

YFARS

OCCASION

This publication has been made available to the public on the occasion of the $50th$ anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

 $\frac{1.0}{\equiv}$ $\begin{array}{l} \frac{145}{148} \\ \frac{14}{148} \\ \frac{1}{148} \\$ $\frac{128}{25}$ ▓2.5 432 130 $\mathbb{R}^{2.0}$ $\frac{1}{2}$ 4.9 $\frac{1}{2}$. \parallel 1.8 $\frac{1.25}{2}$

CHART MICROLOPY RESOLUTION TEST.

rant taxis shows but \sim λ 10012-003 \sim α

11046

LIMITED $ID/WG.364/3$ 21 January 1982

United Nations Industrial Development Organization

ENGLISH

Distr.

Technical Conference on Ammonia Fertilizer Technology for Promotion of Economic Co-operation among Developing Countries

Beijing, People's Republic of China, 13 - 28 March 1982

CRITERIA FOR SELECTING CO₂ REMOVAL PROCESSES*

 by

Frank C. Brown**

特别 2.3%

The views expressed in this paper are those of the author and do not necessarily reflect the views of the secretariat of UNIDO. This document has been reproduced without formal editing.

V.82-20831

⁸⁶ Process Group Head, Ammonia/Gas Processes, Humphreys and Glasgow Limited, 22 Carlisle Place, London SW1P 1JA, United Kingdom

SUMMARY

This paper examines the major processes available for the removal of carbon dioxide from synthesis gas streams produced by the catalytic steam reforming of natural gas. The development of these processes is followed and the up to date designs are described. It is shown that the improved versions of the established processes have similar overall performance to the newer physical solvent processes especially where 100% CO2 **recovery is required. However the simpler and in most cases cheaper physical solvent plants are likely to increase their number especially in circumstances where 100% CO**2 **recovery is not required.**

Paper presented at UNIDO Technical Conference on Ammonia Fertilizer Technology for Promotion of Economic Co-operation among Developing Countries, Beijing, China 13 - 28 March 1982.

INTRODUCTION

This paper describes the development of the major processes available for the removal of CO2 **from gas streams produced by the catalytic steam reforming of natural gas. Starting with ethanolamines it also examines the hot carbonate processes before moving on to physical solvents. It finishes with a description of the latest variants of all these processes and following a statement on performance offers suggestions as to how designers should select the most appropriate for their specific applications.**

HISTORICAL

Early amr nia units were based on coal derived hydrogen. The large qcant-ty of carbon dioxide needing removal was washed out with water. In the USA operators saw the possibility of using the large quantity of cheap natural gas as an ammonia feedstock. Following work done by BASF and Standard Oil the tubular steam reformer was introduced in the mid thirties working at atmospheric pressure. Ethanolamines were found to be particularly suitable for CO2 **removal from the low pressure gas streams and before long the MEA process was completely dominant in the USA.**

By the end of the fifties reforming plants were working at higher pressures and various inventors were working on processes requiring lower energy. In tht USA Benson & Field at the U.S Bureau of Mines and in Europe Giammarco of Vetrocoke were developing the hot potassium carbonate process. Before long both were using activators to improve the dissolving rate of CO2**. Benfield usi.d the higher boiling point diethanolamine while Vetrocoke used arsenic oxide.**

In the sixties these two hot carbonate processes cane tc be completely dominant. In the USA MEA was still widely applied but Benfield and several imitators began to take orders.

In the mid seventies the process licensors began to respond to the need for better performance and most produced improved versions of their existing processes. By the end of the decade plants were operating using half the energy of those in operation **at the beginning. At the same time several physical solvent** processes were developed and began to take orders. Development **continues and ail the major processes have versions suitable for todays high energy costs and need for simple, reliable plant. We shall now examine these processes in more detail.**

ETHANOLAMINES

Monoethanolamine in a weak aequeous solution was the first of this group of compounds to be used. The absorbtion, desorbtion and vapour pressure data is such that the absorbtion has to be carried out at about 40°C while the regeneration must be carried out at the boil which is over 100°C. These solutions are extremely corrosive if operated above 20% without inhibitors. Because of the low solution strength and the wide temperature difference between absorbtion and regeneration these plants have a very large reboil requirement of over 150 MJ/KG mol of CO2**» even when designed according to the arrangement shew by fig. 1. Because of the high corrosion rates all exchangers operating over 70°C have to be made of stainless steel. The columns tnemselves are relatively short, about 20 trays, but the large expensive heat exchangers make the whole unit relatively costly.**

In the early sixties a few designers produced units using two ethanolamines TEA and MEA. TEA behaves almost like a physical solvent having a relatively straight absorbtion isotherm. By just using flash and a slight degree of stripping,these early designs used TEA to remove about 60% of the CO2 **while the remaining 40%** was removed by a MEA system. The effect was to reduce the overall **energy requirements by about half compared with straight MEA.**

However due to the lack of suitable corrosion inhibitors, the weak solutions were still used and a great deal of stainless s^eel led to a very expensive and complicated plant. Very few were built. The big advance was the development by Union Carbide of a synergistic corrosion inhibitor known as UCAR Amine Guard which enabled much stronger solutions to be used. Many earlier plants were revamped with considerable energy savings.

The next developments are covered in later sections.

HOT CARBONATE PROCESSES

In this section we shall describe the hot potassium carbonate processes of Benfield and Vetrocoke which completely supplanted the earlier cold processes. By operating hot with activator there was a very small temperature difference between the absorber and the regenerator. Combined with the high solution strength and high carrying capacity the reboil requirements of these hot processes were much lower than the competing MEA process. In Europe natural gas was scarce and many plants used much more expensive energy sources like naphtha and LPG. Although early schemes were often single stage almost all later schemes used split absorbers and many used split regenerators. Such a scheme using lean and semi lean flows is shown in figure 2. Similar arrangements were used by Benfield and Vetrocoke and the later Catacarb and Carsol processes.

The lean solution from the base of the regenerator is jumped to the top of the absorber through a cooler. This flow is about twenty five percent of the total solution flow. The lean liquor decends through the top part of the absorber where it removes the CO2 **from the syngas down to about 1000 ppm. Half way down the absorber the semi lean stream enters and flows to the base of the absorber. The rich solution flows through an expansion turbine to the top of the regenerator. At about two thirds of the way down the partly regenerated semi lean stream is extracted and pumped to the middle of the absorber, the remainder is more fully regenerated as it drops to the base of he regenerator where the make gas and steam reboilers are 'ocated.**

 $\Delta u =$

By careful operation and attention to detail in the design, like the use of crevice free reboilers, these plants have become extremely successful following earlier teething troubles. The arsenic activated Vetrocoke was extremely good at resisting corrosion but suffered from the toxity of the solvent and from complex compounds whch tended to form and either block the plant or cause severe foaming. These latter problems were overcome, but the toxity problem was only solved by moving to glycine as the activator.

Benfield was the mosc successful of these processes with over 230 applications. At the end of this stage of developments the energy consumption had been reduced to about 100MJ/KG. MOL. of CO₂. In a later section we shall see how these processes were **improved to almost half this figure.**

PHYSICAL SOLVENTS

The other class of solvents are physical where the solubility of CO2 **closely obeys Henry's Law. The earliest used phy'ical solvent is water. However, apart from the very large Norsk Hydro application there are no other modern examples. Since no heat is necessary to break a chemical bond these solvents can be used in almost isothtjperation. However, carrying capacity is very temperature dependent so refrigerated operation is necessary. Generally to be economic a solvent needs to have about four times the carrying capacity of water at about 10°C. There are now several solvents with this sort of performance among them are Selexol, Sepasolv MBE, Fluor Solvent and Purisol.**

The Rectisol process which uses methanol as a solvent is rather **different to these. Because of the high vapour pressure of methanol it has to be operated at the very low temperature of - 50°C. This gives the solvent a very high carrying capacity, about 20 times better than water, but produces a high refrigeration load and a very expensive plant due to the need to use low temperature alloys, however, cold methanol is such a good selective solvent that the Kectisol process was used for virtually all heavy oil partial oxidation plants built in the sixties and seventies.**

-s-

In the last few years physical solvent technology has been very greatly developed so that now several processes provide the most serious challenge to improved versions of the established processes.

In fig. 3 is shown the normal configuration of the Selexol process as used by Humphreys & Glasgow. Since no sulphurous gases **are present air can be used for the final stripping. Note the position of the refrigeration in the circuit. By locating t' e chiller on the rich stream before expansion it will in most cases result in the regenerated stream reaching the absorber a few degrees cooler. This is because the expansion and desorbtion steps remove more heat from the solution than the sum of the sensible heat of the stripping air and the pumping power. A problem with physical solvents is that, even using a vacuum flash, it is difficult to remove more than 85% of the CO**2 **by pressure reduct'.on alone. The remaining 15% leaves mixed with the stripping air. H&G have applied for a patent for the technique of using the process air for this stripping and so returning the CO**2 **to the secondary reformer.**

The figure immediately shows the other disadvantage of a physxcal solvent. It dissolves some of all the gases. These nave to be flashed off with a little CO2 **and returned to the absorber by compression, this adds to the cost of the plant and to the** power consumption. If very pure CO₂ is required then the recycle **flow can be very large.**

IMPROVED PROCESSES

From the mid seventies the designers of the chemical absorbent processes have been working hard to dramatically improve the performance of these processes. Almost all successful developments exploit the fact that the regenerated solvent contains a very large amount of heat. If this rolvent is reduced in pressure a considerable quantity of steam can be flashed off. Since the pressure is reduced this steam requires some form of comprersion.

The earlier versions used steam ejectors to recompress this steam. These are relatively inefficient as compressors and only produced about a 20% reduction in reboil. By using mechanical recompression of this steam exterior reboil requirements have been reduced to 50%. Vetrocoke have chosen to use a different approach by having a second regeneration capacity at very low pressure which is thus able to use directly the flashed steam from the main regenerator.

The other developments concern TEA/MEA and BAS:'s MDEA. TEA **behaves rather like a physical solvent while MEA is a most efficient chemical solvent. 3y using their corrosion inhibitors Union Carbide have developed this process into a two column system** with a single flash tank. As both solutions are used much **stronger than before the reboil levels are extremely low. BASF with MDEA (fig. 4) have operated this single solvent in a similar way on their Ludwigsharen plant for over ten years. MDEA has a very straight absorption isotherm so it performs very closely to a physical solvent. Unfortunately it is not particularly good at dissolving CO**2 **so even with an activator the final absorber has to be extremely tall. However only one liquid is required and the reboil is very simlar to that of the TEA/MEA process**

PERFORMANCE DATA

This performance data was supplied to H&G against a gas specification corresponding to an associated gas. Since the comparison cannot be exactly precise performance bands are used. Electrical power is converted at 12 MJ equivalent to 1 KW and then added to the reboil to give total energy.

to cover in this paper.

 \blacktriangleright

-R-

WHICH ONE TO CHOOSE?

Many factors will come into play here. With the more established processes there is a lot of plant data to enable a confident choice to be made. The more modern variants generally use well established VLE and kga data so the concern is more to do with the reliability of steam compressors and increased flash stages.

The physical solvents are generally very non corrosive and require large but cheap plant much helped by an almost total lack **of heat exchangers of any significant size. Unfortunately they have little, if growing, operational experience and also use very expensive solvents which need good housekeeping to avoid high** replacement costs.

My feeling is that when 100% CO2 **recovery is required the improved processes are likely to take the business particularly in developing countries while in other circumstances the physical processes will gain ground rapidly.**

ACKNOWLEDGEMENTS

The author wishes to thank all the compari-es who provided data for this paper and to Allied Chemical and BASF who permitted the publication of figs. 3 and 4.

Q

 $\mathbf{A} = \mathbf{A} \times \mathbf{A}$

 -10

 $-11-$

 $-52-$

 $-13-$

