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¿oonoaio aouilibrium versus Non-oonvexity 

i\ 

•) 

Almost all existing or proposed techniques of project eval- 

uation are baaed directly or indirectly on the notion of economic 

equilibrium» i.e., on the notion of a feedback mechanism that adjusts 

all prioes and quantities in an economic system in such a way that on 

the one hand, demands and supplies of all goods and factors and on 

the other, revenues and costs of all economic activities - production, 

transport, storage, training, etc. - are equilibrated. 

In its original version,  this notion oí  economic equilibrium 

was proposed as an explanation of the behaviour of actual markets under 

free enterprise;    later, as the shortcomings of the market mechanism - 

monopoly elements, limited effective demand, unsatisfactory distribution 

of income and wealth, frustrated growth - became widely recognized, 

equilibrium was still held up as an ideal which could be approximated 

in practice to a "reasonable" or "workable" extent.    Lately, with the 

advent of mathematical programming techniques,  it has become possible 

to isolate the notion of economic equilibrium completely from the 

behavioir of actual markets, and to replace the latter by electronic 

computer solutions to planning models with varying degrees of central- 

isation or decentralization.    In fact, the notion of economic equilib- 

rium oan be extended by means of computer solutions to models represen- 

ting many economic situations that even ideally competitive markets 

would be unable to realize in practice»    for example, multi-period 

t 

S 

/Ì-1- 

1/   On investment criteria in economic planning,  see for example 
Chenery (1953iAlC), Bohr (1954)» Oalenson and Leibenstein (1955)» 
Eokstein (1957), UN-Manual of economic Development Projects (1958)» 
UN-Div.Ind.Dev. (1963iBPP). 
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(dynamic, growth) nodale with terminal conditions imposed;    resource 

allocation models with limite set on the ability of the government to 

execute certain policies auoh as wage subsidization, and others. 

It has been known for a long time, however, that the notion of 

economic equilibrium has a limitation that cannot be overcome by minor 

modifications.    This was reoognized at firBt as the problem oí fixed 

costs, i.e. of diminishing average oosts as the scale of production 

increases.    It has proven to be generally impossible to reconcile the 

requirements of efficient resource allocation (marginal-coat pricing) 

with the need for oovering the fixed oosts incurred by the firm out of 

revenues obtained from product sales, unless two conditions are fulfilled: 

(i)    Average oosts, while falling initially as a result of the 

distribution of fixed oosts over a larger number of units, 

eventually level out (become horizontal) or even turn up, due 

to elements of increasing variable cost that offset (or outweigh) 

diminishing unit fixed costs. 

(ii)    The critical scale at which the average coats of the firm level 

out is much smaller than total production v/ithin the industry 

Under the above two conditions industry supply can be taken as 

the BUB of the critical scales of successive firms;    insofar as these 

critical scales are muoh smaller than total production within the 

industry, IPPIY can be approximated by a continuous function even 

thoughv  in actual fact,  this supply satisfies  equilibrium conditions 

only at selected lattico points representing the exact sums of critical 

soales. 

2/   Rote that the so-called "dynamic invisible hand" theorem (see 
Dorfman, Samuelson and Solow, I958,  p. 319) that extends the prin- 
ciple of sooial efficiency of perfectly competitive markets from a 
static to a dynamic context guarantees only that such a system, 
once locked on an efficient growth path, will Btay on it; but it 
cannot direct the system toward a growth path that satisfies exogen- 
ously determined terminal sooial objectives. 

•#* 
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It can thus be seen that even under highly ideal iced condi- 

tion«, the so-called equilibrium solution is only an approximation to 

what is now recognized as the optimal solution to a mathematical problem 

known as integer programming*    Recent theoretical advances in the 

latter field, moreover, throw doubt upon the validity of any such approx- 

imation, since they indicate that the solution to an integer programming 

problem that is obtained by rounding   (to the nearest integer) the 

optimal solution to a continuous approximation will generally not be an 

optimal  solution to the integer problem.*/ 

The situation, of cource, becomes even less satisfactory to 

the extent that the two basic assumptions are not satisfied.    If assump- 

tion (i) is satisfied (levelling out of the average cost curve) but 

assumption (ii) is progressively weakened (larger critioal firm sice 

in relation to industry production), then the process of rounding to 

the nearest integer will imply larger and larger percentage changes 

with respect to the continuous solution, and a greater possibility that 

the rounded solution will be strongly sub-optimal,    eventually, as 

industry production falls below the critical sise of a single firm, 

there will be a frank contradiction between the customary marginal-type 

efficiency conditions and the recovery of fixed costs through sales 

revenues.     The sane result is obtained whenever assumption (i) is 

dropped. 

¿/     for a survey see for example Dantsig (1963), ohap. 26} 
see also Oomory (1963, 1965). 

tJ.    Oomory (1965). 

m¡*mmam***m*'* 
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The presence of fixed coat» is a case of mathematical "non- 

convexity" leading to economies of scaled    .Such economies of scale can 

also occur in the absence of actual fixed costs, depending on the shape 

•f the production function.«    Other cases of non-convexity of interest 
to economic planning are i 

- indivisibilitiest the necessity of planning in multiples of 

standardised production units»    zero-one decisions on transport 
investments, hydroelectric projects, eta.f^/ 

- pre-emption of land areai    the fact that a given plot of ground 

(e.g. in a densely occupied zone) has to be assigned in a zero-one 
fashion to individual useaj^/ 

- either/or type constraints on feasible policy alternatives, etc.2/ 

It has come to be recognized that a decentralized decision-making 

system based on «¿near decentralizing instruments (master prices, admin- 

istratively determined planning prices, incentive systems with linear 

structure) is inherently unable to guarantee  attainment of an optimal 

equilibrium position unless all sources of non-convexity - such as 

fixed costs and others - are absent.    Therefore no project evaluation 

A point set *     is convex if the following holdst    if <   r \ 
•nd/, ' and,   >•.;  •- / then, - ;. .      ' "_ 

where i«I,...,n.    Applied to an available technology consisting 

of a collection of projects this concept of convexity means that 

«V »fltòM t^raffe of technically feasible individual projects 
will also be technically feasible.    Note that where economies of 

•cale are present convexity breaks down.    For example, if the 

actual capital input requirements of a process comprise a f¿xed 

input plus an input proportional to scale,  then two half-sised 

project, using this procès, will actually use more capital than 

m fW-»>wf projecti    in other words, the average of two half- 

sized project, (with equal weight.) will undere.timate capital 

requirements and will thus describe an infea-ible te hnology. 

T——IH/timtiHß*** •MP 
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oritarla that are basad on the notion of «concaio equilibri;« and 

involve correspondingly any linear version of pricing or other decen- 

tralising/control système, whether these be market prices, corrected 

opportunity costs, electronically computed shadow prices based on 

mathematical programming models, or administratively fixed prices in a 

planned economy/ can be relied upon with confidence in the presence 

of non-convexities.    As the case may be, they can turn out to yield 

acceptable results, but they can equally well result in gross 

mi«allocations. 

Two illustrations will indicate the kinds of outcomes that are 

possible when linear decentralizing instruments are used in the presence 

of nonoonvexities.    Chenery in The Interdependence of Investment 

Décisions (1959) constructs a detailed numerical example of steel produc- 

tion and iron-cre mining with strong eoonoinies of scale in a developing 

country.    The analysis reveals that either one of these two activities 

is profitable when the other activity is present, but is unprofitable in 

Ita absence»    thus a decentralised decision system based on profit (or 

social marginal product) misses an attractive Jß^ investment •pportunit*. 

y    Seonoaiea of scale often are expressed by an input function of the 
forai 

(y/y) -   U/x) f. 
where y and y are inputs corresponding to scales  x and x | 
the barred quantities are conetantai and X ie a constant exponent 
in the range ?*•• j- * l 

J/   See Viatoria« (1964). 

§/   Koopaans and Bedwan(1957). 

2/   See Dantsig (I960). 

10/    Ibr a discussion of different kinds of profitability indexe» used 
as decentralising instruments in a oentrally planned economy, see 
Cornai and Liptak (1962). 

'-:"%*>•)' 
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¿hen neither of these activities is yet established the decentralized 

decision maker looking at an activity in isolation will decide that it 

is unprofitablei   thus neither of the two activities can historically 

precede the other and the profitable complex of the two activities will 

never be attained.-/ Koopmans and Beckman in Assignment Problems and th» 

Itoomon of economic Activité (1957) construct an example ,rhich shovs 

nonconvexities involved in the assignment of productive activities to 

disorete locations that cannot be shared between activities.    lor 

example,  in an urban area a *iven block or plot ol  l^nd can n,t be 

used for both, a large shopping center and an industrial plant.    In many 

locational problems no such assignments are required»    for example,  11 

productive locations have to be chosen for industries that can locate 

at several regional centers that are at large distances from each other, 

the land requirements at these centers are usually very small in com- 

parison with the available industrial sites and thus several activities 

•UT easily locate at the same center.    The latter Kind of locational 

problem, are generally convex (unless economies of scale occur indepen- 

dently in the production or transport activities) and a stable price 

system exists that can be utiliaed for the definition of project 

•valuation criteria in the usual way.    In the former locational assign- 

ment problem, however, the present location of any activity will affect 

the cost, of all other activities in such a way that with aj* locational 

pattern incentives will exist for some producers to change their locations, 

and the possibility of a .table equxlibrium price system is negated. 

ihen significant non-convexities are known to be present - 

important industrial processes whose optimal scales of operation are not 

attained at the level of demand of a small country,  important decisions 

concerning investments in transport arteries, etc. - the only reliable 

W   KSÜTÍÜ tïierien°ïher
litatir *•»»«<*» of the interrelations 

nical interrelations Sr:sîe^a8:rrcr°
f "Il ""î" î^" to oomplementaritv bet•! ,  7e°U8Sed W Chenery;    they also lead 

*t.„£ •11£ ÎSrL ÄS T^ aonemet eoods- 
•i-1 .t «curing fetaîoï %££%' ÍS " ÎT"1"«^ ^tiviti^ progress;    in social-overhead investments 

(Cont'd) 

V 
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approach to the evaluation of individual projects is an overall analysis 

of all alternative projects within the framework of a mathematical 

programming model in which non-convexities are explicitly accounted for. 

finding the optimal solutions to such models is an analytical problem 

which is not yet satisfactorily resolved, but in many cases it is 

possible to get excellent approximations to the optimal solution. 

Integer programming is the analytical tool of choice in the 

formulation of such models.   A very wide variety of non-convexities - 

all that oan be thought of within the field of eoonomic planning - can 

be represented or approximated adequately by integer programming 

models. In these models» some or all variables are restricted to 

integer values instead of being allowed to vary in a continuous fashion. 

A survey of methods for solving integer programming problems 

is given in the Appendix,    ¡hile exact solutions to such problems are 

often very difficult to obtain except for small problems, several 

methods exist that between them allow the generation of good sub-optimal 

solutions, together with upper bounds on the possibility of further 

improvement;    thus the exact solution values can be approximated within 

a known margin of error. 

The activity soales and resource allocations corresponding to 

the approximate solution will not necessarily be close to those corres- 

ponding to the exact optimum, since there are many cases in which widely 

divergent near-optimal solutions are known to exist.** 

In planning practice the knowledge of the exact optimum is 

seldom essential, for the following reasons t 

V 
r 

¡18 

I 

rs 

11/ Contd.    (transport, energy, communication«) |   in housing and urban 
facilities)    in government and other public services.    See for 

aple Rosenstein-Rodan (1943, 1961 ) Hirschman (1938). 

¿g/ See Vietoriss (1964). 

13/ See the tabulation of the best 100 solutions out of a total of 
1024 enumerated combinations in Victorias (1964)*   A plot of the 
distribution of all 1024 solutions to the same problem is given in 
Vietoriss and Manne (1963). 

•i» »i i 
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1) optimising techniques are generally introduced into planning 

M an improvement over planning methods whose aim has been 

primarily the construction of consistent plans, »uch méthode 

aimed at consistency do give some attention to major overriding 

priorities but they do not curry out a systematic, iterative 

revision of all priorities such as characterizes any process 

of optimisation. 'Ihereas in solving a mathematical model 

the goal is to carry the iterative revisions to their logical 

conclusion, in the practice of plan preparation the number of 

revisions that can be actually carried out is necessarily 

limited by available personnel and time. Thus the goal is the 

more modest one of upgrading a feasible plan rather than the 

attainment of the exact optimum. 

2) The data upon which the plan ìB based are subject to error; thus 

the exact optimum is also subject to error and only an optimal 

HBÜ of solutions can be specified with confidence. 

3) The preferences of the decision makers can be described e¿ ante 

only in an approximate way, since final decisions always depend 

on a survey of meaningful available alternatives. Certain 

preferences, e.g. concerning the locational distribution of 

eoonomic activities, may not even be discovered until a given 

plan that ignores these preferences is presented in detail. 

Therefore no Slflgk optimal solution is acceptable as the result 

of planning efforts, what is wanted is rather a range of alter- 

native near-optimal solutions. 

• It 

tfhile an approximate solution to a nonconvex optimisation 

problem is thus entirely acceptable, the large possible divergences 

between the activity scales and resource allocations of different near- 

optimal solutions do pose a problem in planning.    This problem is related 

to the possibility of decentralisation.    In order to discuss this concept 

meaningfully, we have to explore the relationship between price-type and 

quantity-type control instruments in economic planning. 
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In »triotly convex   eeonoale systems there is an exact corres- 

pondence between the optimal solutions that can be attained by means of 

price-type or by means of quantity-type control instruments (see Figure 

1-a).    If, however, the system contains linear boundary segments (as 

occurs in systems described by linear models    see Figure 1-b)  this 

correspondence is destroyed»    it is for example possible to specify 

output combinations that cannot be attained with certainty by means of 

prioe-type control instruments, only by means of quantitative controla. 

Whenever price-type control instruments fail to guarantee the attainment 

of desired constellations of inputs and/or outputs, decentralization 

based on the application of such instruments alone becomes impossible. 

Thus it is also impossible to define project evaluation criteria based 

on such price-type decentralize«, and it becomee necessary to resort to 

quantitative controls, or to a combination of price-type and quantitative 
controls. 

15/ 

H/   A point set •        i, strictly convex J  *   c- 
i-    . i, v • 

/     • implies that{'¿} 
point of ¿     unless all k 

> 

I      .. /*     and 
is an interior 

ooincide.    this cannot be true if the 
point set , ••   has a linear boundary segment. 

^   S^^!fíîíîiìeldi!CUMÍ?n, Me Vl«toriBZ (1965 )• Appendix 1. In reference to figure la    , a combination of outputs such as 
^U bv fEíÍ? Production-possibility curve can be attained equally 
T Ì-   r     V P*i°Vati° (Une **><** f"i«* the quantities i or   *.,.    figure 1-b represents a system which is convex with 

«*r> *+<M l^   E* *?WWS.« ,A combination of outputs such as P   or  ^ 
Xt^ti\! ejually well by price or quantity-type control 
tb   IT nì   (  •*"      J by flXin* the priSe ratio.anywhere between 
21  *»» ¡I   , e.g. at Mi or by fixing /     or    / ,    however 

T^Tt SeTívllíV, ?    WhÍCh °ann¿t be unambiguously attained* 
M^Îl'SîîlSr TTv   *n8truaent8 alone.    Thus the price ratio 
¡olemînt aSv% ^    I   inJh* 8en8e that " wi" not initiate a movement away from point R   , but this price ratio will not assure 

St'StrS SA/L4*"** lnr »»«-Ai »"»«fi* 
toordir £ !*.!?       f !*? "UBbw of F°int0 »lonS «» sequent    PR.. 
control instrument (fixing either   A or     x      ) is indispensable. 

•**»—• 
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Tht same conclusion applies in practice whenever th« boundary 

of a «yetem haa segmenta that are indistinguishable fron linear segments 

within the prevailin|¿margin of error> and a fortiori when the boundary 

has nonconvex portions (Figure 3-c.) 

The full significance of these observations becomes apparent 

when their implications for multi-level planning are analysed.    Effective 

decentralisation of information flow in economic planning requires that 

only essential decisions concerning the economy aa a whole be taken 

explicitly at the top planning level, and that decisions of secondary 
17/ detail be relegated to lower planning levels.**'  iihat happens in such 

multi-level planning structures when linear or nonconvex boundary 

segments are present at the lower levels?    tfhat effect do such boundary 

segmenta havo on project evaluation?    These are the principal questions 

that require further analysis. 

16/   Ely reference to Figure 1-c which has nonconvex boundary segments, 
point P   can be attained either by price-type or by quantity-type 
control instruments.    Setting the price ratio anywhere between  b^ 
and  00, will lead to point   P   from any other point along the boundary! 
widening- this price range within the limits of  ¿a. and   dd  will still 
lead to point  p    from points in ita own neighbourhood, although not 
necessarily from points near  A  or near    B  .    Point   P  can also be 
attained by fixing either   *i   or   x2 

For the attainment of a point such as  R   , however, price-type 
control instruments become totally ineffective.    Whereas in the case 
of a linear boundary it was at least possible to specify a price 
ratio \ BT in Fig. 1-b) that would sustain point  R   , in the noncon- 
vex case even this fails.   A price ratio tangent to the boundary at  R 
yields an unstable stationary point at  R which corresponds not to 
the maximisation of the value of output (as in the strictly convex 
or linear oases), but to a minimisation of the same;   the slightest 
movement away from  Rat this price ratio will initiate further 
cumulative movement towards  P   or   * 

17/   Multi-level planning would be a practical necessity even if it were 
possible to obtain mathematical solutions to giant linear or integer 
programming models with many thousands of resources and activities. 
The reasons for this include the following.    (1)    Technical alter- 
natives are hard to formulate explicitly over a sufficiently wide 
range of factor prices.    (2)    It is inefficient to formulate alter- 
natives that will not be used;    for this reason, the compilation of 
information and its analysis should alternate stage by sta^e.    The 

(Cont'd.) 
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B.   The Pf90fF>tttop ftWPl« I" ttnfflT %ff^ftB 

Some of the phenomena that occur in multi-level planning 

systems can be analysed by means of the "decomposition principle" devel- 

oped originally for the solution of structured linear programming models. 

figure 2 indicates schematically the relationship between a two-luvel 

planning organization and the structure of a corresponding decomposition 

model.    In the latter model nonzero technical coefficients occur only 

within the shaded blocks (Fig. 2a) and it can be seen that these co-effic- 

ients occur only within the shaded blocks (Fig. 2a) and it can be seen 

that these coefficients fall into two broad groups.    First»  there are the 

coefficients of the so-called "special resources*' of each sector.    The 

special resources of Sector 1 can have nonzero coefficients only in the 

projects of Sector 1,    and likewise for the special resources of sectors 

2 and 3.    Second,  there are certain resources that may have nonzero 

coefficients in any sectoral project;    these are designated as "connecting 

resources".    It will be noted that in addition to sectoral projects that 

form the columns of the table there is also a column designated as 

"exogenous" (first column).    While it is assumed that the scale at which 

each sectoral project can be carried out is variable,  the scale of the 

¿J/ Cont'd.    ..latter process can be carried out most effectively near 
the sources of technical information in individual Bectors of the 
eoonomy.    (3)    The structure of a large model cannot be intuitively 
grasped, and therefore its blind application is hazardous;    this 
difficulty can be overcome by coordinating a number of smaller modele. 
(4)    Plan formulation must take into account the modes of execution : 
this requires familiarity with technical detail that is readily avail- 
able only near the operating levels.    (5)    Plans have to be readjusted 
to changing circumstances in the course of execution.    Many of these 
ohanges show up at or near the operating level;    thus planning capa- 
bility at lower levels facilitates efficient adjustment to auch 
ohanges.    For a discussion of some of these points see Clopper Almon 
(in Dantzig, I963, pp. 462-465), and Vistorisz (1963IS£K). 

¿fi/ Dantzig and rfolfe Ü96I),    see also Dantzig (1963), Oooory (1963:IKC), 
Kornai and Liptak (I965). 

fi 

'V      • 
1 tj'i » Hi.  . U.,.,*,,,. ,»,, „,, 

" iir'niiiìiiìair'.'TitT T ''"»u 

«f* 

"41- 

• Ulli IK    II Wi mmmmm MHMMM» 



-11- 

noujg 2 

mm® 9f PKPNPfflTTOf mm 
Í 

I 

CENTRAL 
PLO   OPflCE 

I 
PLO OFFICI PLO OFFICE 

POR     1 FOR 
SKTCR 11 SECTOR 2 

ko OFFICE 
I     FOR 
I SECTOR 3 

• 

SECTOR 1 SECT0R2 SECTOR 3 

Vry^csSS mA/y   \     -'• '    Wm//7/ < S\ llcm 

r^ * S V     / ,' S    i I 'I     o\esntr 

1)C0HNECTEW 

[RESOURCES 

PRO* H0JECT8. 

ECIHL RE- 
2>SOURC3S OF 

; 3$3BC- i 

! 

I   ^SPECIAL HE- 
»   2)3oURCr.3 OF 
I   3^3EC. 2 

S/sfyy//'''/    ^SPECIHL RE- 
•SjC/'y/S1   2>S0UnCE3 OF 

\ 
ASEC. 3 

, 1     PROJECTS, SEC, 2   PROJECTS, SEC« 3 
3        12 3 12        3 

iüWffitfTTfl fí» 

'4^f— "W ni'ijii'Hiif '111 I ¡»I 

'•''•• ¿MP 

.».»¡»'Mi #11 K^Wj|Mtoji''"|ijé^1» »   il»Wui»i|i|i»)wJAM8" Mlflll I» 

MM 

~-**f*» -m ^11 1 ^'(irmi'ii1111 



-u- 

1 

e 

exogenous column is fixed.    This oolumn usually contains the given total 

supplies and demands of each resource.    The task is to find a "plan", 

i.e. a combination of project scales, that is consistent with the fixed 

resource supplies and demands, and that is in Lome sense efficient. 

Efficiency is defined in terr¡"3 of maximizing the output or minimizing 

the input of a chosen connecting resource. 

In such a structured model the consistency and efficiency- 

oriented decisions concerning the connecting resources correspond to the 

central planning level of a two-level planning organization, while the 

same kind of decisions concerning the special resources of the sectors 

correspond to the sectoral-level planning offices. 

To what extent is it realistic to assume this special structure 

in decomposition models describing entire economies?    The answer to this 

question hinges on the importance of direct interrelations between 

different sectors, manifested by coefficients of significant magnitude 

falling outside the shaded blocks in Figure 2a.    It is known that when 

economies are described by input-output models these models can be 

arranged to an excellent degree of approximation in a blook triangular 

form.   The connecting resources of s, decomposition model can thus be 

tentatively identified with the inputs of primary factors and with the 

inputs of resources (such as energy and transport)  that occur near the 

base of the triangle of the rearranged input-output models*    the remain- 

ing resources of the latter would then be treated as sectoral resources, 

with sectors delineated in such a way that interactions between sectors 

(other than via the connecting, resources) be kept to a minimum.    Such 

an approximation can be confidently assumed to be a reasonably good one 

for many economies;    one may assume that corrections for direct inter- 

actions between sectors could then be undertaken by a few iterative 

revisions of the plans arrived at with the aid of the simplified 

description.** 

¿2/   The structure in Figure 2a is referred to technically as "angular"; 
it yields the simplest relationships between the connecting and the 
sectoral parts.    The mathematics of blook triangular systems has 
been explored b„ Dantzig (l9i|). 
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It should lie noted that the decomposition structure described 

above is not the only approximation that can be applied to multi-level 

planning systems.     'hile in this structure the resources subject to 

central decision  (the connecting resources)  and the special resources 

of the sectors form mutually exclusive classes, it is possible to define 

a system in which the resources subject to central decisior are aggre- 

gated representations of the many detailed sectoral resources. „-The 

logic of this kind of a system has been described quali tati velyout 

has never been subjected to exact analysis. 

Table 1 offers an illustrative numerical example of a decompo- 

sition model.***     The model has two sectors with two special resources 

in each}    and two  connecting resources:  capital and labor.    There are 

four possible projects in each sector;     the scales of these projects 

are variable and are designated by X....X.  for sector 1, X_...Xg for 

sector 2.    All numerical data obey the foliowin6* si^n convention: 

outputs or supplies are positive, inputs or demands are negative.    Thus 

the capital and labor coefficients of all projects are negative (inputs); 

there are however exogenous supplies of these two factors, amounting to 

350 units in the case of capital, and 2000 units in the case of labor. 

Onoe the scales of all projects are chosen in formulating a trial "plan", 

the flows of all resources are determined, and their balance can be 

verified.    The difference between (1)  all outputs and exogenous supplies 

of a resource (positive signs) and (2)  all inputs and exogenous demands 

(negative signs) is defined as the surplus of the resource.    If the 

surplus is zero,  there is an exact balance;     if positive,   the resource 

is redundant;    if negative, there is a bottleMfJt,     in this problem, 

'! 

H 

¡2/   UN-ECAFE (1961tFlD), Chap. 2. 

¿J/   The coefficients of this model have been based (with some necessary 
ohanges and additions) on a small illustrative model used by 
Chenery (I9581DPP), Table 2.    Fixed-cost coefficients have been 
added)    they are not used in the linear version of the model. 
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economy in the use of capital is chosen ae the criterion of the efficiency 

of a plan»    this is expressed by maximizing the surplus of capital.    This 

formulation can be intuitively interpreted as follows:    suppose 350 units 

represents the limit of capital stock that can be built up by saving and 

foreign borrowing!     yet it is desired  to cut back on the need for this 

saving and borrowing as much as possible.   At the same time consistency 

of the plan requires meeting prescribed demands and keeping within avail- 

able resource supplies;     the latter conditions can be simply expressed 

as the avoidance of bottlenecks in any resource use 
2£j 

The model also determines the shadow prices of all resources. 

The price of capital is chosen as the HnumeraireM resource whose price 

is set to unity and in terms of which all other prices will be expressed. 

The revenue (positive sign) or cost  (negative sign)   due to any resource 

can be determined once the shadow prices are ¿iven.     the technical 

coefficients of a project are simply multiplied by  these shadow prices. 

The difference between revenues and costs is the profit for any activity 

(     variables in top margin).    It is an interesting property of linear 

programming models that in solving   for the most efficient set of project 

scales "X" that optimize the allocation of resources, a related "dual" 

problem of valuation of these same resources is also automatically 

solved.    This problem consists in choosing shadow prices "Y" so as to 

minimize "profits" on the exogenous activity while  profits on all projects 

are eliminated (as though these projects were in perfect competition). 

(See Mathematical Appendix). 

The illustrative decomposition model of Table 1 is Bimple 

enough to permit a graphical representation by moans of an %eworth 

box diagram,    (bee Figure 3.)    In this diagram the  total availabilities 

of the connecting resources (350 units of capital and 2000 unitB of labor) 

form the edges of the box.    Resources used in each sector are measured 

22/   îbr an interpretation of the system of Table 1 in ordinary algebraic 
equations, see Mathematical Appendix. 
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along the edges in opposite directions;    thus any point in the diagram 

ia a simultaneous representation of 4 variables; capital and labor used 

by Sector 1, and capital and labor used by Lector 2. 

Points At B, Ct and D in the diagram represent four different 

complexes of projects that oan be formed from the activities X....X. of 

Sector 1; points ¿,F,0, and H represent similar complexée formed from 

the activities of Sector 2.    ¿¡ach of these complexes contains two 

projects»    this is the smallest number that permits satisfying the 

balances of the special resources in each sector.**   Table 1 contains 

a listing of the project scales and the total capital and labor require- 

ments of each of these complexes;     the respective project-soale variables 

are shown near each point in the graph.   In preparing the graph in 

figure 3, the efficient complexes of eaoh sector have been connected by 

a line.    Point C represents an inefficient complex in Sector 1 since it 

has larger requirements of both capital and labor than point B;    thus 

it will never be attractive to use oomplex C.    Likewise point 0 represents 
94/ 

an inefficient oomplex in Sector 2,aa/ 

The points along a line connecting two complexes, e.¿. A and B, 

represent weighted averages of these two complexes.    For example the 

midpoint       of the AB line represents an average oomplex that is formed 

by running projects X. and X, of Complex A at half the scales shown in 

Table 1 (X. - 37.5» *2 " 
25)*    likewise running projects Xg and X^ of 

Complex B at half the scales shown for B in Table 1 (Xj • 42.638, 

X. m 35.715)| snd summing the corresponding project scales (only Xg requires 

g\J   These complexes are extreme-point (vertex) solutions of the HW 
problem« of Sectors 1 and 2.    These subproblems are defined 
algebraioally in the Mathematical Appendix and are discussed later 
in the text. 

i 

• 

2A7   Inefficient points need not use more capital and labor than any 
one point suoh as B or l\    it is sufficient that they lie northeast 
(for Soo. 1) or Southwest (for Sec. 2) of the line connecting such 
complexée in any sector. 
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Minutions thus ^ « 37.5, \ - 67.858, Xß - 35.715).    It can be veri- 

fied by simple algebra that the labor and capital inputs of the averag<-l 

complex fall exactly halfway between the labor and capital inputs of 

points A and fi.    In the present cace the weighting was  .5 and .5. 

Points other than the midpoint are obtained by ut-ing weighty in diff- 

érent proportions.    The weights may vary from 0 to 1 and they huvt:  to 

add up to unity.    As long as thie weighting ruie is observed  it in 

guaranteed that the special resource balances of each sector will be 

satisfied by the averaged complexes, even though the graph contains 

explicitly only the connecting factors.    In addition to points lying on 

the connecting line between complexes euch as A and B,  the same 

guarantee applies also to any other point that can be attained starting 

with the former points and then disposing- of (wasting,  throwing away) 
some capital and/or labor. 

The two curves in Figure 3 can be regarded as generalized 

iso-product functions for the two sectors that describe the alternative 

combinations of the connecting factors (capital and labor) that can 

produce the given output of a sector.    What is this »given output"? 

It cannot be identified with any single product since all special 

sectoral resources are on an equal footing and none can be regarded 

as »the» product of a sector$    it is thus convenient to  think of 

•ectoral output as the entire task of satisfying the special resource 
balance«. 

n» hort.ont.1 and vertical extenaiona of the tuo eectoral 
our«, to «he coordina«, „e. correspond to conventional ueeaBe in 
.concto.,    «ta» .lgnifjr f„e „j.^ of redunaant 8urplusee of tho 

oonn.oting faotor.j, a. mentioned above. 

Wgur. 4 provide. . graphical illustration of alternative 
..«hod. available for ftita« a„ opt^ .olutio„ t0 the nodel.    ,uch 
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A "feasible solution" is a plan that satisfies all resouroe 

balano«« but is not necessarily optimal. Points B and T Jointly 

represent such a plan. Point B on the iso-product line of Sector 1; 

thus it is sure to satisfy the balances of the special sectoral resources 

in this sector; point T is on the iso-product line of Sector 2 and thus 

satisfies the special resouroe balances of doctor 2. The labor require- 

ments of the tuo points add up to 2000 and thus satisfy the labor 

balano«. Accordingly all resource balances are satisfied and the plan 

is feasible. In order to determine whether it is also optimal, the 

capital requirements are identified: by inspection of Figure 4 they 

oan be seen to leave a capital surplus exactly equal to the vertical 

distano« BT. It remains to be decided whether other feasible solutions 

exist that leave a larger capital surplus. 

Not« that point B is one of the complexes of Sector 1 that hae 

b««n presented in Table 1} while point T represents a weighted average 

of complexes E and F of Lector 2. This solution is labeled as "B^P 

by reference to the sectoral complexes forming it. Table 2 (line 12) 

contains a listing of the quantitative characteristics of this 

solution including labor and capital requirements in each sector, 

capital surplus, and the weights used for averaging in each sector. 

In Sector 2 these weights are .926 and .074, respectively, for points 

S and Fj in Seotor 1, th« weight is 1.000 for point B since this 

complex appears alone, without bein^ averaged with another complex. 

In general a feasible solution will be obtained when one point 

is selected from the iso-product line of each sector, attention being 

paid to Joint labor requirements, ./hen the two points fall on the same 

vertical line the Joint labor requirements add up to 2000 unit«! when 

the point for Seotor 1 falls to the left of the point for Sector 2 there 

will be an amount of redundant labor equal to the horizontal displacement 

between the two point« (for example, when the combination A¿ is chosen); 

conversely when th« point for Sector 1 falls to the ri*ht of the point 

for Sector 2 labor will be in a bottleneck condition (for example, 

combination BE).  Sinoe it is generally inefficient to leave labor 

b' ,.\f 
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redundant, a convenient strategy for selecting feasible solutions in the 

course of optimization is to choose two points that lie on the inter- 

section of a given vertical line with each of the two sectoral 

iso-product functions. The vertical distance between the two points 

measures the capital surplus corresponding to the given feasible 

solution*  The geometric determination of the optimum is now obvious: 

it consists in selecting the vertical line th,;t maximizes the distance 

between the two sectoral iso-product functions. In the present case 

the optimum is attained at AN, point N is a weighted average of 

complexes E and F in Sector 2. The solution, designated as A^F. will 

be found quantitatively described in the sixth line of Table 2. 

This geometric method of finding a solution is not applicable 

to larger problems; Dantzig and jolfe (I96I) have however provided a 

generally applicable method which can also be followed by means of the 

graphical presentation in Figure 4. (^ee also Tables 2 and 3.) 

Dantsig and jolfe break down the overall problem into two 

parts* a "master problem" and "sectoral Bubproblems". (These correspond 

to central and sectoral-level planning decisions.) The master problem 

is formulated in terms of the connecting resources, in the present case 

labor and ospitai, and it is pieced together by averaging Known sectoral 

complexes. The graph in Figure 4 represents this master problem. The 

master problem also determines prices for the connecting resources; in 

the present case, a price ratio for labor and capital. The sectoral 

sub probi ems, on the other hand, systematically find previously unknown 

sectoral complexes for inclusion in the master problem. The sectoral 

subproblems do not explicitly appear in the graph of Figure 4» hut com- 

pliance with their balances is guaranteed by the averaging rules discussed 

above. The starting point of the technique has to be one known basic 

feasible solution to the master problem; given such a starting point, *2/ 

J, 

1 

35/ If no basic feasible solution is known that would be suitable as a 
starting point* it is possible to construct one by algebraic tech- 
niques.    See Dantzig and  iolfe (I96I). 
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the interaction of the two part« of the problem guarantees the attainment 

of the optimal solution in a finite number of steps. 

A basic solution contains the smallest number of nonsero varia» 

bles that is oompatibie with the number of equations.    In the master 

problem ira have four equations (see Mathematical Appendix)     one each 

for balancing capital and labor requirements, plus one for describing 

the averaging rules for complexes in each sector.    The variables of 

the master problem are of two Kinds;    first, the weights to be applied 

to the individual complexes of each sector, and secondly, surpluses of 

labor and of capital that can also be interpreted as disposal activities. 

How many of these variables must b« nonzero?   Generally at least four.**' 

One of these will be the capital surplus . _ which is being maximized} 

the other three may be three sectoral complexes> or two complexes and 

the labor surplus (disposal) activity, .    In Figure 4 basio 

feasible solutions are obtained by selecting intersection points of a 

vertical line with the iso-product curves, as before, but with the 

additional restriction that the vertical line has to run through a 

vertex (a point for a single complex) in one of the sectorsr-*   Solutions 

BEF and A¿F that have been mentioned before are such basic solutions, 

A 

i 

2£/     The number oí variables including slacks (surpluses) in a linear 
programming problem exceeds the number of equations,    the diff- 
erence is known as the number of degrees of freedom of the system. 
A corresponding number of variables can be arbitrarily fixed, 
whereafter the values of the r^nai ninfe variables are determined 
by solving the system of simultaneous equations.    If the pre-set 
variables are assigned the value of zero we get a basic solution. 
In addition, by coincidence, the solution value of one or more of 
the variables that have not been pre-set may also turn out to be 
sero;    in this case the number of nonzero variables .all be ¿ess 
than the number of equations.    Such a solution is termed "degenerate". 

i 

A» 

¡¡¡/     Degenerate solutions are obtained when by coincidence complexes 
in both sectors fall on the same vertical line. 

•ap* »TT^^Cf,—TT1 
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but solution ABE? corresponding to the vertical line Vi is not, Lince 

it contains five nonzero variables!    capital surplus (the raaximand), 

plus non-zero weights for each of the four complexes    * and B in steter 

1, and '¿ and F in oector 2.    In addition a solution such an AJH JOIT-R- 

ponding to the vertical line À     is also a basic feasible solution, 

even though it is off the iso-product line of Sector ¿t  since the p.jir,' 

/     can be obtained by averaging the two non-neighbouring complexe? 

E and H.    This point is of course not efficient since it could als-  be 

attained by starting .fith point N on the iso-product curve and then 

wasting some capital (correspond^ to the distance IIA     ) .«2/ 

In the mister subproblem not only the starting solution but 

all later solutions also have to be basic.    The reason for this i^ tr^t 

only basic solutions determine a unique price ratio for labor and 

capital which is needed in the sectoral subproblems.    In a basi^ solu- 

tion the price ratio is fixed by the slope of the averaging lin* ív¿7>n* 

that is intersected in one or the other of the two sectors.    If the 

solution is nonbasic such as ABüF the vertical line V.l intersects line 

segments, generally of different slopes, in both sectors rather than 

passing through a vertex in one sector. 

Let us now trace  the course of optimization, usint the Jant£iF;- 

iolfe algorithm, by reference to Figure 4.    ¡suppose the starting point 

is at the vertical line HI.    This corresponds to a basic feasible 

solution (labeled "AG,' H» in Table 3) in which complex A in Lector 1 

and complex H in Sector 2 appear with unit weights;     thus 2 weighting 

variables are nonzero.    In addition there is some labor disposal:    thu* 
the labor surplus variable ;» will also be nonzero;     its value 

¿g/   Basic solutions need not be feasible.    If the solution value of 
any variable (a weight or a slack)  turns out to be negative the 
solution is infeasible.    In the graph of Figure 4 basic but ir.iVu*- 
•í\r Ï,    nBare obtained if the vertical line is made to intersoc» 
not the line segment connecting two vertices but  the continuation 
of such a line segment beyond one of the vertices.    This represents 
¡ÜÍK        u^ì- Weiehtin* of «» two complexes,  with one weight 
ZZTrl ?    *îe °îher exceedi"« unity.    See for example poin? I 
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oorresponds to the distance AZ, which amounts to ^37*5 unite.    The value 

of the maximand (the capital surplus variable .J,    ) corresponds to the 

distance AI, or 27*5 units. 

ie assume that at this point only complexes A and H are known. 

While in this problem there are in all only six efficient complexes, 

in larger problems the number of possible complexes increases combin- 

atorially and thus at the beginning of the optimization there exists 

very little information concerning alternative efficient sectoral 

oomplexes.    The task of the sectoral subproblems is precisely to 

identify previously unknown efficient sectoral complexes for inclusion 

in the master problem. 

Looking at it another way,  if all the efficient sectoral 

oomplexes were known from the very beginning the optimal solution to 

the master problem would immediately identify the optimal solution tò 

the problem as a whole,    bince, however, we are generally working with 

an incomplete list of complexes, we need a techniquo that will generate 

new complexes;    and specifically, we have to generate those complexes 

that are needed for the optimal solution of the overall problem without 

having to enumerate all possible efficient sectoral complexes,    '.ie 

shall now indicate how the sectoral  subproblems are utilized for 

achieving this aim. 

In the starting solution the price ratio between labor and 

oapital is determined by the slope of the line segment A I;    in other 

words, the price of labor is zero.    The price of capital is unity by 

assumption.   Using these relative prices, the sectoral subproblems 

ma^mise the oombined value of the connecting resources.    In the 

present problem the connecting resources appear as inputs;    thus we 

are in effect minimizing their oombined cost.   At the same time,  the 

seotoral subproblems have to satisfy the balances of the special 

sectoral resouroes. 

rfhile in the graph of Figure 4 we do not show the special 

resource balances of the sectors in an explicit fashion, they are 
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nevertheless allowed for by means of the averaging rules applicable to 

complexes.     Je know that the straight lines connecting the points corres- 

ponding to the sectoral complexes represent weighted averages of 

complexes}    as long as the complexes themselves satisfy the special 

sectoral resource balances,  these weighted averages will also do the 

same.    In addition,  we know that whenever we take one of the points 

corresponding to the complexes or their weighted averages and we sub- 

sequently dispose of (throw away)  some labor or capital, we are still 

certain to satisfy the sume sectoral balances.    Thus we can map out 

feasible areas for both sectors in the graph»   these consist of the iso- 

product lines plus all the points falling on the concave sides of these 

lines.    Whenever a point is chosen within the feasible area of a ¿iven 

sector, it can thus be guaranteed that the special sectoral resource 

balances are satisfied.    In this way we can use the graph of the 

master problem to represent possible solutions to the sectoral problems. 

The question arises:  in maximizing the combined value (minimiz- 

ing the cost) of the connecting resources in the subproblems, using the 

price ratio of the starting solution, do we discover new complexes that 

are "more efficient" in some sense than the ones already known? 

In the graph the combined value of the connecting resources is 

represented by bud»,et lines whose slope equals the price ratio between 

labor and capital and whose intercept on the capital axis measures thir 

combined value.—*'     The optimization in each sector is represented by a 

parallel shift of the budget line in such a way that the combined value 

of connecting resources is increased (combined cost is decreased), 

while maintaining at least one point of the budget line within the 

feasible area of the sector.    In Lector 1 this procedure leads to point 

A which had already been known previously; but in Lector 2 the optimum 

¿2/    The budget line corresponds to the equation 

PL.(-L) r PK. (-K) . (-z) , 
ort 

(-K) -    (-Z) - PL.  (-L)  , 

sinos P„ • 1 . On the graph the axes correspond to (-K) and (-L)i 
thus (-1) is the interoept on the (-K) axis. 
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corresponds to a new complex ¿ whose exact capital and labor requirement« 

are disclosed by the optimization process. 

In what sense oan we assert that complex E is more efficient 

than previously known complexes? 

In the starting solution complex H was the only known complex 

for Sector 2. The combined cost of the connecting resources for this 

oomplex oan be read off by tracing a budget line with slope 0 to the 

oapital axis of Sector 2J in the graph we read off 225 units at    •}?._ 

(this same value will also be found in Table 2 , in the line of solution 

0 labeled "A. , H" , under V2)* The combined oost for complex E 

is however only slightly under 90 units as read off in the graph at - 

(89.3 units under -s2 in Table 3). Consequently the inclusion of complex 

£ in the solution promises a combined coet improvement of 225.0-89.3 - 

135*7 units , at the prevailing prices» 

V 

&'• 

l 

30/    pu is a bhadovr price in the matter problem that sorre&ponds to the    • 
equation describing the averaging rule for Lector 2.    (bee Mathematical 
Appendix.)     whenever a complex is. included in a basic solution, i.e., 
when its weight is nonzero,  the shadow proiit ior the column of this complex 
has to vanish.    The mathematical reason ior this is the well-known rule 
of complementary slacks applicable to linear programming problems;   in 
eoonomic terms the solution enforces perfect competition between all com- 
plexes included in it.    Consequently the shadow price ja- and the combined 
value of the connecting resources have to add up to zero;    in other words 
the combined value equals -p2 . 

Po can cwnveniently be "interpreted a« a "subcontracting f*o.w Tho 
master problem in efiect places all complexes of a sector in competition 
with each other for the privilege of periorming the task of the sector, 
namely satisfying the balances of the special sectoral resources.    .ttich- 
ev^r complex Vcomplexes can perform this task at the lowest subcontracting 
fïe will be selected to do the job.    At any sta^e,  the successful complexes 
will just break even;     their combined cost for the connecting resources at 
the prevailing prices will just e^ual the subcontracting fee.    The solu- 
tionis mtsïer problem can, however, be improved as lonjas sectoral 
optimisation will disclose new complexes that can make a profit at the 
prevailing prices and prevails subcontracting fees.     ,hen this is no 
longer possible, an overall optimum for the entire problem is attained. 

.    nil MBUliflliini' <OTIlV7nli|lfl''lBiü MjfllB" 
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III ord.r »o pue from the «tertio eolation to the next solu- 
tion of th. „..«„ JßMm m will no„ want to lnclude _. in the ^ 

bine, the Bolution L to he baeic, however, we „in „.vc to drop .,on„ 

other .«pi« or the lahor eurplu. (dlapo.al) active TaHe , ia¡; 

th. three choice. available for dropp1% ^.iM„ anJ ths oorrecponJin ," 
.oiutio».   (a. oapital 6urplus Mtlwt/ wh.eh is to ba ^^^ 

»e«r topped.)    If m top complc.x „ „ are 1>ft ^ ^ " 

Sector 1. and »hue ,e have an infoaeibUUy.    If w, drop    ,.; 
•olution ^ „hicb ,lelde an average complei ior ^ 2 at «-> 

»hiohi.fea.iUe.    If we drop eo„ple, H we ,et „iutl.n A ...    . which      ' 
lead, to point J for Sector I¡    an ini«-,-ih, . 

,„        ,     , iníeatiMe point, iaplying a netativ.. 

STi •£i2,) r "ehavB °ni' •- '•»»•—«I««»»... • ma le labeled as solution No.  1 in rable 3# 

AEH déterminée a price ratin „<•   y»o~ u  >. 
n.r,4*-i      ^. *42¿ between labor an<i 

optimization in both aectoral «ibproblea..    in .i9ct0r ,    tl%„ 
oomnlo» io *      4^L •^ö'-xor i,   the new 
oomplex is B,  with a combined cost of connects    • 
(-•     Ì      ca« , «onnecun^ resources ewual to 
t-*u) • 530.7}    while in Sector 2 the n* / •    , 

* »12 ' • 488.8.      The cost i.aororcnpn* ».  i   * 
AEH can be determined b, no 1J*•*«ent relative to aolutxon 
Sector 1    ».-   ». by «»P^Bon ,ith the combined cost of Â ir Sector 1 which equale 5Ö0.7 U     in - „,„   „      , * ir* 

combined coat of either „ „?Mf ^       '  ?° *" ^ 3'" "* ^ 

«• tKu. 39.0 and 76.3 unite in .,ect„E ,    „., "" i»*»««"»f tot"rs x ini1 2. rospeotively. 
ather one of these new couple,.,. « „ h. 

«tati« of the Meter probi•, to   «    T " ^ th<i 

« L. »»»vr, preferawe to i„clud. Z ZZT1 '\ ^ "^     "    ' 

—» F.   once a^n it beco.ee „eceeeX ,     Z T "^ im,>^0Vene",• 
Station i„ order to re.^i„ tas. the"^ j° d"P " »«**• ft°" ">^ 
th. U„. of Sdutto« 1 u IaM. 3' j.he
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Lenti 

la ALF.    This solution determines a price ratio of 0.106 (equal to the 

•lope of the sèment üP)| at this price ratio the budget lines disclose 

no new complexes in the course of the sectoral optimizations» and thus 

the solution AiáF turne out to be optimal. 

If at the stage oí solution 1 complex B had been included in 

the next solution rather than complex F, the path of optimisation 

«mid Uve been slightly longer. In this caee BJH turne out to be the 

next feasible solution» the price ratio remains .422 as in Solution 1. 

Ht  this price ratio F is still prêtent with a potential improvement and 

thus it is the next complex to be included in the master solution. The 

next feasible solution is obtained by dropping H; thus solution No. 4 ia 

BEF, with a price ratio of 0.106. At this price ratio point A appears 

as an improved point in Lector 1, the next feasible solution, alter 

dropping B, is A^F, the optimal solution. 

From the point of view of project evaluation the significance 

of this analysis of the decomposition algorithm is that it discloses 

the fact of the insufficiency of price-type control instruments in 

attaining an optimal solution. As already discussed by Clopper Almon 

(in Dantsig, 1963, PP 462-465) the central planning ofíice cannot 

guarantee the balance of connecting resources merely by setting the 

prices of these resources, since in a solution such as A^F the price 

ratio ¿F will not guarantee that Sector 1 will choose to produce 

exactly with the weighted average M of complexes ,i and F. Faced with 

the price ratio ZF this sector may produce at any point along the 

segment iSF, since all points along this segment are equally optimal at 

the stated prioe ratio, and there is no preference between them as far 

a. Sector 2 alone is concerned. If the central planning office wants to 

nate sure that the connecting resources will be adequately balanced it 

has to prescribe either a weighting of complexes o and F in Lector 2, or 

a <ïuantitative allocation of labor and capital to this sector. At the 

same time, bector 1 can be adequately regulated by the price ratio alons, 

sinos at ths given price ratio it has a unique equilibrium position 

at A. 

1 
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An interesting feature oi  the practical application oí' control 

instrument« in this situation is that the central planning office vili 

find it worth while to use both price and quantity-type control in¿tru- 

aents, even though their joint utie will bo redundant in .Sector 2. 

"They (the Central Trade ofiice)  announce in quantitative 
terns their feasible plan.    They tell each plant mana^r 
how much of each traded commodity he must produce and how 
much he is allowed  to purchase... .They also announce the 

prices and direct  that trade be conducted at theao  prices. 
The./ ma./ also instruct the managers.; that,  subject  to tneir 
»sating the quantitative Koals.. .they should alno ia^jci.:áze 
profits.    Such a rule is intended as a »cuide to avoid poBi^ibl« 
waste in the event that ¿ (the quantitative f',oal)  is not 
precisely achieved for one reason or another.    It is important 
to note that they cannot  tell  the ¡aana^ers üiuply  to :aaximi¿e 
profits (omitting production ¿ouls,  ^)  for if they did, 
Central Trade would almost certainly have difficulty i/ith it.- 
constraints." 31/ 

At the project level, this incufiiciency of price-type control 

instruments is translated into the insuixiciency of the ueual  price-tyje 

project evaluation criteria, and calls attention to the fact  that there 

is an inescapable minimum oi quantitative control that has  to be exercis*  i 

even in highly decentralized systems.    This does not mean,  of course, 

that multi-level planning ie useleesj    on the contrary^  it reinforces 

the need for such planning,  since it indicates that a decentralised 

market mechanism without a central deciaion making level will encounter 

the same indeterminados that characterize the ;uulti-level  planning 

system with pure price-type coordination.    Multi-level planning is at th< 

same time preferable to pure central planning, bince it results in an 

eoonomy of information flow.    It should be noted that the master probi e::. 

in the decomposition algorithm requires no information on special .ject.>r.:i 

resouroes and on particular sectoral projects or activities,     it handle 

this information in an indirect fabhion by means of delineating feasible 

regions for each sector on the basis of averting known sectoral complex«- 

¿1/    Almon in r*nt«ig (1963), 464-465. (emphasis added). 
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3. 

The decomposition algorithm oi Dantzig and 'Jolfe is not the 

only one that can be utilized for coordinating the master program with 

the sectoral subprograms. Kornai and Liptak (I965) have proposed a 

multi-level planning system in which the information flow is the 

reverse of that in a Dantzig- ¡olfe system. In a Dantzig-iolfe decompo- 

sition the master program signals prices to the sectoral subproblems and 

the latter signal combined utilizations of interconnecting resources 

by particular complexes to the master programi in other words, prioes 

flow downward, quantities flow upward (except for the f¿nal quantitative 

control objectives fixed by the master program for the sectors in which 

averaging is required). In the Komai-Lipta* décomposition the master 

program passes allocations of the connecting resources to the individual 

sectors» the latter, in turn, signal their own sectoral shadow prices 

for these resources to the master program,  ¡ithout going into detail 

concerning the Kornai-Liptak decomposition it can be seen by reference 

to Figure 4 that sectoral resource allocations of labor can be represented 

by a vertical line cutting the two iBo-product curves; at any (basic 

or nonbasio) solution separate shadow prices can be determined for each 

sector. Por an averaged complex, the shadow price coincides with the 

slope of the averaging segment} for a single complex (which appears 

with unit weight) the shadow price is distinct for increased and for 

decreased allocations. For non-optimal solutions the comparison of 

shadow prices for the two sectors will show an unambiguous difference} 

for example, for the basic solution BEF the shadow price of labor both 

in the upward and the downward direction is ¿rester in Sector 1 than 

in Sector 2. This signals the need for increased labor allocation to 

Sector 1 at the expense of Sector 2. Conversely, for the basic 

solution A  H an unambiguous price difference will exist in the 

opposite sense, signaling the need for increased labor allocation to 

Sector 1 at the expense of Sector 2. At the optimum, solution A¿F, 

the vertical cut through A and N will yield a shadow price at N that is 

smaller than the shadow price at A for decreased labor allocation to 

Sector 1, »nd larger than the shadow price at A for increased labor 

allocation to Sector 1, thus signaling a stable equilibrium. 

¿NT; 
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C.     Ulf flf••«ition Principle. 

The indeteraùnateness of control by .aeana of purely price-type 

iMttMMrt. that has been observed in convex a/« ten. with linear boundary 

»agaents will be present to an even strong« degree in systems that 

exhibit nonconvexities.    In general, while in a linear system a given 

price ratio will sustain an optimum, in the sense that at this price 

ratio no movement away from the optimum will appear advantageous to any 

of the sectors (even though this optimum will not be attained without 

the intervention of quantitative controls), in a nonconvex systema set 

of prices will not even suetain the optimum in any stable sense.& 

In suoh a system there will be a constant tendency for some sectors to 

abandon the optimum position, and this tendency will have to be counter- 

acted by specific quantitative controls.    The practical consequences of 

the introduction of such quantitative controls are not greatly different 

from the effects of such controls in systems with linear boundiry segments; 

in this regard non-convexities merely reinforce the control requirements 

already manifest in the former systems.    A more profound difference, 

howver, concerns the applicability of iterative corrections for 

improving the efficiency of existing feasible solutions, since these 

tend to break down in the presence of nonconvexities. 

Je shall use the diagrammatic method developed for linear 

décompositions to indicate the changes that are introduced by considerine 

the presence of nonconvexities.    This will allow the application of some 

i 

12/   More exactly, in a linear system small deviations from the optimal 
price ratio will set up only weak forces tending to move the sectors 
away from their previous positions, since the corresponding change? 
in the optimal value of the objective function are small;    in non- 
convex systems, on the other hand,  small  changes of the price ratio 
can induce movements away from the previous position that are 
cumulative,  since the farther the move has proceeded the stronger 
the incentive will generally be to move further still, as the difi- 
érenos in the value of the objective function at the previous 
position and at the end point of this cumulative movement can be 
very larga. 

». 
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Judgements concerning the role these nonconvexities are likely to play 

in practical situations.     One has the intuitive feeling that the 

presence of small nonconvexities cannot have a profoundly disturbing 

influence on the behaviour of largely convex systems, since common 

observation indicates that „larkets are often able to operate with 

reasonable efficiency in spite of the pervasive presence of fixed 

costs, economies of scale, and other nonconvexities.    But what is "small" ? 

ihat systems are "largely convex" ?    The diagrammatic method will offer 

some bases for judgement on these points. 

Figure 5 indicates the first step in constructing a decompo- 

sition diagram with fixed costs included to represent nonconvexities. 

The fixed costs are expressed in terms of labor and capital requirements 

(see Table 1).      Por each complex such as A,B, etc., the fixed costs of 

the oomponent projects (activities) are added up.    In the graph of 

Figure 5, these additions are performed by means of vectors (arrows) 

which represent the labor and capital requirements of individual 

projects (activities).    In this fashion, point A is carried into point 

A», point B into point B', etc.    While points A,B,....in the diagraas 

have been referred to as "vertices" we shall refer to points A',B't.... 

*• "apioei" in order to keep the two kinds of points sharply disting- 

uished. 

Can apices be averaged?    Generally not in a linear fashion, 

since for example, averaging apex A' and B» requires the ¿oint use of 
r^Zots xTxT and X,   while apex A' allows only for the fixed 
EPS M'£ anà'a^ VSnly for h and X^   Thus when two 
complexée tre to U used jointly all the fixed cost*, of bojhjjomplexes 

Once all these fixed costs have been incurred, the 
«/  In Figure  ú   these 

have to be incurred 
variable costs oan be averaged linearly as usual In Figure 

¿y If fixed costs also comprise requirements of special sectoral 
resources these requirements can be translated into equivalent 
labor and capital requirements calculated at the marginal labor 
and capital requirements needed for producing the specified 
amounts of sectoral resources, on the assumption that all of 
these sectoral resources will in fact be produced in the optimal 
program, and that the corresponding fixed costs will thus be 
incurred in any event. This assumption may not be valid; and 

(ContM.) 
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operations haw botn performed}    for «ample, at A' the vector   %l has 

been added on, while at B' the vector xg has been added on;    the end- 

points of the latter vectors can now he connected by a straight line. 

It is significant that the slope of this correct averaging U"e for 

•pices A'  and B'  is the aame as the slope of the vertex-to-vertex 

avsrage.    This is due to the fact that A, B, and the endpoints of the 

correct averaging line form a parallelogram, since the same three 

vfotorf bava been added both to A and to B, even though in a different 

sequence.    Thus the correct averaging line reflects marginal costs, 

Two important qualifications to the foregoing procedure have 

to ba notsdt 
(1) While the vertioes C and 0 represent inefficient complexes 

in a linear system, it is by no means a foregone conclusion that they 

will also be ineffioisnt in a nonconvex system comprising fixed costs. 

If, for example, the fixed costs associated with C were unusually small, 

it oould easily happen that the correct averaging line involving C will 

pass in part on the icfeasible side of the correct averaging lines for 

the other complexes, and will thus yield preferable points in this range. 

(2) In a linear system averages of neighbouring efficient 

vertioes are always superior to averages of non-neighbouring efficient 

vertioes. In a nonconvax system with fixed costs this is not necessarily 

soi for example, the correct averages between apex A' and B' and between 

apex B' and D' may prove inferior in certain ranges to the correct 

average of apex A' and D' if the fixed costs associated with vertex B 

are unusually high. 

Do the apioes and the correct averaging lines appearing in 

Figure 6 Jointly form iso-product lines for the two sectors? In answering 

11/ Cont'd. ...there might exist Borne choice in the selection of 
activities for producing these fixed-cost components,  fe shall 
abstract from all of these seoondary complications in the oourse 
of the präsent discussion. 
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this question it has to b« remembered that free labor and capital dis- 

posal is at all times permitted}    thus any point in the diagram 

representing a legitimate apex or average will dominate all points 

derivable from it by euch disposal activities.   Therefore B' will dom- 

inate all points on the correct averaging line between A* and B'  that 

are to the Northeast of B'; and likewise for A'.    As a result, the 

entire line connecting the endpoints of vectors x,  added to B' and Xg 

added to A' will disappear and will be replaced by a step function 

between A*  and B*  (see Figure 7).    Applying the same considerations of 

dominance to other areas of the diagram we wind up with the iso-product 

lines of Figure 7 that have a much simpler configuration than the 

apices and correct averaging lines of Figure 6.    This simplification 

of the diagram is not a special feature of the numerical example under 

study but a general phenomenon that is due to the fact that the correct 

averaging lines have pronounced dips at the apices where one fixed cost 

is in all oases eliminated.     As a result the straight line segments 

representing variable costs are generally truncated near the apices and 

in tone oases (as between A' and B') completely eliminated in favor of 

simple step functions. 

What can be said about the nonconvex decomposition problem 

represented by the iso-product lines of Figure 7?    In general when the 

lines are oorrectly drawn and all the apices that contribute specified 

ranges to the line of a sector are known it is possible to find a 

solution to the master problem without the need for considering all the 

detailed information represented by the specific sectoral resource 

balanoes and sectoral projects.   A knowledge of the capital and labor 

requirements at these apices, together with correct averaging procedures 

is sufficient to guarantee an exact solution to the master problem. 

The averaging procedure in the present case can be based on a listing of 

projeots included in each complex together with their fixed capital and 

labor requirements}    when two or more complexes are averaged, it is then 

simply neoesaary to check off all projects that are included and to add 

up their fixed costs.    Formally, the master problem becomes an integer 

¡ » 
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programming problem in which the averaging of the variable cost« of 

the complexe« is conditional on incurring all   the requisite fixed 

costs. 
In practical applications the shortcoming of this procedure 

is twofold,    first, it is difficult to solve the integer programming 

master problem}     second, the availability of inlormation concerning the 

requisite apices can by no means he taken for granted,   since the number 

of such apices increases combinatorial!/ with the size of the problem. 

As discussed in connection with the linear decomposition problem, the 

virtue of the Dantsig-Jolfe algorithm is precisely that  it generates 

new complexes as they are needed, thereby shortcut ting the enumeration 

of effioient complexes.    The question is, can a similar procedure be 

developed for the nonconvex case? 

No such procedure is presently available and the difficulties 

standing in the way of evolving one are great. 

(1) To begin with,  the meaning of prices in the master 

problem — as in integer programming problems in general — now becomes 

ambiguous.    In Figure 8 the overall optimum happens to be at the 

vertical line passing through B', as can be verified geometrically or 

by means of a simple computation,    -'hat is the proper price ratio 

between labor and ospitai characterizing this optimum?    Is it the slope 

of the iso- product line at J    ?   This slope, as noted before,  corresponds 

to the averaging of variable costs,  i.e., to the slope of the line EF} 

it is thus a marginal cost ratio.    Ür is the proper price ratio the 

slope of the apex-to-apex connecting line, 3'F' ?    In the present case 

the two slopes are not greatly differenti    but with only a small change 

in some of the fixed costs the optimum can be shifted to a vertical 

line suoh as MN.    Here we have three possible price ratios;  the former 

two, and in addition, the zero labor price corresponding to labor 

disposal. 
(2) Next, we have to ask what the role of suoh a price ratio 

is coing to be.    Will it be used, as in the linear decomposition problem» 

l  ; 
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in a search for new efficient complexes ?   If BO, the sectoral subprob- 

lems become integer programming problems involving the minimization of 

combined coats (as in the linear case), hut with allowance for fixed 

ooats of the individual projects.    In the present illustrative case 

(see ligure 8) such sectoral optimizations performed at the proper 

price ratios will identify all apices that participate in defining the 

iso-product lines;    however,  this cannot be generally guaranteed, 

because apices can also occur in local indentations of the iso-product 

lines that will net be optimal under any price ratio.    Alternately,  the 

role of the price ratio may be taken to be to sustain an optimum, as 

in the linear case;    if so,  the local marginal price is the proper one 

to use, but (as noted before) such a price will sustain the optimum 

only in a most unstable way,  since the slightest change in the price 

ratio will generally precipitate a cumulative movement away from the 

optimum* 

On the basis of considerations such as these it is clear that 

the ooncept of a unique price ratio characterizing convex systems cannot 

be extended to nonconvex systems;    it rather appears necessary to define 

different price concepts for serving different kinds of functions. 

The price concept needed for identifying new complexes for inclusion 

in the master problem is an apex-to-apex connecting price, while the 

price oonoept needed for sustaining an optimum, if only in an unstable 

manner, is a marginal price.    As in the linear case,  quantitative 

control instruments are needed for making sure that the system arrives 

at an optimum and, in the nonconvex case, also that it remains there. 

The role of marginal prices in such a situation can be the one of 

allowing for small corrections in case of unforeseen deviations from 

optimal quantities in the course of plan execution,  in a way analogous 

to the linear case discussed earlier. 

Figures 8 and 9 have been drawn to indicate two possible 

approximations to the derivation of an exact optimum in such nonconvex 

decomposition problems. 
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(1)    In figure 8 the apex-to-apex connecting lines are shown 

in relation to the correct iso-product lines.    It can be seen that 

the apex-to-arex connecting lines j/ield a linear approximation to the 

nonconvex master problem    while they maintain the nonconvex nature of 

the sectoral problems.    An approximate overall solution can be obtained 

in an iterative fashion by determining successive price ratios from the 

basic solutions of the linearized master problem;     these price ratios 

are then applied to sectoral integer programming problems that will 

identify new efficient complexes if such are available.    The latter are 

included in the linearised master problem and the procedure is iterated. 

This approximation has the virtue of generating new complexes only as 

needed,  similarly to a linear decomposition problem. 

What will be the characteristics of this approximation? 

(a) It will always yield an o veres ti.ua te of the optimal 

value of the objective function, since it ignores regions of local 

indentation between apices. These apices are averaged in a simple 

linear fashion, ignoring the correct averaging procedures. 

(b) The approximation will be a good one to the extent that 

nonconvexities are weak} i.e. to the extent that loc^l indentations are 

small in comparison  *ith changes of capital surplus corresponding to 

different basic solutions of the linearized master problem.    In other 

words,  the apex-to-apex connecting line stays cloBe to the true iso- 

pro:!uct line, 'there closeness is measured in reference to a feasible 

area that is convex in the large and has only small local nonconvexities. 

Note that the graphical representation permits an intuitive appraisal 

of the relative roles played by convexity-in-the-large versus nonconvexity- 
in-the-small. 

(c) Such a situation is likely to arise when either fixed coats 

are small in relation to the changes of variable cost over the averaging 

rangea,  or else, where the fixed costs of many common project« are shared 

between neighbouring complexes that differ only slightly in project compo- 
sition. 
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(d)   Another important situation of this kind ariees when 

fixed costs in a sector are incurred stepwise;    in other words, when 

profeta with given fixed costs are limited to a maximum scale, beyond 

which the fixed cost has to be duplicated.    This has the effect of 

reducing the sice of the abrupt increase in correct averaged costs near 

the apices and brings the iso-product line within a fraction of the 

distance from the apex-to-apex connecting line that prevails when fixed 

costs have to be incurred in a einöle step.    This case corresponds 

closely to the classical case of the equilibrium of many small firms, 

each with its own fixed costs. 

(•)    The computation will be efficient to the extent that 

the sectoral integer programming problems are of small size or have a 

special structure that renders them easy to manage. 

(2)    In Figure 9 the unaveru^ed apices are shown in relation 

to the correct iso-product line.    An approximation to the iso-product 

line can be pieced together from these apices by adding vertical and 

horizontal extensions corresponding to free labor and capital disposal 

activities.    In other words, whereas in the previously discussed approx- 

imation we formed apex-to-apex connecting lines that acted as though 

the apioes could be averaged in a straight linear fashion, the present 

approximation discards the tool of averaging altogether and simply 

disposes of labor and capital not required by one apex or another in a 

given solution.   As a result, solutions are restricted to one complex 

in each sector. 

The characteristics of this approximation are the following. 

(a) It always yields an underestimate of the optimal value of the 

objective function, for two reasons;  fir ut, because it ignores the 

possibility of legitimate averaging*    secondly, because it generally 

operate» with an incomplete list of apioes if the problem is large. 

(b) The master problem is now an integer programming problem 

which does not yield useful price« for defining sectoral objective 

functions. 
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(c)    Individual apices nay be generated in an/ convenient 

na/t    for example, by means of simultaneously undertaking the first 

kind of approximation (apex-to-apex connecting lines). 

(d)    This approximation will be a &ood one whenever noncon- 

vtxities are large in relation to changes in the objective function 

(capital surplus) corresponding to widely separated solutions;    in 

other words, when the sectors are characterized by a few major indivis- 

ibilities.    The reason for this is, first, that in the case of large 

nonconvexities not much is lost by refraining from averaging;    secondly, 

that if nonconvexities are larbe,  the number of apices that contribute 

to the correct iso-product line in any sector is necessarily small and 

thus the apices are relatively easy to identify on the basis of empir- 

ical considérations that are likely to be well known to the planners 

familiar with the sector;    thus the possibility of missing significant 

apioea is greatly reduced. 

(•)    The computation will be efficient to the extent that tit« 

•aster integer programming problem is of manageable sise* 

o 
N1 

In aun, the two approximations are complementary. Between 

the«, they yield both an upper and a lower bound on the value of the 

optimal solution; in addition, each tends to be close in oases with 

opposite characteristics. The first approximation tends to be olose 

when the feasible area within a sector is convex in the large and has 

only small local non-convexities; while the second approximation tends «. / 

to be close when a sector is characterized by a few major indivisibilities. 

¿|/   In any given practical problem it appears advantageous to undertake 
both approximations simultaneously.    It mi¿ht perhaps also be poss- 
ible to combine thw two approximations, choosing the better approx- 
imation to represent any given sector,    in this case, however, the 
bounding properties of the separate approximations would be lost 
and the exact nature of the iterative algorithm would be placed in 
doubt. 
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It i* noteworthy th»t presently available practical methods of copiti 

with *mconv«*itie« in economica tend to run in the direction of these 

two approximation«* thus in the case of «mall nonconvexities an 

attempt it made to define some reasonable average cost and price that 

Will take into account the presence oí fixed costs, while in the cace 

of Mkjor indivisibilities the operation of the price system is invoked 

only after quantitative decisions have been taken in regard to these 

indivisibilities on other than pricing criteria. 
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ANNEX I 

Solving Integer Programming Problems:    A Survey 

Several algorithms exist for obtaining optimal solutions te integer 

programming problems, ¿/     These algorithms are kncwn to torminate in a 

finite number of steps, but when the number of variables is large, "finite" 

may mean a very large number indeed, since the number of alternative- fh'> 

can conceivably be touched upon in the course of a solution, rises 

combinat i onally with the number of integer variables.    Thus, mixed preti-. r.~ 

with as few a3 ten integer variables may not  terminate in as many ac 

several thousand iterations. £/    In this respect,  integer programming is 

completely different  from linear programming where  it has been found 

empirically (although no proof exists) that  problems terminate in 

approximately three times as many iterrtions as there are constraint:;. 

With integer programming problems, it has been found that the  standard 

cutting-plane type algorithms vcrk with a quite different efficiency <r. 

problems with identical construction but randomly chosen parameters: 

some run well, some take quite a bit longer, and sort make very poor 

progress.      A recent series of experiments has demonstrated, morecver, 

that attempts to improve the amount of progress from iteration to iterati-!. 

do not^ generally lead to faster over-" 11 progress.*' 

''••'hen these integer programming algorithms do> not terminate du. to 

practical inability of carrying the numb r of iterations beyond n reas~nall-. 

limit even on the largest electronic computers, they at least yii.ld a b^i^i 

on the optimal solution in the sense thrt they indicate a point  beyond 

which no improvement can ever be carried.    Unfortunately, the   publish*..ri 

algorithms are of the "dual" type:  they proceed by the way of trial s luti : 

each of which is "dual feasible".      Dual feasibility means th-t individual 

activities are always maintained in perfect priority ordering, in the 

sense that they either break even or show losses at the existing shadow 

prices, but never profits; at the same time, they are not "primal iVi.siU- " 

y   See Dantzig (1963), Chap. 26; Gomoiy(1963, 1965). For a discussi 
Victoria z (1964: IDP) 

g/   Vietorisjs (1964:IDP) 

1/   Work in progress 
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except at the optimal solution itself, i.e., they do not balance out all 

resources:  some may bo overdrawn (in a bottleneck condition).    Thus, if 

the algorithm is broken off before- it terminates, it will not yield 

simply a sub-optimal solution, but a hyper-optimal ^ne: a "solution" that 

is "too good" ?is it leaves 3omc of the  constraints unsatisfied.    Thus, 

such a solution can be used only -s a bound:    it shows ttot no primal- 

feasible  solution can be better tton the break-^ff solution, but  it gives 

no clue to whet would be a good primal-foasibit solution.    The latter has 

to be generated independently by one  of the  techniques to be- discussed 

below.     Still, the bound is highly useful because if any primal-feasible 

solution is known, the bound indicates how much room for potential further 

improvement is still available. 

A new type of algorithm tos b,en published recently »   that, is far 

more efficient for cert pin clasps of problems:  optimal solutions are attained 

in a limited number of steps '>r, if the problem turns out not be have been 

of the proper type, this algorithm also yields a bound on the optimal 

solution. 

It should be noted that ordinary linear programming (with integer 

restrictions dropped) always yields an upper bound and (by rounding) a 

sub-optimal solution and lower bound as well, but these bounds generally 

tend to leave a vide range of uncertainty. 

Some mixed integer algorithms do generate primal-feasible  solutions *> . 

These algorithm, if they fail to terminate, give simultaneous upper and 

lower bounds on the value- -tf the optimal solution.    3ub-optinal solutions 

giving lower bounds on the value of the optimum may also be obtained by one 

of the following devices: 

1.    Enumeration of individual integer combinations, particularly 

in the case of zero-one typ; integer variables.    If the number of 

variables is small, the enumeration can be complete, and the optimum 

y    Gomory(1965) 
¡/     Algorithms by R.E. Gomoiycited in Vietorisis (1964:IDP). 
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can be selected by inspection;  if the number of c mbin^tionn is too large 

tc be exhausted in this way, certain types   -f combinations can still be 

enumerated.      For example, in the  crac of lncatiorrl problems inv Iving 

several processes,  the total number -f pl-nt   combinations,  particularly 

in multi-period models, can easily becmo unmanageable but  intégrât, d 

plants at  individual l^ti .n can still   -.f t< n be enumerated.      Oth.r 

selected combinations can also be   investigated    He by    ne.    The  best    f 

the enumerated s- luti^ns en then be accepted ~s a cub-optimal s "luti r; 

yielding a lower bound   n the  optimal solution. » 

2. Steepest ascent and. jther. gradient  methods.«^    These  treat  the  integer 

programming problem by a method similar to gradient methods applicable t 

convex problems.      This method wil"1  always lead to a local optimum.    In th> 

case of c nvex problems a local optimum must als- be  an overall optimum 

while in the case of non-convex problems,  several local optima may exist. 

Gradient methods will lead to on-   or another of these optima according 

to where the starting point of the procedure is  chosen.    Thus by attempting 

the ascent from several widely separated starting points, the chance s of 

hitting the overall optimum are  improved. 

3. In the case  of optimising an ~b,1ective function with a non-convex 

preference set, sublet to linear cnst^lnt.«;, an interesting tri-1 -nd 

error algorithm is available J that starts with a local optimum -nd ,xpl:r s 

ba»ic solutions systematically around this 1 .c->l optimum for possible 

improvements in the objective function, thereby yielding a better probability 
of attaining the   overall optimum. 

By choosing a mixture of the approaches n^ted above,  aim st  any 

integer programming problem can be tackled with a fair confidence :f 

establishing narrow upper and lower b unds  on the solution.    If th, s, -re 

within ermr limits, the pr blem can, in fact, be taken as solved. 

t 

§/   See Virtcris« and Manne (1963) 

2/   For a survey,  see Victories (1964: IDF) 

5/   Kornal et al,   "Kathematical Programming of the Development of Hungarian 
»•ÏS?7 / Prod^tlonH  (In Hungarian), Centre for Computing Technique,, 
Hungarian Academy of Sciences, Budapest, 1963, 190 pp.  (miraeog)? 
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A further strategy, also br-scd on .«rror limits, is the following: 

the parameters of the problem enn be subjected to random wriétions 

within their own error limits, in the hope of generating n pamneter 

onnfclnation th^t is et|uivalenb in practice to the viginal formulation 

yet mpy show improved convergence characteristics. * 

2/     Work in progress. 
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ANNKX II 

jtethermtical AaapflU 

The problem stated in Table I follows   the condensed for«* cf Tueker 

(in Grèves and Wolfe, 1963).    A full nlgebrftio statement is given bel*: 

Subject to 

and 

E-   2.5X,- *   .6X.-3.OX,, Maxi 0o -   350 -   l.lXr 1.25X2-   3X3-   7.5XA-       *5-   «.^6-     .,.? 

v^ . 2000 - 12.5V 7- »2-6'OX3-   7.0X4-15.0X5-   5.0X6«   4.0X^11.^ 

0'2 -   -50 - 

03 -   -50 

04-   -«5 

)L*> X«- .5X-- 

-    .25X2-     Xj- 

J5 -25 

^0,1- lit.» 5 

.2X, 

Xç- 

•2Xg- 

V 
,5X6- 

.3XP 

•'# 

ê 

Mint 

Subject to 

and 

350 - 2000     Tj- 50    l2-     50 

-   1.1-   12.5 Yx* *2 

J2 - - l.tf* 7.5 Tr 

j   - .3- 6.0 f j- 

j^ * . 2.5- 7.0 Tx- 

J:   - - 1.0- 15.0 lx 

J6 * . 2.5-     5.01 x 

JL * - .6- 4.0 Tx 

Jd - - 3.0- 11.0 Y x 

*i    -> û> iél'"»5 

.5X2- 

.2I2- 

ï3- 25 

.2*. 

v 25 T 

V 
V 

.21, 

.51, 

Y5 
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Tjie sectoral aub-problems. following the Dantzig-Wolfe decomposition 

method, art: 

Max) 

Subject to 

and 

âc<ft'T. I 

02 - -50 - 

0, * -50 

(- l.Hj- 1.25X2-   .3X3- 2.5X4) - 

(-12.5XX- 7. 5X2- 6.0X3- 7.0X4) 

V X„-   .5Xa-    .2X. 

-   .25X2» 

n3 

4- 0, 

0, 

Max! 

Subject to 

and 

fect^r 2 
Z2*   Pit 

a4-25 

c5 — 25 

i 
j 

-2,3 

- 1,*.,4 

(- 1.0X5- 2.5X6-     .6X?- 3.0Xg) - 

(-I5.OX-- 5.0X6-   4.0X7-11.0Xg) 

-   V V 
-   .2X5- .5X, 

xj • 
0, 

i 

j 

-4,5 
* 5,«»»8 

In the above expressions jy find ^ rre c instants i in particular pR • 1. 

Depending on Pj/Pg different optima to the sectoral sub-problems will h- 
attained i/.      Designate the total capital and labour requirements   <f any 

of these optima by -K^»-^ "here I *3 tne indeX of a givcn ^tiriun» "nd 

£ is the index of the sector (1 or 2). 

1/   The optima my be extreme-point (vertex)   ^r homogeneous 3 luti us 
(see Dantaig and Wolfe, I96I).    Homogeneous solutions indicate 
that the naximand of the 3ub-problen nay bo expended without lini*.; 
in other words, the  specific sectoral resource constraints do n t 
preclude such an expansion.     If such a situ-ti n icourred in th. 
full problem, it would indicate that the  problem was unbounded; but 
the solutions to the sectoral sub-problems are also subject t- th*-- 
constraints on the c >nnecting resources, and thus h m g«ne ^us 
solutions are permissible.     N">ne such occur in the present 
problem. 
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The raaoter problem   can mw be stated as follows (in Tucker's condensed 

formt): -       0       _ 

Min J 

Maxi 

o 

• 
'B * 

-tf0-¡ 350 -KA B 

0 '.. 0X- 2000 -L.    -Lto 

-KD   •*£ 

S   -LE 

-Kp    -KH 

-Lp    -LH 

0 * 0,-     - 1   1 

o - o; T\   • 

. * PIE (•» i)(* Y ) 

I   *   ^L (- Yx) 

I * Pl 
*   *2 

(.'V)     ^     'V     -~D    >SE    ''>     'i 
(The interpretation in terns   f ordinary algebraic expressions» follows 

the interpretation of the full pr bien. ) 

In the above formulation, all the efficient vertex saluti ns ir. 

included in the mrster problem.     If ->H these were in fact present, 

the s--lution t-> th-. master problem muid «t   -nee yield the overall 

optinun.      The algorithm is based, hwever, on just a partial list    f 

such vertices which initially define but a single feasible  starting 

solution.      At any stage   if the nlg^rithr: the   -ptinun t.o the master 

pr^blcn yields a set   )f shadov prices;  nt these prices, all vertices with 

positive    __ weights have zer •> prof its, while other vertices have negative 

profits; n- positive profits can -ccur at such an optinun. 

In  ^rder t> test whether the  current -ptinun to the nasUr probier 

is also mi overall optinun, it is attended t    find a new vertex that 

will show a positive profit at current sh*diw prices.    Since p,  and p¿ 

are given, a profitable new vertex   __ must have the highest V-ssiblo 
algebraic value for the expressi n 

(-PjC. K,   - Pj.. LO 

'Tiere pjj. and tj, are -Is, given The sectTal tgb-pr-blems select the vertex 

which maximises the ab TV e .«pressi m in each sector.    If the algebraic 

sun of px *nd thia maximum is positive for a sector, vertex     -     is pr fit.ibl, 

and the current optinun to the master problem is not an   derail optimum. 
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The new vertex is then included in the list of kn^wn vertices, and the 

optimisation for the master problem is repeated.     In the contrary tase 

the overall optimum hr.s be on attained* 
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