TOGETHER
for a sustainable future

OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org

07919

RE3TRICTRD

DP/ID/SER.A/114) February 1977 English

INDISTRIAL DEVELOPNENT AND CONSULTING BUREAU
DP/KUW/71/507
KUWAIT .

Technical report: study of a proposed soap factory

Prepared for the Government of Kuwait
by the United Nations Industrial Development Organization, executins agency for the United Nations Developnent Programme

Brsed on the work of Ahmed M_{2} Aboushadi, expert

in soap making

United Nations Industrial Development Organization
Vienna, 1977
11. 17-79

Frplanatory notes

References to dollars (\$) are to United States dollars, unless otherwise stated.

The monetary unit in Kuwait is the dinar (KD), containing l,000 fils. In this report, the expert used conversion rates in the range of $\mathrm{KD} 1.000=$ \$3.45-\$3.50.

The following forms have been used in tables:
Three dots (...) indicates that data are not available or are not separately reported

A dash (-) indicates that the amount is nil or negligible
A blank indicates that the item is not applicable
Totals may not add precisely because of rounding.

Besides the common abbreviations, symbols and terms, the following have been used in this report:
hg hectogram
$\mathrm{k}_{\mathrm{g}} / \mathrm{a}$ kilogram per year
$t / a \quad$ tonne per year
TFA total fatty acid content

The designations employed and the presentation of the material in this documerit do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any coluntry, territory, city or area or of its authorities, or concerning the dinimitation of its frontiers or boundaries.

Mention of firm names and commercial products does not imply the endorsement of the Unitel Nations Industrial Development Organization (UNIDO).

ABSTRACT

As part of the United Nations Development Programme (UNDP) Project $K U W / 71 / 507$, "Industrial Development and Consulting Bureau", an expert in sospmaking was sent to Kuwait in late 1976 by the United Nations Industrial Development Organization (UNIDO), the executing agency for the project, to investigate the feasibility of soap production in Kuwait. The expert determined that the establishment of a factory producing $8400 \mathrm{t} / \mathrm{a}$ of laundry soap bars, and $3600 \mathrm{t} / \mathrm{a}$ of toilet sos; bars, with $926 \mathrm{t} / \mathrm{a} 98 \%$ glycerine as a by-product, would meet projected demand and yield annual profits of close to KD 1.8 million over the cost of importing soap. A detailed description of the operation of the plant is given, as well as estimated requirements for land, buildings, equipment, raw materials and labour. The fixed and working capital required for the first 30 months is estimated to be KD 2.7 million.

COMryarts

Chapter Pere
INTRODUCTIOR 7
CONCLUSIONS AND RECOADHNDAT IONS 8
I. SIUDY OF THE MARKETI 9
A. Types of soap available to consumers. 9
B. Raw materials: imports and exports 10
C. Pinished products: imports and exports 13
D. Projected demand 14
II. SOAP MANUFACTURINO RIDQUIRTBMANTS. 16
A. Machinery and equipment 16
B. Land and buildings. 43
C. Labour 47
Annex. Estimated requirements, 00 sts and profits 51
Finures
I. Flow diagran of an oil and fat bleaching unit. 17
1I. Flow diagram of a contimous maponifioation plant 19
III. Flow diagram of a continuous neutralisation unit. 25
IV. Flow and pictorial diagrame of a cooling and drying unit. 27
V. Continuous laundry soap proceseing plant 30
VI. Pnoumatic duct oonveyor 33
VII. Continuous toilet soap proceneing line. 34
VIII. BNM aymen 37
IX. Flow diagrem of a glycerin recovery plant 41
X. Orgenisation chart and labour requirements for the firmt year of operation (two shifte) 48
Trbles

1. Soap prices in local shoppins oentres. 9
2. Composition of moap samples 10
3. Imports and exports of animal fats and vegetable oils, 1973-1975 11
4. Imports and exports of sodium hydroxide and sodium carbonate.... 12
5. Imports and exports of soap and other washing materials, 1964-1975 13
6. Consumption of soap and other washing materials, 1964-1975 13
7. Price paid for imported soap and other washing materials, 1964-1975. 14
8. Comparison of imports of washing materials with the population, 1964 and 1975 14
9. Utility and labour requirements of a continuous saponification plant 24
10. Utility and labour requirements of a continuous laundry soap processing plant 32
11. Utility and labour requirements for production of toilet-soap base ($78-80 \%$ TFA) 39
12. Utility and labour requirements for the production of toilet soap.. 39
13. Plants and equipment costs. $5 ?$
14. Comparison of proposed plants with single and double plants.... 53
15. Estimated amounts of different raw fatty materials needed annually. 54
16. Estimated amounts of the principal chemica? raw materials needed annually. 55
17. Estimated amounts of water, electricity and steam needed annually 56
18. Estimated annual costs of utilities 57
19. Estimated annual labour costs 58
20. Estimated fixed and working capital requirements 59
21. Estimated production cost 60
22. Estimater profits. 61
23. Suggested capital investment schedule 62

INTRRCDUCTION

Soap is not made in Kuwait and must be imported at considerable expense, even though the raw materials and other requirements for its production are readily available. A study of the feasibility of soap production in Kuwait was therefore one of the many tasks included in the United Nations Development Programme (UNDP) project DP/KUW/71/507, titled "Industrial Development and Consulting Bureau", which was started in 1973 to provide assistance to the Ministry of Commerce and Industry in elaboreting its industrial development strategy.

An expert on soapmaking was sent to Kuwait by the United Nations Industrial Development Organization (UNIDO), the executing agency for the project, for the last three months o" 1976. This is his report on the feasibility of establishing a soap factory in Kuwait. His verdict is that it is indeed feasible and he recommends the establishment of a factory large enough to provide complete independence from imports.

After a survey of the local soap market (chapter I), the situation with regard to imports and exports of raw materials and finished products, and the pri jected demand, the expert provides a compiete description of the machinery, equipment, land, buildings and labour needed for the proposed soap factory (chapter II). Detailed data on the estimated requirements, costs and profits of the enterprise are collected in self-explanatory tables in the annex.

CONCLUSIONS AND RECOMAMTDATIONS

Conclusions

1. Soap sold in the local market is not subject to any specifications or standards. As a result, there is a wide range of price and quality, with price being no guide to quality.
2. Much of the animal and vegutable fat suitable for soapmaking can be obtained locally. A promising vegetable-oil processing industry already exists in Kuwait.
3. The supply of alkalis necessary for soapmaking is no problem; there is an excess of locally produced sodium hydroxide, and sodium carbonate can easily be imported in the amounts needed.
4. Per capita imports of soap and other washing materials has doubled in the last decade; the per capita cost of these imports has tripled over the same period.
5. The estimated demand for washing materials for several years beginning with 1977 is $3600 \mathrm{t} / \mathrm{a}$ for toilet soap and $8444 \mathrm{t} / \mathrm{a}$ for laundry soap.
6. A soap factory with an output sufficient to meet the projected demand wouid require a land area of $10000 \mathrm{~m}^{2}$ and a work-force of approximately 70 persons (two-shift operation). The total fixed and working capital requirements for the first 30 months would be close to $K D 2.7$ million.
7. The annual profit over the cost of imported soap is caloulated to be approximately KD 1.8 million; over the price of soap on the local market, KD 2.4 million.

Becommendations

1. Soap marketing should be made subject to international specifications and standards before a local soap industry is set up.
2. A new soap factory, sized to meet projected demand, should be set up in close connection with, and in the vicinity of, the new vegetable oil processing plant.
3. Although the estimated profits of the proposed plant range from 160, to 230% over the local market price, it is sugested that a profit of only 50% be taken to meet foreign competition.
4. The profit should be used as follows (percentage of total profit): amortization, 50\%; raw materials, 30\%; expansion, 20,

I. STUDY OF THE MARKEI

A. Types of soap available to consumers

Many different types of soap and other washing materials can be found in Kuwait shopping centres. Table 1 gives the types and prices at four of these centres.

Table 1. Soap prices in local shopping centres
(fil/hg)

Type and package size	Shopping centre			
	E1shamy	Elkadsseya	Kifan	Fahd Essalem
Toilet				
Ordinary bar ${ }^{\text {a/ }}$	76-110	73-88	76-88	76-100
Flakes, 420 g Baby	78	78	- \cdot	-••
74 g	- \bullet	- -	161	-••
1358	- ••	-	141	-.•
Olycerine, 118 g	55	- ••	- -	- •
Carbolic, 155 g	42	- *	- ${ }^{\circ}$	-*
Laundry bar				
Various sizes, 117-984 g	30-51	29-51	29-39	41

a) Ordinary bars come in many sisea. The three most frequent sizes are approximately 200,145 and 85 g , in order of increasing cost per hectogram.

Table 2 show the chomical analyais of different soap types collected from the local market, and analysed by the Ceneral Research Laboratory of the Miristry of Public Works.

Table 2. Composition of soap samples (\%)

Component	Laundry bar brands				Toilet bar, best selling brand
	A	B	C	D	
Moisture	10.4	40.0	7.77	10	5.99
Total fatty acid (TFA)	80.4	0.61	82.95	82.89	87.07
Acidity	0.70	0.34	0.56	2.82	7.9
Insolubles	0.29	7.57	0.57	1.73	0.21

The following conclusions may be drawn:
(a) There is a wide variation in the price for the same type of soap in different markets;
(b) There does not appear to be a standard specification for laundry soap; the soaps differ greatly in composition especially in fatty acid and moisture content. One brand tested contained over 7.5% insoluble matter. Price is no guide to quality;
(c) Among tcilet bars, special types can be found in the market (baby, carbolic, disinfectant, deodorant). Some of these are priced much higher, others much lower, than the ordinary types;
(d) The medium sizes ($85-100 \mathrm{~g}$) of toilet bars are the most popular;
(e) A popular type of the laundry bar is the translucent type, which is made in Italy by a continuous, automatic process;
(f) The majority of the laundry bars have a high fatty acid content and a low moisture content because of long storage time;
(g) The weight and composition of the soaps are not checked locally.

> B. Raw materials: imports and exports

Fats and oils

According to the annual bulletins of foreign trade statistics for the last three years, animal fats and vegetable oils are not manufactured locally to
any great extent. The imports and exports for those years are shown in table 3.

Table 3. Imports and exports of animal fats and vegetable oils, 1973-1975

Year	Animal fats				Vegetable oils			
	Imports		Exporte		Imports		Exports	
	Amount (t)	Value (thousand KD)	Amount (t)	Value (thousand KD)	Amol nt (t)	Value (thousand KD)	Amount (t)	Value (thousand KD)
1973	14.7	1.1	388.6	17.9	3492	987	146.0	30.3
1974	121.2	19.4	426.7	30.7	4315	1709	99.3	36.5
1975	6.5	1.2	300.4	16.3	2372	819	25.0	10.0

The large excess of exports over imports of animal fats means that the possibility of extracting such materials locally exists. An important source would be local and regional slaughterhouses. Most of the vegetable oils, on the other hand, are consumed locally.

On the basis of a visit to the modern factories of the National Flower Mill Co. for the extraction of vegetable oils and the manufacture of vegetable butter, the expert concludes that a promising oil industry using advanced technology has already begrn in Kuwait. The products, however, have not yet entered the market. These are some of the observations made on the visit:
(a) The total capacity of extracted oil is $15000 \mathrm{t} / \mathrm{a}$;
(b) The estimated refining loss (acid oils) is 900 t ; these materials could be treated for use in a soap industry;
(c) The new factory is already supplied by two steam boilers of more than 10 t each; that is more than adequate for a soap industry or supplementary oil industries;
(d) Patty raw materials can be transferred to the factory directly from steamers at the nearby harbour;
(e) The factory is already equipped with sufficient power and water, quality-control and chemical research facilities;
(f) The factory is located near the soda and chlorine factories, facilitating the delivery of the sodium hydroxide and salt needed for soap making.

Alkalis

The data in table 4, obtained from annual bulletins of foraign trade statistics, show the imports and exports of sodium hydroxide and sodium carbonate, which are important chemicals for soap industry, in the last three years.

Table 4. Imports and exports of sodium hydroxide and sodium carbonate, 1973-1975

Year	Sodium hydroxide				Sodium carbonate			
	Imports		Exports		Imports		Exports	
	Amount (t)	Value (thousand KD)	Amount (t)	Value (thousand KD)	Amount (t)	Value (thousand KD)	Amount (t)	Value (thousand KD)
1973	112.5	4.9	2398	106	226.2	13.5	35.8	3.1
1974	1.7	0.3	4955	245	409.1	31.1	2.0	1.2
1975	195.1	2.6 .8	28303	3034	193.0	19.1	69.0	6.7

From table 4, it is clear that the local production of sodium hydroxide is increasing. On a visit to the soda and chlorine factory, the expert learned that the local production of sodium hydroxide far exceede local consumption; an excess of more than $6000 \mathrm{t} / \mathrm{a}$ of active alkalinity are available for the proposed local soap industry, which will need not more than $4000 \mathrm{t} / \mathrm{a}$.

As far as sodium carbonate is concerned, the annual neede are quite low, and there will be no problem in importing the quantities needed, which will depend on the amount of fatty acids used.

C. Finished products: imports and exports

The annual imports and exports of soap and other washing materials in the years 1964 and 1973-1975 are shown in table 5.

Table 5. Imports and exports of soap and other washing materials, 1964-197s

Year	Soap				Other washing materials			
	Impor ${ }^{\text {t, }}$ s		Export		Imports		Brports	
	Amount (t)	Value (thousand KD)	Amount (t)	Value (thousand KD)	Amount (t)	Value (thousand KD)	Amount (t)	Value (thousand KD)
1964	743	161	37.0	5.1	1717	333	53.3	6.4
1973	2150	580	30.9	9.3	6780	1260	53.1	16.3
1974	1704	666	47.6	17.5	6495	1541	31.8	7.8
1975	2557	1070	73.9	30.7	6506	1817	40.7	11.9

If exports are subtracted from imports, the figures in table 6 are obtained, which clearly show how much the consumption of these materials has increased in the last decade.

Table 6. Consumption of soap and other washing materials, 1964-1975

Year	Soap		Other washing materials	
	Amount (t)	Value (thousand KD)	Amount (t)	Value (thousand KD)
1964	706	156	1663	326
1973	2119	571	6727	244
1974	1656	649	6463	1533
1975	2463	1040	6465	1805

Table 7 shows the increase in the price paid for the imports of soap and other washing materials over the same period.

Table 7. Price paid for imported soap and other washing materials, 1964-1975
(KD / t)

Year	Soap	Other washing materials
1964	216.832	.93 .763
1973	269.866	185.862
1974	391.045	237.301
1975	418.686	279.275

Table 8 compares the total imports with the population in 1964 and 1975.

Table 8. Comparison of imports of washing materials with the population, 1964 and 1975

Year	Population (thousand)	Imports			
		Amount		Value	
		Total (t)	$\frac{\text { Per }}{\left(\frac{\text { capita }}{\mathrm{kg})}\right.}$	Total (thousand KD)	$\frac{\text { Per }}{(K \bar{D})}$
1964	448	2459	5.49	494	1.102
1975	995	9063	9.11	2887	2.902

D. Projected demand

Usually, before setting up a soap factory, iv is necessary to estimate firet the annual capacity, which depends on the local consumption, and the export limits. Unfortunately, official statistics break down washing materiala into only two categories; soap and other washing materials, and it proved
impractical to obtain the figures for the consumption of toilet soap from those statistico. To obtain an estimate, information from local soap importers, the different marketing centres and international use figures for toilet soap were used. The estimate was $3 \mathrm{~kg} / \mathrm{a}$ per capita, or since the population of Kuwait is approximately 1 million, $3000 \mathrm{t} / \mathrm{a}$ total.
The estimate of the required annual production (in tonnes) of both toilet and household soaps was calculated as follows:

Toilet aoap

Estimated annual local consumption $\quad 3000$
Additional estimate of annual development increase (20,) $\quad 600$
Total 3600

Household soap
Average annual import, 1973-1975 6594
1964 import $\quad 1717$
Difference 4878
Average annual rate of increase, 1964-1975 443
Estimated annual requirement, beginning of $1977 \quad 7037$
Additional estimate of annual development increase (20\%) 1407
Total
8444
The proposed soap factory should therefore have a total capacity of $3600+8444=12044 \mathrm{t} / \mathrm{a}$ to meet the demand projected for the beginning of 1977.

II. SOAP MANUFACTURING RERUIRGaHTS

A. Machinery and equipment

Soap-making maohinery and equipment should:
(a) Be capable of running in a fully automatic system, with a minimum number of skilled workars to tend it;
(b) Insure high quality and adequate quantity with negligible loss and at low cost;
(c) Be easy to operate and maintain with readily available spare parts.

The following plants and units make up the soap factory:

1. Oil and fat bleaching unit
2. Continuous saponification plant
3. Continuous neutralization unit
4. Continuous soap processing plant
5. Glycerine recovery unit
6. Steam boiler

Since these units must operate together to make a single, continuous production line, it is important, when selecting them, to make sure they are compatible.

The operation of the individual units will now be described.

1. Oil and fat bleaching unit

Machinery and equipment
The unit to be described has a capacity of 12 t per batch, which takes 6 h running time, giving a daily (24-h) capacity of 48 t . It consists of the following items of equipment (the numbers in parentheses are keyed to figure I):

Bleaching vessel, vertical, cylindrical shape; capacity 170001 (1)
Two filtration pumps (2)
Two filter presses, each $25 \mathrm{~m}^{2}$ (3)
Receiver for the first filtration oil, capacity 20001 (4)
Filtered oil receiver, capacity 150001 (5)
Mixing vessel for preparing the suspension of bleaching earth
in oil, capacity 8001 (6)
Barometric condenser for the bleaching veseel (7)
Vacuum pump, liquid-ring type (8)
Power-driven centrifugal pump for tranefor of the bleached oil (9)
Set of valves, instruments and piping for interconnecting the iteme

Figure I. Flow diagram of an oil and fat bleaching unit

$$
\begin{array}{ll}
1 & \text { Bleaching vessel } \\
2 & \text { Filtration pump } \\
3 & \text { Filter-press } \\
4 & \text { First filtration oil receiver } \\
5 & \text { Filtered oil receiver } \\
6 & \text { Mirer for bleaching earth } \\
7 & \text { Barometric condenser } \\
8 & \text { Vacuum pump } \\
9 & \text { Transfer pump }
\end{array}
$$

Operation

The bleaching plant is arranged to dehydrate and bleach oils and fats in batches. A measured amount of oil is fed to the bleaching vessel (1) which is equipped with a mechanical stirrer so as to obtain a uniform dispersion of the blearhing earth throughout the oil, an indirect heater and cooling coils. (The bleaching-earth suspension fed to the bleaching vessel is prepared in the mixer (6) after vacuum dehydration of the oil.) After a suitable length of time, the mixture in the bleaching vessel is fed by pumps (2) to the filter presses (3). The first filtrate, which is quite thick, is discharged into a receiving tank (4) and then filtered again. The second filtrate is collected into another tank (5) and transferred to the next stage (9). The vacuum system consists of a water-ring pump (8) and a direct-contact barometric condenser (7).

2. Continuous saponification plant

Machinery and equipment

The main part of the plant consists of the following machinery (see figure II):
Three constant-temperature and constant-level feed tanks for caustic soda solution, fats, and water, each provided with steam coils, an automatic thermoregulator with electrical contacts, a level-regulating device, an alarm device etc., all made from American Iron and Steel Institute (AISI) type 304 stainless steel (SS 304) (1, 3, 4)
Constant-temperature and constant-level feed tank for sodium chloride solution, equipped with heating, regulators and control devices, all made of SS 316 (2)
Hour sets of strainers for caustic soda solution, half-spent washing lye, fats and water, made of SS 316 drilled plates ($6,8,9,10$)
Set of two strainers for sodium chloride solution, made of SS 316 (7)
Multiple-heat proportioning pump with variable-speed drive, adjustable while running, all contact parts made of SS 316 (21)

Four-stage saponification autoclave made of stainless steel with cooling and heating coils; pressure gauge with electrical contacts for adjustment of the working pressure; discharge, cleaning and inspection fittings; pressure regulators and recorders, easily removed for maintenance (19)

Special centrifugal recycling pump for the saponification autoclave made of SS 316, with a patented-profile impeller and a hydraulically cooled stuffing box (20)
Cooling mixer, made of stainless steel, with a water-cooling coil and an automatic thermoregulating system (22)

Four special centrifugal recycling pumps made of SS 316, with patentedprofile impellers, hydraulically cooled packing glands, complete with baseplates, flexible couplings and enclosed fan-cooled electrical motors $(24,27,30,33)$

$$
\begin{aligned}
& \text { Serond-stage level ontroller } \\
& \text { Seconi-stage recy-ling pump } \\
& \text { Second-stage heat exchanger } \\
& \text { Third-stage level controller } \\
& \text { Third-stage recy-ling pump } \\
& \text { Third-stage heat exchanger } \\
& \text { Fourth-stage level controller } \\
& \text { Fourth-stage recycling puap } \\
& \text { Fourth-stage heat exchanger } \\
& \text { Fifth atage level controller } \\
& \text { Fifth-stage recycling pump }
\end{aligned}
$$

$$
\begin{aligned}
& 34 \text { Fifth-stage hmat evchanger } \\
& 35 \text { Fifth-stare sefarator (centrifugal) } \\
& 36 \text { Fittine mixer } \\
& 37 \text { Fitting-stage constant-level tank } \\
& 38 \text { Fitinne-stage level controller } \\
& 39 \text { Fitting-stage reycing pump } \\
& 40 \text { Fitting-stage separator (centrifigal) } \\
& 41 \text { Hot-water generator } \\
& 42 \text { Air compressor } \\
& 43 \text { Washing lye homogenizer } \\
& 44 \text { Min control board }
\end{aligned}
$$

$$
\underset{\sim}{\sim}
$$

Four constant-level SS 304 tanks for washing lye circulating in the various stages of the plants, including covers and fittings (15-18)
Four air-operated level-controlling units for the tanks above, with SS 304, continuous-weighing units, pneumatic level regulators, automatic valves, triple-needle electric pressure gauges, terminal boxes and fittings ($23,26,29,32$)
Four special static separators made of SS 304, with welded conical bottoms, flat covers, fitted heating coils, double jackets, sightglasses over low soap outlets, special variable-height discharges for lye and floater regulation systems (11-14)
Two centrifugal separators for final washine of lye from neat soap leaving the plant, all parts in contact with soap or lye made of SS 304 (35-40)

Four heat exchangers made of SS 304, with thermometers and electrical contaots, and automatic thermoregulators ($25,28,31,34$)
Holding and feeding tank for half-spent washing lye, SS 304 (5)
Hot-water generator of welded steel, with automatic temperature controlling system (41)

Main control board, containing remote starters for all motors, aural and visual alarm devices, voltmeters, ammeters and warning lights (44)
Air compressor, for a pressure of 12 atm , complete with automatic pressure controllers, safety valve, automatic starter, storage tank, connected through V belts and pulleys to a totally enclosed fan-cooled electric motor mounted on rails (42)
Precision reduction valve, self-bleeding type, sensitive to 0.105 atm , for regulating the compressed air for pneumatic controls

Not mentioned above, but having similar specifications, are the mixer, constant-level tank, level controller and recycling pump for the fitting stage (36-39) and the washing-lye homogenizer (43)

Operation

(see figure II)
Raw materials handling and proportioning

The four basic raw materials, water, sodium chloride solution, caistic soda and fats are continuously fed from their main storage tanks to feed tanks (1), (2), (3) and (4). Each tank is provided with high-precision pneumatic temperature and level controllers and serves as a constant gravity feed tank for the miltiple head proportioning pump (21), which is of the recriprocating, positivedisplacement type. The pump is provided with a variable-speed drive, which permits frequent changes of the strokes of all the plungers simultaneously. The stroke (and thus the throughput) of each pump head, is individually adjustable, whether the unit is in operation or stationary.

Saponification

The saponification autoclave (19) is a specially designed four-stage reactor operating at $120^{\circ}-130^{\circ} \mathrm{C}$ and 2 atm . In the autoclave, the reacting mase is recycled through the four stages by a pump (20). The material leaving the autonlave is 99.5% soap and 0.4% free caustic (as NaOH).

First washing
The cooling mixer (22), together with the first static separator (11) constitute the first washing stage of the plant. The cooling mixer serves two functions: i; completes the saponification and prepares the two-phase separations of the soap-lye mixture. The free caustic present in the mixture cominc from the auloclave is used up in this further saponification, leavinf an almost neutral spent lye for glycerine recovery. Tha cooling reduces the solukility of the soap in the lye so that a good soap-lye separation can be achieved in the static separator.
'ounter-current washing
The cortmas is saponification plant uses counter-clurent washing of the soap in five stafes. Each washing stage consists of several elements, each havint a definite function: a constant-level tank (15, 17, 18), to provide a corstant head on the pump; a level-control unit (23, $26,29,32$), to compensate for any variations in the flow of soap and washing lye; a recycling and washing pump (24, 27, 3), 33), to obtain maximum mixine and washing; a heat exchanger $(25,28,39,34)$, to maintain the optimum soap-lye separation temperature; a static (first four sitages) on a centrifugal (fifth stage) osparator (11, 12, 13, 14, 35), to separate the soap from the washing lye.

Soap circuit. The crude curd-soap leaving the firat-atage separator (11), after separation of the spent neutral glycerine lye (which leaves the circuit at this point and is sent to the glycerine recovery plant), goes into a constantlevel tank (15) for the second washing, the first having been accomplished in the cooling mixers (22). The washing lye separated from the third washing stage is also fed into a constant-level tank. This soap-lye mixture is recycled and washed by a pump (24) and passed through a heat exchanger (25) en route to the second-stage separator (12). The soap separates and proceeds in turn to the third, fourth and fifth washing stages.

In the fifth stage, washing takes place in a pump (33), with fresh lye coming directly from the portioning pump (21) through the washing-lye homogenizer (43) and the fifth-stage constant-level tank (18). After passing through tre last heat exchanger (34), the mixture goes to the fifth-stage (centrifugal) separator (35) to obtain complete separation of the soap from the washing lye. The solid impurities remain in the bowl of the centrifuge, and the separated lye is sent back to the fourth washing stage. The soap, which has $62 \% \mathrm{TFA}$, goes directly to the finishing line, if a laundry soap is being made, or to the continuous fitting section, if a neat soap for toilet production is being made.

Lye circuit. 'rhe fresh washing lye going to the fifth-stage constant-level tank (18) contains water, caustic, and brine. This lye is prepared by three pump heads of the proportioning pump (21), which feeds the ingredients into the homogenizer (43) for mixing. The soap encountered by the freah lye has been washed four times ir the previous stages and is practically free from glycerineand lye-soluble impurities. Thus, washing is complete, as the fresh lye can easily dissolve and remove even the smallest traces of soluble impurities originally contained in the crude soap leaving the autoclave.

The washing lye follows the soap circuit, but in the opposite direction. The mixture formed by the fifth-stage pump (33) is separated in the centrifugal separator (35). The lye gces back to the fourth-stage constant-level tank (17), washes the soap and is separated in the fourth-stage separator (14). Then the lye washes the soap in the third-stage pump (27) and is separated again in the third-stage separator (13). Another washing takes in the second-stage pump (24). This time, the proportioning pump adds a small quantity of caustic soda to the mixture in the second-stage constant-level tank (15) to complete the saponificatic of the last traces of fat present in the crude soap coming from the first-stage separator (11). Lye from the second-stage separator (12), which has washed the soap four times, goes into the washing-lye holding tank (5). This tank feeda, by gravity, one of the heads of the proportioning pump (21), which in turn feeds an in-line mixer with a quantity of washing lye exactly corresponding to the quantity of fresh lye being fed to the fifth-stage constant-level tank (18). In the mixer, this washing lye encounters the balance of the caustic soda for saponification and the balance of the brine for salting out the soap, both measured out by the proportioning pump. The final mixture forme the saponification lye.

The air compressor (42) provides constant-presmure compressed air for the various pneumatic controls. The main control board (44) contains all measuring instruments, awitches, and safety controls; aral and visual alarms indicate any irregularities that may occur.

Fitting and nipre recycling
The soap leaving the fifth-stage separator (35) is fed to the fitting mixer (36). Fitting lye formed by suitably proportioned quantities of water, brine, and caustic is homogenized by an in-line mixer and is also fed to the fitting mixer. The fitted soap overflows from the mixer (36) into a constantlevel tank (37), which with the fitting level controller (38) and recycling pump (39) forms an assembly similar to the washing stages already described. The homogenized fitted soap is fed to another centrifugal separator (40) for separating the neat soap from the nigre. The neat soap is sent for further processing, and the nigre goes to the fifth-stage constant-l evel tank (18). It is also possible to degrade a certain quantity of the nigre in order to improve the quality of the neat soap.

A fitting stage connected to a saponification section guarantees that there will be no losses, since the fitting lye contained in the nigre is recovered completely and is used to wash the soap in the previous stages. Therefore, any glycerine present in the soap leaving the fifth stage is recovered and sent back for recovery in the spent lye leaving the first-stage separator (11).

Advantages of the continuous saponification plant

The advantages of the plant described are these:
(a) A high degree of saponification is achieved, insuring no deterioration of the soap during storage;
(b) Impurities, such as those contained in used raw materials are efficiently removed;
(c) The proportioning system guarantees consistent quality;
(d) Only one operator is needed to control the plant;
(e) Glycerine is obtained at yields close to theoretical, since the saponificaiion system runs in closed circuit; while
(f) The system of washing permits a $20-25 \%$ recovery of highly concentrated spent lye, 30% if cocomet oil or palm-kernel oil is used;
(g) Operating costs are low; the savings pay for the cost of the plant in a very short time;
(h) There is no maintenance except for periodic lubrication of moving parts and replacement of worn stuffings and packings;
(i) Any soap stock can be used.

Table 9 sumarizes the utility and labour requirements of the plant.

Table 9. Utility and labour requirements of a oontinuous saponi-
fioation plant
(Per tonne of finished neat soap with 58-64\% TFA)

Item	Requirement
Steam at 6 atm	150 kg
Cooling water at $18^{\circ} \mathrm{C}$	1500 l
Eleotrical energy	16 kWh
Labour	1 person

3. Continuous neutralization unit

A continuous neutralization unit is essential in the produotion of internationally aooeptable grades of toilet soap. It is usually integrated with the continuous saponifioation plant.

Maohinery and equipment

The unit desoribed has a oapacity of $3 \mathrm{t} / \mathrm{h}$ and oonsists of the following maohinery and equipment (see figure III):

Feed tank for fatty aoids or cooonut oil, vertioal, oylindrioal shape, with heating ooils and supports, made of SS 304 (1)
Two line strainers, drilled plate filtering baskets, made of SS 304 (2)
Closed-type oontinuous-flow mixer, with vertical screw rolling inside one barrel, directly coupled to the driving motor-reducer by a flexible ooupling, made of SS 304, oomplete with hot-water heating jaoket and overflow disoharge tank made of SS 304 (3)
Flow ohamber for oontrol and adjustment of the free alkalinity in the soap (4)
dear pump for reoyoling soap in the oontinuous mixer, all soap-contaoting parts made of SS 316, with steam heating jaoket, driven by a gear motor oonneoted to the pump by pulleys and V belts (5)
Metering pump for dispensing the fatty aoids (or ooconut oil) needed for the neutralization of free akalinity, made of SS 316, with pnoumatio devioe for the automatio adjustment of the stroke (installed on the proportioning pump of the oontinuous saponifioation plant) (6)
Figure III. Flow diagram of a continuous neutralization unit

Control board for the automatio, eleotronio adjustment of the free alkali content of the soap, with shunt connection for the automatic regulation of the stroke of metering pump (6) (fitted to the main control board of the saponification plant) (7)
Three remote starter-breakers for the driving motors (fitted to the main oontrol board of the saponification plant)

A mixine crutcher, not shown in the figure, is used for homogenizing and making additions to the liquid soap prior to drying. It oonsists of ordinary steel or stainless steel containers fitted with heating jaokets. The mixing unit oonsists of a vertical sorew made of ordinary steel or stainless steel running in a barrel of the same material. The sorew is driven by an electric motor through V belts, a gear box and a flexible coupling.

Utility requirements
The utility requirements per tonne of soap at $62-63 \%$ TFA are as follows

Steam at 6 atm	10 kg
Electrical energy	5 kth

4. Continuous soap prooessing plant

The oontinuous soap processing plant oonsists of a oooling and drying unit followed by a laundry soap finishing line or a toilet soap finishing line.

Cooling and drying unit

The continuous cooling and drying plant has a oapacity of $3 \mathrm{t} / \mathrm{h}$ of laundry soap bars weighing 250 g or more, or of $1.5 \mathrm{t} / \mathrm{h}$ of dried soap pellets or chips at 78-80\% TFM for toilet soap manufaoture.

Wohinery and equipment
The cooling and drying unit oonsists of the following maohinery and equipment (see figure IV):

Variable-speed filtration pump, oomplete with eleotrio motor, speed reduoer, flexible ooupling, pulleys and V belts mounted on a oommon cast-iron baseplate (1)
Large oapaoity soap filter with all heating and gauge fittings (2) Feed tank with steam hoating jeoket and various fittings (3)

Figure IV. Flow and piotorial diagrams of a oooling and drying unit

1. Piltration pump
2. Pilter
3. Feed tank
4. Feed pump
5. Heat exchanger
6. Veouum spray ohamber
7. Pirst fines saparator
8. Fines collector or extrusion plodder (latter shown)
9. Seoond fines separator

8a. Fines collector
9. Barometric condenser

9a. Barometric hot-well
10. Vacuun pump
11. Plodder

Variable speed feed pump with electrioal motor, speed reduoer, flexible coupling, pulleys and V belts (4)
Heat exchanger, of SS 316, for pre-heating liquid soap (5)
Vacuum spray chamber, with external mountings, driving motor, adjustable scrapers and knives made of special plastic material and inspection glasses (6)
First fines separator (7), centrifugal type, upper part connected to the spray chamber, lower portion of conical shape terminating in a fines extrusion on plodder (7a)
Second fines separator (8), centrifugal type, with fines collector (8a) Barometric condenser (9), direct-contact type, complete with condensate trap (hot-well) (9a)
Vacuum pump, piston type, single stage, with electric motor, accessories and droplet separator; made of steel, with sightglass fittings (10)

Duplex vacuum plodder, fitted with bar extrusion nozzle with thermostatic control, to extrude two parallel soap bars; complete with fittings, electric motor, self-regulating devioes and instruments oontrolling soap, water, steam and vacuum lines (11)
t.

Operation
Liquid soap is filtered at the beginning by a filter (2) fed by a variablespeed drive pump (1). The filtered liquid soap is collected in a feed tank (3).

Another variable-speed drive pump (4) transfers the soap from the feed tank into a shell-and-tube heat exchanger (5). The soap passes inside the tubes and is heated counter-currently by steam, which passes outside of the tubes. The degree of pre-heating depends essentially on the steam pressure.

The pre-heated soap is injected into the vacuum spray chamber (6) through a revolving nozzle, which sprays a thin film of soap onto the internal walls of the chamber. The dry, cooled soap is removed by rotating sorapers and falls to the bottom of the chamber irto a plodder (11).

The amount of water svaporated and the temperature of the soap depends on the amount of heat imparted to the soap in the heat exchanger and the degree of vacuum in the system. For example, to produce low-TFA laundry soap, pre-heating is not used. High-TFA toilet-soap base requires considerable pre-heating. The degree of vacuum affects both the amount of drying aohieved and the final temperature of the product.

Fines are produced only when toilet-soap bases or dry industrial soaps are prooessed through the dryer. In these oases, the fines are reoovered at the bottom of two oentrifugal separators $(7,8)$ connected in series. A collector or
small extrusion plodder (7a) oolleots the fines ooming from the first separator (7). The fines recovered in the second separator (8), amounting to only about one tenth of that reoovered in the first, is oolleoted in a barrel (8a). The small plodder (7a) oan be set to return the fines to the bottom conical seotion of the spray ohamber (6) or to another oolleotor for disposal.

The vapours from the vacuum spray ohamber are almost free of soap fines. They are condensed in a barometric condenser (9) by water at a suitable temperature. A hot-well (9a) reoeives the condensed vapours.

Vacuum is maintained by either a piston pump (10) or a steam-jet system.
The soap scraped off the vacuum chamioer walls is extruded by a plodder (11). Depending on the tyre of soap and the cisqree of refining required, the plodder is of the simplex, duplex or triplex type, i.e., it aotually consists of one, two or three plodders. The last plodder oan be fitted with a nose to produoe pellets (for toilet soap) or a heated extrusion cone to produoe a oontinuous soap bar (for laundry soap). The plodders have oompression worms with speoial profile, refining plates and screens, and cooling jackets.

The product from the plodder goes to either a laundry soap or a toilet soap finishing line.

Laundry soap finishing line

Machinery and ecuipment
The laundry soap finishing line is depioted in figure V as part of the complete plant, including the cooling and drying unit described above. It consist of the following additional equipment:

Large capacity booster for increasing the vacuum in the oooling and drying unit for reducing the temperature of the oooling water in the plodder jackets (12). Other parts of the water-cooling system are an evaporative cooler (13), a secondary booster (14), a seoondary barometrio condenser (15), with hot-well, a oentrifugal pump for circulating the oooled water (16) and a oooled-water tank (17)

Solution-injection line, including a proportioning pump, a oonstantlevel reservoir and filter and a flowmeter, all made in stainless steel (19)

Soap perfuming unit, with a preoision metering pump, all neoessary fittings, including a feed tank of 50-1 oapaoity made of stainless steel and a totally enclosed $0.5-\mathrm{hp}$ motor (18). Fitted with power-driven stainless-steel stirrers and a totally enolosed 1-hp motor, the same unit is also used for colouring the soap
Adjustable cutter, with widened outting blades to out two parallel somp bars simultaneously (20)

Figure V. Continuous laundry soap processing plant

Conditioning tunnel (22) with oharging (21) and disoharging (23)
Automatio soap press for stamping soap tablets at the rate of 50-250 per minute. The machine, self-oontained, consists of an eleotrio motor, a gear-box, the meohanism for driving the moulds, safoty guards for all the moving parts, and feeding and disoharging oonveyor belts (24)
Wrapping and packaging maohines $(25,26,27)$
Control boards $(28,29)$

Operation

Figure V shows the laundry soap finishing line connected to the cooling and drying unit. Together, they comprise a contimously operating, fully automatic plant.

In case the water available for steam condensation is not cold enough to maintain the required level of vacuum, a steam booster jet (12) can be used in addition to the vacuum pump or steam-jet system. When the water, besides being warm, is not available in sufficient quantities, a closed-circuit water cooling and recovery system can be used.

For the production of low-TFA (high moisture-content) and filled soap, very cold water is needed in the jackets for proper plodding. A vacuum water cooling system provides it. The water discharged from the plodder jackets goes to an evaporator (13) kept under high vacuum by a booster (14), where it cools as it boils at low pressure. The cooled water is then returned by a pump (16) to the plodder jacket inlet through a filter. The steam separated from the water in the process is condensed in a second barometric condenser (15). The amount of water lost iny evaporation is automatically replaced in a tank (17).

In the colouring and perfuming unit (18), the metering pump injects a predetermined amount of perfume or perfume-colour solution into the vacuum chamber of the first plodder, which is under the spray chamber. The plodder ensures uniform distribution of the additives in the moving soap mass.

The continuous bar coming from the final plodder is cut into individual bars by the adiustable cutter (20). Before the billets can be stamped into finished soap bars, they mast be conditioned to the optimum temperature and consistency. They are charged into the conditioning tunnel (22) by a charging unit (21), which spaces them properly on the ondless belt that carries the billete through the tunnel. Fane circulate air throughout the tunnel, and difforent eections of the tunnel can be maintained at difforent teaperaturea
depending on product requirements. The discharge unit (23) collects the billets and feeds them to the press (24), where the bar receives its final shape and has designs stamped on its faces.

Finally, the bars are wrapped by machime (25) and loaded into cartons (26), which are sealed (27) and made ready for shipping.

Utility and labour requirements
Table 10 gives the utility requirements for the production of laundry soap in the plant described above. The labour required is one person up to the tunnel discharge, three for the entire plant.

Table 10. Utility and labour requirements of a contimuous
laundry soap processing plant
(Fer 1000 kg of finished bars)

Type of soap	TFA $(\%)$	Steam (kg)	Power (kW)	Water at $18{ }^{\circ}$ $\left(\mathrm{m}^{3}\right)$
Filled	$35-62$	175	30	12
Pure	$62-64$	150	30	12
Semi-dry	$68-72$	50	35	10
Translucent	$68-72$	50	40	10

Toilet soap finishing line

The line described here produces high quality toilet soap in bars continuously and fully automatically at the rate of $1000 \mathrm{~kg} / \mathrm{h}$.

Machinery and equipment
The line includes the following aschinery and equipment (aee figures VI and VII):

A pnoumatic duct conveyor for dried soap chips coming from the cooling and drying unit (figure VI), consisting of a high-capacity centrifugal blower, a venturi at the feeding point, a duct (circular cross-section) made of SS 304 plate and reinforced with angle irons, and a cyclone esparator, also of SS 304. The duct has two wide bends, one of which is fitted with an inspection window. The bends are connected to the etraight portions with quick-fastoning devices

Figure VII. Continuous toilet somp procemeing line

17. General waste conveyor
18. Waste recycling mechanical conveyor

Soap bin and rotary discharge valve (1 and 2 in figure VII)
Mixer-refiner (3) consisting of a colids worm feeder with hopper, a liquids metering assembly and two plodders in tandem connected by a feed hopper. All parts in contact with the product are made of SS 304, except the worms, which are made of a epecial silicon-aluminium alloy. The duplex mixer-refiner is usually supplied complete with the following motors:

Solids worm feeder	1.5 hp, variable speed
Liquids metering assembly	0.5 hp, fixed speed
Liquid agitator	0.75 hp, fixed speed motor
Preiminary plodder	20 hp, fixed speed motor, pneumatic or electromagnetic clutch

Belt conveyor (4), complete with structural-steel supports with builtin height adjustment, $0.75-\mathrm{hp}$ gear motor, side guards, easily removable stainless-steel U pan on its underside to eliminate product losses, stainlese-steel receiving hopper at the low end and castors for movability
Duplex vacuum plodder (5). The two plodders, mounted in tandem, are connected by a vacuum chamber. The preliminary plodder has a $300-\mathrm{mm}$ diameter worm designed to give maximm refining through fine screens and is fed through a stainless-steel hopper
In the final plodder, remote-control starting and stopping of the motor is achieved through a pneumatic or electro-magnetic clutch which is an integral part of the motor. It al eo has a 300 -mm worm diameter and is specially designed for final refining, compression and air-free extrusion of the product. All parts in contact with the product are made of SS 304, except the worms, which are made of a apecial silicon-aluminium alloy. The following motors are employed:

Preliminary plodder	20 hp, fixed speed
Final plodder	$5-20 \mathrm{hp}$, variable speed
Vaccuum pump	1 hp, fixed apeed

Adjustable cutter (6), capable of cutting soap, soap-aynthetic, and synthetic products of different length without changing the cutting chain in aingle or double lines
Vertical conditioning tunnel (7)
Soap press (8), aitable for ataming the billet on two sidee and capan ble of stamping 200-230 soap tablete a minute
Wrapping and packaging machines ($9,10,11$)
Control boarde (12, 13)

Operation

The toilet-soap base is composed of dry pellets produoed by the cooling and drying unit. These can be fed directly to the line or atored in apecial bine (like 1 in figure VII) before proceating. Bing of different capacitiea and designs are umally applied with the plant, an well as mechanical and pnoumatic automatic conveyors and automatic feeding and diacharging equipment (anoh an the diecharge valve (2) in figure VI).

The first operation is the addition of a number of solid and liquid ingredients and mixing them with the soap base. That is the function of the mixerm refiner (3), which meters,mixes, and refines continuously all liquid ingredients or solid-liquid mixtures.

The simple plodder used consists of a feed-screw conveyor and a hopper section mounted above a refining plodder. The two units are connected by means of a hopper. A volumetic dosing unit completes the system. This doser consists of a jacketed holding tank with a stirrer and a precision metering pump.

All the ingredients are dispensed on top of the pellets by one or more rolumetric dosing units, and the pellets are fed at a predetermined rate by an adjustable-speed screw conveyor into the refining plodder.

The mixer-refiner may be replaced by a batch doser-mi zer (BDM) system, which operates as follows (numbers in parenthsses refer to figure VIII):

The automatic programmer (13) normally starts the operation by opening the rotary discharge valve (2) located at the bottom of the soap bin (1). (These would be the same bin and valve as in figure VII). The pellets fall by gravity into the scale (3). As soon as the scale's pointer indicates the predetermined fatch weight, a photoelectric cell stops the soap discharge from the bin by -loring the rotary valve.

The solid ingredients, other than the soap base itself, should be in powier form. From a bin (4), they are tranaferred by a vibratory feeder (5) to 'he hopper of a precision scale (6).

A vacuum circuit siphons the liquid ingredients from their holding tanks 17) and transfers them to calibrated liquid feeder tanks (8). The level (X), and thus the amount, of each liquid ingredient in its feeder tank is varied by adjusting di overflow pipe (Y) and is measured by a gauge (Z). The liquid doses are transferred \therefore to an amalgamator (12) by compressiel at r through spray nozzles. The excess I funds are collected in overflow tariks; (3) and recycled to the holding tanks (7).

The various solid and liquid ingredients are thoroughly mixed in the batch amalgamator (12). After the presest time a^{\prime} located for mixing, the contents are discharged from the bottom of the totally enclosed amalgamator through a sliding gate.

To continue with the description of the toilet soap processing line (figure VII):

Figure VIII. BDM system

1. Soap bin
2. Rotary discharge valve
3. Soap-weighing scale
4. Solid ingredients bin
5. Vibratory feeder
6. Precision scale for solids
7. Liquid holding tank
8. Liquid feeder tank
9. Liquid overflow tank
10. Compressed-air pump
11. Vacuum pump
12. Batch amalgamator
13. Programmer
X. Liquid level
Y. Overflor pipe
Z. Level gauge

After mixing, either by the mixer-refiner (3) or the BDM aystem, the prom duct is transferred by a belt conveyor to a duplex vacuum plodder (5). In the first plodder, the soap undergoes further refining through a fine screen and is cut into pellets by rotary cutters. The pellets fall into the vacuum chamber between the plodders, which acts as the feed hopper of the second plodder, where the soap is compressed and extruded free from air. The temperature is adjusted and controlled by an automatic control system. The speed of the plodder is adjustable.

The continuous soap bar leaving the final refining plodder is cut into individual billets (slugs) by means of the automatic, adjustable cutter (6). This type of cutter is particularly recommended for medium- and high-speed lines and when changes in the billet length are frequently made. The cutter is usually supplied with several chains, each covering a certain cutting range.

Conditioning of the billets received from the cutter to an optimum temperature before stamping 18 important for many reasons: conditioning increases the production rate by minimizing the time needed to clean the soap-press dies, allows for easy handling of sticky products and eliminates "sweating" of the bars, thus facilitating wrapping.

Conditioning takes place in a vertical tunnel (7). Air-conditioned models are recommended for use in hot climates.

The individual bars are finished in a soap press (8), which uses a rotation of the diebox. There are four steps: feeding of the billet to the diebox, stamping, discharge of the stamped bar, and discharge of the waste soap "flashing". These flashings and rejected bars can be recycled by an accessory conveyor system ($14,15,16,17,18$).

F nally, the bars are wrapped (9) and packed in cases (10) and the cases sealed (11) and made ready for shipping.

Utility and labour requirements
The average utility and labour requirements for the production of toilet somp using the line described above are given in tables 11 and 12.

Table 11. Utility and labour requirementa for production of toilet-s0ap base (78-80\% TFA)
(Per tonne of pellets)

Table 12. Utility and labour requirement: for the production of toil et map
(Per tonne of bars)

Item	Requirement
Water at $18^{\circ} \mathrm{C}$	$2 \mathrm{~m}^{3}$
Fectrical energy	55 kdh
Labour	2 persone/
the other the packaging section.	

Advantagen

The advantages of these fully automatic somp processing lines ares
(a) It is possible to produce a wide range of products merely by changing operating conditions;
(b) Utility requirements are lower;
(c) Labour requirements are low;
(d) Highly akilled personnel are not needed;
(e) Space requirements are minimal;
(f) The processing time from liquid soap to fini thed produot is very ehort;
(g) No soap is wasted;
(h) The finished product ia highly homogeneour;
(i) It is easy to use different fatty raw materials of various kinde and qualities. Stable soaps can be produced from olive oil, cottonseed oil or any other uncaturated fat;
(j) There is a uniform distribution of moisture in the finished product, where beta-phase crystallization assures superior lathering and eliminates the bar warping problem;
(k) Refining is carried out in closed plodders, avoiding contamination and eliminating air from the soap;
(1) It is possible to process products requiring a higher degree of drying, e.g., industrial soap with 6% and lower final moisture and soapsynthetic mixtures with 40% initial moisture content.

4. Qlyoerine reoovery plant

alycerine is recovered from apent lye in the plant diagramed in figure $I X$. It consiste of two main sections.

Treatment section

The epent lye treatment aection can treat 30 t of ment lye every 24 h . It consist of the following equipment:

Air blower (1) for supplying the low-presmure air for the agitation of the lye in the treatment tanks (2,5); made of oast iron and oarbon steel, oonnected by means of flexible ooupling to eleotric motor, complete with oast-iron base
Two tanks for treatment of the lye (2,5); cylindrical form with flat bottom, made of mild steel, equipped with closed copper coil for eteam heating and copper sparger for agitating air
Three centrifugal pumps for filtration and transfer; made of $\mathbf{S 8} 316$, connected by means of flexible coupling to electric motor, complete with cast-iron base
Two filter presses (4,7) with plates and frames made of pitch pine, aides of cast iron and base of oarbon steel, provided with manual closing device and equipped with filtering cloths
Tank for the purified lye (8); of cylindrical form with flat bottom, made of mild steel

Evaporation section

The evaporation section operates in two atages to evaporate 1500 kg of water every hour. It consist of the following equipment:

Feed tank (10) for applying the lye to the first atage evaporator; made of mild eteel

Two heating units for evaporation, one for each etage (11, 15); shorttube type, tested for a steam pressure of $2 \mathrm{~kg} / \mathrm{cm}^{2}$, equipped with a quickly removable upper cover, lower inspection manhole, supporting brackets; made of mild steel with special boiling tube
Two evaporating chambers, one for each stage (12, 16); of cylindrical form with manhole, internal diaphragm, sight-glassss, supporting brackets; made of mild steel

Two salt boxes, one for each stage (13, 17); provided with discharge door for salt, flat cover with hinge and locking screw; complete with filtration screen for the salt slurry, sight-glasses, supporting brackets; made of mild steel
Two centrifugal entrainment separators, one for each stage (14, 18); with flanged cover; made of mild steel
Jet barometric condenser (19); equipped with barometric down-pipe and droplet separator; made of mild ateel
Single-stage vacuum pump (20) for dry air; equipped with electric motor, V belts, pulleys and fittings
Centrifugal pump (21) for the removal of the condensate from the secondstage evaporator; made of cast iron and sarbon steel, connected by means of flexible coupling to electric motor, complete with base of cast iron
Tank for half-crude glycerine (22); made of mild steel
Tank for crude glycerine (23); made of mild steel

Operation

The process shown in figure $I X$ is suitable for the recovery of the glycorine contained in the spent lye obtained from the saponification of neutral fats by the conventional pan-process system or modern contimous soap-making lines.

The two-stage evaporator utilizes heating units of the vertical-tube type separated from the vapour space by expansion chambers. By this arrangement maximum heat exchange is obtained; in addition, access can easily be gained to the heating tubes for cleaning purposes by the simple removal of a clean-out door in the top cover-plate.

The evaporating chambers and the centrifugal separators are designed so as to reduce glycerine losses to a minimum.

The salt boxes are oversized, and the recovered salt can be readily removed through the wide door provided for the purpose.

The vapour piping from the first to the second atage is fitted with an isolating valve. When closed, the second stage can be operated as a singlenstage unit for working down the half-crude ($40-44 \%$) to crude ($80-84 \%$) glycerine.

Utility requirements

When the plant is operated as a two-stage unit, the cervice requirements per tonne of water evaporated with feed liquor at $70^{\circ} \mathrm{C}$, are as follows:

Steam at 2 atm	600 kg
Cooling water at $15{ }^{\circ} \mathrm{C}$	$15 \mathrm{~m}^{3}$
Electric power	4 kW

When the second stage is operated as a single stage for finishing, the evaporating capacity is about 50% lower than the average capacity of the two-stage plant when concentrating the lye to half-crude glycerine.

5. Steam boiler

The steam boiler is of the three-pass fire-tube type, mounted on a heavy supporting frame, with a fuel-oil burner, blower, water-feed pump, stack, safety valves, trim panel and controls. The complete boiler is usually factory assembled and is ready to operate after it is connected.

A water softening unit should be installed in the water supply to the boiler.

The hourly output of the boiler should be 5.5 t of saturated steam at $12 \mathrm{~kg} / \mathrm{cm}^{2}$.

B. Land and buildinge

Fectory location

The ideal location for the proposed soap factory has these characteristics: Good drainage
Easy transportation of raw materials and finished products
Eady access for personnel
Adequate and steady supplies of electrical energy and water
Clean environment
Proximity to allied industries
In a visit to the new local oil extracting factory, the expert recognized that this factory is itself in a convenient area for the installation of a map factory. Enough power is available, and the area has laboratorien, plenty of room for the buildings, technical staff, supplies of residuale of acid oil refining, drainage facilities, and easy tramsportation of fatty materials by the
harbour's direct pumping eystem. Moreover, the ares is near the sources of supply for alkaline and brine solutions.

Buildinge

Manufacturing

Fatty materials storage and tranger
The raw fatty materials annually needed for the production of 3200 t of toilet soap are:

Extra fancy tallow 2400 t
Coconut oil
800 t
For the production of laundry soap:
Fancy tallow, laundry grade 9440 t
Other oils of the soft or medium grades 2360 t

The containers needed are:
Number of tanks Cepacity (t)

Extra fancy tallow
Fancy tallow (laundry grade)
Other oils

3
5500
5250

The figures above are for two-shift operation. After a year, when the factory goes on a three-shift basis, four more fancy tallow tanks will be nemded.

The required area is $600 \mathrm{~m}^{2}$, with a height of 7 m . At the rate of $40 \mathrm{KD} / \mathrm{m}^{2}$, the building will cost KD 24000.

Bleaching

The bleaching unit requires a floor apace of $12 \mathrm{~m} \times 15 \mathrm{~m}-180 \mathrm{~m}^{2}$ and a cailing height of 10.5 m . Cont: KD 7200 .

Saponification

The aponification plant requires a floor apace of $30 \mathrm{~m} \times 15 \mathrm{~m}=450 \mathrm{~m}^{2}$ with working floors at heights of 6 and 10.5 m . Cost: KD 18000 .

Soap procesaing line

The plant should be 15 m wide by 40 m long. The first 12 m mould have a ceiling height of 9 m , the remaining 28 m , a height of 5 m . Total aree, $600 \mathrm{~m}^{2}$; cost, KD 24000.

Olycerine recovery
Floor epace, $8 \mathrm{~m} \times 20 \mathrm{~m}=160 \mathrm{~m}^{2}$; height, $10 \mathrm{~m} ;$ cost, KD 6400.

Steam boilers
Area required for two boilers: $2 \times 6 \mathrm{~m} \times 15 \mathrm{~m}=180 \mathrm{~m}^{2}$.
Height should be 6 m . Cost: KD 7200.
Total
The total area for manfacturing is $2170 \mathrm{~m}^{2}$; cost, KD 86800 .

Pre-treatment and storage
Neat soap storage
Storage consists of waiting pans, which receive the daily production liquid soap base for the toilet or laundry soap finishing units. They are umally located between the saponification and the cooling and drying units. Six pans of 30 t each should be sufficient for daily production of 72 t liquid soap base. The pans are 3 m in diameter and 4 m high and need an area of $200 \mathrm{~m}^{2}$. At the rate of $35 \mathrm{KD} / \mathrm{m}^{2}$, the building cost will be KD 7000 .

Sodium hydroxide and sodium chloride preparation and storage
The daily needs of liquid alkali for the saponification plant at the rate of treating and saponifying of $50 \mathrm{t} / \mathrm{d}$ is about 20 t of $50 \% \mathrm{NaOH}$ solution. Three storage tanks of 50 t each are required to guarantee smooth, contimuous running for a week and adequate cooling.

Two tanks of 50 t each are needed for the preparation of sufficient 20% brine solution to insure at least a weak's trouble-free production.

The recommended area for both the preparation and storage of both solutions is $250 \mathrm{~m}^{2}$. Cost at $35 \mathrm{KD} / \mathrm{m}^{2}$: KD 8750 .

Supplementary raw fatty materials storage
For supplementary storage an area of $400 \mathrm{~m}^{2}$ surrounded by a fence 2 m high is required. At the rate of $10 \mathrm{KD} / \mathrm{m}^{2}$, the cost will be KD 4000 .

Total
The total area for pre-treatment and storage is $850 \mathrm{~m}^{2}$ at a oost of KD 19750 .

Finished products storage
Sufficient storage should be provided for two month's production, operating in two shifts.

Toilet soap
Space for 100000 cases, each of 72 bars of 100 g . The needed area (3 m high) is $750 \mathrm{~m}^{2}$. The cost at the rate of $35 \mathrm{kD} / \mathrm{m}^{2}$ is KD 26250 .

Laundry soap

Space for 84000 cases, each of 50 cakes of 400 g . The needed area (6 m high) is $1000 \mathrm{~m}^{2}$; cost, KD 35000 . Tota]

The total area for finished products storage is $1750 \mathrm{~m}^{2}$; cost, KD 61250.

General storage

General storage includes:
Aromatic perfume compounds and other toilet soap additives
Wrapping materials, cartons, glue, colouring materials
Mechanical and electrical spare parts and tools
Bleaching earth and other chemical powders
Recommended area is $1000 \mathrm{~m}^{2}$. At the rate of $30 \mathrm{KD} / \mathrm{m}^{2}$, the cost will be KD 30000.

Quality control and research laboratories

The chemical control laboratory (for raw materials), the production quality control and technical research laboratories, and the pilot plant will require about $300 \mathrm{~m}^{2}$. At $40 \mathrm{KD} / \mathrm{m}^{2}$, the cost will be KD 12000 .

Water supply tower

The water supply tower should be large enough to hold twice the daily water requirenent of $2500 \mathrm{~m}^{3}$. A tower of this size will require $130 \mathrm{~m}^{2}$ of area at a cost of $70 \mathrm{KD} / \mathrm{m}^{2}$ or KD 9100 .

Mechanical and maintenance workshop
An area of $300 \mathrm{~m}^{2}$ is required for workshops. At $40 \mathrm{KD} / \mathrm{m}^{2}$, the cost will be KD 12000.

Factory adminietration

Aroa, $300 \mathrm{~m}^{2}$; cost, KD 12000 .

General administration

Area required for the main offices is $400 \mathrm{~m}^{2}$. At the rate of $60 \mathrm{KD} / \mathrm{m}^{2}$, the cost will be KD 24000.

Miscellancous

There will be 400 m of fence, 2 m high, around the property. At the rate of $10 \mathrm{KD} / \mathrm{m}$, the cost will be KD 4000 .

Land

Roads, plantings and expansion are allotted $2800 \mathrm{~m}^{2}$ of land to bring the total land area of the factory to an even $10000 \mathrm{~m}^{2}$. The cont of this land is not included in the sost summary below.

C. Labour

Since the plants are fully automated, labour requirements are low; in many cases only one operator per shift per plant is needed (see section A). However, it is recommended that this operator be assisted by a mechanic during the first year of operation.

The operator must be a graduate chemist with at least three months' experience in continuous soap production. He should have assisted with the erection of the units from the very beginning. The possibility should be investigated of employing technicians from the local institute for applied technology, after they have been trained in the use of automatic soap machinery.

Fipure X is an organization chart showing the number and type of employees needed in the first year of operation. It is assumed that the plant will run on two 8 -h shifts and manufacture 3600 t of toilet soap and 8400 t of laundry soap and recover 900 t of glycerine.

Personnel qualifications

The qualifications expected of the personnel listed in figure X are as follows:
Figure X. Organization chart and labour requirements for the first year of operation (two shifts)

Manufacturing

General manager - a chemical engineer with 15 years experience, preferably in oils and fats

Production managers - chemical engineers with over 6 years experience, preferably in soapmaking

Production chemists - graduate chemists or chemical engineers with over 6 years experience, preferably relevant to the units to which they are assigned
Laboratory chief chemists - graduate chemists with over 6 years experience, preferably in fats and oils

Laboratory chemists - graduate chemists with over 6 years experience in oil and soap analysis

Engineers - graduate engineers, mechanical or electrical, with over 6 years experience, preferably in automatic soap manufacturing plants
Assistant engineers - technical secondary level of education with over 6 years experience or with less education but over 10 years experience; two electrical, with experience in motors and panels, and two mechanical, with experience in processing machinery
Maintenance - experienced mechanics and electricians
Boiler room - stationary mechanics with over 10 years experience

Admini stration

General manager - college graduate with over 15 years administrative experience Secretarial - business school, or secondary school with 5 years experience

Personnel - vocational specialists with over 5 years experience
Security - factory guards with over 10 years experience

Commercial and financial

General manager - college graduate with 15 years experience in financial and marketing matters, preferably in soap marketing
Marketing - manager, college graduate with 10 years marketing experience; assistants, 10 years experience
Finance - manager, college graduate with 10 years experience; cashier and accountant, graduates with 6 years experience or non-graduates with 10 years experience

Stores - manager, graduate with 10 years experience, preferably in soap storage; storekeepers and assistants, over 10 years relevant experience

Ampx

ESTIMATMD RTMUREMRS, COSTS AND FROFITS

This annex contains tables 13-23, whioh present data on the entimated reqirements, ooste and profits of a soap factory with the following annual output:

Table 13. Flente and eqipment ooste
(United States dollars)

Plant or equi pment	Basio prioe	Delivery oost	Total	
Oil and fat bleaching unit	168400	21000	189400	
Continuous saponifioation plant	395450	33000	428450	
Continuous neutralization unit	64360	5500	69860	
Crutcher	25750	2150	27900	
Cooling and drying unit	393770	32000	425770	
Clyoerine recovery unit	144360	14670	159030	
Steam boiler	52290	6500	58790	
Pnoumatic duct oonveyor	9120	800	9920	
Toilet soap finishing line	242530	20200	262730	
			Total	1631850
			(kD 465406)	

Notes: 1. If fully automatic wrapping, packing and sealing are desired, add following equipaent:

	Prion	Delivery	Total
High-speed toilet-soap wrapper	78890	6550	85440
Case paoker	21320	1770	23090
Automatic case sealer	11105	925	12020
2. For supplementary stean boile	add 858		120550

Table 14. Comparison of proposed plant with single and double plants

Item	Proposed plant	Double plant	Single plant
Toilet soap produotion capacity (t / a)	3600	5400	2700
Laundry soap production capaoity (t / a)) 8400	10800	5400
Total caracity (t / a)	12000	16200	8100
Total neat soap base capacity (t / a)	15600	21600	10800
Total investment for plants (\$US) 1	805341	1805341	1257510
Total investments for plants (KD)	523549	523549	364678
Annual depreciation at 10\% (KD)	52355	52355	36468
Annual depreciation per ton of neat soap base (KD)	3.356	2.424	$4 \quad 3.367$
Crude (98\%) glycerine recovered (t/a)	1114	1542	771
Inoome from glycerine sales (a)	167100	225000	115650
(KD)	83550	112500	57825

Hotes: 1. Production capacities are based on 300 days operation per year.
2. Investment and depreciation items for the single plant do not inolude wrapping, paoking or sealing units or a stand-by steam boiler.
Table 15. Estimated amounts of different raw fattv materials needed anmallv

Material	Amount (t)				$\begin{aligned} & \text { Average } \\ & \text { price } \end{aligned}$		Total cost(2 shifts)	
	2 shifts		3 shifts					
	Toilet	Laundry	Toilet	Laundry	(\%us/t)	(1 ($/$ /)	(Thousand dollars)	$\begin{aligned} & \hline \text { (Thousand } \\ & \text { dinars) } \end{aligned}$
Cocomet oil	800	-	1250	-	469	136	375	108.7
Extra fancy tallow	2400	-	3750	-	440	128	1056	306.2
Fancy tallow (laundry grade)	-	4116	-	5292	400	116	1646	477.4
Palm-oil	-	588	-	756	445	129	262	75.9
Soft oil (cotton seed, ground-nut etc.) Soft acid oils (soap stock, refinery residues)	-	1176	-	1512	355	103	417	121.1
TOTAL Each soap type	3200	5880	5000	7560				
Both types							3756	1089.3

[^0]Table 16. Eatimated amounts of the prinoipal oheaioal raw materials needed anmally

Two-shift operation

Material	Toilet (t)	soap (KD)	$\frac{\text { Leundry }}{\frac{\text { minnt }}{(t)}}$	coap (KD)	Olyoerine recovery (KD)
Sodium hydroxide	500	30000	900	54000	
Sodium ohloride	230	5750	350	8750	
Motivated bleaching earth	128*	...	118^{\prime}	...	2000
Other					2000
Total ooat		35750		62750	2000

Acsuming fatty raw matorials of hich quality.

Unit	Product	Amount of product (t)	Water		Steanal		Electricity	
			$\begin{aligned} & \text { Rate } \\ & (m 3 / t) \end{aligned}$	Total (m3)	$\begin{gathered} \text { Rate } \\ (\mathrm{kg} / \mathrm{t}) \end{gathered}$	$\begin{aligned} & \text { Total } \\ & (\mathrm{kg}) \end{aligned}$	$\begin{gathered} \text { Rate } \\ (\mathrm{k} w h / \mathrm{t}) \end{gathered}$	$\begin{aligned} & \hline \text { Total } \\ & \text { (kdha) } \end{aligned}$
Heaching	Bleached fats	9080	2	18160	80	726400	3.5	31780
Saponification	Heat soap, 61\% TFA	13100	1.5	19650	150	1965000	16	209600
Heutralization	Heat soap, 61\% TFA	4600	-	-	10	46000	5	23000
cooling and drying	Leundry bars, 62-63\% TPR	8400	22	100800	150	1260000	30	252000
Toilet soap	$\{$ Pelleta, 78-80\% TrA	3600	8	28800	150	54000	15	54000
	Bars, 78-80\% TTPA	3600	2	7200	-	-	55	198000
Glycerine recovery	Evaporated water	2724	$12^{\text {b/ }}$	32688	600	1634400	4	10896

- 57 -
Table 18. Estimated anmal cost of utilities Two-shift operation

Fotes: 1. The following utility rates are assumed:

Table 19. Tetimated annual labour oosts Two-shift operation
(KD)

Number of persons	Oocupation	Individual monthly salary	Total annual cost
1	General manager (manufacturing)	880	10560
1	General manager (commercial and financial)	660	7920
1	Ceneral manager (administrative)	660	7920
2	Production manager	660	15840
2	Chief chemist	550	13200
2	magineer	550	13200
1	Marketing manager	550	6600
1	Finance manager	550	6600
1	Stores manager	550	6600
2	Chemista (glyoerine reccuery)	330	7920
2	Chemist (saponifioation)	440	10560
2	Chemist (cooling and drying)	440	10560
2	Chemist (soap processing)	440	10560
2	Chemist (bleaching)	330	7920
2	Chemist (quality control)	330	7920
2	Chemist (research)	330	7920
2	Mechanical engineer	330	7920
2	Electrical engineer	330	7920
1	Sales assistant	275	3300
1	Purchasing assistant	275	3300
1	Cashier	220	2640
1	Accountant	165	1980
2	Storekeeper (raw materials)	165	3960
2	Storekeeper (finished products)	165	3960
2	Assistant storekeeper (raw materials)	110	2640
2	Assistant storekeeper (finished products)	110	2640
3	Boiler room mechanic	220	7 92J
5	Maintenance worker	165	9900
1	Seoretary	165	1980
2	Typist	132	3168
2	Driver	132	3168
11	Porter, guand	77	10164
66	Total		228360

a/ Including 10% sorn، harres.

Table 20. Estimated fixed and workine capital requirements Breakdown by produot
(KD)

Item	Laundry moap	Toilet soap	Qlycerine	Total	
Fixed capital		114150	114150	32700	261000
Buildings	2000	2000	1000	5000	
Furniture	218629	251316	55300	525245	
Equipment	35065	35965	8970	80000	
Installation	700	700	600	2000	
Air conditioning	2000	3000	5000	10000	
Labcratories	2500	2500	2000	7000	
Motor vehicles	1240	1440	320	3000	
Technical training	1664	1828	439	3931	
Inaurance		3328	3655	879	7862
Maintenance	16742	16761	327	33830	
Advertising	398018	433315	107535	938868	

Vorking capital

Land rental	10	10	10			30
Raw materials	677192	510308		000	189	500
Utilities	34281	14008		730	57	019
Packaging materials	13000	27500		000	45	500
Perfume and other additives	2000	132848			134	848
Labour	135914	69228	23	218	228	360
Shipping	4000	8000		000	20	000
Customs duties	24730	18670			43	400
Miscellaneous	4000	6000		000	16	000
Total	895127	786572		958	734	657

a/ On buildinge and equipment, at 0.5 . .
b/ Of buildings and equipment, at 1%.

Table 21. Estimated production cost
(Dinars per tonne of finished product)

Item	Laundry soap	Toilet soap	Glyoerine
Depreciation			
Furniture (20\%)	0.048	0.111	0.216
Equipment (10\%)	2.603	6.981	5.972
Installation (20\%)	0.829	1.998	1.937
Air conditioning (20\%)	0.017	0.039	0.130
Laboratories (10\%)	0.024	0.080	0.540
Motor vehicles (33y)	0.100	0.232	0.720
Teohnical training (20\%)	0.029	0.080	0.069
Fixed and variable costs	0.001	0.003	0.011
Land rental	80.618	141.752	2.160
Raw materials	4.081	3.891	9.428
Utilities	1.548	7.639	5.400
Packaging materials	0.238	36.902	
Perfume and other additives	16.180	19.230	25.073
Labour	0.198	0.508	0.474
Insurance	0.396	1.015	0.949
Maintenance	1.993	4.656	0.353
Advertising	0.476	2.222	8.639
Shipping	2.901	5.186	
Customs duties	0.476	1.667	6.479
Miscellaneous	112.756	234.192	68.550
Total			

Table 22. Fstimated profits

a/ Normal grades; some higher arades sell for as much as $970 \mathrm{KD} / \mathrm{t}$. b/ Assuming the glycerine is sold for $82.344 \mathrm{kD} / \mathrm{t}$ and weighting the return to each soap type by its fat oontent.

Table 23. Suggested capital investment sohedule

$\begin{aligned} & \text { Six-month } \\ & \text { period } \end{aligned}$	Fixed capital		Working oapital		Total(KD)
	Item	Amount (KD)	Item	Amount (KD)	
First	Buildings ($\frac{1}{2}$)	130500			
	Equi pment (90\%)	210098	None		
	Installation ($\frac{1}{2}$)	40000			
	Motor vehicles ($\frac{1}{2}$)	3500			
	Total	384098			384098
Seoond	Buildings ($\frac{1}{2}$)	130500			
	Equipment (60\%)	315147			
	Installation ($\frac{1}{2}$)	40000	Non		
	Motor vehioles ($\frac{1}{2}$)	3500			
	Technioal training	3000			
	Total	492147			492147
Third	Purniture	5000	Land rental	30	
	Insuranoe	3931	Raw materials ($\frac{1}{3}$)	396500	
		8931	Utilities (${ }^{\frac{1}{4} \text {) }}$	14255	
			Paokaging ($\frac{1}{4}$)	11375	
			Additives ($\frac{1}{4}$)	33712	
			Labour ($\frac{1}{2}$)	114180	
			Shipping ($\frac{1}{4}$)	5000	
			Customs ($\frac{1}{4}$)	10850	
			Miscellaneous ($\frac{1}{2}$)	8000	
				593902	602833
Mourth	Mone		Raw materials ($\frac{1}{5}$)	396500	
			Utilities ($\frac{3}{4}$)	42764	
			Prokaging ($\frac{1}{2}$)	22750	
			Additives ($\frac{1}{2}$)	67424	
			Labour ($\frac{1}{2}$)	114180	
			Shipping ($\frac{1}{2}$)	10000	
			Oustome ($\frac{3}{4}$)	32550	
			Misoellaneous ($\frac{1}{2}$)	8000	
			Total	694168	694168

$C-100$

78.12 .12

[^0]: Hotes: 1. Palm-oil may be used instead of fancy tallow, and acid oils instead of soft oils, if the
 2. Prices are averages of late 1975 and late 1976 international prices.
 3. The proposed amounts of raw fatty materials for toilet soap are based on the formas for a
 top quality product.

