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Most of the recently developed high-strength
and cryogenic steels are expensive since they contain
nickel as a major alloying element. Manganese is a
cheaper alternative to nickel and produces sigilar
effects upnon the austenite to ferrjite transforma“ions
(2) which could allow cheaper a.ternatives tc¢ nickel
steels.

Whether Fc-Mn alloys can bé used as a basis for
cryogenic high-strength steels, however, will Zepend
on the mechanical properties that can be achieved.
Earlier work has (2,3) indicz2ted tkat although
comparable strength levels could be obtained ir Fe-Ma
alloys to those of Fe-Ni ailloys, such alloys were very
brittle. This brittleness occurred at the prior-austenite
grain-boundavies and was *thought to be due to temper
brittleness. Subsequent work by Freeman (25) and
Gabbitas (26) confirmed these findings but no insight was

obtained into the nature of the embrittlement mechanism.

The prese. .t studies were undertaken to identify
the nature of this embrittlement in ferritic iron-manganese
alloys and determine methods of improving the lcv-temperzture

toughness of these alloys.

THEE EFPECY OF YHERNAL CYCLING TREATNENT.

Lath martensite forms the basic microst .ucture of
9% NI cryogenic steels and 18% Ni maraging steels (1l).
The same microstructure is obtained in Fe-8 0% Ma alloys
at all cooling rates (2) and therefore may form & cheaper
base for alternative steels. However, the rFe-8.0% Mn
alloys suffe: from grain boundary embriztlement (3).

Auger spectroscopy hars shown recently that the embrictlemen:




is due to segrega’ion of Mn and N to prior austenite

grain boundaries (4). This paper reports the results

of attempts to improve the impact toughness of the

material studied in (4) by thermal cycling treatments (5-3).

EXPERINEXTAL PROCEDURE AXD RESULYS

the composition of the alloy studied is given in table 1.

TABLE 1 Composition of alloy K1525
Mass ' pp=
’
L M ! Ti Cr Mce C N Si S Ni Al P Sn Sb As
8.10 y - 20 - 40 30 115 100 27 - 60 50 10 27

Transformation points determi. ed by dilatometry at

heating and cooling rates of 50°C/Min are given in table 2.

TABLE 2 Transformation Temperatures of alloy X1525

! ’ .

M 360 + 5°C 'm_= 366 + 5°C 'a_ =677 + 5°%C'a_= 723 + 5°%
> - i £ - : S - ' -
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From these transformation temperatures the thermal cycling
treatmenc shown in figure 1 was devised. The holding
temperatures and times were selected on the basis that
the austenitising temperature should be low enough to
minimise grain growth, while the temperature of holding
in the (¥+Y) phase reg’'on should be high enough to
maximises the extent of diffusional traniformation to low
mangans. ferrite and high manganese austenite(reverted

austenite).
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After two complete cycles, the austenite grain size was

reducad from 80-90um. The impact transition temperature
determined from sub-standard Charpy V-notched specimens

of 5x10 mm section, was reduced from +115%¢ to -60°c,

figure 2.

Dvring holdirg in the two-phase (x+Y) region, reverted
austenite froms which may subsequently transform to a lath
martensite and/or martensite on cooling, depending on th.
composition of the reverted austerite formed in the two-
phase region. The proportion of phases in the alloy after
heat treatment wa2re determined by X-ray diffraction (10)

(11) using line intensity measurements from ¢ peak combinations.
The average values are given in table 3 and thoujht to be

accurate to better than + 1%.

r
i

TABLE 3 Phase analysis of alloy after heat treatment
Phases | Beat treatment
; r ’ 1 ’ ’
'1h 1,000°C 1(a) + 1A' (b) +1B! (c)+2A’ (d) +28' (e) + 15 mins
‘water quench!’ ! ! ' , =t - 196°C
' (a) 3 (b) v (e) 7 (d) ' (e) '
' ’ '5.8% ! 4.1% | 8.0% ' 6.0%
Y ’ ’ ) ’ ' ¢
¢ ;j <;:z Y <;:,‘ [28.0% ) 4.0% ! 24.6% ¢ 26.3%
x | ! '166.9%  191.9% ! 67.4% | 67.7%

’
’
'

.

It -is evident from figure 4 that the rever:ed austenite forms
mainly at the prior austenite grain boundaries and to a lesser
extert at the inter-lath boundaries, as shown in the dark

field elecironmicrograph figuzre 7.

After thermal cycling, the natu—-e of the brittle f.racture
changed from intergranular tc that shown in figure 5; where
fracture was ma.nly by cleavage with ductile regions
apparent.y corresponding to the grain boundary regions wiich

originally consisted of reverted avstenite.

|




S

Previous work (l12) has shown that alloy K1525 in the initial

heat treated condition (ie (a) rapidly emkrittles on ageing
. . o .

at 450°c. on tensile testing at -78 C at a strain rite of

-

0.5 min the reduction of area value dropped to zero after
5 minutes ageing at ¢50°c. The thermally cycled material

was therefore subjected to the same tensile test after ageing
at 450°C to see if embrittlement could be induced in these
specimens. The results are shown in figqure 3 and the

corresponiing X-ray phase analysis iIn table 4.

TABLE 4 Phase analysis after ageing thermally cycled material
(1A + 1B + 2A + 2B ) at 450° C_

Phases Thermally|Th.Cy+10

o i Th-Cytlh ! Th.Cys2h ' Th. Cy+2h 450°¢ o
!Cycled ‘'mins 450 C, 450°C WQ ' 450 C WQ ! WQ + 15 mins - 78 C
' (Th.Cy) 'WQ ! ! .
I3 ] [ ' []
Yy ' 8.0 ro12.5 ' 9.5 v 10.6 ' 6.0
€ ' 24.7 'o11.8 ' 14.5 * 8.8 ' 9.5
« ! 67.3 v 75.7 ' 76.0 ' 80.6 ' 84.5

The peculiar stress/strain curves obtained are thought to arise
from deformation induced transformation of Y— ¢ martensite
and/or « martensite or £ —x Such phenomenon has been observed

in TRIP steels (’3) ard increases the toughness of the stsel.

DISCUSSION

Holden et al (2) and more recently M.J Schanfein et al ‘14)

have reported on the excellent 1impact toughness of Fe-Mn alloys
containing (Y+€&€) phases. Cleariy the iamproved impact toughness
of the present alloy can also be aitributed to tha sjntroduction
of these ductile phases into the microstructure as well as

to grain refinement. M.J. Schanrein et al (l4) report that the
DBIT is lowered by 1.3OC per volume % (Y+€). Applying this

figure to the presenc results suggests that ocf the total shift
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of 175°C in DBTT. ~45°C is due to the presence of (Y¢€)

phases and ~130°c due to grain refinement. This latter

figure, (130°C) would appear *o te rather large fqr grain
refinement alone (l15) and indicates a synergistic interaction -
between grain refinement and the presence of (Y+ &) phases.
®rom figures 2 and 7 of Roberts’ work (l5) the reduction in
prior austenite grain size from 80-90 um to 10-l15um in the

. . _ .0
present alloy, corresponds ¢o a shift in D2TT 50 C).

The exact role of the (ve&) phases in reducing embrittlement

is not clear. It has be-~n suggested (16) that:-

(a) Austenite may act as a s nk for impurities, in
this case N, reducing embrittlement during heat

treatment (17)

(b) The ductile phases (Y+&é) may act as crack
arresters blunting the propagaticn of brittle

cracks (18-21).

(c) Transformation of austenite to a-martensite
and/or & -martensite may occur during impact
testing improving toughness (22,23,24). Evidence

for this is provided by figure 3.

Present work rn +t.is and other alloys 1Is aimed at

escablishing the .elative importance of such parameters.
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Figure 1 Schematic representation of thermal c¢ycling treatment given to alloy
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Figure 2 Effect of thermal cycling on impact toughness of alloy
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Figure 3 Stress-strain curves of alioy after various heat treatments. Tested
at -78°C and a strain rate of 0.° min~'
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Figure 4 tical microgranh of alloy Figure S Scanning electron micrograpk
K1525 after thermal cvcling ~f nrittle fracture of alloy K15H256

atter thermat cveling

Tigure 6 DBright-fiela transmjssinr o -field imsge of figure
electron micrograph of a)lav K152 rigure 7 Dark-field g

after thermal cycling 6 using (200) y eustenite reflection,
illustratiag inte.-lath formation of
reverted austenite.










