

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION
Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria

Tel: (+43-1) 26026-0 · www.unido.org · unido@unido.org

OCCASION

This publication has been made available to the public on the occasion of the 50
th

 anniversary of the

United Nations Industrial Development Organisation.

DISCLAIMER

This document has been produced without formal United Nations editing. The designations

employed and the presentation of the material in this document do not imply the expression of any

opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development

Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its

authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or

degree of development. Designations such as “developed”, “industrialized” and “developing” are

intended for statistical convenience and do not necessarily express a judgment about the stage

reached by a particular country or area in the development process. Mention of firm names or

commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes

without additional permission from UNIDO. However, those who make use of quoting and

referencing this publication are requested to follow the Fair Use Policy of giving due credit to

UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

mailto:publications@unido.org
http://www.unido.org/

UNIItu naiiûnS
INDUSTRIAL DEVELOPMENT ORGANIZATION

Distr.
LIMITED
UNIDO/IS.383
27 April 1983
ENGLISH

PROBLEMS OF SOFTWARE DEVELOPMENT
IN DEVELOPING COUNTRIES*J

Prepared by the UNIDO secretariat

f.O 'J

* This document has been reproduced without formal editing.

V.83-54942

- li -

ABBREVIATIONS

CPU central processing unit

EEC European Economic Community

EPC European Patene Convention

EPO European Patent Office

IBM International Business Machines Corporation

NIC newly industrializing country

p.a. per annum

ROM read-only memory

T + M time and materials

WIPO World Intellectual Property Organization

A

- Ill -

CONTENTS

Page

PREFACE iii

INTRODUCTION 1

I. HARDWARE AND SOFTWARE - BASIC CONCEPTS 2 - 5

II. THE SOFTWARE SECTOR 5 - 9

III. TRENDS IN MARKET STRUCTURE 9 - 1 4

Software Packages 12 - 14

IV. A REVIEW OF THE EXPERIENCE OF SOFTWARE PRODUCTION 14 - 16

V. PROTECTION OF SOFTWARE 16 - 20

Patent Law 16 - 17

Copyright Law 1 7 - 2 0

VI. POTENTIALITIES FOR SOFTWARE PRODUCTION
IN DEVELOPING COUNTRIES 20 - 25

VII. CONSIDERATIONS IN THE PRODUCTION OF SOFTWARE
IN DEVELOPING COUNTRIES 25 - 29

VIIi. PRODUCTION AND PROTECTION OF SOFTWARE
IN DEVELOPING COUNTRIES 29 - 30

ANNEXES

I • SOFTWARE CONTRACTS 31 - 39

II. LIST OF DOCUMENTS, PREPARED BY UNIDO,
UTILIZED FOR THIS PAPER 40

IV -

P 'eface

This paper brings together thost observations and findings on
software development which are of relevance to developing countries and
which formed a part of other documents prepared for UNIDO on tha larger
issue of computer technology.

The documents from which material has been taken are listed in
annex II.

INTRODUCTION

i

' I

The use of computers, whether as general purpose uif ermat ion
processing systems or as micro components in specific proiuct and systems
applications, is growing at a tremendous rate in both developed and developing
countries. Likewise, the capacity to produce computer, .--jftware is also
growing - by about 18 per cent annually on a global sc-ue - but this is
not sufficient to meet the growing demand since .ew applications for software
are developing at more than double this race.

While the developing countries at prr ;ent do net constitute large
markets in themselves, some of them like Argertina, Brazil, India and ilexico
are already included in the top 40 imnort markets.

In considering the benefits of applying computer technology
in developing countries, it is recommenced ihat the developing countries
do not attempt to reproduce the path alr< ad) trodden by the developed countries
in this field for a number of reasons. ?hi>; is because the patchwork-like
pattern of existing software is far from optimal, given the current (and
expected future) state(s) of application requirements and hardware. Further­
more, developing countries require soft- ar.d hardware adapted to their
specific applications and purposes. Developing countries ought to place
particular emphasis on developing software that will minimize the need
to acquire expensive hardware, which is subject to constant technological
change and variation.

It should be noted also that in some instances the revenue generated
by software products can exceed the revenues generated by associated hardware
products.

The sheer size of the market, coupled with its rapid expansion and
impact on productivity, employment and industrial "revolutions", make the
issue of promoting software self-reliance of significant interest for
developing countries today.

]_/ B.O. Suprowin, "The World Top 90 Computer Import Markets", Datamation,
January 1981.

2

I- HARDWARE AND SOFTWARE - BASIC CONCEPTS

A computer constitutes a physical framework to manipulate and present
information. Information is represented by strings of Os and Is, which
can be received, stored, processed and communicated at the speed of hundreds
of thousands or millions of basic operations per second. A computer can also
reach simple decisions, on the basis of results obtained earlier, to modify
the way data is processed (a feat which essentially distinguishes it from
simple electronic calculators).

The central processing unit (CPU) performs the basic arithmetic
functions and supervises the entire system operations. In a microcomputer
the central processing unit is a microprocessor: a single integrated circuit
on a chip of silicon that is about a quarter of an inch on a side. Other
silicon chips constitute the computer's primary memory, where instructions
as well as data are stored. Other chips govern the input and output of
data and carry out control operations. The chips are mounted on a plastic
circuit board: a printed pattern of conductors interconnects the chips and
supplies them with power.

Data can be entered into the computer by means of a keyboard or
transferred into it from secondary storage on magnetic tapes or disks.
The computer's output is displayed on a screen called a monitor. The
output can also be printed on paper by a separate printer unit. The device
called a modem (for modulator-demodulator) can be attached to convert the
computer's digital signal', into signa’s for transmissions over telephone
1 ines.

The electronic elements and the various peripheral devices constitute
the computer's hardware. The hardware can do nothing by itself; it requires
the set of programmes, collectively called software.

Definitions of software differ considerably. This reflects the great
variety of functions software is supposed to fulfill. But what its common
purpose is and what distinguishes it from hardware could be defined as
follows:

3

"... programmes that modify computer hardware and extend its function
beyond the general purpose digital computer. Software includes, but is
not limited to control programmes, executive supervisors, teleprocessing
and communications monitors, application programmes, programming aides,
languages, etc. Software could be delivered as a product, with or without
large- or small-scale hardware, as a service through a time-sharing network,
as one of the value-added components in a facilities management arrangement
etc. I am defining software in the broadest sense possible, and I do

2 /so because the current market place requires it." —

In the present paper other definitions will be used as follows 3/

A computer programme is a complete set of instructions to manipulate
data during the operation of a processor.

Data is usually defined as information that relates to the outside
world. (Data represents information.)

A data base is an accumulation of data that shares one or more common
properties (for example, employee records of corporations or extensive
compilations of publications and abstracts available for computer access
through the world).

A programme is written either in source code or in what is called
high level language instruction.

The central processor unit recognizes only a limited repertory of
instructions, each of which must be presented as a pattern of binary digits.

It is possible to write a programme in this machine language - but the
process is tedious and likely to result in many errors.

21 Larry Welke, "The Origins of Software", Datamation, December 1980, p.12/.

3/ The terminology used by Tipton V. Jennings in his paper "Protection of
computer software", October 7, 1981, ana quoted in "Licensing computer
roftware", ID/WG.383/3, p.2.

4

The next higher level of language is an assembler in which symbols
and words that are more easily remembered replace the patterns of binary
digits. It recognizes each mnemonic instruction and translates it into the
corresponding binary pattern. In some assembly languages, an entire sequence
of instructions can be defined and called up by name. A programme
written in assembler, however, musr still specify individually each operation
to be carried out and the programmer has to keep track of where in the
memory each instruction and item of data is stored.

A high-level language relieves the programmer of having to memorize
the instruction set and take into account the hardware configuration. Instead
of instructing the processor where in primary memory to find the values to
be added, the programmer specifies only the operation, e.g. A + B.
The programme, having kept a record of the memory location, of the A and
B variables, then generates a sequence of instructions in machine language.

Programmers generally write their programmes in high level languages.
Examples of such languages are FORTRAN, COBOL, BASIC and PASCAL. Object
Code is the machine-readable counterpart of a source code programme.
It contains the strings of ones and zeros meaningful to a computer's
electronic circuit and is the resulc of a compiler or interpreter programme
which reads and processes source language instructions.

A flow chart is a computer diagram illustrating the logical progression
of the steps and processes performed by a computer executing a programme.

Another item worth defining is the so-called computer firmware which
has attributes of both hardware and software. Firmware is a sequence
of computer control instructions (like software) which are built into some
type of hardware device, e.g. a read-only-memory (ROM), which means its
contents usually cannot be changed.

Computer software exists in many different forms of often significantly
different attributes. It can be punched into a deck of computer cards, printed
on paper, displayed on a tube (cathode ray tube), written as selected
polarities on magnetic materials or transmitted as electrical Impulses over

5

telephone lines.

Although the hardware of a computer ultimately determines its capacity
for storing and processing data, the user seldom has occasion to deal
with the hardware directly. A hierarchy of programmes, which together
constitute the software of the computer, mediates between the user and
the hardware.

The part of the software that is most closely associated with the hardware
is the operating system that controls the computer's operations and
manages the flow of data. The operating system mediates as well between
the machine and the human operator as between the machine and an application
programme that enables the computer to perform a specific task: calculating
a payroll or editing a letter. Application programmes are ordinarily stored
in secondary-memory media and are read into the primaiy memory media as they
are needed for a particular application.

Application programmes are the ones that ultimately determine how effective
a computer is in meeting human needs.

II. THE SOFTWARE SECTOR

The spread of applications for mainframe and microcomputers depends
critically on the capacities available to develop, operate and maintain
software, particularly applications software. In talking about micro-
electronics-related innovations and industrial restructuring, it must be
remembered that there is an overall shortage of programming capability in
relation to the rapidly growing population of installed computers
(mainfra:..e, mini and micro) and that this particularly applies for
programmers capable of devising machine codes for microsystems. This
shortage of programmes needed to run computers and microelectronic programmable
devices, the so-called software bottleneck, is in fact becoming an increasingly
important constraint for attempts to expand the reach of microelectronic
applications beyond their traditional confines. Thus, an analysis of the soft­
ware market might permit a better understanding of why the microchip has
been so "unexpectedly slow" to become that all-pervasive force as predicted

6

by the most renowned forecasts for more than 10 years.—

In order to understand today's problems of software engineering, an
analysis of the structure of the software industry is needed.

A first question would concern the origins of the software industry
and how the industry relates to other parts of the information processing
sector.

There are three people involved in information processing:

- The hardware manufacturer/provider;
- The software manufacturer/provider;

The end-user.

Originally, these three different functions were united in one and the
same person, or at least were part of the same team. The person with a
computing problem (the end-user) built a machine (thereby becoming a hard­
ware provider), thenmodified it to accomplish a specific task (thus creating
software).

With the emergence of the computer industry, the end-user (the person
with the computing problem) was separated out of the equation. Software
was provided either by the hardware manufacturer or by an in-house programming
team which the end-user hired specifically for this purpose.

Viewed from the end-user’s perspective, this type of arrangement had
three basic shortcomings

First, neither of the two groups of software producers were sufficiently
acquainted and in tune with the end-user's needs so that needs and software
hardly ever intermeshed completely. In other words, it took a long time
and it cost a lot to bring software sufficiently close to end-users' needs

A/ "Restructuring world industry in a period of crisis - the role of
innovations", UNIDO/IS. 2i .

7

and it was never known whether the system really would work let alone whether
it would be able to incorporate necessary adaptations over time.

Second, because of the nigh salaries of programmers, the cost of soft­
ware development and engineering rapidly increased to very high levels.
That is why both end-users and hardware manufacturers had some common interest
in reducing the role of highly paid programmers and in replacing them as
far as possible by other arrangements.

Third, it did not take end-users too long to realize that software
received from hardware producers always contained significant doses of built-
in hardware dependencies, i.e. the need to rely on maintenance and repair
services and spare parts, but also to remain loyal to the original system
when expanding computing capacity.

Hardware producers also increasingly had reason to feel uneasy with
this arrangement. They used to give away software as part of the price
paid for the hardware system, but came under increasing pressure to cover
the tremendous costs of software development. The famous "unbundling
decision" of IBM in June 1969 was the logical outcome of this concern.
Some would argue that by explicitly separating software and hardware
costs, this strategic move of IBM - probably in contradiction to the
motivations prevailing then - did contribute considerably to the emergence
of an independent software sector.

Obviously this is only part of the story. In order to understand the
causes of the present software crisis which,as indicated above, is one of
the key constraints to the application of microelectronics technology to
industrial products and processes, further inquiry into the history of the
software market-place is needed. Various events could be cited:

In 1956, IBM started its independent data centre due to a judgement
by the US Government that required IBM to treat its Service Bureau
Division as a separate, but still wholly owned t'.jsi diary rather
than as an activity adjunct to its computer sales.

8

In 1959, largely due to the military and space agencies' programming
needs, firms working under independent contracts emerged. Their
position was strengthened when IBM had difficulties in bringing
its third generation computer equipment to the market-place in
1963-1964.

A further impetus to the development of independent software firms
was the rise of the time-sharing industry in 1966-1967.

Finally, the attempts at taking end-user programmes and modifying
them for attempted multi-installation use, a practice that began
ir. 1967-1968, is notable if only for its failure rate.

It is not easy to uncover the logic underlying these events. As
L. Welke states: "... the software product market place occurred not because
of a grand design, a technological breakthrough, or the genius of any one
individual or company. It developed bit by bit and piece by piece, with
form chosen only sometimes by technology, with standards dictated by
economic necessity, with risk taken out of ignorance, and with the rewards
sometimes going to the perverse as well as to those who just persevered."—^

Nevertheless, it seems possible to identify some common threads running
through each of these events. Focus will be directed on three of them:

First, the hardware manufacturers' concern to reduce the cost of soft­
ware development and maintenance not only caused changes in pricing policy,
but also the development of new modes of software production and engineering
(the so-called "software packages") and new forms of subcontracting, starting
from software conversion, right up to the development of specific applications
packages. In addition, the end-users’ concern to reduce or to eliminate
the extremely expensive in-house programming teams increased the drive
to reduce the importance of highly skilled and lavishly paid programmers.

Second, with the destabi1ization of the established oligopoly, and
the intensifying technological race between hardware manufacturers, the
gap between ever new generations of computer hardware on the one hand,

5/ Larry Welke, op. c: i t .

9

and available software on the other, dramatically increased. This applied
to both systems and applications software. Hardware manufacturers were
unable to cope with this problem and thus had no choice but to accept and
sometimes even to actively promote the emergence of independent software
firms.

Third, firms interested in gaining access to the larger information
and services market-place soon realized that software could serve as the
ideal entry-level business. The reasons are fairly evident:

(a) The relatively low barriers to entry. Compared with starting
a hardware company, for instance, software requires little initial
investment.

(b) The high rate of return and very attractive profit margins, particul­
arly with multiple sales of software packages. In other words,
software is still widely perceived, and probably rightly so, as
a "get-rich-quick business".

(c) The great diversity of software requirements and the consequent
segmentation of the market-place almost precludes domination by
any one firm. The software market has so many needs and demands
which furthermore are undergoing rapid change, that a small firm
can easily carve a niche for itself. Attempts to homogenize
effectively the software market for the sake of subordinating
it to oligopolistic control are, of course, under way, but still
they have a longer way to go.

ill. TRENDS IN MARKET STRUCTURE

The dominant trend up to 1980 has been market segmentation of the soft­
ware sector (see table). At. first sight, it would seem as if very narrow
limits exist for a standardization of this market and thus for attempts
to increase concentration of control.

10

Table. The segmentation of the software market -
large-scale versus mini-and microcomputer equipment

Large-scale equipment Mini and microcomputer

absorbs the majority of software
outlays, but hardware markets
are approaching saturation
1imits;

Still a minority market, but large
growth potential;

The great majority of this
market is geared to IBM mach­
ines and IBM-compatible peri­
pherals and CPUs;

Because of great variety of
hardware suppliers, exclusive
orientation of software firms
to a specific hardwarj firm
or a group of products is seldom;

Consolidated patterns of
competition and co-operation;

Rules of the game yet to be
established, cutthroat compe­
tition dominant;

High profit margins per sale;
Software is usually leased or
licensed, not sold;

Due to aggressive pricing
policy (market penetration prices),
profit margins per sales are low;

Established rules for securing
maintenance and technical sup­
port services and for pricing
them (maintenance fee normally
ranges between 12 and 15% p.a.
of the basic lease price);

Deterioriating supply of
maintenance and technical
support services; no estab­
lished rules for pricing them;

Highly sophisticated users;
Cost burden of software pro­
duction high, but still under
control ;

Mostly unsophisticated users.
To write easy-to-use programmes
is more difficult and thus more
costly and time-consuming;

A global market, at least
within the dominant economic
blocks of the world economy
(USA, Japan, EEC, South-
East Asia and China,
Latin Arne r i c a).

A great variety of local markets
rather than a national market.

H -

Yet, closer analysis shows that the reality is much more complex and
that the software sector is undergoing significant change. Particularly
in certain strategic areas, like "basic systems packages" and "software
development systems”, the prevailing trend points to increasing standardization
and to globalization of the efforts to produce multi-use and multi-system
software packages.

Most software firms are specialized in a particular segment of the
market.

There are two exceptions to this rule:

Firms developing "systems software" for various industries;

- A few of the bigger firms, mostly affiliates of major corporations,
which strive to develop what they call "a full portfolio of software
product offerings".

But overall, market segmentation is the dominant characteristic. This
is reflected in the fact that possibilities to homogenize software are still
very limited, particularly in applications software. The statement by
James A. Unnerstall, General Manager, Indiana Standards Information Services
Department, reflects an experience common to practically all industries:
"The probability of your programme fitting another company's system up front

„ 6/is practically zero."—

In fact, taking a programme tailored for one company's operations and
revising it for general use requires an enormous investment, a figure that
can exceed the original cost of software.—^

The table presents one aspect of the present degree of market segmentation,
i.e. the split between large-scale equipment and mini- and microcomputer
markets.

b/ "The Risky Business of Selling Home Grown Programmes", business Week,
9 March 1981, p. 64 •

7/ I b i d .

12

There are other types of segmentation. Two of them are of particular
importance:

- Basic versus non-basic systems;
- Individually tailored software versus software packages.

Basic systems is a shorthand for describing those software systems which
are in great demand. They include:

- Hardware uti1ization/performance measurement and accounting systems;

- Payroll and personnel information systems;

- Financial planning and profit analysis programmes;

- Project management and control systems;

- General accounting and integrated financial reporting systems.

It is on these basic systems that the greatest part of presently available
programming capacities is focused. The main tendency in software business
is specialization in a few fast-growth systems; the capacity to develop and
market commercially attractive software packages and to guarantee reliable
technical support.

Software Packages

Soffware packages a re systems which have been developed to overcome the
shortage oC skilled personnel, especially programmers. Software packages
are increasingly used by banks, insurance companies, but also by manufacturing
firms. According to a recent review by the American Bankers Association,
in 1981 tor instance, more than half of all software ia United States banks

8 /was provided in package form.—

8/ Frederic (;. Wiihington, "The Golden Ago of Packaged Software", Datamation,
December 1980, p. I'll.

13

Although the use of software packages is increasing in manufacturing
firms, the limitations to a wide-range application of packages still seem
to be considerable.— In absolute terms, this market is of considerable
importance. In the 'Jn'iied States, for instance, users of information processing
systems spent about $l'S2.5 billion in 1979 on software packages (excluding
contract software). About two-thirds of this sum went to the computer manufactu­
rers and cne-third to the independent software industry.1— ^

There are two types of software packages:

Application packages
Packaged systems programmes.

Application packages include, in order of sales volumes presently realized in the
United States, general ledger packages, payroll and perse.inel records. For these
basic management functions, reprogramming is a periodic necessity. The tradi­
tional approach would be to delegate this job to in-house programming teams
or to subcontract it to independent programmers. Yet even for big firms,
the costs of this approach rapidly becomes prohibitive so that a package is
more attractive. Very small user firms acquiring their first computers have
no professional programmers; at most they might hire a couple of part-time
ones. Without packages (or systems so easy to use that profession.1 training
is unnecessary), the small user could never consider acquiring a computer
at all.

Manufacturing packages, on the other hand, with fewer sales so far, seem
to have a considerable growth potential in the future,for instance in the
field of testing, measuring and analytical instruments; industrial electronic
equipment such as motor controls, numerical controls, inspection systems,
sequence controls; robots and semiconductor production equipment.—

9/ For a detailed discussion see "Picking and Perfecting the Packages. Ranking,
Insurance and Manufacturing Executives Talk about Selecting, Modifying and
Using Software." Datamation, December 1980, pp. 139-148, especially the
interventions by Larry D. Woods, f anager of Special Purpose Computing
with Deere t Co., Moline, Illinois.

10/ Figures are taken from Frederic G. Withinglon, op.c i t ., and im lude i iptive
development of software packages by IBM and other mainframe computet manu­
facturers.

11/ Frederic G. Withington op.c i t .

14 -

Packaged systems programmes include data bases, data dictionaries,
programme development aids and schedules, and protocol translations that permit
interlinking of computer systems and terminal complexes (including word
processors) from various venders.

The largest independent companies in the package business are all primarily
producers of systems programmes. Demand for system packages is huge and is
bound to increase: very few users would even think of preparing their own
systems programmes any more, and the computer manufacturers can satisfy only
a minoritv (at best) of the diverse demands of their customers.

Further, new opportunities for systems programmes keep appearing which
means that systems packages will continue to be an essential component of
the software market.

IV. A REVIEW OF THE EXPERIENCE OF SOFTWoRF PRODUCTION

The present state-of-the-art in data processing in industrialized countries
12/is not worth imitating.— Through rationalization of hardware production

the hardware/software-cost-ratio is now 20:80 and is predicted to be 10:90
in 1985. The programming crews in industry and public administration are
spending 80/90 per cent of their time on software maintenance and correction.
The value of installed applications software worldwide is about $L'S50 billion.
Nearly all of these software systems are badly structured and difficult to
maintain. These systems could be called "polluted" software.

To reduce the maintenance costs and to facilitate adaptation to the mar­
ket and changes in technology and law the polluted software has to be re­
structured and partly rewritten.

This polluted software was not recognized as such when applications
software began to hr developed. It is now known from empirical and theoretical
evidence, that there are inherent limitations which have not been overcome.

12/ Recommendat ions on measures in be taken to organize software
houses and production of software in developing countries prepared for
UNIDO by Hans-Jochen Schneider in May and June 1982.

15T
There are indications that the best software created has an average failure
rate of about 0.15 per Lent, i.e., that existing ope ¡ting systems, compilers
and data base management systems, holding 300, '00 to 6'.0,000 statements, contain
on average not less than 500 to 1,000 mistakes.

The experience of industrialized countries in producing complex software
systems reveals the dangers of imitations. Developing countries still have
the chance not to copy the same failures and not to run into the same troubles
as the industrialized countries. It is emphasized that a government strategy
and policy is urgently needed to prevent developing countries producing totally
polluted software. The governments of developing countries have to react
very fast because of the penetration of microelectronics and related software
that has now started m these countries.

In order to cope with this situation, systems should be disaggregated,
if necessary in an artificial way, into different components running on
different computers in so-called distributed or loosely coupled systems.

User participation in the problem solution process should be as early
as possible, i.e., that the user for whom the system is designed should be
involved in the problem solution process from the beginning. The question
is how to do this in an efficient and effective way. The system designer
and programmer must have the software tools to be able to produce quickly
a prototype system. With this so-called rapid prototyping strategy the designer
can give the user an idea of the future system after only 10 to 15 per cent
of the time required to develop the whole system. In the past acceptance
rests showed far too late the failures and misunderstandings originating from
the design process.

A skeleton of interfaces between different software components should
be defined for the following reasons. If the data processing environment
over a period of 20 to 30 years is considered, it can be seen that reliance
cannot be placed on operating systems, programming languages or data base manage­
ment svstems. The only thing that ran be relied on are so-called virtual
interfaces, the building skeleton of interfaces. An example is the so-called

■ i

16 -

virtual terminal interfaces. The functions of the virtual terminal are speci­
fied without resard to a specific terminal. The keyboard functions, the function
codes, the characters, the digits and the special characters etc. are specified
without allocating special signals. The adaptation of the interfaces from
the virtual interface to the existing physical interfaces is done by software.
The skeleton of interfaces allows easy change of equipment and software components.

V. PROTECTION OF SOFTWARE

The development of the computer software industry was paralleled by the
development of intellectual property protection of software.

From the outset, the computer software industry in the United States sought
suitable leg,-1! protection of its property embodied in the software, with the
following three basic goals:

(i) Adequate protection of financial investment in software development;

(ii) Technological progress resulting from full dissemination of
software information;

13/(iii) Public benefit from new applications of computer technology.—

In view of the above, three basic means have been explored for the most
effective protection: trade secrecy, patent law and copyright law.

Patent Law

The US Patent and Trademark Office (PTO) released on 14 October 1980
Guidelines cn Computer Protection which provide for the possibility of obtaining
patents and copyrights for computei programmes.

The Guide 1ines indicate that the rejection of claims for the application
of computer programmes are to be limited to cases in which the claims pertain

13/ See, for example."Intellectual Property Protection for Computer Programmes,
are Patents now obtainable?" 26 Cath U.L. Rev.835/1977. "Computer Programme
Protection: the need to legislate a solution" 54 Cornell L.Rev.486 (1969).

17

solely to a mathematical algorithm or formula, a method of calculation, a
method of doing business, an abstract intellectual concept or a collection
of printed matter.— ̂ The Guidelines include, as an example, a specific claim
reciting a "base set" or programme instructions which would be rejected as
defining nothing more than the abstract intellectual concept of ? programmer.

The claims that define a process, apparatus (machine or article of manu­
facture) or composition of matter, or an improvement of any of these, and
involve the operation of a programmed computer, are acceptable (under §101)
so long as they do not directly or indirectly recite a mathematical algorithm.— ^

Clauses that directly or indirectly recite mathematical formulae or al­
gorithms are to be accepted "if claims implement or apply the formula in a
structure or process which, when considered as a whole, are performing a function
which the patent laws were designed to protect, e.g. transforming or reducing
an article to a different state or thing".

Finally, the Guidelines point
must be considered as a whole and
new components for the purpose of

out that clauses in a patent application
can no longer be "directed" into old and
analysis under §101.

Copyright Law

A new amended law signed on 12 December 1980 significantly clarifies
the scope of copyright protection for computer programmes.

According to this copyright law a computer programme is: "a set of state­
ments or instructions to be used directly or indirectly in a computer in order
to bring about a certain result". By such a definition, protection is extended
to both source code and object code, and thus owners of copyright on computer
programmes could prevent the unauthorized copying of the programme, including

14/ Richard H.
Programmes

Smith and Robert J. Gaybrick "Rules for Safeguarding Computer
Clarified", Legal Times of Washington.

15/ Ibid.

18

the right to prevent the making of derivative works of the programmes.

It should be mentioned,however, that under United States law, a re­
production of a computer programme which is not fixed in a tangible medium
a r u 16/does not represent a copy of that programme.—

Furthermore, copyright laws have been criticized for protecting only
against copying the expression and for not preventing the unauthorized use
of a programme to control the operation of a computer.

In view of this, many owners of computer software have turned to using
proprietary markings and non-disclosure agreements as the preferred mode of
protection. Unfortunately, trade secret protection is unsuitable for mass-
distributed software.

Member countries of the European Economic Community are also parties
to the European Patent Convention (EPC) which provides for the establishment
of a single European Patent Office (EPO), and a uniform procedural system
for centralized filing, searching, examination and opposition as well as a
European Patent, which, when granted, results in a series of individual patents
under the laws of the EPC countries designated by the applicant.

From the point of view of obtaining patent protection for computer soft­
ware, two articles of the EPC are crucial, that is Article 52 (2) defining
categories not in eluded in the definition of an invention: (a) discoveries, scientific
theories and mathematical methods;(b) aesthetic creations; (c) schemes, rules
and methods for performing mutual acts, playing games or doing business and
programmes for computers; and (d) presentation of information;and Article 52 (3)
stating that the above categories are excluded only tc the extent that the
application relates to such subject matter or activities "as such".

Although the examinations in t he European Patent Office began only in
June 1979 and practice has not yet evolved, the Guidelines for Examination
in the EPO indicate the likely results.

16/ See "Protection of Computer Software" by Tipton I). Jennings and Data Case
System, Inc. v. JS and A Group, Inc., A8()F. Sapp (N.I). I II. 1979).

19

Chapter IV of the Guidelines states that "computer programmes need not
necessarily be an abstract entity but may also appear in terms of a process
for operating a computer or a record, for instance on magnetic tape. As
regards the mathematical method, it is said that, for example, a shortest method
of division is not patentable, but a calculating machine designed to operate
accordingly may well be patentable. All in all, for the time being, one must
come to the conclusion that computer-related applications which are not of
evident technical substance will be thoroughly revise! against the article 52 (2),
prohibitions".— ^

Finally, it should be mentioned that the resolution of patentability
of software products, computer programmes or data bases under EPC does not
end with a granting of a European patent. That patent must then be enforced
in the various national legal systems.

In Japan, on the initiative of the Ministry of International Trade and
Industry, it was decided that legal protection of software products should
be fully ensured.

In addition to the statutory requirements containe.’. in the Patent Law,
the Patent Office in Japan has established a set of "Examination Standards
for Inventions relating to Computer Programmes" which has been ir, el feet since
March 1976.

The WIPO Model Provisions on the Protection of Computer Software is aimed
at assisting countries in introducing certainty into 'heir existing legislation
and in harmonizing their national legislation with that of other countries.

The WIPO Model Provisions essentially adopt the combined pat cm , trade
secret and copyright approach.

Section Five of the Model Provisions sets forth the type of p r o l e , lion
needed for computer software. The owner of the rights in computer sol(ware
can prevent any person from disclosing, the computer software or from aiding

17/ Robert T. Reiling, "Patent ab i 1 i t y of computer p r . i rnmim- , , a woi Idwide view".

20 -

in its disclosure before the programme is made public. The computer software
owner may also prevent any person from allowing or aiding someone to have
access to any apparatus storing or reproducing the computer software before
the computer software is made public.

Under the Model Provisions, a proprietor of computer software is also
given the right to prevent the copying of computer software, including the
right to prevent the making of derivative works.

Furthermore, the Model Provisions permit the owner to prevent the actual
use of a computer progran u to control a machine with information processing
capabilities and to prevent the storage of the programme in the memory of
a computer. The owner can also prevent tne sale, lease or licensing of computer
software or objects storing the software, such as ROMs.

The Model Provisions are intended to supplement rather than provide protection
of computer software under the patent, copyright or uni air competition laws
of subscriber states.

VI. POTENTIALITIES FOR SOFTWARE PRODUCTION IN DEVELOPING COUNTRIES

Industrialized countries have about $US100-150 billion worldwide for
system and applications software development. Hardware costs are still decreasing
by a factor of 10 every 10 years; costs of highly skilled personnel, however,
are increasing. The only way out of the so-called software crisis is to standard­
ize software and support software development by software tools. The industria­
lized countries will have to reorganize and reconstruct their polluted software
in the next decade. The developing countries now starting software production
have the chance not to repeat all the mistakes made in the industrialized
countries. They could use software tools for software production like machine
tools were used in the industrialization process of the developed countries. One
way is to define a so-called skeleton of software interfaces into which all soft­
ware building blocks developed within a time period of 5-10 years could fit.

21

Developing countries could begin by supporting software development teams
in government, university and industry environments. These teams could start
with improving user interfaces of existing installations. As a follow-up,
software tool-boxes should be developed and/or imported to produce well
structured (and not polluted) applications software.

How should such activities in different types of developing countries
be started? First of all governments have to define and implement an overall
strategy for software production.

Observation of the data processing market in developing countries has
revealed several remarkable points which, to some extent, are also valid for
the industrialized countries:

- There are few software companies or other so-called third party
(consulting) companies working successfully in the market;

- Hardware manufacturers and distributors are mainly active in the
data processing market;

Hardware is oversold and there is little appreciation of software
and system (hardware and software) thinking;

- Complete solutions to problems tend to be imported into companies
through hardware manufacturers and distributors in standard software
packages;

- Normally, standard software packages do not totally fulfill user
requirements;

As a consequence it is the organization that has to adapt to data
processing and not vice versa;

Highly educated people tend to leave industry and academia and join
hardware sellers;

- There is no motivation to establish third party companies (software houses,
consultancy companies) due to the belief that software development
is too difficult.

It should be realized that software production is a manufacturing, rather
than a service activity nowadays. At the same time, software production is
extremely labour-intensive and in developed economies the cost of software
production is as high as 80 per cent of the average cost of the computer-based
application. Thus, some developing countries have a substantial advantage
in the software production field since, with properly qualified manpower available,
they could produce software at approximately one fifth of the cost of producing
it in developed countries. From this it can be surmised that software production

18/in developing countries may be highly competitive. —

The considerations given above do not apply to all developing countries,
but only to those where a certain level of programming education already exists,
i.e. where there are universities, polytechnics or equivalent schools offering
some education in programming which permits the introduction of advanced
training in software production.

In comparing software production with other modern technology products
that could be manufactured in developing countries, the low investment level
needed for software production gives it a substantial advantage. The tech..ologica1
equipment required for the production of software consists mainly of a computer
system or systems which, in many cases, may ot rented from the supplier with
the cost of rental even being offset by the income derived from the sales
of the software.

The one, but substantial obstacle for software production in developing
countries is the market, for the product s, since:

(a) the local market is usually limited, resulting from the limited
scope of computer applications in developing countries, and cannot
create the bread demand for full-scale production;

18/ For a comparison of costs in four developing countries, see figures 1 and
2 from an art icle by Ian Palmer in Computer Weekly reprinted in Mi croeloot rnnics
Monitor, no.'), duly 1982, p. 37.

23

(b) the export market, mostly in developed countries, is difficult to
enter without a proper marketing and product dissemination network.
Besides, the users in developed countries have, in many cases, an
unfounded prejudice concerning the quality of software produced
in developing countries.

Observation mainly of the computer market shows the possibility of intro­
ducing application systems in developing countries in an inexpensive way.
These systems can support, in a systematic manner, industry, commerce, public
administration, banking and insurance companies in the management of masses
of data (text processing, data base systems, information systems, statistical
computation), control of processes (manufacturing, quality control, optmization
procedures) and governmental and industry planning (model building, simulation,
optimization).

In order to reach the appropriate software supply in developing countries,
several objectives should be met. These are as follows:

(a) To establish self-supporting software production in developing countries;

(b) To train local staff in advanced programming technology;

(c) To create a basis for developing the local utilization of computers
to solve optimization problems, inter alia, of small and medium-sized
industry as well as other applications; and

(d) To promote the export of software from developing countries.

Indigenous software production is more immediately attractive than hardware
manufacture. As has been pointed out elsewhere, the industry does not have
a high demand for capital investment either directly or for physical infrastructure
(with two exceptions, telecommunications and educational facilities) and is

19/expected to grow extremely rapidly in the foreseeable future.— In developing
countries the special informatics applications requirements involving hardware
and software could be met by importing the hardware (or components of it if

lr7 D.P. Hanna in a paper prepared for Dublin Conference on Development: In­
formatics and Industrial Dc.t'opment, 9-13 March 1981.

24 -

local systems integration, etc. is appropriate) and developing the software
locally. These special requirements derive from the following: high
unemployment and resulting poverty levels, the small scale of industry allied
to the fact that most people live in villages; the lack of adequate infrastructure
to support large industrialized centres; the need to concentrate on rural develop­
ment as a prerequisite of industrial development so as to generate adequate

20/demand.— The potential of foreign-produced hardware (when augmented with
suitable locally produced software) for innovative local applications can be
best judged by persons fully conversant with local conditions. Govern­
ments can take a number of measures to promote an indigenous software capacity.
These might include the following: providing finance for acquisition of computers,
training, etc.; tax exemptions on reserves set aside by software houses for
use in connection with the inevitable modifications required on software as
a result of experience in the field or of material changes in circumstances;
setting up a programme register to avoid duplication of effort; making legislative
provision for copyright of software, although not much progress has been

. . .. 21/made m this area as yet.—

The two pivotal considerations for an indigenous software industry are:
personnel training and identification of appropriate applications.

Suitable institutional arrangements to manage and co-ordinate indigenous
software production (including supporting personnel training arrangements)
and to ensure that the software produced is of a high quality and that it is
fully compatible with national application priorities are a prerequisite.

Singapore is one country in which measures have been taken to restructure
the economy to aim specifically at developing high-technology industries and
the Government of Singapore has planned the development of a software industry

2 2 /in the next decade.— Steps have been taken to ensure a steady supply of
high quality personnel. Education curricula have been reviewed and new training
institutions established. The development plan calls for the production of

20/ P.D. Jain, Appropriate Informatics. Paper prepared for Dublin Conference
on Development: Informatics and Industrial Development, 9-13 March 1981.

21/ R.E. Kalman in a paper prepared for Dublin Conference on Development:
Informatics and Industrial Development, 9-13 March 1981.

2~/ Robert Ian, The Computer Knowledge Industry - a Look at the Economic Rationale
of a New Phenomenon from the East. Paper prepared for Dublin Conference
on Development: Informatics and Industrial Development, 9-13 March 1981.

25

10,000 highly trained persons by the mid-1980s. A new Institute of Systems
Technology, jointly supported by the Governments of Japan and Singapore, will
train software personnel and provide the related management courses. In the
shaping of its informatics policy end identifying a niche in the informatics
industry for a market product, Singapore recognized the impossibility of competing
with Japan and the industrial giants of the developed nations in established
products and marketing networks.

VII. CONSIDERATIONS IN THE PRODUCTION OF SOFTWARE IN DEVELOPING COUNTRIES

For developing countries to develop software production with the aim of
attaining future self-reliance a number of factors should be taken into con­
sideration .

The first is an awareness of the software problem of education and training.
The above-mentioned example of Singapore shows the way: education curricula
have been reviewed and new training institutions established. The software
policy should be implemented in that way as software production can begin only
where c certain level of programming education exists i.e. where universities,
polytechnics or any other equivalent schools offer some training in programming.
This level of education need not be high; but to produce software, a basic
knowledge of programming is expected.

The next step is the creation of team(s) to produce software. This could
be done either by identifying an existing organization (e.g. a university)
or creating a new one.

These objectives can be reached by the creation of multi-function software
centres.

Apart from software production the centres should be able to provide a
wide variety of viable, sustainable and high quality services, such as training,
consultancy, software services and even hardware product development.
Such centres also could be usefully linked to an organization producing

23/special purpose, custom-made microelectronic components.—

23/ See also J.M. Oliphant "Microprocessor Applications in Developing Countries"
“ (UNIDO/IS.351), Vienna 1982.

26

A centre should start with one general manager and one technical manager,
several system analysts and programmers, one hardware maintenance person,
an operator and a secretary. Government and international organizations
should support the training and the software technology transfer and help
the centre to be commercially independent after some years. After having
reached a stabilized phase the centre could try to export software and services.
The centre coulc function as a publicity organization to spread awareness
of the services it offers and to spread information to decision makers.
A group of experts, consultants and researchers should permanently support
the centre

On the other hand specialists from one centre should support the users
in all phases of the problem-solution process: fact finding, requirements
and restrictions, specification, design, feasibility study, economic analysis,
design inspection, programming, testing, documentation, installation, evaluation,
maintenance and tuning. The users have to be involved in the problem-solution
process from the beginning in a participatory manner. The centre and consultant
companies,the so-called third parties, mediate between hardware companies
and users. Normally they are much closer to and much more important for
the users than the hardware companies.

Accordingly, the centre has to carry out systems development work and
management functions. In general the centre should employ 5 to 50 persons;
or up to 300 to 500 persons as an exception. As a rule, one quarter of the
staff p forms back-up work, another quarter is occupied with management work
and 50 per cent works on consultancy-oriented and software engineering problem
solutions. A general manager or president and a vice-president form the
top management. Project managers responsible for several projects together
with project leaders responsible for one project form the middle management.
The system-oriented personnel hierarchy contains the positions of the senior
specialist, senior programmer, programmer and junior programmer.

27

The centre should be structured into at least four departments: software
engineering; software development for mainframe and middle-size computers;
software development for mini-and microcomputers and sales and customers
support. Within the departments, responsibility should be distributed according
to the special commercial branches, to the subject areas within the branches
and types of computers of different manufacturers.

Internal standards for problem solutions in general, for project manage­
ment and for all development phases of the software life cycie have to be
fixed and software tools should follow these standards, so that the employees
adhere to these recommendations. This channelled behaviour will guarantee
that the software produced fulfills standards which ease the maintenance
and updating of the programmes after the installation phase and prevents
production of badly structured, polluted software.

To maintain a high standard in the quality of the software products
staff of the software centres should regularly participate in training courses
to improve their knowledge of software engineering and production and dealing
with customers.

Another development possibility would be to link up the centre with
a developed (or newly industrializing) country (NIC) partner for a two-way flow
relationship. The developed country partner would identify specific software appli­
cations that could he channelled to the centre for development. The applications would
be graded to match the developing capacity of the centre, full specifications
and quality control would be provided. In addition, an initial training
programme and supervisory assistance would be provided by the developed country/
NIC partner on a continuing basis over a one to two-year build-up period.
Over time, centre would progress from the production of applications-
project-specific software to the development of software packages of a more
general nature in response to the need for development and the opportunities
for initiatives at the country level (including locally conceived products).

28

It should be realized thar software production is only one of many aspects
of modern technology development, aimed at the development of computer applications.

Developing countries have stressed the need for computer applications to
solve their development problems. These applications are one of the leading
modern technologies because of their wide ranging impact and contribution to
productivity. In order to create a methodology and policy resulting in the
systematic introduction of computer applications to the economies of developing
countries, some appreciation of the new technology should be created first
inside the countries and at the same time a partial assessment of the needs of
the co tries should be made. It is a recognized fact that any action resulting
in the application of computers should match the potentials and problems
existing in developing countries.

The software industry requires integrated development facilities. Research
and development, public purchase policies, training of managers and technicians
ana effective co-ordination between centres of education and research,
industrial circles and government agencies are of great importance for the develop­
ment of this industry.

Mechanisms for such a co-ordination and the creation of integrated develop­
ment should be created at the national level, preferably in the form of a
programme. This would result in the software industry being given a higher
priority in national development plans and help to allocate adequate resources
towards its development.

Thus to outline the programme the following procedure should be adopted:

First, the application problems to be solved should be determined.
This includes a sectoral development approach based on the particular economy,
aspirations and the long-range development priorities of the country. In a
realistic approach it would appear necessary to prepare an inventory of the
computer capabilities needed within the country. This, together with reliable
and comprehensive information on the state-of-the-art and emerging trends in
global informatic technology would create a base upon which to construct the
programme.

29

Some centres (e.g. Mexico) even are introducing special laws and regulations.
In any case, it should be borne in mind, that at each stage in the national
development of computer applications from the initial creation of policy to the
actual implementation of operational systems, a country can obtain a great
deal of information, guidance and sharing of experience through international
agencies. General referral points would be the Industrial Information Section
of UNIDO and the Department of Co-operation, Intergovernmental Bureau for Informatics.

Also, as already stated elsewhere, group action on the part of developing
countries may be recommended:

"Group actions may be in the form of exchange of experience and sharing
of tasks, such as assessments and monitoring efforts. More importantly, group
actions will provide an opportunity for adoption of group strategies. A formal
or informal institutional effort in group strategies by developing countries
may be required just as several developed countries are also proceeding to adopt

„24/group strategies."—

VIII. PRODUCTION AND PROTECTION OF SOFTWARE IN DEVELOPING COUNTRIES

As regards legal protection, as far as can be ascertained, the degree of
legal protection available to computer software, either by means of patent, trade
secret or copyright in developing countries is very limited and is basically
embodied in their national patent and copyright laws which with few exceptions
(Brazil, India, Mexico) have not been amended since their adoption and enact­
ment.

This situation raises a fundamental question, namely, whether it is in the
interest of developing countries to extend legal protection to computer software.

UNIDO's preliminary investigation has shown that in the developing countries
such as Argentina, Brazil, China, Egypt, India, Malaysia, Mexico, Republic of
Korea and a few others, the potential for the development of a computer software
industry exists; this industry may, eventually, become internationally competitive

24/ "Policy Responses to Technological Advances: Some Illustrative Cases"
~ ID/WG.384/3, Vienna, 1982, p. 20.

- 30 -

thus requiring,
employed by the

in its own interest, measures of protection similar to the ones
leading software producers in the industrialized countries.

The premature introduction of protection of software
than good, particularly for the development of a software
an industry is to be developed). The Model Provisions of
guidelines in those countries.

may cause more harm
industry (if such
WIP0 may be used as

- 31

ANNEX I

SOFTWARE CONTRACTS

The growing software industry has adopted for its purposes a variety
of contractual forms to cover the use of the computer software.

For reasons described earlier, licensing under patents, trade secrets
or copyrights have become the most appropriate vehicle for utilizing software.
This annex deals with the basic types of agreements, describe;, their main
features and recommends options for technology regulatory agencies when dealing
with these types of transaction.

Custom Software Contract a/s—

Custom-made software contracts deal with any procurement of computer
software, either alone or in conjunción with the acquisition of computer
hardware and related products and services, which involve either the
development of new products and services or the substantial modification
of the existing programmes (supplied by either the vendor or the user).

The most
development of
i.e. a set of
software must
in sufficient
basis for the
vendors' perfo

important part of a contract
a complete set of functional

documents which describes the
perform in the context of the
detail so that the functional
standards of performance that
rmance.

for custom-made software is the
specifications for the software
business functions that the
overall data processing system
specifications can provide the
will be used to evaluate the

The functional specifications will generally include:

(a) Functional description of the package, that is:-
(i) all tasks the package must accomplish; (ii) all inputs;
(iii) all outputs; (iv) all processing requirements;
(v) all data files; (vi) volumes of activities and files;

a/ See "Licensing Computer Software: Basic Considerations as to Protection
and Licensing of Computer Software and its Implication for Developing
Countries" (TD/WG.383/3), Vienna, 1982, p.10.

32

(b) description of the hardware environment in which the o;ckage must
operate, including: (i) storage restrictions; (ii) peripheral
equipment restrictions; (iii) data transmission procedures and
(iv) communication interface;

(c) description of the software environment within which the programme
must reside including (i) specifications of the operating systems;
(ii) the programming languages; (iii) other programmes with which
the customized software must properly interface; (iv) any specific
nomenclature system which must be used for programmes;

(d) statements concerning the performance of the software in relation
to (i) its internal organisation; (ii) its execution speed;
(iii) its capability for enhancement and modifications; (iv) its
error deduction properties; (v) its error correction and recovery
properties and (vi) any restriction of the activities which the
user must avoid;

(e) programming and documentation standards, including details as to
(i) documentation content; (ii) quantity; (iii) forms, and (iv) the
nature and extent of coding.

An important issue, and one which is specific to this type of agreement,
is that of pricing. The least desirable form of pricing is a pure "time
and materials" (T+M) contract, as in this type of agreement there is an in­
creased risk that it vri11 take longer than anticipated to deliver custom-
made software.

Sometimes T+M contracts provide for the overall ceiling of the amounts
the vendor can charge to the user; in those sitations the formula is close
to a fixed price contract,which is usually the best formula from the user's
point of view.

It is quite common that part of the fixed price (or T+M price) is held
back by the user in order to encourage the vendor's co-operation.

In custom-made software, agreements, the concept of liquidated damages as
an incentive to performance is automatically and frequently used. It may
be applied,for example,to: (a) unliquidated credits for late performance;

33

(b) delayed payments; (c) free machine time; (d) increased level of
service; (e) temporary back-up personnel; (f) substitute processing.

Another feature of the custom-made software contract is the quality
of the personnel. This should be specifically spelled out, as should be
the responsibilities for project management and control. At present the
most complicated software system requires extensive documentation and training
necessitating extensive provisions.

As software develops, at least in some of the countries, a degree of
legal protection, title to the software and related information (including
design aspects) and rights to use such systems should be included in the
contract.

The following are basic issues which should be clarified in the contracts
(as the need arises):

(a) whether title and/or unlimited rights to use software should remain
with the vendor;

(b) whether exclusive title to the software should remain with the
user;

(c) the possibility for joint ownership;

(d) sole ownership by user with limited marketing rights granted to
the vendor;

(e) sole ownership by vendor with limited use/marketing rights granted
to user;

(f) sole ownership by vendor with royalties payable to user;

(g) sole ownership by vendor in return for reduced development charges,
future services, etc.

As with other licensing agreements, this type of contract will usually
include provisions related to the protection of software from intentiona1
or Inadvertent disclosure, third party infringement and acceptance testing
which includes test procedures, acceptance testing, acceptance criteria and

- 34 -

the ultimate measure of suitability of software functions 1n relation to:

(a) the hardware and software system environment;

(b) the test data;

(c) the time period for testing;

(d) the degree of reliability

(e) the degree of accuracy;

(f) the response time and the turn around time for error correct ion

Finally, as with other licensing contracts, the following
should be included:

provisions

(a) limitation of assignments;

(b) termination procedures;

(c) choice of law and venue;

(d) arbitration vs. litigation;

(e) limitations of liability;

(f) force ma jeure :

(g) offset rights;

(h)
(i)

users' access to vendors, work product;
future modifications and enhancements.

Agreements for Packaged Software—

The so-called "packaged" software is ready-to-use software developed
for use by more than one customer, usually with only minor adjustments to
the users' individual needs. As a rule, packaged software is licensed rather
than sold and is customarily non-exclusive and non-transferable.

There are four types of packaged software, depending on parties to the
agreements, as described below.

b/ Ibid.

35 -

A. Developer (of the software) - end-user contract

The following would be the provisions included in * j.s type of agreement:

(a) description of software (including provisions for updates and new
versions);

(b) price and payment schedule;

(c) taxes;

(d) terms of agreement (this may include termination provisions in
a perpetual licence);

(e) maintenance;

(f) proprietary protection (including third party infringements);

(g) Escrow arrangements for source (to secure services in case the
vendor ceases to do business);

(h) ownership of user-made changes;

(i) documentation;

(j) training (of varying duration and scope depending on the complexity
of the software);

(k) limitation of use (limiting the use of the programme to a single
processing unit or a single location, or inside the user company);

(l) acceptance criteria;

(m) liquidated damages (these are not generally used in packaged software,
however the concept may be useful in the case of "leak" of the
software to third parties);

(n) warranties (may or may not be included, depending on the nature
of the software);

(o) limitation of remedies (usually consequential and indirect damages
are excluded).

B. Vendor (Licensor) - Original equipment manufacturer (OEM)

In addition to the provisions provided for the type of agreement described
under A, the OEM type of agreement provides for volume pri e dim omits and

36

authorization f-r sublicensing. The agreement spells out under which key
conditions OEM is required to sublicence or cause the sublicence to be
executed.

C. Vendor-Distributor Agreements

In addition to many of the foregoing conditions, the vendor-distributor
agreements are contracts which usually contain provisions for pre-distribution
inspection and post-distribution returns and may also include conditions
not to compete by one or both parties; guaranteed order levels and production
levels, etc.

D. Vendor-ser\ice bureau agreements

The additional clauses may include the establishment of a basis for
payment as a function of amount of use. However, there may be minimum payments
or flat rates. Furthermore, the vendor will usually require access to the
licencee accounts and security arrangements. Continuous training will be
of a more extensive and substantial nature. The licences cases may be of
an exclusive nature.

IV. Suggestions as to how developing countries should approach the licensing
of computer software.___

The brief overview of the current status of protection of computer software
and of current practice regarding licensing suggests technology registries,
in countries where they exist, might deal with licensing agreements for computer
software.

In developing countries, one is primarily concerned with non-protected
computer software, and protection may only be available (either in a form of
patent or copyright) in the next few years. This lack of legal protection
in the user country leads to an important consideration by techncl''g* registries
in terms of their attitude and position vis-à-vis:

duration of the agreements;
rights of use after expiration of the agreements;

37 -

- limitation of use;
payment level.

These are the basic contractual elements that should be considered by
technology registries

It is suggested that agreements for use (licence) of computer software
should be subject to scrutiny by technology registries in developing countries.

By local legislation technoL _,y registries in t h e s e countries are empowered to
scrutinize such contracts: Argentina,— ̂ Indfa,— ̂ Mexico,— ̂ Philippines,—^
Portugal, ^ Spain.— ̂ Although in other developing countries computer software
contracts as such are not necessarily covered yet by the activities of technology
registries, due to the increase in this type of contracts, registries will
have to give them attention in fuLure.

In terms of types of agreements, technology registries should deal with
either packaged computer software agreements (which are probably more common)
and/or custom-made software contracts.

The following are some basic suggestions as to how to approach the main
contractual provisions. The suggestions cover both types of agreement.

1. Duration

In both cases, whether custom-made software or packaged software contracts,
the duration of the licence should be limited and be equal to the minimum period
of time required by the user (licencee) to absorb and use the software trans­
ferred. No perpetual agreement should be permitted since the technological
development of this field is moving very fast.

c l Law 21,617.
d/ Guidelines on Foreign Technology Collaborations,
e/ Law on Technology Transfer dated 11.01.1982.
fy Decree 1520 of 1978.
£/ Decree 53/77.
h/ Decree 2343.

38 -

2. Payments

With respect to custom-made software agreements, it is suggested that
the fixed price formula should be used, combined with very precise performance
standards. Concerning packaged software, a one-time payment may be prefered,
which should include, however, additional (improved) software.

3. Maintenance

In both types of agreements the extent and frequency of maintenance should
be spelled out precisely including the payments for such services.

4. Training

The provisions for training especially in custom-made software agreements,
should be extensive; in a packaged licence it is also essential.

5. Title to the Software

In the case of custom-made software, technology registries should insist
on the users' sole title to the software (eventually with limited marketing
rights by the vendor). In packaged software agreements, however, the title may
be with the vendor for the duration of the agreement; and the users may have
the right to use it freely in the scope originally granted them.

6. Third Party Infringements - Property Protection

Since in most developing countries, no
to computer software, (except through trade
have to ensure that their software does not

legal protection can be granted
secret), the licensors/vendors
infringe third party rights.

7. Acceptance Criteria

These conditions are
agreements; they are also
cases the criteria should

particularly important for custom-made software
of significance for packaged software and in both
be extensive and worked out in detail.

- 39 -

8. Liquidated Damages and Warranties

Both provisions are of significance, particularly for custom-made soft­
ware; therefore a good deal of time and effort should go into the preparation
of these clauses.

9. Documentation

This clause is of crucial importance for custom-made software.

10. Future Modifications and Enhancement

The licencees: should secure rights of access to future modifications,
particularly in the case of packaged software.

11. Rights of Use after Expiration of Contract Term

It is recommended that users have unlimited rights in using the software
after the expiration of an agreement.

12. Limitations of Use

Particularly in packaged software agreements, many vendors try to limit
the use of their software to the users' plant and/or location. It is suggested
that in principle, such limitations should not be acceptable.

- 40

ANNEX II

List of documents, prepared by UNIDO, utilized for this paper

1. Draft notes on a mission to Thailand to examine prospects for the develop­
ment of a software exports programme, by M. Radnor.

2. Informatics in the service of industrial development, Draft of a paper by
R.J. Nolan.

3. Licensing Computer Software, Basic considerations as to protection and
licensing of computer software and its implication for developing countries,
(ID/WG.383/3).

4. Policy responses to technological advances: some illustrative cases,
(ID/WG.384/3).

5. Proposals for the creation of software houses in developing countries as a
part of information application network, prepared by K. Fialkowski.

6. Recommendations on measures to be taken to organize software houses and
production of software in developing countries, prepared by Hans-Jochen Schneider.

. /
^ 7. Restructuring world industry in a period of crisis - the role of ;

innovation, prepared by D. Ernst. (UNIDO/IS.285). i ' -

8. Selective micro-eletronic applications in developing countries, Mission
report by K. Fialkowski.

