

OCCASION

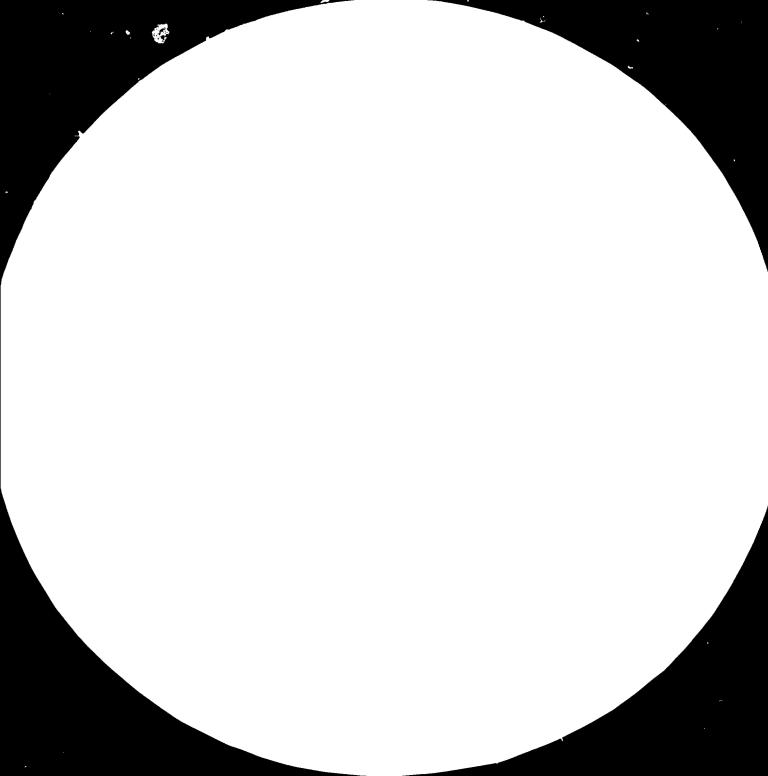
This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.


FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at <u>www.unido.org</u>

.'8 25

1.8

Mana ana ang karang ang karang ang karang karang

-> Maria Didrich

Restricted

15 August - 16 November 1982

1152 ESTABLISHMENT OF CERAMIC TILE PLANT.

DP/SUR/82/001

iname.

FEASIBILITY STUDY

Prepared for the Government of Suriname by the United Nations Industrial Development Organization, the executing agency of the United Nations Development Programme

Based on the work of

Josef Müller, UNIDO Technical Assistance Expert and Staff Member of the UNIDO-Czechoslovakia Joint Programme, Pilsen

Special consultant: Zdeněk A. Engelthaler, UNIDO Technical Assistance Expert and Chief Executive of the UNIDO-Czechoslovakia Joint Programme, Pilsen

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION VIENNA

This study has not been cleared with the United Nations Industrial Development Organization which does not, therefore, necessarily share the views presented.

ACKNOWLEDGEMENT

The UNIDO expert would like to underline that the success of his mission was possible due to very well conducted preparatory activities and supports of UNIDO Headquarters in Vienna and UNDP office in Port of Spain. Furthermore, the Suriname Government extended to the expert all possible help in arranging for all the necessary consultation with local authorities, enterpreneurs, collecting the necessary data and secretarial facilities needed for the successful run of the mission. The expert owes to his counterpart assistant Mr. E. Kasimbeg, B.Sc., for his creative contribution to the presented study.

Mr. Ir R. H. Goossen, Director, Ministry of Natural Resources and Energy

Mr. E. Kasimbeg, Project Officer, Ministry of Natural Resources and Energy

Drs. L. de Rooy, Head of the Geological and Mining Services Mr. Dr. E. Dahlberg, Advisor, Ministry of Natural Resources and Energy

Mr. Ing. R. Mahabir, UNDP Liaison Officer, Planning Bureau

During the field trips to kaolin deposits, the UNIDO expert would like to appreciate the positive co-operation of Technical Staff of Messrs. Billiton and Messrs. Suralco. The important Paramaribo companies and businessmen were always ready to provide the UNIDO expert with their advices.

- 2 -

LIST OF CONTENTS

1. EXECUTIVE SUMMARY

1.1. Project Background

1.2. Market and Plant Capacity

1.3. Materials and Inputs

1.4. Location and Site

1.5. Project Engineering

1.6. Plant Organization and Overhead Costs

1.7. Manpower

1.8. Implementation Scheduling

1.9. Financial and Economic Evaluation

1.10. Conclusions and Recommendations

2. PROJECT BACKGROUND AND HISTORY

2.1. Project Background

2.2. Project Promoter

2.3. Project History

2.4. Economic Justification of Project

3. MARKET AND PLANT CAPACITY

3.1. Demand and Market

3.2. Sales Programme and Marketing

3.3. Sales and Distribution Costs

3.4. Plant Capacity

3.5. Sensitivity Analysis

4. MATERIALS AND INPUTS4.1. Characteristics of Materials and Inputs4.2. Supply Programme

and the second state of the second states

LOCATION AND SITE
 Choice of Location
 Local Conditions in Onverdacht
 Choice of Site
 Cost Estimate

- 6. PROJECT ENGINEERING
- 6.1. Lay-out
- 6.2. Technology
- 6.3. Equipment
- 6.4. Civil Engineering Works

7. PLANT ORGANIZATION AND OVERHEAD COSTS

7.1. Production Departments

7.2. Service Department

7.3. Administration

7.4. Overhead Costs

8. MANPOWER

8.1. Manpower Requirements

8.2. Administrative Overhead Costs

8.3. Wages and Salaries

8.4. Surcharges

()

9. IMPLEMENTATION SCHEDULING

9.1. Activities during Implementation

9.2. Timing of Implementation

9.3. Cost in Implementation

10. FINANCIAL AND ECONOMIC EVALUATION

10.1. Total Investment Costs

10.2. Project Financing

10.3. Total Production Costs

10.4. Financial Evaluation

10.5. National Economic Evaluation

10.6. Implications

11. APPENDIX

A - SCHEDULES

B - TABLES

C - SCHEMES AND MAPS

D - ANNEXES

1. EXECUTIVE SUMMARY

1.1. Project Background

1.1.1. Promoter

Ministerie van Natuurlijke Hulpbronnen en Energie, Paramaribo - Suriname

1.1.2. Project orientation

To utilize large deposits of good quality non-metallic minerals in Suriname, the Suriname Government has decided that the priority will be paid to the establishment of a ceramic plant producing wall and floor tiles with orientation on the home market and possible exports. This project is characterized by import savings, job creation and profitability.

1.1.3. Project background

During 1980 - 1982, extensive technological tests were conducted to evaluate the possibility of the industrial development of Suriname deposits of kaolins, clays, kyanites and glass sands for their possible exploitation in the wall and floor tile manufacture, production of refractories, glass making and paper making plants.

The tests conducted by the UNIDO-Czechoslovakia Joint Programme for International Co-operation in the Field of Ceramics, Building Materials and Non-metallic Minerals Based Industries in Pilsen have proved that the raw kaolin from Onverdacht deposit can be used in the manufacture of ceramic wall and floor tiles provided that the proper technology is established. The type of body composition is lime-siliceous one. The technology is based on wet grinding, drying in the atomizer, pressing and double firing system.

1.2. Market and Plant Capacity

1.2.1. Domestic market

The local demand for floor and wall tiles has been assessed to fluctuate between 90,000 sq.m. and 120,000 sq.m. of wall and floor tiles annually, from that 65 % are wall tiles and 35 % floor tiles.

1.2.2. Export market

Only the countries of North America have been taken into account and annual imports into this region "estimated to be at least 30 mil. sq.m. wall and floor tiles annually.

1.2.3. Production programme

The ceramic wall and floor tile plant will produce after reaching the projected capacity 160,000 sq.m. of glazed wall and floor tiles, from that:

1,000_sq.m.	Home sales	Export	Total
undecor. wall tiles	50	7	57
decor. wall tiles	10	38	48
undecor. floor tiles	25	4	29
decor. floor tiles	5	21	26
TOTAL	90	70	160

1.2.4. Plant capacity

Two variants of plant capacity have been compared from the point of view of profitability (Annex 1). The variant of a plant producing 160 thousand sq.m. annually is more economical one than the variant of a plant of 90,000 sq.m. annual capacity.

ŧ

1.3. Materials and Inputs

1.3.1. Raw materials

Item	kg/sq.m.	ton/year	annual cost 1,000 Sf.
Raw kaolin	4.75	760	31
Plastic clay	2.4	380	6
Silica sand	6.25	1,000	10
Limestone	2.35	375	131
TOTAL COST			178

1.3.2. Glazes and stains

Item	kg/sq.m.	ton/year	annual cost 1,000 Sf.
Frits	0.9	143	243
Stains	0.04	66	116
Zircon silio	cate	4	5
TOTAL COST		, <u> </u>	364

1.3.3. Auxiliary materials (annual costs)

Packaging material	160,000 Sf.
Spare parts	105,000 Sf.
Other auxiliary materials	
such as lubricants, saggers,	
silex linings, pebbles	60,000 Sf.

1.3.4. Utilities (annual costs)

Water 1,500 cu.m.	-	2,000 Sf.
Electric power 850 MWh	-	210,000 Sf.
Light oil 625 ton		344,000 Sf.

1.3.5. Availability of raw materials and inputs

Raw kaolin, plastic clay and silica sand are available locally. Glazes, stains, packaging material, limestone^{+/} and auxiliary materials will have to be imported. Utilities are available from the governmental grid systems in Onverdacht locality.

*/Note: Trials are being made to substitute the imported limestone (350 Sf. SIF per ton) by locally available shells (60 - 90 Sf. per ton).

1.4. Location and Site

The plant will be situated in Onverdacht. This location is optimal from the point of view of availability of raw materials, manpower and utilities.

1.5. Project Engineering

1.5.1. Lay-out

The raw materials will be taken from the stock, weighed and ground in the ball mills. The prepared slip will be

-

stored and pumped to the atomizer for spray drying and the dried powder will be stored in tanks. The dry clay will then be pressed and the pressed tiles will be loaded for drying in the tunnel drier. After being dried, the tiles will be pushed into the bisque firing channel of the double channel kiln. The fired bisque will be glazed and put into the glost firing channel of the same kiln.

The finished wall and floor tiles will be sorted, packed and shipped.

1.5.2. Selected technology

The production is based on the lime-siliceous body composition which is favourable as far as energy conservation is concerned. The body does not shrink during drying and firing and neither sizing nor calibration of bisque tiles is necessary. The applied technology is that of the wet grinding, spray drying and double firing. This technology is the most modern in the ceramic tile making. The acquisition of the technology costs 160,000 Sf.

1.5.3. Production equipment

According to the lay-out, there will be the following production sections in the plant:

CIF price of the

	necessary	equipment
- body slip preparation	500,000	Sf.
- powder preparation	58 0,000	Sf.
- pressing	520,000	Sf.
 drying and firing 	1,063,000	Sf.
- glaze preparation	259,000	Sf.
- glazing	310,000	Sf.
- sorting	46, 000	Sf.
	· · · · · · · · · · · · · · · · · · ·	

The total costs of the manufacturing equipment will amount to 3,218,000 Sf.

1.5.4. Auxiliary plant

The auxiliary plant comprises:

- technological laboratory		123,000	Sf.
- transport centre		200,000	Sf.
- electric and water install	ation	700,000	Sf.
- metallic structures		210,000	Sf.
- other auxiliary equipment		200,000	Sf.
The complete auxiliary plant			
will cost	1,433,000	Sf.	

1.5.5. Service equipment

- office furniture and	d equipment 200,000 Sf.
- other services	50,000 Sf.
Total	250,000 Sf.

The cost of the total equipment including the primary stock of spare parts (105,000 Sf.) will be 5,066,000 Sf.

1.5.6. Civil engineering works

Land necessary for buildings and handling raw materials is 15,000 sq.m. This surface is sufficient as the built-up area is 3,200 sq.m.

- The site preparation will cost 330,000 Sf. and will comprise all the necessary indoor works such as roads, fence, etc.
- The factory hall will cost 1,007,000 Sf.
- The necessary outdoor works will cost 500,000 Sf. and will comprise the construction of an access road, communication system and distribution of utilities.
 The total costs in the civil engineering works amount to 1,837,000 Sf.

1.6. Plant Organization and Overhead Costs

1.6.1. Production

The production of wall and floor tiles runs through three principal departments, each of them under supervision of a qualified supervisor. They are as follows:

- Green tile preparation department which comprises the body slip preparation, pressing powder preparation and tile pressing.
- Kiln department which comprises the drying of the pressed tiles and both the bisque firing and glost firing of the glazed tiles.
- Glazing and selection department which comprises the glaze preparation, glazing, sorting and storing of the finished products.

1.6.2. Services

The most important section is the maintenance workshop which is under supervision. Other services are transport centre, security of the plant and cleaning.

1.6.3. Overhead costs

Item	1,000 Sf.		
	factory over.	administrative over.	
wages, salaries	226	307	
material	190		
other overheads	43	60	
subtotal	459	367	
depreciation		755	
TOTAL	459	1,122	

1.7. Manpower

1.7.1. Labour force

supervisors	4			
skilled labour	24			
semiskilled labour	22			
unskilled labour	6			
TOTAL - workers	56			
TOTAL - wages	706	thousand	Sf.	including

surcharges

•

1.7.2. <u>Staff</u>

general manager	1			
production manager	1			
sales manager	1			
chief accountant	1			
bookkeeper	1			
salesman	2			
technologist	1			
lab. technician	1			
designer	1			
clerk	3			
TOTAL - staff	13			
TOTAL - salaries	307	thousand	Sf.	including
				surcharges

1.8. Implementation Scheduling

1.8.1. Duration of plant construction

- setting-up the corporation management and preparation to choose the equipment suppliers; 2 months
- the supply of the production equipment; 10 months
- the detailed engineering; 2 months

e nyematéren poéta ya konservere

- the choice of a building constructor, site preparation and building construction; & months

- the erection of the equipment; 3 months

- the trial run; 3 months

The implementation of the ceramic plant will take 18 months.

1.8.2. Duration of start-up

The start-up period will take two and half year from the start-up till full capacity is reached. It is supposed that plant will produce at

- 60 % capacity during 6 months
- 80 % capacity during the following 12 months
- 90 % capacity during the last year of the start-up.

This start-up period can be shortened and full capacity can be reached within the first year of operation provided the management and the technical staff is trained.

1.9. Financial and Economic Evaluation

1.9.1. Total investment costs

- land	45,000 Sf.
- site preparation	330,000 Sf.
- buildings	1,007,000 Sf.
- outdoor works	500,000 Sf.
- technology	160,000 Sf.
- equipment	5,066,000 Sf.
- implementation	1,106,000 Sf.
- working capital	942,000 Sf.
Total costs in investment	9,156,000 Sf.

1.9.2. Project financing

The project will be partially financed by equity and long term loans:

- equity will be raised from the promoter's and collaborators' resources (60 % from the investment outlay)
- long term loan, 5 years, will be negotiated with the Nationale Ontwikkelings Bank Paramaribo.
 3.5 mil. Sf. is the optimal amount from the point of view of the net present value and risks of insolvency.
- 1.9.3. Manufacturing costs

/thousand Sf./

- direct material	1,236
- direct labour	480
- factory overhead costs	459
- wages	226
- material	190
- other overheads	43
- administrative overhead costs	- 367
- salaries	307
- other administrative overheads	60
- distribution costs	71
- operating costs	2,613
- financial costs	186
- depreciation	755
Manufacturing costs	3,554
Sales revenues	5,075

1.9.4. Financial evaluation

- net present value (20 % factor) amounts to 626 th. Sf.

- internal rate of return - 23.22 %

- payback period 6 years and 2 months
- simple rate of return (on equity) 29.1 \$
- break even point 86,100 sq.m. or 53.8 \$ capacity
- sensitivity analysis
 - a) B.E.P. 111,800 sq. m. (69.9 % capacity) if prices of exported products are cut off by 30%
 - b) B.E.P. 91,100 sq. m. (56.9 % capacity) if variable costs increase by 10 %
 - c) B.E.P. 94,700 sq.m. (59.2 % capacity) if fixed costs increase by 10%
 - d) B.E.P. 132,400 sq.m. (82.7 % capacity) if prices of exported products are cut off by 30% and costs increase by 10%
- job creation 132,600 Sf. of investment per 1 job
- foreign currency savings 3.9 mil. Sf. annually
- value added amounts to 3.6 mil. Sf. annually.

1.10. Conclusions and Recommendations

- 1.10.1. The establishment of the ceramic tile plant in Suriname is a profitable venture as showing high enterpreneurial profit as well as positive influence to the national economy of Suriname.
- 1.10.2. To establish the corporation which will start as soon as possible negotiating all necessary administrative steps to start the activities of the corporation.
- 1.10.3. After the corporation is established, the following
 steps are to be taken:
 - to contract the supply of the technological equipment from the chosen company
 - to request the detailed engineering drawings from the supplier of the technological equipment

- to select the domestic supplier of building construction and start the realization
- to select the suppliers of auxiliary equipment and order necessary amounts of raw materials and inputs for the trial run and the first period of start-up.
- 1.10.4. To arrange for training local staff with the supplier of the equipment and apply to UNIDO Vienna through UNDP Port of Spain for training the managerial staff.
- 1.10.5. To arrange for local ceramic raw materials deliveries to the supplier of the production equipment to conduct the verification tests with regard to the production equipment.
- 1.10.6. To continue the evaluation of other local non-metallic raw materials as a basis for a future extension of the plant.
- 1.10.7. To open negotiations with Messrs. P on supplies of Onverdacht kaolin and clays.
- 1.10.8. Since local consumption of wall and floor tiles will be saturated in the second year of operation, to open negotiations for foreign marketing in course of the first year of the operation.
- 1.10.9. To negotiate with suppliers of the production equipment the supply of the oil fired kiln.
- 1.10.10 If any trouble shootings during the assembling of the plant or during its trial run occur, to apply to UNIDO Vienna for technical assistance.

- 16 -

2. PROJECT BACKGROUND AND HISTORY

2.1. Project Background

The establishment of the new ceramic tile plant is based on the following findings:

- There are large deposits of raw kaolin,plastic clays and silica sands in Suriname. These raw materials are very easily accessible.
- There is a large import of tiling materials in Suriname and North America. There are only few countries in America producing ceramic tiles.
- There is available manpower for industrial development in Suriname.

Consequently, the Suriname Government gave priority to the establishment of wall and floor tile manufacturing in Suriname.

The production plant will be based on the deposits of raw kaolins, clays and siliceous sands in Onverdacht. The local demand for wall and floor tiles is estimated to fluctuate between 90,000 sq.m. and 120,000 sq.m. There are also good possibilities for export to other American countries and consequently, the annual production 160,000 sq.m. will be sold.

The plant will be located in Onverdacht which is close to the raw materials deposits and which is close to Paramaribo. It is connected with Paramaribo by bus transport and all weather roads.

The implementation of the plant takes 18 months and the production will start in mid 1984.

- 17 -

Due to the Government efforts to promote the industrial development of Suriname, there are very good conditions for investments into new establishments, especially into industrial sector exploiting local raw materials. The financial resources are also available within the scope of this project in Suriname.

2.2. Project Promoter

- Ministerie van Natuurlijke Hulpbronnen en Energie (Ministry of Natural Resources and Energy) Paramaribo - Suriname, P. O.Box 856

2.3 Project History

Mr. R. A. Cambridge, former director of the Geological and Mining Service, Paramaribo, arranged for a shipment of selected clays, glass sand and kaolin samples to the UNIDO-Czechoslovakia Joint Programme for International Co-operation in the Field of Ceramics, Building Materials and Non-metallic Mincrals Based Industries, Pilsen, late in 1979 asking their quality evaluation with recommendations for possible future industrial exploitation. As results obtained were encouraging, the Suriname Government sent a nominee to participate in the In-plant Technical Workshop (Industrial Exploitation of Non-metallic Minerals) in Pilsen in 1980. During this opportunity, further development of non-metallics in Suriname was deeply negotiated.

Further semi-industrial tests of local Suriname kaolin from the deposits Onverdacht and Moengo were made on the industrial scale and proved excellent results. The application of Suriname kyanite in the refractory industry was evaluated. The following reports show more details.

- 18 -

- (a) Raw Materials from Suriname, UNIDO-Czechoslovakia Joint Programme, Pilsen, June 1980, Ref. No. 45/80
- (b) Suriname Kaolins and Industrial Applicability Tests, UNIDO-Czechoslovakia Joint Programme, Pilsen, August 1981, Ref. No. JP/99/81
- (c) Report on Technological Tests of Suriname Kaolins, Geological Survey Paramaribo, Suriname, July 1981, (locality Onverdacht)
- (d) Suriname Kaolins (Locality Moengo), Geological Survey, Paramaribo, Suriname, 1982
- (e) Crystal Glass Technology Based on Suriname Glass Sand, UNIDO-Czechoslovakia Joint Programme, Pilsen, June 1982, Ref. No. JP/116/82
- (f) Kyanites from Suriname, UNIDO-CSSR Joint Programme, Pilsen, 1982

During the UNIDO mission (Production of Kaolin and Non-metallics, TF/SUR/81/001) the Suriname Government decided that the prime priority in the development of non-metallic minerals would be related to the establishment of a ceramic plant producing wall and floor tiles. The UNIDO expert produced there two project proposals to be realized under the assignment of UNIDO.

- (1) Establishment of the ceramic plant with the assistance of two UNIDO experts (an economic adviser in establishing the ceramic plant and an expert in production and technology of the ceramic plant). The presented feasibility study is a part of the final report of both the experts assigned under the project DP/SUR/82/001.
- (2) Industrial exploitation of non-metallic minerals as a 4-year project will be negotiated jointly with UNDP Port of Spain and UNIDO Headquarters.

The technological tests conducted by the UNIDO-Czechoslovakia Joint Programme for International Co-operation in the Field of Ceramics, Building Materials and Non-metallic Minerals Based Industries, Pilsen, have proved that:

- The Suriname kaolin from Onverdacht deposit can be used in the manufacture of ceramic wall and floor tiles provided that proper technology is applied. As the best tile body composition for industrial exploitation of Suriname kaolins is the lime-siliceous one with the content of about 30% of raw Suriname kaolin and about 15% of plastic clay. Properties of the earthen ware body show that ceramic wall tiles, floor tiles as well as artistic ceramics and crockery can be blended from Suriname kaolin.
- Wall and floor tiles with the lime-siliceous body composition do not shrink during drying and during firing either. This is their considerable advantage since their sizing is not necessary and the accuracy of finished products is perfect.
- The bisque firing temperature being 1060[°]C is very low and good because of the energy conservation.
- Opaque and semi-opaque glazes with the maturing temperature of $1020^{\circ}C$ and coefficient of thermal expansion between 47.10^{-7} and 50.10^{-7} are suitable for wall tile and glazed floor tile making from Suriname kaolins. Rich surface decoration of tiles can be made according to local as well as international designs.
- Aside from Suriname kaolins, plastic clays, silica sands, limestone, wollastonite or other calcareous materials can be applied for the manufacture of earthen ware tiles in Suriname. The proportion of raw kaolins and silica sand in the blend amounts to 70% from total.

- 20 - 1

- Products which resulted from semi-industrial tests correspond to the European standard. Verification of the technology on the contracted equipment will be the subject of the contract between the supplier of the equipment and the promoter of this project. Since there is a high potential of other non-metallic minerals and rocks in Suriname, the Suriname Government requested to carry out further tests by the UNIDO-Czechoslovakia Joint Programme as a basis for their future possible commercial exploitation. These raw materials are such as shells, ball clays, graphites, pegmatites , feld-

spars, etc.

2.4. Economic Justification of Project

This project is characterized by:

- foreign exchange savings
- creating new jobs
- profitability
- utilization of local raw materials

It is justified from the point of view of the dynamic development of Suriname national economy.

- 21 -

3. MARKET AND PLANT CAPACITY

3.1. Demand and Market

There have not been reliable import statistics regarding the imports of wall and floor tiles to Suriname and to other countries of North America since 1979. These commodities are aggregated in larger items, mostly the whole set of tiling materials or non-metallics. The assess of both the home and export market is based on indirect estimates and statistics respectively.

3.1.1. Home market capacity

Statistics available on imports of wall and floor tiles display only figures till 1978. If average 17 kgs per sq.m. are taken into consideration, the import of wall and floor tiles was as follows:

1974	856	ton	or	50,000	sq.m.	
1975	1,047	ton		62,000	sq.m.	
1976	792	ton		47,000	sq.m.	
1977	2,037	ton		120,000	sq.m.	
ធំ978	1,760	ton		104,000	sq.m.	
(source:	A.B.S. Paraman	ribo)				

To verify these figures, additional considerations were made. The annual construction of houses was taken into account as well. Table 3.1. exhibits the annual housing construction in greater Paramaribo (approx. 160,000 inhabitants) during 70°s. Before population started decreasing (see Tables 3:2. and 3.3.), 1,400 - 1,500 houses had been built annually. Since the majority of

- 22 -

population within high income brackets is believed to be among emigrants, the decrease in the housing construction after 1974 was a result of the emigration.

There are no statistics on houses built after 1980 when the growth of population started again but according to the evidence and experience of constructors (VABI) 1,800 new houses have been built annually in greater Paramaribo since 1980.

The amount is kept for an average of annually built houses in greater Paramaribo during 80's because any projections of those figures are of low quality.

From the discussions with constructors and importers, the following estimate of wall and floor tile consumption in Suriname is concluded. (Houses built in greater Paramaribo were parted into two groups, smaller ones with dwelling surface below 100 sq.m. and bigger ones provided with balconies).

Estimated Consumption of Wall and Floor Tiles in 1981/1982

(1) Houses smaller than 100 sq.m. - 1300 annually assessed
25 sq.m. wall tiles = 32,500 sq.m.
10 sq.m. floor tiles = 13,000 sq.m.

(2) Houses bigger than 100 sq.m. - 500 annually assessed 55 sq.m. wall tiles = 27,500 sq.m. 35 sq.m. floor tiles = 17,500 sq.m. Total 90,500 sq.m.

Ration between decorated and undecorated tiles was estimated to be 15 : 85.

With regard to the facts that only 40% of population live in greater Paramaribo and that other districts are expected to develop, the amount of 300 houses built outside Paramaribo annually is estimated. In addition, approximately 15,000 sq.m. of tiles should be consumed by other sectors and for mending and improving houses (one half of houses in Paramaribo is assessed to be obsolete and should be repaired and up-to-dated). Consequently with 25% reserve, the home demand is expected to fluctuate between 90 and 120 thousand sq.m. annually during 80`s.

3.1.2. Export market capacity

There is a large export market for wall and floor tiles in the countries of North America. According to Table 3.6., 33 mil. sq. m. of wall and floor tiles were produced in North America in 1979 from that 88% in the USA. However, the year consumption of wall and floor tiles in the USA in the same year was 57 mil. sq. m. (Table 3.6. - 599 mil. sq.feet) and consequently, the annual import of wall and floor tiles of the USA only is 28 mil. sq.m. Other countries of North America except Mexico also import wall and floor tiles. If only the USA were taken into account as export market for wall and floor tiles produced in Suriname, the share of Suriname in the USA import would be 0.25%.

3.2. Sales Programme and Marketing

3.2.1. Sales programme

Sales programme is determined with regard to three viewpoints:

- 24 -

- to meet home demand with a sufficient reserve against contingent swings,
- to sell the difference between the local consumption and plant capacity abroad in order to experience a trade network for a possible enlargement of the wall and floor tile production in Suriname,
- to produce wall and floor tiles of the size 150x150 mm; other sizes 200x200 mm or 100x100 mm, etc. can be produced also as presses will be provided with different sets of dies. However, to keep inventory of auxiliary materials as low as possible and to make use of technical capacity to a maximum, a uniform size of the products is preferential.

Consequently, a minimum of 90,000 sq.m. of tiles should be sold in Suriname and 70,000 sq.m. exported into countries of North America.

The amount of the domestic sales is divided: - glazed undecorated wall tiles, 150x150 mm 50,000 sq.m. - glazed decorated wall tiles, 150x150 mm 10,000 - glazed undecorated floor tiles, 150x150 mm 25,000 - glazed decoracted floor tiles, 150x150 mm 5,000 in order to meet the expected demand for cheaper sets (ratio between decorated and undecorated sets is 15:85)

The amount of the exported products is divided: - glazed undecorated wall tiles, 150x150 mm 7,000 sq.m. - glazed decorated wall tiles, 150x150 mm 38,000 - glazed undecorated floor tiles, 150x150 mm 4,000 - glazed decorated floor tiles, 150x150 mm 21,000 in order to satisfy the expected more demanding consumers (ratio between decorated and undecorated sets is 85:15)

(See Schedule 3.1.)

- 25 -

This sales programme is a basis for determining the plant capacity. The end of this programme is to make the economy of numerals work and suppress risks of the foreign trade to a prudent point. (This problem is analyzed in Annex 2 - Plant Capacity Variants)

3.2.2. Pricing

Price policy is based on an estimate that the role of prices is a very important criterion of expected consumers, especially in Suriname. Consequently, tiles the price of which equals to the cheapest sold tiles in Suriname are expected to be demanded.

At the average increment to the CIF prices being 47% (from that 25% customs duty and 15% rabate from retail price) to reach the low limit of sold tiles, prices must be as follows:

21	Sf.	 undecorated wall tiles
36	Sf.	- decorated wall tiles
32	Sf.	- undecorated floor tiles
47	Sf.	- decorated floor tiles

Provided that an indirect tax levied in case of the home production is not higher than 25% (customs duty - A.B.S. Suriname), the retail prices will fluctuate between:

25.5 and	31	Sf.	-	undecorated wall tiles
44	53	sf.	-	decorated wall tiles
39	47	Sf.	-	undecorated floor tiles
57	69	sf.	-	decorated floor tiles

(Retail prices of wall and floor tiles in Paramaribo are shown in Table 3.4.) There must be said that price limits between the quality categories are not a dogma. More expensive undecorated tiles can be priced higher than cheaper decorated tiles. (Prices of stains usually fluctuate in very large scale). The prices of the exported products are considered to be identical to the home prices. There are shown annual imports into Trinidad and Tobago including prices in Table 3.6. According to these statistics, the price had been fluctuating considerably. This fact could be caused by aggregation of all wall and floor tiles into one commodity. In 1980, the CIF price was 15.42 US § per sq.m. and after discounting the average costs in shipment 2.5 US § the FOB price is estimated to be 13 US §.

However, there are differences in prices per kg in 1978 according to importers which relate probably to the composition of sets; larger quantities are cheaper, etc.)

Exporteur	kg of prod.	US Ø	US \$ kg
U.K.	1489067	1566.490	1.05
Italy	12017	15.595	1.30
CSSR	15724	23,997	1.50
West Germany	6375	16.970	2.65

Note: Weights are given incl. packaging.

Then, the implication for wall tiles weighing	12 kg and
floor tiles weighing 17 kg:	
- the cheaper sets of wall tiles	23 Sf. CIF
- the cheaper sets of floor tiles	32 Sf. CIF
- the most expensive sets of wall tiles	57 Sf. CIF
- the most expensive sets of floor tiles	81 Sf. CIF

3.3. Sales and Distribution Costs

3.3.1. Advertising

Booklets, price lists, descriptions, photos and other current advertisement is supposed.

15,000 Sf. per annum

3.3.2. Travel costs

4-month stay abroad and travel within the countries of North America and Suriname are supposed.

30,000 Sf. per annum

3.3.3. Transport

The whole annual bulk of products weighing 2,100 tons (12 kgs a sq.m. and 200 tons palets) is supposed to be transported into either Paramaribo's shops or Port of Paramaribo. Price per 1 ton between Onverdacht and Paramaribo - 12.5 Sf. (D.M. MOLL - Transport onderneming) 26,000 Sf. per annum

Total per annum 71,000 Sf. (Schedule 3-2)

3.4. Plant Capacity

Two variants of the plant capacity have been taken into consideration:

Variant A - Annual production 90,000 sq.m. wall and floor tiles to be sold only in Suriname. This production amount can satisfy the domestic demand with a subdued risk of contingent failures of the local market. Variant B - With regard to the large deposits of cheap raw materials and possible future availability of cheap hydroelectric energy, the enlargement of the wall and floor tile production will be reasonable. From this point of view, it is necessary to experience the foreign trade and labour before taking a venture like this. Other reason for foreign trade is the utilization of the economy of numerals. Taking into account these reasons, variant B of 160,000 sq.m. production is suggested from that 90,000 sq.m. shall be sold in Suriname and 70,000 sq.m. abroad. In such case, the risks of the foreign trade are comparatively low because a 45% failure of the foreign trade can be substituted by the enhanced home sales. Both the variants are put into test in Annex 1 - Plant Capacity Variants from the point of view of profit. Variant B is recommended because of being more economical.

3.5. Sensitivity Analyses

The impact of changes of the foreign demand and the average prices towards sales revenues is put into test.

3.5.1. Drops of Foreign Trade

The sales revenues correspond to the model: . Pf x (700 000-Z) + Pd x (90 000+Z) = 160 000 x C (valid if $0 \le Z \le 30 000$)

Where - Pf - average price of exported products - 37 Sf. Pd - average price of home sold prod. - 27.27 Sf.

- 29 -

C - average price of the whole productionZ - change of foreign trade

From that it is derived that a 1% drop of the exported quantity results in a 0.21% drop of sales revenues.

3.5.2. Changes of average prices

Each 1% price change of the domestic sold products results into a 0.482% change of the sales revenues and each 1% change of the prices of foreign trade results into the complement - 0.518% change of sales revenues.

4. MATERIALS AND INPUTS

4.1. Characteristics of Materials and Inputs

This chapter is largely based on the technological tests of Suriname kaolins conducted in Czechoslovakia in 1981 - Report Technological Tests of Suriname Kaolins, Geological Survey, Paramaribo, Suriname, July 1981

4.1.1. Raw macerials compositions

The body of wall and floor tiles was compounded in such a way that principles of composition of lime -- siliceous body were essentially observed so that its main constituents - annorthite and free silica - emerged in a sufficient degree to achieve a desired level of the thermal expansion of the body. The batch configuration and its chemical composition and the properties are given in Tables 4.1. and 4.2. In order to achieve the non-shrinking body, the content of silica sand was increased to 40% from total.

The pressing of the body was good, no cracks occurred during drying. The bisque firing of green tiles was conducted in an industrial gas fired tunnel kiln at the temperature of 1 060°C, the firing cycle was 48 hours, no cracks occurred.

The results of the semi-industrial tests confirmed that physical and chemical properties of the bisque body are suitable for wall and glazed floor tile making. The body is remarkably white, the overall appearance of the wall and floor tiles produced is attractive. Consequently, the above-mentioned tests proved:

- Suriname kaolin from the deposits Onverdacht can be used in the manufacture of ceramic wall and glazed floor tiles provided that proper technology is applied. As the best tile body composition for industrial exploitation of Suriname kaolins the lime-siliceous one with the content of about 30% of raw kaolin and about 15% of plastic clay was selected.
- Wall and floor tiles with the lime-siliceous body composition did not shrink during drying and firing. This is their considerable advantage since their sizing is not necessary and accuracy of the finished products is perfect.
- The bisque firing temperature being $1060^{\circ}C$ is very low and good because of the energy conservation.
- Opaque and semi-opaque glazes with the maturing temperature of $1020^{\circ}C$ and the coefficient of the thermal expansion between 47 x 10^{-7} and 50 x 10^{-7} are suitable for wall and glazed floor tile making from Onverdacht kaolins. Rich surface decoration can be made according to local as well as international designs.

4.1.1.1. Composition of body

Raw kaolin Onverdacht	30%
Plastic clay	15%
Quartz sand	40%
Limestone	15%

- 32 -

4.1.1.2. Composition of glazes for Wall Tile Making

Frits	86 - 90%
Kaolin Onverdacht	9 %
Stains	1 - 5%

4.1.1.3. Composition of glazes for Floor Tile Making

Frits	78%
Kaolin Onverdacht	9%
Zircon-silicate or corundum	8 - 12%
Stains	5 - 1 %

4.1.2. Auxiliary materials

The kind and quantity of the consumed auxiliary materials fluctuate according to the used technology and equipment. Costs of these materials depend mainly on the used kilns and the way of packing. In case of the wall and floor tile production in Suriname, there will be spent the following auxiliary materials:

- The manufactured products shall be packed in paper boxes, one sq. m. of products a box.
- There will be torn kiln refractory saggers during the production.
- During the body slip preparation, silica pebbles and silica lining in ball mills will be consumed.

4.1.3. Factory supplies

For the maintaining production equipment, lubricants and similar material must be delivered. However, spare parts are the main item consumed. Consumption of spare parts usually amounts to 3.5% of the price of equipment according to statistics.

4.1.4. Utilities

There will be spent for drying and firing wall and floor tiles light fuel oil because of its lower price in comparison with electric energy. This question is treated in Annex 2.

Oil consumed in the production will be of calorific value 40 GJ/ton, viscosity under $10^{\circ}E$ at $50^{\circ}C$. Installed capacity of electric power for driving equipments and other ends will be 550 kW.

In body preparation section, industrial water will be spent, installation 25 m^3 /hour. Installation of drinking water - 8 m^3 /hour.

4.1.5. Unit costs

Since the plant will be located in the distance smaller than 15 km from deposits of raw materials, costs in transport will be 7 Sf. per ton. With regard to more complicated winning conditions in case of raw kaolin, the mining costs including transport into the factory are different in case of kaolin, clay and sand. (The estimate is based on mining costs of Billiton). Other raw materials will have to be imported, consequently, costs in shipment and transport Paramaribo - Onverdacht are included in prices. Prices of glazing materials are based on quotation of Messrs. Ferro B. V. and prices of utilities correspond to the prices in Paramaribo in 1982.

Raw materials

		/ -	
Raw kaolin	40	Sf/ton	
Plastic clay	15	Sf/ton	
Silica sand	10	Sf/ton	
Limestone	350	Sf/ton	(290 Sf. shipment, 10 Sf. transport)
Frits	1 700	Sf/ton	(average price CIF quoted by Ferro)
Stains	18 100	Sf/ton	dtto •
Zircon-silicate	1 350	Sf/ton	

Auxiliary materials			
Packaging material		1.00	Sf/pc.
Other auxiliary mat.	60	000	Sf/year
Factory supplies			
Spare parts	105	000	SF/year
Utilities			
Electric power (rate for industry)		250	Sf/Mwh
Light oil		550	Sf/ton
Water		1.5	Sf/m ³

4.2. Supply Programme

4.2.1. Production programme

The plant will produce 105,000 sq.m. wall tiles weighing 1.050 ton and 55,000 sq.m. floor tiles weighing 825 ton of finished fired products. Adding producing losses, technological losses, rejects and water, the inputs of material and utilities into the production are derived from current material flow in the wall and floor tile manufacture. The Table 4.3. shows material flow in case of the wall tile production and Table 4.4. shows the flow in the floor tile production.

4.2.1.1. Raw materials

Consequently, the annual input of raw materials will be

– raw kaolin	760	ton annually
- silica sand	1 000	
- plastic clay	380	
- limestone	373	•
- frits	143	

-	stains	6.4	ton
-	zircon-silicate	3.6	

4.2.1.2. Auxiliary materials

Paper boxes - 160,000 pc. annually, saggers, pebbles, linings and other factory supplies - lubricants etc. (based on statistics approx. 2% of costs) 60.000 Sf.

4.2.1.3. Factory supplies

Spare parts - 3.5 % of machinery

4.2.1.4. Utilities

water	1,350	ton
light oil	625	ton
electric		
power	750	MWh

Calculations of inputs during start-up and full capacity are shown in Tables 4.5. and 4.6.

4.2.2. Availability of supplies

4.2.2.1. Raw materials unprocessed

Raw kaolin will be mined in Billiton bauxite deposit in Onverdacht. The structure of deposit is compounded of three layers,

- upper layer is grey plastic clay, approximately 10 m thick

- middle layer is bauxite - approximately 5 m

- bottom layer approximately 5 m thick is raw kaolin the properties of which are given in Table 4.1. and 4.2.

Both the upper layers are removed and raw kaolin is accessible. Plastic clay will be loaded and transported from the same deposit as well. Silica sand is available in this region in abundant

quantities. During implementation phase, the access to these raw materials must be negotiated. Finely ground limestone will have to be imported.

4.2.2.2. Raw materials processed

Glazing material except for the small quantity of kaolin will have to be imported. Among the most renown European producers Messrs. FERRO Holland can be named (Messrs. P. Ferro /Holland/ B.V. Van Helmonstraat 20, 3029 AB Rotterdam, P. O. Box 6088)

4.2.2.3. Auxiliary material and factory supplies

The saggers, pebbles and silica linings and spare parts should be delivered by machinery deliverers. Paper boxes for packing can be imported from Europe. Lubricants and other factory supplies are available in Suriname.

4.2.2.4. Utilities

All the utilities are available in Suriname. Water and electric power will be purchased in Onverdacht from governmental resources.

- 37 -

4.2.3. Delivery programme

Raw kaolin and clay must be won during small rainy periods and with regard to mining conditions, the cheapest way will be mining for 1-year inventory since there will have to be done some preparatory works to reach the accessibility of raw kaolin.

Silica sand can be delivered for 6-month stock and other imported raw materials (glazes and limestone) should be delivered four times per year to lower the working capital. Spare parts are considered for 1-year stock. Paper boxes for 3-month stock. Other factory supplies for 2-month stock. Light fuel for 14-day stock.

4.2.4. Cost estimate

Table 4.7. and Schedule 4-1. exhibit the production costs in raw materials and inputs during start-up and full capacity.

	Raw kaolin	30	400	Sf.	annually
	Plastic clay	5	700		
•	Silica sand	10	000		
	Limestone	130	550		
	unprocessed m.	176	650	Sf.	
	Frits	242	800	Sf.	
	Stains	113	84 0		
	Zircon-silicate	4	900		
	glazes	365	540	Sf.	
	Spare parts	105	000	Sf.	
	Packaging material	160	000		
	Other auxiliary and factory supplies	60	000		
	auxiliary and factory supplies	325	000	Sf.	•

- 38 -

Water	. 2	000 Sf.
Electric power	212	500
Light oil	343	750
utilities	558	250 Sf.

PRODUCTION COSTS 1 423 440 Sf.

4.2.5. Implication

The raw materials for the body composition were chosen from the point of view of their prompt availability. It would be opportune to put other local materials into test to substitute or at least limit the share of imported materials (limestone and glazes) which are for the shipment cost's sake expensive. There are raw materials such as shells which could probably substitute the imported limestone with a considerable impact towards the operating costs.

5. LOCATION AND SITE

5.1. Choice of Location

An important viewpoint of the location of a smaller ceramic plant so that cost in implementation and production should be as low as possible is the accessibility to raw materials, utilities and labour. Two localities in Suriname have been considered from this point of view - Onverdacht and Moengo. Both the localities are centres of bauxite mining and processing and have the necessary industrial infrastructure. If compared:

- Lesser distance from Paramaribo (principal market) in case of Onverdacht which necessitates lower distribution costs; approximately 45 000 Sf.
- The Government owned grid system and water supplies in case of Onverdacht vice versa dependance on utilities generated by a private corporation in Moengo.
- Tested raw materials, the technology of this project is based on, are those of Onverdacht origin. In Onverdacht, there are not only kaolins but silica sand and plastic clay. No deposit of plastic clay is known to be in Moengo and raw materials from this location would have to be put into test.
- With regard to the small distance between Paramaribo and Onverdacht and existence of passenger transport, no problems related to the recruitment of labour and staff can be expected.
- Consequently, the plant location in Onverdacht region is more favourable than the location in Moengo.

5.2. Local Conditions in Onverdacht

5.2.1. Geographical situation

Onverdacht is situated in district Para, approximately

30 km south of Paramaribo near the road Paramaribo - Zanderij - Afobaka.

The landscape is almost plain with average level 15 - 20 m above sea level. The land is covered by trees and bush. The trees are up to 15 m in height, the diameter being under 30 cm.

5.2.2. Traffic

The region is accessible from the sea by the river Suriname. There are port facilities for handling bauxite only on special ocean-going ships. Onverdacht can be easily reached by the asphalt road

Paramaribo-Afobaka.

The deposits of raw materials are accessible by the special all-weather road (distance 5 km).

5.2.3. Mining conditions

The deposit of raw materials is situated north of Onverdacht in the Billiton bauxite quarry. Raw materials occur in three layers, the upper one is clay + sand (max. thickness 30 m), bauxite is the middle layer and the bottom is created by raw kaolin (average 5 - 10 m deep). The upper layers are removed and kaolin is accessible during small rainy seasons.

5.2.4. Climate

This region is under the influence of the tropical climate which is typical for Suriname and is characterized by two rainy periods during the year. The main rainy season begins in April and ends in early August with two precipitation maximums, late May and late July. The shorter rainy season begins late in November and lasts till mid-January. The annual average rainfall reaches 1700 mm with 30 mm as month's minimum and 380 mm as month's maximum.

5.2.5. Utilities

The complete infrastructure exists in this region. Drinking water, electric power and communications are available from the governmental systems.

5.2.6. Labour and living conditions

The three settlements in this region - Onverwacht, Onverdacht and Smalkalden - are provided with food and other shops, churches, hospitals and bus transport. There are available workmen and technicians in this region and in Paramaribo.

5.3. Choice of Site

The plant should be erected close to the asphalt road between Onverwacht and Smalkalden, the best place being Onverdacht. The accurate site must be negotiated during the implementation period before the construction starts since the land is in private hands there. Map 5.1. shows the recommended site.

5.4. Cost Estimate

No operating costs are related to the choice of site. With regard to private owned land there, there will be the investment cost in purchasing the land. The area of the plant is 15 000 sq. m. and the estimated price of the virgin land is 3 Sf./sq.m.

Consequently, the cost in land will be 45 000 Sf.

6. PROJECT ENGINEERING

6.1. Layout

6.1.1. Production programme

The annual production of wall and floor tiles will be as follows:

57 000 sq.m. - glazed undecorated wall tiles, sized 150x150x6, weight of 1 sq.m. - 10 kgs

48 000 sq.m. - glazed decorated wall tiles, sized 150x150x6, 10 kgs/sq.m.

29 000 sq.m. - glazed undecorated floor tiles, sized 150x150x6, 15 kgs/sq.m.

26 000 sq.m. - glazed decorated floor tiles, sized 150x150x6, 15 kgs/sq.m.

With regard to the current material flow and the used technology, the material must be processed in the following production departments:

6.1.1.1. Body slip preparation section

Raw material must be crushed, watered and ground and delivered into the powder preparation section.

Annua1	material	input:	746	ton	raw kaolin
,			995	ton	silica sand
•			375	ton	plastic clay
			373	ton	limestone
	an e nyi nerve	2	490	ton	total

990 ton water for wet grinding

3 500 ton of material must be prepared in this section during 240 days of operation; i.e. the daily production of this section is 15 tons of body slip.

6.1.1.2. Powder preparation section

The body slip is delivered into the atomizer where the dried powder containing 6% of water is being prepared for pressing wall and floor tiles. The atomizer evaporates 1 100 000 litre of water annually. Considering three shift working days (240 annually) the atomizer evaporates 200 litre of water per hour and prepares 9.8 tons of the dried pressing powder daily.

6.1.1.3. Pressing section

The pressing powder is pressed and wall and floor tiles made - the annual production is 5 140 000 pcs of wall tiles and 2 689 000 pcs of floor tiles - then 490 sq.m. of wall tiles and 255 sq.m. of floor tiles must be pressed daily during two shifts.

6.1.1.4. Drying and firing section

The pressed wall and floor tiles are put into the tunnel kiln to evaporate 6% of water content. Annual output is 179 000 sq.m. of dried wall and floor tiles, i.e. 460 sq.m. daily during 7 days working week. After drying, the tiles are loaded on the slinding plates and put into the tunnel kiln. After having fired the tiles, they are glazed and decorated and loaded for the glost firing. During this firing cycle, the 10% amount of wall tile is lost as rejects. Consequently, the annual output is 160 000 sq.m. of the tiles to be sold and daily output is 458 sq.m.

6.1.1.5. Glaze preparation and glazing sections

After the bisque is fired, the tiles are glazed in glazing section, the glazes being prepared during one shift working day.

Material input:

143 tons -	frits
6.4 tons -	stains
3.6 tons -	zircon-silicate for floor tile glazes
	to enhance the resistance to abrasion
14.5 tons -	kaolin
Consequently,	the glaze slip weighing 168 tons per
annum (or 700	kgs per day) must be prepared.

6.1.1.6. Selection section

Completed wall and floor tiles are sorted and packed - 160 000 sq.m. annually, i.e. 670 sq.m. daily (7.8 tons).

6.1.2. Supply programme

In order to minimize the production cost and cost in working capital, the inventory and delivery policy is as follows:

Mining raw materials will be contracted due to the very low amount of the material input as mining capacity of its own would not be economical.

6.1.2.1. Raw kaolin

The whole annual input will be delivered for 12 months' stock, i.e. 760 tons or 420 cub.m. will be stored.

6.1.2.2. Plastic clay

With regard to the similar winning condition as kaolin has, the plastic clay will be delivered for 12 months store - 250 tons or 140 cub. m. 6.1.2.3. Silica sand

This material owing to its good accessibility will be won for 3 months' stock - 250 tons or 140 cub.m.

6.1.2.4. Limestone

The quantity necessary for the 3-month operation will be delivered - 68 tons or 50 cub. m. Consequently, the maximum inventory will be 820 cub.m., at average 3 m height, the surface of storage will be 270 sq.m.

- 6.1.2.5. Glazes will be delivered 4 times a year, i.e. 38 tons inventory.
- 6.1.2.6. Packaging material will be stored for the 3-month production.
- 6.1.2.7. Spare parts will be delivered for one-year run.

6.1.2.8. Fuel oil will be delivered for 14-day run.

Inventory of raw materials, spare parts and utilities

– raw kaolin	760 tons/40 Sf/ton	30 000 Sf.
- plastic clay	380 tons/15 Sf.	6 000
– silica <mark>sand</mark>	250 tons/10 Sf.	3 000
- limestone	68 tons/350 Sf.	24 000
- glazes	38 tons	84 000
- cartons	35 000 pcs/1 Sf.	35 000
- spare parts		105 000
- fuel oil	27 tons/550 Sf.	15 000
	Inventory	302 000 Sf.

6.2. Technology

6.2.1. Used technology

The suggested technology of the wall and floor tile production in Suriname is based on the lime-siliceous body composition. The lime-siliceous composition is recommended because the body compounded of 30% of Onverdacht kaolin, 15% of plastic clay, 40% of silica sand and 15% of limestone does not shrink during drying and firing and the sizing of wall and floor tiles is not necessary. This composition is also very good from the point of view of the energy conservation since the bisque firing and the glost firing temperatures are 1060 and 1020°C respectively. This body composition shows very good appearance. The double firing system, good from the point of view

of quality, is suggested and oil fired kilns will be economical from the point of view of cost in firing (Annex 2).

The technological process is described in Scheme 6.3. and runs as follows:

6.2.1.1. Ceramic body preparation

- The raw material delivered to the factory is stored into the storage boxes.
- The raw material is then charged into containers and conveyed to the balance to be weighed.
- The raw material after being weighed is driven into the ball mills for the wet grinding.
- The ball mills are unloaded and the slip is stored and continually stirred in the tanks.
- The slip is dried in the atomizer to obtain the spray dried powder.
- The powder is transported and stored in the metallic silos.

6.2.1.2. Pressing

- The powder is drawn from the silos and transported into the sieves.
- After being sieved, the powder is transported and loaded into hoppers.
- The powder is pressed and wall and floor tiles are shaped.

6.2.1.3. Drying and bisque firing

- The pressed wall and floor tiles are collected and loaded into the trucks for the following drying in the tunnel drier.
- After drying, the tiles are manually loaded on the slinding kiln plates and put into the bisque firing channel of the kiln.
- The fired tiles are manually loaded into metallic containers and stored.
- The empty trucks are returned after feeding the glazing line for the further drying and firing cycle.

6.2.1.4. Glazing

- The containers are unloaded and the glazing line is manually fed.
- The glaze is transported to the glaze machine.
- After being glazed, the products are loaded into the refractory saggers.
- The loaded saggers are stored and prepared to input into the kiln for the glost firing.

6.2.1.5. Glaze preparation

- Glaze material is taken from the storage and weighed.
- The material is loaded into the ball mills.
- The material is ground and unloaded, the glaze slip is sieved.
- The glaze slip is stored into silos and then drawn to the glazing line.

6.2.1.6. Glost firing

- The saggers with the glazed tiles are transported to the glost firing channel of the kiln.
- After firing, the unloaded saggers are placed into containers and transported to the selection line.
- 6.2.1.7. Selection
 - The fired products are unloaded from the saggers and the selection line is fed.
 - The fired products are selected into three choices.
 - The paper cartons are transported and the finished products are packed.
 - The accomplished wall and floor tiles are loaded on pallets and transported into the warehouse.

6.2.2. Acquisition of technology

All the technological data necessary for the best running of the plant shall be bought from the machinery deliverer. For the sake of the good run of the plant, the following parts will have to be purchased:

- Development of the body based on local raw materials with regard to the used equipment in the deliverer's labs, laboratory and semi-industrial tests of these raw materials,
- development of glazes in the deliverer's labs,
- complete and detailed technological flow sheets,
- pressing, drying, firing tests and glaze analyses,
- detailed data for the production organization,

- detailed data for the production control.

6.2.3. Cost Estimate

According to the current European conditions, the costs in technology are estimated - 160 000 Sf.

6.3. Equipment

6.3.1. Production equipment

6.3.1.1. Body preparation section

- Metallic charging hopper
- Vibrating feeder
- Jaw crusher
- Rubber belt conveyor
- Skips
- Platform fixed balance
- Electric hoist
- Ball mills including lining and pebbles
- Vibrating sieves
- Stirrers
- Pneumatic membrane pumps
- Metallic carpentry
- Electric board

Electricity installation 175 kW

Price 500 000 Sf. CIF

Annual capacity 3 000 ton body

Daily capacity 11 ton body

6.3.1.2. Powder preparation section

- Spray drier
- Rubber belt conveyors
- Vibrating sieves
- Bucket elevators
- Metallic silos
- Level indicators
- Hoppers
- Metallic carpentry
- Dischargers
- Electric board
- Dust suction plant

Electricity installation 100 kW Price 580 000 Sf. CIF Annual capacity of atomizer - 2 900 ton of evaporated water Hour capacity - 485 kgs of evaporated water

6.3.1.3. Pressing section

- Hydraulic presses including steel dies 150x150 mm, 200x100 mm and 200x200 mm
- Automatic collecting and piling machines
- Electricity installation 100 kW
- Price 520 000 Sf. CIF
- Daily capacity 900 sq.m.
- 6.3.1.4. Drying and firing section
 - Tunnel drier
 - Trucks

- Double channel muffled kiln including automatic control

- Refractory saggers
- Electricity installation 40 kW
- Price 1 063 000 Sf. CIF

Annual capacity 200 000 sq.m.

6,3,1.5. Glaze preparation section

- Weighing machine
- Skips
- Electric hoist
- Ball mills including pebbles and lining
- Sieves
- Pneumatic membrane pumps
- Stirrers
- Piping
- Metallic containers
- Metallic carpentry
- Double jar turner
- Electric board

6.3.1.6. Glazing section

- Special glazing line
- Dust suction installation
- Containers
- Metallic pallets

Electricity installation 45 kW Price 310 000 Sf. CIF

Annual capacity 210 000 sq.m.

6.3.1.7. 3election section

- Selection line
- Thermoretracting device
- Metallic containers

Price 46 000 Sf. CIF Annual capacity 200 000 sq.m.

6.3.2. Auxiliary plant

6.3.2.1. Technological laboratory

- Technical weighing machine
- Bunsen burners
- Glass ware
- Pizzarelli calcimeter
- Laboratory sieve
- Laboratory stirrer
- Laboratory hammer mill
- Technical viscosimeter
- Chronometer
- Laboratory hydraulic press
- Drying room
- Baume densimeter
- Laboratory autoclave
- Muffled lab. kiln
- Wall bench
- Store of glass ware

Price 123 000 Sf. CIF

6.3.2.2. Transport centre

- 1 car
- 1 lorry (3.0 ton)
- 1 fork lift car (2.5 ton)
- 1 loader (0.5 cub.m.)
- 1 terrain pick-up

Price 200 000 Sf.

6.3.2.3. Utility supply plant

- Electric and lighting installation complete with transformer, low tension distribution, lighting bodies, electric cables, etc.
- Industrial, drinking and fight-firing water installation plant, distribution installation, pipes, valves and connections
- Fuel oil installation composed of storing tanks (50 cub. m.), pumping and fuel oil installation inside factory
- Waste water treating plant

Estimated price 700 000 Sf.

6.3.2.4. Metallic structures

Supporting structures in general for inspection and support of machines, chimneys, gangways, support of a atomizer, rails, tanks, warehouse furniture, etc.

Estimated weight 70 tons

Price (3 000 Sf./ton) 210 000 Sf.

6.3.2.5. Other auxiliary equipment

- Communications inside factory
- Mechanical workshop
- Ventilation
- Price 200 000 Sf.

6.3.3. Service equipment

- 6.3.3.1. Office equipment calculators, repro, furniture, etc. Price 200 000 Sf.
- 6.3.3.2. Canteen, cleaning security furniture, cleaners and other equipment Price 50 000 Sf.

6.3.4. Spare parts

The spare parts necessary for 1-year operation (3.5% of costs of machinery)

- Motors
- Belts
- Bearings
- Valves
- Others

Price 105 000 Sf.

6.3.5. Cost estimate

N.

6.3.5.1. Production equipment

Total	3 278 000 Sf.
- Selection section	46_000_Sf.
- Glazing section	310 000 Sf.
Glaze preparation section	259 000 Sf.
- Drying and firing section	1 063 000 Sf.
- Pressing section	520 000 Sf.
- Powder preparation section	580 000 Sf.
- Body preparation section	500 000 Sf.

6.3.5.2. Auxiliary plant

- Technological lab.	123 000 Sf.
- Transport centre	200 000 Sf.
- Utility supply	700 000 Sf.
- Metallic structures	210 000 Sf.
- Other auxiliary equipment	200 000 Sf.
Total	1 433 000 Sf.
6.3.5.3. Service equipment	

- Offices	200 000 Sf.
- Other services	50 000 Sf.
Total	250 000 Sf.

6.3.5.4. Spare parts

Equipment total

5 066 000 Sf.

105 000 Sf.

The prices of equipment are based on prices 1982 incremented by 10% inflation and in case of import by 12% for shipment and insurance.

(Currency ratio between Suriname guilder (Sf.) and US dollar in September 1982 is 1.77 : 1).

6.4. Civil Engineering Works

Both the technological flow-sheet and used equipment implicite the necessary engineering works. Land necessary for buildings and good accessability and handling raw materials and products amounts to 15 000 sq.m. The production plant covers 3 200 sq.m. prevailing height of which is 6 or 7 m, only 80 sq.m. of surface is a 15-m high tower for the atomizer. The plant lay-out is drawn in Schemes 6.1. and 6.2.

- 55 -

6.4.1. Site preparation

It is supposed that the plant will be erected on a virgin unprepared land close to the road connecting Smalkalden and Onverdacht. The land must be prepared for the construction, the roads inside factory and the fence must be built.

6.4.2. Buildings

The factory hall will be that of the very light construction, steel, metallic sheets and concrete to prevent the machinery, staff and material against weather. No cranes, etc. need to be built. The covered area is 3 200 sq.m. from which 80 sq.m. is the atomizer tower. Offices and a canteen covering 400 sq.m. are supposed to be built in the 1st floor. - 3 050 sq. m. factory hall, h = 6 or 7 m

- 80 sq. m. tower, h = 15 m
- 400 sq.m. offices and canteen

6.4.3. Cost estimate

Э

6.4.3.1. Site preparation

The costs are estimated to be 330 000 Sf. including reserve and inflation.

6.4.3.2, Buildings

The factory buildings are estimated to be 250 Sf./sq.m. The atomizer tower - 300 Sf./sq.m., the offices - 550 Sf./sq.m.

These prices include 10% reserve + inflation. Total cost in building construction - 1 006 500 Sf. These costs are estimated according to VABI quotation. 6.4.3.3. Outdoor works

Outdoor works were estimated with a presupposition that a bad location from the point of view of the distances is chosen 500 000 Sf.

6.4.3.4. Estimate of production cost
According to statistics, average maintenance cost in
buildings and similar asset is approximately 2% from
investment cost
43 000 Sf.

Schedules 6.-1., 6.-2., 6.-4., 6.-6.

- 57 -

7. PLANT ORGANIZATION AND OVERHEAD COSTS

This proposal of the plant organization is one of the possible ones and takes into account:

- the scale of production,

- the used technology and physical transformations of materials and inputs during processing,
- the minimum labour to operate the used equipment,

and strives that cost in manpower should be as low as possible and quality of management (and owing to it quality of products, too) as high as possible.

With regard to the technology flow-sheet (Scheme 6.3.), the production can be parted from the point of view of the physical transformations into three departments which will be managed by a specialized supervisor. (Requirements of manpower are dealt with in Chapter 8).

7.1. Production Departments

7.1.1. Green tile preparation department

This department comprises operations from weighing materials down to pressing tiles. Its factory over-heads:

- wages of a supervisor
- auxiliary materials pebbles, lubricants, linings, cleaning materials, etc.
- supplies as drinking water and electric power for lighting.

7.1.2. Kiln department

In this department, the pressed tiles are fired, then the bisque is transported to the glazing line and glazed tiles are put into the kiln to be glost fired and then transported to the selection line.

- wages of a supervisor
- lubricants, saggers and other auxiliary materials
- water and electricity.

7.1.3. Glazing and selection department

In this department, glazes are prepared, the fired bisque is glazed and the finished products are selected and stored.

Its overhead costs:

- wages of a supervisor
- lubricants and other auxiliary materials
- water and electricity.

7.2. Service Department

7.2.1. Maintenance shop

This department is also supervised by a specialist and it is in charge for the production equipment maintenance. The wages, contractual repairements, spare parts consumed in maintaining machines and utilities are factory overhead costs.

7.2.2. Other services

٦Ľ

Cost in transport centre, security of the factory and cleaning are parts of the factory overheads.

7.3. Administration

The cost in wages of managerial staff (dealt with in Chapter 8) as well as other expenses related to the management of staff are comprehended as administrative overheads.

7.4. Overhead Costs

7.4.1. Factory overheads

- Wages of four supervisors, four maintenance workmen, four guards, two drivers and two workers for cleaning including surcharges are 225 600 Sf. per annum.
- Auxiliary materials and factory supplies (pebbles, silex linings, saggers, kiln plates, lubricants, etc.) are estimated to be
- 60 000 Sf. per annum.
- 105 000 Sf. per annum. - Spare parts
- Utilities, drinking water and indirect electric power 25 000 Sf. per annum.
- Total overhead materials 190 000 Sf.
- Contractual repairs of buildings are estimated to be 43 000 Sf.

Then, the factory overheads will be 458.600 Sf. per annum.

7.4.2. Administrative overheads

- Salaries of the managerial staff will be
 - 307 200 Sf. per annum.
- Travel, insurance and communication about 2% from operating cost will be 60 000 Sf. Then, the administrative overheads 367 200 Sf.

7.4.3. Depreciation

- Buildings and civil engineering works at rate 5% 92 000 Sf.
- Machinery at rate 10%, transport 20%.

8. MANPOWER

8.1. Manpower Requirements

The operation of the wall and floor tile plant equipped with the machinery described in Chapter 6 is not demanding for highly skilled workers and it is appropriate to women. Considerable share of workers handles raw material, semi-products and finished products. There are three separated departments in the production of wall and floor tiles which respond to the technological changes of the material during the production process.

- The green tile preparation department includes body slip preparation section, powder preparation section and pressing section. A supervisor is considered for this department and skilled and semi-skilled workers.
- The kiln department includes the drying of the pressed tiles, the bisque firing and the glost firing. A supervisor, operators and workers for handling trucks, plates and saggers are considered.
- The glazing and selection department includes the glaze preparation, the glazing, the selection and warehouse. A supervisor and skilled and semi-skilled labour are considered.

Besides these production departments, there are service centres - maintenance, transport, guard and cleaning employing workers.

8.1.1. Workers

8.1.1.1. Preproduction phase

This phase comprehends all the activities related to the production of wall and floor tiles from the point of view of manning the factory, consequently the preparation of workers and staff for the operation. There are three periods before the start-up: training selected people, mounting-up machinery and trial run. The factory will be manned step by step during these periods.

- Training is considered to be run by the deliverer of machinery for supervisors of the production departments and maintenance workers.
- These workers will be present at mounting-up the equipment as well. Guard, cleaning and drivers will be employed during this phase.
- During the trial run, the factory will be fully manned.

Consequently, 4 supervisors and 4 maintenance workers will be trained - 8 workers.

During mounting-up - 4 guards, 2 drivers, 5 workers to mounting-up the equipment and 1 person for cleaning will be employed.

(Schedule 8.-1. describes the manning during the trial run and full capacity).

8.1.1.2. Operational phase

To avoid all the losses caused by sickness and others, the minimum operational staff is enhanced by 20% (7 workers).

- Green tiles preparation department
 - 1 supervisor
 - 2 skilled and 2 semi-skilled workers for batching in 2 shifts
 - 3 skilled workers for operating the atomizer during
 3 shifts
 - 2 skilled and 2 semi-skilled workers for operating 2 presses during 1 shift

2 skilled workers to cover losses in this department. The amount total is 14 workers. - Kiln department

- . .

- 1 supervisor
- 4 skilled workers operating kilns and drier during 3 shifts + 1 shift for changing in weekends
- 4 semi-skilled workers for handling trucks during drying and bisque firing cycles; 3 shifts + 1 shift for changing
- 4 semi-skilled workers for handling containers and saggers during glost firing cycle; 3 shifts + 1 shift for changing

1 skilled and 2 semi-skilled workers to cover losses.

The total amount is 16 workers.

- Glazing and selection department

- 1 supervisor
- 1 skilled worker for the glaze preparation 1 shift
- 2 skilled and 2 semi-skilled workers for operating the glazing line
- 2 skilled and 2 semi-skilled workers for operating the selection line and handling the selected products

1 skilled and 1 semi-skilled worker to cover losses The amount total is 12 workers.

- Maintenance shop
 - 1 supervisor
 - 4 skilled workers during 2 shifts for the maintenance and mending
- Guard
 - 4 unskilled workers during 3 shifts + 1 shift for changing

- Drivers

3 drivers for the transport section

- Cleaning
 - 2 unskilled workers for cleaning offices and the factory shops

The amount of workers is 56 persons.

8.1.2. Managerial staff

The minimum requirement for the management must be related to the kind and scope of the production. In case of the ceramic wall and floor tile production, some managerial activities are not necessary such as technological development for the sake of the product permanency and some functions can be delegated to other managers because of the small scope of the production.

In case of this project, 3 functional lines are evident.

8.1.2.1. Sale management

With regard to the scope of the necessary trade network, two salesmen, one designer and one clerk are considered to manage all the activities related to the sale and material purchase. A sale manager is in charge for these activities.

8.1.2.2. Production management

This group is in charge for the constant and proper production of wall and floor tiles. Managed by a production manager, there are 4 supervisors in the production and maintenance, 1 technologist responsible for the quality of input and 1 laboratory technician.

8.1.2.3. Administration

With regard to the small amount of persons employed and the simple production and supply programmes, there is not an administrative manager. A chief accountant is supposed to manage financing, 1 bookkeeper and 1 clerk are supposed as well.

The general manager and his secretary complement the managerial staff.

The amount total of the management is 13 persons and no foreign employees are considered to assist the operation of the plant after starting-up.

8.1.2.4. Managerial staff during preproduction phase The managerial staff is dealt with from the point of view of the plant operation. The staff controlling pre-investment and construction phases is dealt with separately (Chapter 9 - Implementation scheduling).

Training

The production manager, technologist and laboratory technician will be trained in the deliverer's facilities. The rest of the staff is supposed to be employed in the moment of mounting-up machinery.

8.2. Administrative Overhead Cost

Administrative overheads include the travel, insurance and communication expenses. These items are estimated on the basis of average share from the operating expenditures in current ceramic factories. This share being 2% from the total production expenditures, the cost is 60 000 Sf. approx.

8.3. Wages and Salaries

The development of wages and salaries in the industrial sector in Suriname during the period from 1973 to 1980 is according to the Afd. Nat. Rek. (Algemeen Bureau voor de Statistiek) as follows:

 1973 - 2
 610
 Sf. annually including all the surcharges

 1974 - 2
 550
 Sf.
 - "

 1975 - 3
 370
 Sf.
 - "

 1976 - 6
 020
 Sf.
 - "

 1977 - 7
 110
 Sf.
 - "

 1978 - 7
 700
 Sf.
 - "

 1979 - 8
 370
 Sf.
 - "

 1980 - 9
 640
 Sf.
 - "

If this series is projected into 1984, the average wages and salaries in the industrial sector will be 14 170 Sf. per annum (correlation coefficient 0.9768) (Schedules 8.-2. and 8.-4. exhibit estimate wages and salaries respectively at average annual wages and salaries being 14.680 Sf.) According to the current diversity of wages and salaries with regard to the categories of employees, the wages and salaries per month are estimated to be in 1984 as follows:

-	wages without surcharges	pe	er mo	onth	
	skilled labour		800	Sf.	
	semi-skilled labour		530	Sf.	
	unskilled labour		400	Sf.	
	supervisor	1	470	Sf.	
_	salaries without surcharg			month	
_	salaries without surchary	ge:	a her	monten	
-	general manager	-	400		
-		3	•	Sf.	
-	general manager	3 2	400	Sf. Sf.	

chief accountant	1 500 Sf.
book-keeper	1 000 Sf.
designer	1 000 Sf.
technologist	1 200 Sf.
lab-technician	1 000 Sf.
clerks	550 Sf.

8.4. Surcharges

According to the current conditions in the Suriname industrial sector, the working week is 5 days and 40 hours. Consequently, there are 261 paid days. Average surcharge paid for the official holidays and leaves is 16% and for the sickness 10%. In addition, there are paid 10% of the pension contribution and 14% as other surcharges.

- Holidays and leave	- 16%
- Health insurance	- 10%
- Others like bonuses	4%
	50%

From which necessitates the following amount of effective days per annum:

- year	365.25 days
- sundays and saturdays	104.36
- number of paid days	_261
- holidays	12
- leave	15
- sickness	17
Effective days	217

Schedules 8.-2. and 8.-4. show annual wages and salaries respectively.

Total	1	012	800	Sf.	•
- Salaries are		307	200	Sf.	_
- Fired wages are		225	000	Sf.	
- Variable wages are		480	000	Sf.	

•

.

- 68 -

.

•

.

.

9. IMPLEMENTATION SCHEDULING

The implementation period of the project is anticipated to take 18 months since the moment of decission till the start-up of the production.

The critical path of the implementation includes activities as follows:

- Setting-up the implementation team and the choice of the equipment supplier;
- Detailed engineering of the project as a fundamental condition of starting the construction of buildings;
- Purchase of land as a condition of starting the construction;
- Construction of buildings;
- Mounting-up the production and auxiliary equipment;
- Trial run.
- The timing of the implementation is shown in Scheme 9.1.

9.1. Activities during Implementation

9.1.1. Implementation management

After deciding to produce wall and floor tiles in Suriname, a team of experts authorized to manage the construction of the plant will be set up. It will be in charge to choose constructors, purchase land, control construction and recruit staff and labour during the first 12 months of the implementation. A chief expert and two specialists are supposed to be members of the team. After finishing the construction, the whole staff of the factory will take part in the following activities:

- mounting-up of the technological equipment
- trial run
- preparation of the trial run and the production
 purchase of inputs and marketing
- recruitment and training of workers.

9.1.2. Engineering

After the technology deliverer is chosen and the order placed, the detailed engineering comprising the listed data, specification and plans must be purchased.

- All the elements necessary for the realization of the industrial buildings, general and detailed plans of the foundations, basements, sewages, passages, tanks, etc.,
- drawings and detailed specifications of the parts of the auxiliary equipment,
- executive and layout drawings of the production plant, auxiliary and service plants,
- specifications and documentation of all the equipment, instructions for the operation and maintenance,
- specifications and details of mounting-up the equipment.

Detailed implementation scheduling must be carried out and based on these data.

9.1.3. Choice of a building contractor

The bidding and choice of the contractor must be finished 7 months before the start of the mounting-up period because the civil engineering works, planning and construction will take 7 months. Consequently, as the term of the equipment delivery is 10 months after obtaining the order, the equipment will be prepared to be mounted-up in the 12th month after starting the implementation and the buildings must be finished at the same moment.

9.1.4. Choice of other constructors

Deliverers of the auxiliary and service equipment must be chosen and ordered to deliver this equipment during construction and mounting-up periods (according to the detailed engineering).

9.1.5. Purchase of land

The plant will be erected in Onverdacht. The land there is owned by private persons and the purchase must be negotiated before the construction of buildings starts.

9.1.6. Construction of buildings

The implementation team will manage the construction and check the quality of works.

9.1.7. Training of staff and workmen

Production manager, technologist, laboratory technician, supervisors and maintenance workers will be recruited in advance and trained in production equipment deliverer's facilities (two months).

9.1.8. Erection

The whole factory staff will be recruited and authorized to manage the further steps of the implementation. Trained supervisors and maintenance workers will take part in this activity. The guard (4 persons), 2 drivers, 1 person for cleaning and 5 workers will be recruited, too. The erection will be backed by supplier's technical assistance.

9.1.9. Trial run

The trial run of the factory will be supervised by technology supplier's assistance. The complete labour must be recruited and trained during this period and raw materials and utilities also purchased.

9.2. Timing of Implementation

There are shown times of each activity during implementation in Scheme 9.1.

9.2.1. Critical activities

- Setting-up implementation team and choice of a technology supplier 2 months
- Detailed engineering 2 months

Activities related to the start of construction of buildings, i.e. choice of constructors, purchase of land must be finished during the fifth month of implementation.

- Construction of buildings 7 months
- Erection 3 months
- Trial run 3 months

9.2.2. Other activities

Activities the finish of which is conditional for the time of implementation are as follows:

- Delivery of production equipment takes 10 months after ordering the finish is the 12th month
- Other equipment must be delivered before the erection starts (details according to engineering)

- Training of staff till the 12th month
- Recruitment of other staff till the 12th month
- Recruitment of other labour till the 15th month
- Purchase of raw materials till the 15th month

9.3. Cost of Implementation

9.3.1. Implementation management and arrangements for material purchase and marketing

Salaries - 2 000 Sf./manmonth36 manmonths72 000 Sf.Travel10 000 Sf.Other expenses8 000 Sf.Expenses after recruiting the staffSalaries150 000 Sf.Overheads30 000 Sf.

Total cost in implementation 270 000 Sf.

9.3.2. Detailed engineering

Purchase of all the data, plans, drawings, etc. 100 000 Sf.

9.3.3. Training

4 supervisors, 4 workmen, production manager, technologist and laboratory technician are supposed to be trained in Europe - two months

	Wages and salaries	40	000	Sf.
	D.S.A. (3 500 Sf. manmonth)	77	000	Sf.
	Travel	25	000	Sf.
	Total cost in training	142	000	Sf.
9.3.4.	Mounting-up			
	Deliverer`s technical assistance			
	- 1 chief engineer - 2 manmonths			
	- 1 yard chief - 2 manmonths			
	- 4 specialists - 9 manmonths			
	Salaries (3 000 Sf.manmonth)	39	000	Sf.
	Allowances and lodging (3 500 Sf.)	45	000	Sf.
	Travel within Suriname	5	500	Sf.
	Oversea travel	18	000	Sf.
	Investor's workers			
	- 4 supervisors			
	- 4 maintenance workers			
	- 5 other workers			
	- 2 drivers			
	- 5 guard and cleaning			
	Man			
	Wages	67	000	Sf.
	Transport of equipment and other costs	15	000	Sf.
	Total cost in mounting-up	190	000	Sf.
9.3.5.	Trial_run			
	Deliverer's technical assistance			
	- 1 chief technologist 3 manmonths	1		

3 manmonths

5 manmonths

- 1 engineer

- 2 specialists

Salaries (3 000 Sf./manmonth)	33	000	Sf.
Allowances and lodging	38	50 0	Sf.
Travel within Suriname	4	500	Sf.
Oversea travel	12	000	Sf.

Investor`s workers The plant will be fully manned, i.e. 56 workers/3 months

Wages	176 000 Sf.
Raw material and utilities	140 000 Sf.
Total cost in trial run	404 000 Sf.
Total cost in implementation	<u>l 106 000 Sf</u> .

- 75 -

- 76 -

10. FINANCIAL AND ECONOMIC EVALUATION

10.1. Total Investment Costs

The structure of total investment costs is given in Schedules 10-1/1, 10-1/2, 10-2/1, 10-2/2, 10-6/1, 10-6/2.

Break-down of these costs is as follows:

Thousand Sf.		oreign urrency		Local currency		Total
1. Land		,		45		45
2. Site preparation				330		330
3. Buildings + c.w.			1	507	1	507
4. Technology + know~how		160				160
5. Equipment	3	606	1	460	5	066
6. Working cap.				942		942
7. Implementation		398		10 8	1	106
Total	4	164	4	992	9	156

From that, the production equipment is 3 600 /including spare parts/ or 40% from the investment costs. Including costs in know-how, training, mounting-up and trial run, 45% from the investment costs will have to be paid for in foreign currencies.

10.1.1. Working capital

Working capital has been calculated in Schedules 10-3/1 and 10-3/2.

The calculation has been based or estimated optimal inventories from the point of view of costs in purchasing and storing. The coefficient of turnover was multiplied by two in 1984 since the production is expected to run 6 months.

- Accounts receivable term 30 days for payments is derived from the current conditions in Suriname.
- Raw material B raw kaolin and clay should be mined for 1-year inventory due to the costs in the preparation of mining and homogenization. These raw materials can be won during the small rainy periods only and the excavator must be transported and an access road into the ditch prepared.
- Raw material C silica is anticipated to be stored for 3 months due to better winning conditions.
- Imported raw materials glazes, stains and limestone will be stored during 3 months to minimize contingent losses in case of delayed deliveries.
- Spare parts 1-year inventory to minimize contingent losses.
- Fuel oil 14-day inventory is based on a presupposition that 1 current lorry can transport 25 tons of oil and this is the consumption during two weeks.
- Work in progress 10 days correspond to the processing time.
- Finished products 8-week inventory is anticipated with regard to the comparatively large share of exports.
- Cash in hand 14 days of each to meet terms of cash disbursements related principally to the wages and salaries.

10.2. Project Financing

The anticipated financial sources are shown in Schedules 10-8/1 and 10-8/2. The cash flow is shown in Schedule 10-8/3. Reserves and financial balance are shown in Schedules 10-9. and 10-10. respectively.

10.2.1. Debt equity ratio

To meet the cash disbursements in the crucial year 1985 (80% utilization of the plant capacity and the first year of debt repayment) with sufficient edge for contingent production failure, the maximum loan is 3 500 th. Sf.

-	Sales revenues	4	050	
-	Operating cost	2	350	
-	Repayment		700	
-	Interest		310	-
_	Cash balance		690	

In case of 10% decrease of the expected revenues, i.e. 400 th. Sf., there will be 300 th. Sf. in cash and a minimized risk of the insolvency.

10.2.2. Loan and interest

The outside capital is expected to be raised from the Nationale Ontwikkelings Bank Paramaribo at average 8.5% interest and 5 - 15 years term. Since the interest is without influence on the income tax in case of 10-year plan horizon (10 year's tax exemption according to Land's Ordinance 1970), 5 year's loan is suggested to minimize the financial costs.

10.2.3. Equity

Two sources of equity are available within this project - approximately 30 - 40% of the promoter's capital and the rest of collaborators' capital.

- Required rate of return

This question was discussed with investors and the required rate of return fluctuated between 12 - 20%. 20% are taken into account for N.P.V. calculations. (The N.P.V. without and with outside financing are calculated in Schedules 10-13. and 10-14. respectively.).

10.3. Total Production Costs

The production costs are calculated in Schedules 10-11. and 10-12.

Costs per sq.m. wall and floor tiles

- Direct materials and inputs	7.73 Sf.
- Direct manpower	3.00
- Factory overheads	2.87
- Administrative overheads	2.29
- Distribution costs	0.44
Operating costs	16.33 Sf.
- Financial costs	1.16 Sf.
- Depreciation	4.72
Production costs	22.21 Sf.

Break-down of costs (% from production costs)

- Raw materials	4.9%
- Glazes	10.3
- Packaging	4.5
- Electric power	5.4
- 0il	9.7
- Wages and salaries	28.5

	100.0%
- Depreciation	21.3%
- Financial costs	5.2%
- Distribution	2.0%
- Other overheads	8.2%

Source of calculation: Schedules 3-2 - distribution costs 4-1 - material and inputs 6-6 - other factory overheads and depreciation 8-2 and 8-3 wages and salaries.

10.4. Financial Evaluation

10.4.1. Net present value

calculated at 20% factor

- witnout outside financing the N.P.V. is 68 000 Sf. (Schedule 10-13)
- with outside financing the N.P.V. is 626 000 Sf. (Schedule 10-14)

This criterion indicates that the project is sound investment and that financing by means of 40/60 debt equity ratio yields higher N.P.V. Consequently, the calculation of the following criteria is based on outside financing only.

	cash	flow		cash flow at 24% factor
1983	- 2	555	- 2 077	- 2 060
1984	- 2	690	- 1 778	- 1 749
1985		690	371	362
1986	1	145	500	484
1987	1	575	559	537
1988	1	435	414	395
1989	1	700	399	377
1990	2	460	470	440
1991	2	460	382	355
1992	2	460	310	286
1993		745	487	445
	13		37	128

10.4.2. Internal rate of return

 $IRR = 23\% + \frac{37}{37-(-128)} \cdot 100 = 23.22\%$

10.4.3. Benefit - cost ratio

)

	investment+repayment discounted by 20%	income after interest discounted by 20%
1983	2 129	
1984	2 153	285
1985	405	804
1986	338	890
1987	281	914
1988	301	782
1989	195	670
1990	-	572
1991	-	477
1992	-	397
1993	y 308	331
Total	5 494	6 122
B.C.R.	<u>6 122 /income</u> 5 494 /investment	• 1.11

- - - -

	Investment outlay		Income		Balance				
1983		2	555		-	* *** *** *** *		· 2	555
1984	-	6	305		410		-		450
1985	-		300	1	700		-	7	050
1986	-		50	2	095		-	5	005
1987	-		55	2	460		-	2	600
1988	-		200	2	460		-		340
1989			-	2	460			2	120

Then, the pay-back period is 6 years + $\frac{340 \times 12}{2460}$ months,

6 years and 2 months.

10.4.5. Simple rate of return on investment outlay (1989)

 $R = \frac{NP + I}{K} \cdot 100$ NP = net profit (revenues - production costs) = 1 645 I = interest = 60 K = investment = 9 260 $R = \frac{1705}{9260} \cdot 100 = \frac{18.4\%}{100}$

10.4.6. Simple rate of return on equity (1989)

 $Re = \frac{NP}{Q} - .100$ Q NP = net profit = 1 645 Q = equity = 5 655 $Re = \frac{1645}{5655} \cdot 100 = \frac{29.1\%}{5655}$

10.4.7. Break-even analysis (year 1987) $px = \hat{f} + vx$ $x = \frac{f}{---}$ p-v x = break even point (BEP) f = fixed costs (Schedule 10-11, items 3., 4., 6,. 7,. - 1 770) v = variable costs (Schedule 10-11, items 1., 2., 5., - 1 787) divided by production, then v = 11.175075 p = price per sq.m. = 31.72 160 BEP = -1770 = 86.130 sq.m.31.72 - 11.17 or 53.8% full capacity.

10.4.8. Sensitivity analysis

Contingency A - prices of exported products cut off
 by 30% (the same composition of export
 and home sales)
 f = 1 770
 v = 11.17
 p = 27.00
 BEP = 111.800 sq.m. (69.9% cap.)
Contingency B - Average price cut off by 10% and the
 same composition of exported products
 and home sales
 f = 1 770
 v = 11.17
 p = 24.30
 BFP = 134.800 sq.m. (84.3% cap.)

- 83 -

```
Contingency C - variable costs increased by 10%
                 f = 1 770
                  v = 12.29
                  p = 31.72
                  BEP = 91.100 sq.m. (56.9% cap.)
Contingency D - fixed costs increased by 10%
                  f = 1 947
                  v = 11.17
                  p = 31.72
                  BEP = 94.700 \text{ sq.m.} (59-2\% \text{ cap.})
Contingency E - cont. under A,C,D met simultaneously
                 f = 1 947
                  v = 12.29
                  p = 27.00
                  BEP = 132.400 \text{ sq.m.} (82.7\% \text{ cap.})
Contingency F - cont. under B,C,D met simultaneously
                  f = 1 947
                  v = 12.29
                 p = 24.30
                 BEP = 162.100 \text{ sq.m.} (101.3\% \text{ cap.})
```

4

10.5. National Economic Evaluation

10.5.1. Job creation

Total investment	9.155 th. Sf.
Manpower	69
Investm./job	132 600 Sf/job
Investment in for	eign currency 4 164 th. Sf.
foreign cur./job	60_300_Sf/job

10.5.2. Foreign currency savings (mil. Sf.)

Savings	3.9 mil. Sf.
- Depreciation (investm. in foreign currency)	- 0.40
- Current inputs	- 0.80
- Export	+ 2.65
- Import substitution	+ 2.45

3.9 mil. Sf.

10.5.3. Value added (th. Sf.)

Value added	3_549_th. Sf
- Other materials and inputs	- 190
 Direct materials and inputs 	- 1 236
- Revenues	5 075

10.6. Implications

10.6.1. Investment costs

These costs are related to the implemented technology - wet way with drying ceramic slip by the atomizer and with two firing cycles, body is based on the lime-siliceous composition. Though more expensive in machinery, it saves manpower and energy in comparison with the other ways, e. g. body preparation by means of filter-presses, etc. A considerable impact on these costs could have the shifting of the implementation by 1 year due to the inflation rate (up to 10 mil. Sf.)

10.6.2. Production costs

With regard to the share of costs in wages and salaries being 39% from operating costs, there is an implication that changes of wages and salaries have a 3-times higher impact on operating costs than changes of costs in fuels, etc. Consequently, ability of competition depends considerably on costs in wages and salaries.

10.6.3. Financial sources

Debt equity ratio $40/60^{\circ}$ is advantageous from the point of view of the present value and safe from the point of view of solvency.

10.6.4. Economic criteria

Internal rate of return 23.22% and simple rate of return 18.4% are very good from the point of view of risks in investment. The break-even point (86,000 sq.m. or 53.8% cap.) makes possible to meet even the total failure of the export with a profit edge. Even if costs were increased by 10% at simultaneous cutting off prices by 10%, the plant would yield 650 th. Sf. of net profit per annum. Consequently, the establishment of the 160,000 sq.m. wall and floor tile production in Suriname is an returnable investment.

In addition, there are possibilities for future improving the incomes:

- to put into tests other local materials as shells, etc. to substitute the imported limestone,
- the necessary direct labour was added by 20% due to the expected unexperience; it can be expected that the utilization of plant capacity will be higher after mastering the operation.

- Energy consumption was calculated with considerable reserve and especially new kilns can be expected to be more economical. 11. APPENDIX

A - SCHEDULES

3-1. Estimate of Sales Revenues
3-2. Sales and Distribution Costs
3-3. Production Programme
4-1. Estimate of Production Costs:
Material Inputs
6-1. Estimate of Technology Costs
6-2. Estimate of Investment Costs - Equipment
6-4. Estimate of Investment Costs - Civil Engineering
Works
6-6. Estimate of Production Costs - Maintenance and
Repairs
7. Other Overhead Costs
8-1. Manning Table - Labour
8-2. Estimate of Production Costs - Wages
8-3. Manning Table - Staff
8-4. Estimate of Production Costs - Salaries
9-1. Estimate of Investment Costs - Project Implementation
10-1/1. Initial Fixed Investment Costs
10-1/2. Fixed Investment Costs
10-2/1. Production Capital Expenditures
10-2/2. Production Capital Expenditures, by year
10-3/1. Calculation of Working Capital
10-3/2. Calculation of Working Capital - Working
Capital Requirements
10-6/1. Total Initial Investment Costs
10-6/2. Total Investment Costs
10-7/1. Total Initial Assets
10-7/2. Total Assets

10-8/1.	Sources of Finance
10-8/2.	Sources of Initial Funds
10-8/3.	Cash Flow - Financial Plan
10-9.	Calculation of Reserves
10-10.	Projected Balance Sheet
10-11.	Total Production Costs - Full Capacity
10-12.	Production Costs
10-13.	Cash Flow - Net Present Value without Outside
	Financing
10-14.	Cash Flow - Net Present Value with Outside
	Financing

B - TABLES

- 3.1. Housing Construction in Greater Paramaribo
- 3.2. Population per District
- 3.3. Gross and Net Population
- 3.4. Retail Prices of Wall and Floor Tiles
- 3.5. Production of Wall and Floor Tiles in America
- 3.6. Consumption of Wall and Floor Tiles in the USA
- 3.7. CIF Prices in Trinidad and Tobago
- 4.1. Chemical Composition of Suriname Kaolins
- 4.2. Batch Composition, Chemical Composition and Physical Properties
- 4.3. Wall Tile Production Raw Mat. Flow
- 4.4. Floor Tile Production Raw Mat. Flow
- 4.5. Material and Energy Consumption during Full Capacity
- 4.6. Material and Inputs during Start-up
- 4.7. Raw Materials and Inputs Costs during Start-up
- 7.1. Overhead Costs during Start-up
- 9.1. Investment during Implementation

C - SCHEMES AND MAPS

6.1. Ceramic Plant - Wall and Floor Tiles
6.2. Ceramic Plant
6.3. Technological Flow Sheet
5.1. Map Ceramic Plant Location
9.1. Implementation Timing

D - ANNEXES

1. Variants of Production Programme

2. Analysis of Heat Units

- 90 -

 $\bullet \bullet$

1

•

SCHEDULE 3-1		<u>E</u>	stimate	e of Sa	les Rever	lues		Un		000 sq. 000 Sf.				
Products					year 1	1984			year 1985					
Description	Un Pr	it ice		Quanti	ty		Revenues		Quantity			Revenues		
	exp.	loc.	exp.	loc.	total	exp.	loc.	total	_exp.	100.	total	exp.	loc.	total
undecorated wall tiles	21	21	-	21	21	-	441	441	5	41	46	105	861	966
decorated wall tiles	36	36	_	10	10	-	360	36 0	30	8.	38	1080	288	1368
undecorated floor tiles	32	32	-	12	12	_	384	384	33	20	23	96	640	736
decorated floor tiles	47	47		5	5	_	235	235	16	5	21	152	235	987
GRAND TOTAL							1420	1420				2033	2024	4057
Products					year l	986			year 1987					
Description		Unit Price Quantity			Revenues			Quantity			Revenues			
	exp.	loc.	exp.	loc.	total	exp.	loc.	total	exp.	10c.	total	exp.	loc.	total
undecorated wall tiles	21	21	5	46	51	105	966	1071	7	50	57	147	1050	1197
decorated wall tiles	36	36	33	10	43	1188	360	1548	38	10	48	1368	360	1728
undecorated floor tiles	32	32	3	23	23	96	736	832	4	25	29	128	· 8 00	928
decorated floor tiles	47	47	19	5	24	893	235	1128	21	5	26	987	235	1222
GRAND TOTAL	!					2282	2297	4579	1			2630	2445	5075

.

SCHEDULE 3-2 Sales and Distribution Costs

Sale	s and Dis	tribut	ion Costs							
No.	Quality	Unit	Item	Local	Foreign	Unit	Costs (1000 Sf.)			
		L	Description			Cost	Foreign	Local	Total	
1.			Sales Costs							
1.1.			Advertising				10	5	15	
1.2.			Travel				25	5	30	
ε.			Distribution]			
2.3.	2100	ton	Transport	2100		12.5		26	26	
			TOTAL				35	36	71	

6CHEDULE 3-3

Production Programme

Unit - 1000 Sf.

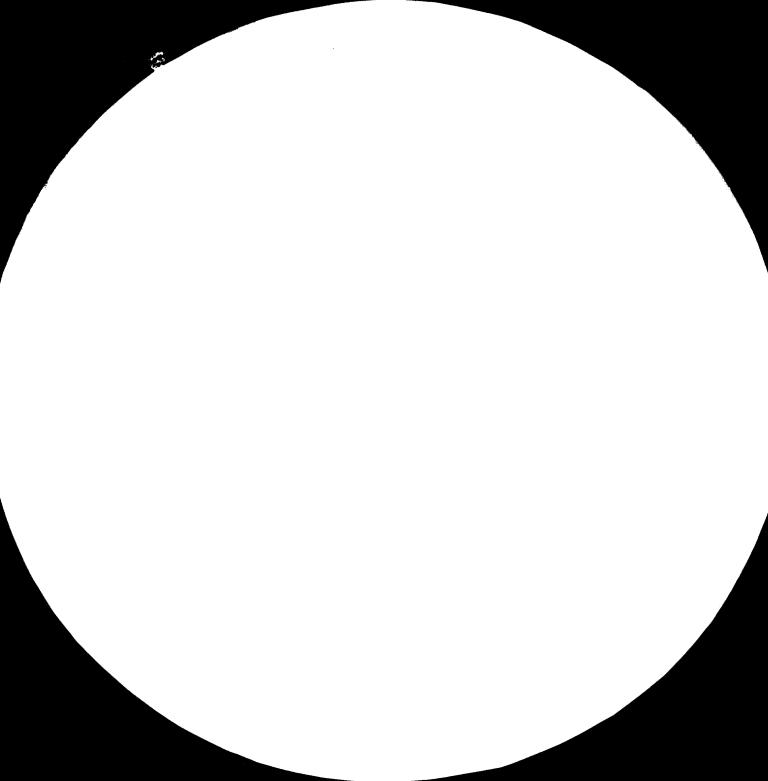
Products	Units at	Year	1984	year	1985	year	1986	yea	r 1987
	100% Cap.	Cap.%	Uni	Cap.%	Units	Cap.%	Units	Cap.%	Units
Undecorated wall tiles	57	30	21	8 0	46	90	51	100	57
Decorated wall tiles	48	30	10	80	38	90	43	100	48
Undecorated floor tiles	29	30	11	80	23	90	26	100	29
Decorated floor tiles	26	30	6	80	21	90	24	100	26
TOTAL	160	30	48	80	128	90	144	100	160

 $\bullet \bullet$

SCHEDULE 4-1 Estimate of Production Cost: Material and Inputs

Mate	rial and Inp	ats							
No.	Quantity	Unit	Item	Unit	Local	Foreign	Co	st	
			Description	Cost			Local	Foreign	Total
1.	760	ton	Raw kaolin	40	760		3 1000		31000
2.	380	ton	Plastic clay	15	380		6 000		6000
з.	1000	ton	Silica sand	10	1000		10000		10000
4.	373	ton	Limestone	350		373		131000	131000
5.	142825	kg	Frits	1.7		142725		243 000	243000
6.	6400	kg	Stains	18.1		6400		116000	116000
7.	3600	kg	Zircon-silicate	1.35		3600		5 000	5000
8.	160000	p.c.	Cartons	1.0		160000		1 60 000	160000
9.	750	MWh	Electric power	250	75 0		188000		188000
10.	1000	cu.m.	Water	1.5	1000		2000		2000
11.	625	ton	Fuel oil	550	625		344000		344000
-			DIRECT MAT. AND INPUTS				581000	65 5000	1236000
12.			Auxiliary mat.				20000	40000	60000
13.			Factory supplies (sp. parts)					105000	105000
14.	100	MWh	Utilities (el. power + water)				25000		25000
			Overhead mat.			Í	45000	145000	190000
			TOTAL MAT. + INPUTS				626000	800000	1426000

SCHEDULE 6-1


Estimate of Technology Costs

Lump Sum Payment			
Technology	Foreign	Local	Total
Wall and Floor Tile Making	160 000		160 000

SCHEDULE 6-2 Estimate of Investment Costs

No.	Item				
	Description	Foreign	Local	Total	
1.	Production Equipment				
1.1.	Body Preparation Section	500 000		500 000	
1.2.	Powder Preparation Section	580 000		580 000	
1.3.	Pressing Section	520 000		520 000	
1.4.	Drying and Firing Section	1 063 000		1 063 000	
1.5.	Glaze Preparation Section	259 000		259 000	
1.6.	Glazing Section	310 000		310 000	
1.7.	Selection Section	46 000		46 000	
2.	Auxiliary Equipment				
2.1.	Technology Laboratory	· 123 000		123 000	
2.2.	Transport Centre		200 000	200 000	
2.3.	Utility Supply		700 000	700 000	
2.4.	Metallic Structures		210 000	210 000	
2.5.	Other Auxiliary Equipment	100 000	100 D 00	200 000	
3.1.	Offices Furniture and Machines		200 000	200 000	
3.2.	Other Services		50 000	50 000	
4.	Primary Stock of Spare Parts	105 000		⊥05 000	

~

4

2.0

MICROCOPY RESOLUTION TEST CHART

Aphtering and the second states of the second second

SCHEDULE

Civil	Engineeri	ng Works	8			_			
No.	Quantity	Unit	Item	Local	Foreign	Unit	Cost		
·			Description			Cost	Foreign	Local	Total
1.			Site Preparation					33000 0	330000
2.			Buildings						
2.1.	3050	sq.m.	Factory Hall	3050		250		762500	762500
2.2.	80	sq.m.	Atomizer	80		300		24000	24000
2.3.	400	sq.m.	Offices	400		550		220000	220000
з.			Outdoor works				-	500000	500000
TOTAL						~~~~~		1836500	1836500

Estimate of Investment Cost 6-4

SCHEDULE 6-6 Estimate of Production Cost

No. Quantity		Unit	s: Maintenance Item	Unit		Cost			
			Description	Cost	Foreign	Local	Total		
1.	2	*	Site Preparation	3 500		7 000	7 000		
г.	2	*	Buildings	13 000		26 000	26 000		
3.	2	*	Outdoor Works	5 000		10 000	10 000		

5

Note: % from investment cost

SCHEDULE 7

Other Overhead Costs

Item	Factory Overheads	Adm. Overheads
	Service	Administration
Maintenance	43 000	-
Insurance, Travel, Communication		60 000
Subtotal	43_000	60_000
Depreciation Buildings		75 000
Machinery		640 000
Cars		40 000
Subtotal		755 000
TOTAL	43 000	815 000

SCHEDULE 8-1 Manning Table - Labour

e---

Wage Category: Supervisory - A; Skilled - B; Semi-skilled - C; Unskilled - D

Department	Function	Shift		1			
********			A	В	ge Categor C	D	Total
Green Tile	supervisor	-					
Preparation	batching		1	· · ·	****	······	
	weighing	1		1	1		2
	atomizer	2		<u>+</u>	L		2
	acourzer	1		1			
		2 3		1			
	press oper.	<u> </u>		2			<u> </u>
	supplements	1		<u> </u>	2	·····	. 4
	supprements	2		1			
	TOTAL Dept.	٤	1	<u> </u>	4		$\frac{1}{14}$
Kiln	supervisor	1	1				1
Department	kiln operator	1		1			1
		2		1			, 1 -
		3		1			1
		4	·	1			1
	bisque	1			1		1
	firing and drying				1		1
		3			1		1
		4			<u> </u>		1
	glost firing	1			1		1
		2			1		1
		3			1		
		4			11		
	Supplements			1			1 1
		2			I		
		3			1		1
	TOTAL Dept.	1	1	5	10		16

Continuation

SCHEDULE 8-1 Manning Table - Labour

Wage Category: Supervisory - A; Skilled - B; Semi-skilled - C; Unskilled - D

epartment	Function	Shift	Wage Category						
			<u>A</u>	B	C	D	Total		
Glazing and	supervisor	1	1				1		
Selection	glaze prep.	1		1			1		
	glazing	1		2	2		4		
	selection	1		2	2		4		
	supplements	<u> </u>		1	1		2		
	TOTAL Dept.		1	6	5		12		
Guard	guard	1				1	1 1		
		2				1	1		
		3				1	1		
		4				11	1		
	TOTAL Guard				4	4			
Drive	driver	1			3		3		
Cleaning	worker	2				2	2		
Maintenance	supervisor	1	1				1		
Shop	worker	1		2			2		
		2		2			2		
	TOTAL Maint.		l	4			5		
TOTAL			Λ	24	22	6	56		

SCHEDULE 8-2 Estimate of Production Costs : Wages

Wage Category: Supervisory - A; Skilled - B; Semi-skilled - C; Unskilled - D

Department	Variable Costs			<u> </u>	Fixed Costs					
	Wage Category			TOTAL	Wage Category				TOTAL	
	A	<u> </u>	<u> </u>	D		A	<u>B</u>	<u> </u>	D	
Body prep. department		9	4		13	1		1		1
Kiln dept.		5	10		15	1				1
Glaz-select.		6	5		11	1	1			1
Guard				1					4	4
Drivers			1		1			2		2
Cleaning Maintenance						11	4		2	2 5
TOTAL Workers		20	20		40	4	4	2	6	16
Working hours/day	8	8	8	8		. 8	8	8	8	
Working days/week	5	5	5	5		5	5	5	5	
Wages/month Surcharges 50 %	1470 730	800 400	530 270	400 200		1470 730	800 400	530 270	400 200	
Wages/year /thousand Sf/	-	288	192			105.6	57.6	19.2	43.2	,
TOTAL	******				480 000			*****		225 60

SCHEDULE 8-3 Manning Table - Staff

Manning Table - Staff Function Salary Category / No. of St. TOTAL General Manager Production Manager Sale Manager Chief Accountant Salesman Technologist Book-keeper Designer Lab. technician Clerk ----TOTAL

SCHEDULE 8-4

Estimate of Production Cost - Salaries

Description	Salary Category (No. of Staff)							
	11	2	3	4	5_	6	TOTA	
General Manager	1						1	
Sale Manager		1					1	
Production Manager		1					1	
Chief Accountant	ł		1				1	
Salesman	1			2			2	
Technologist	ł			1			1	
Book-keeper					1		1	
Designer	•				1		1	
L ab. technician					1		1	
Clerk	!					3	3	
TOTAL	1 1	2	1	3	3	3	13	
Manmonths/year	12	24	12	36	36	36	156	
Salary/month	3400	2000	1500	1200	1000	550		
Surcharge 50%	1700	1000	700	600	500	250		
Salaries/year	61200	72000	26400	648 00	54000	28800		

SCHEDULE 9-1 Estimate of Investment Cost Project Implementation

No.	Item Description		Cost	
		Foreign	Local	Total
1.	Management of project implementation			
1.1.	Implementation team in 1983		90 000	90 000
1.2.	Implementation incl. arrangements for sup. and marketing		180 000	180 000
2.	Detailed engineering	100 000		100 000
3.	Training	102 000	40 000	142 000
4.	Mounting-up	108 000	82 000	190 000
5.	Trial run	88 000	316 000	404 000
TOTAL	,	398 000	708 000	1 106 000

SCHEDULE 10-1/1 Initial Fixed Investment Costs Unit 1000Sf.

Item	Investment Category	Foreign Currency	Local Currency	Total Cost
1.	Land		45	45
2.	Site Preparation Civil Works		330	330
3.	Structures and Civil Works			
	a) Buildings and Civil Works		1 507	1 507
	b) Auxiliary and Service Facilities	100	560	660
4.	Incorporated Fixed Assets	160		160
5.	Plant Machinery	3 506	900	4 406
6.	Total Initial Fixed Investment Costs	3 766	3 342	7 108

)

D

SCHEDULE 10-1/2 Fixed Investment Costs

Per	riod			Constr	uction			Full	Capac	ity (F	eplace	ment I	nvest)		TOTAL	
Yea	ar		1983	\		1984			1988		11	993	******			
		FC	LC	<u> </u>	FC	LC	<u>Tt</u>	FC	LC		FC	LC	<u>Tt</u>	FC	LC	Tt
Fix inv	vestment	160	1882	2042	3606	1460	5066		200	200		200	200	3766	3742	7508
1.	Land		45	45		/ 1									45	45
2.	Site Prepa- ration		330	330						•					330	330
	Structu- res and Civil W,		1507	1507	100	560	660							100	2067	2167
4.	Incorpo- rated Fixed Assets	160		160										160		160
5.	Machi- nery				3506	900	4406		200	200		200	200	3506	1300	4806

Note: FC = Foreign Currency

LC = Local Currency

Tt = Total

SCHEDULE 10-2/1 Preparation Capital Expenditures

Unit 1000 Sf.

ł

Item	Category	Foreign Currency	Local Currency	Total
1	Implementation Management		90	90
2	Implementation Management and Arrangements for Supplies		180	180
3	Engineering	100		100
4.	Training	102	40	142
5	Mounting-up	108	82	1 9 0
6	Trial run	88	316	404
TOTAL		398	708	1 106

SCHEDULE 10-2/2 Preproduction Capital Expenditures

Year	T T	1983		1	1004		TOTAL							
		1903		<u>!</u>	1984	······································	TOTAL							
1000 Sf.	FC	LC	<u> </u>	FC	LC	Tt	FC	LC	Tt					
Implementation Management		90	90					90	- - 90					
Implementation Management + Arrangements for														
Supplies		180	180					180	180					
Engineering	100	•	100				100		100					
Training	102	40	142				102	40	142					
Mounting-up		1	1	108	82	190	108	82	190					
Trial run		i : :		88	316	404	88	316	404					
TOTAL	202	310	512	196	398	594	398	708	1106					

Note: FC = Foreign Currency LC = Local Currency Tt = Total

SCHEDULE 10-3/1 Calculation of Working Capital

1. Minimum Requirements of Current Assets and Liabilities

Α	Accounts receivable	30	days	(operating costs)
В	Raw materials	360	days	(raw kaolin + plastic clay)
С	Raw material			(silica sand)
D	Imported materials	90	days	(glazes+s' ins+limestone)
	Spare parts		days	
	Fuel oil	14	days	(1984=103; 1985=275; 1986=370; 1987=344)
	Work in progress	10	days	(factory costs)
	Finished products			(factory costs + adm. overheads)
E	Cash in hand		days	•
F	Accounts payable		-	(raw material + utilities)

1

Period	Const	ruct.		rt-up	F	ūII-Cāj	pacity	
Year	1983	1984	1985	1986	1987	1988	1989	1990
Prod. Programme		×60%	80%	90%	100%	100%	100%	100%
Costs 1000 Sf.								
Raw Materials A		11	30	33	37	37	37	37
Raw Materials B		3	8	9	10	10	10	10
Imported Raw Mat.	,	196	524	590	655	655	655	655
Utilities		160	427	48 0	534	534	534	534
Làbour		240	480	480	480	480	48 0	480
Spare parts		50	105	105	105	105	105	105
Factory overheads		130	354	354	354	354	354	354
Factory costs		790	1928	2051	2175	2175	2175	2175
Adm. overheads		184	367	367	367	367	367	367
Distribution costs		36	56	65	71	71	71	71
Operating costs		1010	2351	2483	2613	2613	2613	2613
Interest			310	248	186	124	62	0
Depreciation		_377_	755	755	755	755	755	755
TOTAL Prod. Costs		1387	3416	3486	3554	3492	3430	3368

1. Annual Production Cost Estimate

Note 1984 - 60% capacity but only 6-month production

ŧ

.

Item	×	у				F	lequire	ments	1000Sf
	Min.days of			Start	-up	Fu	ill Cap	acity	
	coverage	turnoyer	1984	1985	1986	1987	1988	1989	1990
1. Current Asset]			· · · · · · · · · · · · · · · · · · ·			
Receivables	30	12	168	196	207	218	218	218	218
Inventory									
Raw mat. B	360	1	22	30	33	37	37	37	37
Raw mat. C	90	4	2	√ 2	2	3	3	3	3
Imported raw mat.	90	4 ·	98	131	148	164	164	164	164
Spare parts	360	1	50	. 105	105	105	105	105	105
Oil	14	25	8	11	12	14	14	14	14
Work in progress	10	36	35	46	48	51	51	51	51
Finished products	55	6.5	210	353	372	390	390	390	390
Cash in hand	14	25	51	67	65	63	60	58	55
Current Assets	1		644	941	992	1045	1042	1040	1037
1.1 Current Liabilities	!					1			
Payables	30	12	82	82	93	103	103	103	103
111. Working Capital	1								
A.Net.Work.Cap.			582	859	898	942	939	937	934
B. Increase				277	40	43	-3	-2	÷3
Calculation of Cash Bala	ance								~~~~~
Item	x	У	1984	1985	1986	1987	1988	1989	1990
Total Prod. Costs			1387	3416	3486	3554	3492	3430	3368
Utilities			160	427	480	534	534	534	534
Depreciation			377	755	755	755	755	755	755
Raw Materials			210	562	632	702	702	702	702
Cash Bal			640	1672	1619	1563	1501	1439	1377
Requirement	14	25	51	67	65	63	60	58	55

SCHEDULE 10-3/2 Calculation of Working Capital, Working Capital Requirements

1/ Note: in 1984, the coefficient multiplied by 2

SCHEDULE 10-6/1 Total Initial Investment Costs

			Unit	: 1000 Sf.
Item	Category	Foreign Currency	Local Currency	TOTAL
1.	Initial Fixed Investment Costs	3 766	3 342	7 108
2.	Pre-production Capital Expenditures	398	708	1 106
3.	Working Capital (Full capacity)		942	942
	TOTAL	4 164	4 992	9 156

Period	Con	struc	tion				St	art-	up				Fu	11 (Cap	aci	ty						TOTA	L
Year	198	3		198	4		19			198			19			19			1 99					
[100 ST.	FC	LC_	Tt-		TC	Tt	FQ	_TG_	TŁ	DT]	<u> </u>	_T &	FC	<u> </u>	TŦ	FC	LC_	Tt.	FC_	[IC]	<u>Ef</u>	FC	ITC	Tt
Initial Fixed Invest.	160	1882	2042	3606	1460	5066																3766	3342	7108
Replacement																	200	200		200	200		400	400
Pre-production Cap. Exp.	202	310	512	196	398	594																398	708	1 106
Working Capital (Incr.)					582	582		277	277		40	40		43	43		~~~~~						942	942
Total	362	2195	2554	3802	2440	6242		277	277		40	40		43	43		200	200		200	200	4164	5392	9556

SCHEDULE 10-6/2 Total Investment Costs

Note: FC = Foreign Currency

LC = Local Currency

Tt = Total

3

SCHEDULE 10-7/1 Total Initial Assets

			Unit 1	000 Sf.
Item	Category	Foreign Currency	Local Currency	TOTAL
1.	Initial Fixed Investment	3 766 _.	3 342	7 10 8
2.	Pre-production Capital Expenditures	398	708	1 106
з.	Current Assets (full capacity)		1 045	1 045
	TOTAL	4 164	5 095	9 259

Period	Con	struc	tion				[St	ert-	ūp					Ful	<u>t</u> t	apa	cīty				****			
Year	198	3		19	84		19	85		19	986		19	87		1	988		19	993		T	CTAL	~~~~
1000 Sf.	FC	LC	Tt	FC	L C	Tt	FC	LC	Tt	FC	LC	Τt	FC	LC	Tt	FC	ΓC	Tt	FC	LC	Tt	FC	LC	Tt
Initial Inv. Fixed Costs	1 60	1882	2042	3606	1460	5066																3766	3342	7 108
Replacement																	200	200		200	200		400	400
Pre-prod. exp.	20 2	31 0	512	196	398	594																398	708	1106
Current Assets /Increase/					644	644		297	297	1	51	51		-53	53								1045	1045
Total Assets	3 6 2	2192	2554	3802	2502	6304		297	297		51	51		53	53		200	200		200	200	4164		9659

SCHEDULE 10 - 7/2 Total Assets

Note: FC = Foreign Currency

LC = Local Currency

Tt = Total

SCHEDULE 10-8/1 Sources of Finance

Unit 1000 Sf. -----------_____ Item Source of Finance TOTAL (Local Currency) ------1. Government - equity 3 556 2. Collaborators - equity 2 100 з. N.O.B. National Development Bank LOAN 3 500 Current Liabilities 4. 103 . ______ TOTAL 9 259

١.

SCHEDULE 10-8/2

Sources of Initial Funds

Period	Constr	uction	Star	t-up	Full Capacity	TOTAL
Year	1983	1984	1985	1986	1987	
Currency	1000 Sf	. 1000 Sf.	1000 Sf.	1000 Sf.	1000 Sf.	1000 Sf.
Equity	2 554	3 102				5 656
Loans		3 500				3 500
Current Liabilities		62	20	11	10	103
TOTAL	2 554	6 664	20	11	10	9 259

SCHEDULE 10-8/3 Cash Flow - Financial Plan

Unit: 1000 Sf.

Period	Const	truct.	Star	ct-up	Full	Capa	<u>ity</u>					Sal-	
Year	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	Vage Value	
Prod. Programme]	30%	80%	90%	100%	100%	100%	100%	100%	100%	100%		
A <u>Cash Inflow</u> 1. Financial resources 2. Sales revenues	2555 2555	8080 6660 1420	4070 20 4050	4590 10 4580	5090 15 5075	5075 5075	5075 5075	5075 5075	5075 5075	5075 5075	5075 5075		54835 9260 45575
P Cash Outflow	-2555	-7315	-3970	-3795	-3865	-3950	-3685	-2925	-2925	-2925	-3125	2485	-38550
 Total assets Operating costs Debt service J.1. Interest J.2. Repayments Dividents (6%) 			- 300 -2350 -1010 - 310 - 700 - 310	-2485 - 950 - 250 - 700	-2615 - 885 - 185 - 700	- 825 - 125 - 700	- 760 - 60 - 700			:	- 200 -2615 - 310	2485	- 7180 -24150 - 4430 - 930 - 3500 - 2790
C <u>Surplus</u>		765	100	79 5	1225	+1125	+ 1390	2150	2150	2150	1950	2485	
D Cumulative Cash Balance		765	865	1660	2 8 85	4010	5400	7550	9700	11850	13800		16285

salvage

1335

.

SCHEDULE 10-9 Calculation of Reserves

Unit 1000Sf.

Period	Const	ruction	<u>Start-up</u>								
Year	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993
Prod.Programme		30%	80%	90%	100%	100%	100%	100%	100%	100%	100%
1. Revenues	- - -	1420	4050	4580	5075	5075	5075	5075	5075	5075	5 07 5
2. Production Costs		1390	3415	3490	3555	3495	3430	3370	3370	3370	3370
3. Gross Profit		30	635	1090	1520	1580	1645	1705	1705	1705	1705
4. Income Tax	1										
5. Net Profit		30	635	1090	1520	1 58 0	1645	1705	1705	1705	1705
6. Dividence			310	310	310	310	310	310	310	310	310
7. Undistr. Profit		30	325	78 0	1210	270	1335	1395	1395	1395	1395
8. Und.Prof.Cum.		30	355	1135	2345	3615	4950	6345	7740	9135	10530

SCHEDULE 10-10

Projected Balance Sheet

Period	Constr	uction	Start		Full Capacity								
	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993		
A. Assets	2555	9245	8890	8980	9500	10070	10705	12100	13495	14890	16285		
1. Current Assets Cum.		1410	1810	2655	3930	5055	6445	8595	10745	12895	14845		
1.1. Cash Bal.		765	865	1660	2885	4010	5400	7550	9700	11850	13800		
1.2. Current Assets		645	945	995	1045	1045	1045	1045	1045	1045	1045		
B. Liabilities	2555	9245	8890	8980	9500	10070	10705	12100	13495	14890	16285		
l. Current Liability		60	80	90	100	100	100	100	100	100	100		
2. Loans		3500	2800	2100	1400	700							
3. Equity	2555	5655	5655	5655	5655	5655	5655	5655	5655	5655	5655		
4. Reserves		30	355	1135	2345	3615	4950	6345	7740	9135	10530		

SCHEDULE 10-11

Total Production Costs

(at Full Capacity 1987)

		<u>Unic 100</u>	000 Sf.		
Item	Foreign Currency	Local Currency	TOTAL		
l. Direct Material and Inputs	655	581	1 036		
2. Direct Manpower		48 0	48 0		
3. Factory Overhead Costs	105	354	459		
3.1. Manpower 3.2. Material 3.3. Other Factory Overheads	105	226 85 43	226 190 43		
4. Administrative Overhead Costs		367	367		
4.1. Salaries 4.2. Other Administra- tive Overheads		307 60	3 07 60		
5. Distribution Costs	35	36	71		
Operating Costs	795	1 818	2 613		
6. Interest		186	186		
7. Depreciation		755	755		
Manufacturing Costs	795	2 759	3 554		

Pr	od	luc	ti	on	Co	st

Pe	riod	St	art-u	<i>q</i>					Fu]	1 Cap	acit	У					- -					
Ye	ar	198	4 /30	7.ol	198	5 /80	%	19	86 /9	055/	198	7 /10	0%/	19 8	B /10	0%/	198	9 /LO	0%/	199	0 /10	0%/
10	00 Sf.	FC	LC	Tt_	FC	LC	Tt	FC	LC	Tt	FC	LC	Tt	FC	LC	Tt	FC	LC	Tt	FC	LC	Tt
1.	Dir. mater.	196	174	370	524	465	989	590	522	1112	655	581	1236	655	581	1236	655	581	1236	655	581	1236
2.	Dir. lab. labour		240	24C		430	400		480	480		400	4 8 0		400	480		480	480		480	480
3.	Fact.overhead	50	130	180	105	354	45 9	105	354	459	105	354	459	105	354	459	105	354	459	105	354	459
	Fact.cost	246	544	790	629	1299	1928	695	1356	2071	760	1415	2175	760	1415	2175	760	1415	2175	760	1415	2175
4.	Adm. costs		184	184		367	367		367	367		367	367		367	367	:	367	367		367	367
5.	Distr.costs		36	36	20	36	5 6	29	36	65	35	36	71	35	36	71	35	36	71	35	36	71
	Oper. costs	246	764	1010	649	1702	2351	724	1759	2483	759	1818	2613	795	1818	2613	795	1818	2613	795	1818	2613
6.	Fin. costs					310	310		248	248		186	186		124	124		62	62			
7.	Depreciation		377	377		755	755		755	755		755	755		755	7 55	•	755	755		755	755
	Manuf. costs	246	1141	1387	649	2767	3416	724	2762	3486	795	2759	3554	795	2697	3492	795	2635	2430	7 95	2573	3368

Note: FC = Foreign Currency LC = Local Currency Tt = Total

SCHEDULE	10-13	Cash Flow	and NVP w	ithout ·	Outside	Financing

Period	Const	ruct.	Start	-up	Full	Full Capacity							
Year	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	Sal-	metel
Prod. programme		30%	80%	90%	100%	100%	100%	100%	100%	100%	100%	vage value	Total
1. Sales revenue		1420	4050	4580	5075	5075	5075	5075	5075	5075	5075		45575
2. Cash outflow	-2555	-7315	-2650	_2535	-2670	-2815	-2615	-2615	-2615	-2615	-2815	2485	31330
3. Invest.outlay	-2555	-6305	- 300	- 50	- 55	- 200			ţ		200	2485	7180
Operating costs		-1010	-2350	-2485	-2615	-2615	-2615	-2615	-2615	-2615	-2615		24150
3. Net Cash Flor	-2555	-5895	1400	2045	2405	2260	2460	2460	2460	2460	2260	2485	14245
4. NVP (20%)	-2129	-4094	810	986	967	757	687	572	477	397	304	334	∔ 68
5. Cum. Net Cash Flow	-2555	-8450	-7050	-5005	-2600	- 340	2120	4580	7040	9500	11760	2485	14245

Unit 1000 Sf.

(

SCHEDULE 10-14 Cash Flow and NFV With Outside Financing

.

Unit 1000 Sf.

Period	Cons	truct.	Start-	up	Ful	1 Capac	ity				*****	Sal-	
Year	198 3	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	vage value	TOTAL
Prod.Programme		30%	80%	90%	100%	100%	100%	100%	100%	100%	100%	Value	
A Sales Revenue		1420	4050	4580	50 7 5	5075	5075	5075	5075	5075	5075		45575
B Cash Outflow	-2555	-4110	-3360	-3435	-3500	-3640	-3375	-2615	-2615	-2615	-2815	2485	-32150
1. Total Invest.	-2555	-3100	-1010	- 950	- 885	-1025	- 760				- 200	2485	- 8000
-Equity	-2555	-3100										2485	- 3170
-Replace of cars						- 200					- 200		- 400
-Repay of credit -Interest			- 700 - 310	- 700 - 250	- 700 - 185	- 700 - 125	- 700 - 60						- 3500 - 930
2. Operating Costs		-1010	-2350	-2485	-2615	-2615	-2615	-2615	-2615	-2615	-2615		-24150
C Net Cash Flow	-2555	-2690	- 690		1575	1435	1700	2460	2460	2460	2260	2485	13425
D NPV (20%)	-2129	-1968	- 399	552	633	481	474	572	477	397	304	334	626
24%	-2060	-1749	36 2	484	537	395	377	440	355	286	212	233	
23%	-2077	-1778	371	500	559	414	399	470	382	310	232	255	
					IRR =	23 + -	37						

165

IIR = 23 . 22

Period	Public	Private	TOTAL
1970 - 1971	150	1 138	1 288
1971 - 1972	400	1 075	1 475
1972 - 1973	-	1 491	1 491
1973 - 1974	50	1 398	1 448
1974 - 1975	50	1 255	1 305
1975 - 1976	100	1 055	1 155
1976 - 1977	-	-	-
1977 - 1978	-	-	-
1978 - 1979	385	948	1 333
1979 - 1980	385	812	1 197
1980 - 1981	1 200	n.a.	1 800 1/
1981 - 1982		·	1 800 1/

.

Table 3.1. Housing Construction in Greater Paramaribo

Source: An Integral Approach to Housing, March 1980, p.g. 35 1/ Estimate of Mine

Table	3.2.	Population per District	

District	1950	1964	1972	1980
Nickerie	16 166	30 472	34 853	34 598
Coronie	3 153	3 782	3 114	2 756
Saramacca	8 195	11 952	11 480	10 333
Suriname	54 490	111 694	152 135	164 879
Paramaribo	71 715	110 867	103 738	67 718
Para	-	-	16 478	14 640
Brokopondo	-	11 531	15 552	20 448
Commewijne	18 895	20 700	16 791	14 082
Marowijne	3 974	23 013	25_406	22 582
TOTAL Suriname	177 788	324,011	379 607	352 041

Source: Demografische DATA - Algemeen Bureau de Statistiek 1981

Table 3.3.

Gross and Net Population

Year	Gross Population	Net Migration	Net Population	Growth \$
1970	382 209	- 5 226	367 983	2.2
1971	389 961	- 5 061	384 900	2.1
1972	397 724	- 4 356	393 368	2.2
1973	404 127	- 6 825	397 302	- 1.0
1974	415 137	- 23 000	392 137	- 1.3
1975	410 830	- 43 200	367 630	- 6.2
1976	380 450	- 2 000	378 450	2.9
1977	n.a.	n.a.	1/ 381 000	-

Source: Table I of Programme Voor de Sociall-Economische Ontwikkeling Van Suriname

1/ Economic Survey of L. America

 $\zeta_{\rm c}$

D

Table 3.4.

Retail Prices of Wall and Floor Tiles

Туре	Colour	Decor	Size	Price per sq.m.
Undecor.	white	-	15x15	27.50
Wall Tiles	blue	-	15x15	37.40
	green	-	15x15	44.00
	brown	-	10x10	48.00
	yellow	-	10x2J	50.00
Decor.	white	screen pr.	15x15	48.50
Wall Tiles	blue	react.glaze	15x15	70.00
	brown	react.glaze	15x15	47.50
	green	react.glaze	15x15	56.00
	brown	screen pr.	20x10	65.00
Undecor.	yellow	-	15x15	50.00
Floor Tiles	brown	-	15x15	53.50
Decor.	blue	react.glaze	15x15	75.00
Floor Tiles	beige	screen pr.	15x15	70.00
	beige	react.glaze	20x20	100.00
	green	react.glaze	15x15	121.00

Table 3.5. Production of Wall and Floor Tiles in America

			·		thousand sq.m.	
Year	USA	North America	Brazil	Colombi/a	South America	America
1970	23.049	23.730	-	2.530	29.832	53.562
1971	25.110	26.408	31.666	-	35.305	61.713
1972	28.911	30.870	32.230	2.596	36.176	67.046
1973	27.340	29.773	37.949	2.428	41.429	71.202
1974	25.380	28.292	42.204	2.224	46.522	74.814
1975	23.383	26.093	44.951	-	49.240	75.333
1976	25.751	28.225	50.291	-	53.959	82.184
1977	24.619	27.920	-	-	57.126	84.416
1978	28.028	31.378	-	-	61.352	92.730
1979	29.198	32.816	- <u>-</u> -	-	65.285	98. 101

Source: Yearbook of Industrial Statistics, 1979 - Edition/II

210

Table 3.6. <u>Consumption of Wall and Floor Tiles</u>

in the USA

Year	mil.sq. feet
1976	410
	410
1977	477
1978	549
1979	599
1980	552
1981	544

Source: CER No. 6-7, July - August 1982

Table 3.7. Prices CIF in Trinidad and Tobago

Glazed and Unglazed Wall and Floor Tiles Imported

Year	import 1000 p.c.	ton	import 1000 US \$	US \$/p.c.		
1978 1979 1980	6 819 10 092 6 970	1 604 n.a.	1 783 1 460 1 493	0.26 0.14 0.21		
1981 1/	3 453	n.a.	700	0.20		

1

Source: T and T Oversea Trade 1982 Note 1/ from January to February

Implications:

Average weight of a piece in 1978 = 0.235 kg average weight of wall and floor tiles is 17 kg, from which necessitates 72 pieces per sq.m.

Prices US \$/sq.m.

Year	100	import DOp.c.	t 1000 sg.m.	-	oort DO US Ø	US ø⁄sq.m.		
1978	6	819	94.7	1	783	18.83		
1979	10	092	140.0	1	460	10.43		
1980	6	970	96.8	1	493	15.42		
1981	3	453	48.0		700	14.58		

Table 4.1. Chemical Composition of Suriname Kaolins

	NM I	NM II	NM III
L.O.I.	14.02	14.19	14.22
Si0 ₂	44.82	44.66	45.83
A12 ⁰ 3	37.92	38.08	36.96
Fe2 ⁰ 3	1.07	0.99	1.04
Ti0 ₂	1.78	1.70	1.62
CaO	0.15	0.20	0.12
MgO	0.11	0.10	0.08
κ ₂ ο	0.05	0.06	0.02
Na20	0.10	0.02	0.06
	100.02	100:00	100.00

(Samples NM I, NM II, NM III)

Source: Report - Technological Tests of Suriname Kaolins (Research Institute for Ceramics, Refractories and Non-metallic Raw Materials, Pilsen, Czechoslovakia) July 1981

Carterio Carto a de la construcción de la construcción de la construcción de la construcción de la construcción

•

Table 4.2. Batch Composition - Chemical Composition

and Physical Properties

Feed:	Raw kaolin Raw kaolin Raw kaolin	NM II NM III	10% 10% 10%	
	Finely groun limestone	nd	15%	
	ball clay		15%	
	siliceous sa	and	40%	
Chemi	cal Compositi	ion 🐒	Dry Condition	Annealing
L.O.[•		13.33	-
Si0 ₂			59.99	69.21
A12 ⁰ 3			16.39	18.91
Fe ₂ 0 ₃			0.63	0.73
T102			0.87	1.00
C a0			8.26	9.53
Mg0			0.20	0.23
^к го			0.32	0.37
^{Na} 2 ⁰			0.08	0.09
			100.07	100.07
Green	strength	0.62	0 MPa	
Total	shri nkage	0		
Water	absorption	17.3		
Resist change temp.	tance to es in	200 ⁰ C	••	

Source: Report - Technological Tests of Suriname Kaolins (Research Institute for Ceramics, Refractories and Non-metallic Raw Materials, Pilsen, Czechoslovakia) July 1981

.

بالمعافرة بتناقيه فسنتدي والا

Department	Input kg/sq.m.	Output kg/sq.m.	Change %	Total Input kg/year	Total Output kg/year	Total Change kg/year
Supply Programme						
Glazes	1.05	1.05	-	110 250	110 250	-
Quartz sand	5.28	5.28	-	554 400	554 400	-
Plastic clay	1.98	1.98	-	207 900	207 900	-
Limestone	1.98	1.98	-	207 9 00	207 900	-
Raw kaolin	3.96	3.96	-	415 800	415 800	-
Water	5.30	5.30		556 500	556 500	
Total supply	19.55		_	2052 750	2052 750	
Body Slip Prep.	18.50	18.50	-	1942 500	1942 500	-
Spray Drying 1/2/	18.50	12.00	-35	1942 500	1260 000	- 682 500
Pressing 3/	12.00	11.90	- 1	1260 000	1249 500	- 10 500
Tunnel Drier 4/	11.90	11.20	- 6	1249 500	1176 000	- 73 500
Bisque Firing 5/	11.20	10.10 ~-	-10	1176 000	1060 500	- 115 500
Glazing 6/	11.15	11.15	+10	1170 750	1170 750	+ 110 250
Glost Firing 7/	11.15	11.10	-	1170 750	1165 500	- 5250
Selection 8/	11.10	10.00	-10	1165 000	1050 000	- 115 500
Market	10.00			1050 000		

 Table 4.3.
 Wall Tile Production - Raw Material Flow

Annual Production - 105 000 sq.m.

Note: 1/ Losses 3%; 2/ Evaporated water 32% - 621 600 kg/per annum; 3/ Losses 0.5 - 1%; 4/ Evaporatc... water - rest 6% - 73 500 kg/per annum; 5/ Loss on ignition - 10%, 6/ Input glazes 1.05 kg; 7/ Loss on ignition (glazes 0.05 kg); 8/Rejects 10% Table 4.4.

Floor Tile Production - Raw Material Floow

Department	Input kg/sq.m.	Output kg/sq.m.	Change K	Total In- put kg/year	Total Output kg/year	Total Change kg/year
Supply Programme						
Glazes	1.05	1.05	-	57750	57750	-
Quartz . sand	8.00	8.00	-	440000	440000	
Plastic clay	3.00	3.00	-	165000	165000	-
Limestone	3.00	3.00	-	165000	165000	-
Raw kaolin	6.00	6.00	-	330000	330000	-
Water	7.80	7.80	-	429000	429000	-
TOTAL Supply	28.85	28.85		1586750	1586750	
Body slip preparation	27.80	27.80	-	1529000	1529000	-
Spray drying 1/2/	27.80	18.10	-35	1529000	995500	-533500
Pressing 3/	18.10	17.95	- 1	995500	987250	- 8250
Tunnel drier 4/	17.95	17.05	- 6	987250	987750	- 49500
Bisque firing 5/	17.05	15.50	-10	937750	852500	- 85250
Glazing 6/	15.50	16.55	+ 7	852500	910250	+ 57750
Glost firing 7/	16.55	16.50	-	910250	907500	- 2750
Section 8/	16.50	15.00	-10	907500	825000	82500
Market	15.00			825000		

Annual Production - 55 555 sq.m.

Note: 1/ Losses 3%

2/ Evaporated water 32% - 487 750 kg per annum

- 3/ Losses 0.5 1.0%
- 4/ Evaporated water 6%
- 5/ Loss on ingnition
- 6/ Input glazes 7/ Loss on ignition
- 8/Rejects 10%

Consumption per Unit Total Input Units 1987 - ... Quantity per Year Denominator / production/ /Consumption/ Item Wall Floor Wall Floor Wall Floor Total Total Total tiles tiles tiles tiles tiles tiles raw kaolin 1/ · . 3.96 6.00 1000 sq.m. 105 55 160 416000 330000 746000 silica sand 1/ 5.28 8.00 1000 sq.m. 105 55 160 544400 440000 995000 plastic clay 1/ 1.98 3.00 1000 sg.m. 105 55 160 208000 165000 373000 kaolin (glazes) 1/ 0.095 0.095 0.095 1000 sq.m. 105 55 160 15000 frits 1/ 0.915 0.85 1000 sq.m. 105 55 160 96075 46750 142825 stains 1/ 0.04 0.04 0.04 1000 sq.m. 55 105 160 6400 0.065 zircon-silicate 1/ 1000 sq.m. 55 3575 3575 limestone 1/ 1.98 3.00 1000 sq.m. 105 55 160 208000 165000 373000 industrial water 1/ 7.8 5.3 1000 sc.m. 105 556500 55 160 429000 986500 heat in tunnel drier 2/ 0.3 0.3 0.3 evap.wat.tons 73.5 49.5 123 22050 14850 36900 heat in spray drier 2/0.9869 0.9869 0.9869 evap.wat.tons 682.5 533.5 673559 526611 1216 1200070 heat in bisque fir. 3/ 1.16 937.75 1.16 1.16 1176 input tons 2113.75 1364160 1087790 2451950 heat in glost fir. 3/ 1.61 1.51 1.57 input tons 1170.75 910.25 1884908 2081 1374478 3259386 light oil 1/ 3.38 4.92 1000 sq.m. 3.91 105 55 160 355022 270326 625348 el.power for machinery 4 / 1000 sq.m. 4.34 105 55 160 694800 libricants and other fact. supplies 60000 packing material 5/ 1.00 1.00 1.00 1000 sq.m. 105 55 160 105000 55000 160000 spare parts 100000 drinking water tons 330 el. power for other

Table 4.5. Material and Energy Consumption during Full Capacity

Note: 1/ kg/sq.m.; 2/ kWh/1.wat.; 3/ kWh/kg; 4/ kWh/sq.m.; 5/ Sf./sq.m.

kWh

100000

reasons

Item							1984 Quantity			1985 Quantity			1986 Quantity		
Description	Unit	wall tiles	floor tiles	Total	wall tiles	floor tiles-	Total	wall tiles	floor tiles	Total	wall tiles	floor tiles	Total		
Production	1000 sq. m.	-	-	-	31	17	48	84	44	128	94	50	144		
raw kaolin	kg/sq.m.	3.96	6.00	-	123	102	225	333	264	597	373	300	673		
plastic clay	kg/sq.m.	1.98	3.00		61	51	112	166	132	298	186	150	336		
silica sand	kg/sq.m.	5.28	8.00		163	136	299	444	352	796	496	400	896		
limestone	kg/sq.m.	1.98	3.00		61	51	112	166	132	298	186	150	336		
frits	kg/sq.m.	0,915	0.85		28.4	14.5	42.9	76.9	37.4	114.3	86	42.5	128.5		
stains	k g/sq.m.	C.04	0.04	0.04	1.24	0.68	1.92	3.36	1.76	5.12	3.70	2	5.76		
sircon-silicate	kg/sq.m.	-	0.65	-	-	1.1	1.1	-	2.9	2.9	-	3.3	3.3		
packaging	pc/sq.m.	1	1	1	31	17	48	84	44	128	94	50	144		
other															
auxiliary	1000 Sf.						40			48			54		
spare parts	1000 Sf.			=			30		-	105	-		105		
water industr.	kg/sq.m.	5.3	7.8		16.4	133	297	445	343	788	498	390	8 8 8		
el. power-drive	kWh/sq.m.			4.34			208			556			625		
light oil	kg/sq.m.	3.38	4.92	3.91	105	84	189	284	216	50 0	318	246	564		

Table 4.6. Material and Inputs During Start-up

Note: Quantity in tons

in case of packaging material 1000 p.c. in case of electricity LW h

Table 4.7. Material and Inputs Costs during Start-up

Item	Unit	Unit	1984		1985		1986		198	7
1 CCm		Cost	Unit	Cost	Unit	Cost	Unit	Cost	Unit	Cost
Raw kaolin	ton	40	230	9200	600	24000	680	27200	760	30 400
Plastic clay	ton	15	115	1725	300	45 00	240	5100	· 380	5700
Silica sand	ton	10	300	3000	800	8000	900	9000	1000	10000
Limestone	ton	350	113	39550	298	104300	337	117950	373	130550
Frits	kg	1.7	42900	72930	114300	194310	131900	224230	142825	242800
Zircon-sil.	kg	1.35	1100	1500	2900	2900	3300	4500	3600	4900
Stains	kg	18.1	195 0	35290	5200	94120	5800	104980	6400	115840
Packaging m.	р.с.	10	48000	48000	128000	12 8 000	144000	144000	160000	160000
Other aux.				40000		60 000	i •	60000		60000
Spare parts				30000		105000	r	105000		105000
Water	cub.m.	1.5		900	1100	1650	1250	1880	1350	2000
El.power	MWh	250	400	100000	660	165 000	750	187500	850	212500
Light oil	ton	550	250	137500	500	275000	570	313500	625	343750
TOTAL				519595		1167780		1304840		1423440

E)

Table 7.1. Overhead Costs During Start-up

1_____

Unit 1000 Sf.

• • •

Item	x/ 198	84	194	35	1986		
	Factory	Admin.	Factory	Admin.	Factory	Admin.	
Vages							
S alaries	113	150	226	307	226	307	
Material	95		190		190		
Other Overheads		30	43	60	43	60	
SUBTOTAL	208	180	459	367	459	367	
Depreciation		377		755		755	
TOTAL	208	557	459	1 122	459	1 122	

x/ 6 months of operation at 60% capacity utilization is supposed.

-	r				
	TOTAL	$\langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle$	പരി	01/83 02/83 03/83 04/83 05/83 06/83 06/83 07/83 07/83 09/83 10/83 11/83	Month/Year
	270	30000000000000000000000000000000000000		7777777777 77777777777777777777777777	Implement. Management
•=:	100		100	100	Engineering
	142		142	71	Training
	185	61 63			Mounting-up
	404	135 135 134			Trial Run
	45		45	4 5	Land
	160		160	160	Technology
∑172 (u. l.) (u. l.) (v. l.)	1857		İΰ	265 265 265 265 265	Site Preparation Build. Prod.
	3506	3506	1		Prod. O Equipment ທູ
	1560	1560			Other Equipment
	8229	91 91 93 165 165	1.	107.5 2772.5 2772.5 2772.5 343.5 505.5 5	TOTAL

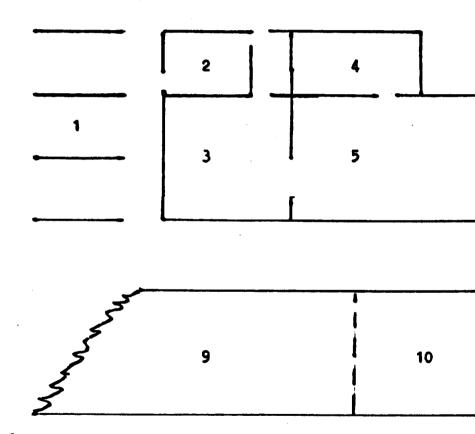
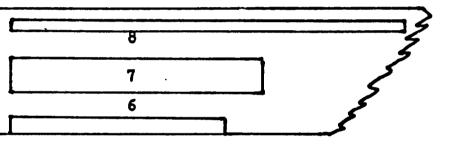
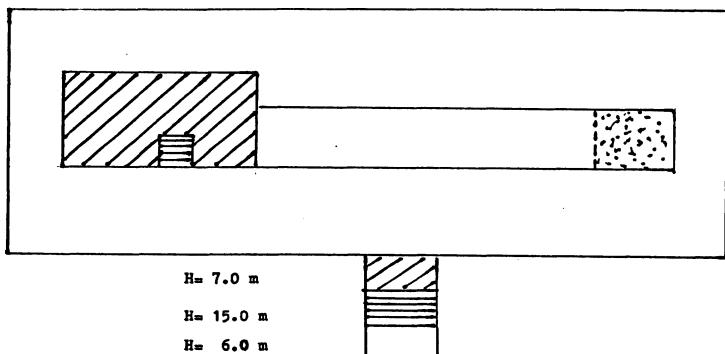

Investment During Implementation

Table 9.1.


_**1**____

SCHEME 6.1.

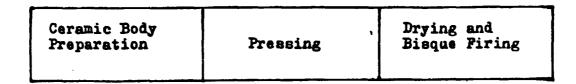
CERAMIC PLANT

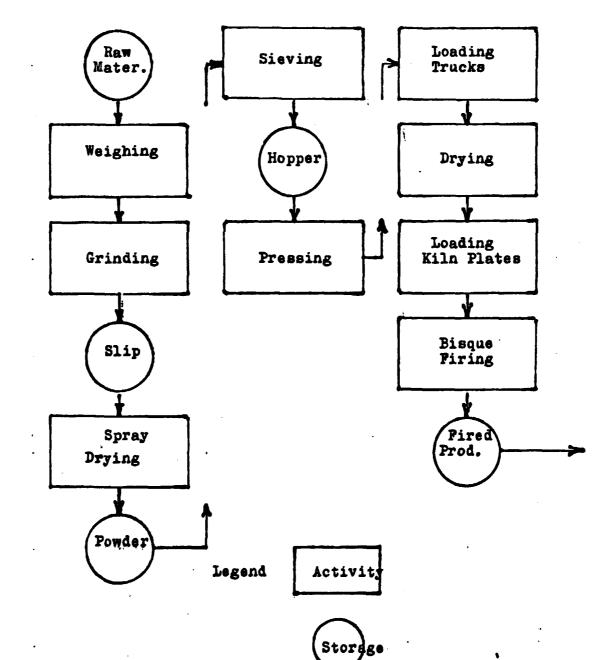

Scale 1:500

DESCRIPTION

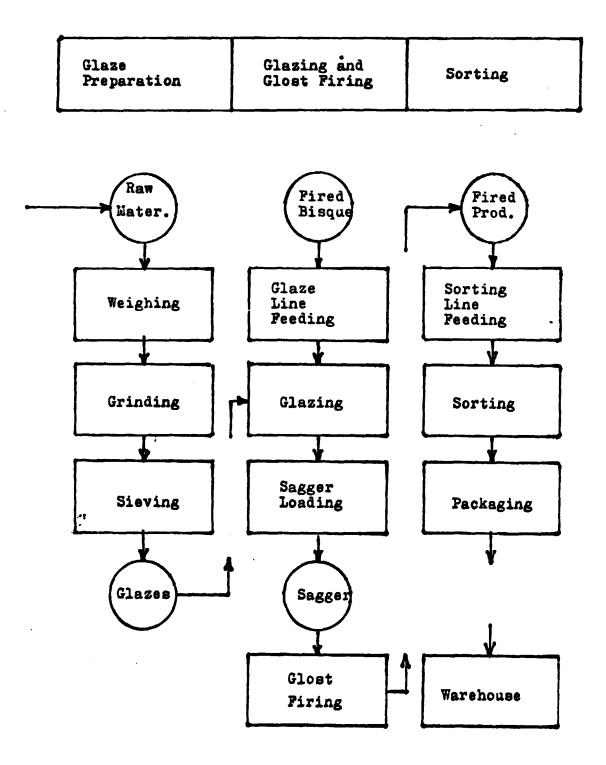
1 Raw Material Storage 2 Auxiliary Services 3 Body and Powder Preparation 4 Glaze Preparation 5 Pressing Section 6 Tunnel Drier 7 double Channel Kiln 8 Glazing Line 9 Sorting Section 10 Warehouse and Offices (1st floor) SCHEME 6.2.

۲ **۵**۳


Offices



Scale 1:1,000


SCHEME 6.3.

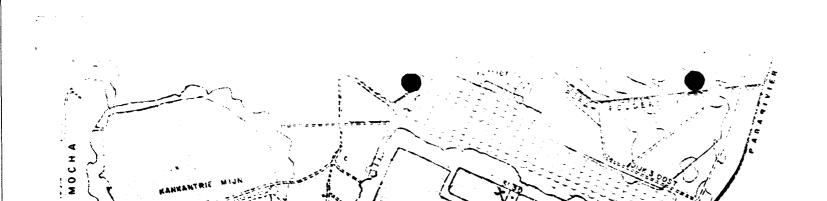
TECHNOLOGICAL FLOW SHEET

Scheme 6.3. Technological Flow Sheet

ţ.

-

ŧ


SCHEME 9.1. IMPLEMENTATION TIMING

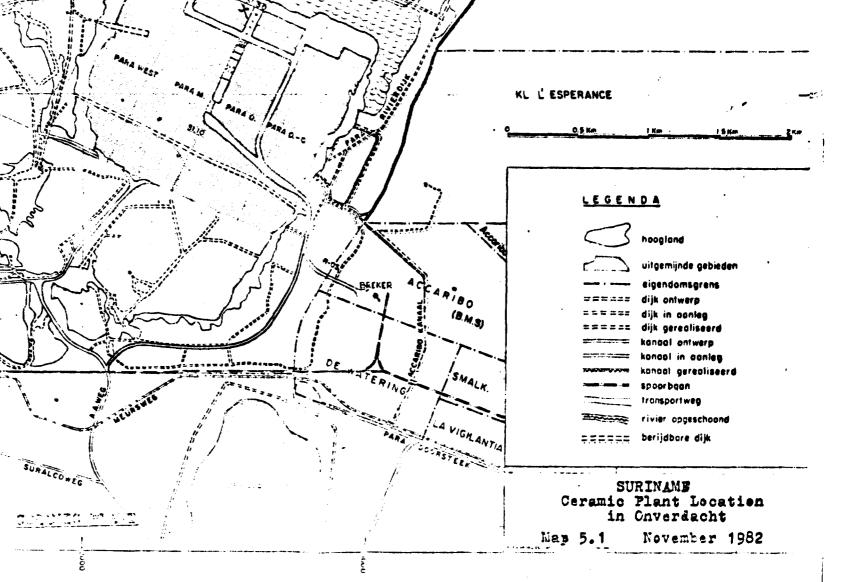
•

	Path
Critical	Path

خت

ACTIVITY	YEAR					1983)									198	4		
RUITATI	MONTH	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6
Set-up of corporati choice of technolog	on y																		
Delivery of product equipment					l	r					1								
Engeneering						1													
Purchase of land					. <u></u>														
Choice of building contractor						::::													
Construction of buildings									2.3.3)				4 13-						
Choice of other constructors																			
Delivery of auxilia and service equipme	ry nt								· ·					`					
Training																			
Errection of produc and auxiliary equip	tion ment																		
Trial run		i																<u>.</u>	<u> </u>
Recruitment of staff																			
Arrangements for su and marketing	pplie																		

WENGEDACHT


HOACH

3740

- 2

and a set

L'ESPERANCE

ANNEX 1

Variants of Production Programme

With regard to the home market capacity (90 000 - 120 000 sq.m.), there are some variants to choose when the plant capacity is considered.

- Variant A to meet the home demand with a brink which subdues risks of volatile demand, 90 000 sq.m. of annual production is considered only for the home market.
- Variant B to utilize the "economy of scale", variant B is taken into consideration. Lest risks related to the export should be too high, the plan to produce 160 000 sq.m. wall and floor tiles annually seems to be prudent. In case of the total failure of the export possibilities, there is a space in the home market to sell at least 60 - 75% of the production. Taking into consideration the break even point 88 000 sq.m., the probability of the red ink economy is not too high in this case. Larger exports than 45% from the full capacity would not be reasonable in case of a beginner.

The economic evaluation of both the variants is based on the following presuppositions:

- the production technology is supposed to be identical;
- the time of implementation is supposed to be the same in both the cases;
- the estimated costs in the production equipment are based on the estimated differences of the used equipment weights.

1. Production Equipment

(The production equipment used in case of the variant B is described in Chapter 6)

1.1. Body preparation section

With regard to the 50% amount of the inputs, costs in this equipment are estimated as follows:

- 2 -
- Variant A 250 000 Sf. - Variant B 500 000 Sf.

1.2. Atomizer

The price of a smaller atomizer and the related equipment is estimated to be 70% of the price in case of the variant B.

-	Variant A	4	400	000	Sf.
-	Variant E	3	580	000	Sf.

1.3. Pressing section

To manage the production of both wall and floor tiles without difficulties, the same equipment would have to be installed in both the cases.

-	Variant	Α	520	000	Sf.	
_	Variant	в	520	000	Sf.	

1.4. Drying and firing section

The drier and the kiln of the same type but 60% capacity are anticipated in case of the Variant A. The price of kiln and drier is estimated to be 75% in case of the Variant A. There will be used 50% trucks and saggers and the same regulation.

Cost (1000 Sf.)	Variant A	Variant B
kiln	500	67 0
drier	81	107
trucks	57	114
saggers	41	83
regulation	89	89
Section	768	1 063

D

With regard to the 50% inputs, costs in this equipment are estimated.

- Variant A 130 000 Sf.

- Variant B 259 000 Sf.

1.6. Glazing line

The cost in the Variant A is estimated to be 70% from the price of the Variant B equipment

- Variant A 210 000 Sf.

- Variant B 310 000 Sf.

1.7. Selection line

The same difference of costs as in case of the glazing line is supposed.

-	Variant	Α	32	000	Sf.
---	---------	---	----	-----	-----

_	Variant	в	46	000	Sf.

Total costs in the production equipment

- V	ariant	Α	2	310	Sf,
-----	--------	---	---	-----	-----

- Variant B 3 278 Sf.

2. Auxiliary and Service Plants

The estimate is based on the same ratio between both the variants as the ratio in case of the production equipment is.

Investment Costs in Equipment 1000 Sf. ---%-----Item Variant A Variant B $-\frac{A}{2}$. 100 _B_____ 1. Production equip. 2 310 2. Technol. lab. 122 3 278 70 2. Technol. lab. 100 123 123 3. Transport centre 140 200 70 4. Utility supply equip. 490 700 70 4. Utility supply5. Metallic structures147140 210 70 . 200 70 7. Office equipment 70 140 200 8. Other services 35 50 _70__ TOTAL 5 066 3 595

3. Initial Investment Costs

- Buildings and related costs are estimated to correspond to the production equipment.
- Technology and know-how will cost the same amounts.
- Implementation is estimated to cost 80% in case of the Variant A.
- Working capital is related to the production 55% from the Variant B is cost in the Variant A.

1000 Sf.

Initial Investment Costs

Item	Variant A	Variant B	- <u>A</u> 100 B
1. Land	31	45	70
2. Site preparation	230	330	70
3. Buildings	1 055	1 507	70
4. Technology	160	160	100
5. Equipment	3 595	5 066	71
6. Implementation	885	1 106	80
7. Working capital	520	945	55
Total Investment	6 480	9 160	71

4. Manpower

4.1. Factory workers (direct costs)

Workers in the production are regarded as necessary operators of the used equipment with addition of 20% to cover sickness etc.

Section	Variant A	Variant B
1. Body preparation	2	4
2. Atomizer	3	3
3. Presses	4	4
4. Drier and kiln	8	12
5. Glazing and sel.	5	9
6. Handling mat.	1	1
7. Other (supplements)) 4	7
TOTAL workers	27	40

- 4 -

4.2.	Factory	services	and	supervisors	(fixed	costs))

Category	Variant A	Variant B
1. Supervisors	4	4
2. Maintenance	2	4
3. Drivers	2	2
4. Cleaning	1	2
5. Guard	4	4
TOTAL	13	16

4.3. <u>Staff</u> (administrative costs)

Category	Variant	A Variant B
General manager	1	1
Production manage	r 1	1
Sales manager	1	1
Book-keeping	2	2
Sale	1	1
Technologist	1	1
Laboratory	1	1
Designer	1	1
Clerks	2	3
TOTAL	11	13

4.4. Wages and salaries

- average wages per year ((direct costs)	12 000 Sf.
- average wages per year ((indirect costs)	14 100 Sf.
- average salary per year	(admin. costs)	23 600 Sf.
	Variant A Vari	iant B
- direct labour	324 000 Sf. 480	000 Sf.
- factory overheads	183 000 Sf. 226	000 Sf.
- admin. overheads	260 000 Sf. 307	000 Sf.

5. Direct Material and Inputs

Costs in direct material and inputs are dealt with in Chapter 4 and they are 7.72 Sf./sq.m.

6. Other Factory Overheads

These costs are composed by spare parts, lubricants, auxiliary materials and utilities, when totaled and related to the direct labour, they are 49% from the cost in direct labour (Chapter 4).

7. Other Administrative Overheads

These costs are estimated to be 20% from salaries.

Total Manufacturing Costs

Item	Unit	Vaniant A	(90 000)	Vaniant B	16 0 000)
TCem	OHIC				
		cost	cost per	cost	cost
		1000 Sf.	unit	1000 Sf.	per unit
1. Direct mater.	sq.m.	695	7.72	1 235	7.72
2. Direct labour	sq.m.	325	3.61	48 0	3.0
3. Factory overh.		341		460	
fixed wages		183		226	
other overh.	direct labour	158	49 %	234	49%
4. Admin.overheads		315		370	
Salaries		260		310	
Other overheads	salaries	55	20%	6 0	20%
5. Distribution costs	sg.m.	40	0.44	70	0.44
Operating Costs		1 715		2 615	
6. Financial costs		130		190	
7. Depreciation		540		755	
Manufacturing Costs		2 385		3 560	

8. COMPARISON OF BOTH VARIANTS

8.1. Break even analyses

f = fixed costs v = variable costs p = price BEP = <u>f</u> p-v

VARIANT A	VARIANT B
f = 1365	f = 1840
v = 11.3	v = 10.7
p = 27	p = 31.7
BEP = 86.900 sq.m.	BEP = 87600 sq.m.
or 96.6% cap.	or 54.8% cap.

Note: price in case of Variant A is derived from prices of the 85/15 ratio between undecor. and decor sets in case of the anticipated home demand. In case of the exported tiles the same ratio is anticipated to be 15/85.

8.2. Simple rate of return

 $R = \frac{NP + 1}{K} .100$ NP = net income (after depreciation and interest) l = interest K = investment

	VARIANT A	VARIANT B
NP	45	1515
l	130	190
K	6480	9160
R	2.7%	18.6%

8.3 Sensitivity analyses

a) prices in export cut	off by 30%
VARIANT A	VARIANT B
f = 1365	f = 1840
v = 11.3	v = 10.7
p = 27	p = 27
BEP = 86.900(96.6%)	BEP = 112900 (70.6%)

b) average price cut off by 10% VARIANT A VARIANT B f = 1365f = 1840v = 11.3v = 10.7p = 24.3p = 28.5BEP=105000(116.7%) BEP=103400(64.6%)c) variable costs increased by 10% VARIANT A VARIANT B f = 1840f = 1365v = 12.4v = 11.8p = 27p = 31.7BEP=93500(103.9%) BEP = 92.500(57.8%) d) fixed costs increased by 10% VARIANT A VARIANT B f = 1500f = 20v = 11.3v = 10.7

p = 27 BEP = 95500(106.2%) p = 31.7BEP = 96400 (60.3%)

e) the above-mentioned contingencies met simultaneously

VARIANT A	VARIANT B
f = 1500	f = 2025
$\mathbf{v} = 12.4$	$\mathbf{v} = 11.8$
p = 24.3	p = 24.3
BEP =126000(140%)	BEP = 162000(101.2%)

9. CONCLUSIONS

- 9.1. Variant A would not be a sound investment because of the very small return.
- 9.2. Variant B is in any case worth of consideration for the low probability of being red and very good return on investment

ANNEX 2

Analysis of Heat Units

This Annex deals with the question which type of kilns shall be used in the wall and floor tile production in Suriname. There are two possible types of kilns which could be installed, electric power fired kiln or oil fired one from the point of view of fuel availability in Suriname. To decide which type of fuel shall be applied, the criterion of production costs was taken into consideration.

The application of the electric fired kilns shows the following advantages:

- better efficiency of fuel, consumption of heat energy in case of the electric power fired kilns is in general 2 - 3 times lower than that of other types of kilns.

- easier regulation and therefore more comfortable operation, and the main drawback is higher cost in installation.

Investment Costs	 electric power fired kiln 	1 150 th. Sf.
	- oil fired kiln	775 th. Sf.
	Difference	375 th. Sf.

Operating costs

Electric power fired kiln consumes 0.75 kWh per 1 kg of products. Muffled oil fired kilns consume in average 9.8 MJ/kg or 2.72 kWh/kg (i.e. 3.63 times higher than the electric one).

Consequently, the annual heat consumption in the plant's 160 000 sq.m. production will be in case of the electric power fired kiln 1 406 MWh and 5 000 MWh in case of the oil fired kiln. (Calorific value of light oil is 40 GJ/ton or 11.11 MWh/ton or 11.11 KWh/kg).

Consequently, the annual consumption will be in case of the oil fired kiln 450 ton (550 Sf./ton) and costs 247 500 Sf.

In case of the electric power fired kiln, costs will be 350 000 Sf. (250 Sf./MWh). Difference 102 500 Sf.

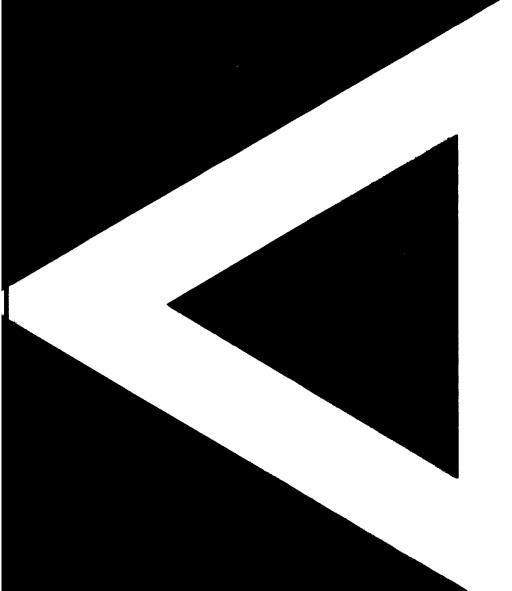
But there is one question to be taken into account. After the governmental projects of water electric power stations are realized completely the price of 1 MWh is expected to be 70 Sf. A formula describing the break even for the electric power from the point of view of cash flow can be as follows:

$$F + C \times (1 + a)^{T} = L$$

- F = 24 566 (economic life of kilns considered 15 years initial higher investment: 375 000 : 15 = 25 000)
- C = 140 000 (kWh of electric power per 160 000 sq.m. products)
- a = 0.22 (22% required rate of return)
- t = numeral related to the year of starting supplies of cheaper electric power (e.g. 1985 = 1 then 1990 = 6)

L = 247 500 cost in oil firing

x = price of electric power at which cash flow will be the same then x = 0.16 x 1.22^{t}


e.g. the change of electric power price sets in in 1984, then the costs in firing by both the fuels will equal only if 1 kWh of electric power is 0.16 Sf.

The following table shows prices of 1 MWh in successive years of the change of el. power at which the cost in firing by either light oil or el. power will be the same:

Year of price		x = price of el. power
change	t	MWh
*******	• • • • • • • • • • • • • • • • • • •	****
1984	ο	160 Sf.
1985	1	130 Sf.
1986	2	110 Sf.
1987	3	90 Sf.
1988	4	70 Sf.

If the governmental projects started delivering electric power priced 70 Sf/MWh before 1988, using an electric power fired kiln would be cheaper. However, because there can be contingencies related to both the start-up and the planned price, installation of the oil fired kiln is recommended. The application of electricity for ceramic firing will be taken into consideration during projecting works on expansion of the ceramic industry in Suriname artistic, sanitary ware and dinnerware making.

- 3 -

