G @ | TOGETHER

!{’\N i D/? L&y

=S~ vears | for a sustainable future
OCCASION

This publication has been made available to the public on the occasion of the 50" anniversary of the
United Nations Industrial Development Organisation.

’-.
Sy
B QNIDQI
s 77

vears | for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations
employed and the presentation of the material in this document do not imply the expression of any
opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development
Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its
authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or
degree of development. Designations such as “developed”, “industrialized” and “developing” are
intended for statistical convenience and do not necessarily express a judgment about the stage
reached by a particular country or area in the development process. Mention of firm names or
commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY
Any part of this publication may be quoted and referenced for educational and research purposes
without additional permission from UNIDO. However, those who make use of quoting and
referencing this publication are requested to follow the Fair Use Policy of giving due credit to
UNIDO.
CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION
Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria

Tel: (+43-1) 26026-0 * www.unido.org * unido@unido.org


mailto:publications@unido.org
http://www.unido.org/




United Nations
Centre for Industrial Development Original: English

Inter-Regional Symposium on Industrial CID/IPE/B.28
Project Cwaluation

Prague, | Czechoslovakia
11 = 29 October, 1965

| 03582

PROJ-CT LVALUATION IN TH.. PRLLLNCo OF
DCONOMI LSS OF SCALE AND INDIVILIBILITICS

Frepared by: Professor Thomas Vietoriss
New York
“‘g.A.

The Centre for Industrial Development
Department of .oonomic and Social Affairs
UNITED NATIONS

R PR

This paper capnot be reproduced without permission from the Centre for
Industrial Development, United Nations, New York. The views expressed in
this paper are those of the author.

6541904




Almost all existing or proposed techniyues of project evale
uation are based directly or indirectly on the notion of economic
equilibrium, i.e., on the notion of a feedback mechanism that adjusts
all prices and quantities in an economic system in such a way that on
the one hand, demands and supplies of all goods and factors and on

the other, revenues and costs of all economic activities - producfion,

transport, storage, training, etc. - are equilibrated.

In its original version, this notion of economic equilibrium
was proposed as an explanation of the behaviour of actual markets under
free enterprise; later, as the shortcomings of the market mechanism -
monopoly elements, limited effective demand, unsatisfactory distribution
of income and wealth, frustrated growth - became widely recognized,
equilibrium was etill held up as an ideal which could be approximated
in practice to a "reasonable" or "workable" extent. lLately, with the
advent of mathematical programming techniques, it has become possible
to isolate the notion of economic equilibrium completely from the
behavioLr of actual markets, and to replace the latter by electronic
computer solutions to planning models with varying degrees of centrale
igation or decentralization. In fact, the notion of ¢conomic equilib-
rium can be extended by means of computer solutions to models represen-
ting many economic situations that even ideally competitave markets

would be unable to realize in practice: for example, multi-period

On investment criteria in economic planning, see for example
Chenery (1953:4IC), Bohr (1954), Galenson and leibenstein (1955),
Eokstein (1957), UN-Mamal of sconomic Development Projects (19%8),
UN-Div.Ind.Dev. (1963!EPP).
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(‘vnlllic,' grovwth) models with terminal conditions imposed; resource
allocation models with limits set on the ability of the government to
exeoute certain policies such as wnge subsidization, and others.

It has been known for a long time, however, that the notion of
economic equilibrium has a limitation that cannot be overcome by minor
modifications. This was recognized at first as the problem of fixed
costs, i.e. of diminishing averauge costs as the scale of production
increases. It has proven to be generally impossible to reconcile the
requirements of efficient resource allocation (narginal=-cost pricing)
with the need for covering the fixed costs incurred by the firm out of
revermes obtained from product sales, unless two conditions are fulfilled:

(1) Average costs, while falling initially as a result of the
distribution of fixed coste over a lurger muiber of units,
eventually level out (become horizontal) or even turn up, due
to elements of increasing variable c~ost thut offset (or outweigh)
diminishing unit fixed costs.

(i1) The oritical scale at which the average costs of the firm level
out is muoch smaller than total production within the industry

Under the aﬁove two conditions industry supply can be taken as
the sum of the oritiocal scales of successive firms; insofar as these
oritical scales are much smaller than total production within the
industry, supply oan be approxigated by g contimjous functjon even
though, in actual fact, this supply satisfies equilibrium conditions
only at seleoted lattice points representing the exact sums of critical
scales.

g/ Note that the so-called "dynamic invisible hand" theorem (see
Dorfman, Samuelson and Solow, 1958, p. 319) that extends the prin-
ciple of social efficiency of perfectly competitive markets from a
static to a dynamic context guarantees only that such a systenm,
once locked on an ef.icient growth path, will stay on it; but it
cannot direot the system toward a growth path that satisfies exogen=
ously dotermined terminal social objectives.
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It can thus be seen that even under highly idealiged condi-
tions, the so-called equilitrium solution is only an approximation to
what is now recognized as the optimal solution to a mathematical problem
known as eger pro Recent theoretical advances in the
latter field, moreover, throw doubt upon the validity of any such approx-
imation, since they indicate that the solution to an integer programming
problem that is obtained by roynding (to the nearest integer) the
cptimal solution to a continuous approxi:;tion will generslly not be apn

e t (*] 0

The situation, of cource, becomes even less satisfactory to
the extent that the two basic assumptions are not satisfied. If assump-
tion (1) is satisfied (levelling out of the average cost curve) but
assumption (ii) is progrescively weakened (larger critical firm sigze
in relation to industry production), then the process of rounding to
the nearest integer will imply larger and larger pe-centage changes
with respeoct to the continuous solution, and a greater possibility that
the rounded solution will be strongly sub-optimal. isventually, as

industry production falls below the critical size of a single firm,
thox:o will be a frank contradiction between the customary marginal-type
efficiency oonditions and the recovery of fixed costs through sales
revernes. The same result is obtained whenever assumption (i) is

dropped.

3/ Por a survey see for example Dantsig (1963), chap. 26}
see also Gomory (1963, 1965).

4/. Oomory (1965).
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The presence of fixed costs is a case of mathomatical "none
convexity" leading to economies of acale;/ Such economies of scale can
also cocur in the absence of actual fixed costs, depending on the shape
of the production mnction.y Other cases of none-convexity of intercst
t0 economic planning are @

= 1indivisibilities: the necessity of planning in multiples of
standardiged production units; zero-one decisions on transport
investments, hydroelectric projects, etc.j

= pre-emption of land area: the fuct that a given plot of ground
(esgs in a densely occupied zone) has to be assigned in a zeroesne
fashion to individual uaea;a

= either/or type constraints on feasible policy alternatives, etc.Q/

It has come to be recognized that a decentralized decisionemuking
system based on linegr decentralizing instrunente (master prices, admine
istratively determined plarning prices, incentive systems with linear
structure) is inherently unable to guarantee attaimment of an optimal
equilibrium position unless all sources of non-convexity - such as
fixed costs and others - are absent. Therefore no progject evaluation

s/ A point set . 1s convex if the following holds: if =t
and /‘-.,. and » /. = | then, =, 'x

where iel,...,n. Applied to an available technology conis’ting
of a ocollection of projects this concept of convexity means that
any welghted gvergze of technically feasible individual projects
will also be technically feasible. Note that where econcmies of
scale are present oonvexity breaks down. For example, if the
aotual capital input requirements of & process comprise a fixed
input plus an input proportional to scale, then fwo half-sized
projects using this proces. will actually use more capital than
ong full-size project; in other words, the average of two half-
sized projects (with equal weights) will underestimate capital
requirements and will thus describe an infeasible t¢ *hnology.
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criteria that are based on the notion of economic equilibrium and
involve correspondingly any linear version of pricing or other decen-
tralizing/control systems, whether these be market prices, corrected
opportunity costs, electronically computed shadow prices based on
mathematical pﬁ amming models, or administratively fixed prices in a
planned economy=’ can be relied upon with confidence in the presence
of non-convexities. As the case may be, they can turn out to yield
acceptable results, but they car equally well result in gross
misallocations.

Two illustrations will indicate the kinds of outcomes that are
possible when linear decentralizing instruments are used in the presence
of monconvexities. Chenery in The Interdepepdence of Investment
Decisjons (1959) constructs a detailed numerical example of steel produce
tion and iron-ore mining with strong economies of scale in a developing
country. The analyesis reveals that either one of these two activities
is profitable when the other activity is present, but is unprofitable in
its absence; thus a decentralized decision systen based on profit (or
social marginal product) misses an attractive jojpt investment epportunity.

S e

Zoonomies of scale often are expressed by an input function of the

forms

(’/i) - (x/x) f,
where y and ¥ are inpute corresponding to scales x and Xy
the barred gquantities are constants; and £ is a constant exponent
in the range: I“:r ~ |
See Viotoriss (1964).
Koopmans and Beckran(1957).

See Dantsig (1960).

eRreR

19/ For a discussion of different kinds of profitability indexes used
as decentralising instruments in a oentrally planned economy, see

Kornai and Liptak (1962).

V




Hhen neither of these activities is yet establicshed the decentralized
decision maker looking at an activity in isolation will decide that i+
is unprofitable; thus neither of the two activities nan historically
precede the other ind the profitable complex of the two activities will
never be attained.~/ Koopmans and Beckman in assignment Problems and the

location of iconomjc Activities (1957) comstruct an examplc Jhich sho e

nonconvexities involved in the assignment of productive activities t-

disorete locations that cannct be shared between activities, ior

example, in an urban area a given block or plot ot 1.nd can n-.t be

used for both a large shopping center and an industrial plant. In many

locational problems no such adsignments are re uired; for example, it

productive locations have to be chosen for industries that can locate ’ i .
at several regional centers that are at large distances from each other,

the land requirements at these centers are usually very small in come
parison with the available industrial sites and thus several activities
Bay easily locate at the same center. The latter xind of locational
problems are generally convex (unless economies of scale occur indepene
dently in the production or transpert activities) and a stable price
system exists that can be utilized for the definition of project
evaluation criteria in the usual way. In the former locational assighne
ment problem, however, the present location of any activity will affect
the costs of all other activities in such a way that with any locational
pattern incentives will exist for some producers to change their locations, . .
and the possibility of a stable equilibrium price system is ’neéated.

Jhen significant non-convexities are known to be -prég,ent -
important industrial processes whose optimal scales of operation are not
attained at the level of demand of s small country, important decisions
concerning investments in transport arteries, etc. - the only reliable

u/ There have becn rumerous qualitative discussions of the interrelations
between industries in the course of economic development due to oco-
nomies of scale and externalities. iconomies of scale create tech-
nical interrelatione such as discussed by Chenery; they also lead
to complementarity between industries producing consumer goods.
External economies arise in education, labor training and activitics

aimed at securing technical pProgress; in sociale-overhead investments
(Cont'd)
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approach to the evaluation of individual projects is an overall analysis
of all alternative projects within the framework of a mathematical
programming model in which non-convexities are explicitly accounted for.
Finding the optimal solutions to such models is an analytical problem
which is not yet satisfactorily resolved, but in many cases it is
possible to get excellent approximations to the optimal solution.

Integer programming ie the analytical tool of choice in the
formulation of such models. A very wide variety of non-convexities =
all that can be thought of within the field of economic planning = can
be represented or approximated adequately by integer programming
models., In these models, some or all variables are restricted to
integer values instead of being allowed to vary in a continuous fashion.

A survey of methods for solving integer programming problems
is given in the Appendix. .hile exact solutions to such probleme are
often very difficult to obtain except for small probleme, several
methods exist that between them allow the generation of good sub-optimal
solutions, together with upper bounds on the poseidility of further
improvement; thus the exact sclution values can be approximated within
a known margin of error.

The activity scales and resource allocations corresponding to
the approximate solution will not necessarily be close to those corres-
ponding to the exact optimum, since there are many cases in which widely
divergent near-optimal solutions are known to exist.

In planning practice the knowledge of the exact optimum is
seldom essential, for the following reasons i

Contd. (transport, energy, communications)j in housing and urban
facilities; in government and other public services. See for
example Rosenstein-Rodan (1943, 1961 ) Hirschman (1958).

12/ See Vietorisz (1964).
See the tabulation of the best 100 solutions out of a total of
1024 emumerated combinations in Vietorisgz (1964). A plot of the
distribution of all 1024 solutions to the same problem is given in
Vietoriss and Manne (1963).

AT




1) optimising techniques are generally introduced into planning
as an improvement over planning methods whose aim has been
primarily the construction of consistent plans. Cuch methods

aimed at consistency do give some attention to major overriding
priorities but they do not carry out a systematic, iterative
revision of all priorities such as characteriges any process
of optimigaticn. 'lhereas in solving a mathematical model

the goal is to carry the iterative revisions to their logical
oconclusion, in the practice of plan preparation the number of
revisions that can be actually carried out ies necessarily
limited by available personnel and time. Thus the goal is the

more modest one of upgrading a feasible plgp rather than the ’ ; .

attainnent of the exact optimum.

2) The data upon which the plan is based are sub ject to error; thus
the exact optimum is also subject to error and only an 2ptipal
LARKe of solutions can be specified with confidence.

3) The preferences of the decision makers can be deseribed ex ante
only in an approximate way, since final decisions always depend
on & survey of meaningful available alternatives. Certain
preferences, e.g. concerning the locational distribution of
eoonomic activities, may not even be discovered until a given .
plan that ignores these preferences is presented in detail. . : '
Therefore no gingle optimal solution is acceptable as the result
of planning efforts, what is wanted is rather a range of alter-
native near-optimal solutions.

While an approxinate solution to a nonconvex optimization
problem is thus entirely acceptable, the large possible divergences
between the activity scales and resource allocations of different near-
optimal solutions do pose a problem in planning. This problem is relatei
to the possidility of decentrgligation. In order to disocuss this concept
meaningfully, we have to explore the relationship between price-type and
quantity-type control instruments in econouic planning.
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14/
In strictly convex economic systems there is an exact corres-

pondence between the optimal solutions that can be attained by means of
price-type or by means of quantity-type control instruments (see Figure
l-a). 1If, however, the system contains linear boundary segments (as
oocurs in aystems described by linear models. see Figure leb) this
oorrespondence is destroyed: it is for example possible to specify
output combinations that cannot be attained with certainty by means of 1
price-type control instruments, only by means of quantitative controls.,
Whenever price-type control instruments fail to guarantee the attainment
of desired constellations of inputs and/or outputs, decentralization
based on the application of such instruments alone becomes impossible.
Thus it is also impossible to define project evaluation criteria based
on such prioo-typé decentralizers, and it becomes necesgsary to resort to
quantitative controls, or to a combination of price«type and quantitative

controls.
A

34/ 4 point set - _ 18 striotly convex f AC s, o=h L and
Ao 20 .’lnd - N . =/ » ioplies that(7) JX, ) isaninterior
point of ~ unless all X, coincide. This cannct be $rve if the
point set .: has a linear boundary segment.

W For a detailed discussion, see Vietorisz (196% ), Appendix 1.
In reference to figure la » & combination of outputs such as
point P on the production-possibility curve can be attained equally
wall by fixing a price ratio (line 8k ) or by fixing the quantitices
¥, or A« Figure 1-b represents a system which is convex with
8. A combination of outputs such as or «
oan sti attained equally well by price or quantity=t ;pe control
instruments (e.g. ¢ by fixing the prige ratio_anywhere between
b and g8 , e.g. at 83 or by fixing A, or X. 3 however,
ocombinations exist such a8 R which canndt be unambiguously attaineiby
mecans of price-type control instruments alone. Thus the price ratio
R will w point R in the sense that it will not initiate
movement away from point R , but this price ratio will not assure
the attaimment of pcint R itself in an optimizing solution, but only
that of one of the infinite number of points along the segment PRa.
In order to attain point Rwith cerjainty, the use of a quantity=type

oontrol instrument (fixing either X, or X, ) is indispensable.

"
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The same conclusion applies in practice vwhenever the boundary
of a system has segments that are indistinguishable from linear segments

within the prev'a,i.h.n’6 rgin of error, and g fortjorj when the boundary
has nonconvex portions (Figure 3-c.)

The full significance of these observations becomes apparent
when their implications for multi-level planning are analysed. Effective
decentralization of information flow in economic planning requires that
only essential decisions concerning the economy as a whole be taken
explicitly at the top planning level, and that decisions of secondary
detail be relegated to lower planning levels.-u/ What happens in such
sulti-level planning atructures when linear or nonconvex boundary
segmants are present at the lower levela? ihat effect do such boundary
seguents havc on project evaluation? These are the principal questions
that require further analysis.

Lﬁ/ By reference to Figure l-c which has nonconvex boundary segments,
pointP can be attained either by price-type or by quantity=type
control instruments. Setting the price ratio anywhere between RR
and S0 will lead to point P from any other point along the boundary;
widening this price range within the limite of 28 and dd will still
lead to point P from points in its own neighbourhood, although not
nocescarily from points near A or gear B . FPoint P can also be
attained by fixing either %) or xp .

For the attaimment of a point such as R , however, price-type
control instruments become totally ineffective. Whereas in the case
of a boundary it was at least possible to ?ecify a price
ratio in Fig. 1-b) that would sustaip point " , in the noncon-
vex case even this fails. A price ratio tangent to the boundary at R
yields an unstable stationary point at R which corresponds not to
the naximigation of the value of output (as in the strictly convex

or linear cases), but to a minjmjzgtjon of the same; the slightest
movement away from Rat this price ratio will initiate further
cumuilative movement towards P or B

u/ Multi-level planning would be a practical necessity even if it were
possible to obtain mathematical solutions to glant linear or integer
programming models with many thousands of resources and activities.
The reasons for this include the following. (1) Technical alter-
natives are hard to formulate explicitly over a sufficiently wide
range of factor prices. (2) It is inefficient to formulate alter-
natives shat will not be used; for this reason, the compilation of
information and its analysis should alternate stage by stage. The

(Cont'd.)
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B. sitio ciple i ]

Some of the phenomena that occur in multi=level planning
systems can be analysed by means of the '"decomposition principle" devel-8
oped originally for the solution of structured linear programninyg models.
Figure 2 indicates schematically the relationship between a twoelcvel
planning organization and the structure of a corresponding decomposition
model. In the latter model nonzero technical coefficients occur only
within the shaded blocks (Fig. 2a) and it can be secn that these coeeffice
ients occur only within the shaded blocks (Fig. 2a) and it can be seen
that these coefficients fall into two broad groups. First, there are the
coefficients of the so-called "special resources" of euch sector. The
special resources of Lector 1 can have nonzerc coefficients only in the
projects of lector 1, and likewise for the special resources of .ectors
2 and 3. Second, there are certain rcsources that nay have nonzero
coefficients in any sectoral project; thes. ure designated as "connccting
resources”. It will be noted that in addition to sectoral projects that
form the columne of the table there is also a column designated as
"exogenous" (first column). While it is assumed that the scale at which

each sectoral project can be carried out is variable, the scale of the

11/ Cont'd. ..latter process can be carried out most effectively near
the sources of technical information in individual sectors of the
economy. (3) The structure of a large model cannot be intuitively
grasped, and therefore its blind application is hazardous; this
difficulty can be overcome by coordinating a number of smaller model:.
(4) Plan formulation must take into account the modes of execution :
this requires familiarity with technical detail that is readily avail-
able only near the operating levels. (5) Plans have to be readjusted
to changing circumstances in the course of execution. Many of these
changes show up at or near the operating level; thus planning capa=-
bility at lower levels facilitates efficient ad justment to such
changes. For a discussion of some of these points see Clopper Almon
(in Dantzig, 1963, pp. 462-465), and Vietorisg (1963s 558).

48/ Danteig and dolfe (1961); see also Danteig (1963), G 1963:1NC),
Kornai and liptak (1965). & (1963), domory (19 .
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exogenous column is fixed. This column usually contains the given total
supplies and demande of each resource. The task is to find a "plan",
i.e. a combination of project scales, that is consistent with the fixed
resource supplies and demands, and that is in csome sense efficient.
ifficiency is defined in terns of maximizing the output or minimizing

the input of a choser. conne:ting resource.

In such a structured model the consistency and efficiency-
oriented decisions concerning the connecting resources correspond to the
central planning level of a twoelevel planning organization, while the |
same kind of decisions concerning the special resources of the sectors

correspond to the sectoral-lﬁvel planning offices.

To what extent is it realistic to assume this special structure v)
in decomposition models describing entire economies? The angwer to this
question hinges on the importance of direct interrelations between
different sectors, manifested by coefficients of significant magnitude
falling outside the shaded blocks in Figure 2a. It is known that when
economies are described by input-output models these models can be
arranged to an excellent degree of approximation in a bloock triangular
form. The connecting resources of & decomposition model can thus be
tentatively identified with the inputs of primary factors and with the
inpute of resources (such as energy and transport) that occur near the
base of the triangle of the rearranged input-outpu models; the remain- .)) ‘
ing resources of the latter would then be treated as sectoral resources, '
with sectors delineated in such a way that interactions between sectors
(other than via the connectin, resources) be kept to a minimum. Such
an approximation can be confidently assumed to be a reaconably good one
for many econcnies; one may assume that corrections for direct inter-
aotions between sectors could then be undertaken by a few iterative
revieions of the pluns arrived at with the aid of the simplified
description.

19/ The structure in Figure 2a is referred to technically as "angular";
it yields the simplest relationships betwecn the connecting and the
sectoral parts. The mathematics of block triangular systems has

' been explored b, Dantzig (196)).
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It should be noted that the decomposition structure described
above is not the only approximation that can be applied tc multielevel
planning systems. /hile in this structure the resources subject to
central decision (the connccting resources) and the special resources
of the sectors form mutually exciusive classes, it is possible to define

a system in which the resources subject to central decisior are ag;ree

gated representations of the many detailed sectoral resourcea.z‘OZne

logic of this kind of a systea has been described qualitatively but
has never been sub jected to oxact analysis.

Table 1 offers an illustrative numerical example of a decompo=
sition model.a/ The model has two sectors with two special resources
in each; and two connecting resources: capital and labor. There are
four possible pro jects in cach sector; the scules of these projects
are variable and are designated by Xl. ..X4 for sector 1, XS"'XB for
sector 2. All numerical data obey the following 8ign convention:
outputs or supplies are positive, inputs or demands are negative. Thus
the capital and labor coefficients of all projects are nesative (inputs);
there are however exogenous supplies of these two factors, amounting to
350 units in the case of capital, and 2000 units in the case of labor.
Once the scales of all projects are chosen in formulating a trial "plan",
the flows of all resources are determined, and their balance can be
verified. The dif'ference betwecn (1) all outputs and exogenous supplies
of a resource (positive signs) and (2) all inputs and exogenous demands
(negative signs) is defined as the surplus of the resource. If the
surplus is zero, there is an exact balance; if positive, the resource
is redundant; if negative, there is a bottlems@Re In this problenm,

23/ UN-ECAFE (1961:FID), Chap. 2.

2l/ Te coefficients of this model have been based (vith some necessary
changes and additions) on a small illustrative model used by
Chenery (1958:DPP), Table 2. Fixed-cost coefficients have been
added; they are not used in the linear version of the model.
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economy in the use of capital is chosen as the ocriterion of the efficiency
of a plan; this is expressed by maximigzing the surplus of capital. This
formulation can be intuitively interpreted as follows: suppose 350 units
represents the 1imit of capital stock that can be built up by saving and
foreign borrowings yet it is desired to cut back on the need for this
saving and borrowing as much as possible. At the same time consistency

of the plan requires meeting pres.ribed demands and keeping within avail-—
able resource supplies; the latter conditions can be simply expressed

as the avoidance of bottlenecks ‘in any resource use.2

The model also determines the shudow prices of all resources.
The price of sapital is chosen as the "numeraire" resource whose price
is set to unity and in terms of which all other prices will be expressed.
The reverue (positive sign) or cost (negative sign) due to any resource

can be determined once the shadow prices are given. the technical

coefficients of a project are simply multiplied by these shadovw prices.
The difference between reverues and costs is the profit for any activity
(  variables in top margin). It is an interesting property of linear
progranming modele that in solving for the most efficient set of project
scales "X" that optimize the allocation of res.urces, a related "dual”

problem of valuation of these same resources is also automatically
solved, This problem consists in choosing shadow prices "Y" s0 a8 to !
minimize "profits" on the exogenous activity while profits on all projects ;
are eliminuted (as though these projects werc in perfect competition).

(See Mathematical Appendix).

‘The illustrative decomposition model of Table 1 is simple
enough to permit a graphical representation by means of an .dgeworth
box diagram. (vee Figure 3.) In this diagram the total availabilities
of the connecting resources (350 units of capital and 2000 units of labor)

form the edges of the box. Resources used in each sector are measured

For an interpretation of the system of Table 1 in ordinary algebraic
equations, see Mathematical Appendix.
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along the edges in opposite directions; thus any point in the diagran
is a simultanecus representation of 4 variables: capital and labor used
by Sector 1, and capital and labor used by lLector 2.

Points A, B, C, and D in the diagram represent four different
oomplexes of projects that can be formed from the activities xl...x4 of
Sector 1; points E,F,0, snd H represent similar complexes formed from
the activities of Sector 2. iach of these complexes contains two
projeots; this is the ssallest number that permits satisfying the
Table 1 contains
a listing of the project scales and the total capital and labor require-

balances of the special resouroces in each sector.

ments of each of these complexes; the respective project=scale variables
are shown near each point in the graph. In preparing the graph in

Figure 3, the gfficient complexes of each sector have been connected by

a line. Point C represents an inefficient complex in Sector 1 since it
has larger requirements of both capital and labor than point B; thus

it will never be attrictive to use complex C. Likewise point G represents
an inefficient complex in Sector 2.

The points along a line connecting two complexes, e.c. A ard B,
represent weignted averages of these two complexes, For example the
midpoint of the AB line represents an average complex that is formed
YW running projects x1 and X3 of Complex A at half the scales shown in
Table 1 (xl e 3753 X, » 25); 1likewise running projects X, and X, of
Complex B at half the scales shown for B in Table 1 (x2 = 42.858,

x, s 35.715); and sumning the corresponding project scales (only X.z requires

2}/ These complexes are extreme-point (vertex) solutions of the sub=-
problems of Sectors 1 and 2. These subproblems are defined
algebraiocally in the Mathematical Appendix and are discussed later
in the text.

24/ Inefficient points need not use more capital and labor than any
point suoh as Bor Fj it is sufficient that they lie northeast
or Sec. 1) or Southwest (for Sec. 2) of the line connecting such
oomplexes in any seotor.

iz -
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sumsation; thus X, = 37.5, X, = 67.858, Xy . 35.715). 1t can be veri-
fied by simple algebra that the labor and capital inputs of the averyg-1
complex fall exactly halfway between the labor and capital inputs of
points A and B, In the present case the weighting was .5 and 5.
Points other than the midpoint are obtained by using weights in diff-
erent proportions. The weights may vary from O to 1 and they huve to
add up tu unity. A4s long as this vweighting rule is observed it is
guaranteed that the special resource balances of such sector will be
satisfied by the averaged complexes, even though the graph contains
explicitly only the connecting factcrs. In ad:ition to points lying on
the connecting line between complexes such as 4 and B, the same
guarantee applies also to any other point that oan be attained sturting 'D)} ’
with the former points and then disposing of (wasting, throwing avay)
sone capital and/or labor.

The two curves in Figure 3 can be regarded as generalized
iso-product functions for the two sectors that describe the alternative
combinations of the connecting factors (capital and labor) that can
produce the given output of g sector. What is this "given output'?

It cannot be identified with any single product since all special
sectoral resources are on an equal footing and none can be regarded
as "the" product of a sector; it is thus convenient to think of .

sectoral output as the entire task of B8atisfying the special resource W .
balances, & )

T rarr -

T TOY- .

The horisontal and vertical extensions of the two sectorul
curves to the coordinate axes correspond to conventional useage in

economics; they signify free disposal of redundunt surpluses of the
connecting factors, as mentioned above,

Figure 4 provides a graphical illustration of alternative
methods available for finding an optimal 8olution to the model. :uch
& solution represents a Blan, i.6.y a set of projects with determined
project scales, that is both feasible in the aense that it saticfies
all resource balances, and efficient in the sense that it maximizes the
surplus of capital (i.e., it minimizes capital requirements).

R .Y,







A "foasible golution" is a plan that satisfies all resource

balances but is not necessarily optimal. Points B and T jointly
represent such a plan. Point B on the iso=product line of Sector 1;
thus it is sure to satisfy the balances of the special sectoral resocurces
in this sector; point T is on the iso-product line of Lector 2 and thus
satisfies the special resource balances of coctor 2. The labor require-
ments of the two points add up to 2000 and thus satisfy the labor
balance. iccordingly all resource balances are satisfied and the plan
is feasible. In order to determine whether it is also optimal, the
oapital requirements are identified: by inspection of Figure 4 they
oan be seen to leave a capital surplus exactly equal to the vertical
distance BT. It remains to be decided whether other feasible solutiona
exist that leave a larger capital surplus.

Note that point B is one of the complexes of Sector 1 that has
been presented in Table 1; while point T represents a weighted average
of complexes E and F of lector 2. This solution is labeled as "B.F
by reference to the sectoral complexes forming it. Table 2 (line 12)
oontains a listing of the quantitative characteristics of this
solution including labor and capital requirements in each sector,
capital surplus, and the weights used for avera,ing in each sector.

In Sector 2 these weights are .926 and .074, respectively, for points
Eand Fj in Sector 1, the weight is 1,000 for point B since this
oonplex appears alone, without being averaged with another complex.

In general a feasible solution will be obtained when one point
is selected from the iso-product line of each sector, attention being
paid to joint labor requirements. .hen the two points fall on the same
vertical line the joint labor requirements add up to 2000 units; vwhen
the point for Sector 1 falls to the left of the point for Sector 2 there
vill be an amount of redundant labor equal to the horizontal displacement
between the two points (for example, when the combination A: is chosen);
conversely when the point for Sector 1 falls to the Iixht of the point
for Sector 2 labor will be in a bottleneck condition (for example,
ocombination BE). Since it is generally inefficient to leave lobor
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redundant, a convenient strategy for selecting feasible solutions in the
course of optimization is to choose two points that lie on the inter-
section of a given verticul line with each of the two sectoral
iso=product functions. The vertical distance between the two points
measures the capital surplus corresponding to the given feasible
solution. The geometric determination of the optimum is now obvious:
it consists in selecting the vertical line th.t maximizes the distance
between the two sectoral isoeproduct functions. In the present case
the optimum is attained at AN, point N is a weighted average of
complexes E and F in Sector 2. The solution, designated as 4.F, will
be found quantitatively described in the sixth line of Table 2.

This geometric method of finding a solution is not applicable
to larger problems; Dantzig and .iolfe (1961) have however provided a
generally applicable method which can also be followed by means of the
graphical presentation in Figure 4. (.ee also Tables 2 and 3.)

Dantgig and (olfe break down the overall problem into two
parts: a "mpster probleg" and "sectoral subproblems". (These correspond
to central and sectoral-level planning decisions.) The master problem
is formulated in terms of the connecting resources, in the present case
labor and capital; and it is pieced together by averaging known sectoral
complexes. The graph in Figure 4 represents this master problem. The
master problem also determines prices for the connecting resources: in
the present case, & price ratio for labor and capital. The sectoral
subproblems, on the other hand, systematically find previously unknouwn
sectoral complexes for inclusion in the master problem. The sectoral
subproblems do not explicitly appear in the graph of Figure 4, but com=-
pliance with their balances is guaranteed by the averaging rules discussed
above. The starting point of the technique has to be one known basic
feasible solution to the master problem; given such a starting point, 25/

If no basic feasible solution is known that would be suitable as a
starting point, it is possible to construct one by algebraic tech-
niques. See Dantzig and .olfe (1961). .
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the interaction of the two parts of the problem guarantees the attainment
of the optimal solution in a finite number of steps.

A Dasic solution contains the smallest number of nonzero varia-
. bles thut is compatible with the number of equations. In the master
problem we have four equations (see Mathematical Appendix). one each
for balancing capital and labor requirements, plue one for descriding
the averayging rules for complexes in each sector. The variables of
the master problem are of two kinds: first, the weights to be applied
to the individual complexes of each sector, and secondly, surpluses of
labor and of capital that can also be interpreted as disposal activities.

How many of these variables must be nonzero? Generally at least four.
One of these will be the capital surplus . which is being maximized;
the other three may be three sectoral complexes, or two complexes and
the labor surplus (disposal) activity, . In Figure 4 basic
feasible solutions are obtained by selecéing intersection points of a
vertical line with the iso-product curves, as before, but with the
additional restrioction that the vertical line has to run thﬁugh a

vertex (a point for a single complex) in one of the sectore-lJ volutions

BCF and AuF that have been mentioned before are such basic solutions,

26/ The number of variables including slacks (surpluses) in a linear
programmning problem exceeds the number of equations; the iiff-
erence is known as the number of degrees of freedom of the system.
A corresponding number »f vuriables can be arbitrarily fixed,
whereafter the values of the renuining variables are determined
by solving the system of simultaneous equations. If the pre-set
variables are assigned the value of zero we get a basic solution.
In addition, by coincidence, the solution value of one or more of
the variables that have not been pre-set nay also turn out to be
gero; in this case the number of nonzeyo vuariables will be less
than the number of equatione. Such a solution is termed "degenerate".

Degenerate solutions are obtained when E* cojncidence complexes
in bdoth sectors fall on the same verti line.
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but solution ABEF corresponding to the vertical line Vi is not, since
it contains five nonzero variables: capital surplus (the maximand ),
plus non-zero weights for each of the four complexes 4 and B in .ccter

1, and . and F in Lector 2. In addition a solution such as a.H corres-

ponding to the vertical line A is also a basic feasible solutinn, .

even though it is off the isoeproduct line of Lector ¢, since the point
/\. can be obtained by avera,ing the two non-neighbouring complexes
E and He This point is of course not efficient since it could als- t=

attained by starting with point N on the isoeproduct curve and then

wasting some capital (correspondin_ to the distance N A ).éé/

In the m.ster subproblem not only the sturting solutior but

all later solutions also have to be basic. The reascn for this iu tr.*
only basic solutions deteraine a unique price ratio for labor and By
capital which is needed in the sectoral subproblems. In a basi~ sciu- 1
tion the price ratio is fixed by tne slope >f the averaging line cepmens
that is intersected in one or the other of the two sectors. If the
solution is nonbasic such as AB:iF the vertical line V. intersects lire
Begments, generally of different slopes, in both sectors rather tharn

pBBuing through a vertex in one sector.

Let us now trace the course of optimization, using the lantiig-
iolfe algorithm, by reference to Figure 4. buppose the starting peint
is at the vertical line HI. This corresponds to a basic feacible
solution (labeled "A0, H" in Table 3) in which complex A in Lector 1
and complex H in Sector 2 appear with unit weights; thus 2 weightin:
variables are nonzero. In addition there is some labor disposal: thus 1
the labor surplus variable '

) will also be nonzero; its value

ZQ/ Basic solutions need not be feasible. If the solution value of
any variable (a weight or & slack) turns out to be negative the
solution is infeasible. In the graph of Figure 4 basic but irfous- 3
ible solutionsare obtained if the vertical line i1s made to intersce® 9
not the line segment connecting two vertices but the continuation :
of such a line segment beyond one of the wvertices. This represents
an impermissible weighting of the two complexes, with one weight
negative and the other exceeding unity. See for example point :

corresponding to the averaging of complexes A and B in solution
ABH (Table 2, line 8), ?
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corresponds to the distance AL, which amounts to 137.5 units. The value
of the maximand (the capital surplus variable k:.‘: ) corresponds to the
distance AI, or 27.5 units.

ie assume that at this point only complexes A and H are known.
While in this problem there are in all only six efficient complexes,
in larger problems the number of possidble complexes increases combin-
atorially and thus at the beginning of the optimization there exists
very little information concerning alternative efiicient sectorul
oomplexes. The task of the sectoral subproblems is precisely to
identify previously unknown efficient sectoral complexes for inclusion
in the master problem.

Looking at it another way, if all the efficient sectoral
complexes were known from the very beginning the optimal solution t»
the master prodblem would immediately identify the optimal solution to
the problem as a whole. Guince, however, we are generally working with
an incomplete list of complexes, we need a techniquc that will generate
new complexes; and specifically, we have to generatc those complexes
that are needed for the optimal solution of the overall problem without
having to enumerate all possible efficient sectoral complexes. .e
shall nov indicate how the sectoral subproblems arc utilized for
achieving this aim.

In the starting solution the price rutio between labor and
capital is determined by the slope of the line segment AL 1in other
words, the price of labor is zero. The price of capital is unity by
assumption. Using these relative prices, the sectorul subproblems

e the combined of the conpectjn: resources. In the
present problem the connecting resources appear as inputsy thus we
are in effect minimizing their combined cost. At the same time, the
sectoral subproblems have to satisfy the balances of the special
sectoral resources.

While in the graph of Figure 4 we do mot show the special
resource balances of the sectors in an explicit fashion, they are




nevertheless allowed for by means of the averainyg rules applicable to
complexes. e know that the straight lines connecting the pointé correse
ponding to the sectoral complexes represent weighted averages of

complexes; a8 long as the complexes themsclves satisfy the special

sectoral resource bulances, these weighted averapges will also do the

same. In addition, we know that whenever we take one of the points

corresponding to the complexes or their weighted averages and we sube

sequently dispose of (throw away) some labor or capital, we are still

certain to satisfy the s.me sectoral balances. Thus we can map sut

feasible areags for both sectors in the graph: these consist of the 1s0-

product lines plus all the points falling on the concave sides of thece }’

lines. Whenever a point is chosen within the feasible area of a given
sector, it can thus be guaranteed that the special sectorul resource
balances are satisfied. In this way we can use the graph of the

master problem to represent possible solutione to the sectoral problems.

The question arises: in maximizing the combined value (minimiz-
ing the cost) of the conmnecting resources in the subproblems, using the
price ratio of the starting sclution, do we discover new complexes that

are "more efficient" in some sense than the ones already known?

In the graph the combined value of the connecting resources is
represented by bud;et lines whose slope equals the price ratio betweun w .
labor and capital and whose intercept on the capital axis measures this '
combined \milue.2 The optimization in each sector is represented bty a
parallel shift of the budget line in such a way that the combined value
of connecting resources is increased (combined cost is decreased),
while maintaining at least one point of the budget line within the
feasible area of the sector. In Lector 1 this procedure leads to point

A which had already been known previously; but in Lector 2 the optimum

29/ The budget line corresponds to the equation
Ppe(=L) r Byo () o (=2) ,
ors

() = (-2) = B, (1) ,

since P, = 1 . On the graph the axes correspond to (=K) and (-L);
thus (-‘) is the intercept on the (~K) axis. (=) (
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ocorresponds to a new complex . whose exact capital and labor requirements
are disclosed by the optimization process.

In what sense can we assert that complex E is more efficient
than previously known complexes?

In the starting solution complex H was the only known complex
for Sector 2. The combined cost of the connecting resources for this
oomplex can be read off by tracing a budget line with slope O to the

capital axis of Sector 2: in the graph we read off 225 units at 7.
(this same value will also be found in Table 2 , in the line of solution
0 labeled "A.., H" , under p2). 19/ The combined oost for complex E

18 however only slightly under 90 units as read off in the graph at = -
(89.3 units under =g, in Table 3). Consequently the inclusion of complex

E in the solution promises a combined cost improvement of 225,0=89.3 =

135.7 units , at the prevailing pricese

=

is a shadow price in the macter problem that sorresponds to the
equatiSn describing the averaging rule for Lector 2. (lee Ilatnematical
Appendix.) .henever u complex is ineluded in a busic solutiony 1.e.,
when its weight is nonzero, the shadow profit for the column of this complex
has to vanish. The mathematical reason tor this is thc well=known rule
of complementary slacis applicable to linear programming problems; in
eoonomic terms the solution enforces perfect competition between all com=
plexes included in it. Consequently the shadow price and the combined
value of the connecting resources have to add up to zefg; in other words
the combined value equa’s “Py o

P ¢an cunveniently be interpreted as a "subcontracting fec " The
master problem in eftect places all complexes of a sector in competition
with each other for the privilege of periorming the task of the sector,
namely satisfying the balances of the special sectoral resources. Mbich-.
ever complex or complexes can perform this task at the lowest subcontracting
fee will be selected to do the jobe. At any stage, the suocessful complexes
will just break even: their combined cost for the connecting resources at
the prevailing prices will just equal the subcontracting fee. The solu=-
tion to the muster problem can, however, be improved as lon, as sectoral
optimigation will disolose new complexes that can make a profit at the
prevailing prices and prevailin, subcontracting fees, hen this is no
longer possible, an overall optimum for the entire problea is attained.
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In order to pass from the 8tarting solution to the next 8olu-
tion of the master problem we will now want to include . in the colutinng,
Since the solution is to be basic, however, we will huve to drop some
other complex or the labor surplus (disposal) activity. Table 3 indjesnt.s
the three choiées available for dropping vuriibles and the correspondin,-
solutions. (The capital surplus activity which is to be cptimized ig
never dropped.) If we drop complex » we are left with no complex in
Sector 1, and thus we have an infeasibility. If we drop .. we get
solution A:H which vields an average complex tor Lector 2 at point A ,
Which is feasible. If we drop complex H we get salution A 7+, < which
leads to point J for “ector 1: an infeasible point, inplying g Negntive

3, o (Numerical data describin, euch of these trial solutions will b.
found in Table 2.) Thus we have only one feasible choicge, solution ., 4
This is labeled as solution No. 1 in [able 3.

AEH determines 5 brice ratio of ,422 between labor and
capital: this ratio equals the 8lope of the line connecting . and i,
Budget linee with this slope yicld new complexes in the course of the
optimization in both sectoral subprcblens: in .ector 1, the new
.oomplex is B, with a combined cost of Connecting recourcesg eyual to
(-311) = 580.7; while in Sector 2 the ne. complex is F with a combin: i
cost of ('312 ) = 488.8. The cost improvenent relative to solution
LEH ecan be deternined by comparison 4ith the combired cost of 4 in
§eotor 1 which equals 58047 (p11 in Figure 4; ilso inp luble 3), and the
combined cost of either . or H (these are equal) in .ector 2 which
equals 412,5 (p12 in Figure 4, also ip Tuble 3).  The cost improvements
are thus 39.0 and 76.3 units in .cctors } and 2, respectively,

Lither one of these new complexes c.n be included in the
solution of the naster problem to «®t an improvenent in the maximand ,; ;
it i, however, preferable to include the one with the larger cost dmprovenent,
nanely F. Once again it becoues necessary to drop g variable from the
solution in order to remain basic; the three choices are indicated in
the line of Solution 1 in Table 3, and the resulting alternative solu-

tions are numerically specified in Table 2, Tyhe only feasibie choice

sk f‘»‘:&}“f-f; By

W . o ——— *
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48 ALF. This solution determines a price ratio of 0.106 (equal to the
slope of the segment :F); at this price ratio the budget lines disclose
no nev complexes in the course of the sectoral optimizations, and thus
the solution AiF turns out to be optimal.

If at the stage of wolution 1 complex B had been included in
the next solution rather than complex F, the path of optimization
would have been slightly longer. In this case BoH turns out to be the
next feasible solution; the price ratio reanuins .422 as in solution l.
at this price ratio F is s8till present with a potential improvement and
thus it is the next complex to be included in the master solution. The
next feasible solution is obtained by dropping H; thus solution No. 4 18
BiF, with a price ratio of 0.106. A&t thic price ratio point 4 appears
as an improved point in uector 1; the next feasible solution, after
dropping B, is A_F, the optimal solution.

From the point of vieu of project evaluation the significance
of this analysis of the decomposition algorithm is that it discloses
the fact of the insufficiency of price=-type control instruments in

 attaining an optimal solution. as alread, discussed by Clopper Almon

(in Dantzig, 1963, pp 462-465) the central planning oftice cannot
guarantee the balance of connectin, resources merely by setting the
prices of these resources, since in a solution such as A.F the price
ratio oF will not guarantee that lector 1 will choose to produce

exactly with tie weighted average N of complexee .. and F. Faced with
the price ratio JF this sector may produce at any point along the
segment EF, since all pointe along thic segment are equally optimal at
the stated price ratio, and there is no preference between them as far
as Sector 2 alone is concerned. If the centrul planning office wantse %2
make sure that the connecting resources will be adequately balanced it
has to prescribe either a weighting of complexes . and F in Lector 2, or
a quantitative allocation of labor and capital to this sector. at the
same time, Sector 1 can be adequately regulated by the price ratio alone,
since at the given price ratio it has a unique equilibrium position

at A,




An interesting feature of the practical application of control
instruments in this situation is that the central planning office vwill
find it worth while to use both price and quantity-type control inctru-
ments, even though their joint uce will be redundant in .Lector 2.

"They (the Central Trade office) announce in quantitative
terms their feasible plan. They tell each plunt manager
how much of each traded comiodity he must produce and how
much he is allowed to purchase....They also announce the
prices and direct that trade be conducted at these prices,

@e.‘ may also instruct the mahapels that, wubject to tneir

Letim tge 3g§nt1tg§ ;oals...theg shou;d also moxiaize

Eec;sel,( achieved for one_reason or mothcr. It i important

to note that they cannoct tell the manugers ciuply to aaximize
profite (omitting pruduction jouls, o) for if they dad,
Central Trade would almost certainly have difficulty with 1t.
constraints.” 31

At the project level, this insufiiciency of price=type contrei
Anstrunents is translated into the insufiiciency of the usual pricesty;e
project evaluation criteria, and calls attention to the fact that there

] n € m 0f ntitative control that has to be exercis: i

even in bighly decentrglized systems. This does not mean, of course,

that multi-level plannin, is useless; on the contrary, it reinforces
the need for such planning, since it indicates that a decentralized
market uechanism without a central decision making level will encounter

the same indeterminacies that charzcterize the iuulti=level planning

systen with pure price-type coordination. Ilultielevel planning is at the

same time preferable to pure centrul plannin,, since it recults in an
eoonony of inforuation flow. It should be noted that the master problen

in the decomposition algorithm requires no information on special scctor:l

resources and on particular sectoral projects or activities, it handles
this information in an indirect fashion by means of delineating feasible

regions for each sector on the basis of averug,ing known cectoral complexcs.

dd/ Almon in Dantsiy (1963), 464-465. (.mphasis added) .
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The decomposition algorithm of Dantzig and 'lolfe is not the
only one that can be utilized for coordinating the .aster program with
the sectoral subprograms. Kornai and Liptak (1965) have proposed a
sulti-level planning system in which the information flow is the
reverse of that in a Dantzig- olfe system. In a Dantzig-.olfe decompo=
sition the master progran signals prices to the sectoral subproblems and
the latter signal combined utilizations of interconnecting resources
by particular complexes to the master program; in other words, prices
flow downward, quantities flow upward (except for the fingl quantitative
control objectives fixed by the master program for the sectors in which
averaging is required). In the Kornai-Liptax decomposition the master
program passes allocations of the connecting resources to the individual
sectors; the latter, in tum, signal their own sectoral shadow prices
for these resources to the master program. .ithout going into detail
concerning the Kornai-Liptak decomposition it can be seen by reference

to Figure 4 that sectoral resource allocations of labor can be represented

by a vertical line cutting the two iso-product curves; at any (vasic
or norbasic) solution separate shadow prices can be determined for each
sector. For an averaged complex, the shadow price coincides with the
slope of the averaging segment; for a single complex (which appears
with unit weight) the shadow price is distinct for increased and for
decreased allocations. For noneoptimal solutions the compu.rison of
shadow prices for the two sectors will sho+ an unanbiguous differencej
for example, for the basic solution BEiF the shadow price of labor both
in the upward and the downward direction is greater in Lector 1 than

in Sector 2. This signals the need for increased labor allocation to
Sector 1 at the expense of Lector 2. Conversely, for the basic
solution A H an unambi_uous price difference will exist in the
opposite sense, signaling the need for increased labor allocation to
Sector 1 at the expense of Sector 2. 4% the optimum, solution ACF,

the vertical ocut through A and N will yield a shadow price at N that is
smaller than the shadow price at A for decreased labor allocation to
Sector 1, and larger than the shadow price at A for increased labor
allocation to Sector 1, thus signaling a stable equilibrium.

O PR

ey
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C.  Ihs Decoppogition Principle in NenconVek SY8iSRs.

The indeterminateness of control by eane of purely price-type

instruments that has been observed in convex systens with linear boundary

segments will be present to an even stronger degree in systems that

exhidit nonconvexities. In general, while in & linear system a given
price ratio will gustain an optimum, in the sense that at this price
ratio no movement away from the optimum will appear advantageous to any
of the sectors (even though this optinum will not be attained without
the intervention of quantitative controls), in a nonconvex system a set
of prices will not even sustain the optimum in any stable sense. d
In such a system there will be a constant tendency for some sectors to
abandon the optimum position, and this tendency will have to be counter-
acted by specific quantitative controls. The practical consequences of
the introduction of such quantitative controls are not greatl, difierent
from the effects of such controls in systeas wath linear bound:iry sepments;
in this regard non-convexities merely reinforce the control requirements
already manifest in the former systems. A more profound difference,
however, concerns the applicability of iterative torrections for
improving the efficiency of existing feasible solutions, since these

tend to break down in the presence of nonconvexities.

le shall use the diagrammatic method developed for linear
decompositions to indicate the changes that are introduced by considering
the presence of nonconvexities. This will allow the application of some

price ratio will set up only weak forces tending to move the sectors
away from their previous positions, since the corresponding changes
in the optimal value of the objective function are small; in non-
oomaxvsyetems, on the other hand, small changes of the price ratio
can induce movements away from the previous position that are
cunulative, since the farther the move has proceeded the stron,er
the incentive will generally be to move further still, as the diff-
erence in the value of the objective function at the previous
position and at the end point of this cumulative movement can be
very large.
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judgements concerning the role these nonconvexities are likely to play

in practical situations. One has the intuitive feeling that the

presence of small nonconvexities cannot have a profoundly disturbing
influence on the behaviour of lariely convex systeus, since comnon
observation indicates that .arkets are often able to operate with
reasonable efficiency in spite of the pervasive presence of fixed

costs, economies of scale, and other nonconvexities. But what is "small" 7
ihat systems are "largely convex" ? The diagrammatic method will offer
gsome bases for judgement on these points.

Figure 5 indicates the first step in constructing a decompo-
sition diagram vith fixed costs included to represent nonconvexities.
The fixed costs are expressed in terms of labor and capital requirements
(see Table 1). For each complex such as A,B, etc., the fixed costs of
the component projects (activities) are added up. In the graph of
Figure 5, these additions are performed by means of vectors (arrows)
which represent the labor and capital requirements of individual
projects (activities). In this fushionm, point A4 is carried into point
A', point B into point B', etec. While points AyBy..eein the diagrams
have been referred to as "yertices" we shall refer to points A',B'yec.s
as "gpices" in order to keep the two kinds of points sharply disting-

uished.

Can apices be averaged? Generally not in a linear fashion,

since for example, averaging apex A' and B' requires the joint use of
projects X, and X. vhile apex A' allows only for the fixed
cost of X ’and’X aﬂi’apox B' only for X, and x3 Thue when two

complexes are to g& used jointly all the fixed coste of both complexes
bave to be incurred. Once all these fixed costs have been incurred, the
variable costs can be averaged linearly as usual n/ In Figure ( these

W If fixed costs also comprise requirements of special sectoral
resources these requirements can be translated into equivalent
labor and capital requirements calculated at the marginal labor
and capital requirements needed for producing the specified
amounts of sectoral resources, on the assumption that all of
these sectoral resources will in fact be produced in tke optimal
program, and that the corresponding fixed costs will thus be
inocurred in any event. This assumption may not be valid; and

(Cont'd.)
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operations have been performed; for example, at A' the vector il has
been added on, while at B' the vector i2 has been added on; the end-

~ points of the latter vectors can now be connected by a straight line,

It is significant that the slope of this correct averaging line for
apices A' and B' is the asame as the slope of the vertex-to-vertex
average. This is due to the fact that A, B, and the endpoints of the
correct averaging line form a parallelogram, since the same three
yggtors have been added both to A and to B, even though in a different
sequence, Thus the correct averaging line reflects marginal costs,

while an gpex-to-apex ocopnecting line does not.

Two important qualifications to the foregoing procedure have
to be noted:

(1) While the vertices C and O represent inefficient complexes
in a linear system, it is by no means a foregone conclusion that they
will also be inefficient in a nonconvex system comprising fixed costs.
If, for example, the fixed costs associated with C were unusually small,
it ocould easily happen that the correct averaging line involving C will
pass in part on the irfeasible side of the correct averaging lines for
the other complexes, and will thus yield preferable points in this range.

(2) 1In a linear system averages of neighbouring efficient
vertices are always superior to averages of non-neighbouring efficient
vertices. In a nonconvex system with fixed costs this is not necessarily
so; for example, the correct averages between apex A' and B' and between
apex B' and D' may prove inferior in certain ranges to the correct
average of apex A' and D' if the fixed costs ascociated with vertex B
are urmsually high.

Do the apices and the correct averaging lines appearing in
Figure 6 jointly form iso=product lines for the two sectors? In ansvering

33/ Cont'd. ...there might exist some choice in the selection of
activities for producing these fixed-cost components. e shall
abstract from all of these secondary complications in the oourse
of the present discussion.
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this question it has to be remembered that free labor and capital dis-
posal is at all times permitted; thus any point in the diagran
representing a legitimate apex or average will dominate all points
derivable from it by such disposal activities, Therefore B' will dom-
inate all points on the correct averaging line between A' and B' that
are to the Northeast of B'; and likewise for A'. As a result, the

] entire line connecting the endpoints of vectors ;1 added to B' and 52
] added to A' will disappear and will be replaced by a step function

-’ between A' and B' (see Figure 7). Applying the same considerations of
dominance to other areas of the diagram we wind up with the iso-product
lines of Figure 7 that have a much simpler configuration than the
apices and correct averaging lines of Figure 6. This simplification
of the diagram is not a special feature of the mumerical example under
study but a general phenomenon that is due to the fact that the correct
averaging lines have pronounced dips at the apices where one fixed cost
is in all cases eliminated. As a result the straiyht line segments
representing variable costs are generally truncated near the apices and
in some cases (as between A' and B') completely eliminated in favor of
simple step functions.

<@
(]

ﬁl 11

What can be said about the nonconvex decomposition problem
represented by the isoe-product lines of Figure 7?7 In general when the
lines are correctly drawn and all the apices that contribute specified
ranges to the line of a sector are known it is possible to find a

solution to the master problem without the need for considering all the A
detailed information represented by the specific sectoral resource
balances and sectoral projects. A knowledge of the capital and labor
requirements at these apices, together with correct averaging procedures

is sufficient to guarantee an exact sclution to the master problem.

The averaging procedure in the present case can be based on a listing of
projects included in each complex together with their fixed capital and
labor requirements; when two or more complexes are averaged, it is then A
simply necessary to check off all projects that are included and to add
up their fixed costs. Formally, the master problem becomes an integer

B L e
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programming problem in which the avera.ing of the variable costs of :
the complexes is oonditional on incurring all the requisite fixed
costs. A

In practical applications the shortcoming of this procedure
is twofold. First, it is difficult to solve the integer programning
master problem; second, the availability of information concerning the A
requisite apices can by no means be taken for granted, since the rumber
of such apices increases combinatorially with the aize of the problem. & A
As discussed in connection with the linear decomposition problem, the '
virtue of the Dantzig-iolfe algorithm is precicely that it generates
new oomplexes as they are needed, thereby shortcutting the enumeration 3

of efficient complexes. The question is, can a similar procedure be
developed for the nonconvex case?

No such procedure i# presently available and the difficulties
standing in the way of evolving one are great.

R et . N R
i et kT T

et - T

(1) To begin with, the meaning of jrices in the master
probles -- as in integer programning problems in general == now becomes

P

P
TRl S T

ambiguous. In Figure 8 the overall optimum bappens to be at the

. oy

vertical line passing through B', as can be verified geometrically or
by means of a simple computation. Jhat is the proper price ratio

between labor and capital characterizing this optimum? Is it the slope
of the iso- prodmotline at J 7 Thie slope, as noted before, corresponds
to the averaging of variable costs, i.e., to the slope of the line LF}
it is thus a marginal cost ratio. Or is the proper price ratio the
slope of the apex—to-apex connecting line, Z'F' ? In the present case
the two slopes are not greatly difierent; but with only a small change
in some of the fixed costs the optimum can be shifted to a vertical
line such as MN. MHere we have three possible price ratios: the former
two, and in addition, the zero labor price corresponding to labor
disposal.

(2) Next, we have to ask what the role of such a price ratio
is going to be. Will it be used, as in the linear decomposition problenm,
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in a search for new efficient complexes ? If so, the sectoral subprob-
lems become integer programming problems involving the minimization of
oomdbined costs (as in the linear case), but with allowance for fixed
costs of the individual projects. In the present illustrative case
(see Migure 8) such sectoral optimizations performed at the proper
price ratios will identify all apices that participate in defining the
iso-product lines; however, this cannot be generally guaranteed,
because apices can also occur in local indentations of the 18o-product
lines that will not be optimal under any price ratio. Alternately, the
role of the price ratio may be taken to be to sustain an optimum, as
in the linear case; if so, the local marginal price is the proper one
to use, but (as noted before) such a price will sustain the optimum
only in a most unstable way, since the slightest change in the price
ratio will generally precipitate a cumulative movement away from the
optimum.

On the basis of considerations such as these it is clear that

the concept of a unique price ratio characterizing convex systems cannot

| be extended to nonconvex systems; it rather appears necessary to define

different price concepts for serving different kinds of functions.

The price concept needed for identifying new complexes for inclusion
in the master problem is an apex-to-apex connecting price, while the
price concept needed for sustaining an optimum, if only in an unstable
mamner, is a marginal price. As in the linear case, quantitative
control instruments are needed for making sure that the system arrives
at an optimum and, in the nonconvex case, also that it remains there.
The role of marginal prices in such a situation can be the one of
alloving for small corrections in case of unforeseen deviations from
optimal quantities in the course of plan execution, in a way analogous
to the linear case discussed earlier.

Figures 8 and 9 have been drawn to indicate two possible
approximations to the derivation of an exact optimum in such nonconvex
decoaposi tion problems.
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(1) In Figure 8 the apex-to-apex connecting lines are shown
in relation to the correct isc=product lines., 1t can be seen that
=10 connecti lines yield a linear oroximgtion to the
nonconvex master problem while they maintain the nonconvex nature of
the sectoral problems. An approximate overall solution can be ottained
in an iterative fashion by determining successive price ratios from the
btasic solutions of the linearized master problem; these price ratios A
are then applied to sectoral integer programning problems that will

identify new efficient complexes if such arec available. The latter are .S
included in the lineariged master problem and the procedure is iterated, A
This approximation has the virtue of generating new complexes only as

needed, eimilarly to a linear decoamposition problen. ' ‘

What will be the characteristics of this approximation? H

(a) It will always yield an gverestinate of the optimal
value of the objective function, since it ignores regions of local
indentation between apices. These apices are averaged in a simple
linear fashion, ignoring the correct averaging procedures.

(b) The approximation will be a good one to the extent that
nonconvexities are weak; i.e. to the extent that loc.l indentations are

snall in comparison vith changes of capital surpluc corresponding to
different basic solutions of the linearized master problem. In other
words, the apex-to-apex connecting line stays close to the true isoe
proluct line, ‘there closeness is measured in reference to a feasible
area that is convex in the large and has only small local nonconvexities.
Note that the graphical representation permits an intuitive appraisal

of the relative rcles played by convexity=inethe-large versus nonconvexity-
inethe-small.

(e¢) Such a situation is likely to arise when either fixed costs
are small in relation to the changes of variable cost over the averaging
ranges, or else, where the fixed costs of many coamon projects are shared

between neighbouring oomplexes that differ only slightly in project compo-
sition.
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(d) Another important situation of this kind arises when
fixed costs in a sector are incurred stepwise; in other words, when
projecta with given fixed costs are limited to a maximum scale, beyond
which the fixed cost has to be duplicated. This has the effect of
reducing the sige of the abrupt increase in correct ;wrabed costs near
the apices and brings the iso-product line within a fraction of the
distance from the apex-to=-apex connecting line that prevails when fixed
costs have to be incurred in a single step. This case corresponds
closely to the classical case of the equilibrium of many small firms,
each with its own fixed cosis,.

(e) The computation will be efficient to the extent that
the sectoral integer programning problems arc of small size or have a
special struoture that renders them easy to munage.

(2) In Figure 9 the unaveruged apices are shown in relation
to the correct iso-product line. An approximation to the isoeproduct
1ine can be pieced together from these apices by adding vertical and
horigontal extensions corresponding to free labor and capital disposal
activities. In other words, whereas in the previously discussed approx-
imation we formed apex-to-apex conmnecting lines that acted as though
the apices could be averazed in a straight linear fashion, the present
approximation discards the tool of averaging altogether and simply
disposes of labor and capital not required by one apex or another ina
given solution. As a result, solutions are restricted to one complex
in each sector.

The characteristios of this approximation are the following.

(a) It always yields an eres of the Optm1 value of the
objective function, for two reasons: first, because it ignores the
poesibility of legitimate averaging; secondly, because it generally
operates with an incomplete list of apices if the problem is large.

(b) The master problem i now an integer programming problem
vhich does not yield useful prices for defining sectoral cdjective
functions.

\

B e Vo .
‘ -. ¥

W ST T




.
..

.
‘
*

L S S
.
e
N
e
e b
e e ey

A
‘e
+ .

P

+ .

*
.
[EREE SRR

L
Al

R ey 23
AR T SO

oty

- e
ISR

bbb
-
S

AR SR L IREE O
+—¢vov$o<yo
LN

L i SRR S
o ¥ o

I S

DED S S8 TN 3 0

+

PO Y
LS
+ .

+

-

INE SN
- §4 4 o b

T
*
b
’

ore b
¢+ 4+
5 SN SN

e T

bt

*
B R

3

SN

ol

s t&~8
+

+

i

-

+ b b

P

4-
+ g be b
4 4

4,4&»‘4‘#}‘0‘*

gt RIS SR N
RS-

.
1R i

!

.

b + -+
R i

RN R
A e

-

R
T

bgd

b o

DRIy
!

-

“TA e

—t e >
| 444 + 4
+ s g
4 v 44
P

LR R

-+
-

+
+
+
BERERE 1S S
e ‘
-+
>

o

b - o

+-4
R R SR I ST

s .

A
+
)"

h s

S O W
+—+
‘»14»-« -

b 49

+

4 boe 4

444+
'y
+
4

+

444

+ 444+ 44+
)
T
+t

e

1

4
i
4+

R ISP A S

)

4
- 4

b4 4

o o}

g
-4 444 444

4 4+ 4 b4

+
«1»—4»4»—«}-1-‘
4+
0
T
AR S N Y §

44 &

P
b 4b §4 4

- -

b4

9

D et




-49 - ;
»

(¢) Individual apices may bDe generated in any convenient
vays for example, by means of simultaneously undertaking the first 4
kind of approximation (apex-to-apex connecting lines). 5 ‘

(d) This approximation will be a good one whenever noncon=
vexities are large in relation to changes in the objective function
(capital surplus) corresponding to widely separated solutione; in
other words, when the sectors are characterized by a few major indivise
ibilities. The reason for this is, first, that in the case of large
y nonconvexities not much is lost by refraining from averaging; secondly,
that if nonconvexities are larye, the number of apices that contribute
. ‘ to the correct iso=-product line in any sector is necessarily small and
thus the apices are relatively easy to identify on the basis of empire
ical considerations that are likely to be well known to the planners
fariliar with the sector; thus the possibility of missing significant
apices is greatly reduced.

(e) The computation will be efficient to the extent that the
3 master integer programming problem is of manageable siges

In sum, the two approximations are complementary. Between
them, they yield both an upper and a lower bound on the value of the
optimal solution; in addition, each tends to be close in cases with
opposite characteristics. The first approximation tends to be close

vhen the feasible area within a sector is convex in the large and has
only small local non-convexities; while the second approximation tends
to be close when a sector is characterized by a few major indivisibilities.

w In any given practical problem it appears advantageous to undertake
both approximations simultaneously. It might perhaps also be poss-
ible to combine thw two approximations, choosing the better approx-
imation to represent any given sector; in this case, however, the
bounding properties of the separate approximations would be lost
and the exact nature of the iterative algorithm would be placed in
doubt.
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It is notevorthy that presently available practical methods of coping
with monconvexities in economics tend to run in the direction of these
two approximations: thus in the case of small nonconvexities an
attempt is made to define some reasonable average cost and price that
will take into account the presence of fixed costs, while in the cace
of major indivisibilities the operation of the price system is invoked
only after quantitative decisions have been taken in regard to these
indivisibilities on other than pricing criteria.
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LNNEX 1

Sclving Integer Programming Problems: A Supvey

!

Several algorithms exist for cbtaining optimal scluticns to integer
progremming problems, }./ These alpcrithms are knewn to terminate in = |
finite number of steps, but when the number of variatles is large, "Ffinieo" ;
may mean a very large number indeed, since the number cf alternatives thest ’
can conceivably be touched upen in the ecourse of a solution, risec ‘
combinationally with thc number of integer veriables. Thus, mixed pretiors [,

|

with as few as ten integer variables may not tepminatc in as many nc

several thousand iterations, E/ In this respect, integer programring is
completely different from lincar prograrming where it has been tound . ‘
empirically (although no proof cxists) thot problems termincto in p

approximately three times s many itercticns as there are constpaints,
With integer programming problems, it has been found thet the standnrd
cut ting=-plane type algorithms vcrk with a guite differcnt fficicney on Z

problems with identical construction but rondemly chosen paramcters:

some run well, some take quite 2 btit longer, and scme make very pocr
progress, A recent scrdies of oxperiments has demonstrated, mopecior,
that attempts to improve the amcunt of pregress from {tepation to itopation

dn not generally lead to faster over~ll pregress,

Vhen these integer programming =lgorithms do net terminate duc t- Q :

practical inability of carrying the numbor of {terations beyond a reas notl

s e e

limit even on the largest electreric computers, they at least yicld o bound
on the optimal solutiorn in the sense thot they indiecate a point beyond

which no improvement ean cver bc earricd, Unfortunately, the puklieh.d
algorithms arc of the "dual" type: they procced by the way of trial s luti no
each of which 1s "dual feasitle", Dual fensibility mcans thot individusl
activities arc always meintaincd in perfeet priority ordering, in the

sensc that they cither break cven op show losses at the existing shodow
prices, but never profits; at the same time, thcy arc not "primal fonsitl "

See Dantzig (1963), Chap, 26; G : : o
Y Vietorise %19&.: I)I’)P) P 3 Gomory(1963, 1965), For a discussion,

&/
7

Vietorisz (1964:1DP)
Work in progress
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exccpt at the optimal solution itself, i,c., thcy do not balence out rll
resourccs: some may be overdrawn (in a bottloncek eondition), Thus, if
the algorithm is broken off before it terminstes, it will not yield
simrly a subeoptimal solution, but 2 hypereoptimel «ric: 2 "solution" that
is "too good" as it leeves some of the eonstrrints unsatisficd. Thus,

such 2 s>lution can bu uscd only s a bound: it shews thot no primele

feasible solution can bc hetter then the break--ff solution, but it gives
no clue to whet would be » geod primslefensible scolutions The latter hes
to be genernted independently by cnc of the techniques to be discusscd
below, Still, the bmind is highly uscful beerusc if any primal-fensible
solution is known, the bound indicrtcs how much rocm for potential further

improvement is still available,

4 new type of algorithm has boen published reeently 5/ thot, is far
mre cfficicnt £or cortain clrsses of rmblems: optimel solutions arc attoined
in a 1imitcd number of steps or, if the problem turns out not be have been

of the proper type, this alg rithm nls> yiclds n bound on the optimal
solutior,

1t sh-uld k¢ noted thet ~rdinnry linear programming (with integer
restrietions dropped) nlways yields ~n upper bound and (by rounding) a
sub=optimal solution and lower bound ns well, but these bounds generally

“tend to leave a wide range of unceriainty,

Somc mixed integer algorithms do generate primal-fcasible s-lutions 2/ .
These algorithms, if they foil to termincte, give simultancous upper and

lawer bounds on the velue ~f the optimel solution, Sub-optimal s-luti-ns
glving lower bounds on the valuc of the optimum may also Sc obiainced by one

of thc £111lowing devices:

1. Enumeration of individurl intcger combimations, perticulerly
in the erse of zeroe-onc type integer varinbles, If the number of
variables is small, the cnumerntion cen be complete, and the optimum

4/ Gomry(1965)
§/ Algorithms by R.E, Gomoryelted in Vietorisg (1964:IDP),
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can be sclceted by inspeetion; if the numbcr ~f ¢ mbin~tions is too larpge
t¢ be cxhnusted in this way, cortain types ~f combinations cnn still b
cnumerateds  Fop example, in the crse of loentionsl problims inv lving
several processcs, the totel number ~f plont combinsticns, prticulrrly
In midti-perind mdels, con cneily boeme unmenngenble but intogent. d
plants 2t individu~l lre~ti'n enn still “ften be cnumeroted, Cthop
scleeted eombin~ticns ean nlse be investigated nc by ono. The best f
the enumcratid solutins enn then be accepted -5 2 sube.ptimerl s-luti w
yieldirg 2 lowcr bound “n the ~ptimrl s-luticn, =

2, Steepest aseent and cthor gradient g_t_h;_r}_g.Z/ These trent the intog.r

programning protlem by a methoa similar ¢ grediont mcthods rpplicakle t-
eonvex problems,  This method wil' ~lways lead to a local wptimum, In the
case of ¢ .nvex proeblems a loeal ~ptimum nust 21s- bc an cveenll cptimun
while in the case of noneconvex problems, scvernl loeal cptimn may Cxise,
Gredient mcthrds will lead to one or ancth.p of thesc ~ptimn ncerding

to wherc the starting pint of the proccdure is chosens  Thus by attenrting
the ascent from several widely separsted starting prints, the chanc.s ot
hitting the -verell optinum arc improved,

3. In the erse ~f “ptimizing an -bjcctive function with 2 n-nec-nvex

preference get, sutb Jeet to lincar constrrints, an intcresting trinol -n

d

error algorithn is availatle -[thrt starts with a local optimum -nd .xpl r =
baale solutions systumatieally ar-und this loe-~l ptimum £op possikle
improvements in the ~bjective function, thcrcby ylolding & bettor preotabilicy
of attaining the “versll optimum,

By choosing » mixtur: of the aprre~ches noted chovey alm-st cny
integir progromming problem can be tacklod with a f2ir enfidenee of
est~blishing narr~w upper ~nd 1l wer b unds on the shlutdon,  If those ~ro
within error limits, the problem can, in fact, be taken as solvud,

¢/ See Viciorisg and Manne (1963)
2/ For a survcy, sce Victorisg (1964 IDF)

8/ Kornai et a% "Kathematical Frogramming of the Development of Hungarinan
Synthetic ‘:er Production” (in Hungarian) s Centre for Computing Techi:iqu:s,

Hungarian Academy of Sciences, Rudapest, s 1963, 190 pp. (mimeog).
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A further strategy, als” brscd n
the parameters of the problem can
within their own error linits, in
oombination thet is equivalent in
yet mey show improved convergenece

74 Work in progress,

@ rror limits, is the follcwing:

ke subjected to randmm veristions
the hope of generating n paranmeter
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ANNEX 11
Mathematjcal /ppendiX

The problcm stated in Table I £-1lows the condensed format cf Tucker
(4n Oreves and Wolfe, 1963), A full elgebreic statement is given below:

e 350 = LAKj- 1.25Kye 3%g-
. 2000 = 12,5%,= 7. $X,=6.0%;=
. 50 - K- Xy= +5Ky=
- =50 - 25K Xy
- =25

- <25

0,484,040y 5

T 0y 3elye., 8

- 3” - 2000 !1- ” 12.
1 o= lol= 12,5 Yl‘ !2

, == 188 T.5Y- Y
- 3= 6,0 "1' .512-
e = 2,5 7.0 !1- .2!2-
e 1,0 15,0 !1
e 25= 5.0!1

J, - - 06’ “QO rl

L 300’ 11.0 !1

> Ol O lgcc. 5
V4 0' J L l,oo’ 8

7.0x“.l5.0x5’ l&.OA;?‘ll ov}‘%

- .ZXs-
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The_gegtoral sub=problems, £511wing the Dantzig-"olfe decomposition
method, are:

Scetop 4
Max! Zl - pK (" l.lxl. 1.25)(2- .3)(3- 20 th) -
‘R (-1205x1- 7. 5}»2" 6.0)(3- 7.UXh)
03 L -” - .25)(24 XB XL
and \}i P Q, i1 » 2’3
XJ ¥ Oy 3 =lyensh
Sestor 2
m’ 22 - P‘ (" 1.UX5- 2. 5)(6- .6X.,- B.OXS) -

- P (-15.0X5- 5.0X= b «0 =11 .0Xg)
s“bk“ tﬂ U“ e 25 - xs. X6. .8)(7
0.5 b 25 - ozxs- .5X6Q xv. xs .
and ‘ (3'i 2 0, 1 &4,5
XJ e 0y 3 +5,..,8

In the o2bove expressions Py and n, spe constantsy in perticulnr Fx =1,
Depending on pl./pl( different optima to the sectoral subeproblems will b
sttrined & .  Designatc the totel capital and labour requircrents of ny
of these optima by =K, s"Lt. g Where t is the index of 2 given Hptimum, ~nd

g 18 the index of the sector (1 or 2),

The optima may bc extreme-point (vertex) >r homoguncous solutdus
(sce Dantzig and Wolfe, 1961). Hom guncous solutions indicnte
that the moximand of the sub=problem nny be expanded without limit;
in other words, the specific scetoral resourcc e-nstraints do not
mreclude such an expansion, If such a situ~*i 1 “ceurrcd in tho
full prblen, it wuld indieate that the problen was unbiunded; but
the solutions to the scetorsl subeproblems sre als) subjcct t tho
eonstraints on thc connecting rusources, nnd thus h mogenc ‘us
srluti-ns are permissiblc. Nonc such oceur in the prosnt
poblem.
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K SR AStCP PO can now be stated ns follows (in Tucker's ¢ ondenscd
;j format): 5 " J o 9 >,

. Min! LR SR SEE PR S

s s s s ] = s

R L ST e Y
0% 01=2000 <L, Ly <Ly <Ly Ly <by . b (< 1))
Oef =11 1 1 ' x Pl

o C-Opy = | R

‘ * R "
Gy S A R e A A of

(Thc intcrpretation in torms - f ordinary algcbraie cxpressiong £llows
the interpretrtion of the full problerm,)

] In the above formuletion, 211 the officicnt virtex solutd ns ~r.

b S included in the mester probler, I »10 those were in frct prusent,

the s-lution t> th. master problem wuld ~t one. yleld the overall
optirun,  The algorithn is bascd, hwever, “n just a pertinl 1list -f

such verticcs which initially dufine but » single fuasible starting
srlution, it any strge of the algorithe the ptimun t- the nnster

| ! problcm yiclds » sct Of shadw priccsy at these prices, 2ll voptices with

i psitive _ _ weights have zer) profits, while other vertices have negrtive
I ; prfits; n- positive profits ean “ceur at such an ptirum,
|

|

|

In >rder t) test whether the curront cptimunm ¢ the mastor probler
is als> an wverell optirum, it is attemrted + find 2 new vertex that
will shw ~ positive profit at eurpent shedw priccs, Sinec py nd Py
arc given, a profitablce new vertex «mew Must have the highest p ssiblo

| elgebraic valuc for the cxpressi n
| («Pgo K. = Pp. L)
thrcpl. ~nd Fp, are ~1so given The scet ral ewb-problems sclect the vert:x
‘which nrximizes the ab we cxpression in cach scetor, If the algebreic
f sun of P and this raximum is psitive for a seetor, vertex oS is profitable
‘ »nd the current ~ptinum t> the mastep problem is not an svepall optinus,
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The new vertex 4s then included in the 1ist of knwn vortices, and the
optimization for the mestcer problem is repeated, In the contrary easc
the overrll Hptimum hes been attedned,

Ve
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