294.2	285.6	460.1
1980	2,474.9	1,831.7	399.7	460.1	216.6
1981	2,353.6	1,913.3	720.9	216.6	497.2
Source:	Directorate (Economic Ind:	General of Est icators, Decem	ates; Cent: ber 1981.	ral Bureau of Statis Quoted from: Bank	tics, Bumi Daya,

Table VI.1: Sugar consumption in Indonesia, 1976-1981 ('000 ton)

The increase in domestic production originate mainly on smallholdings (Table VI.2). While the large plantations increased their production by only

Consumption = Production + Import + (Commencing Stock - Latest Stock)

about 53,000 tons, the smallholders raised theirs by approximately 54,000 tons from 1976 to 1981 and produced in 1981 three times as much as in 1976. In the same time span they achieved an increase in yield per ha by 12 per cent against a drop of 26 per cent on the large plantations (private plantations: 45 per cent, state owned plantations: 24 per cent). Yet yield per hectare of the large plantations is still twice as high as on the smallholdings. The area under cultivation is shown in Table VI.3.

Year		Plantations	Smallholdings	Total	
	PNP/PTP	Private	Total	_	
1976	900	152	1,052	267	1,318
1977	924	23	1,007	353	1,360
1978	941	71	1,012	485	1,497
1979	1,012	81	1,093	736	1,828
1980	968	114	1,083	749	1,832
1981	988	116	1,104	809	1,913

Table VI.2: Sugar production in Indonesia, 1976-1981 ('000 tons)

Source: Directorate General of Estates. Quoted from: Bank Bumi Daya, March 1983.

Table VI.3:	Extent o	of sugar	plantation	area,	1976-1981
		(in h	ia)		
		('000 t	ions)		

Year		Plantations	Smallholdings	Total	
	PNP/PTP	Private	Total		
1976	96	21	117	92	209
1977	106	16	116	118	234
1978	121	24	146	102	248
1979	126	26	152	192	343
1980	130	26	155	207	362
1981	139	29	168	244	412

Source: Directorate General of Plantation. Quoted from: Bank Bumi Daya, March 1983.

Indonesia also produces brown sugar, at an estimated rate of 350,000 - 400,000 tons per annum, and an unspecified amount of sugar from the coconut

and aren palms, mostly on a subsistence basis. It is not clear whether these quantities are included in the official statistics for production and consumption in Table VI.1.

6.1.2 Future prospects

Sugar consumption in Indonesia is expected to grow during Repelita IV at a somewhat slower rate than during Repelita VII, i.e. at 7.2 per cent per annum. The Government hopes to replace all sugar imports and regain a net export position by 1985; the export quota granted to Indonesia by the International Sugar Conference of 1983 is 70,000 tons per annum. To meet these output targets, a substantial estate extension programme is under way, coupled with construction of new sugar mills, both on the outer islands. Besides extension of area under cane, it is hoped to achieve a steady increase in yields, from 4.65 tons of sugar per ha in 1981 to 6.76 tons in 1988, mainly through improved cultivation and harvesting methods, better seeds and improved juice extraction in the mills. These plans do not include brown sugar production most of which remains on a subsistence basis.

The Repelita IV targets for expansion of area under cultivation and for white sugar production are shown in Table VI.4. It is not clear what accounts for the differences in production and consumption figures between Tables VI.1 and VI.4.

	1984	1985	1986	1987	1988
Area under sugar culti	vation				
(000 ha)	277.6	332.3	357.3	367.3	377.3
(Java)	(231.0)	(259.2)	(259.2)	(259.2)	(259.2)
(outside Java)	(46.6)	(73.1)	(98.1)	(108.1)	(118.1)
Production of sugar					
(000 tons)	1,759	2,156	2,331	2,449	2,550
(Java)	(1,569)	(1,814)	(1, 814)	(1, 814)	(1, 814)
(outside Java)	(190)	(342)	(517)	(645)	(736)
Courses Indenneiter Cu			ad Passari	Tederosia	Ma 71

Table VI.4: <u>Projected extension of sugar plantations and sugar</u> production during Repelita IV, 1984-1988

Source: Indonesian Sugar Council Secretariat and Economi Indonesia, No. 71, Vol. XIV.

6.2 Processing: sugar mills

There were, in 1983, 58 sugar factories in Indonesia, including 51 government-owned and seven privately owned. The great majority (55) were on Java, only three outside Java (one each in Aceh, Lampung and South Sulawesi). The one in Lampung is a foreign investment enterprise, with a capacity of 4,000 tons of came per day (TCD) and an output of 80,000 tons of sugar per annum. Since the middle of the past decade, factory rehabilitation has been under way, financed by a World Bank loan of US \$50 million to rehabilitate 25 mills. The first stage of this programme is near completion and the second stage is reported two-thirds complete.

Repelita IV targets envisage an increase in production in 1985 over 1984 of nearly 400,000 TCD, of about 175,000 in 1986, 120,000 tons in 1987 and 1988. In other words, some 800,000 tons additional sugar processing capacity will need to be established during Repelita IV. Assuming a standard mill capacity of 4,000 TCD, corresponding to about 76-80,000 tons of sugar per year, this means that twelve new sugar mills will be needed.

The Government in fact plans to build twelve new mills of which six were already under construction in 1983 and one more has been commissioned. All but one of these is on the outer islands, located as follows: four in Sulawesi, two in Lampung, three in North Sumatra and one each in South Kalimantan, Buru Island and West Java. In August 1983, the Investment Coordinating Board announced three projects open for private investment with proposed locations in Kolaka (South Sulawesi), Wolawa (Southeast Sulawesi) and Merauke (Irian Jaya). The capacity of these mills may diverge from the standard 4,000 TCD on which the calculated number of required mills was based, but they are more likely to be larger than smaller. Together with rehabilitation currently under way, these extensions of capacity should suffice to meet future demand and leave a margin for reserve stock increases. From 1988 onwards, an average of two sugar mills every three years will have to be commissioned to meet projected demand.

6.3 Equipment production

The seven sugar factories put up for tender in Repelita 111 were commissioned on the condition that (a) the international equipment supplier cooperate with a domestic engineering and equipment manufacturing company and (b) that a local content of approximately sixty per cent be achieved. These conditions have been fulfilled.

Six companies (three state-owned and three private) are engaged in engineering planning of sugar mills and are producing various kinds of equipment. In the past wear or two, they have also begun manufacture, partly under licensing agreements, of more complex machinery, such as centrifuges. One company, with a licensing agreement with a German manufacturer, has already produced forty centrifuges with a local content of about sixty per cent. Another centrifuge producer has a license agreement with an American company. For the next sugar mills to be commissioned, the main contractor is to be an Indonesian company supported by an internationally known sub-contractor. During the next phase of sugar mill construction, a local content, according to estimates by international suppliers, of 70 per cent should be attainable.

A wide range of spare parts is also produced domestically, partly by the often well equipped repair shops of the sugar mills themselves.

6.4 Investment implications

By 1988, five additional sugar factories have to be installed, i.e. one mill per year. At an average price of US \$40 million for equipment per plant, this represents an investment volume of US \$200 million. If seventy per cent can be produced locally, investment of US \$140 million, or US \$28 annually will be needed. The capacity for local production of the bulk of this portion of the equipment already exists, but for special components an amount estimated at twenty per cent of total investment (i.e. US \$30 million or US \$6 million a year) will also have to be invested in the equipment producing industry. Besides this new investment, there will be a continuing invertment requirement for rehabilitation and replacement, estimated at US \$1.5 million for each 100,000 tons per annum of sugar production capacity installed. This gives an average figure of US \$35 million per year for Repelita IV. The same amount will have to be budgeted for spare parts. Here again, it is assumed that 70 per cent, or about US \$25 million per annum, can be manufactured locally.

Thus, one reaches the following totals for technically possible local production of sugar mill machinery and equipment during Repelita IV:

		<u>US \$ million per year</u>
-	investment in new capacity	28
-	replacement of outdated equipment	25
-	spare parts	25
	TOTAL	78

The requisite productive capacity in the main already exists. But it is estimated that US \$10 million a year will be required for new capacity to produce special components (US \$6 million) and for replacements (US \$4 million). This gives a total investment requirement of US \$50 million for the five year period.

6.5 Recomme. dations

The procedure for increasing local content which has been adopted for equipment production in the sugar industry may serve as an example for other sectors. It is applicable to sectors where turnkey operations are common because technical requirements demand the establishment of whole plants as integrated units. Especially the procedure of switching the local engineering company from the role of an affiliate to that of main contractor with a foreign affiliate may well be appropriate for a number of sectors.

The next phases of sugar equipment manufacture are likely to include efforts to raise local content, especially for sub-contracted components, such as pumps, motors and speed reduction gears, and for the more sophisticated equipment through knowhow agreements with foreign partners.

<u>Chapter VII Processing equipment for estate crops:</u> <u>cocoa, coffee, and tea</u>

7.1 Estate crop production:

7.1.1 The present situation

<u>Cocoa</u>: Indonesia has not hitherto been a significant producer of cocoa. Production increased from 5,500 tons in 1978 to 15,000 tons in 1981, but even the latter figure represented less than one per cent of world production.

Cocoa is produced mainly in East and Central Java, North Sumatra, South Sulawesi and Maluku. Government estates still account for most of the output, but private estates have made an increasing contribution to a threefold increase in output during 1978-81, promoted by a programme of rejuvenation and extension of estates, as well as improved pest and disease control, use of fertiliser and cultivation (Table VII.1). Since cocoa trees take seven years to bear fruit, output can be expected to grow substantially during the 1980s in response to extensive recent planting.

Year	Government Estates	Private Estates	Smallholdings	Total
1978	4.3	0.2	1.0	5.5
1979	7.4	0.7	1.0	9.2
1980	8.4	0.8	1.1	10.3
1981 <u>a</u> /	10.4	1.3	1.5	13.1
19824/	12.2	1.3	1.5	15.0

Table VII.1: Cocoa production by type of estates, 1978-1982 ('000 tons)

Source: Directorate General for Estates. a/ Provisional figures.

Indonesia's exports of cocoa, mainly to Singapore, increased substantially in volume in recent years (Table VII.2), but a fall in world market prices by one-third during 1978-81 largely offset this gain. More than 90 per cent of exports consists of beans, powder and paste (Table VII.3). Quality requirements are fixed according to International Cocoa Standards. Indenesia also imports cocoa, mainly in the form of beans, presumably to make possible appropriate quality blending (Table VII.4).

	1978	1979	1980	1981	1982#/
Volume (000 tons)	6.22	8.63	14.97	17.51	10.49
Per cent increase to previous year	-	38.7	73.5	17.0	~
Value (000 US \$)	14.65	22.14	29.76	31.10	16.50
Per cent increase to previous year	-	51.1	34.4	4.5	-

Table VII.2: Cocoa exports by value and volume 1978-1982

Source: Central Bureau of Statistics, Export Statistics, 1979-82. a/ Up to June.

Table	VII.3:	Cocoa	exports	by	type	of	cocoa,	1978-1982
			('000	to	18)			

		1978		1979		1980		1981	19	828/
	Vol.	ShareZ	Vol.	Share Z	Vol.	ShareZ	Vol.	Share Z	Vol.	ShareZ
Beans	2.2	36.1	3.6	42.2	4.7	31.3	6.8	38.8	4.1	39.5
Powder	2.0	32.3	2.4	27.5	9.4	62.7	2.3	13.0	1.5	13.8
Paste	1.0	16.4	2.0	23.2	40.0	0.3	5.8	33.0	3.6	34.2
Butter	0.9	14.0	0.6	6.8	0.9	5.7	1.9	10.9	1.0	9.2
Others	0.1	1.2	25.0	0.3	-	-	0.8	4.5	0.4	3.2
Total	6.2	100.0	8.6	100.0	15.0	100.0	17.5	100.0	10.5	100.0

Source: Central Bureau of Statistics, Exports Statistics 1979-1982. a/ Up to June.

Table	VII.4:	Domestic consump	tion of	cocoa,	1978-1981
		(000 tor	18)		

Year	Production	Imports	Exports	Apparent Consumption <u>a</u> /	Annual Growth Rate
1978	5.5	2.1	6.2	1.5	-
1979	9.2	2.9	8.6	3.4	132.3
1980	10.3	8.3	15.0	3.6	6.6
1981	13.1	9.2	17.5	4.8	33.9

Source: Directorate General of Estates and Central Bureau of Statistics. a/ Apparent consumption = production + imports - exports.

- 293 -

<u>Coffee</u>: Indonesia occupies fourth place (after Brazil, Colombia and the Ivory Coast) among the world's 47 coffee producing countries. Indonesia ranks second (after the Ivory Coast) as a producer of robusta and accounts for nearly 15 per cent of world robusta production. More than 85 per cent of Indonesia's coffee is robusta, less than 15 per cent arabica. As Table VII.5 shows, coffee is mainly a smallholder crop.

Table	VII.5:	Coffee	Production,	1975-1981
		('000	tons)	

	1975	1976	1977	1978	1979	1980	1981	
Smallholdings	144	178	181	206	209	213	276	
Estates	16	16	16	17	19	21	23	
Total	160	194	197	223	228	234	299	

Source: EIU Quarterly Economic Review of Indonesia, Annual Supplement, 1983.

Most of Indonesia's coffee is exported. Coffee is Indonesia's third largest non-oil export commodity, after timber and rubber. The destruction of much of Brazil's coffee crop by frost in 1975, and shortfalls in supply from Africa, caused a steep rise in world coffee prices which greatly benefited Indonesia and stimulated coffee production. Exports reached US \$614.3 million in 1979 and US \$656 million in 1980 (Table VII.6). Prices then declined, and Indonesia's coffee exports fell by nearly 50 per cent in 1981 to US \$345.9 million. Oversupply on world markets, aggravated by worldwide economic recession, was responsible. Indonesia's availability of coffee normally exceeds its annual fixed quota. The non-quota coffee is mainly exported to Arabian countries.

Table VII.6: Coffee exports, 1975-1981

	1975	1976	1977	1978	1979	1980	1991
Volume ('000 tons)	128	136	160	215	220	238	210
(US\$ million)	100	238	599	491	614	656	345

Source: Economic Review, Bank Negara Indonesia.

- 294 -

<u>Tea</u>: Most of Indonesia's tea is grown at a height of 1,035-1,550 m., in rather acid soils which are optimal for plant nutrition. Estates whose output is mostly processed to black tea for export have increasingly replaced smallholders and now account for around four-fifths of total production; the share of smallholders who produce mainly green tea for domestic consumption has fallen to one-fifth (Table VII.7). Most of the estates are state enterprises of about 1,000-1,500 ha producing 1,000-1,500 tons per year each.

	Plantation	Smallholdings	Total
1974	51	14	65
1975	56	14	70
1976	60	13	73
1977	62	14	76
1978	74	17	91
1979	108	17	125
1980	84	18	112
1981	85	22	107

Table VII.7: Growth of Indonesian tea production, 1974-1981 (000 tons)

Source: Indonesian Financial Statistics, Bank Indonesia, February 1979.

The average yield of tea per 1,000 ha for estates and smallholders combined was about 720 metric tons in 1977, as compared with 1,540 tons/1,000 ha in India and 880 tons/1,000 ha in Sri Lanka in the same year.

Indonesia ranks fourth among tea exporting countries (1978), but tea contributes less than 3 per cent of non-oil export earnings, and a significantly higher proportion of tea than of coffee (29 per cent as compared with about 15 per cent) is for domestic consumption. Tea exports benefited from the world coffee shortage in the mid-1970s, but prices fell somewhat in the following years. In 1982, earnings rose again (Table VII.8).

 	ويلجحون والتروية فالوارية والمتروجة التنابي المتعد وعانا المتوري والم	
Year	Volume ('000 ton)	Value (US \$ million)
 1974	55.7	43.6
1975	45.9	53.1
1976	47.5	56.0
1977	51.3	120.9
1978	56.1	94.6
1979	68.0	92.0
1980	n.a.	n • <i>i</i> • •
1981	n.a.	n
1982	73.5	116.0
3		

Table VII.8: Growth of Indonesian tea exports, 1974-1978

Source: Weekly Report, Bank Indonesia, No. 1040, April 1979; Economic Indicators, January 1979, Central Bureau of Statistics.

7.1.2 Future prospects

<u>Cocoa</u>: During Repelita IV many of the new cocoa plantations will start bearing. Repelita IV target figures for cocoa production indicate a very high rate of growth, about 10,000 tons a year after the first year (1984). This would raise output nearly fourfold by 1988. Up to 94 per cent of output is planned for export (Table VII.9) which implies that a substantial volume of cocoa will continue to be imported.

Table VII.9:	Projections	of	cocoa	production	and	experts,	1984-198
			(000 t	cons)			

	1984	1985	1986	1987	1988
Production	15.7	24.9	35.5	45.4	56.3
Export	12.6	21.8	32.3	42.1	53.0
Share for domestic consumptiona/	3.1	3.1	3.2	3.3	3.3

Source: Directorate General of Estates.

a/ Excluding imports.

<u>Coffee</u>: Repelita IV projections for coffee production and export are given in Table VII.10. The target increase in coffee production is 10,000 tons a year over the four years 1984-88, giving a total increase of around 40,000 during Repelita IV. Broadly constant proportions are expected to be exported (75 per cent) and consumed at home (25 per cent).

	1984	1985	1986	1987	1988
Production	<u> 209</u>	318	328	338	348
Export	232	239	247	256	264
Domestic consumption	77	79	81	82	84

Table VII.10: Projection of Coffee Production and Exports, 1984-1988 (000 tons)

Source: Directorate General of Estates.

<u>Tea</u>: About 2,300 ha of new estates and 15,000 ha rehabilitation are planned for Repelita IV. The projected production of tea over the period 1984-88 is shown in Table VII.11. The projected growth rate is the lowest of the three crops considered here and amounts to 17,000 tons during Repelita IV.

Table VII.11: Projected Production and Exports of Tea, 1984-1988 ('000 tons)

	1984	1985	1986	1987	1988	
Production	116	119	122	126	130	
Export	77	79	82	85	88	

Source: Directorate General of Estates.

7.2 Processing

<u>Cocoa</u>: Cocoa bean processing begins with fermentation. The wet beans are fermented in wooden vats to remove the pulp. The process is carried out in a series of fermentation troughs or vats for period of 12, 24, 25, 20 and 5 hours in succession. The beans are then conveyed by a screw conveyor through a small open channel to a washing pool. The washed beans are first sun dried for six to nine hours and then dried in tray driers for a period of 18 hours in all, at different temperatures. Four tons of wet beans give 1.25 tons of dry beans ready for export. A typical processing unit handles about 350 ha of plantation, produ es about 500 tons of dry beans ready for export and employs about 60 persons.

The processing of cocoa beans requires the following equipment:

- 1. Flight conveyers, for en masse transportation of the fermented wet beans.
- Tray driers, with oil-fired heater and fan unit, for drying the wet beans, or rotary driers, with similar heating and air blowing equipment.
- 3. Cocoa bean grader.

A typical unit producing about 500 tons of dry beans a year requires 1 conveyor, 4 tray driers and 2 graders. The total cost of the equipment per unit in about Rp. 200 million at current prices.

For chocolate and chocolate beverage production, the dry beans are further processed. The beans are ground, the ground powder is prepared into a meal, pressed in special processes to produce cocoa butter and cocoa cake, mostly for exports. There is a small volume of domestic manufacture of chocolate for which the equipment required consists of rather complex and specialised grinders, mixers and presses.

<u>Coffee</u>: Coffee processing involves curing, grading, roasting, blending, grinding and packaging.

- <u>Curing</u>: (removing the outer part of the fruit to leave the coffee bean) is done is one of two processes.

Under the wet method, the freshly picked cherries are fed into a tank for initial washing, in order to remove stones and other foreign materials. The washed cherries are then fed into a depulping machine to remove the outer skin and most of the pulp, thus freeing the beans. The beans are then joured into a fermentation tank, usually filled with water, in order to remove the remaining pulp. This process takes from twelve hours to several days. The beans are then dried in mechanical dryers. Parchment is broken by rollers and removed. Under the dry method, which is used in countries where water is scarce during the harvesting season and in most of Brazil, the ripe cherries are spread on open drying ground, and turned frequently in order to allow the sun and the wind to dry all portions thoroughly. The dry cherries are then transferred to hulling machines for the removal of the husk, parchment and silver skin.

- <u>Grading</u>: The green beans are then machine graded into large, medium and small sizes by the use of sieves, oscillating tables or conveyors, removing also damaged beans and foreign matter. The criteria used in grading include imperfections, foreign matter content, colour and roasting characteristics, and, most important, cup quality of the beverage.

- <u>Roasting</u>: This develops the desired flavour which is absent in green coffee. The obvious modifications are changes in colour (from green to brown), and a large increase in volume (50-100 per cent). However, the physical and chemical changes that take place during roasting are complex and not completely established.

- <u>Blending</u>: After cleaning, green coffee of different varieties or sources are blended, either before or after roasting. Beans are then again sieved, by air lifting, from remaining foreign matter and conveyed to grinders.

- <u>Grinding</u>: The beans are first passed through bean cracking rolls, then fed between two more rolls, one of which is cut or scored longitudinally, whereas the other is cut or scored circumferentially. These paired rolls, operating at different speeds, cut rather than crush the bean particles. A second pair of rolls, scored more finely and running at higher speed, achieves a finer grind.

- <u>Packaging</u>: An important part of the coffee sold directly to consumers is packed in vacuum cans, although smaller amounts are packed in flexible bags, paper cartons, glass jars, or laminated flexible film and foil packages. For vacuum cans, the ground coffee is conveyed to weighing-and-filling machines. The can is filled with ground coffee by tapping or vibrating, and passes through the vacuum chamber to remove the air. Sometimes, the can is filled with gas such as nitrogen or carbon dioxide. Staling (loss of fresh character when exposed to air) is caused by be slowed at lower storage temperature or by vacuum packing.

- Equipment used: The following equipment is required for processing coffee beans (wet method):

- 1. De-pulper, for separating pulp and beans.
- 2. De-pulper cum washer, for separating beans and washing.
- 3. Pump with motor, for pumping wet parchment coffee or wet coffee cherries.
- 4. Rotary driers, for drying wet parchment.
- 5. Hullers, for treating dry parchment coffee, or dry cherries.
- 6. Catador, for separating husk peels and dust.
- 7. Vibrating grader, for bean size classification.

For a processing unit with 10,000 tons per annum capacity, the equipment required is four depulpers, four depulpers cum washers, one pump, fcu- rotary driers, two hullers, two catadors and two graders. The total cost per processing unit is about US \$500,000.

The equipment for roasting includes coffee roasters and sieves, for grinding bean cracking mills for coarse grinding and grinding mills for fine grinding. For instant coffee, the same equipment as above is used for blending, roasting and grinding; other equipment includes coffee extractors, clarifiers, spray driers and screens.

<u>Tea</u>: Processing of tea involves withering, rolling, fermentation, drying and grading.

- <u>Withering</u>: The freshly plucked shoots are dehydrated by passing air through loosely packed fresh leaves. This process lasts up to twenty hours. besides reduction of moisture which renders the leaves malleable, some chemical processes occur.

- <u>Rolling</u>: The purpose of this stage is to subject the withered leaf to a wringing action in a rolling machine. - <u>Fermenatation</u>: This word is still retained by the tea industry to describe the operation of en ymatic oxydation and condensation of the flavanols. During this process, the colour changes from green through olive green to light brown. At optimal point, the fermentation is stopped by heat, exposing leaves to hot air (85-95°C) in a drier.

- Drying: In this operation, the leaf is carried through the drier on a series of metal trays, moving slowly. The leaves fall from one level to the other, until completely dried tea falls off the last tray and exits after about 15-30 minutes.

- <u>Grading</u>: Using sifting machines the dried leaf is sorted mechanically or by air flotation into various broken and powder grades and packed with a moisture content of around three per cent. Other qualities of tea, green tea (enzymatic oxydation being inhibited by steam shock) or instant tea may be found on the market.

The dry tea leaves can be separated from coarse to very fine. The types of dry tea are sorted into three groups, that is tea leaf, crushed tea and powdered tea. These three large groups can be further divided into several types.

- The equipment used for processing tea is:

- 1. Withering troughs with blowers
- 2. Rolling machines, rotary rollbreakers, rotorvane machines
- 3. Sorting machines, stalk extractors.
- 4. Driers, multistage
- 5. Graders, rotary tea sifters
- 6. Vibratory tea packers
- 7. Heat exchangers
- 8. Suction winnowers and dust collectors.

7.3 Equipment production

The equipment for <u>cocoa</u> bean processing is relatively simple and is produced locally.

Some of the equipment for <u>coffee</u> processing is also locally manufactured or assembled. But in general, the equipment at present used in the coffee bean processing units at the estates is of very old design and inefficient in operation (particularly the driers), leading to enormous consumption of fuel. The cost of drying equipment at present accounts for 65 per cent of total costs of processing equipment. Quality standards in respect of moisture content are stringent for exports, since export coffee has sometimes to be stored for considerable periods. Export prices depend on quality. A "defect system" for grading Indonesian coffee for export has been introduced. Quality variations have caused price differentials involving losses estimated at some US \$40 million a year to Indonesia in the recent past.

In earlier years, most of the equipment for coffee processing was imported. At present, about 80-85 per cent of the machinery are reported to be made locally. But this is difficult to confirm. Much of it may consist primarily of assemly.

The production of <u>tea</u> processing equipment is carried on in several general workshops, in Bandung and elsewhere. In 1980, 27 units valued at Rp. 142.6 million were produced.

7.4 Investment implications

There are some similarities among the processing equipment for the three estate crops considered here, especially between cocoa and coffee. The rotary driers for coffee and cocoa are very similar in construction, and cocoa graders are similar to coffee bean graders. The demand for the cocoa processing equipment, added to that for coffee, tea and other similar equipment, could bring demand up to levels economic for domestic manufacture.

To process an additional 40,000 tons of <u>cocoa</u> bears requires about 80 units of 500 tons capacity each, over the period 1985-88, at the rate of about 20 units per year. This would result in an annual demand for equipment as *i*ollows:

- 20 flight conveyors
- 80 tray driers with heater and blowers
- 40 cocoa graders.

- 302 -

The approximate cost of equipment per unit is US \$200,000, implying a total investment of US \$4 million per year.

An additional amount of 40,000 tons of <u>coffee</u> has to be processed over the period 1985-88, assuming Repelita IV projections of output. This will require about four processing units of 16,000 tons annual capacity, valued at about US\$ 2 million, or US \$500,000 per year. In terms of numbers, this means about 16 rotary driers, 8 depulpers, 16 depulpers cum washers, 8 hullers, 8 catadors, 8 graders and about 4 pumps over the five year period 1984-88. (The processing units have a capacity of 80 tons of coffee beans per day, 24 working hours a day and 4 months a year, i.e. 10,000 tons of per annum.) Since the equipment at present installed is very old and inefficient, it is assumed that the same amount of machinery will be needed for replacement. This gives a total investment requirement of US \$4 million, or US \$1 million a year.

The equipment for <u>tea</u> processing such as the rolling machines and rotorvane machines for tea rolling, require good casting and machining facilities. The size of the castings would require medium to large size machine tools in turning and boring. The second group of machines such as vibratory sorters, sifters and graders are relatively simple equipment requiring sheet metal fabrication. The manufacture of multistage driers also does not demand any special facility.

It is assumed that the additional future tea production of 17,000 tons per annum will be produced by production increases of existing estates (6,000 tons per annum) and by new plantations (11,000 tons per annum). A typical tea processing unit has a capacity of approximately 2,700 tons per annum. This means that four new processing units, or one per year, will be required.

It is furthermore assumed that annually two processing units will be installed for replacement of old equipment.

One tea processing unit costs approximately US \$650,000. This gives a total investment volume of US \$8 million for the period considered or approximately US \$2 million annually.

Summarising, the investment volume for the processing of the three crops is as follows:

-	coffee:	US \$ 4	million	for	1985-1988	or	US	\$1	million	annually
-	tea:	US \$ 8	million	for	1985-1988	or	US	\$2	million	annually
-	Total:	US \$28	million	for	1985-1988	or	US	\$7	million	annually.

- - - -

All this equipment can "technically" be produced in Indonesia with a local content of about 80 per cent. The remaining 20 per cent consists of special components (bearings, electric motors, etc) which will have to be imported. The resulting production would be US \$5.6 million per annum in value. The employment generated would be about 250 new jobs. Some of the capacity to produce this equipment is already installed in Indonesia. It is estimated that additional investment of about US \$3 million will be needed to improve and enlarge equipment production capacity.

7.5 Recommendations

The technical capacity for domestic production of much processing equipment for cocoa, coffee and tea already exists in Indonesia. However, little is known about the capacity of the existing relatively small-scale equipment producing industry to produce economically and efficiently. It is therefore recommended that this sub-sector be further investigated to determine the strong and weak points of the existing industry. This should lead to recommendations concerning the strengthening of existing enterprises and the establishment of new plants, including requisite information about the additional investment, technology and manpower requirements.

Chapter VIII Wood Processing Equipment

8.1 Timber production

More than sixty per cent of Indonesia's land area is covered by tropical forest. The country's forestry potential is among the greatest in Asia but will in future need to expand its forest conservation and reafforestation activities to hold this position.

The total forest area of 122 million ha is officially classified as follows:

-	according	to exp	loitabilit	y
---	-----------	--------	------------	---

-	exploitable:	45 million ha	(37 per cent)
-	potentially		
	exploitable:	48 million ha	(39 per cent)
-	others:	29 million ha	(24 per cent)

according to legal status

-	reserved:	47 million ha	(38 per cent)
-	protected:	48 million ha	(39 per cent)
-	unclassified:	28 million ha	(23 per cent)

Such data on exploitable forest reserves, however, have to be treated with caution. In many countries there has in the past been serious overestimation which has led to excessive depletion. Some reserves are in remote and inaccessible areas and cannot be regarded as economically "exploitable" because of high transport costs. Exploitation of some forests in undesirable for environmental reasons, such as soil erosion (e.g. on steep slopes) or disappearance of the tree species.

At present, forest exploitation in Indonesia is concentrated in Kalimantan which accounts for more than 50 per cent of logging activity. Of the approximately 4,000 species of trees, 127 are commercially useful. The main species cut for export are Meranti (53 per cent), Ramin (15 per cent), Kapur (8 per cent), Agathis (3 per cent) and Pulai (2 per cent). Teak has a share of only 0.2 per cent. During the 1960s and 1970s, forest exploitation in Indonesia expanded very rapidly, largely for export of logs to Japan, the Province of Taiwan, the Republic of Korea and elsewhere for plywood and other processing. In 1978, the Government of Indonesia decided to enforce increased domestic processing by, in effect, drastically and progressively restricting export of logs, with a view to banning it completely from 1985, and promoting domestic plywood production.

At present, under contracts with the Indonesian Government, timber concessionaires are obliged from the seventh year of operation onward to process locally 40 per cent of the Annual Allowable Cut (AAC) and export it in processed form. The result has been an investment boom in saw mills, veneer and plywood manufacturing. In some cases, production plants in the Republic of Korea, Japan and the Province of Taiwan which formerly depended on Indonesian logs as inputs, threatened with shutdown, have relocated in Indonesia. These policy changes have brought dramatic change in the volume and composition of Indonesian timber production and exports.

Table VIII.1. shows production of logs and sawn timber over the period 1976-81. After rising by 22 per cent in the first three years, log production dropped sharply by 37 per cent between 1979 and 1981. Table VIII.2 shows that the decline in log production largely echoed the decline in exports, chiefly of logs, although the world recession contributed to the fall in export earnings, in terms of both volume and price. There was a further decline in 1982.

Year	logs (m ³) (000 m ³)	Sawn timber (m ³) (000m ³)
1976	20,803	635
1977	22,335	605
1978	24,743	1,513
1979	25,314	1,637
1980	25,190	1,794
1981	15,954	2,658

Table VIII.1: Timber production, 1976-1981

Source: Forestry in Indonesia, 1983.

	Logs		Sa	wn timber		Total		
Year	1,000 m ³	Mill. US\$	$1,000 \text{ m}^3$	Mill. US\$	1,000 m ³	Mill.US\$		
1976	17.877	729.28	644	52.47	18,52	781.75		
1977	19,212	900.97	594	50.30) 19,806	961.27		
1978	19,443	909.31	757	85.76	5 20,200	995.07		
1979	18,205	1,551.33	1,284	245.33	3 19,489	1,796.66		
1980	14,416	1,548.86	1,225	256.8	15,541	1,805.54		
1981	6,201	579.29	1,171	188.64	7,372	2 767.93		

Table VIII.2: Exports of timber, 1976-1981

Source: Forestry in Indonesia, 1983

8.2 Processing

The generally accepted technology in relation to the timber using industries distinguishes between "primary" processing which uses the log as the raw material (and thus includes not only saw milling, but also veneer, plywood and fibre board production) and "secondary" processing which uses an intermediate product, such as sawn timber or plywood, as raw material for the manufacture of wood products (building timber, furniture, wood carvings, etc.) and employs wood working machinery. Demand for wooden components of buildings is likely to become a major part of the market for the industry.

Processing Equipment:

There is no need for a detailed description of the various kinds of equipment used in saw milling and wood working with their relatively straightforward technology. Plywood production, however, requires a very wide range of partly quite sophisticated machinery.

<u>Saw milling</u> equipment can be classified in five main categories, viz. (band) saws, the log intake, the distribution system which transports sawn logs for further sawing, and the final transport and the sorting system.

^{1/} For a detailed description of the wood processing equipment, see UNIDO "Technical Criteria for the Selection of Wood Working Machines" UNIDO/ID/247.

<u>Wood working</u> equipment may be divided into equipment for machining and for assembly. In most cases, the minimum capacity for economic equipment production is relatively small (i.e. 100-200 wood working machines a year) if labour-intensive machining processes are employed.

The Processing Industry: The Present Situation

<u>Saw milling</u>. Following the Government decision to increase the value added of exports by coupling log export permits to the installation of wood processing units, local production of sawn timber, veneer and plywood increased considerably from 1979 on. Nominal capacity for sawn timber is about 8.1 million m³ and of plywood 3.5 million m³; working capacity is approximately 20 per cent less. Some of the saw mills in Kalimantan reach only 50 per cent use of their nominal capacity owing to outdated equipment (even though only recently installed). The enterprises also tend to report high installed capacities since this favourably influences their log export quota. Total capacity is divided among 175 enterprises with concessions and in operation, with an average daily capacity of 150 m³ (Table VIII.3).

Table VIII.3: <u>Saw mills - number, capacity, production and export 1979-1983</u> (in million m³)

		1979	1980	198	31	1982	198	33
	Number	Capacity	Capacity	Number (Capacity	Capacity	Number (Capacity
License	<u> </u>							
request	44			100	2.8			
Under co	n-							
structio	n 15			27	0.8			
In opera	-							
tion	145			202	6.3		175	8.1
Producti	on of s	awn						
timber		4.0			7.3	8.4		
Export			1.2		1.3	1.4		

Source: BKFM (quoted by FGU Kronberg Unternehmensberatung).

Besides these establishments, there is a large number of hand saw mills with a daily output of 0.5 m^3 which are not registered, and a number of partly registered small enterprises with band saws and deily capacity of $10-30\text{m}^3$. The majority of the new saw mills are installed in Kalimantan, followed by Sumatra and Sulawesi. Maluku and Irian Jaya are still of little importance.

At present, according to industry information, the investment cost in Indonesia of a 3-line saw mill is in the range of US\$ 2 million for a capacity of 70,000 m³ per annum, that is US\$28.6 per m³. This figure is relatively low and indicates that the operational quality of the machinery is low, with adverse effects on the quality of the sawn timber. There is now a trend towards improved end product quality in the Indonesia. saw mill industry, since good quality finds buyers even in a fairly stagnant export market.

<u>Plywood production</u>. According to BKPM statistics, there were in 1983 investment applications for 105 plywood factories with a total capacity of 3.6 million m^3 . In operation were 67 factories with a licensed capacity of 3.5 million m^3 and a production of 3.1 million m^3 (Table VIII.4). Capacity utilisation, according to the data in Table VIII.4, is running at 89 per cent; 81 per cent of production was exported. According to BPS statistics, there were in 1981 31 plywood factories in operation, employing 26,212 persons and having a gross value of output of Rp. 290 billion and value added of Rp. 130 million. According to the Directorate-General of Forestry, licences granted (including plants in operation) totalled 119 in May 1983. Of these, 68 were located in Kalimantan, 30 in Sumatra, 11 in Maluku, 5 in Java, \wedge in Sulawesi and 1 in Irian Java.

		1979		1981		1983		
	Number	Capacity	Number	Capacity	Number	Capacity		
License								
request	32	1.3	118	5.0	105	3.6		
Under								
construction	6	0.3	20	0.9				
In								
operation	21	0.8	34	1.6	67	3.5		
Production		0.6		1.1		3.1		
Export		0.1		0.8		2.5		

Table VIII.4: <u>Plywood factories - number, capacity, production and export</u> (in million m³)

Source: BKPM (quoted by FGU Kronberg Unternehmensberatung).

The investment costs in machinery and equipment of plywood factories range from US \$80 to US \$480 per m^3 , according to an analysis of 15 enterprises in Indonesia. The enormous range of these figures, by a factor of 6, precludes any firm conclusions. Internationally, one counts at present with investment costs of US \$200/m³ for a 3-line plant producing high quality plywood.

Statistical data on <u>wood products manufacture</u> in Indonesia are very incomplete, with wide variations in data from different sources. The figures in Table VIII.5 are based upon Part II of this study.

	Year	Wood products (except furniture)	Wooden Furniture
No. of establishments	1970	107	43
	1980	483	137
Employees (thousand)	1970	7.0	1.7
	1980	58.9	5.7
Value added (billion Rp.)	1970	1.9	0.4
-	1980	149.1	4.26
Gross output (billion Rp.)	1970	2.3	0.4
	1980	37.7	8.8

 Table VIII.5:
 Industrial establishments in wood products and wooden furniture

Source: Part II Annex Taules 11 and 12.

<u>Furniture and wood working</u> is predominantly a small-scale industry, with an estimated 4,000 establishments. At most 10 per cent of the industry is mechanised, and at most 20 firms (a majority in the Pulo Gadung Industrial Estate, Jakarta) are engaged in serial production of furniture, joinery and wood work items. The other plants are concentrated in the urban centres in Java and Sumatra. Except for a very few firms in Java, product quality is still low and would hardly be acceptable in the international market. The industry sector is represented by the Indonesian Woodworks Manufactures Association, with head office in Jakarta.

The importance of the small industry sector can also be gauged by the remarkable increase in sales of small (workshop type) wood working machinery of up to US\$ 5,000 sales value in recent years. According to information supplied by importers, imports of these machines rose from 250-400 pieces in 1975 to more than 10,000 pieces in 1982/83, before the rupish devaluation of

March 1983 (Table VIII.6). Most of the imports have been from Japan and Germany.

Product	Order of sales price in Indonesia US \$	Estimated annual sales (1982/83) (pieces per year)
Bandsaws (0 800m)	2,000-3,000	5,000
Heavy duty circular		
table saws		
(up to 150 mm cutting		
depth)	1,500-2,000	5,000
Planing machines (work-		
ing width 510 mm)	3,000-10,000	2,000-3,000
Milling machines	4,000-6,000	2,000

Table VIII.6: Market data on woodworking machinery

Source: FGU Kronberg Unternehmensberatung.

There is one <u>particle board plant</u> with 30 TPD capacity and one fibre board plant with a capacity o $3,000 \text{ m}^3$ per annum running in 1981 at 33 per cent capacity and producing 1,000 m³.

The Processing Industry: Future Prospects

Table VIII.7 presents output and export demand projection for logs, sawnwcod and plywood for the period 1982-1990. The projections of sawnwood and plywood exports take into account the growth of overseas markets and assume a slow but steady improvement in the competitive position of Indonesian exports in terms of product quality and marketing capabilities. The expansion of plywood exports is a very important element in Indonesia's industrialization strategy combining resource based and export led growth. This requires broad based supportive measures by the Government. The government plans to establish a wood processing centre at Marunda while similar projects are planned in several key ports in Java, Sumatra, Kalimantra and Sulawesi.

	1982 <u>a</u> /	1983	1984	1 98 5	1990
Production (in miliion m ³)					
Logs b/	15.9	16.6	16.8	16.4	24.0
Sawnwood b/	3.8	3.9	4.2	4.4	6.0
Plywood	2.2	2.6	3.1	3.4	5.0
Export Volume (in million m ³)					
Logs	4.0	3.5	2.0	0.5	1.5
Sawnwood	1.4	1.5	1.6	1.7	2.5
Plywood	1.2	1.4	1.7	1.8	2.8
Export Values (in \$ million)					
Logs	340	311	190	52	225
Sawnwood	226	254	312	374	815
Plywood <u>c</u> /	274	344	425	468	994
Totel	<u>840</u>	<u>908</u>	<u>927</u>	<u>894</u>	2,034
a/ Estimate.				_ <u></u>	

Table VIII.7	Export prospects for wood products, 1982-199	J
	(million m ³)	-

 \overline{b} / Includes conifers and non-conifers.

 \overline{c} / Includes veneers.

Sources: Indonesia, Policies for Growth with Jower Oil Prices, World Bank, May 12, 1983 (Report No.4279).

These projections may need to be reviewed in the light of overseas technological developments. A new fibre board process has come into operation in the United States. The new product is called medium-density fibre board (MDF).^{1/} It has high form stability, is simple in production based on wood chips as raw material and can be made humidity-resistant through the addition of chemical agents. Annual production is at present doubling every two years in the USA. In Indonesis an important variable which may influence future choice betweeen plywood and medium density fibre board will be the continuing availability of adequate supplies of the kinds of tropical hardwood needed for plywood production (e.g. Meranti). This in turn will depend on effective reafforestation.

It is not possible at this stage to assess how far the estimates of investment requirements for plywood production given above would be affected; major changes in plans for new capacity in the plywood/fibre board stage of wood processing may need to be made very soon. A careful study of the situation is urgent.

^{1/} For further details on the production of medium density fibreboard see: UNIDO ID/WG.335 on "Seminar on Wood Based Panels and Furniture Industries", Beijing, China, 23 March - 7 April 1981.

8.3 Equipment Production

The most important equipment for <u>saw milling</u>, the saws themselves, are high precision instruments which cannot be recommended for local production at this stage. Most of the log intake (other then hydraulic lifting equipment), the distribution system and the final transport and sorting system can technically be built in Indonesia. Local content can technically be of the order of 50 per cent of equipment value.

The equipment for <u>plywood</u> production which is technically capable of being produced in Indonesia represents about 30 per cent of the value of a plywood factory. Table VIII.8 lists the major items of equipment involved in plywood production. Assuming that plywood remains the preferred processing material and product, it should technically be possible to extend the local content gradually to about 60 per cent. Special reference should be made to driers, demand for which will come not only from the plywood industry but also from saw mills and other wood working plants. The investment cost of driers is of the order of US\$ 10 per m³ for larger capacities (50-100,000 m³ p.a.) of which 60 per cent can technically be built domestically. The extremely difficult control equipment, which accounts for the other 40 per cent, is not at this stage suitable for local production. An analysis of the market potential for driers would be desirable.

The castings required for <u>wood working</u> machinery should initially continue to be imported, with a view to domestic foundry production at a later stage. Of the general purpose machine tools required, 80 per cent should be technically capable of local production.

- 313 -

Table VIII.8 Equipment required for plywood production

Mugn	t	÷	t	77
Yuan	•	•	•	1

5

2	Electric chain saws
1	Log deba.king machine
4	Electric hoists
	Runways for electric hoists
2	Optical centring and loading devices for logs
2	Peeling lathes
2	Complete lines for waste utilisation
1	Conveyer for rest rolls
2	Conveyers for peeling wasters
1	Chip-forming machine for wastes
2	Hanging trucks for reel transport
	Supporting framework for reeling truck
4	Floor reel stores
80	Reeling reels
5	Pneumatically controlled clippers
	Automatic clippers
2	Belt conveyers
1	Continuous dryer with cooling chambers
2	Floor belt conveyers
2	Roller dryers with cooling chambers
1	Electrohydraulic elevator
_	Contact sanding machine with upper band
3	Automatic trimming clipping machines
3	Automatic clippers for peeled veneers
2	Clippers with symmetrical sections
4	Belt conveyers
2	Transversal jointing machines
4	Longitudinal splicing machines
3	Glue mixers
4	Cylinder gluers
6	Electrohydraulic glevators with roller table
2	Koller tables
4	Double roller tables
	Hydraulic cold pre-press for panels 2,440 x 1,525 mm
	Hydraulic cold pre-press for panels 3,050 x 1,525 mm
	Hot-plate presses for panels with 32 openings
11	Electronydraulic elevators
2	Double squaring machines
L	Intermediate device between the squaring machines
2	Koller and Dall Lables
0	Contrast conding machine with lower band
1	Vontact sanding machine with jower band
2	nuculised foller Lables Contact conding maching with 2 where bonds
L	concast samuthy matrice with 5 upper pands

Source: Field mission plant visit.

- 314 -

1

If <u>medium-density fibre board</u> (MDF) were partially to replace plywood, processing equipment requirements will be significantly different, as the following list of required equipment shows:

1. Wood manipulation

wood and sawmill waste transport
*chippers
tanks, structural equipment

2. Defibration

conveyors *magnetic separators *defibration machines *fibre silos with charging equipment fibre driers dry silos pneumatic conveyors mechanical conveyors

3. Gluing unit

measuring units *gluing machines conveyors

The items marked * are substantially different from equipment required for plywood production. Feasibility of domestic production of such equipment would require further investigation.

The castings required for <u>wood working</u> machinery could initially continue to be imported, and gradually be subcontracted to other local suppliers with a view to domestic foundry production at a later stage. Of the general purpose machine tools required, 80 per cent should be technically capable of local production.

8.4 Investment Implications

<u>Saw milling</u>. Repelita IV targets for saw milling require an addition of at least 5.6 million m^3 new capacity to the 1983 figure of 8.1 million³ for existing capacity. This is equivalent to 80 additional saw mills with 3 lines and an annual capacity of 70,000 m^3 . At US\$ 2 million for the machinery of each unit, one arrives at a total of US\$ million 160 new investment over the five year period, or US\$ 32 million a year. To this must be added replacement investment estimated at US\$ 17-28 million (7 per cent of capacity annually, i.e. 0.6-1.0 million m³) and US\$ 23-40 million for part: and components (10 per cent of installed capacity). Total annual investment required in the saw milling industry during Repelita IV, given Repelita IV output targets, comes to US\$ 72-100 million. Close monitoring will, however, be necessary to determine whether these are realistic figures.

<u>Plywood fibre board</u>. Expansion planned to 1985 (2.4 million m^3) will require investment in equipment, at US \$200/m³, of US \$480 million. From 1986 to 1988 another 1.1 million m^3 capacity is planned to be installed, representing investment cost of US \$220 million or US\$ 73 million a year. These figures may need to be revised if plywood is partially replaced by MDF.

Some of the plywood making machinery and equipment at present in use will need to be replaced by higher quality installations. These investments are cautiously estimated at US \$50 million (0.25 million m^3 at US $200/m^3$) for the three year period 1986-88 or US\$ 17 million a year. This gives the following order to magnitude for required investment:

US \$ million per year

new investment 1983-85 (US \$480 m.)	160
new investments 1986-88	73
replacements 1986-88	17
production inputs and auxiliaries	
(US $\frac{20}{m^3}$ of installed capacity)	140
spare parts (US \$10 per m ³)	70
	460

For the period after 1985, this estimate suggests an annual investment requirement by the plywood fibre board industry of around US \$300 million.

<u>Wood working</u>. Growth in the use of wood working machinery can be expected to continue its strong performance of recent years, to which improvement of electricity supply all over Indonesia is also contributing. It is assumed that average annual sales of simple machinery will double every year during Repelita IV. At the same time, demand for more versatile and complex machinery will rise. Annual sales of the machinery considered in Table VIII.6 may be estimated as follows:

US\$ million per year

Band saws 5,000 pieces p.a.	12.5
Circular table saws 5,000 pieces p.a.	10
Planing machines 3,000 pieces p.a.	19.5
Table milling machines 2,000 pieces p.a.	10
Tota	al 52

Some of these simpler machines may well be gradually replaced by more expensive ones. However, these figures suggest that the total market value of sales of all wood working machinery may well reach US\$ 100 million per year.

<u>Totals</u>. Assuming that the same percentage of technically possible local content applies to new installations and replacements, the following totals for technically possible local production in the various sub-sectors of the wood processing industry result from the above estimates:

US \$ million per year

Saw milling	36-50
Plywood/fibre board	
first stage	90
second stage	135
third stage	180
Wood working machinery	65

Totals average US \$200 million a year in the first stage, US \$240 million in the second stage and US \$290 in the third stage. Total employment generated might be some 10,000 to 12,000 persons, and the required investment in equipment producing capacity in the order of US \$150 million.

8.5 Recommendations

Any investment and domestic production decisions where amounts of this magnitude are involved clearly require careful further analysis, both with reference to production equipment and to replacement components and spare parts.

For the establishment of saw mills and plywood production plants, the GEC approach already adopted in the sugar industry and recommended for edible oil and cement production commends itself. For wood working machinery, driers, components and spare parts the desirable next step is a sub-sectoral analysis leading to assessment of the technical and economic feasibility of domestic production and of the know-how requirements and sources.

Chapter IX Cement Processing Equipment

9.1 Cement production

9.1.1 Present situation

Indonesia has by far the lowest per capita cement consumption among east Asian market economies (Table IX.1). Per capita consumption in Thailand is more than three times, in the Philippines and Malaysia more than four times and in Singapore almost ten times as high as in Indonesia.

Country	Kg. per Person		
Japan	600		
Singapore	580		
Korea	560		
Taiwan	540		
Malaysia	250		
The Philippines	220		
Thailand	200		
Indonesia	60		

Table IX.1: Per capita cement consumption in Asia

Source: Indocement Group.

Production of cement, however, increased very rapidly from 542,000 tons in 1969 to 6,844,000 tons in 1981-82. The provisional figure for production in 1982-83 stands at 7.7 million tons (Table IX.2).. The aim has been to achieve self-sufficiency but this has not yet been reached. While domestic production grew rapidly, imports have also risen substantially, from only 6,300 tons in 1979 to 506,526 tons in 1982. From time to time, temporary surpluses have been exported in small quantities.

Table IX.2:	Production of	f cement in	Indonesia	1978/79-1982/	83
		(000 tons)			
Year	1978/79	1979/80	1980/81	1981/82	1982/83 <mark>ª</mark> /
Production	3,629	4,705	5,852	6,844	7,650
Source: Quarterly Economic 1	Economic Review	w of Indones	ia, Annual	supplement 1	983, The

a/ Provisional.

The installed production capacity increased from 2.7 million tons in 1977 to 8.7 million in 1981 and 11.7 million in 1983. There are 8 companies with installed capacities varying from 500,000 tons per annum to 4.7 million tons in 6 factories. The plants are located mainly in Java and Sumatra (Tabl: IX.3). Capacity utilisation varies between 65 and 75 per cent which is comparatively low for cement industry.

No.	Company/plant	Location	Capacity (000 tons)
.	P.T. Semen Padang	Padang	1,530
2.	P.T. Semen Gresik	Gresik	1,500
3.	P.T. Semen Tonasa	Tonasa	620
4.	P.T.Semen Cibinong	Cibinong	1,200
5.	Indocement Group (6 plants)	Cieureup-cibinong	4,500
6.	P.T. Semen Nusantara	Cilacap	750
7.	P.T. Semen Baturaja	Baturaja	500
8.	P.T. Semen Andalas	Banda Aceh	1,000

Table X.3:	Plant	installed	cement	capacities	and	location	(1983)
------------	-------	-----------	--------	------------	-----	----------	-------	---

Source: Bina Program for Heavy Chemical Industry, Department of Industry.

Three types of cement are produced locally: ordinary portland cement; white cement (lower ferric-oxyde content); and oil-well cement class G, with accelators or retarders to cover a wide range of well depths and temperatures (production capacity of 150,000 tons per year, sufficient to cover demand). The most widely produced kind is portland cement which is ideal for all normal purposes. Planned capacity expansion is almost entirely for portland cement.

9.1.2 Future prospects

Cement consumption has been rising annually by 15 per cent. To meet this demand, and if possible to replace net imports by an export surplus, capacity expansion plans are ambitious: for 1985, 15.9 million tons and for 1987, 19.4 million tons per annum capacity. However, financial constraints have caused a readjustment of important construction projects, so that future market growth will probably be lower than in the recent past. Among various factors causing uncertainty about future prospects are cutbacks in government and state enterprise construction programmes; slowdown in the growth rate of cement production, shortage of public investment funds for new cement plants and uncertain potential. Allowing for these uncertainties, estimates of future capacity and productic development are presented in Table IX.4. It should be emphasised that these agures represent at best orders of magnitude. An important development is the Government's decision to change over to coal as the main source of energy for the cement industry. The industry's demand for coal is expected to be 0.3 million tons in 1984 and 5.0 million tons in 1990.

(million tons per year)							
<u> </u>	1984	1985	1986	1987	1988	1989	1990
Capacity Production	12.3	15.9	17.4	19.4	25.5	30.5	32.0

Table IX.4	: Estimated development of installed plant capacity	and
	production of cement, 1984-1990	

Source: Bina Program for Heavy Chemical Industry, Department of Industry.

9.2 Processing

Cement manufacture consists principally in mixing finely ground raw materials and additives (limestone, marl, clay, shale, slag, iron ore, bauxite, silica, sand) and in clinkering the mixture, dry or wet, in kilns (usually rotary) at temperatures of up to 1,450°C.

The clinker is ground after cooling with a small percentage of gypsum, which controls the setting time by acting as a retarder, to produce the finished product. The fineness of cement is defined in terms of its specific surface area, in cm² per gram (Blaine number) or the equivalent in other units of measurement.

Two principal processes, wet and dry, are used to make portland cement. They differ mainly in the way the raw materials are ground and mixed before being introduced into the kiln. The dry process offers various advantages, especially lower energy costs and higher plant capacities than the wet process. It has therefore almost completely replaced the traditional wet process. In the dry process, the raw materials are dried, ground and homogenized before being fed into the rotary kiln system, either as a mixture of dry powders or as a modulised material (Lepol process).

The rotary kilns for making clinker by the dry process are either long and of large diameter, as in the wet process operation, or they are relatively short and equipped with a pre-heater system, for example, a series of cyclones in which the material is suspended in the hot exhaust gases of the kiln. The latter technology has been preferred recently as it allows higher production capacities with less weight of production equipment.

The main categories of equipment of cement factories are shown in Table IX.5. The main elements of cost are construction costs and mechanical equipment, approximately one-third each of the total investment costs. The remaining third is made up mainly of erection and commissioning and electrical equipment. The quarry equipment (almost five per cent of total investment) is, strictly speaking, to be considered under mining equipment; similarly, auxiliary installations (1.5 per cent) belong to other capital goods sectors.

Total investment costs for equipment and installation (excluding construction) of a cement factory of 500,000 tons per annum (1,500 tons per day) capacity amount to about US \$100 million, for a plant of 1.5 million tons per annum capacity (4,500 tons per day) the cost is US \$155 million; in other words, there are very large economies of scale. About 30 per cent of these amounts represent cost of installation and commissioning.
Table IX.5: Main categories of cement plant equipment and share

in investment cost

Type of equipment	Share in investm	ment cost (%)
	of category	of total
Quarry equipment	$\frac{100}{100}$	4.6
Mechanical equipment	100	32.6
Raw material pre-crushing section	5.9	
Raw material storage	11.6	
Raw material grinding and drying section	12.0	
Raw mix silo equipment and transport system	3.2	
Kiln section	15.8	
Firing section	3.4	
Dust collecting section	4.9	
Clinker and gypsum store	14.7	
Cement grinding section and transport system	14.7	
Cement silo equipment	1.1	
Facking system and loading of bagged and		
bulk cement	5.7	
Grinding media	3.0	
Refractory material	2.9	
Miscellaneous: cranes, elevators, vehicle		
scales, connecting elements, etc.	1.1	
Electrical equipment	100	12.1
electrical supply and distribution equipment	66.7	
Control equipment	33.3	
Auxiliary installations	100	1.5
Laboratory	22.7	
Workshops	44.0	
Water system: treatment, recovery and		
distribution	12.1	
Factory service installations: fire		
brigade and first aid	21.2	
Spare parts	100	2.3
Erection and commissioning	100	13.4
Construction costs: buildings, silos.		
roads, etc.	100	33.5
 TOTAI.		100.0

9.3 Equipment production

1

Cement factories are highly sophisticated and technologically complex "products". The purchaser of a cement factory expects the supplier to assume all technical risks which are usually subject to severe penalty clauses in purchasing contracts. It is therefore not easy for a new supplier to match the experience and credentials of the small number of internationally known cement factory producers. At present, steel ducting, chutes, tanks and bins are fabricated locally. They represent less than 40 per cent of total investment costs. Among the major categories of equipment listed in Table IX.5, the following have the best potential for additional local production:

- Mechanical equipment: simple and more complex sheet metal products, those produced by automatic welding and conveyor and transport systems.
- Electrical equipment: switchboards, low and medium voltage switchgears, cables, control panels, some printed circuits, lighting systems, telephone installations and some electric motors.

Some quarry equipment, auxiliary installations, erection and commissioning and construction could also be supplied locally. Some spare parts are already produced by either the workshops of the cement factories or local repair work shops. The major spare parts with potential for future local production are refractory bricks (not yet produced but subject to applications for production licences) and castings of high quality (as yet rare in Indonesia).

The assumed increase of 13.9 million tons during Repelita IV (from 11.6 million tons in 1983 to 25.5 million tons in 1988) represents an average annual increase of 2.8 million tons. Three-quarters of this projected increase is to be in plants with 1.5 million tons/year capacity, the remaining quarter in smaller plants of around 0.5 million tons/year capacity. The annual investment required would be of the order of \$US 400 million.

In addition to the assumed annual investment of US \$ 400 million for new cement factories, replacement investment and spare parts will be required. Table IX.6 presents estimates of annual expenditure on equipment for new factories and spare parts for the cement industry. The estimates do not include the possible start-up in Indonesia of electric motor manufacturing on a large scale or the production of heavy equipment, such as speed reducers, heavy bearings, heavy crushers, firing systems or advanced electronic and control equipment. On a long-run basis, which would require much further technical and economic analysis, additional production of some US \$ 60 million in value (at present prices) may be achievable.

- 324 -

Table IX.6: Estimation of possible annual production value of equipment and parts for the cement industry

	Average annual production value (million US \$)
Investment ^a /	
simple sheet and structural metal works	40
major metal works and automatic welding	40
conveyors and transport systems	20
electrical distribution and telephone equipment	10
control equipment	4
refractory bricks	6
grinding balls (special casting)	4
sub-total	124
Spare Parts	
refractory bricks	4
grinding balls	4
steel and grey iron castings (for cyclone,	
mills, crushers, etc.)	8
Sub-total	16
Total	140

a/ Because of the durability of the equipment there will be hardly a replacement demand which would not be done either by the workshop of the cement plant or the original international supplies.

Much of the <u>heavy equipment</u> for cement factories (electric motors, speed reducers, etc.) is similar to corresponding equipment needed by other industries. The feasibility of domestic production should be considered with this fact in mind. However, local production of these items is unlikely to start before the latter years of the decade, i.e. in Repelita V. In any case, the high technology involved, and the requisite high reliability, demand cooperation with internationally known manufacturers. Such cooperation is also desirable to guarantee equipment performance.

<u>Refractory brick</u> production for the cement industry may be put at US \$ 10 million per year. To this should be added the potential demand of other industry branches which use such bricks. The BKPM has recently received investment applications for the production of refractory bricks. Presumably their manufacture will begin in the near future.

<u>Castings</u> have a production potential of 16,000 tons per annum. On the basis of the Indonesian price of US \$1.00 per kg, this represents an annual output worth US \$ 16 million. Several decentralised and specialised foundries could be desirable, e.g. four foundries with 4,000 tons capacity each. which would serve the cement factories in their region. The investment required is about US \$10 million (or US \$2.5 million for each foundry) and the employment generated might be 400 new jobs.

9.4 Investment implications (N.A.)

9.5 Recommendations

The technology of cement factories, which has some sophisticated and technologically complex features, makes it difficult to develop domestic production of individual components. A subsectoral analysis is needed as the basis for specific recommendations. As in the case of the sugar industry, the best strategy is likely to be to aim at the establishment of integrated plants by joint ventures between international and Indonesian companies, on the understanding that there will be a gradual increase of local production of equipment. In cooperation with the joint venture partners, policy guidelines could be drawn up for the increase in local content, including incentives for sub-contracting of part of the equipment to domestic firms and the development of production facilities for heavy machinery and equipment. Some of these items might be included in the planning of a General Machine Shop in Surabaya. For the establishment of production facilities for electrical, electronic and control equipment, close cooperation with the existing industry is obviously desirable. The foundry project or projects should be carried out with a foreign partner with the requisite knowhow.

X. Equipment for the Te.:tile Industry

Introductory Note

There has always been traditional small-scale and handicraft production of textiles in Indonesia, but the modern textile sector consisted until the 1960s only of medium-sized cotton weaving enterprises, mostly established during the inter-war years. A few large spinning mills were added in the decade 1955-65. The rapid development of the modern textile industry began with Repelita I, leading in the 1970s to the establishment, chiefly through Japanese investment, of large integrated textile plants. Between 1973 and 1983 yarn production increased almost tenfold and output of textile fabrics nearly sevenfold. Realised foreign investment in the textile and leather industry during the period 1967-1981 is estimated at US \$ 999.1 million by 60 foreign companies (about 35 per cent of total realised foreign investment), as well as US \$1,040.3 million of domestic investment (approved) for textiles. Employment in the modern textile sector was put at 229,900 persons in 1980. Side by side with the modern textile industry, there remains a large small-scale and handicraft sector for which few reliable statistics are available but which probably provides (often part-time and intermittent) employment for up to 0.5 million people.

The Indonesian textile industry faces serious adjustment problems. During the 1970's the industry expanded rapidly in response to growing domestic demand. The industry provided low quality garments and enjoyed high levels of effective production (ranging from 331 per cent for knitting and 56 per cent for spinning). The result was the emergence of a high cost textile industry which was not competitive internationally. Today the textile industry suffers from outdated equipment and overcapacity (in particular the weaving industry) owing to rapid expansion without sufficient regard to the domestic demand pattern. The main challenge for the 1980's undoubtedly lies in the encouragement of greater efficiency and improved international competitiveness.

The textile industry in Indonesia is so large and diversified that it cannot be covered in any depth in the framework of the present study. An in-depth study would need to assess market prospects at home and abroad for each of the four main sub-sectors - spinning, weaving/knitting, finishing (dyeing and printing) and garments production. It would need to examine the relevance to Indonesia of the rapid changes in modern textile technology which are going on in the world and which must have profound effects on appropriate equipment for textile plants in the next decade and beyond. Finally, it needs to concern itself with the present condition and future propects of the small-scale and handicrafts sector and its equipment requirements. None of this has been possible in the short time available for this study.

The following analysis, therefore, is even more tentative than that in the other industry studies of this report and should be read as such. It focuses primarily on two sub-sectors of the modern textile industry, yarn and fabric production, and leaves aside both the finishing industry (which may be the sector most in need of modernization) and the small-scale and handicrafts sector.

10.1. Textile Production

10.1.1 The Present Situation

Textile industry statistics have improved in recent years, but still have many deficiencies. Table X.1 presents statistics of textile production during Repelita II and III. The industry is heavily concentrated in Java, only 8 per cent of textile production being located on the other islands. Jakarta alone accounts for 15 per cent.

Year	Fabric (mill. m)	Weaving yarn (000 bales)	Synthetic fibres (000 tons)
1973	0.927	316	
1975	1.017	445	8.8
1977	1.333	678	61.2
19 79	1.920	998	73.0
1981	2.094	1,233	112.0
1982 <u>a</u> /	1.709	1,370	-

Table X.1: Production of cloth, weaving yarn and fibres in Indonesia

Source: Department of Industry.

a/ Provisional

There are approximately 70 <u>spinning</u> enterprises with an installed (apacity of approximately 200,000 tons. The number of spindles installed was 482,000

in 1968 and had risen to over 2 million by 1981. The Repelita III target for 1983/84 was 2.2 million spindles.

<u>Synthetic fibre</u> production began during the 1970s. Indonesia now produces some polyester staple fibre, nylon filament, polyester filament and texturised filament. Nylon staple fibre, rayon filament, acrylic and others are not yet produced. Rising demand for synthetic fibres has led to the establishment of several new factories in recent years. As of 1980 there were eight synthetic fibre plants in operation, six in West Java and two in Central Java. The number of texturising plants (fine weaving yarn made by twisting and thermosetting polyester and nylon filaments) rose from 5 in 1970 to 45 in 1980. Present production capacity for synthetic fibres is as follows:

Tons/day

Nylon filament	33
Polyester filament	180
Polyester fibre	136
Rayon (under construction)	45

<u>Weaving</u> is by far the largest sub-sector of modern textile yarn and fabric production. In terms of technology, the weaving sub-sector falls into three categories:

- (i) About 90 large weaving enterprises with 19,200 automatic looms, i.e.
 an average of 210 looms per enterprise;
- (ii) Some 1,500 smaller enterprises using some 75,000 power looms, i.e. an average of 50 per enterprise;
- (iii) About 5,000 enterprises, mainly cottage industry, which produce textile fabrics using predominantly hand looms.

In <u>knitting</u>, 52 large enterprises are engaged, producing in considerable part for the export market.

In <u>garment</u> manufacturing, there are some 65 large enterprises (150 sewing machines or more), some 200 medium-sized enterprises and an unknown number of small enterprises.

Table X.2 shows census data for employment in the textile industry in 1980. Census data (which have many deficiencies) indicate that between 1970 and 1980 total employment in the textile industry grew by 87,400 persons, i.e. by only 19 per cent, or at an annual rate of 1.75 per cent. This was well below the rate of growth of Indonesia's labour force, despite the very rapid growth of output. The main explanation is the displacement of labour in the small-scale and handicrafts sector.

	Unskilled	Skilled	Total
		- Number -	
Spinning	86,118	343	86,461
Weaving	1C8,323	167	108,490
Garment making	65,678	82	65,760
TOTAL	260,119	592	260,711

Table X.2. Employment in textile industry (spinning, weaving, garment) 1980

Source: Bureau of Statistics

Virtually all the raw materials and many other production inputs into the textile industry are still imported. Cotton imports (Table X.3) rose to nearly 120,000 tons by 1980. Domestic production of raw cotton amounts to only 6,000 tons a year. While there are plans to expand cotton production in the near future, Indonesia will continue to depend on imports for most of its raw cotton requirements. Rayon and synthetic fibres are also still predominantly imported. Rayor imports rose from an average of 31,000 tons per annum in 1978/79 to 40,000 tons in 1980/81. Thanks to increased local production, imports of synthetic fibres remained relatively stable at about 25,000 tons a year.

Table	X.3:	Cotton	imports	, 1975-1980
			· · · · · · · · · · · · · · · · · · ·	

Year	Volume	Value
	'000 tons	US \$ Mill.
1975	89.4	103.2
1976	64.1	84.4
1977	65.7	101.2
1978	90.9	118.9
1979	150.5	130.0
1980	116.9	182.5

Source: Bureau of Statistics.

Considerable efforts have been made in the past decade to develop an export trade in textiles, chiefly garments but also some fabrics. In 1979,

textile exports for the first time exceeded textile imports in value (Table X.4). The 1979-80 export boom was not sustained, but there are hopes that, under the stimulus of the March 1983 devaluation of the rupiah, textile exports will resume an upward trend. Under the Multi Fibre Agreement, Indonesia has been given a quota of US\$ 140 million annually, a figure which has yet to be reached.

Table X.4:	Imports and	exports of	textile	fabric and	garments,	1975-1980.

Total Import		Tota	l Export	
Year	Volume mill m	Value mill US\$	Volume mill m	Value mill US \$
1975	157.3	52.7	n.a	n.a
1976	103.4	65.9	8.3	5.5
1977	117.4	57.1	8.3	5.7
1978	130.0	66.5	26.4	18.3
1979	203.7	76.2	68.1	99.3
1980	247.8	129.0	62.6	124.8

Source: Department of Industry

10.1.2 Future Prospects

Tables X.5 to X.7 show Repelita IV targets for production, export and apparent consumption of yarn, fabric and garments during 1984-88. The planned average growth rate for production of yarn is 3.4 per cent per annum, for fabric 3.8 per cent and for garments 12.4 per cent. Synthetic fibre and cotton requirements are shown in Table X.8, with a growth rate of 3.6 per cent. Almost one-half of garments production will, it is hoped, be exported. Projected exports of yarn and fabric are quite small.

Table X.5: <u>Projected production, imports, exports and apparent consumption</u> of yarn, 1984-1988 (000 bales)

Үеаг	Production	Exports	Apparent Consumption
1984	1,845	3	1,842
1985	1,909	2	1,907
1986	1,966	1	1,965
1987	2,038	2	2,036
1988	2,109	3	2,107

Source: Directorate General, Multifarious Industries.

Year	Production	Exports	Apparent Consumption
1984	2,306	36	2,279
1985	2,404	64	2,340
1986	2,470	70	2,400
1987	2,556	76	2,480
1988	2,670	120	2,550

Table X.6: Projected production, imports, exports and apparent consumption of fabric, 1984-1988 (million m)

Source: Directorate General, Multifarious Industries

2

Table X.7: Projected production, imports, exports and apparent consumption of garments, 1984-1988 (million pieces)

Year	Production	Exports	Apparent Consumption
1984	170	47	124
1985	185	56	128
1986	209	74	134
1987	211	71	140
1988	269	124	145

Source: Directorate General, Multifarious Industries.

Table X.8: Projected requirements of rayon, polyester and cotton, 1984-1988 (000 tons)

Year	Rayon	Polyester	Cotton	
1984	66	104	217	
1985	69	109	223	
1986	71	112	230	
1987	73	116	238	
1988	75	119	248	

Source: Directorate General of Multifarious Industries; for cotton: Directorate General of Estates.

10.2 Processing (n.a.)

10.3 Equipment production in Indonesia

10.3.1 The present situation

There is some production of equipment, spare parts and components for the

textile industry, primarily for small and medium scale enterprises. Simple looms are produced domestically, also some weaving machines. But their quality is such that little if any of it can be used in the modern sector. Textile machinery for the modern sector is imported, mainly from Japan, but also from some European countries and from the People's Republic of China.

There is some production of castings in Ceper and Yogyakarta; no data are available on output. While there is also some production in Indonesia of spare parts and components, its magnitude is difficult to gauge because much of it is sold under foreign brand names, since imported products find a more ready market. Domestic products certainly have a substantial price advantage. Indonesia weaving shafts, for example, sell for approximately US \$6-10 as compared with US \$10 for Chinese, US \$15 for Japanese and US \$20 for European products. The same applies to shuttles; domestic production sells for US \$4 a piece (plastic), while the same material from the Province of Taiwan sells for US \$5 and hard wooden shuttles from Japan cost US \$3-6. Cutting knives for weaving machines are produced in Indonesia by cottage industries, stamped out of Swedish steel and sharpened with a sharpening and polishing machine. They sell for US \$5 a piece, but their quality is not comparable to those imported from Japan (up to US \$14) or Europe (up to US \$20).

10.3.2 Future prospects

The rate of technological progress in textile machinery, especially the development of shuttleless weaving and more generally automated production for integrated plants, is such that the technological gap between highly industrialised and developing countries, which narrowed during the 1950s and 1960s, is again widening. The most modern equipment is so costly and employs so little labour that is is, <u>prima facie</u>, inappropriate for countries with Indonesia's factor proportions; yet output from these modern plants may well be price as weel as qualitative competitive with labour-intensive production from low-wage countries. The problem for industrialising developing countries, such as Indonesia, is to find the best strategy for textile equipment production in these circumstances.

One option is to focus specifically on the equipment needs of the small-scale and handicrafts sector which cannot be allowed to disappear

because the livelihood of 2-3 million people depends on it and whose economic survival could be helped by mass production of good-quality cheap equipment. A second, not mutually exclusive option, is to ignore the most advanced technology as being beyond Indonesia's reach at this stage and secure equipment for the weaving industry by importing second-hand power looms from countries which are discarding them in favour of more advanced equipment. From a strictly economic point of view, such redeployment may well be the best course for the short or medium run, but it makes little appeal to planners who seek to raise the country's industrial and technological capacity in the longer run. A third option is to follow in the footsteps of the previous generation of industrialising countries, such as Brazil, India or Romania, by embarking in gradual stages on domestic production of equipment for the modern textile industry. Owing to the technological complexity of most such equipment, and the need to achieve adequate quality if the user industry is to be competitive, particularly in export markets, domestic production will require technological and possibly financial cooperation with overseas machinery producers. There is an obvious case for beginning with a few machines, starting with assembly and gradually increasing the local content.

In Indonesia, textile machinery production might well begin with assembly of cotton <u>spinning</u> machines including draw frames and (for the small-scale sector) hank winding machines (used to wind the yarn in the form required for dyeing). Assembly and increasingly local production of automatic conventional shuttle looms, under licencing agreements, might follow. Domestic production of other machines should be deferred to a later date when technological experience gained and development of the domestic machinery market are more likely to permit economic production.

Scope for local assembly and increasingly local production may be put at say 285 machines (US \$74,000 each) or US \$21 million per annum for ring spinning machines, and 200 machines (US \$10,000 each) or US \$2 million per annum for hank winding machines. Output of draw frames may be of the order of US \$3 million a year. This gives a total of US \$26 million for spinning machinery. The investment required in new capacity for assembly and gradual production is in the order of US \$15-20 million. Employment creation might be put at 1,000 new jobs.

In view of what was said above about the uncertainties surrounding the

- 333 -

future of weaving industry development, it would be inappropriate to make even the most tentative estimates of potential domestic production of weaving machinery. A detailed sub-sectoral analysis is needed.

10.4 Investment Implications (n.a.)

10.5 Recommendations

There is a <u>prima facie</u> case for the gradual development of local production of textile machinery in Indonesia, but any considered recommendations presuppose more thorough study of a range of complex problems than has been possible for this study.

Of the wide range of machinery required by the modern sector of the industry, ring spinning and hank winding machines probably lend themselves best to domestic manufacture, beginning with assembly and gradually increasing local content. Local production of draw frames may also be technically feasible. Any such development should enlist the knowhow and perhaps financial cooperation of established overseas machinery producers.

On all other aspects of the development of local production of textile machinery, especially for the weaving sub-sector of the modern textile industry and for the small-scale and handicrafts sector, detailed sub-sectoral studies are desirable. Chapter XI. Conclusions and Recommendations

11.1 Aggregate estimates of technically feasible domestic production

The preceeding chapters describe in broad terms the investment, output and employment implications of local production of processing equipment which appears technically feasible. The estimates made on various assumptions yield a total potential, in this sense, as follows (Table XI.1):

- (i) Total annual investment during Repelita IV in equipment for the seven processing industries excluding textiles approximately US\$
 1,086 million; of this
- (ii) annual technically feasible local production of processing equipment approximately US \$ 510-600 million;
- (iii) investment required in additional capacity for processing equipment production US \$ 380-410 million;
- (iv) employment generation in equipment production: 21,000-24,000 jobs.

These are very tentative estimates, subject to many uncertainties which require clarification before any firm judgements can be made. One of the most important facts to be established is the volume of effective excess or idle capacity in established processing and equipment producing industries. There are strong indications that a significant amount of equipment could be produced by increasing capacity utilisation through improved information flow between potential purchasers and suppliers and by strengthening the engineering and production management capabilities of domestic equipment producers. Such additional production would require only marginal additional investment.

Table XI.1 also indicates the wide differences in the magnitude of potential capital goods demand among the various sectors. The requirements of estate crop processing (cocoa, coffee, tea) and probably also rubber processing (where capacity utilisation, replacement and new investment demand figures could not be established) are very much smaller than those of the other sectors. By far the largest potential is represented by the wood processing sector. If massive employment creation were to be promoted by an equipment production programme, this sector, which could generate employment

5

Equipment Demand Sector	Annual demand for equipment by demand sector (US \$ million) 1984-1989	Technically feasible annual domestic equip- ment production (US \$ million)	Investment in equipment production capacity (US \$ million	Employment generation (thousand) persons)
Coconut and palm oil	103 a /	90	60	4.000
Rubber	-	-	-	-
Sugar	110	78	50	3,000
Cocoa, coffee, tea	7	5.6	3	250
Wood processing	450	200 (Stage I)	150	10,000
		240 (Stage II)	165	11,000
		290 (Stage III)	180	12,000
Cement		-		-
(new investments)	400 <u>b</u> /	124	100 3,	000-4,000
(spare parts)	16	16	10	400

Table XI.1:	Tentarive estimate	of	investment	in	equipment	production

and employment generation

a/ Of which 90 percent for palm oil extraction

b/ On a long term basis there is an additional domestic production potential of US \$30 million for heavy machinery.

in the order of 10-12,000 persons, would deserve priority. At the same time, enormous investment, technology transfer and manpower training would be needed to achieve the desired results.

In terms of employment creation potential through equipment production, wood processing is followed by edible oil (4,000), sugar (3,000), cement (2,000) and textiles (1,000). These four sectors together have about the same potential for employment generation as the wood processing sector. If Indonesia succeeded in mastering the highly complex technology for assembly and gradual production of textile machinery, employment generation in this sector might be higher than indicated. But it should once more be underlined that this task will require enormous efforts. In terms of employment, as well as overall economic growth and welfare, the net benefits would be negative if high cost and poor quality equipment imposed additional handicaps on the processing equipment using industries.

11.2 Recommendations

Table XI.2 presents a list of selected items of equipment or equipment production facilities which are recommended for further consideration for local manufacture. The list should be regarded as one of "most promising candidates", in the sense that their technical feasibility seems more assured than that of other machinery and equipment required by these industries.

While the equipment requirements of each demand sector have their own peculiarities and require specific approaches to the development of the corresponding engineering industries, there are some measures which are of a general character and more or less common to all demand sectors. The last column of Table XI.2 summarises recommendations for follow-up action which would be necessary if development of production facilities for the equipment were considered. Such follow-up action falls into six major areas:

1. <u>Strengthening the existing equipment producers or industries</u> with potential for the production of equipment. The field mission identified deficiencies mainly in production management (planning, preparation, execution of works and control), engineering and design, quality control, marketing and manpower capabilities. Such measures are especially recommended for producers of equipment for the edible oil extraction, cocoa, coffee, tea and wood processing industries (parts and components).

2. <u>Promotion and implementation of the "General Engineering Contractor</u> (GEC) approach". The processing lants for sugar, cement, edible oil refining, saw milling, plywood and fibre board manufacture are generally commissioned on a turnkey basis. The general contractor is an engineering company which normally sub-contracts part of the equipment to be installed and, if it has no production facilities of its own, all of it. Indonesia has gained valuable experience in the sugar industry where in the past a foreign general contractor has been required to co-operate in equipment production with an Indonesian firm as affiliate. The experience gained now enables the Indonesian enterprise to switch roles with the international partner and become the main contractor.

- 337 -

Table XI.2: Summary of

Demand sector	Equipment recommended for production
coconut and palm oil	oil extraction: hammer mills, screw presses
processing	oil refining: equipment as being determined through "GEC approach"
rubber	
sugar	extension of local content from 60 to 70 per cent of value of equipment
cocoa, coffee, tea	3 types of machinery for cocoa 6 types of machinery for coffee 10 types of machinery for tea
wood processing	dryers, parts of saw mill installation (up to 50 per cent local content) gradual increase of local content for plywood and fibre board equipment (from 30 per cent, over 45 per cent to 60 per cent) type of equipment as being determined through "GEC approach" woodworking machinery: band saws, circular saws, planing machines, milling machines
cement	spare parts; castings, especially gringing balls equipment: type of equipment as being determined through "GEC approach"
textiles	ring spinning and hank winding machines, draw frames, possibly later: dyeing equipment, measuring, inspecting, sizing and rolling machines

GEC = General Engineering Contractor (see Chapter 4.5).

recommendations

Special measures recommended	Othe	r recommendations for follow-up
	acti	on
oil refining: "GEC approach" is recommended	1) 2)	oil extraction: strengthening of existing industries through production management, engineering and design support and manpower training programmes oil refining: special technical assistance to "GEC approach"
"GEC approach" recommended	1)	analysis of existing enterprises to determine future equipment and spare part demand feasibility study on interpretiets
	.,	rubber product manufacturing and equipment production for powdered
	3)	preliminary study of potential for powdered rubber processes
continuation of "GEC approach" determination of additional equipment for local production	spec	ial technical assistance to "GEC approach"
should emanate from this approach)	1)	sub-sectoral analysis of equipment producers, determination of economic visbility and manpower training and technology requirements of additional equipment production
	2)	same as No. 1 oil extraction
"GEC approach" recommended for saw milling, plywood and fibre board equipment	1)	sub-sectoral analyses leading to the determination of feasibility of production of woodworking machinery, dryers, spare parts and components
	2)	special technical assistance to the "GEC approach"
	3)	analysis on improvement of the ratio of cut tree utilisation vs. waste wood, including build-up of additional small scale wood industries
"GEC approach" recommended	1)	special technical assistance to the "GEC approach"
	2)	same as no. 1 of cccoa, coffee, tea.
	1).	establishment of economic viability and industrial cooperation promotion for ring
	2)	spinning and hank winding machines sectoral analysis to determine techno-economic feasibility of
		production of other textile machinery and equipment

1 ***

This GEC approach to the establishment of processing plants should be extended to the other industries mentioned above. UNIDO recommends a technical assistance programme for this purpose. A major activity of the programme, in close co-operation with the Ministry of Industry and the relevant industry associations, would be to prepare the domestic industry to participate in tenders and to determine technical and economic feasibility of domestic production and the degree of achievable local content.

3. Feasibility studies, sub-sectoral analyses and assistance in industrial planning to determine the economic, as well as technical, feasibility of domestic equipment production in the areas tentatively recommended. Feasibility studies for specific products are recommended for intermediate rubber product manufacturing and domestic equipment production for powdered rubber, and for ring spinning and hank winding machines. Sub-sectoral analyses which aim in the first instance at identifying selected products suitable for feasibility studies are recommended for the machinery and equipment required by the cocoa, coffee and tea, textiles and wood-working industries and for driers and spare parts for wood processing. Assistance in the preparation of a sectoral $plan^{1/2}$ for capital goods industries is recommended with a view to elaborating a supply-demand matrix which would identify products or families of products for domestic manufacturing.

4. <u>Promotion of industrial co-operation</u>. The level of technology involved in the production of equipment indicated for domestic production requires in many cases co-operation with a foreign know-how partner. In some cases, a joint venture approach will be more appropriate than other forms of enterprise. UNIDO recommends a specific programme to undertake the promotion of industrial technology transfer through know-how agreements and of joint ventures with appropriate foreign partners.

5. <u>Training of manpower</u>. While there has been a significant improvement in the pool of relatively skilled manpower in Indonesian manufacturing industry in the past twenty years the demands that would be made by an extensive programme of capital goods production would be high, large and

- 339 -

^{1/} For further details of UNIDO's planning methodology for capital goods industry see: <u>Manual for Planning the Development of Capital Goods</u> Industries, UNIDO/I0.548, 21 June 1983.

novel. Any measure for the development of such industries and for technical assistance to management should be paralleled by ambitious programmes for manpower training, whether in vocational training institutions or through incentives given to managements in existing firms.

6. <u>Regional complementation arrangements within ASEAN</u>. Several of the industries considered in this chapter, especially rubber, timber, sugar, palm and coconut oil processing and textiles are important in other ASEAN countries as well as in Indonesia, and it is very likely that plans to develop domestic equipment production industries are going on simultaneously in several of these countries. For example Malaysia is already the World's largest exporters of rubber and palm oil processing machinery.¹/ There is an obvious case for consideration, within existing ASEAN complementation arrangements, of the possibility of co-operation among industries of two or more countries so that local equipment production can reap the economies of scale to be obtained from production for a wider regional market.

The six priority areas for follow-up action outlined above may lend themselves to being considered for UNIDO technical assistance.

--- 0 ---

^{1/} UNIDO: Capital goods industry in Southeast and East Asia by Associate Professor Chee Peng Lim, University of Malaysia, Kuala Lumpur, October 1983 (draft).

