

OCCASION

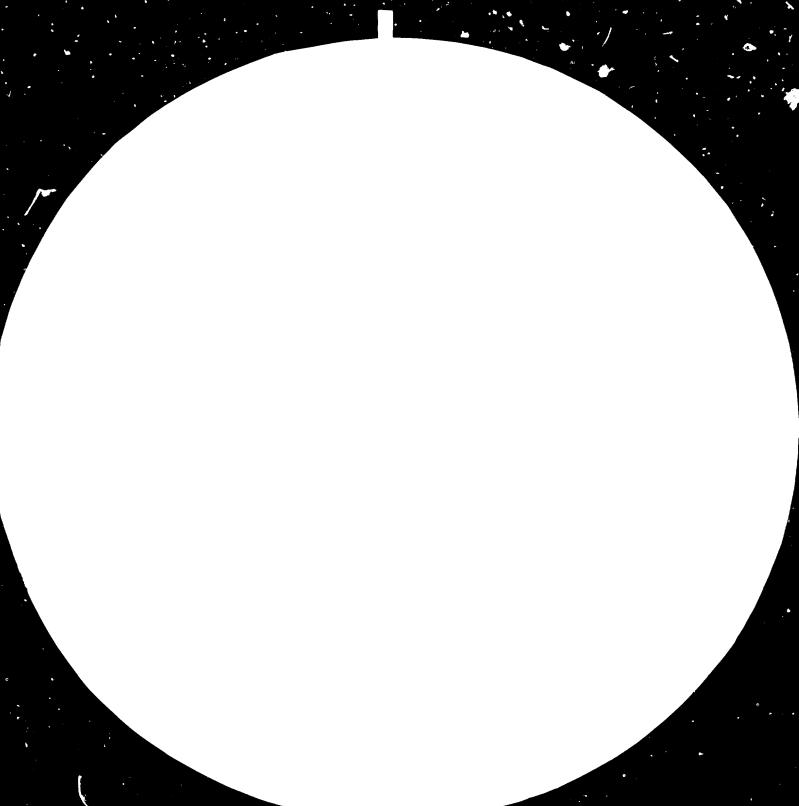
This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.


FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at <u>www.unido.org</u>

28 25 1.0 2 2 20

Market and a second second second second

1.8

11597

Distr. LIMITED ID/WG.364/35 18 June 1982

United Nations Industrial Development Organization

ENGLISH

Technical Conference on Ammonia Fertilizer Technology for Promotion of Economic Co-operation among Developing Countries

Beijing, People's Republic of China, 13 - 28 March 1982

COUNTRY PAPER ON BANGLADESH FERTILIZER INDUSTRY*

by

B.K. Mozumdar**

903016

V-82-27965

^{*} The views expressed in this paper are those of the author and do not necessarily reflect the views of the secretariat of UNIDO. This document has been reproduced without formal editing.

^{**} Chief Operation Manager, Urea Fertilizer Factory, Limited, Ghorasal, Dacca, Bangladesh

INTHODUCTION:

Agriculture is the dominant sector of Bangladesh economy, providing more than 75% of the employment of the active population and contributing to 90% of the Foreign Exchange earnings.

Bangladesh is a most densely populated country with density of 2030 per square mile. The population of the country estimated at 90 Million at the annual growth of 2.5%, higher than the average growth of rate of food production of 2.1% per annum. To resist food import which consumes large amount of hard earned Foreign-exchange, the government has taken a massive programme for increasing the food production. The production and consumption of fertilizer has been the main issue of the programme for increasing the agricultural product.

The total area of the country is 54 thousand square miles or 35.5 million acres of which 22.5 million acres are under cultivation. In view of the limitation of expanding the area under cultivation, expansion of the agriculture holds the potential for increasing the agricultural production. The fertilizer use as well as yield of paddy per acre in Bangladesh is much lower than most of the countries in Asia though fertilizer was first introduced as early as in 1951-52, with ammonium sulphate in the country. Therefore, fertilizer can play a vital role in increasing agricultural production aiming at self-sufficiency in food. Fertilizer demand was sharply increased with the introduction of High Yielding Variety of Rice in 1966-67. In 1980-81 fertilizer consumption recorded its ever highest figure at 875 thousand tons with the increase of 3.7% over the previous year. The Fertilizer consumption is shown in the figure-I.

Fortunately Bangladesh is well endowed with Natural Gas, the best raw material for the production of Ammonia Fertilizer. So far 9(nine) gas fields onshore and one in the offshore Kutubia have been discovered in the eastern zone. The current reserves and other specifics of the gas field are shown in Table-J.

- 1 -

Gas consumption during the fixeal year was around 130 MMCFD but by the end of the current fixeal year it is expected to shoot up by more than 50% to around 220 MMCFD, mainly on account of higher consumption of power, fertilizer and other industries. By the end of 1985 gas consumption is expected to rise to 550 MMCFD and will go a long away towards substitution of imported fuel and saving of Foreign-exchange. The government has given high priority to the development of indegenous Natural Gas resources to reduce the country dependence on imported energy. The gas consumption pattern is as given in the following table-II.

FERTILIZEP PLANTS IN BANGLADESH:

The first Fertilizer plant in the country was put on stream in November, 1961 and by the time we have more 5(five) fertilizer Plants in the country and except Zia Fertilizer Company Ltd., the other factories were constructed on Turn Key basis by the Foreign General Contractors. The particulars of chose are shown in table-III and IV.

Out of the experience from these factories the following points may be mentioned here to share the same by all.

(A) <u>CAFACITY UTILIZATION:</u>

The capacity utilization in our plant varies from 60 to 80%. The performance is dependent on several factors like age, size, feedstock, process, product, utility facilities, training concept and Managerial capacity etc and more important on the reliability features of plant and equipment. The plants in the under developed countries are mostly constructed on Turn-Key basis. The contractors are given the free hand to select the plant equipment-clients fully depend on the goodwill of the contractors. Modern plants with the latest technology are normally imported without due consideration of the maintenance of the same. With the technology development,

- 2 -

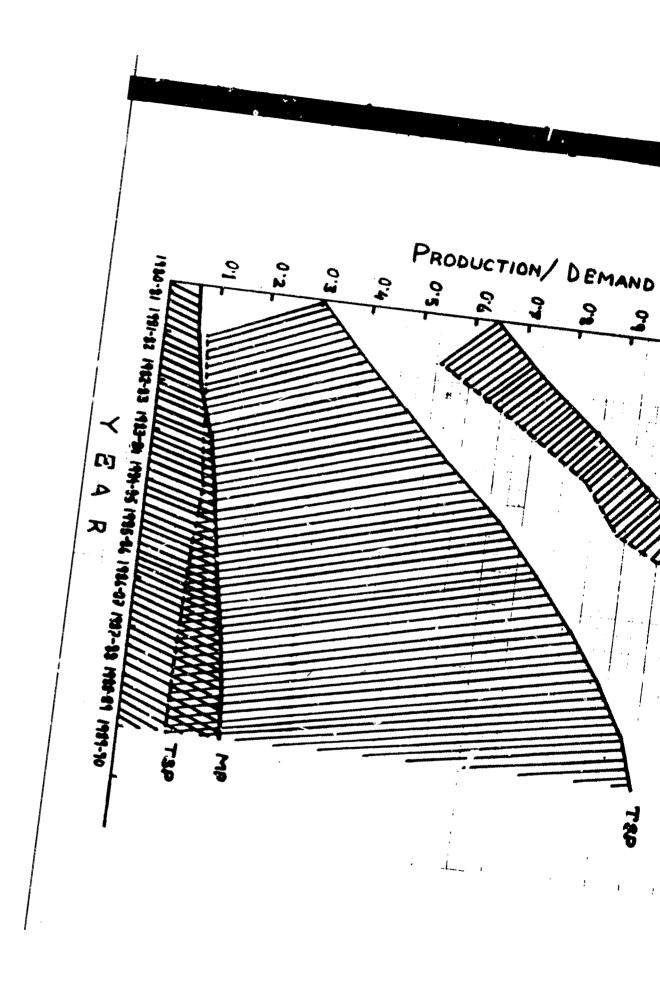
maintenance philosophy is also changed but unfortunately that point is not taken into consideration. In our case that is the main constraint of capacity utilization. A brief analysis of the loss of stream days in case of Urea Fertilizer Factory Limited, Ghorasal, Dacca is shown in table-V (a, b & c). It will be seen that the main cause of loss of production is the break down of machinery and failure f Instruments. The modern thought of continuous run of single train ammonia plants came into being with the introduction of Preventive/Perdictive maintenance which we lag very much. The correct assessment of the operating and mechanical condition of the machine to plan the maintenance only when a need is indicated has become possible mainly due to the development of sophisticated diagnostic aids. Thus the developing countries should consider hiring of the latest concept of the maintenance technology along with the modern fertilizer plants.

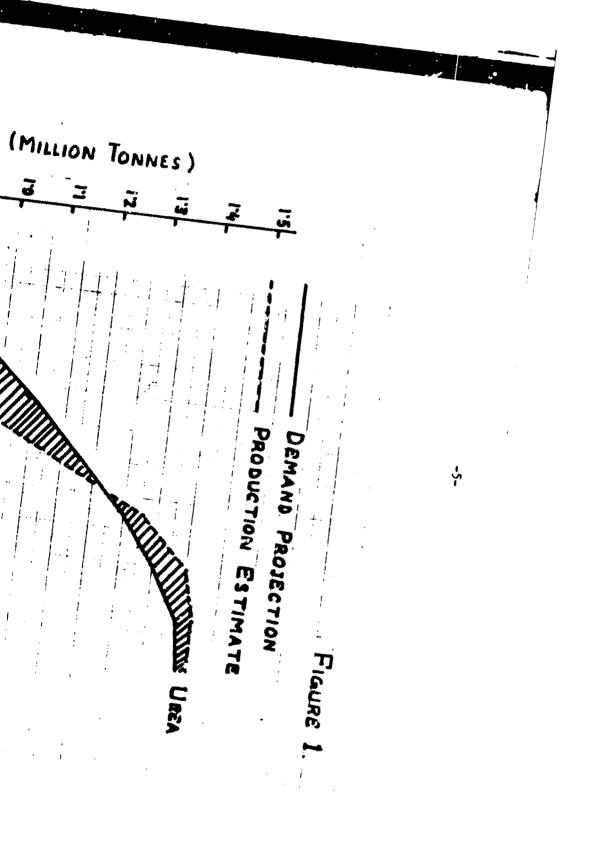
The developing countries can not aford to be guinea-pigs for engineering firms for untried design or equipments. It is preferable to adopt proven process and use proven equipment instead of experimenting with newer processess. In this respect the developing countries may share the valuable experience through a centrally organised data bank. The question of maintaining uniformity in plant capacity and selection of vendors for the proven equipments may also be given due consideration to avail the benefit of low invantory level for costly spares.

(B) <u>REMOVAL OF PLANT CONSTRAINTS</u>:

It is observed that almost all plants inherit certain short comings of varying degree from the design stage. Even a well designed plant may need periodic modifications to give good performance on a sustained basis. Ghorasal Fertilizer Plant suf suffers utility constraints which are taken care of in the Rehabilitation Scheme in 1983-84. Normally excess capacity is required to take care of the future increase of utility

- 3 -


consumption with the ageing of the factory. In developing countries where plant operation can never be as closely monitored and controlled as in industrially more advanced countries the utilities consumption, ratio should be considered slightly in higher side at the design stage.


Both the Cooling Towers (one in Urea and the other in Ammonia) will be extended by more 7 cells with the addition of one DM Unit and package Boiler with a view to maximising the capacity utilization.

Besides design constraints, all the plants need some changes for improving their performance. The timely innovations help the plants maintain consistently high level of performance. Effluent disposal is one of such innovations. UFFL suffered three total shutdown on these occasions because of effluent disposal system. As nothing about disposal of the same was in grass-root stage of the plant much innovation had to be made to approach zero discharge of harmful water effluent.

Switching over from the conventional chrome treatment to nonchrome treatment of the open type circulating Cooling Water system may also be mentioned as an improvement so far pollution is concerned. Initially both the Cooling Towers were on Chrome treatment but in October-November, 1980 Urea Cooling Water System was changed to non-chrome treatment from Kurita Water Industries, Japan and the effect is in no way inferior to Chrome Treatment.

- 4 -

(TAPLE_I)

NATURAL GAS RESERVES IN BANGLADESH AND THEIR CHEMICAL COMPOSITION

· •				<u> </u>	+					
Fields	Chha- tak	Sylhet	faila- stila	Hashid- FHT	liabi- ganj	Titas	Bakh rabad		Kutu- bdia	regum ganj
Froven Reser- ves in thef	0.94	0.28- 0.43	0.60	1.06	1,28	2.25	2.78- 3.70	0.03	1.0	0.25
Discounted Deserves as On June 30, 1981	0.020	0.249	0.60	1.06	1.234	0.031	3.70	0.030	1.00	0.25
Rate of Consumption (1980-81	0.0021	0.0070	-	-	0.00745	0.033	341 -	-		-
-	9.6 Yrs. approx		Un- tapped		166¥ŗs	61Yrs		Untep ped	•	Unta pped
Condensate recovery bhl/mmcf Trace	Trace	3.4	10.00	0.30	0 .05	1.5	2.00	Trace	Trace	-
Galori fic val ue Gross btu/of t	1007	1052	1052	1014	1020	1036	1022	-	1043	-
Chemical Connosition										
Methane 🗲	99.05	96.26	95.7	98.02	97.8	98.8	94.3	96.94	95.72	-
Ethane 🐔	0.24	1.99	2.6	1.2	1.5	1.7	3.4	1.70	2.87	-
Propane %	-	0.14	0.9	0.2	-	0,4	0.8	0.14	0.67	-
Butarie 🖇	-	0.32	0.4	0.1	-	0.5	0.6	1.01	0.31	-
Nitrogen 🖇	0.67	0.98	0.2	0.25	0 .7	0.3	0.4	0.86	0.365	
Carbon Dioxide 🕉	0.04	0,34	0.2	0.05	-	0.3	0.5	0.35	0.965	-
Year of Disco very	1959	1955	1962	1960	1962	1962	19 68	1969	197 7	
Note : tncf -	Trilli	lon Feet	= 10 ¹²							
bbl -	Americ	can Bari	rel							
mmcf -	10 ⁶ cf	[t								
btu -	Britis	sh Thera	al Unit							· · · ·

•

ļ

(TABLE_II)

Categor	•	Gas con tion 19	sump-	Gas cor tion 19	1sump- 180-81	Gas cor tion 19	sump-
CON SUME	ers	MMCFD	5	MMCF D	\$	MMCF D	*
A. <u>Fu</u>	L SUB TITUTION	<u>N</u> :	1	-		-	
i)	Fower	45.5	35	80	34	179	33
ii)	Industries	18	14	27	11	122	22
ii1)	Commercial Unit	14	3	10	4	31	5.8
(v.)	Hesidents	6.5	5	11	5	23	4.2
ទីបង	-Total - 4 :	74	57	128 larch'81	54 (61%)	355	65
B. <u>FO</u> F	FERTILIZER P	RODUCTION					
1)	Fenchuganj	20		20		20 .	
11)	Ghorasal	36 <i>′</i>		40		42	
111)	Ashuganj	-		50		50	
iv)	Chittagong	-		-		55	
v)	Folash	-		-		22	
S	ub-Total-B	56	43	110 (39%)	46	189	35
	а Т						
TOT	л L						

The gas consumption pattern is as given in the following table:

(TABLE_III)

The Installed Capacity of the plants already installed and also under implementation and planning as follows:-

-	Name of enter- prises/Project	Product	Installed capacity per year (M.T.)	Raw Material	Year of commiss- ioning	General Con- tractor.
1.	Natural Gas Fertilizer Factory (NGFF) Sylhet	Urea	1,06,000	Natural Ga: @20 milli- on Cft/day	ו ו	M/s. Kobe Steel Ltd., & M/s. Mitsubishi (Turn Key)
2.	Ammonium Sul= phate plant (ASP) Sylhet	Ammon- ium Sul- phate	12,000	Imported Raw sul- phur & Ammonia from NGFF	1969	M/s. Mitsubishi (Turn Key)
3.	Triple Super Phosphate Plant(I), Chittagong	T.S.P.	.32,000	Imported Raw sul- phur and Rock phospates	1978	M/s. Technique Chemie, France (Turn Key)
ц.	Triple Super Phospates Plant (II), Chittagong	T.S.P.	1,20,000	Imported Raw sul- phur and Rock Phospates	1974	M/s. Hitachi Zosen, Japan, (Turn Key)
5.	Urea Fertilizer Factory, Ghora sal. Dacca.		3,40,000	Natural Ga @ 39 milli on CFT/day	1970	M/s. Toyo Engin- eering Corp. Japan (Turn Key)
6.	Zia Fertilizer Chemical Co., Comilla.	Urea	5,28,000	Natural Gas @ 45 million Cft/day	Prod. December 1981,	M/s. Foster Wheeler & Co., (Cost Plus fee)
7.	Polash Urea Fertilizer Factory, Ghorasal.	Urea	1,00,000	Natural Gas @22 million Cft/day		Chinese Govt. assisted.
8.	Chittagong Urea Ferti- lizer Factory.	Urea	5,61,000	Natural Gas		

(TABLE_IV)

Frocesses and other basic data of Urea

Fertilizer Plants in Bangladesh

	N. G. F. F.	U. F.F. G.	Z.F.C.C.
Reforming (Gas Section	Steam Reforming Chemico, USA	Steam Reforming	Steam Reforming
CO2 Recovery	Po tassium Car- bonate Soluti n	Giammarco Vetrocoke	Benfield
Ammonia Syn- thesis	Chemico (350/360 Kg/Cm ² G)	T.E.C. Similar to Kellog (130-140 Kg/Cm ² G)	Uhde
Urea Syn- Thesis	Chemico (Total Gas Recycle) with MEA Solution	Mitsui Koatsu Total Recycle-C	Stami Carbon
ater System	Kurita Water Industries Ltd., Japan.	Japan Organo Co., Ltd.	Belco, USA Cooling Tower (Paharpur, India)
alec tric Fowe r	24 MW Captive (with one stand- by Generator of . 12 MW)	16 MW Captive	 1) 13 MW Captive Power for essen- tial services. 11) 5 MW Natura National Power for other uses
Prod. Storage Capacity. 1) Ammonia Tank.	1000.000 M.T. at low press.	750x2 M.T at 23Kg/Cm ² G	10,000 M.T. at ambient temp. (Vijoy tank vessel, India
11) Urea 1. Losse 2. Bagged	30,000 M.T 2,000 M.T	42,000 M.T 8,000 M.T	40,000 M.T 8,000 M.T

T

UNEA FERTILIZER FACTORY LIMITED, GHORASAL, DACCA

(TABLE_V)(a)

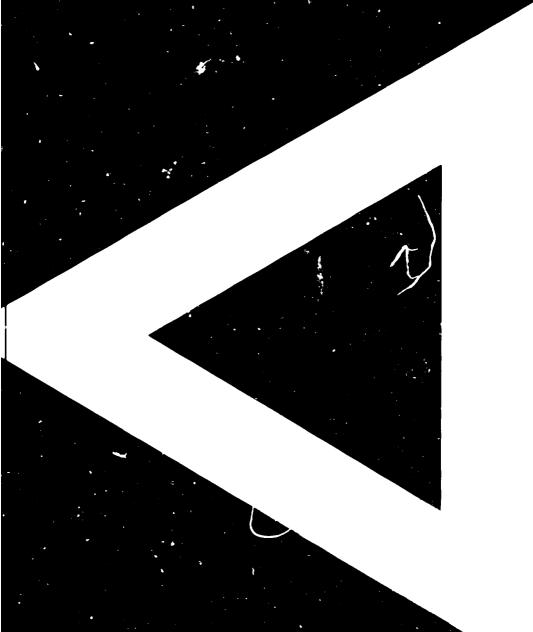
YEARWISE DOWNTIME ANALYSIS (Year ended June '30)

Unit : Days.

<u> </u>	+	1.004 001	1090 01	11070 80	1978-79	1077 78	1976-77	1075-76
N-2.	Causes	1981-82 Upto Dec.'81	1980-51	1979-80	1970-79	1977-70	1970-77	
1.	Breakdown of Machinery	43.67	19.39	14.52	25.85	16.77	17.30	29.08
•	Corrosion/ prosion	-	10.39	1.84	7.79	22.84	15.41	8.50
2•	Elect.Distri- bution.	-	-	2.36	2,81	7.08	0.33	39.54
•	<u>-lect. Power</u> :							
	1) Cartive 11) PDB	0.31	-	18.63 3.45	0.35 16.61	31.96 -	4.81	-
.	Instrument	13.00	11, <u>Q</u> ,	15.69	,5.61	30.16	21.61	23.94
έ.	Failure of pipe joints	-	-	0.58	-	1.31	4.46	3.28
7.	Packing Failur	re -	0.12	9.40	-	-	-	-
9.	Frocess Operat ional problem	t	0,22	20.20	-	22.39	0.04	4.05
9.	Shortfall of spares & other production	-	-	-	-	-	-	-
:0.	Shortfall of raw material	-	3.39	1.78	24.79	-	2.25	9.58
•1.	Fouling of Hea Exchanger.	at 2.41	0.43	1.06	2.92	10.97	-	1.93
:2.	Unforseen	-	-	-	3.83	-	-	-
• گ	Any other reas							
	1) Perscanel/ Labour	-	-	-	-	-	-	-
	ii) Off take o product	of_	••	-	-	-	-	-
14.	Shortage of Sk ed Manpower.	¹¹¹ :	1.83	-	-	-	-	**
lota	l loss (days)	59	47	89	91	143	66	120
งทุกบ	al Turn around	41	66	_	20	60	77	-
; ran	d Total loss	100	113	89	111	203	143	120
stre	cun days	84	252	276	254	162	222	245
rnd	. per Stream	òu3	974	930	930	932	937	934

(TABLE_V)(b)

BRIEF DESCRIPTION THE CAUSES LESS STREAM DAYS


MAJOR CAUSES OF DOWNTIME

FY	Mad	chinery	Ca	prosion/ersion	Remarks
1981-82 (Upto Dec.'82		Breakage of 5th stage blade of the Air Turbo Blower			Manufacturors expert needed
	11)	Turbine thrust bearing failure of RTB for four times			
1980 -81	1)	Thrust bearing failure of RTB	1)	HPD - tube leakage	of
	11)	Governor leakage problem of FIF of boiler.		Ammonia Preheater - in boiler ford water line - tube failure syn. Gas after coole	r of
1979-80	1)	Radial bearing (High temp.) of CO ₂ Booster Compr.	1)	Body leakage from HPD.	
1978-79	1)	Coupling failure of G.V. Solution Pump.	1)	U.V. Reboiler's vapo line leakage.	our
	11)	Governor problem of Syn. Gas Compressor		Ammonia piping leaks in Urea Plant	age
1977 -78	1)	Thrust bearing failure of CO ₂ Booster Compr.	1)	Solution fleat Exchar Process Gas Reboiler	ngers r and
	11)	Thrust bearing failure of RTB.		Syn. Gas Compr. Inte	er cooler.
1976 -77			1)	Methanator outlet ga leakage - Ammonia pi	
			11)	Ammonia header in Un	ea Plant.
1975 -76	1)	Thrust bearing failure of RTB.	1)	Carbamate return lin cracked.	8
	11)	High temp. of metallic backing of CO ₂ main compr.		J. JOROU,	

BRIEF DESCRIPTION OF THE CAUSES OF LESS STREAM DAYS (TABLE_V)(c)

MAJOR CAUSES OF DOWNTIME:

Overspeed trip of RTB & FIF. Cable failure of solenoid valves in process air line to 2HF. Closure of N.G. emergency 1) valve. FIF tripped due to wrong signal of low lub oil press. Overspeed of RTB. Breakage of air filter 1) connected to control valve. Wrong press. signal of fuel N.G. Failure of Askania controller the Syn. Gas turbine steam	Preheater pipings in Urea.
<pre>valve. FIF tripped due to wrong signal of low lub oil press. Overspeed of RTB. Breakage of air filter i) connected to control valve. Wrong press. signal of fuel N.G. Failure of Askania controller</pre>	Preheater pipings in Urea. Mild explosion in the duct of Auxiliary Boiler while firing
Breakage of air filter 1) connected to control valve. Wrong press. signal of fuel N.G. Failure of Askania controller	the duct of Auxiliary Boiler while firing
extraction line.	
Extra low level signal for RTB economize	
RTB inlet steam press (extra low)) Extra low drum level of Auxiliary Boiler. Extra low Instrument Air Press.	G.V. colution
Failure of PCV in Rea Reactor. Low Instrument Air Press.	
Gas Turbine No.2 (GTG No.2) tripped due to turbine exhaust temperature high (wrong signal) Hyper compressor inlet steam	
)	Extra low drum level of Auxiliary Boiler. Extra low Instrument Air Press. Failure of PCV in Rea Reactor. Low Instrument Air Press. Gas Turbine No.2 (GTG No.2) tripped due to turbine exhaust

