

OCCASION

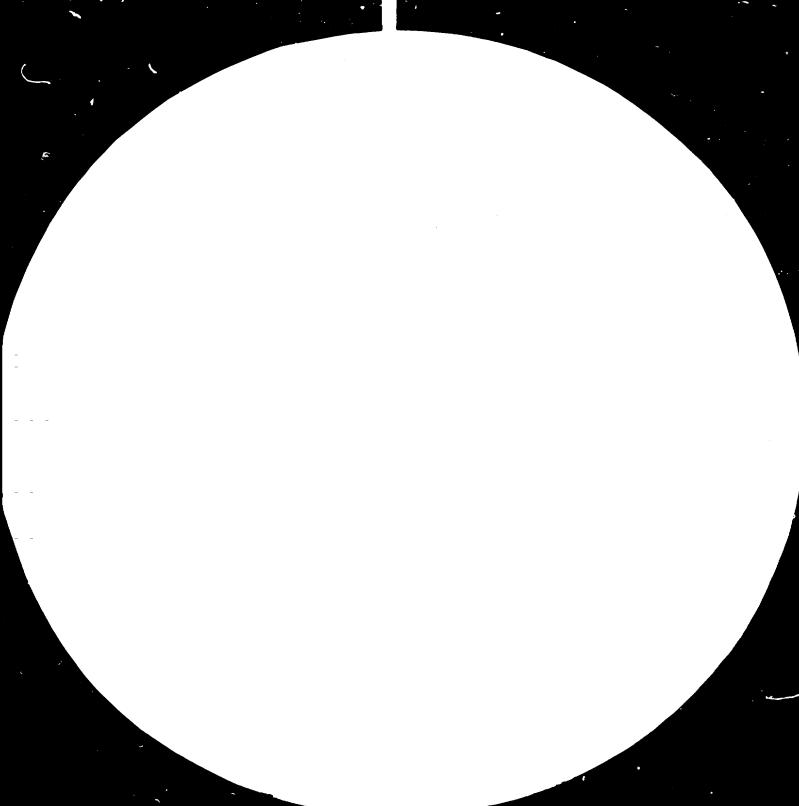
This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

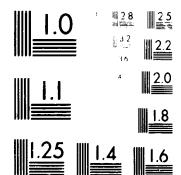
TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

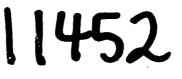

FAIR USE POLICY


Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at <u>www.unido.org</u>



The Romonty RECORDENS TELL CHART

1

÷.

UNIDO-Czechoslovakia Joint Programme for international Co-operation in the Field of Ceramics, Building Materials and Non-metallic Minerals Based Industries Pilsen, Czechoslovakia Distr. <u>LIM</u>ITED

JP/14/79 September 1979

CRIGINAL: English

In-plant Training Workshop on the Exploitation and Beneficiation of Non-metallic Minerals

Pilsen, Czechoslovakia

8 - 26 April 1980

OTHER NON-METALLIC RAW MATERIALS

By: M. Kužvart +

2807

Department of Mineral Deposits, Charles' University, Prague,

The views and opinions expressed in this paper are those of the author and do not necessarily reflect the views of the secretariat of UNIDO. This document has been reproduced without formal editing.

Contents

I. Introduction
II. Genesis and occurence of industrial minerals and rocks 4
<u>III. in alphabetical survey of industrial minerals</u> 6 (andalusite, asbestos, barite, borates, corundum, feldspars, fluorite, graphite, kyanite, magnesite, mica, olivine, sillimanite, sulfur, talc and stea- tite, wollastonite, zeolites, zircone)
<u>IV. An alphabetical survey of industrial rocks</u> 21 (bauxite and alumina-rich laterite, diatomite, dolomite, glass and foundry sands, leucophyllite, mineral pigments, petrurgic basalt, phosphates, salts)
V. <u>Building raw materials</u>
(marly and siliceous correction materials for cement, brick raw materials, stone for aggregete, building stone)
Note on arrangement of a chapter on a mineral raw material (see parts III,IV,V): l. mode of occurence
 world's largest deposits where to look for new deposits and recommendations
for further geological survey 4. principles of exploitation
5. basic data on world reserves (e), and output (b) 6. utilisation of the raw material
7. countries with possible new discoveries in Africa (AF), Latin America (LA), Middle East (ME), Far East (FE)
VI. Conclusions
(the finding, exploration, and working of deposits of mineral raw materials in developing countries)
VII. Literature
Figures (2) and Tables (3): processing of nonmetallics

l

۲

.

OTHER NON-METALLIC RAW MATERIALS M. Kužvart

- 1 -

I. INTRODUCTION

Other non-metallic raw materials for ceramics, refractories, building materials and other industries include all industrial minerals and rocks with the exception of quartz crystals and other quartz raw materials, bentonite, clays, kaolin, perlite, gypsum, limestone and light aggregate, which are dealt with in special lectures.

In this lecture we shall describe the occurence and use of foilowing <u>ceramic raw materials</u>: feldspars, wollastonite and leucophyllite.

Refractory raw materials:

Α.	Alumine-silica raw materials (see special lecture):
	(a) kaolin: 1. siliceous (with quartz), in molochite resis-
	tant up to 1770 ⁰ C;
	2. bauxitic (with kaolinite and hydrated alumina)
	<pre>(b) fire-clay: 1. plastic clay (= soft clay, bond clay);</pre>
	2. flint clay (= hard clay)
	(c) "ball-clay": plastic clay for bonding of other more
	refractory components
	Main mineral: kaolinite (Al ₂ 0 ₃ . 2 SiC ₂ . 2 H ₂ O)
	Products: chamotte - resistant up to 1630 - 1750°C
	hard porcelain - resistant up to 1670–1730 ⁰ C
	(both contain less than 50 % Al ₂ 0 ₃)
з.	High-alumina raw materials:
	(a) aluminous laterite and bauxite - mixture of
	gibbsite (Al ₂ C ₃ . 3 H ₂ C), boehmite, and diaspore
	(both Al ₂ 03 . H ₂ 0); should contain less than
	2,5 % Fe ₂ 03 and 3,5 % TiC ₂ ; calcined bauxite
	contains up to 85 % Al ₂ 03.
	(b) diaspore and/or gibbsite clay. Hydrated alumina
	must be calcined before further use.
	(c) andalusite, kyanite, sillimanite (all have the
	composition Al ₂ 0 ₃ - SiO ₂), kyanite heated to '
	1100 - 1480°C is converted to mullite, resistant

up to 1810⁰C.

 (d) corundum and synthetic corundum (fused and sintered alumina, produced from high-alumina bauxite), resistant up to 2050⁰C.

- 2 -

 (e) synthetic mulli+e (3 Al₂O₃ . 2 SiO₂) made from high-alumina clay (natural or artificial, i.e. washed kaolin) or from sillimanite, andalusite, kyanite, dumortierite, or topaz.

Product: high-alumina brick with 50 - 90 % and more Al_20_3 .

C. Silica raw materials:

- (a) pure silica sand (SiO₂), resistant up to 1710^oC
- (b) quartzite (ganister type)

Product: silica brick (called "dinas" brick in Europe).

- D. Basic rew materials:
 - (a) magnesite (MgCO₂)
 - (b) brucite and synthetic magnesium hydroxide produced from sea water (both Mg(OH)₂)
 - (c) dolomite (CaCO₃ . MgCO₃)
 - (d) chromite (Cr₂O₃ . FeO), resistant up to 2000°C
 - (e) forsterite (Mg_2SiO_4) , resistant up to 1905°C, with some Fe_SiO_4 (fayalit) which lowers the melting point of the mixture (i.e. the mineral olivine) to about 1700°C.

Raw materials under (a) through (c) require preliminary dead burning to get rid of CO_2 and OH . MgO and Cr_2O_3 . FeO are combined to magnesite-chrome (m. prevails over ch.) and chrome-magnesite bricks by burning to $17CO^{\circ}C$. Dead burned (to $1450^{\circ}C$) magnesite (MgO) is used as "magnesite" or "periclase" for manufacture of bricks. The theoretical melting point of periclase is $2800^{\circ}C$.

Product: basic brick.

- I. Special refractory raw materials:
 - (a) pure oxides:
 - zirconium as the mineral baddeleyit ZrO₂ or produced from zircon ZrSiC₄, melting point 2500°C;
 - 2. ThO, from monazite (melting point 2700°C);

3. BeC from beryl (melting point 2200°C).

- (b) refractory minerals: flake graphite (C), resistant up to 3700°C in a reducing atmosphere;
 steatite 3 MgO . 4 SiO₂ . H₂O, resistant up to 1370 1540°C.
- (c) synthetic minerals:
 - 1. cerbides: SiC, resistant up to 1700°C, W₂C- constituent of thermal shields of spacecrafts, B₄C
 - 2. borides: ZrB, melting point 6000°F
 - 3. nitrides: BN borazon (diamond hardness, resistant up to 1900^oC in oxidation atmosphere), AlN, Si₃N₄.

The principal trends in the use of refractory materials have resulted in a decline in the use of clay and silica types and an increase in the consumption of basic and highalumina refractories. The formerly acceptable chrome/ /magnesite basic bricks are being replaced by new types of magnesite and magnesite/chrome bricks and these now comprise 55 % of basic brick deliveries (excluding dolomite bricks) compared with only 31 per cent in 1960 in the UK. In the area of alumina refractories, firebrick has given way to more expensive, higher quality bricks containing over 40 % alumina. There has also been a growing preference for the more easily installed monolithic refractories at the expense of traditional brick and shapes.

Such changes in refractory usage have primarilly been a result of improved blast furnace performance, the shift from silica to basic refractories in open hearth rooves and the rapid growth of the basic cxygen steelmaking process at the expense of the open hearth process.

Building raw materials comprise marky and siliceous correction material for cement, brick raw materials, stone for aggregate (gravel and crushed stone) and building stone.

Raw materials for <u>glass production</u> involve glass sand, fonolite, and minor components (sode, sodium, nitrate, limestone, feldspar, dolomite); for <u>chemical industry</u> - sulfur, fluorite, barite, borates, salts, limestone a.o.; for <u>metallurgical industry</u> - fluorite, quartzite, limestone, magnesite, foundry sands; for <u>optical industry</u> - quartz, fluorite a.o.; for electronical industry - talc, mics, quartz a.o.; for <u>agri-</u> <u>culture</u> - phosphates, sodium nitrate, limestone, dolomite, potassium selts; for production of <u>abresives</u> - quartz, pumice, perlite, corundum and emery, diemond, antiabrasives - molten basalt; for heat-and acustic <u>isolations</u> - chrysotile asbestos, perlite, vermiculite, mineral wool (molten basalt or marly limestone, clay or glass); for <u>fillers</u> - diatomite, asbestos, kaolin, limestone, talc, barite, bentonite, zeolites, mica, perlite, pumice, vermiculite a.o.; for <u>filters</u> - amphibole asbestos, zeolites, diatomite, expanded perlite; for <u>pigments</u> -- ochres, umbras.

II. GENESIS OF DEPOSITS OF INDUSTRIAL MINERALS AND ROCKS

Geologic criteria, which guide the prospector to a yet unknown deposit, depend to a high degree on the conditions and processes of its formation. Hence, a brief survey of the origins of the above-mentioned non metallic raw materials is necessary.

A. Deposits formed with the help of inner terrestrial forces: (a) igneous and (b) metemorphic.

(a) Igneous deposits comprise those completely enclosed in bolies of deep seated igneous rocks: 1. magnatic deposits (feldspars, mica, forsterite); 2. volcanic deposits (basalt, perlite, zeolites), and deposits which crystellized closer to the Earth surface from hot solutions and gases liberated during the long process of magna cooling - 3. hydrothermal deposits (asbestos, barite, beryl, brucite, fluorite, magnesite, quartz, talcand steatite, and kaolin).

(b) High pressure and temperature prevalent in deeper barts of the Earth's crust transformed carbonaceous beds in graphite, and beds with higher alumina content (similar to keelins, clays, and bauxites - see below) to kyanite, sillimanite, and alusite, in exceptional cases to corundum and emery. All these deposits - and wellastonite, leucophylite belong to the metamorphic type.

E. Deposits formed on or near to the Earth surface where the rocks formed by the internal forces meet in uncessing struggle with processes of decay, destruction, and removal of their products under the influence of atmosphere, hydrosphere, and the biosphere. Here also we can distinguish two main groups of deposits:

(a) deposits formed by weathering of rocks (kaolin, Al-laterite, "amorphous" magnesite, vermiculite, bentonite, ochres, loams), and

(b) deposits formed after transport by sedimentation of weathered rocks (= sedimentary deposits):

- 1. placers (zircon, monazit with high ThO2)
- 2. clastic sediments (clays of all types, shales, bedded bauxites, sands, gravels, quartzites)
- 3. organogenous deposits (limestone, diatomite, dolomite, sulfur, phosphates)

4. chemogenous deposits (salts, borates, gypsum). Igneous and metamorphic deposits (A; (a), (b) can be found in moutain ranges and in their roots, if they are ancient enough to have undergone thorough erosion and levelling. Deposits of the weathering crust (B; (a)) can be expected to form only on levelled surfaces of ancient massives (e.g. Africa except Maghreb and Cape province), where the weathering agents (rain-water with dissclved organic and inorganic matter under tropical conditions) acted undisturbed by movements of the Earth's crust on the destruction of rocks for millions of years. Sedimentary deposits (B: (b)), if still young, can be found in the river valleys cutting into granites, or on the beaches (placers - B; (b), 1.), or as part of beds that formed the bottom of ancient freshwater lakes (e.g. all refractory clays, many deposits of distomite) or seas and salt lakes (e.g. bauxites, some sands and quartzites, i.e. clastic sediments - B;(b),2).

Crganogenous sedimentary deposits (B;(b),34) were formed from the skelets of many small dead organisms which formed extensive, thick beds on the sea-floor, e.g. diatomites, or from decaying organic matter which changed the sea environment to one suited to biochemical deposition of dolomite.

Chemogenous deposits (B,b,4) were formed by evaporation of sea water in extremely arid climate.

- 7 -

III. AN ALPHABETICAL SURVEY OF INDUSTRIAL MINERALS

Possibility of beneficiation of refractory and other mineral raw materials see Table 1, Figures I and II; its financial effect see Table 2.

Arrangement of each chapter on a mineral raw material:

- 1. mode of occurence
- 2. world's largest deposit
- 3. where to look for new deposits and recomendations for further geological survey
- 4. principles of exploitation of deposits
- 5. basic data on world reserves (a), output (b) 1/
- 6. utilisation of the raw material
- 7. countries with possible new discoveries in Africa (AF), Latin America (LA), Middle East (ME), Far East (FE).

Andalusite Al₂0₃. SiO₂

less important than kyanite of the same composition.

- Contacts of argillaceous and micaceous slates with granite; lenses and pockets in pegmatites. Both types are a source of placers in beach sands and river sediments.
- White Mountain (Mono County, California, USA); Marico
 District (Transwaal, South Africa) placer 0,3 m thick.
- 3. In andalusite-bearing slates in areas formed by granites intruding argillaceous sediments. By studying heavy minerels obtained by panning of river- or beach-sends.
- 4. Placer deposits are easy and cheap to work by various types of rockers, jiggers, etc.
- 5. (a) Transwaal 400,000 t
- 6. refractories

•

- 1/1 long ton = 1.016048 metric ton
 - 1 short tor = 0.9072 metric ton
 - 1 metric ton = 1.10 short ton
 - 1 long ton = 1.12 short ton
 - 1 snort ton = 0.894 long ton

Asbestos $Mg_3(Si_2O)(OH)_4$

- 1. cross fiber veinlets of chrysotile asbestos in serpentinite
- 2. Thetford belt in Quebec (Canada) 50% of world production; serpentinized peridotite with 4,5% of asbestes in veinlets 10-100 mm thick. Bazhenovo in the Urala Mts. (USSR) - serpentinized peridoti-

te with 4-6% of asbestos in veinlets 60-80 mm thick. Shebani (Zimbabwe) - serpentinised dunite

- 3. In dark ultramafic rocks (peridotites, dunites) in mountain ranges. By magnetometric method, trenches, diamond drilling (with recovery of asbestos fibers from the drilling mud).
- 4. Open-pit quarrying or shrinkage stoping, sublevel stoping and block caving.
- 5. a) Canada 100 mil.sh.t., Europe 70 mil.sh.t., Africa 36 mil.sh.

b)) thousand metric tons							
	Country	1970_	1971	1972	1973	1974_	<u>1975</u>	
	Canada	1508	1483	1530	1690	1644	1037	
	USSR	1070	1150	1220	1280	1360	1900	
	Brazil	376	403	474	819			
	South Africa	a 2 87	319	321	333	335	3 5 5	
	China	170	160	200	210	150	150	
	Italy	119	119	133	149	148	147	
	USA	114	119	1 1 9	136	102	89	
	World total	4250	4340	4430	5180	5140	5080	

- 6. Refractory textiles, clutch facing, brake lining, asbestos-cement products, isolations a.o.
- 7. LA: Brasil; ME: Saudi Arabia; FE: Indonesia; Australia.

Barite BaSC,

2. (a) Magnet Cove (Arkanses, U.S.A.).

- (b) Meggen (Westphalen, Federal Republic Germany)
- (c) Washington County (Missouri, U.J.A.)
- 3. in all types of rocks close to acid granitoids; panning for heavy mineral concentrates, dyeing of barite grains; shafts, drilling.

- 7 -

- 4. types (a) and (b) mostly underground mining, type (c)
 open pit.
- 5. (a) milion short tons of barium content: U.S.A. 230, Mexico 120, Brasil 75, China 75, West Germany 50.

(t)

short tons

	1970	197 1	1972	1973
USA	854 1 32	825 000	906 000	1 104 000
FRG	454 798	450 693	406 434	359 510
USSR	314 000	331 000	342 000	356 000
Italy	2 39 5 55	222 144	200 365	183 500
Mexico	351 738	308 362	288 147	281 372
Ireland	177 000	216 160	257 356	275 500
China	165 000	154 000	171 C 30	182 000
Peru	143 295	113 004	226 000	237 000
Canada	147 251	120 765	77 261	98 000
Korea North	132 000	132 000	132 000	132 000
World total	4133 976	4113 982	4361 578	4760 700

- 6. weighting agent for muds in rotary drilling, manufacture of glass, industrial filler, extender; pigments, absorption of gamma radiation.
- 7. It can be expected that high-grade reserves will be discovered in many coutries.

Borates

colemanit $Ca_2B_6O_{11}$.5 H₂O, pandermit $Ca_4B_{10}C_{19}$.7 H₂O, sassolin H₃BO₃ a.o.

- 1. Chemical sediments (a) in arid basins of playa type, and
 (b) in the upper part of salt deposits, (c) volcanic gases (sassolin)
- 2. (a) Kramer (California, U.S.A.) claystones with boron minerals on an area of C,8 x 3 km; Searles Leke (California U.S.A.); Bandirma (Turkey)
 - (b) Stassfurt (East Germany)
 - (c) Toscana (Italy)
- 3. potential sources of boron: contacts of igneous rocks with dolomites, limestones and magnesites; sea water.
- 4. Mostly open pit, type (c) condensation of vapours
- 5. (a) milion short tons of boron content: U.S.A. 20, U.S.S.R.

O, Turkey 20, China 10, Argentina 5, Chile 5

- 8 -

(b) production of borates, metric and short tons

	1972	1973	1974	
USA	1121 COC	1225 000	1185 000	s.t. boron minerals
Turkey	622 444	525 588	1038 588	m.t. dtto
USSR	75 000	75 000	80 000	m.t. B203 content
Argentine	52 438	63 3 80	74 095	boron minerals m.t.
Chile	2 250	1 53 2	968	borates,crude (m.t.)

6. fiber glass, ceramic glazes, detergents, food preservatives extra hard abrasives, nuclear reactor control rods and shields

Corundum Al₂03

- 1,2. (a) Disseminated crystals in rocks formed by regional or contact metamorphism
 - (b) Lenses in desilicated pegmatites (Transwaal, Rep.of S.Africa).
 - (c) Lenses in nepheline syenite, sometimes with sillimanite (Renfrew County, Ontario, Canada).
 - (d) Placers
 - (e) Emery, a mixture of corundum and magnetite (Izmir, Turkey).
- 3. Metamorphosed bauxites; contacts of pegmatites with basic rocks. Study of the position of paleo-equators is necessary.
- 4. Primary deposits are mined by underground methods. Enrichment through crushing, sieving, and handling on shaking screens.
- 5. (a) No data.
 - (b) Production of corundum (metric tons)

	1972	1973	<u>1974</u> .	
India	391	26 6	335	
⊴gypt	294	269	275	
USSR	7 000	7 000	7 000	

- 6. abrasives
- 7. AF: Rhodesia; Mozambique; Malawi; Tanzania; ME: Iran; Turkey; LA: Uruguay.

Feldspars (K,Na)AlSi₂0₈

- 1. (a) pegmatite veins and lenses;
 - (b) intrusive massives;
 - (c) sands
- 2. (a) New England (U.S.A.), Kerelia (J.S.S.R.) thickness 3-25 m, length XOO m.
 - (b) alaskite (Spruce Pine, N.Carolina, U.S.A.), albitite (Aksoran, Kas.S.S.R), aplite (Küre Köy, Bilecik, Turkey), felsite, porphyry, nepheline syenite (Blue Mt., Canada)
 - (c) dune sands (California, U.S.A); river sands (Halámky, Czechoslovakia)

3. intrusive massives and rivers draining them

- 4. open pit
- 5. (a) yast

(Ъ)	short tons	1970		1971	19	972	<u> 197</u>	3
	USA	726 069	742	810	732	439	791	900
	FRG	456 634	389	789	385	198	338	432
	USSR	274 400	276	000	287	000	298	000
	Italy	195 258	212	192	193	805	209	657
	France	132 160	212	000	162	000	165	000
	Norway	143 360	223	530	220	000	220	000
	Mexico	91 300	109	506	L08	426	107	042
	World total:	2627 180	2815	046	2305	349	2794	005

6. glass, procelain, enamel, tile, dimmerware, engobes, frits,7. almost all countries

Fluorite CaF₂

- 1. (a) hydrothermal veins and irregular bodies;
 - (b) pegmatites
- 2. (a) Cave in Rock (Illinois, U.S.A.) subhorizontal bodies 1-5 m thick, 70-50C m long, 15-'0 m wide. Coshuila (Mexico)

(b) Kasakhstan (U.S.S.F) - crystals in cavities

- 3. Acid intrusives and their roof; prospecting for eluvial placers or hydrochemical prospecting; using the fluoride electrode
- 4. underground exploitation (shrinkage stoping, open stoping,

room - and-pillar), rarely open pit quarrying

5. (3) million short tons: USA 6C, Mexico 100, Europe 100, Asia and Oceania 100, Africa 40

(b)	short to	ns 19	270	19	271_	<u>19</u>	972	19	273	
	Mexico	1078	5 94	1301	77 9	1149	039	1196	99 2	
	USSR	450	000	460	00 C	470	000	490	000	
	Spain	376	621	370	091	444	290	430	000	
	Thailand	350	7 85	471	23 5	412	915	377	079	
	France	320	000	2 7 0	79 2	320	000	330	000	
	Italy	318	851	325	83 3	305	244	359	630	
	China	300	000	280	00 C	280	000	280	000	
	UK	213	044	232	50 C	219	300	220	000	
	USA	269	221	272	071	250	347	248	601	
	South Af.	190	693	203	49 7	2 32	374	231	842	
	Canada	136	800	80	00 C	179	700	15 1	000	
	Czechoslo	v. 90	000	100	000	100	000	137	000	
	World total	4597				4974		492 7	849	
Chei	mical, ste	el ar	nd ce	eramic	inĉ	stries	3.			

Graphite C

soft black flaky mineral; artificially produced from petroleum coke.

1. Graphite originates:

6.

- (a) in magmatic rocks as nephel ne syenites (Botogol, USSR) or pegmatites (Buckingham, anada), in their contacts with carbonates (Grenville, Canada), or in high-temperature veins (Ceylon);
- (t) in metamorphic rocks during regional of contact metanorphism of cartonaceous sh les (southern Bohemia) or coal seams (Soncra, Mexico)
- 2. Sri Lanka-veins of flake graphi = up to 2 m thick. Mr Lagasy - 4 to 11 % of graphit with flakes 1 to 3 mm ir layers 3 to 30 m thick and tousands of m long in graiases.
- 3. Flaky graphite can be found in vains and in metamorphic deposits. Crystalling massives are to be studied. Elack

- 11 -

outcrops of veins and seams of graphite can be located by means of aerogeological mapping and delimitated by means of electrical resistivity, self-potential or radiometrical geophysical methods. Sinking of pits, boring and exploration through galleries is necessary to estimate the reserves.

- 4. In tropical coutries it is sometimes possible to work residually-enriched outcrops of poor graphite seams or graphite gneisses (e.g. Madagaskar). Underground mining is inevitable in other cases. Maintenance of shafts and galleries in slippery graphite is often very difficult. Graphite is crushed, flotated, sometimes refined chemically (up to 99,9 % C). For refractory purposes at least 85 % C in graphite is required.
- 5. (a) No data.

(b)metric to	nsl	970	1971	1972	1973	1974	<u>1975</u>
USSR	75	300	80 000	80 00 0	85 000	90 000	90 C 00
Mexico	55	648	50 916	55 11 0	65 392	62 551	60 814
USA	29	854	35 536	43 340	56 653	5 9 002	49 081
Korea,N.	75	000	75 000	75 000	75 000	77 000	77 000
Korea,S.	59	530	72 515	40 768	43 604	1C4 861	47 232
China	30	000	30 000	30 000	30 000	40 000	50 000
Austria	24	000	21 000	18 777	17 211	29 555	30 586
FRG	16	406	12 688	11 348	13 525	16 485	13 557
Czechosl	.12	929	13 457	13 300	15 306	15 082	15 036
Madaga sk	•18	312	20 116	18 320	13 963	17 280	17 774
Brazil	11	200	23 709	27 347	25 784	28 625	-
1 and a							

World 448 955 478 580 456 962 482 298 597 627 544 313 total 448 955 478 580 456 962 482 298 597 627 544 313 6. Foundry facings (" amorphous" graphite), batteries, bearings, trake linings, crucibles (flake graphite), lubricants, pencils, packings, refractories

 $X y = n i t e = M_2O_3$. SiC₂

 Originates at high pressures under conditions of deep regional metamorphism from argulaceous sediments with high slumina contents, occurs as disceminated crystals in mica--schists, gneisses, and quartzites, with possible later segregation into pockets and lenses under the influence

- 12 -

of contact metamorphism. Kyanite lenses and pockets occur also in pegmatites and quartz veins. Sometimes accumulates ir river- and beach-placers.

- 2. Baker Mountain near Pamplin (Virginia, USA) 30-40 % kyanite in rock. Lapso-Buru (Singhbum District, Crissa, India)
 - massive kyanite with 10 % corundum.
- 3. Found by studying heavy minerals in river- and beach-sands in metamorphic massives with acid intrusions; associated with placers, residual boulders, and primary outcrops which build low ridges.
- 4. Mining by open cut methods using blasting. The ore is crushed, cobbed, and hand-sorted, sometimes flotated, fir d, separated magnetically. The concentrate is precalcined.
- 5. (a) India 3,790.000 t (1971); Botswana 30.000 t; Guayana - 2,200.000 t (1973); Austria (Wipp Valley) several mil.tons.
 - (b) Production of kyanite (short tons)

 1950
 1955
 1766
 1968
 1970
 1971

 USA
 16,000
 28,000
 cannot be disclosed

 India
 29,747
 13,206
 63,670
 70,945
 119,120
 62,960

 (m.t)
 (m.t)
 (m.t)
 (m.t)
 (m.t)

 Kenya
 12,845
 3,031

6. refractory mortars, cements and castables

7. AF: Botswana (Halfway Kop); Malawi (Ncheu, Kapiridimba); Uganda; Tanzania; Angola; Liberia (Grand Bassa Country); LA: Surinam (Boschland); FE: Mayurbhanj State (India) several mil. tons of dumortierite 8 Al₂O₃ · B₂O₃.
6 SiC₂ · H₂O; Lapso Buru (Kharsawam, India) - topaz

 $2 \text{ Al}_{2}0_{3} \cdot 2 \text{ Al}(F, 0H)_{1} \cdot 3 \text{ Si}0_{2} \cdot C$

Magnesite MgCO3

- (a) crystalline and (b) cryptocrystalline ("amorphous").
- 1. (a) In large irregular bodies in dolomites;
 - (b) T. either in lences or veins with dolomite; II. in concretions and boulders in weathered serpentinite;
 TI. in sediment: with dolomite.

2. (a) Košice (Czechoslovakia) several bodies tens of meters

- 13 -

thick and hundreds of meters long;

- (b) I. Euboia (Greece);
 - II. Khelilovo (Urals, USSR);
 - III. Needles (California, USA) a bed 4 m thick, 800 m long, 900 m broad.
- 3. (a) Areas of dynamic geological activity built by crystalline carbonate rocks;
 - (b) sepentinite massives. In both cases: outcrops are first located, then sampled and drilled to find their thickness.
- 4. Mining by open-pit methods if possible, otherwise by underground methods of the room-and-pillar type, possibly first by the former, then by the latter.
- 5. (a) million tons magnesium content: China 1150, North Korea 820, USSR 800, India 50, Czechoslovakia 30
 - (b)

thousand metric tons

	1970	<u>1971</u>	1972	1973	1974_	1975		
Kenya	0	0	1	2	10	17		
S.Afrika	84	79	69	80	105	61		
Sudan	-	-	-	-	-	-		
China	1000	1000	1000	1000	1000	1000		
India	755	915	9 22	1069	1347	1425		
Iran	4	4	4	4	16	16		
N.Korea	1630	1720	1720	1700	1700	1700		
Pakistan	1	1	0	3	Ĵ	2		
Turkey	300	362	336	351	3	<u>.</u> 01		
Austria	24	20	19	22	<u> </u>	36		
Czechosl	2928	3062	299 6	2734	2816	2885		
Greece	755	915	922	1069	1347	1426		
Poland	39	22	36	22	24	27		
Spain	222	2 58	273	240	265	342		
USSR	1420	1450	1500	1710	17.50	1800		
Yugoslev	ia 512	493	422	384	464	485		
Erezil	216	233	2 77	275	3 66	439		
Mexico	8	12	21	2 9	5 5	40		
World total	11130	11510	11300	1270	12170	12340		
Annual p	roducti	on (197	2) of ma	nesiu	n from	seawater		
and brin	and brines: USA (300,000 tons seawater, and Great							
Salt Lake), USSR (100,000 t - Sivash, Crimea), Japan								

- (420,000 t), GB (250,000 t), Italy (6,000 t), Norway
 (80,000 t), Canada (30,000 , Mexico (50,000), Iceland
 (107,000 t MgCl₂). Product on of magnesite from dolomite planned in Hungary.
- 6. refractories, chemical indust: pulp and paper
- 7. AF: Tanzania (Same, 4 mil. t); 4E: Saudi Arabia (40 mil.t);
 FE: India (Tamil Nadu; Uttar F adesh Almora district
 7,9 mil. t; Mysore); Nepal (Kh ridhunga 180 mil.t).

Mica

к ₂ .	$K_2Al_4(Si_6Al_2O_{20})$ (OH,F) ₄ -muscov :e									
$K_2(Mg,Fe)_6$ (Si ₆ Al ₂ O _{2C}) (OH,F) ₄ phlogopite										
1.	1. muscovite: (a) granite penatit ;; phlogopite: (b) hydro-									
	thermal veins in P	re cam brian s	.elds							
2.	(a) Bihar (India);	Karelia and	lola Per	insula (U.S.	S.R.);					
	(b) Slyudyanka (U.				•					
3.	prospecting for pe	•	tamorph	ic rocks clo	se to					
	acid granitoid int		-							
	workings.	,,								
4.	open pit quarrying	by hydreuli	method	or nower she	vale.					
••	underground mining				, vers,					
5	(a) no data	or presering	SMOLT	cital.Re2						
J •	· •	1001	-							
	(b)metric_tons1970		[2]	973_{1974}	1975					
	USA 107813	115289 134	5 3 1 39	110 124262	122093					
	USSR 37000	3800 0 39	00 40	41000	42000					
	India 16589	15099 1 4	73 13	830 13804	11501					
	S.Afrika 7562	7160 4	47 6	009 2696	2511					
	Norway 4348	3478	90 4	445 4160	7455					
	Argentina 1404	3256	56 2	940 3197	3330					
	World 189312 total 189312	1 97850 21 3	11 224	259 202 3 96	200195					
6.	insulators in elec	tro nic, te lev	bion an	d radio equi	pment					

Olivine (forst rite Mg₂SiO₄)

1. Rock-forming mineral of ultraba ic rocks such as dunites.

- 2. Asheim and Norddal (Norway).
- 3. Ultrabasic crystalline massives isually controlled by deep faults.

- 15 -

- 4. Quarrying by blasting, loading by power-shovel.
- 5. (a) Asheim 2 miliard tons
 - (b) Norway 1970 140,000 metric tons, 1972 250,000 metric tons
- 6. refractories
- 7. AF: Bushveld Complex (Rep. of S.Africa).

Sillimenite Al₂0₃.Si0₂

- Originates as prismatic crystals or fibrous masses at high temperatures in the presence of fluorine during regional or contact metamorphism, or both. Occurs in schists, gneisses, hornfels, and in placers.
- 2. Sona Pahar (Khasi Hills, Assam, India) sillimanite + + corundum; Cape Province (Rep. of S.Africa).
- 3. see kyanite. Massive sillimanite is sawn into glass tank blocks.

4. Economic content of sillimanite in schist - 10 %.

- 5. (a) USA tens of millions of tons; Namaqualand 2.5 mil. t (sillimanite + corundum); Assam - 238,000 t.
 - (b) Production of sillimarite (metric tons)

	1972	1973	1974	
India	4 C46	3 1 3 8	2 917	
Egypt	9 476	19 317	13 091	
Australia	57 5	642	700	
kvanite				

6. see kyanite

Sulfur (S)

- 1. (a) volcanic deposits on the crater walls and floors
 - (b) biochemical-sedimentary bedded deposits
 - (c) gypsum cap rock of salt domes
 - (d) natural gas and petroleum

(e) pyrite (hydrothermal or sedimentery)

- 2. (a) Siretoko Iosan (Hokkaido, Japan)
 - (b) Tarnobrzeg (Poland)
 - (c) Gulf Coast (U.S.A.)
 - (d) Alberta (Canada), France
 - (e) Rio Tinto (Spain)

- 16 -

- 3. young fold belts (a,b,c) and their foredeeps (d)
- 4. open pit or Frasch method (b,c)

5. (a) million long tons: Canada 1500, Near East 900, U.S.A. 630, U.S.S.R. 600, Mexico 150, Poland 80, Japan 60

(b) th.m.t.	1970	1971	1972	1973_	1974	1975	
USA	7196	7138	7407	77 27	8028	7326	
Poland	2683	2713	2927	3545	4093	4771	
USSR	1120	2100	2200	2 300	2400	2500	
Mexico	1381	1178	944	1608	2322	2164	
Irak	-	-	137	395	610	650	
Chine	130	130	130	130	130	130	
Finlend	-		11	123	100	84	
Italy	63	72	· 91	80	64	73	
Japan	146	96	17	16	16	16	
Czechosl	. 7	5	2	5	7	10	
Decements	a	A		(1070		

Recovered sulfur from natural gas (1972 mil.metric.tons): Canada 7,25, France 1,75.

- 6. sulfuric acid; sulfur asphalt for paving, inpregnations, building materials
- 7. LA: Cordilleras, ME: Taurides and Iranides, FE: East Asia mountain ranges

Talc and steatite $Mg_3(Si_4O_{10})$ (OH)

- 1. (2) In or on contact of magnesite and dolomite with country rock, as lenses and veins;
 - (b) in serpentinites (mostly as soapstone, i.t. with aklinolite, carbonates, chlorites etc.).
- 2. (a) Manchuria (China); Inyo Mountains (California, USA)up to 17 m thick and 300 m long lenses on the contact of quartzite and dolomite
 - (b) Shabry, Urals (U.S.S.R.)
- 3. In sheared and fractured metamorphic rocks with intercalations of magnesite and delomita. Prospecting by geophysical methods, sinking of pits, drilling.
- 4. Underground mining with difficult maintenance of the shafts, galleries, and chambers because of the slippery charakter of talc and steatite.

- 5. (a) milion short tons: U.S.A. 800, Asia and Oceania 500, Europe 250, Africa 25, South America 25
 - (b) Production of talc, steatite, soapstone and related minerals (short tons)

	1971	1972	1973
Botswana	143	-	-
Egypt	6968	8518	8500
S.Africa	12975	119 26	13055
Swaziland-pyrop	phyllit@25	119	139
Burma	237	240	141
China	165000	165000	16500C
India	208094	209189	228344
Japan	1731827	1661114	1723540
Korea-N	99000	110000	120000
Korea-S	234185	259867	248257
Pakistan (soaps	stone) 5200	4846	4390
Philippines	1452	1110	1801
Taiwan	43036	27328	25490
Austria	100995	91725	101638
Finland	110979	99568	120928
France	279579	250548	285363
FRG	32692	34743	33000
Greece	2045	2200	2200
Hungary	17600	17600	17600
Italy	152936	163607	161539
Norway	85092	85000	85000
Portugal	1405	1327	1224
Romanie	63000	63000	5600C
Spain	44911	44000	4400C
Sweden	26505	29107	33000
USSR	420000	43000C	440000
UK	132 28	17637	18000
Canada	6556 2	80946	110000
Mexico	1889	3450	2324
USA	1037297	1107404	1246534
Argentina	54881	40827	44 CCO
Brazil - talc	143000	143000	143000
Chile	1938	2021	1938
Colombia	2177	2477	992

	***	1971	1972	1973
	Paraguay	176	243	276
	Peru	1057	1100	1100
	Uruguay-ground	talc 939	1458	2201
	Austrelie	52774	6189 1	62000
. -	World total		5240750	-
	ctro-ceremics,		•	r in paper,
-	stics and rubber	-	-	
	Egypt (between pata - 300,000		-	
	¥ o :	Llaston	ite CaSi	°3
1. in	metamorphic rocl	ks		
) on a contact (ith intrusi	ve rock, or (b)
		etamorphosed r		, , , , , , , , , , , , , , , , , , ,
2. (a)	Willsburough (1	-		Lapperanta (Fir
_	land)		,,	
(b)	Little Maria M	ts. (Californi	a. U.S.A.)	
	thetic w. is pro		-	nd and chalk
•	ade mark Synopal			
	1., and in carl			,
	•			
4. ope	n pit			
4. ope 5. (a)	n pit world: 90 mil.	tons	metric tons)
4. ope 5. (a)	n pit world: 90 mil. Froduction of y	tons wollestonite (-
4. ope 5. (a)	n pit world: 90 mil. Froduction of y	tons wollastonite (1972	<u> 1973 </u>	1974
4. ope 5. (a)	n pit world: 90 mil. Froduction of y India	tons wollestonite (<u>1972</u> 3326	<u>1973</u> 476	<u>1974</u> 947
4. ope 5. (a)	n pit world: 90 mil. Froduction of y India Kenya	tons wollestonite (<u>1972</u> 3326	<u>1973</u> 476 55	<u>1974</u> 947 100
4. ope 5. (a)	n pit world: 90 mil. Froduction of y India Kenya Finland	tons wollastonite (<u>1972</u> 3326 - 6491	<u>1973</u> 476 55 654?	<u>1974</u> 947 100 9118
4. ope 5. (a) (b)	n pit world: 90 mil. Froduction of v India Kenya Finland Mexiko	tons wollastonite (<u>1973</u> 476 55 654? 1593	<u>1974</u> 947 100 9118 1984
4. ope 5. (a) (b)	n pit world: 90 mil. Froduction of y India Kenya Finland Mexiko amics (reduces y	tons wollastonite (<u>1972</u> 3326 - 6491 559 warping and cr	<u>1973</u> 476 55 6547 1593 acking), pa	<u>1974</u> 947 100 9118 1984 ints, plastics,
4. ope 5. (a) (b) 6. cer 7. see	n pit world: 90 mil. Froduction of y India Kenya Finland Mexiko amics (reduces y 1., and wollast	tons wollastonite (<u>1972</u> 3326 - 6491 559 warping and cr	<u>1973</u> 476 55 6547 1593 acking), pa	<u>1974</u> 947 100 9118 1984 ints, plastics,
4. ope 5. (a) (b) 6. cer 7. see	n pit world: 90 mil. Froduction of y India Kenya Finland Mexiko amics (reduces y	tons wollastonite (<u>1972</u> 3326 - 6491 559 warping and cr	<u>1973</u> 476 55 6547 1593 acking), pa	<u>1974</u> 947 100 9118 1984 ints, plastics,
4. ope 5. (a) (b) 6. cer 7. see	n pit world: 90 mil. Froduction of y India Kenya Finland Mexiko amics (reduces y 1., and wollast	tons wollastonite (<u>1972</u> 3326 - 6491 559 warping and cr	<u>1973</u> 476 55 6547 1593 acking), pa onatites: A	<u>1974</u> 947 100 9118 1984 ints, plastics,

are cristalline hydrated alkalin alumosilicates with ion exchange capacity and interconnected cavities in the structural lattice

1. alteration of volcanic glass by water

ł.

- 2. Itaya (Fukushima, Japan) thickness 100m; Bouie (Arizona, U.S.A.)
- 3. homogenous fine-grained rocks in volcanic complexes
- 4. open pit
- 5. (a) vest reserves in U.S.A., Jopan, FRG, Itely, Yugoslavia Hungery, Bulgaria, Mexico
 - (b) see 5 a: 300.000 metric tons per year
- 6. pozzolanic cement and concrete, lightweight aggregate, filler in paper, ion-exchange processes, oxygen separation from air, enimal nutrition, agriculture, gas adsorption and catalysis, dimension stone

Zircone ZrSiO4 with some hafnium

in placers sometimes occurs together with baddeleyit ZrO₂ (Minas Geraes, Brazil), often with monazite (Ce,La,Th)PO₄ (Espirito Santo, Brazil); ilmenite FeTiO₃, and rutile TiO₂ (Victoria and New South Wales, Australia).

- 1. Beach placers fed by inland crystalline rocks (granites, granitic pegmatites, granodiorites, nepheline syenite pegmatites) with zircon as accessory mineral. The rocks underwent deep weathering (e.g. laterization) on peneplain followed by uplift, rapid erosion of newly formed high mountains near the sea and quick immersion in the sea of weathered rocks with heavy minerals.
- 2. Australia, eastern coast in a length of 100 miles between Bollina (N.S.W.) and Stradbroke Island (Queensland): 44-70 % zircon in heavy mineral concentrate (with 15-30 % each rutile and ilmenite); Florida (USA), elevated sand bars on the coast near Yacksonville and St. John's River (15,000 tons per year of zircon); Turkey, Black-Sea coast near Shile - black sand 7-14 cm thick with 10 % zircon (38 % of grains smaller than C.2 mm).
- 3. Shores with vertical movement, built by acid and alkaline intrusions, that weathered deeply thus releasing the heavy minerals. Loci: alongshore sond bars extending from headland to headland.
- 4. Removal of overburden by bulldozer, selective hand loading into trucks, separation of heavy minerals from silica sand on Wilfley tables and spirals, electromagnetic and electro-

- 20 -

static separation of zircon and rutile (non-magnetic) from magnetite and ilmenite.

5. (a) Australia, Brazil, India: 10 mil. t of Zr-minerals; North Straboroke Island (Australia): 1 % of zircon in sand dunes 700 feet thick on a 107 square miles area. USA deposits: 5 - 15 mil. t of Zr-minerals: Trail Ridge (Florida): 2,520,000 tons of zircon, Pulmaddai and Kokkelai deposits: 210,000 t of zircon. Urugababa near Durban (Rep. of S.Africa): 200,000 t of zircon.

(b)	Production of	zirconiu	m concentrate (short tons)				
		1970	1971	1972	1973		
	Australia	424902	455195	397042	393336		
	Brazil	4483	4596	5046	5100		
	Sri Lanka	-	153	33	31		
	Malagasy R.	3	3	15	15		
	Malaysia	948	2803	2216	2 2 00		
	Theiland	953	1682	403	440		
	India	7649	9924	12000	12000		
	S.Africa	432	1091	745	2180		

6. refractories, foundry sand, ferroalloys, glazes, enamels,

paints, pharmaceuthicals; hafnium: nuclear reactors

7. AF: coast of Sierra Leone, Senegal, Egypt (Rosetta-Damietta, Borallus); FE: coast of India (Travancore, Cochin); eastern shore of Australia; LA: Uruguay: black sands 6 m thick with 2.5 % heavy minerals on the Atlantic coast at Aguas Dulces (3 mil. t of heavy minerals, 5 % zircon, 0.6 % monazite); coast of Brazil (Rio Grande del Norte).

IV. AN ALPHABETICAL SURVEY OF INDUSTRIAL ROCKS

Bauxite (A) and alumina-rich laterite (B)

rock composed of gibbsite (Al₂O₃ · 3 H₂O), boehmite and/or diaspore (both Al₂O₃ · H₂O) with admixture of kaolinite, quartz, hematite, goethite, rutile, and others.

1.A. (3) Beds and lenses in sediments (mostly limestones);

(b) Pockets in limestones (bauxite fills the sinkholes);

(c) Detrital deposits;

all types are washed-over Al-laterites

1.B. Residue on rocks with low silica contents formed by

ancient or recent tropical weathering in savannah with alternating dry and rain seasons.

- 22 -

- 2.A. (a) Tikhvin near Leningrad (USSR) beds with 35-55 % Al₂O₃, 15-25 % Fe₂O₃, 10-25 % SiO₂
 - (b) Jemaica gibbsite, 46-50 % Al₂0₃, 10-20 % Fe₂0₃, 1-2 % SiO₂
 - (c) India (at the foot of the weathered trapps)
- 2.B. Surinam gibbsite bearing Al-laterite with up to 57 % Al₂O₃, 8-12 % Fe₂O₃, 2-3 % SiO₂
- 3.A. Mostly in tropical and subtropical zones fossil or recent where limestones occur.
- 3.B. laterites of Neogene age sometimes build top hardpan on inselbergs in contemporary tropical belts. Prospecting for laterites: by paleogeomorphological studies; following the flow fragments; drilling and test-pitting.
- 4. Stripping of overburden by scrapers, open-pit quarrying by blasting and power shovel, crushing, washing (to remove clay), drying and calcining in rotary kilns.
- 5. (a) 1 to 2.5 miliard tons on the Earth: Jamaica 19.7 %; Guinea 14.8 %; Ghana 10.8 %; Hungary 7.4 %; Australia 7.4 %; Guayana 3.2 %; Malawi 3 %; Surinam 2.5 %; India 2.5 %; Brazil 2 %.

(b) Produc	tion o	f bauxi	te (in	thousan	ds of m	etric tons)
	1970	1971_	1972	1973	1974_	1975	
Jamaica	12106	12543	12989	13489	15224	11304	
Australia	8294	11043	13697	14702	18545	22205	
USSR	4300	4100	4200	4300	4300	4400	
Surinam	6011	6717	6777	6718	6863	4751	
France	29 92	3117	3281	3299	29 3 8	2563	
Guinea	2490	2630	2600	3800	7600	8406	
USA	2562	245 8	22 35	2324	2408	2199	
Yugoslavi	a2098	1959	2197	2167	237C	2306	
India	1374	1517	1684	1297	1114	1274	
Indonesia	1229	1238	1276	1229	1290	993	
Melaysie	1139	978	1077	1143	948	704	
Guyana	4413	0234	3727	3 6 22	3606	3830	
Domin.Rep	.1083	1032	1087	1086	1196	785	
Haiti	673	715	725	7 79	793	523	
Sierra L.	44 3	590	692	704	693	72 7	

	1970	1971	1972	1973	1974	1975	
China	500	 550	 550	 760	97 0	970	
Brasil	510	566	765	849	858	969	
Ghena	342	329	340	356	365	3 25	
Turkey	5 2	153	471	352	665	558	
Mosambique	7	8	5	6	5	2	
World total	57940	62560	6617 C	69270	791 80	7 6470	

6. elumina, aluminum, refractories

- 7. AF: Mozambique; Upper Volta (Kaya-Kongoussi; Bobo-Dioulasso); Malagasy (Menétenina); Melawi (Mulen Mts.); Cameroon (Minim Martap - 1.5mld.tons);
 - LA: Dominican Rep.; Colombia (Cauce Deparment); Haiti; Costa Rica (San Isidro; Carthago province);
 - FE: Sarawak; Maleysia; Solomon Islands (Wagina Island; Rennell Island - ? 100 mil.t 47-48 % Al₂O₃); Fiji

Distomite

low density sedimentary rock consisting of fossilized shells of siliceous algae - diatoms. Mineralogical composition - opal.

- 1. Beds of sedimentary origin with tuffs and tuffites of contemporary volcanism, mostly Neogene and Quaternary.
- 2. Lompoc (California, USA) thickness 250 m.
- 3. Neogene and Quaternary strata with Volcanic ash. Exploration by sinking of shafts and drilling holes.
- 4. Working by electric or diesel shovels or rooters powered by tractors or bulldozers. Drying and coarse milling, calcination.

5. (a) No data.

(b) Production of diatomite (short tons)

		· · · ·			
	1970	1971	1972	1973	
USA	597636	535318	576089	608906	
USSR	410000	410000	420000	430000	
France	190000	185703	190000	190000	
FRG	100924	97787	63985	50700	
	66000 iite22000	65000 22000	65000 22000	65000 22000	
Denmark	240000	240000	240000	240000	
Spain	20000	20211	22000	22000	
W.total	1766308	1706917	1700109	1738498	

	1970	1971	1972	1973	
Argentina	907 0	10568	10600	10600	
Peru	2821	4162	4400	4400	
Kenya	1765	1543	1997	137	
Egypt	2504	2480	1839	1900	

6. filtration, filler, mild abrasive, sourc of silica

7. AF: Nigeria (Potiskum); Rep. of South Africa (Ermelo and Prieska districts); LA: Brazil; Chile; Colombia (Quesnel); Costa Rica; Mexico; ME: Turkey; FE: Korea; Japan.

Dolomite CaCO3. MgCO3

- 1. (a) Sedimentary beds interstratified with limestones.
 - (b) Hydrothermal-metasomatic masses with crystalline magnesite.
- 2. In almost all coutries, huge deposite.
- 3. (a) In Paleozoic and Mesozoic sediments.
 - (b) see crystalline magnesite
 By localition of the outcrop, digging trenches and
 drilling holes.
- Cpen-cast mining by means of blasting; loading by power shovel.
- 5. (a) No data huge reserves

(b) Belgium, Italy, Norway, Spain, and other coutries

6. Aggregate, special cement and lime, refractories, removal of sulfur oxides from stack gases, neutralisation of acid waters and soils, filler of rubber, glass, ceramic and chemical industries.

Glass and foundry sands

glass sands: most quartz grains 0,1-0,3 mm in diameter, and Fe₂0₃ content less than 0,04 %; foundry sands: quartz grains and 5-10 % of clay substance; if missing (in pure sands) bentonite or organic compounds should be added

- 1. sedimentary complexes with sands, and sandstones
- 2. elmost in all coutries
- 3. shallow see or lake sediments, recent of ancient
- 4. open pit quarrying, sometimes by hydraulic method

Note: for production of green or brown bottle glass fonolite with more than 15 % of Na₂O + K₂O can be used Leukophyllite composition: quartz, sericite, talc, leuchtenbergite

- 1. hydrothermelly altered fractured zones in granitoids
- 2. Austria
- 3. granitoids close to talc and magnesite deposits
- 4. mostly underground mining
- 5. no data
- 6. filler in paints, rubber, paper; wall-tiles, utility and sanitary ware (leuk. lowers the burning temperature)

Mineral pigments

yellow: ochres; red: hematite; brown: umbers; black: magnetite, pyrolusite

- 1. weathered iron-or manganese bearing rocks, or their washed-over and sedimented derivatives
- 2. almost in all coutries
- 3. see 1
- 4. open pit quarrying

Petrurgic basalt (for melting and casting)

1. volcanic areas

- 2. Czechoslovakia, U.S.S.R., F.R.G., Japan, Poland, Bulgaria
- 3. basalts with composition:

SiO2	43,5-47,0 %	MnC	0,2-0,3 %
TiO2	2,0-3,5 %	MgO	8,0-11,0 %
Al2 ^C 3	11,0-13,0 %	Сао	10 ,0- 12,0 %
Fe ₂ 03	4,0-7,0 %	Na ₂ 0	2,0-3,5 %
FeO	5,0-8,0 %	K ₂ õ	1,0-2,0 %
		P205	0,5 - 1,0 %

4. open pit quarrying, mostly selective

5. no data

6. anticorrosive pipes and their bends, floor-tiles, various casts; mineral wool, refractory isolations

Phosphates

- 26 -

composition: mostly apatite $Ca_5(PO_4)_3$. (F,Cl)

- 1. (a) marine shelf sediments
 - (b) phosphate pebbles re-worked deposits of type (a)
 - (c) residual and infiltration deposits
- 2. (a) Khouribga (Morocco), Hahotoe (Togo)
 - (b) Florida (U.S.A.)
 - (c) Tennessee (U.S.A.)
- 3. (a) in complexes with black bituminous shales; by radiometric method (0,02 % and more of U₃0₈ in some phosphates); hint for prospecting: fluorosis of cattle.
 - (b) weathering crust, soils above limestones with accessory phosphates
- 4. mostly open pit quarrying
- 5. (a) miliard short tons: Morceco 60, U.S.A. 7, U.S.S.R. 4, western part of Sahara 3,7; Australia 3, Tunisia 2

(b)	th.m.tons	1970	<u>1971</u>	<u>1972</u>	<u>1973</u>	1974	1975_	
	USA	35143	35277	37041	38226	41446	44285	
	USSR	17800	19000	19700	21250	22500	24120	
	Morocco	11424	12030	15105	17077	19750	14119	
	Tunisia	2969	3162	3986	3473	3826	3512	
	China	1700	2200	2600	3000	3000	3400	
	Nauru	2200	1913	1906	2323	2288	1535	
	Senegel	998	1454	1250	1533	1472	1600	
	W.Sahara		33	150	696	2168	3 3 00	
_	World total	81800	84600	90900	99300	116900	118500	

- 6. fertilizers, chemical industry
- 7. AF: Libya; LA: Mexico (Baja Celifornia), Peru; ME: Turkey, Iran, Saudi Arabia;

Salts

- (A) rock salt NaCl, (B) potassium salts: sylvite KCl, carnallite KCl.MgSC₄ . 11 H₂C, a.o.
- recent of ancient beds (or ancient domes) originated by evaporation of saline waters (sea, lake, playa, lagoon, salina, sabkha) in arid climate;
 - (A) mass of the deposits; (B) upper part of approx. 20 % of salt deposits

- 2. (A) Zechstein (Germany); Alberta (Canada); Danakil lowland (Ethiopia); domes: Gulf Coast (U.S.A.)
 - (B) Stassfurt (Germany); Kama (U.S.S.R.); Delaware Basin (N.Mexico, U.S.A.)
- 3. around salt springs and outcrops of gypsum; by gravimetry and sesmic methods; gamma logging of drill cores for ^{4C}K; careful drilling
- 4. room and pillar
- 5. (a) world ocean: 4.5 milion cubic miles of salts; vast reserves of rock salt in almost all coutries with the only major exception of Japan. Potassium salts, miliard short tons K₂O: U.S.S.R. 55; Canada 55; West Germany 11, East Germany 10; U.S.A. 0,5; Israel and Jorden 2.
 - (b) (A) rock salt (thousand metric tons)

	1970	<u> 1971 </u>	1972	1973	1974	1975
USA	41636	39986	40843	39834	42217	37222
China	15600	16500	180CC	19960	25400	29940
USSR	12428	11968	12228	12860	13356	14300
F.R.G.	10511	9009	8 282	9077	11497	9500
India	5588	54 26	6521	6854	5918	
Canada	4862	5028	4914	5C48	5447	5156
France	5664	5495	523 7	6117	5995	5347
Australia	2054	3774	3503	3671	4683	50 57
Mexico	4063	4703	506C	4319	5470	3803
UK	9188	9348	9734	8374	8283	7630
Italy	4359	4382	3836	37 07	4006	3191
Romania	2862	2948	31 47	3296	3053	383 3
Poland	2904	2962	3010	3078	3295	3524
Metherlands	3 2371	3167	2803	3 059	3387	
GDR	2180	2221	2187	2286	23 38	2430
Czechoslov.	42	4C	41	40	41	3 9
World total	144000	143380	147400	1 51400	164700	159200

- 27 -

(B) potass	sium sel	ts (K ₂ 0	conten	thouse	and metr	nic tons	
	1970	<u>1971</u>	1972_	1973	1974_	1975	
USSR	4037	4807	5433	5900	6100	6050	
Canada	3103	3629	3494	4453	5776	4850	
GRD	2419	2445	24 58	2556	2864	3019	
FRG	2420	2815	2845	2975	3090	2607	
USA	2476	2347	2412	2361	2315	2314	
France	1904	2000	1760	2263	2275	2085	
World totel	18230	2010C	20700	22640	24600	23200	

- 20 -

6. (A) source of sodium and chlorine, nutrient, preservative, freezing point depressent, metalurgical processing;

(B) chemical industry, fertilizers, glass, ceramics, textiles, paints, detergents, a.o.

V. BUILDING RAW MATERIALS

Marly and siliceous correction materials for cement

(A) argillaceous limestones and marls with 6C-80% CaCO,

(B) loams, clays, shales, weathered igneous rocks, sands

- 1. (A) shallow-water marine sediments;
 - (B) various types of sediments and residual deposits
- 2. common in all countries

3. close to the planned cement factory

4. open-pit quarrying

5. (a) vast reserves

- (b) production of cement in milion short tons (1973):
 U.S.S.R. 120; Japan 94; U.S.A. 87,5; Nest Germany 45;
 Italy 40; France 38; China 34; Spain 24,5; U.K.22;
 Poland 17;
- 6. for correcting of hydraulic module of the raw material

 Ca0
 to values between 1,7 and 2,2;

 SiC₂ + Al₂O₃ + Fe₂O₃
 other modules and coefficients are also used.

Brick raw materials

- (A) plastic (clay) component: loams, clays, shales, weathered claystones, loess
- (B) non-plastic (clastic) component: aleurites, sands, sandstones, loess, aleuropelitic residues of various Weathered rocks
- 1. various kinds of rocks (see A,B) outcropping on the surface
- 2. common in all countries
- 3. close to the market; exploration by shallow bore-holes or shafts
- 4. open-pit
- 5. (a) vast reserves; (b) utilisation in all countries but no data available

Stone for aggregate

(A) gravel and sand, (B) crushed stone

- 1. (A) river and glacial sediments, (B) granites, basalts, porphyrites, greywackes, granulites a.o.
- 2. common in almost all countries
- 3. close to the market; exploration by shallow bore-holes or shafts
- 4. cpen-pit
- 5. (a) vast in almost all countries

(b) thousand metric tons

*****	1970	1971	1972	1973	1974	1975
USA	1300457	1264011	1254050	1422990	1311800	11386%0
FRG	140108	144567	145652	136167	145156	125672
Australia	61 020	63412	63346	65557	70785	74652
Italy	41848	\$15 02	44177	49378	53800	_excludin; gravel
Czechosl.	32728	35983	38820	41567	45065	47602
Poland	14610	17532	22047	2 7275	33350	39738
N.Zealand	26 87 2	25879	27712	29 2 52	27580	22664
Hungery	21119	23530	23112	24218	24034	27670

6. concrete (85-90% gravel + 10-15% cement) for construction: highway, residential, commercial

- 29 -

Building stone

for structural support (rough construction stone: retaining walls, seawalls, bridge work a.o.), ashlar, dimension (cut) stone (curtain, walls, veneer, roofing slate, floor tile, monumental stone), ornamental use

- 1. masses or beds of granite, diorite, limestone, marble, greenstone, sandstone, slate
- 2. common in many countries
- 3. mostly in old shields and consolidated platforms that had undergone tectonic movements long ago
- 4. quarries

Ł

5. (a) no data; (b) dimension stone: world 1974 38,8 miliard short tons

VI. CONCLUSIONS

The finding, exploration, and working of deposits of monmetallic raw materials in developing countries.

- A. A preliminary marketing feasibility study must answer the following questions:
 - (a) is there a potential market for nonmetallics in the country?
 - (b) what is the cost of imported industrial minerals and rocks
 - (c) will there be any possibility for exports of nonmetellics and their products to adjoining countries in the remote future?
 - (d) are there, in general, suitable raw materials in the country?
- B. Should the comparison of item sub A. favour establishing relevant industry, the following steps should be taken:
 - (a) inquiry at the local Geological Survey on the raw material basis of industrial minerals and rocks individual deposits must be sufficient for at least 25 years

- 30 -

of planned production;

- (b) should there be insufficient information, a thorough prospection must be planned, if necessary with the help of foreign experts - one geologist and one mineralogist-technologist.
- C. The prospecting team can consist of a geologist, mineralogist-technologist, geological assistant (a technician with knowledge of local languages), several workers for digging trenches and shallow shafts, drilling of shallow bores (e.g. by a hand-drill of mackintosh type), for exploration and sampling of clays, kaolins, bauxites, etc., one foreman skilled in blasting hard rocks, one passenger car with driver, another car of a landrover (jeep, GAZ) type with driver.
- D. Prospecting for many kinds of nonmetallic raw materials is usually carried out in a four-stage sequence (Table 3):
 - (a) Preliminary prospecting of the whole territory in question on the basis of published data and unpublished reports of the local Geological Survey, Public Works Lepartment, Water Supply Department, etc. Information from local authorities and individual citizens should also be taken in consideration. Small samples (0.X kg) are taken at widely spaced regular intervals over the deposit or its part.
 - (b) Preliminary examination of the samples is carried out in the respective capital or in any town with facilities rendering it possible to carry out simple enrichment tests, such as sieving or panning of the placers with refractory heavy minerals, firing tests of clays and kaolins, chemical analyses of carbonate and silicate rocks and minerals, mineralogical examination of the samples by means of a polarizing microscope, thermal methods, X-ray diffraction, etc.
 - (c) Those deposits which proved to justify further investigation from the point of view of quality are revisited, explored by a network of dense exploration workings (trenches, shafts, bores) and large samples are taken (X tons from each deposit). The reserves of

deposits are evaluated according to the usual standards assuming that the visible reserves will cover production for at least 10 years, probable reserves for 15 years and possible reserves for another 25 years.

- 32 -

- (d) The large samples are studied thoroughly either in the respective coutry cr in an industrial country, usually the one which supplies the technological equipment. Pilot-plant experiments with the large samples are necessary.
- E. Erection of a plant (cement, ceramic, glass, refractories etc.) near the bulk raw material deposits and close to the market follows. Technical assistance continues during the first months of production. Rational developing of the mineral deposits requires removal of the overburden and innerburden outside the limits of the demonstrated reserves.
- F. Most industrial countries are capable of rendering the technical assistance required geological and technological: e.g. super-powers, minor powers, countries of intermediate size, as well as small countries such as Switzerland, Austria, and Czechoslovakia, and, of course, the United Nations Development Program, Department for Transport and Geology (New York) or the United Nations Industrial Euvelopment Organization (Vienna).

VII. LITERATURE

- Jones G.K.: Industrial minerals treatment plant.- Industr. min., No. 15, 47, 51, 1971 (Figs.I. and II. according to these articles)
- Jones G.K.: Drying and heat treatment. Industr.min., No.67, No. 70,1973
- Kužvart M., Böhmer M.(1978): Prospecting and exploration of Mineral Deposits. - 416 p., Elsevier, Amsterdam, New York
- Kužvert M. (in print): Geology of industrial minerals and rocks.- 500 p. - Elsevier, Amsterdam, New York

Lefond S.J. (editor-in-chief): Industrial minerals and rocks (Seeley W.Mudd Series).- New York, AIME,1975

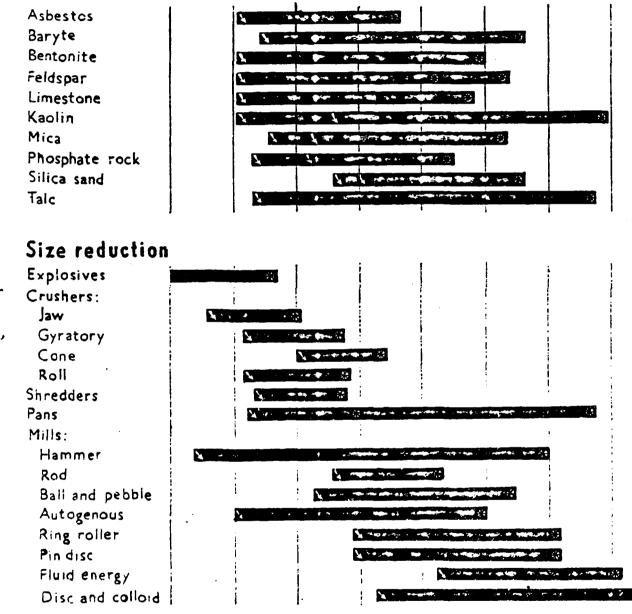

- Anintroduction to refractories. Industr.min., No. 58, 1972
- Industrial Minerals-monthly journal edited by Metall Bull., London
- Mineral Facts and Problems, 1975 Edition, U.S. Bureau of Mines Bull.667, Washington D.C.
- Mining Annual Review 1973 (Supplement to Mining Journal), London
- Statistical Yearbook, U.N.O., 1976, 1977, New York
- U.S. Bureau of Mines: Minerals Yearbook.- Washington D.C., U.S. Government printing office, 1971,1973
- World Mining 1973-1978 (Catalog, Survey, Directory), San Francisco, Brussels
- Yearbook of Industrial Statistics 1976, vol.II.

Fig.1. Typical sizes of raw industrial minerals, their

products and size change equipment .

Ranges shown are approximate KEY: & Feed * Product

Mineral

	Balling drumsandpa	ans	[12 - 14 mar	Anto in come	the second second	-m. 1	•
,	Extruders		:	1	21 N 😬 11		the report		
	Presses		-	13 - 111-1	1. 1. 1. A	and the second s	K*** = 1 /		
/	Sintering furnace:	5		53 C	*E	• - a	¥4. 19 / 17 / 19	Ľ	
	Spray drier		6 1 1	•	1		·* •• · · · ·	2	;
		1000	100	10	1	0.1	0.01	0.001	0.0001

- 5,40

Figure II. Applicability of

industrial minerals separation methods

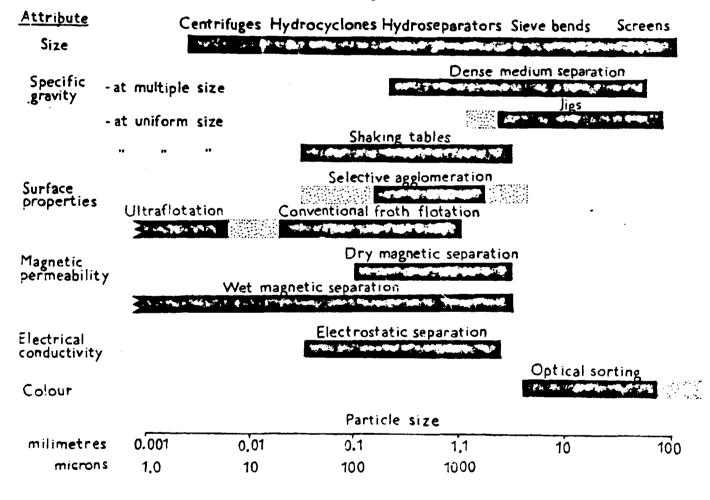


Table 1. Separation methods for some industrial minerals (9)

• • • •

Separa	ation method	s.				nomm	ina	E	9		<u>ر</u> و	4 54	5		e			а	a +-			te			4	, a		send		el	a	U		lite
Basia	Technique	Ásbestos	Barite	Borate	Chalk	Clav.common	Cley, chine	Corundu	Cryolite	<u>Ulamond</u>		Feldspar	Fluorsn	Garnet	Grenhit	Gypsum V	T i i i i i i i i i i i i i i i i i i i	oldre M	Magnesi te	Mice	Nitrete	Phosphate	Dotoch	Pumice	Pyro-	Ilmerit	Quartz	SILICE	SELLIDES Cond F	Sanc &	Crushed	Sulphur	Talc	Vermicul
Size and	Hand picking		+		Ŧ			+		+	Τ	+			+		Ŧ	Ţŧ	·] +				Γ	÷		Γ		•	+		+		Ŧ	4
Shape	Scrubber	Γ					Ī	┦		-	Τ	Τ	Τ			Τ	Τ	Τ	Ţ	+			Τ	Γ			+		Τ	+	+	Π	Π	
	Log washer	T	+				+	T	T	T	T	Τ	+	Π		Τ		T	1			+					+	•	ŀ	+	+	Π	\Box	
	Screens	+		+		+	+	+	+-	+	+ 4	Ţ	Γ	+	+	+	1	H	Γ		Ŧ	+		+			+		Τ		Ŧ		Π	
	Bowl	Γ			+		+	T		T		Γ	Γ			Τ	Τ	Τ				+	T	Γ		Γ		Τ	Τ	+		Π	Π	Ĩ
	Screw washer	Γ				+		T	Τ	T	1+	Ţ	Γ			Τ	T	t	Γ				T			Γ		Τ	T			Π	Ŧ	1
1	Aspirator	+					T	T	T	T	T	T	Γ		+	T	T	T	Γ				T			Γ		T	T			\mathbf{T}	П	
Specific	Sink-float	Γ						Τ	Τ		Τ	Γ	+	+	+	╃	Τ	Τ	t				Γ	Γ		Τ		Т	Т			Π	Π	
Gravity	Hydrocyclone dense medium	Γ					T	T	Ţ	+-	T	T	Γ	Γ		T	T	T				-	T	Τ		+		T	T				Π	
	Jig	Γ	+				ŀ	+	+	+	T	Τ	+	+			T	T	Γ		Π		T	T		Γ		T	T			T		
	Table		+	Ŧ			+	Τ	+	Τ	Τ	Γ	t	+		ŀ	+					+	1+	-		1+			T			T	Π	
	Humpreys Spiral							Ι		Ι							Ι								+				Ι				\Box	
Surface	Froth flotation		+				+					+	+	+	+	-	+		+			+	T				+		T			+	Π	
Properties	Grease tebling	Γ	Γ				J		ŀ	+-	Τ	Τ	Γ				T		Γ	Γ			1+	Ī		Γ		Τ	T			T	Π	Γ
Electrical	Electrostatic							T	Τ		T	+	Γ			T	T	Τ	Γ				Ţ	Γ		Γ	Γ	Τ	T			T		-
	Electromagnetic	Γ						-	+	+	1	1+	T	+		1-	H	T	T	T		+	T	T		T		T	T				F	 - -
Miscellane-	Colour sorting	Γ					Ţ	T	Τ	T	Τ	Γ	Γ	\square	T	T	T	+	-				Γ	Γ		Γ	Γ	Τ	T				Π	
ous	Solution		Γ	Γ				T		Ι	T	T	Γ	\Box		T	T	T	T	T	Ŧ		17	T		T	1	1	4			1	П	-
040	Distillation	Γ	[T	T	T	T	Γ	Γ	Π		T	T	Γ	Γ	Γ			Γ	Γ					T			+		
	Decrepitation	Ī	Γ	+	Π		T	4	Ŧ	T	Т	T	Г	Π			T	Т	Г	Γ			Т	Г	Ţ	T	Γ	1	Τ			T	Π	Γ

Ξ

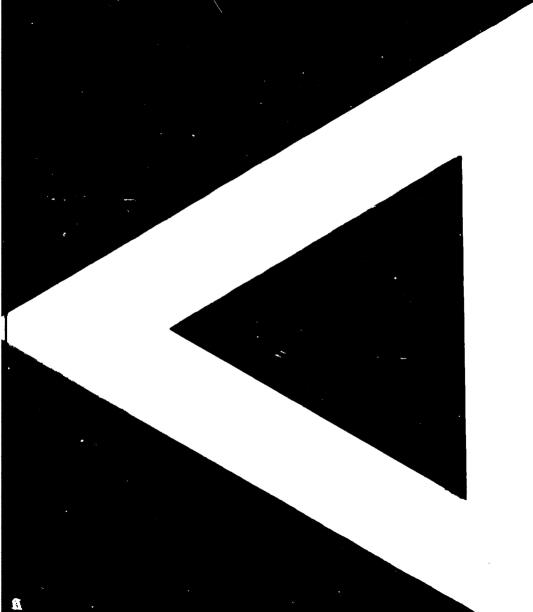
1

۲

<u>.</u>...

Table 2. Effects of processing on costs (1970) of industrial minerals

mineral	selling price	ratio (2):(1)				
miner of	raw (1)	treated (2)				
bauxite	16	49	3.1			
barite	15	44	2.9			
ball clay	5	10	2.0			
feldspar	8	17	2.1			
ilmenite, rutile	13	75	5.7			
magnesite	7	25	3.6			
olivine (forsterite)	5	15	3.0			
perlite	15	75	5.0			
kaolin	5	30	6.0			
silica send	3	10	3.3			
Fuller's earth	4	17	4.2			


Table 3. Example of capital and time requirements of a mineral processing plant project

	st≘ge (t	expenses per cent of the total cost)	time requirement (in months)
с (з)	preliminary feasibility study (I): marketing	0.5	1-2
(b)	preliminary prospecting and sampling of all known and newly found occurences of mineral raw materials in the country	1	overlap 3-
(c)	preliminary examination of small samples taken during stage (b)	0.5	1-2
(2)	contract for the project		
(e)	exploration, estimation of reserves and bulk sampling of prospects with demanded quality	3	6
(f)	pilot-plant experiments	1.5	3-5
(g)	feasibility study (II): l.quality,possible use,and r serves of the deposits,trans pcrt,water,and energy supply labour,etc.; 2.technological study on the basis of pilot- plant experiments	;- ,	3-1
(h)	authorization to build	-	2
(i)	detailed mechanical and tech logical design, project for buildings	no- 6	overlap, 6 - 17
(j)	construction of the building delivery of the technological	`S :	overlap
	equipment	38	15
(k)	cost and fitting of the tech logical equipment (cost of f ting=approx.12% of the value the machines)	'it-	12-16
(1)	start up	C.5	2
	Total	10C %	47-56 month

4

\$

"Overlap" indicates that several stages can run simultaneously

