TOGETHER
for a sustainable future

## OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.


This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

## FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

## CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org

We regret that some of the pages in the microfiche copy of this report may not be up to the proper legibility standards, even though the best possible copy was used for preparing the master fiche


United Nations Industrial Development Organization


Distr. LIMITED
ID/WG.254/4
23 August 1977
malish

Interregional Expert Group Meeting on Computer Applications and Modern Engineerting in Machine Manufacturing Induatry
Warsaw, Poland, 1929 September 1977

# Comporemt desion and marupacture usirg coupyters THE PRESETT positian 1/ 

by
T. Allan*

[^0]1d. 77-6471

The United Nations and BUMAR have organised this meeting in order that experience in the use of computers and computer peripherals in an industrial environment can be discussed between people from the Industrialised and the developing countries. The objective is to expose aspects or areas of computer technology in order that their usefullness in individual situations can be more effectively assessed. The purpose of the paper is to set out what is readily available at present in three areas encountered in design and manufacture in industry. These are

1) the analytual
2) the graphical
and 3) the numerically controlled manufacturing areas

The computers themselves and their various peripheral devices work at the binary digit level. They can compare trains of binary pulses and from the result pursue a particular sequence of events - a decession process. They can perform arithmetic operations on the pulse trains and they can control the movement of stepper motors, $s$ witches, etc. using them. These and the prodegous speed of operation are the basic ingredients we need in order to transfer our wishes into controlled automatic processes.

Between this computer control level and the human operator or user there have evolved a number of languages and translaters (conpilers). These enable the user to instruct the computer in a mode more akin to his existing and every day manual processes. Many of these languages (Fortran, Algol Gino, APT, machine language) are now widely used and understood
understood. In the rature of all developing technologies each of these languages have evolved to satisfy particul needs. Now, however, we see signs of integrated languages (and compilers) being constructed to allow combinations of graphics and manufacture, for example, to be considered as one entity. We will return to this aspect later.

Since such convenient languages are readily available our task is to examine how they might be used to assist us in setting out our wishes and how because of the computer new techniques and approaches are available to us.

## Analytical Technique

All computer techniques are essentially analytical but the term is used here to identify the area of design where in the past manual or slide rule calculations were involved. This is probably the area in which most development has taken place and an attempt will be made here to present a summary

1. A one-to-one translation of Algebraic design routines. This probably requires the lowest level of ingenuity a skill requiring only a knowledge of the language - FORTRAN, ALGOL etc - and an understanding of the pencil and paper procedure. Many international standards and codes of practice are being redrafted to aid computer usage. These usually involve line by line translation as in which may become $L=\frac{1}{2} \sqrt{\alpha_{A}^{2}-d_{B}^{2}}+\frac{1}{2} \sqrt{D_{A}^{2}-D_{B}^{2}}-C \sin \alpha$
```
SLEN = 0.5*SQRT (DA*DA -DB*DB) + 0. 5*SQRT (DAA*DAA -DBB*DBB) -
                                    C*SIN(ALFA)
```

or by substituting a routine or a group of instructions as in

$$
A=\int b d x
$$

which may become

$$
\begin{aligned}
& \text { AREA }=0.0 \\
& \text { DO } 20 I=1, N \\
& D X=X(I+1)-X(I) \\
& B=(Y(I+1)+Y(I)) * 0.5
\end{aligned}
$$

$$
20 \text { AREA }=B^{*} D X+A R E A
$$

2) Handling tabular and graphical data.

Many of the codes of practice incorporate tabular data such as properties of material, available dimension or cross-sectional information etc. where searches have to be made in order to effect a final solution. The simplest way to do this is by a linear search. The values are stored in a vector (or matrix) and the value to be identified is compared with each one stored in turn till a match is found.

|  | DO $10 \mathrm{I}=1, \mathrm{~N}$ |
| :--- | :--- |
|  | IF (NVAL.EQ. NUM(I)) GO TO 20 |
| 10 | CONTINUE |
| 15 | $\ldots$ |

If control passes to statement 20 the I will contain the index of the matching value. If statement 15 is reached no match has been found. This required an average of $N / 2$ searches and for large vectors (or matrices) this is not very efficient.

This can be improved by using a Binary search. The method requires an ordered table of values. A given value is compared with an item in the middle of the table to determine whether the top or bottom halves should be searched further. The value is then compared with the central value in the appropriate half, and so on till a match is obtained. The number of comparisons needed will be $\log _{2} N$.
e.g. Say 60 value table - add three very large numbers $\mathrm{N} 2=32$
$I=0$
$\mathrm{IAV}=\mathrm{N} 2$
$10 \quad \mathrm{IS}=\mathrm{I}+\mathrm{IAV}$
IF (VAL. GT. TABVAL (IS)) I = IS
$\operatorname{LAV}=\operatorname{IAV} / 2$
IF (LAV.GT.0) GO TO 10
where N 2 is a power of 2 and the number of $\mathrm{TABVAL}^{8}$ is accommodated by $2 \times \mathrm{N} 2$.

Where the data is originally in the form of a sparsely filled matrix it is usually more convenient to store the non-zero values only and to use a similar matrix to store the address. Once a search is made to locate the value its actual position can be obtained from the similar location in the address matrix.

Graphical data is widely used in codes of practise. Sometimes the graphs can be reduced to mathematical equations and can be handled
easily by the computer. Most frequently however the graphs represent experimental data where piece wise curve fitting would only be possible. In such cases it is possible (fig. () to digitise the curves to form a matrix of values and use an interpolation technique.


Alternatively, with the aid of a graphics terminal, an interactive solution col: be achieved by a process simulating the manual method used in the original code. By digitising the graphs. they can be presented on the graphics screen and annotated. The cross-wire cursor can then be positioned on the screened graph. The physical position of the cursor can then be related

to the actual $X, Y$ value by interogating two vectors which are composed of the incremental values on the axes of the graph.
3) Using Principle from code of Practise but redrafting method
to suit computer.

Most of the codes of practise have been established to suit the human computer i.e. with visual selection and pre-calculated data displayed in tabular or graphical form. Since the computer characteristic is vastly different from that of the human the general organisation of the solution can be quite different. By way of illustration and to contrast it with the graphical data of the previous section consider the British code of practise for gear design.


Using a simulation of the gear cutting process fig. 4 one can determine the shape of the tooth generated from a basic rack. The proportions of the rack can be arranged to coincide with the actual cutter tool which would be used in the manufacturing process.



FiG 5

Knowing the profile data and the radius $\mathbf{R}_{1}$ at which the tooth force FN is applied normal to the surface, the components $V$ \& $H$ can be determined on the centre line of the tooth fig. 5 . The stresses produced by these components at a section towards the root of the tooth can be readily obtained. Using an iterative procedure involving the location of this section - over a narrow band the appropriate maximum stress condition can be established. The lesson to be learned from this in connection with the integration of codes of practise in a C.A.D. system is the: the direct conversion of manual techniques, while it is the obvious course, is not necessaril the simplest or most flexible or the least bulky in terms of computer space. Some tricky data bank problems can be avoided by reverting to basic principles and rephrasing the problem to suit the new medium.
5) New Analytical techniques for the computer

Because of the very fast speed of computation which is possible with computers approximate analytical methods involving iterative techniques and vast numbers of calculation can be accomplished in relatively short spaces of time - in seconds or minutes. The computer has made such laborious methods practical and attractive and has acted as a spur in research and development of approximate methods in general.

One such method or technique which is particularly attractive to the designer because of its wide range of application is called Finite Element Analysis. It can be applied to problems in stress/strain, fluid flow, temperature, pressure and heat Now, instability and vibration.

It is useful in examining the F.E. method to draw comparisons with an allied technique known as finite difference analysis. In the later method the governing differential equation is replaced by an approximate expression in terms of the ordinate values.


These are a few of the standard approximate forms expressed in a convenient grid format. There are also forms available which handle
grid arrangements at boundaries involving irregular spacing, forward and backward differences etc.

For each grid point $i, j$, one can construct an equation involving only ordinate values $Z_{1, m^{\prime}}$. Assembling these for all the points produces a set of simultaneous equations.

$$
|K|\{Z\}=\phi
$$

Boundary conditions are then introduced which opeciry the value of $Z, \frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ on the boundary


It is now possible to use some iterative methods to solve for the values of $Z$ at each node or grid point. With this technique however, boundary conditions and shape can present some problems.

In contrast the FINITE ELEMENT method subdivides the component or the surface or the problem space into discrete physical elements or domains. These are linked or connected only at discrete points or nodes. The shapes of the elements varies with the particular application but the simplest shape is the triangular element. In this the inter connection only exists at the three corner points $\mathrm{i}, \mathrm{j}, \mathrm{k}$. See fig. ( 8 ).


FIG 8

For each discrete triangular element it is possible to relate quanitities at the nodes in a simple manner.

$$
\{\xi\}=[k]\{\emptyset\}
$$

This concept was first developed for two dimensional stress problems where this equation represented the relationship between nodal forces $F$ and displacement $\delta$ as follows.

$$
\left\{F_{x}, F_{y}\right\} \quad=[k]\left\{\delta_{x, j}, \delta_{y}\right\}_{i, j, k}
$$

where
$[K]$ is a $6 \times 6$ matrix of stiffness coefficients determined on the vasis of a uniform stress system within the element and by equating the external and internal work done by the forces and stresses during arbitrary nodal displacements.

Many other element forms have been devised to cope with the many different situations in which the method is used to effect an approximate solution. Some of the element shapes which have become popular are shown below.


Several elements are usually joined at each node throughout the continuum so that the force components at each node can be summed to obtain the equation for the resultant force at each node. This is how the total st t of n simultaneous equations for the n nodal points is assembled.

$$
\{F\}_{n}=[K]_{n, n}\{\delta\}_{n}
$$

where $[K]$ is a sparsely populated $n \times n$ matrix of nodal point stiffness coefficients.

In this state the stiffness matrix is singular and requires to be modified to include the boundary conditions before a solution can be obtained. This is simply done by inserting the known nodal forces or displacements, partitioning the matrix and solving for the unknown displacements.

$$
\left\{\begin{array}{ll}
F k & F u
\end{array}\right\}=\left[\begin{array}{l:l}
K_{11} & K_{12} \\
\frac{K_{21}}{K_{22}}
\end{array}\right]\left\{\begin{array}{ll}
\delta_{k} & \delta_{k}
\end{array}\right\}
$$

where the suffices $k, u$ refer to known and unknown values

$$
\begin{aligned}
& \left\{F_{k}\right\}=\left[\begin{array}{ll}
K_{11} & K_{12}
\end{array}\right] \begin{cases}\delta_{u} & \left.\delta_{k}\right\}\end{cases} \\
& \left\{\delta_{u}\right\}=\left[K_{11}\right]^{-1}\left\{F_{k}-K_{12} \delta_{K}\right\}
\end{aligned}
$$

which is the unknown displacements and

$$
\left\{F_{u}\right\}=\left[\begin{array}{ll}
K_{21} & K_{22}
\end{array}\right]\left\{\delta_{u} \quad \delta_{k}\right\}
$$

which is the boundary forces.

$$
=\left[K_{2},\right]\left\{f_{u}\right\}+\left[K_{22}\right]\left\{\sigma_{K}\right\}
$$

these can be fed back to the individual elements themselves to determine the stress system within them (based on the initial stress conditions assumed on setting up the stiffness matrix). The results can be displayed in tabular form or more usefully in graphical form as indicated below. FiG 10


An alternative method of formulating the finite element problem is by the use of the Variational Calculus. By this method a partial differential equation - for example the following second order equation -

$$
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+c=0
$$

applicable over a region $V$ and having prescribed boundary values $\phi=\phi_{B}$ can be transformed to the equivalent mathematical problem of finding a function which minimises the functional

$$
x=\iint_{v}\left[\frac{1}{2}\left(\frac{\partial \phi}{\partial x}\right)^{2}+\frac{1}{2}\left(\frac{\partial \phi}{\partial y}\right)^{2}-c \phi\right] d x d y
$$

and satisfies the same boundary condition ice.

$$
\frac{\partial \chi}{\partial \phi}=0
$$

For each finite element the value of $\emptyset$ can be desceibed in terms of the nodal values $\emptyset_{i}, i=1, n$ as

$$
\begin{aligned}
\phi & =\left|N_{i}, N_{j}, N_{k} \cdots\right|\left\{\begin{array}{lll}
\rho_{i} & \rho_{j} & \theta_{k} \\
\cdots
\end{array}\right\} \\
& =|N|\{\emptyset\} e
\end{aligned}
$$

where $(\phi)^{e}$ is a list of parameters - ice. $\phi$ at nodes $i, j, k \ldots$

$$
\begin{aligned}
\frac{\partial \psi^{e}}{\partial \phi_{i}}= & \iint_{V^{e}}\left[\frac{\partial \phi}{\partial x} \frac{\partial}{\partial \phi_{A}}\left(\frac{\partial \phi}{\partial x}\right)+\frac{\partial \phi}{\partial y} \frac{\partial}{\partial \phi_{i}}\left(\frac{\partial \phi}{\partial y}\right)-C \frac{\partial \phi}{\partial \phi_{i}}\right] d x d y \\
= & \iint\left(\left(\frac{\partial N_{1}}{\partial x} \phi_{A}+\frac{\partial N_{j}}{\partial x} \phi_{\partial}+\cdots\right) \frac{\partial N_{i}}{\partial x}+\right. \\
& \left.\left(\frac{\partial N_{1}}{\partial y} \phi_{A}+\frac{\partial N_{j}}{\partial y} \phi_{j}+\cdots\right) \frac{\partial N_{A}}{\partial y}-C N_{A}\right] d x d y
\end{aligned}
$$



1


| SCALE $X$ | SCALE Y |
| :---: | ---: |
| 1.0 | 1.0 |
| SCALE P | CONTOUR |
| 0.002 | 1.0 |

FiG. II
Hyorodynailic Bearing.


$$
\begin{aligned}
& \frac{\partial V^{e}}{\partial\{\phi\}^{e}}=|K|_{\cdot}^{e}\{\phi\}^{e}+\{F\}^{e} \\
& \text { WHERE } \\
& k_{l, m}=\iint_{v^{e}}\left(\frac{\partial N_{l}}{\partial x} \frac{\partial N_{m}}{\partial x}+\frac{\partial N_{l}}{\partial y} \frac{\partial N_{m}}{\partial y}\right) d x \partial y \\
& F_{e}=-\iint_{v} C \cdot N_{e} d x d y
\end{aligned}
$$

Note that the problem is transformed from a second order differential equation to a first order differential form with integration.

Once the "stiffness" matrix values have been obtained for the element they can be assembled in the normal way for the total domain. Boundary values can then be inserted and normal iterative solutions obtained. Some examples of the applications are given below.
a) Hydrodynamic Bearing (Fig. 11)
b) Hydrodynamic Pocket Bearings (Fig. 12)

These are what are known as field problems where the results indicate the variation in a particular quantity, i.e. pressure, temperature etc. over a zone of interest. The first (a) shows the pressure contours on a symmetrical half portion of an oil lubricated journal bearing. The second (b) shows a development of the same technique to include recessed pockets in the bearing which are supplied with oil through a small capillary restrictor. There one can investigate the effects of pocket size and position, supply
pressure and restrictor diameter, and bearing eccentricity and rotational speed on the load capacity.

## Substructure arrangements and matrix partitioning

It frequently happens that in the search for greater accuracy or in the desire to analyse larger and more complicated components we incorporate too many elements for the size of computer available. The alternative to reducing the number of elements is to use a system of substructuring (see Fig. 13). In this the structure is subdivided in portions containing a reasonable number of elements each (see fig. 14). The nodes on the boundaries between each substructure are indicated by $\operatorname{dot} s(\cdot)$ and are known as active nodes. The nodes inside each substructure which carry zero external forces are dormant noded and we eliminate these by a process of matrix partitioning

$$
\text { e.g. } \quad \text { if } F_{A} \not \& \delta_{A} \text { is the active nodal force and }
$$ displacement vectors

and $\quad F_{0}$ and $\delta_{0}$ is the dormant nodal force and
then $\left\{F_{A} F_{D}\right\}=\left[\begin{array}{ll}K_{11} & K_{12} \\ K_{21} & K_{22}\end{array}\right]\left\{\delta_{A} \delta_{D}\right\}$

$$
\left\{F_{0}\right\}=\left[K_{21}\right]\left\{\delta_{A}\right\}+\left[K_{22}\right]\left\{\delta_{0}\right\}
$$

but $c_{D}=0$

$$
\therefore\left\{\delta_{0}\right\}=\left[\begin{array}{ll}
K_{22}^{-1} & K_{21}
\end{array}\right]\left\{\delta_{A}\right\}
$$

hence

$$
\begin{aligned}
\left\{F_{A}\right\} & =\left[K_{11}+K_{12} K_{22}^{-1} K_{21}\right]\left\{\delta_{A}\right\} \\
& =[K]\left\{\delta_{A}\right\}
\end{aligned}
$$




ASSENTBLY OF ELEMENTS

- 21 -


The size of the matrix can be reduced from $(A+D) x(A+D)$ to $A \times A$, where $[K]$ becomes the stiffness of a more sophisticated or super element. These super elements are now assembled in the normal manner, boundary conditions imposed and a displacement solution obtained for the nodes on the substructure boundaries. These are then used as boundary conditions for the superelements themselves to obtain the detailed solution for the actual basic elements.

## Finite Element Packages

The finite element analysis system has been greatly developed and extended over the past ten years. Hundreds of man-years of effort have been expended to produce a number of large general purpose and special purpose packages. Some of those more commonly available are listed in fig. 15. These packages usually allow the user to incorporate a variety of different types of elements, two and three dimensional elements, plate elements and beam elements. In most cases, however, the instructions to use these packages occupy several volumes which can take one some little time to master and become efficient in their use. It is also important to understand the basis on which each package is developed in order that the results can be interpreted in a meaningful way.

Because of the general applicability of many of the packages they are very large and fairly expensive to use. Care must therefore be excercised to apply such packages to problems where such high costs are justified. This also generally means that experience is desirable and training of new personnel to use the packages essential.
finite element phcirhges.


Fig. 15

In recent years considerable attention has been directed to solving non-linear behaviour by the finite elernent methods. These are concerned with geometric non-linear behaviour, material non-linear behaviour or a combination of both. Thus problems involving the stability of structures and continua are being tackied by this technique. Although fairly involved the method extends the common philosophy of the F.E. technique and for example in the geometric non-linear case uses the same basic processes, i.e.
(a) Total Energy potential:-

$$
M=q^{T}\left(\frac{1}{2} K+1 / 6 N_{1}+\frac{1}{12} N_{2}\right) q_{j}-q^{T} P
$$

(b) the equilibrium equation

$$
\left(K+\frac{1}{2} N_{1}+\frac{1}{3} N_{2}\right) q-P=(0)
$$

and
(c) the linear incremental equilibrium equation

$$
\left(K+N_{1}+N_{2}\right) \Delta q_{1}-\Delta P=(0)
$$

where $K$ is the linear stiff matrix as before and $N_{1}$ and $N_{2}$ are the first and second order geometric stiffeness matrixes (nonlinear effects)

The finite element method can obviously be applied to a tremendous variety of engineering problems and result in a degree of understanding and knowledge of structural and component behaviour previously only possible (sometimes) with extensive experimental investigation. The fact that it is embodied in a common philosophy and approach makes it an attractive tool for the design engineer to study and use.

## The Graphical Phase

Drawing and/or graphical representation plajs a major role in mechanical engineering design and production. It is used as a communication medium, as a back up store to the human mind and as a problem solving technique. When the pen or pencil-is attached to a "human" computer he uses computing techniques and specialised hardware which have been specially evolved and devised to suit his mental powers and his input/output peripherals. When the pencil is connected to a computer which uses binary logic, the hardware and software have a number of significant differences. To discuss these it will be convenient to confine our attention mainly to the paper plotter and other devices such as those which use a cathode ray tube and basically adopt the same philosophy.

The drawing devices are simply numerically controlled machine tools controlled by binary pulses. There is, as in all computer systems, a high level language and compiler to enable the programmer to set out his instructions in a program in an easily understood form. For example

OPENGP
Instructs the computer to link in the plotting device

HGPLOTT (X,Y,IC,L)
is a general instruction to move the pen to co-ords $X, Y$,
IC is the pen indicator and $L$ is a mode option - full line, chain dotted, assign origin, etc.

HGPCIRCLET (X, Y, THO, THF, RD, RF, DI)
Is used to generate a circle or spiral

These give the general idea of what most languages involve. These are really the names of SUBROUTINES and the symbols inside the brackets are what are called DUMMY VARIABLES, i.e. any variable name can be substituted for those given.
ex
HGPLOTT (VEL, TIM, JJ, O)

A storage tube graphics device would use something like the following

BEGIN (JBAUD, MODEL)
ERASE
VECTOR
SCALE (XFACT, YFACT, XORG, YORG)
TPLOT (X,Y,IPEN, MARK) etc.
which are almost self explanatory.

The language is therefore very simple to use so the effort in graphics is concentrated on devising and organising the actual analytical geometry.
(a)

Three Dimensional Spacc and Mapping

A physical body occupies 3-dimensional space and points on it can be defined or located by three co-ordinatcs. These, in general, can be curvilinear but the most cormmon form and initially the most useful is linear orthogonal co-ordinates.


Orthogonal


Curvilinear

Each point in space can be identified by three numerical constants.

$$
P_{1} \rightarrow x_{1} Y_{1} Z, \quad \text { or } \quad Q_{1} \rightarrow \mu_{1} v_{1} \mu_{1}
$$

Other constants can also be addcd in sequence to convey further information or instructions, e. g. drawing instructions could be incorporated by using integers as follows:
-1 to signified an origin

$$
\begin{array}{ll}
0 " & \text { " notrace or pen up } \\
1 & " \quad \text { " visible line or pen down }
\end{array}
$$

The following sequence would give the instructions for drawing a triangle ABC in space.


Mapping is the process of translating data from one coordinate system to another by some form of rule.

Orthographic Projection is the mapping of three dimensional space to two dimensional space by simply dropping one of the dimensions in. each view gives information about two dimensions on the body.
egg.

$$
\begin{array}{lllll}
x_{1} y_{1} & z_{1} & 0 & x_{1} y_{1} & 0 \\
x_{2} y_{2} & z_{2} & 1 & x_{2} y_{2} & 1 \\
x_{3} & y_{3} & z_{3} & 1 & x_{3} y_{3} \\
x_{4} & y_{4} & z_{4} & 1 & x_{4} y_{4} \\
x_{1} & y_{1} & z_{1} & 1 & x_{1} y_{1} \\
1
\end{array}
$$



If we start from two-dimensional views of an object two orthographic views will be required to enable us to reconstitute the three dimensional body.

Perspective Projection

This is a mapping based on that experi-

enced in normal vision - i. e. determined by lines of sight radiating from a focal
$\underset{\mu}{\text { point such as } \mathrm{I} .} X \xrightarrow{ } \quad X^{\prime}$

$$
\begin{aligned}
& \mu x \rightarrow \frac{B}{B-A}=\frac{X}{1-\frac{A}{6}} \\
& \therefore x^{\prime}=x=\frac{8}{B}
\end{aligned}
$$

Each point on a body would therefore be transformed or mapped as
follows:

$$
|x y z n| \rightarrow\left|x^{\prime} y^{\prime} n\right|
$$

1

(b) Data structure for building and modifying drawings

In developing a computer graphics facility which would virtually give characteristics similar to manual draughting one must introduce a structured data system. This is necessary in order to provide the following basic capabilities.
(a) parts of the picture have to be linked together, wo that when one point, line or subpicture is added or moved the adjoining elements are suitably adjusted.
(b) when an item is deleted the relationships between the remaining parts must be updated
(c) the ability to define and delete subpictures

Thus a full data structure must contain more than simply the geometrical
'points and lines' information. It must also include application data and the hierarchy of picture parts and their inter-relationship. Special languages are available, e.g. AED and APL which automatically assemble the data in this structured form and allow deletions and alterations.

However, a simple data structure can be organised using a high level language such as FORTRAN. In such systems arrays are used to atore the data and its relationships, e.g. a drawing can be considered as points linked as in fig 16 which involves a matrix of co-ordinates and a matrix of pointers. This can be easily extended to include circles and sub-drawings.

Object


Data Structure


| N | $\checkmark$ | x | $N$ | $\checkmark$ | $\stackrel{\text { c }}{ }$ | N | ふ | 入 | N | N | $\underline{2}$ | $\underline{x}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Joint Areay


Eig 16 Simple Data Structure
(c) Menu System for Assembly Drawings

Many engineering drawings are composed of sub-drawings which are repeated with different orientations and sizes, many times over. By analysing a particular family of engineering component drawings, one can produce a list or MENU of these basic geometrical forms. These shapes can then be scaled and positioned in the appropriate order to produce the complete unit.

Each basic shape will reside in its own SUBROUTINE. This will incorporate the basic data and drawing sequence and will allow the required translation and rotation to position the shape accurately. The actual drawing subroutines HGPLOT or TPLOT etc. can either be included in each MEN $U$ SUBROUTINE or arranged in a special drawing subroutine which can be CALLED after the shape routine has been executed.

A MASTER PROGRAMME is then used to assemble the various shapes in the appropriate order to produce the complete drawing. This programme is used to facilitate the input of dimensions and other data appropriate to this one component of the total family of components that the programme can handle.

The user of course need know nothing of these details. He simply follows a listing of instructions. This indicates the shapes involved, the request for data that appear at the central terminal and the responses which the user should make on the keyboard or screen.

ARd

$$
\theta
$$




DP®, $\operatorname{CONT} 3$
Fig 19
Contouring

1

(d) Analytical Solution for Geometrical Problems

Analytical geometry has received a considerable boost with the development of fast graphical facilities. Some of these involve

1. interpenetration of bodies
2. hidden line removal
3. contouring
4. shading and surface texture

Some examples of these are illustrated in the following pages (figs 17 -

Curves and surfaces also have received a great deal of attention, noteably by Bezier and Coons. Bezier for instance defines his curves (and surfaces) with the aid of 'open' polygons. This defines the end positions, slopes, etc. so that a resulting curve can be defined and drawn. From an interactive pointing view the technique is akin to a spline (the curve) attached to the polygon nodes by invisible springs. By moving the nodes one can 'feel' the nature of curve shape manipulation. This can easily be extended to higher order curves and also to the joinging of curves. Such joining can be arranged to automatically have slope and curvature continuity if desired.

This technique has also been exten led to surface patches and has been used in the French motor industry where it originated. (See figs 21,22,23)

Coons, on the other hand, defines his surface by using nodal rectors (X,Y,Z). These are used to define the position of the four nodal


- 40 -


Fic 2.2 a- Bezier Cunves


- 41 -


FIG. 23
BICUBIC BEZIER PATCH AND ASSOCIATED POLYGON NET
(corner) points, the slopes of the slant and finish of each boundary curve and twist vectors. The later vectors do not change the position or boundary curve slope at the nodes but allow variations in the $Z$ direction to manipulated in the interior of the patch. Fig (24) These patches can also be joined to form a complete car body shape or that of a ship or aircraft.

The result of the analysis is to produce a complete description of the surface either in surface parametric form or in XYZ co-ordinates. Manufacture can then proceed by obtaining a parallel surface having an offset equal to the radius of the ball ended cutter and either following the parametric curves or the contour curves after applying that procedure. See Figs (25,26,27)
bilinear surface
 interpolating four corner points (real

BILINEAR INTERPOLATION TO
FIXED $v$ BOUNDARY CURVES (REF 21)

$P(0,1)$


BILINEAR INTERPOLATION TC FIXED $\mu$ AND $v$ BOUNDARY CURVES bilinear coons surface (ref. 21)



$$
\text { Fig } 25
$$

Offset Coons Surface To
Macmine Top sioe or Surface im
Fis IV. 3 (a).


FiG 26

- 46 -

Contours on Oprset Coons Surface to
Macmine Tof Side of Surface in Fig II. 3 (a)


FiG 27

The machine tools are controlled by patterns of digital pulses (machine language). This is most easily seen in the case of a

and a processor employed to convert these statements to trains of pulses to control the operation of the plotter.

In applications where the machine language has a simple form it is expedient to write the processor into the drawing programme or alternatively arrange it as a subroutine which can be called from the drawing programme. Such an approach could be used for machines which cut contours on plain surfaces or plates - AGIECUT machines for example.

However, most engineering components have more complicated forms and the machine tools used to produce them have a variety of control methods and systems. To cope with this, the interface between the machine tool and the human operator is organised usually in two stages.

1) A descriptive language with a translation processor
2) A post processor for each type of machine tool.

Part Programme - Stage 1
The operation in Stage 1 is known as part-programming and consists of writing a series of statements about the shape of the component and instructions about the movement of the cutting tool.

A number of languages have been developed for this purpose but perhaps the best known is the American package called APT ( Automatically Programmed Tools). The form available is the United Kingdom is NELAPT and for $2 \frac{1}{2}$ axis milling machines it is 2 CL . The continental form is called EXAPT and is used for $\mathrm{N} / \mathrm{C}$ drilling and boring machines.

The general organisation of the language is best illustrated with reference , a simple example (fig. 30 ). The language has a FORTRAN flavour and indeed FORTRAN type statements can be included. The programme listing starts with PARTNO with a title heading and terminates with STOP and FINI. In between the statements can be grouped under the following general headings:-


PART NO
REMARK
STOP PLATE(DRG. NO. USDDILL1)
N/C MACHINE INSTRUCTIONS MACHIN/NELMIL
CUTTER/10
N/C machine SPINDL/350
TOLER/0. 01 FEDRAT/ 100
$\begin{array}{ll}\text { REMARK } & \text { BASIC DERIVED DIMENSIONS } \\ & \mathrm{X}^{12}=30 / \text { TAN (15.0) }\end{array}$
REMARK GEOMETRIC STATEMENTS FOLLOW
SP = POINT/-25, -25, 25
$P_{1}=\operatorname{POINT} / 0,0,5$
$\mathbf{P} 2=\mathrm{POINT} / \mathrm{X} 12,30,5$
$\mathbf{P !}=\mathrm{POINT} / \mathrm{X} 12,-30,5$
C1 = CIRCLE/CENTER, P1, RADIUS, 10
C2 $=$ CIRCLE/CENTER, P2, RADIUS, 12
C3 = CIRCLE/CENTER, P3, RADIUS, 12
L1 = LINE/RIGHT, TANTO, C1, RIGHT, TANTO, C3
L2 $=$ LINE/LEFT, TANTO, C1, LEFT, TANTO, C2
C4 : CIRCLE/XLARGE, OUT, C2, OUT, C3, RADIUS 40
REMARK MOTIONSTATEMENTS FOLLOW FROM /SP
GO/TO, L1, TO, PL GORGT/L1, TANTO, C3 GOFWD/C3, TANTO, C4 GOFWD/C4, TANTO, C2 GOFWD/C2, TANTO, L2 GOFWD/L2, TANTO, C1 GOFWD/C1, TANTO, L2 GOTO/SP
STOP FINI

Motion
statement

Machine Instruction
Basic Derived Dimensions

Basic Geometry Dimensions
Contour Definitions

Basic Motion Statements
These statements broadly follow the general format

Symbolic Name $=$ Title $/$ definition
where $=$ and $/$ are reserved symbols which separate the three main parts of each statement.
e.g.

MACHIN/ name of machine
SPINDL/ speed in rpm
PNOI $=$ POINT/ definition
LOI $=$ LINE / definition
CRO = CIRCLE/ definition
PLI $=$ PLANE/ definition
FROM/ position definition
GO/ TO
ON
PAST $\quad$ drive surface $\begin{array}{ll}\text { TO } \\ \text { ON }\end{array}$, part surface $\begin{aligned} & \text { TO } \\ & \text { ON } \\ & \text { PAST }\end{aligned} \quad$ check surface

GOFWD/ definition
GO TO/ definition of location
The language almost explains itself and the documentation is usefully set out as a dictionary of terms and definitions which cover all the
normal situations encountered in component shapes in general engineering practice. A few examples extracted from N.E.L. Report No. 543 are illustrated in fig. 31.

POST-PROCESSOR - Stage 2
The complete part-programme is presented to the computer via cards, paper tape, teletype etc. and is put through a processor appropriate to the language used. The part-programme is data for this processor and the output from it consist of
a) co-ordinate values of the ends of all the charge points of the line segments and planes
b) machine control information see fig ( 32 ).
The next stage is to convert this information into the control pulses which will control the machine tool. Unfortunately there are a number of different codes for this purpose so that one requires a POST-PROCCESSOR for the particular machine tool which is to be used. The output from the final stage is a paper tape (a magnetic tape or by Direct Numerical Control (DNC) from the computer) coded to suit the chosen machine tool. See fig (33). Each block or line consists of a string of alpha numeric coding one example of which has the following format:

BlocknumberScalefactorDimensionalincrementsFeedrate

$P_{1}=P_{\text {oint }} / X, y, z$
$P_{1}=P_{\text {OIN }} / 110.25 \cdot 5$


$$
F / G .31
$$

SOME BASIC GEOMIETRY DEFINITIONS.


$$
\begin{aligned}
& \angle 1=\angle I N E / x_{1}, y_{1}, x_{2}, y_{2} \\
& \angle 1=\operatorname{LINE} / 20 \cdot 5,41 \cdot 0,620,485 \\
& \angle 5=\angle I N E / P_{1}, P_{2}
\end{aligned}
$$



Please post to prof tom allan dept
NELAPT VERSION DOU JUNTHOE OFFICIAL REL ITO RELEASE LII
2CL - TOOL OFFSETSICUT VECTORS SECTION 17 SEP 74
PARTNO PROF T ALLAHS DEMO WHEEL NO. 2 PAGE 29
SEQ. STAT. CLTAPE
NO. LABEL REC.NO.

162 293 DS $15 /$


162295 OS $15 /$


16329605151

\[

\]

163 OS 297

$$
\begin{array}{ccc}
x \\
-46 . c^{2} 241694 & -33.43851 c 9 & 0 \\
0000000
\end{array}
$$

160 TRACUT $1 / 10$

| .3090 | .9511 | .0000 | .0000 |
| ---: | ---: | ---: | ---: |
| . .9511 | .3090 | .0000 | .0000 |
| .0400 | .0000 | 1.0000 | .0000 |

16229905151

162300 os 151

$$
\text { Fig } 32
$$

nel postprocessor prof allan demoil

```
MACHINE 3 SELEGTED PLESSEEY 2CL P OST P R OGES:
```

| STATEMENT | BLOCK | $x$ | $\gamma$ |
| :---: | :---: | :---: | :---: |
| $164$ | $\begin{aligned} & N 306 G 1 X=336 Y-1718 Z+3454 F O 23 \\ & N 3 d 7 G C I Y-3368 Y-1726 Z+346 F J 23 \end{aligned}$ | $\begin{aligned} & -61.7580 \\ & -65.1260 \end{aligned}$ | $\begin{aligned} & =45.5900 \\ & =47.3160 \end{aligned}$ |
| 165 |  | $\begin{aligned} & 16.6940 \\ & 24.8766 \end{aligned}$ | $\begin{aligned} & =73.6961 \\ & -76.5606 \end{aligned}$ |
| 166 | N39G1X＝9596Y＋3728Z＝3454Fこ23 N391G：1X－0590Y＋372Z－346FO23 | $\begin{aligned} & 16.9160 \\ & 18.3200 \end{aligned}$ | $\begin{aligned} & =37.2800 \\ & =35.5600 \end{aligned}$ |
|  | N392X－5296Y－24585021 | 13.6240 | －38．0186 |
|  | N393X＝344Y－003F034 | 9.5840 |  |
| $\begin{aligned} & 167 \\ & 168 \end{aligned}$ | N394X－35？4Y－C68日F034 | 6.0806 | － 34.5361 |
|  | N39561X－2358Y－72565916 | －17．5006 | －112．6960 |
|  | N396Gulx－2356Y－7264F016 | －19．8560 | －119．3600 |
|  | N397X＋6938Y－C836F017 | －12．9484 | －125．1960 |
|  | $\begin{aligned} & \text { N } 398 X+9684 Y-し 866 F 0!2 \\ & \text { Y } 396 x+9926 Y+0156 F O 12 \end{aligned}$ | $\begin{array}{r} -3.3640 \\ 6.8620 \end{array}$ | $\begin{aligned} & -1 \leq 1.162 i \\ & -120.9066 \end{aligned}$ |
|  | $\mathrm{N}_{4} \mathrm{X}+9 \mathrm{9} 82 \mathrm{Y}+\ddot{\mathrm{H}} \mathrm{97} \mathrm{FO} 12$ N4U1X＋9768Y＋1774F012 | $\begin{aligned} & 16.7440 \\ & 26.5120 \end{aligned}$ | $\begin{aligned} & -119.9360 \\ & -110.1620 \end{aligned}$ |
|  | $\mathrm{N}_{4} 02 \mathrm{X}+959 Y+25685012$ | $36 \cdot 1020$ | －115．594\％ |
|  | N4U3X＋9346Y＋3346FOI2 | 45.4480 | －112．246c |
|  | N4J4X＋9J42Y＋41FCl2 | 54.4900 | －100．1485 |
|  | N405Y＋8676Y＋4826F012 | 63.1660 | －1u3．322？ |
|  | N496 $X+025 Y+5522 F 012$ | 71.4160 | －97．9cuc |
|  | $11407 X+7772 Y+617$ FFC12 | 79.1800 | －41．622C |
| 169 | $\mathrm{N} 408 \mathrm{X}+7 \mathrm{O} 34 \mathrm{Y}+673 \mathrm{FCl} 2$ | 86.2220 | － 04.5426 |
| 170 | N4J9G1X－6174Y＋4484FO16 | 24.4620 | －4］．rb2i |
|  | N41G01 $X=6164 Y+1494 F 016$ | 18.3130 | －د5．5ber |
| 188 | N4ilGix+i596Y-37282+3i54FU23 | 24.2700 | －7208366 |
|  | N4120こ1x＋059dY－3722Z＋346Fこ23 | 24.8760 | －76．56CC |
| 189 | N413G1X－2262Y＋696FU16 | 2.2560 | －6．960C |
|  | N4I4GOIX－2256Y＋696F016 | － 6000 | ．．0006 |
|  | $\mathrm{N}_{4} 15 \mathrm{MO}$ <br> $\mathrm{N}_{4} 16 \mathrm{MO}$ <br> $\mathrm{NHI7MO}$ |  |  |
| 196 | $\begin{aligned} & \mathrm{N}_{4} 18 \mathrm{MO} \\ & \mathrm{~N}_{4} 19 \mathrm{MO} \end{aligned}$ |  |  |
| 197 | $\mathrm{N}_{4} 2 \mathrm{MO}$ |  |  |


－ 4 ekrors－papeir tafe uijtput


## ORGANIZATION FOR AUTOMA TING THE N.C. PROCESS

The writing of a part programme is a time consuming operation and it takes time to carry out the de-bugging operation which is always attendant on manual programming. If a computer programme can be devised which would perform this task, it would be a considerable help towards automating the total process. It is interesting to note the basic difference in outlook at present in the two areas, engineering drawing and N.C. machining. In the former attention is centred on the material, that is, on the solid side of the component boundary, whereas in the latter the object is considered as a collection of cavities and the component is what is left over once the cavities have been formed.

In trying to automate the part programme process, the first stage is to perform an analysis of the forms of cavities encountered in a component or range of components and devise a set of standard forms which will cover this group. A file can then be established for each shape of cavity in the set and a sub part programme written to each file for the appropriate cavity, care being taken to start this and finish at a particular set point. This will ensure that the files can be combined in any order or grouping. (Fig 34)

All that remains is for a master programme to be written for a particular component calling in the appropriate file for the cavities in order. As will be seen later, the master programme can be organized on two files: which

- one written by a program/ automatically draws the component, the other organized as an interactive interface to the user. Fig. 35 filustrates the general organization of such a scheme.

FIG. 34


1



Fic. 35

This would allow a complete part programme to be assembled automatically and subsequently it could then be passed through the stage one processor and hence through the stage two processor from which an N.C. machine control tape could be outputed. This N. C. tape could then be used in the machine which was to cut the component.

## Three Dimensional Surfaces

Most manufacture involves nothing more complicated than a $2 \frac{1}{2}$ axis capability. What has been discussed so far is in that area and it is one which has recurred the most attention because of its wide application. Three dimensional surfaces do have to be dealt with. In discussing the graphics phase some techniques for handling surfaces were indicated. Here it was obvious that contours could be produced for the surface which would mean that a $2 \frac{1}{2}$ axis machine capability would be adequate. On the other hand multi-axis machines could be used to follow the parametric lines and so produce the surface.

Another interesting technique due to Prof. Duncan from Vancouver is what is known as Polyhedral Machining. Essentially this replaces the surface with a series of triangular facets. A ball ended cutting tool of a certain diameter 'visits' and touches the centre of all the facets it can without invading the others. If in the first pass it has not touched them all a smaller tool is used and some of these facets remaining are machined. This is continued till all facits have been visited and the surface is 'complete'. fig (36).


FACETS OF POLYHEDRON WHICH APPROXIMATES THE DESIRED SURFACE


TOOL IN CONTACT WITH CENTROID (C) OF ONE FACET

$$
\text { F1G } 36
$$

Concepts of Integrated C. A. D. and Manufacture

The use of computers in helping to solve complicated problems of stress and strain, temperatures and pressure or other field problems, helping to keep track of money, or to control machine tools or traffic, is now fairly widespread. Whilst their integrated use is comparatively rare, it does not require a great deal of ingenuity to see how, with existing techniques, some of the programs developed individually for limited objectives could be linked together covering a whole design project.

One concept is to interlink computer programs, files and processors, etc. in an appropriate manner to produce a package which will integrate the analytical, graphical and NC production phases of component design. In order to demonstrate the process and to provide tangible proof of its viability we have prepared an embryo package for the design and manufacture of gear wheel carcasses. This package automatically produces a drawing of the component (fig 37 ) and a machine tape to enable the carcasses to be automatically cut Plates I \& II
from a blank disc./ Plates I $\mathcal{A}$ II in fig ( 38 ) and is essentially an interactive process in which the designer can implement whichever decision he may feel appropriate. While this system can be used in its complete form, each of the sections can be accessed separately or used in a semi-manual manner.

An alternative approach to using existing languages and processors


뜸뜨ㅁㅡㅡㅁ




DRAWING FOR SPUR GEAR WHEEL m

$n$
Fig.

which have been developed independently for different applications to form a unified system, it is probably more logical to devise a new single language and compiler which can handle all three phases of this integrated approach. Such languages are liable to be developed in the future. One such attempt in this direction which is likely to be announced towards the end of this year is known as 'AD 2000'. It has been developed by Manufacturing and Consulting Services Incorporated of California and effectively compiles the graphical and NC manufacturing elements under a common language and data structure. Such developments will go a long way to ease the problem of integrating different aspects of technology to suit future needs.

## CONCLUSION

Countless millions of man hours have been spent in developing computer techniques which can be used in all aspects of industrial society. No doubt development will continue inthese and other areas in the future. At the present time, however, there is a considerable gap between what is potentially available and what is being usefully employed. For a comparatively small investment the present situation can be fairly easily assimilated and with a little ingenuity can be turned to the benefit of any community, even with its own peculiar industrial problems and limitations. The purpose of this paper has been to give some idea of the range and scope of the available techniques at the present time.
B.S.S. 436 Machine Cut Gears. The British Standards Institution London.

Reduction Gearing for Propelling and Auxiliary Engines. Lloyds Register of Shipping - Rules for Steel Ships.

Gear Engineering - H F Merritt. Pitman Publishing Co. 1971.

The Finite Element Method in Structural and Continuum Mechanics. O. C. Zienkiewicz and Y.K. Cheung. McGraw - Hill Publishing Co Ltd. 1967.

The Application of Finite Element Analysis to Hydrodynamic and externally Pressurised Bearings. T Allan. Wear, Vol.19, 1972.

Analytical Decision-Making in Engineering Design. J N Siddall. PrenticeHall Inc. 1972.

Optimization Methods for Engineering Design. R L Fox. Addison Wesley Publishing Co. 1971.

Techniques in Engineering Design. G Pitts. Butterworths, 1973.

Computer Displays. I E Sutherland. Scientific American, 1970.

Tektronix Tekplot Package for Storage Tube Display. Tektronix Datatei N. V. Beaverton House, Harpenden, Herts.

GINO-F Graphics Manual, Computer Aided Design Centre, Cambridge.

Research in Progress, Dept, of Design and Drawing, University of Strathclyde. T Allan \& J Forgie. Computer Aided Design Vol. 6 No. 2 ap. 1974.

2 CL Part-programming Reference Manual. National Engineering Laboratory. Report No 424. East Kilbride, Scotland.

The work on NC at N. E.L. W H P Leslie. 14th International Machine Tool Design \& Research Conference. Published by Macmillan Press Limited, 1974.

The N. E.L. 2CL Processor. J F McWaters \& W T K Henderson Numerical Control Programming Languages. North-Holland Publishing Co. 1970.

The Use of Contours as an Interface Between C.A.D. and C.A.M. D G Wilkinson. C.A.D.'74 Conference at Imperial College, London Sept. 1974

Conversational NELAPT. D G Wilkinson, 14th International Machine Tool Design and Research Conference. Published by MacMillan Press Li.mited 1974.

Computer Aided Design in the Machine Building Industry H. P. Weindahl. International Conference on Computer Aided Design. University of Southampton, 1972.

State of the Art. F.D. Penny. Proc. Royal Society, London A. 321 147-155 (1971).

Sutherland, 'Sketchpad: a man machine graphical communication system.' Proc. AFIPS, vol. 23, 1963; Spartan Books, New York.
van Dam, 'Some implementation issues relating to data
structures for interactive graphics'. International Journal of Computer and Information Sciences, Plenum Press, 1972 (also Technical Report No 72-1, Center for Computer and Information Sciences, Brown University, Rhode Island, U.S.A.)

Williams, 'A survey of data structures for computer graphics systems.' Computing Surveys, Vol.3, No 1, 1971, pl. 21.

Cardenas and Sealey, 'A simple data structure for interactive graphic design/drafting'. The Computer Journal, Vol.18, no 1, 1973, p 30.

Lang and Gray, 'ASP - a ring implemented associative structure package'. Comm. ACM, vol. 11, no 8, 1968, p 550.

Feldman (editor), 'AED-O programmers' guide' SOFTECH Inc., Waltham, Massachusetts

Dodd, 'APL - a language for associative data handling in PL/I'. Proc. AFIPS, 1966, FJCC, vol. 29, Spartan Books, New York.

Codd, ' A data base sublanguage founded on the relational calculus.' I.B.M. Research Report RJ893, San Jose, California, July, 1971.

CODASYL, Data Base Task Group Report, BCS HQ April, 1971.

Armit, 'Example of an existing system in University research.
Multiple and Multiobject design systems.' Proc. of Royal Society, London, A, vol. 321, pp 235 to 242. Bloomer et al, 'An analogue approach to surface definition.'

Computer Aided Design, Vol 5, Oct 73, pp 234 to 236.
Forrest, 'Comutational geometry.' Proc. of Royal Soc.
London, A. vol 321, 1971, pp 187 to 196.
McLain, 'Draving contours from arbitrary data points.'
The Computer Journal, vol 17, 1974, pp 318 to 324.
Nutbourne et al, 'Curvature profiles for plane curves,'
Computer Aided Design, vol 4, July 1972, pp 176 to 184.
Shephard, 'Analytic approximations to smooth surfaces for
vehicle body panels.' University of Cambridge, C.A.D.
Group document 55, December, 1970.

Weiss, 'BE VISION, A package of IBM Fortran programs to
draw orthographic views of combinations of plane and
quadric surfaces.' Journal of the Association for
Computing Machinery, Vol 13, 1966, pp 194 to 204.

- 69 -



PLATE II - one stage in the n/c machining operation


## $c-672$


78.11.09


[^0]:    * Department of Inginearing Design and Drawing, University of Stratholyde, Sootland.

    1/ The view and opinions expreased in this paper are those of the author and do not necescarily refleot the views of the aeoretariat of USIDO. This document has beon reproduoed without formal editing.

