TOGETHER
for a sustainable future

OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org
Π (

Prague, Ceechoslovikia
11-29 October, 1965

07582

PROJLCT LVGWhation In The PRELENCE OF DCONOUL

Propared lys Professor Thomas Vietorise Hew York
U.S.A.
for: The Centre for Industrial Develognent Department of coonomic and Soolal affairs UNITED NATIONS

This paper camnot be reproduced without permiecion from the contre for Industrial Dovelopaent, United Kations, Now York. The views expressed in this paper are those of the author.

65-42904

A. Eoonomic equilibrinm vergus Nonmoonvexity

Almost all existing or proposed techniques of project evaluation are based directly or indirectly on the notion of economic equilibrium, i.e., on the notion of a feedback mechenism that adjuste all prices and quantities in an economic system in such a way that on the one hand, demands and supplies of all goods and factors and on the other, revenues and costs of all economic activities - production, transport, atorage, trainins, etc. - are equilibrated.

In ita original version, this notion of economic equilibrium we propomed as an explanation of the behaviour of actual maricets under free enterprise; later, as the shortcomings of the market mechanism monopoly elements, limited effective demand, unsatisfactory distribution of income and wealth, frustrated growth - became widely recognized, equilibrium was still held up as an ideal which could be approximated in practice to a "reasonable" or "workable" extent. Lately, with the advent of mathematical programming techniques, it has become possible to isolate the notion of economic equilibrium completely from the behaviols of actual markets, and to replace the latter by electronic computer solutions to plarning models with varying degrees of centralization or decentralization. In fact, the notion of economic equilibrium can be extended by means of computer solutions to models representing many economic situations that even ideally competitive marketa would be unable to realize in practice: for example, multi-period

1/ On investment oriteria in economic planning, see for example Chenery (1953:AIC), Bohr (1954), Calenson and Leibenstein (1955), Eoketein (1957), UN-Marual of نoonomic Development Projects (1958), UN-DIv.Ind.Dev. (1963: EPP).
(dynamic, growth) models with terminal conditions imposed; resource allooation models with limite met on the ability of the government to exeoute cortain policies such as wage subsidization, and others.

It has been known for a long time, however, that the notion of economic equilibrium has a limitation that cannot be overcome by minor modifications. This was recognized at first as the problem of fixed costs, i.e. of diminishing average costs as the scale of production increases. It has proven to be generally impossible to reconcile the requirements of efficient resource allocation (iasrginal-cost pricing) With the need for covering the fixed costa incurred by the firm out of revenuee obtained from product sales, unless two conditions are fulfilled:
(1) Average costs, while falling initially as a result of the distribution of fixed costs over a lurger nuriber of units, eventually level out (become horizontal) or even turn up, due to elements of increasing variable cost thit offset (or outweigh) diminiahing unit fixed costs.
(ii) The oritical scale at which the average costs of the firm level out is much smaller than total production within the industry

Under the above two conditions industry supply can be taken as the man of the oritioal scales of successive firms; insofar as these critical scales are much smaller than total production within the industry, epply oan be approximated by a continuous function even though, in aotual fact, this supply satisfies equilibrium conditions only at seleoted lattice points representing the exact sums of critical soales.

[^0]It can thas be seen that oven under highly idealised conditions, the somalled equilikrium solution is only an approximation to What is now recognized as the optimal solution to a mathematical problem known an integer prosraming ${ }^{3 /}$ Recent theoretical advances in the latter field, moreover, throw doubt upon the validity of any euch apprasimation, since they indicate that the solution to an integer programming problem that is obtained by rounding (to the nearest integer) the optian solution to a continuous approximetion will generelly not be an gotirnl solution to the integer problen. 4

The situation, of cource, becomes even less satisfactory to the extent that the two basic assumptions are not astisfied. If asmuption (i) is eatisfied (levelling out of the average cost curve) but asmantion (ii) is progressively weakened (larger critical firm aize in relation to induetry production), then the procese of rounding to the nearest integer will imply larger and larger percentage obanges with respeot to the continuous solution, and a greater possibility that the rounded solution will be strongly sub-optimal. iventually, as industry production falls below the oritical size of a single firm, there will be a frank contradiction between the customary marginal-type effioiency conditions and the recovery of fixed costa through ales reveruse. The ame result is obtained whenever acoumption (i) is dropped.

3 Jor a murvey see for example Dantaig (1963), chap. 26; see aleo Gomory (1963,1965).
4. Ocmory (1965).

The presence of fixed costs is a case of mathematical "nonconvexity" leading to economies of scalet such economies of scale can also ocour in the absence of actual fixed costs, depending on the shape of the production function. ${ }^{6 /}$ Other cases of non-convexity of interest to economic planning are :

- indivisibilitiest the necessity of planning in multiples of standardized production units; zero-one decisions on transport investments, hydroelectric projects, etc.if
- pro-emption of land areat the fact that a given plot of ground (e.g. in a densely occupied zone) has to be assigned in a zerooone fachion to individual uses; $8 /$
- alther/or type constraints on feasible policy alternatives, etc. $\mathscr{y}^{[/ 3}$

It has some to be recognized that a decentralized decisiun-miking aystem based on linear decentralizing instrumente (master prices, adriniatratively determined plarining prices, incentive systems with linear etruoture) is inherently unable to guarantee attainment of an optimal equilibrium position inless all sources of non-convexity - such as fixed costs and others - are absent. Therefore no project evaluation

5/ A point set $:$ is convex if the following holde: if,$=$ and i, \therefore and $a,=1 \quad$ then $\bar{\cdots}, \dot{x}, \cdots$ where ieI,...., n. Applied to an available technology consisting of a collection of projects this concept of convexity means that any wilichtod everage of technically feasible individual projecta will almo be technically feasible. Note that where econcmies of coale are present convexity breaks down. For example, if the aotual capital input requirements of a process comprise a fixed input plus an input proportional to scale, then wo half-sized projects using this procesi will actually use more capital than ona cull-atize projects in other words, the average of two halfeized projecte (with equal weighte) will underestimate capital requirements and will thus describe an infeasible to innology.
criteria that are based on the notion of economic equilibrium and involve correapondingly any linear version of pricing or other decentralizing/control systems, whether these be market prices, corrected opportunity costs, electronically computed shadow prices besed on mathematical pegframing models, or administratively fixed prices in a planned economy, can be relied upon with confidence in the presence of non-convexities. As the case may be, they can turn out to yield acceptable results, but they car equally well result in gross aimellocations.

Tro illustrations will indicate the kinds of outcomes that are posaible when linear decentralizing instruments are used in the presence of nonconvexitien. Chenery in The Interdependence of Investment Deotions (1959) constructs a detailed mumerical example of ateel production and iron-ore mining with strong economies of scale in a developing country. The analysis reveals that either one of these two activities in profitable when the other activity is present, but is unprofitable in its abmence; thus a decentralized decision syatem based on profit (or cocial marginal product) miases an attractive joint investment opportunity.

6/ Soonomien of acale often are expressed by an input function of the formi

$$
(y / \bar{y})=(x / \bar{x}) f,
$$

where y and \bar{y} are inputs corresponding to soales x and \bar{x}; the berred quantitien are oonstantes and \mathcal{I} is a conetant exponent in the range: $\cos _{\dagger}=1$

I/ See Vietorias (1964).
8/Koopmans and Becteran(1957).
2/ See Dantsig (1960).
10/ Por a dimoussion of difforent kinds of perfitability indexes uned an docentrelising inatruments in a contrally planned eooncay, ece Komai and Liptak (1962).

Then neither of these activities is yet established the decentralized deaision maker lookins at an activity in isolation will decide that it is unprofitable; thus neither of the two activities can historically precede the other and the profitable complex of the two activities will never be attained. Koopmans and Beckman in fasignment Froblems and the Leontion of Economic Activities (1957) construct an example thich sho: nonconvexities involved in the assienment of productive activities $t=$ disorete locations that cannot be shared between activities. for example, in an urban area a oiven block or plot of lund can nit be used for both a large shopping center and an industrial plant. In many locational problems no such assienments are refuired; for example, it productive locations have to be chosen for industries that can locate at eeveral regional centers that are at large distances from each other, the land requirements at these centers are usually very small in comparison with the available industrial sites and thus several activities any casily locate at the same ceriter. The latter aind of locational problems are generally convex (unless economies of scale occur independently in the production or transport activities) and a stable price aystom exists that can be utilized for the definition of project evaluation criteria in the usual way. In the former locational assignment problem, however, the present location of any activity will affect the coste of all other activities in such a way that rith any locational pattern incentives will exist for some producers to change their locations, and the possibility of a stable equilibriun price system is negated.

Then sifnificant non-convexities are known to be present important industrial processes whose optinal scales of operation are not attained at the level of demand of a small country, important decisions concerning investments in transport arteries, etc. - the only reliable

[^1]epproach to the evaluation of individual projects is an overall analysis of all alternative projects within the framework of a mathematical programaing model in which non-convexities are explicitly eccounted for. Frding the optimal solutions to such models is an analytical problem which is not jet atisfactorily resolved, but in many cases it is possible to get excellent approximations to the optimal solution.

Integer programing is the analytical tool of choice in the formulation of such modele. A very wide variety of non-convexities sll thet can be thought of within the field of economic planning - can be represented or approximated adequately by integer progranming models. 12 In these models, some or all variables are reatricted to integer values instead of being allowed to vary in a continuous fashion.

A curvey of methods for solving integer programing problems is given in the Appendix. ihile exact solutions to such problems are often very difficult to obtain except for amall probleme, several methods exiet that between them allow the generation of good ab-optimal solutions, together with upper bounds on the poseibility of further improvement; thus the exact solution values can be approximated within - known margin of error.

The activity scales and resource allocations corresponding to the epproximate solution will not necessarily be close to those corresponding to the exact sptimum, since there are many cases in which widely divergent near-optimal molutions are known to exist. $13 /$

In planning practice the knowledge of the exact optimum is seldom essential, for the following reasons :

11 Contd. (transport, energy, comunications) in bousin6 and urban facilitiess in govermment and other public services. See for example Rosenstein-Rodan (1943, 1961) Hirschman (1958).

12/See Vietories (1964).
13/ See the tabulation of the best 100 solutions out of total of 1024 enmmerated combinations in Vietories (1964). A plot of the distribution of all 1024 solutions to the ame problem is given in Vietorias and Manne (1963).
2) optimising techniques are generally introduced into planning at an improvement over planning methods whose aim has been primarily the construction of consistent plans. Euch methods aimed at consistenoy do give some attention to major overriding priorities but they do not carry out a systematic, iterative revision of all priorities such as characterizes anj process of optimization. 'Thereas in solving a mathematical model the goal is to carry the iterative revisions to their logical oonclucion, in the practice of plan preparation the number of revisions that can te actually carried out is necessarily limited by available personnel and time. Thus the goal is the more modest one of upsradinis a feasible plan rather than the attainment of the exact oftimum.
2) The data upon which the plan is based are subject to error; thus the exact optimum is also subject to error and only an optimad gane of solutions can be specified with confidence.
3) The preferences of the decision makers can be described ex ante only in an approximate way, since final decisions always deperd on a survey of meaningful available alternatives. Certain preferences, e.g. concerning the locational distribution of coonomic activities, may not even be discovered until a given plan that ignores these preferences is presented in detail. Therefore no single optimal solution is acceptable as the result of planning efforts, what is wanted is rather a rance of alternative near-optimal solutions.

While an approximate solution to a nonconvex optimization problem is thus entirely acceptable, the large possible divergences between the activiti scales and resource allocations of different nearoptimal solutions do pose a problem in planning. This problem is relatei to the posaibility of decentreligation. In order to disouss this concept meaningfully, we have to explore the relationship between price-type and quantity-type control instruments in econonic planning.

14/

In strictly convex economic systems there is an exact corvespondence between the optimal solutions that can be attained by means of price-type or by means of quantity-type control instruments (see Figure 1-a). If, however, the system contains linear boundary segments (as occurs in systems described by linear models. see Figure lob) this correspondence is destroyed: it is for example possible to specify output combinations that cannot be attained with certainty by means of price-type control instruments, only by means of quantitative controia. Whenever price-type control instruments fail to guarantee the attainment of desired constellations of inputs and/or outputs, decentralization based on the application of such instruments alone becomes impossible. Thus it ia also impossible to define project evaluation criteria based on much price-type decentralizers, and it becomes necessary to resort to quantitative controls, or to a combination of prace-type and quantitative controls.

12

A point set \therefore is strictly convex if $x_{6}<, \ldots=1, \ldots 1$ and $d_{6} \geq$, and $E,=1$, implies that $(\bar{i}) \therefore x_{i}, i$ is an interior point of : unless all x_{i} coincide. This cannot be true if the point set \therefore has a linear boundary segment.
For a detailed discussion, see Vietorisz (1965), Appendix 1. In reference to figure la, a combination of outputs such as point P on the production-possibility curve can be attained equally rall by fixing a price ratio (line an) or by fixing the quantities y, or λ, Figure lob represents a system which is convex with linear boundary easements. A combination of outputs such as P or in can still be attained equally well by price or quantitj-tijpe control instruments (egg.): by fixing the price ratio anywhere between $\frac{\mathrm{hb}}{}$ and co , eeg. at sa, or by fixing \because or $x \ldots$, however, combinations exist such as R which cannot be unambiguously attained by means of price-type control instruments alone. Thus the price ratio bl will gustoln point R in the sense that it will not initiate is movement away from point R, but this price ratio will not assure the attainment of point R itself in an optimizing solution, but only that of one of the infinite number of points along the segment PRay. In order to attain point R with certainty, the use of a quantity-type control instrument (fixing either x_{1} or x_{2}) is indispensable.

The eame conclusion applies in practice whenever the boundary of a astem has segments that are indistinguishable from linear segments within the prevaliln 6 margin of error, and fortiori when the broundary has nonconvex portions (Figure 3-c.)

The full significance of these observations becones apparent when their implications for multi-level planning are analysed. Effective decentralieation of information flow in economic plannine requires that only essential decisions concerning the economy as a whole be taken explicitly at the top planning level, and that decisions of secondary detail be relegated to lower planning levels. 17/ What happens in such multi-level planning structures when linear or nonconvex boundary segments are present at the lower levela? What effect do much boundary cegrents have on project evaluation? These are the principal questions that require further analysis.

16/ By reference to Figure 1-c which has nonconvex boundary segments, point P can be attained either by price-type or by quantity-type control instruaents. Setting the price ratio anywhere between bb and of will lead to point P from any other point along the boundary; widening this price range within the limits of ag and dd will still lead to point p from points in its own neaghbourhood, al though not nocescarily from points near A or near B. Point P can also be attained by fixing either \bar{x}_{1} or x_{2}.

Por the attainment of a point such as R, however, price-ty pe control instruments become totally ineffective. Whereas in the case of a linear boundary it was at least possible to specify a price ratio (20 in Fig. l-b) that would sustain point R, in the nonconvex case even this fails. A price ratio tangent to the boundesy at R yields an unstable stationary point at R which corresponds not to the maximization of the value of output (as in the strictly convex or linear cases), but to a minimiration of the same; the alightest movement away from Rat this price ratio will initiate further cumalative movement towards P or B.
17 Multi-level planning would be a practical necessity even if it were posaible to obtain methematical solutions to giant linear or integer programing models with many thousands of resources and activities. The reasons for this include the following. (1) Technical alternatives are hard to formulate explicitly over a sufficiently wide range of factor prices. (2) It is inefficient to formulate alternatives thet will not be used; for this reason, the compilation of information and its analysis should alternate stage by stage. The

B. The Decomposition Principle in Linear Systems

Some of the phenomena that occur in multi-level plannine Bystems can be analysed by means of the "decomposition principle" devel $\overline{18}$ oped originally for the solution of structured linear programine models. Figure 2 indicates schematically the relationship between a two-level planning organization and the structure of a corresponding decomposition model. In the latter model nonzero technicul coefficients occur only within the shaded blocks ($\mathrm{Fig}_{\mathrm{g}}$. 2a) and it can be seen that these co-efficiente occur only within the shaded blocks (F1g. $2 a$) and it can be seen that these coefficients fall into two broad Eroups. First, there are the coefficients of the so-called "special resources" of each sector. The epecial resources of sector 1 can have nonzerc coefficients only in the projeots of Sector 1; and likewise for the special resources of vectors 2 and 3. Second, there are certain resources that may have nonzero coefficiente in any sectoral project; thest are designated as "connecting resources". It will be noted that in addition to sectoral projects that form the columns of the table there is also a column designated as "exogenous" (first column). While it is assumed that the scale at which each mectoral project can be carried out is variable, the scale of the

17/ Cont'd. ..latter proceas can be carried out most effectively near the sources of technical information in individual sectors of the economy. (3) The structure of a large model cannot be intuitively grasped, and therefore its blind application is hazardous; this difficulty can be overcome by coordinating a number of smaller modela. (4) Plan formulation must take into account the modes of execution: this requires familiarity with technical detail that is readily available only near the operating levels. (5) Plans have to be readjusted to changing circumstances in the course of execution. Many of these changes show up at or near the operating level; thus planning capability at lower levels facilatates efficient adjustment to such changes. For a discussion of some of these points see Clopper ilmon (in Dantzig, 1963, pp. 462-465), and Vietorisz (1963: SNE).
$18 /$ Danteig and Nolfe (1961); see also Danteicy (1963), Oomory (1963:LNC), Kornal and Liptak (1965).

[CGRP 2

exogenous column is fixed. This column usually contains the given total supplies and demands of each resource. The task is to find a "plan", i.e. a combination of project scales, that is consistent with the fixed resource supplies and demands, and that is in some sense efficient. Efficienoy is defined in terniz of maximizing the output or minimizing the input of a choser connesting resource.

In such a structured model the consistency and efficiencyoriented decisions concerning the connectine resources correspond to the central planning level of a two-level planning organization, while the ame kind of decisions concerning the special resources of the sectors correspond to the sectoral-l guel planning offices.

To what extent is it realistic to assume this special structure In decomposition models describing entire economies? The ansier to this question hinges on the importance of direct interrelations between different sectors, manifested by coefficients of sienificant magnitude fallins outside the shaded blocks in Figure 2a. It is known that when economies are described by input-output models these models can be arranged to an excellent degree of approximation in a blook triangular form. The connecting resources of s decomposition model can thus be tentatively identified with the inputs of primary factors and with the inputs of resources (such as energy and transport) that occur near the base of the triangle of the rearranged input-output models; the remaining resources of the latter would then be treated as sectoral resources, with sectors delineated in such a way that interactions between sectors (other than via the connectin ${ }_{S}$ resources) be kept to a minimum. Such an approximation can be confidently assumed to be a reasonably good one for many econoaies; one may assume that corrections for direct interactions between sectors could then be undertaken by a few iterative revisions of the plans arrived at with the aid of the simplified deccription. $19 /$

19/ The struoture in Figure 2a is referred to technically as "angular"; it yields the simplest relationships betwecn the connectins and the sectoral parts. The mathematics of blook triangular systems has been explored bJ Dantzig (1993).

It should be noted that the decomposition structure described above is not the only approximation that can be applied to multi-level planning systems. ibile in this structure the resources subject to contral decision (the connecting rescurces) and the special resources of the sectors form mutually exciusive classes, it is possible to define a system in which the resources subject to central decision are aciregated representations of the many detailed sectoral resourcea. 20 The logic of this kind of a systen has been described yualitatively but has never been subjected to exact analysis.

Table 1 offers an illustrative numerical example of a decomposition model. 21 The model has two sectors with two special resources in each; and two connecting resources: capital and labor. There are four possible projects ir. each. sector; the scisles of these projects are variable and are designated by $X_{1} \ldots X_{4}$ for sector $1, X_{5} \ldots X_{8}$ for seotor 2. All numerical data obey the followin gin 6 convention: outputs or supplies are positive, inputs or demands are nesative. Thus the capital and labor coefficients of all projects are nesative (inputs); there are however exogenous supplies of these two factors, amounting to 350 units in the case of capital, and 2000 units in the case of labor. Once the scales of all projects are chosen in formulating a trial "plan", the flows of all resources are determined, and their balance can be verified. The dif'ference between (1) all outputs and exogenous supplies of a resource (positive signs) and (2) all inputs and exotenous demands (negretive signs) is defined as the surplus of the resource. If the surplus is zero, there is an exact balance; if positive, the resource is redundant; if negative, there $2 s$ a bottlemeetse in this problem,

20/ UR-ECAFE (1961:FID), Chap. 2.
21. The coefficients of this model have been based (with some necessary changes and additions) on a amall illustrative model used by Chenery (1958: DPP), Table 2. Fixed-cost coefficients have been addeds they are not used in the linear version of the model.

0 OTHES
nam

2	3	3	3	2	8	2	2
0	4	-15	0	-1	0	0	5
0	0	0	0	0	0	0	

economy in the use of capital is chosen as the oriterion of the efficiency of a plan; this is expressed by maximizing the surplus of capital. This formulation can be intuitively interpreted as follows: suppose 350 units represents the limit of capital stock that can be built up by saving and foreign borrowing; yet it is desired to cut back on the need for this saving and borrowins as much as possible. At the same time consistency of the plan requires meeting pressibed demands and keeping within available resource supplies; the latter conditions can be simply expressed as the avoidance of bottlenecks in any resource use. 22/

The model also determines the shidow prices of all resources. The price of sapital is chosen as the "numeraire" resource whose price is set to unity and in terms of which all other prices will be expressed. The reverue (positive sign) or cost (negative sign) due to any resource can be determined once the shadow prices are given, the technical coefficients of a project are simply multiplied by these shadow prices. The difference between revenues and costs is the profit for any activity (variables in top margin). It is an interesting property of linear programming modele that in solving for the most efficient set of project scales " X " that optimize the allocation of resurces, a related "dual" problem of valuation of these same resources is also automatically solved. This problem consists in choosing shadow prices "Y" so as to minimize "profits" on the exogenous activity while profits on all projects are eliminated (as though these projects were in perfect comptition). (Siee Mathematical Appendix).

The illustrative decomposition model of Table 1 is simple enough to permit a graphical representation by mans of an dgeworth box diagram. (see Figure 3.) In this diagram the total availabilities of the connecting resources (350 units of capital and 2000 units of labor) form the edges of the box. Resources used in each sector are measured
22. Fbr an interpretation of the system of Table 1 in ordinary algebraic equations, see Mathematical Appendix.
(
along the edges in opposite directions; thas any point in the diagram is a simultaneous representation of 4 variables: capital and labor used by Sector 1, and capital and labor used by sector 2.

Points A, B, C, and D in the diagram represent four different oomplexes of projects that can be formed from the activities $X_{2} \ldots X_{4}$ of Sector 1; pointa E, F, O, and H represent similar complexes formed from the activities of Sector 2. Bach of these complexes contains two projeoter this is the amallest number that permits satisfying the belances of the special resouroes in each eector. 23/Table 1 contains a listing of the project mcales and the total capital and labor requirements of each of these complexes; the respective project-scale variables are bhown near each point in the graph. In preparing the graph in Figure 3 , the efficient complexes of each sector have been oonnected by a line. Point C represents an inefficient complex in Sector 1 since it mas larger requirements of both capital and labor than point B; thus it will never be attractive to use complex C. Likewise point 0 represents an inefficient complex in Sector $2.24 /$

The points along a line connecting two complexen, e.s. A and B, represent weighted averages of these two oomplexes. For example the aidpoint of the AB line represents an average complex that is formed in zunning projecta X_{1} and X_{3} of Complex A at balf the scales shown in Table $1\left(X_{1}-37.5 ; X_{2}-25\right)$; 11kewise running projecte X_{2} and X_{3} of Complex B at half the scales shown for B in Table $1\left(X_{2}-42.858\right.$, $x_{3}=35.715$); and manaing the corresponding project soales (only x_{2} requires

23/These complaxes are extreme-point (vertex) solutions of the abprobleas of Sectors 1 and 2. These aubproblems are defined algobredoally in the Mathematical Appendix and are disousced later in the text.

2/ Inofficient points noed not uee more oaptial and labor than any on point moh as B or Ff $1 t$ is mufficient that they lie northoast (for Sec. 1) or Southwest (for Sec. 2) of the line connecting moh compleses in any eeotor.
sumation; thus $X_{1}=37.5, X_{2}=67.858, X_{3}-35.715$). It can be verified by aimple algebra that the labor and capital inputs of the averafi complex fall exactly halfway between the labor and capital inputs of points A and B. In the present case the weighting was .5 and .5 . Points other than the midpoint are obtained by using weighte in different proportions. The weights may vary from O to 1 and thej huve to add up to unity. As long as this weighting rule is observed $: t$ is guaranteed that the special resource balances of each sector will be atisfied by the averaged complexes, even though the graph contains explicitly only the connecting factors. In adition to points lyine on the connecting line between complexes such as A and B, the same guarantee applies also to any other point that oan be attained startine with the fomer points and then disposing of (wasting, throwing away) some capital and/or labor.

The two curves in Fi_{s} ure 3 can be regarded as generalized iso-product functions for the two sectors that describe the alternative combinations of the connectiny factors (capital and labor) that can produce the given output of a sector. What is this "given output"? It cannot be identified with any sinfle product since all special sectoral resources are on an equal footine and none can be recarded an "the" product of a sector; it is thus convenient to think of sectoral output as the entire task of satisfyine the special resource balances.

The horisontal and vertical extensions of the two sectoral curves to the coordinate axes correspond to conventional useage in economics; they aignify free disposal of redundant surpluses of the connecting factorw, as mentioned above.

Figure 4 provides a graphical illustration of altermative methods available for finding an optimal solution to the model. uch a solution represents a plan, i.e., a set of projects with determined project scales, that is both feasible in the sense that it saticfies all resource balances, and efficient in the sense that it maximizes the surplus of capital (i.e., it minimizes capital requirmente).

A "fearible golution" is a plan that astisfies all resource balances but da not necessarily optimal. Points B and I jointly represent ach plan. Point B on the iso-product line of Sector 1 ; thens it is eure to eatisfy the balances of the special sectoral rasources In this sector; point T is on the iso-product line of jector 2 and thus eatisfies the apecial resource balances of sector 2 . The labor requirements of the two points add up to 2000 and thus satisfy the labor balance. Accordingly all resource balances are satisfied and the plan 1s feasible. In order to determine whether it is also optimal, the oapital requirements are identified: by inspection of Figure 4 they oan be seen to leave a capital surplus exactly equal to the vertical dietance $B T$. It remains to be decided whether other feasible solutiona exist that leave a larger capital surplus.

Note that point B is one of the complexes of Sector 1 that has been premented in Table l; while point T represents a weighted average of complexes E and F of Sector 2. This solution is labeled as "BiF" by reference to the sectoral complexes forming it. Table 2 (line 12) containe a listing of the quantitative characteristics of this solution includinc labor and capital requirements in each sector, capital surplus, and the weights used for averajing in each eector. In Seotor 2 these weights are .926 and .074, reapectively, for points E and F_{3} in Sector 1, the waight 181.000 for point B since this complex appears alone, without being averaged with another complex.

In generel a feasible solution will be obtained when one point is seleoted from the isomproduct line of each sector, attention being padd to joint labor requi rements. Then the two points fall on the same vortionl line the joint labor requirements add up to 2000 unites when the point for Sector 1 falls to the left of the point for Sector 2 there will be an amount of redundant labor equal to the horizontal displacement between the two pointe (for example, when the c.mbination Ai is chosen); convoreely when the point for sector 1 falle to the rinht of the point for Seotor 2 labor will be in a bottlened condition (for example, combination BE). Since it is generelly inefficient to leave letor

TATE 2

LNEAR DECO POSTYYON MODET. ETPGTED OLUTIOLSS

eights for coidining comulwes I: SLCTOR 1
SUIE, SECTOR 2
PRICE OF LaBOR (PRICE OF CAITAL - P $=$ Yo-1)
LHEOR REUUIRELLNT (INHERENTILY NEC.) IN SBCTOR 1 IND 2 SANE FOR CA ITAL
SURPLUS OF CAPITAL (TO BE WLNLIIZED)
G IN THE SOLUTION INDICATES i SURTLUS OF UNUSED LABOR
(h) ins muibeir in parmitesis is the vilue of of

NO (NO POINT I: SHCTOR is INFEISIRLS)

	PL (0) $-L_{2}$ (d) $-L_{2}$ (d) $-K_{1}^{(0)}-K_{2}$ (e) $0_{0}=350-K_{1}+K_{2}$ (1)				

$\mathrm{ABH}^{\mathrm{H}}$ (8)	0	1237.5	625	97.5	225.0	27.5	\checkmark
$\mathrm{ACH}_{2}{ }^{\text {2 }}$	0	1237.5	246.4	97.5	09.3	163.2	
$0^{\text {m }}$ (${ }^{(8)}$	(NO POINT IN SLCTOR 1: INFLASIBLE)						
ABH	- 422	1237.5	762,5	97.5	166,9	85.6	\checkmark
AH	2.375	1237.5	762.5	97.5	35.9	216.6	
A50	. 106	1237.5	762.5	97.5	100.9	243.6	\checkmark
Him	(NO POINT In SECTOR 1: INFEASIBLE						
m	${ }^{2} 187$	1375	625	71.7	225,0	53.3	
d5	.187	1053.6	94684	231.9	89.3	123,8	
	. 222	1071.4	928,6	128.6	\%\%8	124,6	\checkmark
WH1	1.375	1072.4	921.6	128,6	-192,5	423.9	
	. 106	1071.4	928,6	128,6	9n. 2	130,2	\checkmark
n	.207	1295.0	705.0	6.7	125.0	248.3	

Nopres

(a) TEIGHTS FOR CO. BIIING COHLEXES IN SECTCR 1
(b) SALE, SECTOR 2
(8) PRICE OF LAEOR (PRICE OF CALITAL = P - $-70-1$)
(d) LABOR RDGUIRE LINT (INHLRMDTLY NEO.) IN SECTOR 1 AAD 2
(c) SALE FOR CAPITAL
(5) SURPLUS OF CAIITAL (TO BE MAXIIIEND)
(5) TH TN THE SOLUTION INDICATLS A SURPLUS OF UNUSED LWBCR
(h) The nuibiar in fardint ieses is tue value of of
redundant, a convenient strategy for selecting feasible solutions in the course of optimization is to choose two points that lie on the intersection of a given vertical line with each of the two sectoral 1so-product functions. The vertical distance between the two points measures the capital surplus corresponding to the given feasible solution. The geometric determination of the optimum is now obvious: it consists in selecting the vertical line thit maximizes the distance between the two sectoral iso-product functions. In the present case the optimum is attained at $A N$, point N is a weighted average of complexes E and F in Sector 2. The solution, designated as ASF, will be found quantitatively described in the sixth line of Table 2.

This geometric method of finding a solution is not applicable to larger problems; Dantzig and volfe (1961) have huwever provided a generally applicable method which can also be followed by means of the Graphical presentation in Figure 4. (wee also Tables 2 and 3.)

Danteig and olfe break down the overall problem into two
parts: a "master problem" and "sectoral subproblems". (These correspond to central and sectoral-level planning decisions.) The master problem 18 formulated in terms of the connecting resources, in the present case labor and capital; and it is pieced together by averaging known sectoral. complexes. The graph in Figure 4 represents this master problem. The mester problem also determines prices for the connecting resources; in the present case, a price ratio for labor and capital. The sectoral cubproblems, on the other hand, systematically find previously unknown sectoral complexes for inclusion in the master problem. The sectoral subproblems do not explicitly appear in the graph of Figure 4 , but compliance with their balances is guaranteed by the averagine rules discussed above. The starting point of the technique has to be one known basic feasible solution to the master problem; given such a starting point, 25/

25/ If no basic feasible solution is known that would be suitable as a starting point, it is possible to construct one by alyebraic techniques. See Dentzig and lolfe (1961).
25T3

the interaction of the two parts of the problem guarantees the attainment of the optimal solution in a finite number of steps.

A basic solution contains the smallest number of noneero variables that is compatible with the number of equations. In the master problem we have four equations (see Mathematical Appendix) one each for balancing capital and labor requirements, plus one for describing the averacing rules for complexes in each sector. The variables of the master problem are of two kinds; first, the weights to be applied to the individual complexes of each sector, and secondly, surpluses of labor and of oapital that can also be interpreted as disposal activities. How many of these variables must be nonzero? Generally at least four. 26/ One of these will be the capital surplus , which is being mrximized; the other three may be three sectoral complexes, or two complexes and the labor surplus (disposal) activity, \because. In Flgure 4 basic feasible solutions are obtained by selecting intersection points of a vertical line with the imo-product curves, as before, but with the additional reatriction that the vertical line has to run through a vertex (a point for a single complex) in one of the sectorsp solutions BEF and ALF that have been mentioned before are such basic solutions,

26/ The number of variables including slacks (surpluses) in a linear progreaming problem exceeds the number of equations; the iifference is known as the number of degrees of freedom of the system. a correaponding number of viriables can be arbitrarily fixed, whereafter the values of the remaining variables are determined by solving the system of simultaneous equations. If the pre-set variables are assigned the value of zero we get a basic solution. In addition, by coincidence, the solution value of one or more of the variables that have not been presest may also turn out to be eero; in this asse the number of nonzero variables will be less than the number of equations. Such a solution is termed "degenerate".

29/ Degenerate solutions are obtained when by coinoidence complexes in both eectore fall on the same vertical line.
but solution ABEF corresponding to the vertical line $V i$ is not, since it contains five nonzero variables: capital surplus (the maximand), plus non-zero weights for each of the four complexes is and B in hector 1, and i and F in ejector 2. In addition a solution such as ai corr ospending to the vertical line A is also a basic feasible solution, even though it is off the iso-product line of Sector 2 , since the pin:
\therefore can be obtained by averaging the two non-neithbourine complexes E and H. This point is of course not efficient sire it could ils: t. attained by starting n_{0} wi point N on the iso-product curve and then wasting some capital (corresponding to the distance $N \lambda$). $28 /$

In the mister subproblem not only the starting solution but all later solutions also have to be basic. The reason for this is this: only basic solutions determine a unique price ratio for labor and capital which is needed in the sectoral subprobleins. In a basin soladion the price ratio is fixed by the slope of the averaging line regret: that is intersected in one or the other of the two sectors. If the solution is nonbasic such as ABLF the vertical line Vil intersects lin: segments, generally of different slopes, in both sectors rather thar. passing through a vertex in one sector.

Let us now trace the course of optimization, using the jantziewolfe algorithm, by reference to Figure 4. suppose the starting point is at the vertical line HI. This corresponds to a basic feasible solution (labeled "AO, H" in Table 3) in which complex A in vector 1 and complex H in Sector 2 appear with unit weights; thus 2 weiehtinte variables are nonzero. In addition there is some labor disposal: thus the labor surplus variable \quad, will also be nonzero; its value

Basic solutions need not be feasible. If the solution value st
any variable (a weight or a slack) turns out to be negative the solution is infeasible. In the graph of Figure 4 basic but irticsebible solutionsare obtained if the vertical line is made to intersect. not the line segment connecting two vertices but the continuation of such a line segment beyond one of the vertices. This represents an impermissible weighting of the two complexes, with one weicht negative and the other exceeding unity. See for example point: corresponding to the averaging of complexes A and B in solution AB H (Table 2, line 8).
corresponds to the distance AI, which amounts to 137.5 units. The value of the maximand (the capital surplus variable \therefore,) corresponds to the distance AI, or 27.5 units.
(e assume that at this point only complexes A and H are known. While in this problem there are in all only six efficient complexes, in larger problems the number of possible complexes increases combinatorially and thus at the beginning of the optimization there exists very little information concerning alternative eficient sectorcl oomplexes. The task of the sectoral subproblems is precisely to identify previously unknown efficient sectoral complexes for inclusion in the master problem.

Looking at it another way, if all the efficient sectoral complexes were known from the very beginning the optimal solution to the master problem would immediately identify the optimal solution to the problem as a whole. since, however, we are generally working with an incomplete list of complexes, we need a technique that will senerate new complexes; and specifically, we have to generate those complexes that are needed for the optimal solution of the overall problem without having to enumerate all possible efficient sectoral complexes. .ie shall now indicate how the sectoral subproblems are utilized for achieving this aim.

In the starting solution the price ratio between labor and capital is determined by the slope of the line segment AI; in other words, the price of labor is zero. The price of capital is unity by assumption. Using these relative prices, the sectoril subproblems maximire the combined value of the connectink resources. In the present problem the connecting resources apyear as inputs; thus we are in effect minimizing their combined cost. At the same time, the seotoral subproblems have to satisfy the balances of the special seotoral resources.

While in the graph of Figure 4 we do not show the special resource balances of the sectors in an explicit fashion, they are
nevertheless allowed for by means of the averasing rules applicable to complexes. Ne know that the straisht lines connecting the points corresponding to the sectoral complexes represent weighted averages of complexes; as long as the complexes thenselves suticfy the special sectoral resource balances, these weiehted averaces will also do the same. In addition, we know that whenever we take one of the points corresponding to the complexes or their weighted averages and we subsequently dispose of (throw away) some labor or capital, we are still certain to satiofy the sume sectoral balances. Thus we can may out feasible areas for both sectors in the graph these consist of the 180product lines plus all the points falling on the concave sides of these lines. Whenever a point is chosen within the feasible area of a civen sector, it can thus be guaranteed that the special sectoral resource balances are satisfied. In this way we can use the graph of the master problem to represent possible solutions to the sectoral problems.

The question arises: in maximizing the combined value (minimizing the cost) of the connecting rescurces in the subproblems, using the price ratio of the starting solution, do we discover new complexes that are "more efficient" in some sense than the ones already known?

In the graph the combined value of the connecting resources is represented by budtet lines whose slope equals the price ratio between labor and capital and whose intercept on the capital axis measures this combined value.29/The optimization in each sector is represented by a parallel shift of the budget line in such a way that the combined value of connecting resources is increased (combined cost is decreased), while maintainine at least one point of the budget line within the feasible area of the sector. In iector 1 this procedure leads to point A which had already been known previously; but in vector 2 the optimum

29/The budget line corresponds to the equation

$$
P_{L} \cdot(-L) r P_{K} \cdot(-K)=(-z)
$$

or:

$$
(-K)=(-Z)-P_{L} \cdot(-L),
$$

since $P_{K}=1$. On the graph the axes correspond to ($-K$) and (-L); thus ($-\frac{1}{2}$) is the intercept on the ($-K$) axis.
corresponds to new oomplex 2 whose exact capital and labor requirement are disclosed by the optimization process.

In what sense can we essert that complex E is more efficient than previously known complexes?

In the starting solution complex f was the only known complex for Sector 2. The combined cost of the connecting resources for this complex can be read off by tracing a budset line with slope 0 to the capital axis of Sector 2: in the graph we read off 225 units at \uparrow. (this mame value will also be found in Table 2 , in the line of solution 0 labeled " $A \therefore ; H^{\prime \prime}$, under p_{2}). 30/ The combined oost for complex E is however only slightly under 90 units as read off in the graph at -. (89.3 unite under $-\mathrm{z}_{2}$ in Table 3). Consequently the inclusion of complex E in the solution promises a combined cost improvement of 225.0-89.3 $=$ 135.7 units, at the prevailing prices.

30/ p_{2} is a shadow price in the master prublem that sorresponds to the equation describing the averaging rule for wector 2. (Nee Matnematical appendix.) henever a complex is included in a b.sic sulution, i.e., when its weicht is nonzero, the shadow protit for the column of this complex has to vaniah. The mathematical reason for this is the weli-known rule of complementafy slacks applicable to linear prociraming problems; in eoonomic terms the solution enforces perfect competstion betveen all complexes included in it. Consequently the shadow price p_{p} and the combined value of the connecting resources have to add up to zerb; in other words the combined value equa?s $-p_{2}$.
F_{2} uan cunveniently br interpreted as a "subcontracting foe." The master problem in effect places all complexec of a sector in competition with each other for the privilege of periorming the task of the sector, namely satisffin the balances of the special sectoral resources. Whichever complex or complexes can periorm this task at the lowest aubcontracting fee will be selected to do the job. At any staje, the suocessful complexes will Just break even: their combined cost for the connectins resources at the prevailing prices will just equal the subcuntracting foe. The solution to the master problem can, however, be improved as lon, as sectoral optimization will disolose new complexes that can make a profit at the prevailinc prices and prevailins subcontracting fees, hen this is no lonfer possible, an overall optimum for the entire problem is attained.

In order to pass from the atarting solution to the next solution of the master problem we will now want to include in in the colution. Since the solution is to be basic, however, we will have to drop some other complex or the labor surplus (disposal) activiti. Table 3 iniacates the three choices available for droppinc variables and the corresponding colutions. (The capital surplus activity which is to be optimized ie never dropped.) If we drop complex a we are left with no complex in Sector 1, and thus we have an infeasibility. If we drop 8 ; we tet eolution AiH which yields an average complex for vector 2 at point λ which is feasible. If we drop complex H we oet solution $A \therefore$, which leade to point J for sector 1: an infeasible point, implyine a netatave ;. - (Numerical data describin euch of these trial solutions will be found in Table 2.) Thus we have only one feasible choice, solution al This is labeled as solution No. 1 in iable 3.

ABH determines a price ratio of 422 between labor and oapital: this ratio equals the slope of the line connectine .. and H . Budget lines with this slope yield new complexes in the course of the optimization in both sectoral subproblems: in vector 1 , the new complex is B, with a combined cost of connectince resources eyual to $\left(-\varepsilon_{11}\right)=580.7$; while in Sector 2 the ne. complex is F with a combines cost of $\left(-2_{12}\right)=488.3$. The cost inprovenent relative to solution LEH can be deterinined b_{j} comparison with the combined cost of in in Seotor 1 which equals 580.7 (p_{11} in Fieure 4; also in Pible 3), and the combined cost of either $i \leq$ or H (these are equal) in wector 2 which equale 412.5 (p_{12} in Figure 4 , also in Taile 3). The cost improvements are thus 39.0 and 76.3 units in wectors 1 and 2 , respectively. 0 t ther one of these new complexes $\mathrm{c} \sim$ n be included in the colution of the master problem to cet an improvenent in the maximand it ia, however, preferable to include the wimand. namely F. Once again it becones neceosary colution in order to remain basic; the line of Solution 1 in Table 3 , the three choices are indicated in tions are numerically and the resulting alternative solutions are numerically opecified in Table 2. The only feasible choice

1s ALF. This colution detemines a price ratio of 0.106 (equal to the slope of the segment EF); at this price ratio the budget lines disclose no new complexes in the course of the sectoral optimizations, and thus the solution AdF turns out to be optimal.

If at the stage of wolution 1 complex B had been included in the next eolution rather than complex F, the path of optimization would have been slightly longer. In this case Bill turns out to be the next feasible solution; the price ratio remins .422 as in solution 1. nt this price ratio F is still present with a potential improvement and thus it is the next, complex to be included in the master solution. The next feasible solution is obtained by dropping H; thus solution No. 4 is BEF, with a price ratio of 0.106. At this price ratio point a appears as an improved point in sector l; the next feusible solution, after dropping B, is $A L F$, the optimal solution.

From the point of vied of project evaluation the sionificance of this analysis of the deconposition algorithm is that it discloses the fact of the infufficiency of price-type control instruments in attainine an optimal solution. de alreadj discussed by Clopper Almon (in Danteig, 1963, pp 462-465) the central planning office cannot guarantee the balance of connectin resources merely by setting the prices of these resources, since in a solution such as ASF the price ratio ef will not guaruntee that Sector 1 will choose to produce exactly with the weighted average N of complexes \therefore and F. Faced with the price ratio 3 this sector may produce at any point alons the segment EF, since all pointe along this segment are equally optimal at the stated price ratio, and there is no preference between them as far as Sector 2 alone is concerned. If the centrul planning office wants to make sure that the connectine resources will be adequately balanced it has to presoribe either a weighting of complexes $-\operatorname{and} F$ in sector 2, or a quantitative allocation of labor and capital to this sector. it the same time, Sector 1 can be adequately regulated by the price ratio alone, since at the given price ratio it has a unique equilibrium position at A.

An interesting feature of the practical application of control instruments in this situation is that the central planining office will find it worth while to use both price and quantity-type control inctridments, even thoush their joint use will be redundant in iector 2.
"They (the Central Trade office) announce in quantitative
terms their feasible plan. They tell each plunt manater
how much of each traded comodits he must produce and how
much he is allowed to purchase....They also announce the
prices and direct that trade be conducted at these prices.
Ther may also instruct the manaser that, wheject to their
peotins the quantitative foals. . they should also auxi.nize
profits. Such a rule is intended as a tuide to avoid posiatie
waste in the event that Q (the quantitative :oal) is not
preciselv achieved for one reason or another. It is inportar.t
to note that they cannot tell the managers simp, to aaxiaize
profita (omitting pruduction couls, w) for if they did,
Contral Trade would almost certainlj have difficulty with it.
constraints." 31/

At the pruject level, this insufficiency of price-t.jpe control instruants is translated into the insufficiency of the usual price-tjie project evaluation criteria, and calls attention to the fact that there in an inescapable minimum of guantitative control thit has to be exerciser even in hichly decentradized syateng. This does nut mean, of course, that multi-level plamint is useless; on the contrary, it reinforces the need for such plannin, since it indicates that a decentralized market uechanism without a central decision making level will encounter the ame indeterminacies that characterize the aulti-level plannine syatea with pure price-type coordination. Hulti-level plannine is at the same time preferable to pure central planriint, since it results in an economy of inforaation flow. It should be noted that the master problen. in the decomposition algori tha reciuires no information on special sector: resources and on particular sectoral projects or activities, it handlos this information in an indirect fashion by means of delineatine feasible regions for each eector on the basis of averabing known sectoral iomplext:
31. Almon in Danteis (1963), 464-465. (imphasis added).

The decomposition aldorithm of Dantzif and Yolfe is not the only one that can be utilized for coordinating the adster program with the eectoral subprostams. Kornai and liptak (1965) have proposed a multi-level planning system in which the information flow is the revorse of that in a Dantzig-iolfe system. In a Dantzig-iolfe decomposition the master prograin signals prices to the sectoral subproblems and the latter signal combined utilizations of interconnecting resources by particular complexes to the master program; in other words, prices flow downard, quantities flow upward (except for the fing quantitative control objectives fixed by the waster program for the sectors in which averaging is required). In the Kornai-Liptan decomposition the master program passes allocations of the connecting resources to the individual sectors; the latter, in turn, signal their own sectoral sbadow prices for these resources to the master program. ithout going into detail concerning the Kornai-Liptak decomposition it can be seen by reference to Figure 4 that sectoral resource allocations of labor can be represented by a vertical line cutting the two iso-product curves; at anj (basic or noribasic) solution separate shadow prices can be determined for each sector. For an averaged complex, the shadow price coincides with the slope of the averaging segment; for a aingle complex (which appears with unit weight) the shadow price is distinct for increased and for decreased allocations. For non-optimal solutions the compisison of shadow prices for the two sectors will show an unambiguous difference; for example, for the basic solution BEF the shadow price of labor both in the upward and the downward direction is areater in sector 1 than in Sector 2. This signals the need for increased labor allocation to Sector 1 at the expense of sector 2. Conversely, for the basic solution $A \quad H$ an unambicuous price difference will exist in the opposite sense, aignaling the need for increased labor allocation to Sector 1 at the expense of Sector 2. At the optimum, solution AFㅏ, the vertical out through A and N will yield a shadow price at N that is smaller than the shadow price at A for decreased labor allocation to Sector 1, and larger than the shadow price at A for increased labor allocation to Sector 1 , thus sifnaling a stable equilibrium.

C. The Decompotition Principle in Nonconvex Systeme

The indeterminateness of control by weans of purely price-type instruments that has been observed in convex systens with linear boundiary segments will be present to an even stronger degree in sjstems that exhibit nonconvexities. In general, while in a linear system a given price ratio will gustain an optimum, in the sense that at this price ratio no movement away from the optimum will appear advantageous to any of the sectors (even though this optimum will not be attained wi thout the intervention of quantitative controls), in a nonconvex system a set of prices will not even sustain the optimum in any stable sense. 32/ In auch a aystem there will be a constant tendency for some sectors to abandon the optimum position, and this tendency will have to be counteracted by specific quantitative controls. The practical consequences of the introduction of such quantitative controls are not greatly different from the effects of guch controls in systeas wath linear boundery segmeris; in thie regard non-convexities merely reinforce the control requirements already manifest in the former systems. A more profound difference, however, concerns the applicability of iterative corrections for improving the efficiency of existing feasible solutions, since these tend to break down in the presence of nonconvexities.
le shall use the diagramatic method developed for linear decompositions to indicate the chandes that are introduced by considerine the presence of nonconvexities. This will allow the application of sone

12/ More exactly, in a linear system small deviations from the optimal price ratio will set up only weak forces tending to move the sectors away from their previous positions, since the corresponding chances in the optimal value of the objective function are amall; in nonconvex systems, on the other hand, small changes of the price ratio can induce movements away from the previous position that are cumulative, since the farther the move has proceeded the stroner the incentive will generally be to wove further still, as the difference in the value of the objective function at the previous position and at the end point of this cumulative movement can be very large.
judecments concerning the role these nonconvexities are likely to play in practical situations. One has the intuitive feeling that the presence of small nonconvexities cannot have a profoundly disturbing influence on the behaviour of larcely convex systems, since comnon observation indicates that warkets are often able to operate with reasonable efficiency in spite of the pervasive presence of fixed costs, coonomies of scale, and other nonconvexities. But what is "Bmall" ? That systems are "largely convex" ? The diagrammatic method will offer some bases for judyement on these points.

Figure 5 indicates the first step in constructing a decompoaition diagram with fixed costs included to represent nonconvexities. The fixed costs are expressed in terms of labor and capital requirements (see Table 1). For each complex such as A, B, etc., the fixed costs of the component projects (activities) are added up. In the graph of Figure 5, these additions are performed by means of vectors (arrows) which represent the labor and capital requirements of individual projects (activities). In this fashion, point A is carried into point A^{\prime}, point B into point B^{\prime}, eto. While points A, B, \ldots in the diagrams have been referred to as "vertices" we shall refer to points $A^{\prime}, B \prime, \ldots .$. as "anices" in order to keep the two kinds of points sharply distinguished.

Can apices be averaged? Generally not in a linear fashion, sinoe for example, averaging apex A^{\prime} and B^{\prime} requires the joint use of projecte X_{1}, X_{2} and X_{3}, while apex A^{\prime} allowe only for the fixed cost of X_{1}^{1} 'and' X_{3} and'apex B^{\prime} only for X_{2} and X_{3}. Thus when two complexes are to है used jointly all the fixed costs of both complexes have to be incurred. Once all these fixed costs have been incurred, the variable costs can be avoraged inneariy as usual. $33 /$ In Figure 6 theace

33/ If fixed costs also comprise requireaents of special sectoral resources these requirements can be translated into equivalent labor and capital requirements calculated at the marginal labor and oapital requirements needed for producing the specified amounts of sectoral resources, on the assumption that all of these sectoral resources will in fact be produced in the optimal program, and that the correspondinc fixed costs will thus be incurred in any event. This assumption may not be valid; and
(Cont'1.)

operations have been performed; for example, at A^{\prime} the vector \bar{x}_{1} hes been added on, while at B^{\prime} the vector \bar{x}_{2} has been added on; the endpoints of the latter vectors can now be connected by a straisht line. It is aignificant that the slope of this correct averaging line for apices A^{\prime} and $B^{\prime} i s$ the same as the slope of the vertex-to-vertex average. This is due to the fact that $A, B y$ and the endpoints of the correct averaging line form a parallelogram, since the same thres yegtor have been added both to A and to B, even though in a different eequence. Thus the correct averaging line reflects marginal costs, while an geretoenger connecting line does not.

Two important qualifications to the foregoing procedure have to be noted:
(1) While the vertices C and a represent inefficient complexes in a Inear aystem, it is by no means a foregone conclusion that they wll alwo be inefficient in a nonconvex system comprising fixed costs. If, for example, the fixed costs associated with C were unusually small, it could easily happen that the correct averaging line involving C will pase in part on the irfeasible side of the correct averaging lines for the other complexes, and will thus yield preferable points in this range.
(2) In a inear system averages of neighbouring efficient vertices are always superior to averages of non-neighbouring efficient vertioes. In a nonconvex system wh fhixed costs this is not necessarily s01 for example, the correct averages between apex A^{\prime} and B^{\prime} and between apex B^{\prime} and D^{\prime} may prove inferior in certain ranges to the correct average of apex A^{\prime} and D^{\prime} if the fixed costs ascociated with vertex B are unusually bigh.

Do the apices and the correct averaging lines appearing in Hegure 6 jointly form iso-product lines for the two sectors? In answering

33 Cont'd. ...there might exist some choice in the selection of cotivitien for producing these fixed-cost components. le shall abstract from all of these secondary complications in the course of the present disouseion.

this question it has to be remembered that free labor and capital disposal is at all times permitted; thus any point in the diagram representing a legitimate apex or average will dominate all points derivable from it by such disposal activities. Therefore B^{\prime} will dominate all points on the correct averaging line between A^{\prime} and B^{\prime} that are to the Northeast of $\mathrm{B}^{\prime} ;$ and likewise for A'. As a result, the entire line connecting the endpoints of vectors \bar{x}_{1} added to B^{\prime} and \bar{x}_{2} added to A^{\prime} will disappear and will be replaced by a step function between A^{\prime} and B^{\prime} (see Figure 7). Applying the same considerations of dominance to other areas of the diagram we wind up with the iso-product lines of Figure 7 that have a much simpler configuration than the apices and correct averaging lines of Figure 6. This simplification of the diagram is not a special feature of the numerical example under study but a general phenomenon that is due to the fact that the correct avaraging lines have pronounced dips at the apices where one fixed cost is in all cases eliminated. As a result the straisht line segments representing variable costs are generally truncated near the apices and in some cases (as between A^{\prime} and B^{\prime}) completely eliminated in favor of simple step functions.

What an be eaid about the nonconvex decomposition problem represented by the iso-product lines of Figure 7 ? In general when the lines are correctly drawn and all the apices that contribute specified ranges to the line of a scctor are known it is possible to find a colution to the master problem without the need for considering all the detailed information represented by the specific sectoral resource balances and sectoral projects. A knowledge of the capital and labor requirements at these apices, together with correct averaging procedures is sufficient to guarantee an exact solution to the master problem. The averaging procedure in the present case can be based on a listing of projecta included in each complex together with their fixed capital and labor requirementa; when two or more complexes are averaged, it is then aimply necescary to cheok off all projects that are included and to add up their fixed costa. Formally, the master problem becomes an integer

[
 0

332

- 42-

8
$8 \quad 3$

0

programing problem in which the averaging of the variable costs of the complexes is conditional on incurring all the requisite fixed conts.

In practical applications the shortcoming of this procedure 1s twofold. First, it is difficult to solve the integer programing master problem; second, the availability of information concerning the requisite apices can by no means be taken for granted, since the number of auch apices increases combinatorially with the aize of the problem. An discussed in connection with the linear decomposition problem, the Virtue of the Dantaig-iolfo algorithu is precicely that it generates new complexes as they are needed, thereby shortcutting the emmeration of efficient complexes. The question is, can a similar procedure be developed for the nonconvex case?

No such procedure is presently avallable and the difficulties standing in the way of evolving one are great.
(1) To begin with, the meaning of prices in the master problem -a in integer programing problems in general - now booomes anbiguous. In Figure 8 the overall optimum happens to be at the vertical line passing through B^{\prime}, as can be verified geometrically or by means of a simple computation. .hat is the proper price ratio between labor and capital characterizine this optimum? Is it the slope of the iso-product line at J ? This slope, as noted before, corresponds to the averafing of variable costs, $i . e .$, to the slope of the line EF; it is thus a marginal cost ratio. Or is the proper price ratio the elope of the apex-to-apex connecting line, $\mathrm{X}^{\prime} \mathrm{Fl}^{\prime}$? In the present case the two slopes are not greatly different; but with only a small change in some of the fixed costs the optimum can be shifted to a vertical line such as $M N$. Here we have three possible price ratios: the former two, and in addition, the zero labor price corresponding to labor dieposal.
(2) Next, we have to ask what the role of moh a price ratio ie coing to be. Will it be used, as in the linear decomposition problen,

in a search for new efficient complexen? If so, the sectoral mubprobleme become integer programming problems involving the minimization of combined costs (as in the linear case), but with allowance for fixed costs of the individual projects. In the present illustrative case (see Mgure 8) such sectoral optimizations performed at the proper price ratios will identify all apices that participate in defining the ieo-product lines; however, this cannot be generally guaranteed, because apices can also occur in local indentations of the iso-product lines that will not be optimal under any price ratio. Alternately, the role of the price ratio may be taken to be to sustain an optimum, as in the linear case; if so, the local marginal price is the proper one to use, but (as noted before) such a price will sustain the optimum only in a most unstable way, since the slightest change in the price ratio will generally precipitate a cumulative movement away from the optimum.

On the basis of considerations such as these it is clear that the concept of a unique price ratio characterizins convex systems cannot be extended to nonconvex systems; it rather appears necessary to define different price concepts for serving different kinds of functions. The price concept needed for identifying new complexes for inclusion in the master problem is an apex-to-apex connecting price, while the price concept needed for sustaining an optimum, if only in an unstable manner, is a marginal price. As in the linear case, quantitative control instruments are needed for making sure that the system arrives at an optimum and, in the nonconvex case, also that it remains there. The role of marginal prices in such a situation can be the one of allowing for small corrections in case of unforeseen deviations from optimal quantities in the course of plan execution, in a way analogous to the linear case discussed earlier.

Figures 8 and 9 have been drawn to indicate two poseible approximations to the derivation of an exact optimum in such nonconvex decomposition probleme.
(1) In Figure 8 the apex-to-apex connecting lines are shown in relation to the correct iso-product lines. It can be seen that the apex-to-apex connecting lines vield a linear approximation to the nonconvex master problem while they maintain the nonconvex nature of the sectoral problems. An approximate overall solution can be ottained in an iterative fashion by determinin $n_{\mathcal{E}}$ successive price ratios from the basic solutions of the linearized master problem; these price ratios are then applied to sectoral integer programing problems that will identify new efficient complexes if such are available. The latter are included in the linearized master problem and the procedure is iterated. This approximation has the virtue of generating new complexes only as needed, similarly to a linear deconposition problem.

What will be the characteristics of this approximation?
(a) It will always yield an overestimate of the optimal value of the objective function, since it ignores regions of local indentation between apices. These apices are averajed in a simple linear fashion, ignoring the correct averacing procedures.
(b) The approximation will be a good one to the extent that nonconvexities are weak; i.e. to the extent that locil indentations are emall in comparison with changes of capital surplus corresponding to different basic solutions of the linearized master problem. In other words, the apex-to-apex connecting line stajs close to the true isopro :uct line, there closeness is measured in reference to a feasible area that is convex in the large and has only small local nonconvexities. Note that the graphical representation permits an intuitive appraisal of the relative roles played by convexity-in-the-large versus nonconvexity-in-the-small.
(c) Such a situation is likely to arise when oither fixed costa are small in relation to the changes of variable cost over the averaging rances, or else, where the fixed costs of many coamon projects are shared between neighbouring complexes that differ only elightly in project composition.
(d) Another important aituation of this kind arises when fixed costs in a sector are incurred stepuise; in other words, when projecta with given fixed costs are limited to a maximum soale, beyond which the fixed cost has to be duplicated. This has the effect of reducins the size of the abrupt increase in correct averated costs near the apices and brings the iso-product line within a fraction of the distance from the apex-to-apex connecting line that prevails when fixed costs have to be incurred in a sinele step. This case corresponds closely to the classical case of the equilibrium of many small firma, each with its own fixed costs.
(e) The computation will be efficient to the extent that the sectoral integer programinc problems are of small size or have a special structure that renders them easj to manage.
(2) In Figure 9 the unaver aced apices are shown in relation to the correct 180-product line. An approximation to the iso-product line can be pleced toge ther from these apices by adding vertical and horizontal extensions correapondine to free labor and capital disposal activities. In other words, whereas in the previously discusced approximation we fomed apex-to-apex connecting lines that acted as though the apioes could be averased in a straight linear fashion, the present approximation discards the tool of averating altogether and simply dieposes of labor and capital not required by one apex or another in a given molution. As a result, solutions are restrioted to one complex in each sector.

The characteristion of this approximation are the following.
(a) It alway yields an underestimate of the optimal value of the objective function, for two reasons: firct, because it ignores the possibility of legitimate averaging; secondly, because it generally operates with an incomplete list of aplces if the problem 18 large.
(b) The master problem is now an integer programing problem whioh does not jleld useful prices for defining aectoral objective funotions.

(c) Individual apices may be generated in any convenient may; for example, by means of simultaneously undertaking the first kind of approximation (apex-to-apex connecting lines).
(d) This approximation will be a eood one whenever nonconvexities are large in relation to changes in the objective function (capital aurplus) corresponding to widely separated solutions; in other words, when the sectors are characterized by a few major indivisibilities. The reason for thisis, first, that in the case of large nonconvexities not much is lost by refraining from averaging; secondly, that if nonconvexitien are larye, the number of apices that contribute to the correct iso-product line in any sector is necessarily mall and thus the apices are relatively easy to identify on the basis of empirical considerations that are likely to be well known to the planners familiar with the sector; thus the possibility of miseine significant aplees is greatly reduced.
(e) The oomputation will be efficient to the extent that the master integer programing problem is of manageable sise.

In aum, the two approximations are complementary. Between them, they yield both an upper and a lower bound on the value of the optimal solutionf in addition, each tends to be close in cases with opposite oharacteristics. The first approximation tends to be close when the feasible area within a sector is convex in the large and has only mall local non-convexities; while the second approximation tende to be close when a sector is characterized by a few major indivisibilities.

34
In any given practical problem it appeare advantageous to undertake both approximations simultaneously. It might perheps also be poseible to coabine thw two approximations, choosing the better approximation to represent any given sector, in this case, however, the bounding properties of the eeparate approximations would be lost and the exact nature of the iterative algorithm would be placed in doubt.

It is moteworthy that presently available practical methods of copinc with monconvexities in economics tend to run in the direction of these two epproximationas thus in the case of amall nonconvexities an attempt is made to define some reasonable average cost and prace that will take into account the presence of fixed costs, while in the case of major indiviaibilities the operation of the price system is invoked only after quantitutive decisions have been taken in regard to these indivisibilities on other than pricing criteria.

INNEX I

Solving Integer Frogramming Froblems: i Survey

Several algorithms exist for obtaining optimel scluticns to integer progremming problems. $\sqrt{1 /}$ These alfcrithms are kricwn to torminate in a finite number of steps, but when the number of variatles is large, "firite" may mean a very large number indeed, since the number of altermativer thet can conceivably be touched upon in the oourse of a solution, rises ombinationally with the number of integer variatiles. Thus, mixed rective with as few as ten integer variables may not torminato in as many ic several thousand iteretions. 2/ In this respect, integer programing is ompletely different from linear preqamine where it has been fourd empirically (although no proof exists) thet problems turmincte in approximately three times as many iterations as there are constroint:With integer programine, problems, it has been found thet the stnndnerd cutcing-plane type algorithms work with a quite different efficiency on problems with identical construction but randomly chosen mameters: some run well, some take quite a bit longer, and scme make very pocr progress. A recent series of experiments has demonstrated, morecter, that attempts to improve the amrunt of preferss from iterntion to iteratio do not generally lead to faster cvernll pregress. ${ }^{3 /}$

When these integer progranming ${ }^{2} l_{\text {gopithms }}$ do not terminate duc to practical inability of carrying the number itorations heyond a rasemti limit even on the largest electreric computer: they at least yinld a bug on the optimal solution. in the sense thet they indicate a point bu y nd which no improvement can ever be carried. Unicritunately, the pukligh d algorithms are of the "dual" typ:: they preced by the way of trial s lutima each of whe? is "dual feasitle". Dual fensibility means thet individail activities are always meintaincd in perfect priority ordering, in the sense that they either break even or show losses at the existing shatw prices, but never profits; at the same time, they aro not "primal iansit."

[^2]excopt at the optimal solution itsolf, i.c., they do not balence out all resources: some may to nvordrewn (in a buttlonock condition). Thus, if the algorithm is broken off before it tominites, it will not yield simply a subaptimal solution, but a hypermptimed re: a "solution" that is "ton good" as it leaves some of the constreints unsatisficd. Thus, such a solution can bu used only as $₹$ bound: it shows thet no primelfeasible solution can be hetter then the bronk-if solution, but it gives no clue to whet would be agod primal-fonsitle solution. The letter hes to be generated independently by one of the technigues to be discussed below. Still, the bound is highly uscful becousc if any primal-fensible solution is known, the bound indicntes how much room for potential further improvement is still available.

A now type of algorithm has buon published recontly $4 /$ that is far mro cfficicnt for cortain classus of optems: optimel silutions aro attained In a limited number of steps ir, if the priblum tums ut not be have been of the proper type, this algnithm nls, yiclds a bound on the optimal solution.

It should he noted thet ordinary lincar programming (with intcger restrictions dropped) nlways yiclds an uppor bound and (by rounding) a sub-optimal solution and lower b-und as well, but these bounds generally tend to leave a wide range of uncurtainty.

Some mixed integer algorithms do generate primal-foasible solutions ${ }^{5 /}$. These algorithas, if they foil to terminete, give simultancous upper and lower bounds on the value if the ptimel solution. Sub-nptimel silutions giving lower bounds on the valuc of the optimum may nlso be obained by one of the following dovices:

1. Enumeration n individusl integer combimations, perticuinrly In the case of zerome type integer variables. If the nunicer of variables is small, the enumeration cen be complete, and the optimum 4 Gomey (1965)
5/ Algorithms by R.E. Gomry citud in Vietorise (1964:IDP).
can be sclected by inspection; if the number of embintions is tos largu to be cxheusted in this why, cortain types fombinations con still bo cnumeratud. For exemply, in the erse of locntiont preblems invelving several precessos, the t thl number of plat combinotions, fricularly in multi-forind models, on casily bume anmagentle but integrat, d
 sclected combinetions can also investiontud mey n. The tust. f the cnumurated silutions onn then be accoptcd os? sube ptimel orlati r. yielding a lower bound in the ptimel siution. 6/
2. Stcepost ascent nud thr eradient. mothods. 7/ These trent the int er
 onvex protloms. This mothod wil alwas lead to a local optimum. In th. case of c nvex probloms a locel optimum must 915 be on vorn ptimum while in the case of non-convex problems, severnl locn ptimn may uxist. Grodient methods will load to an or anther of the optimn ecording to where tho starting point of tho precodure is chsen. Thus by atterrtire the ascent from several widely separated starting points, the chences i hitting the vurell optinum ner inproved.
3. In the efse oftimizing an blective function with anocnox preference set, sukjectin liricar cnstreints, an interosting tring and crror algorithm is available $\frac{8 /}{}$ thet starts with a local ptimum and apl r s bealc solutions systumatically ar und this luci ptimum for possibl improvements in the nbjective function, therchy ydelding a buttir preatility of attaining the verill optimurn.

By chonsing a mixture of the apronches n tiod abov, almest eny integer programing pmblem con be tockled with a foir enfidence of establishing narrow upper and 1 wer b unds on the siution. If the ac ar within error limits, the preblem can, in fact, be takun as solvd.

6/ See Vicuurise and Manne (1963)
IV For a survey, set Victurisz (1964: IDF)
8/ Komai et al "Mathematical Frogramming of the Development of Hungarian Synthetic Fiber Production" (in Hungarian), Centre for Computing Techaigues, Hungarian Academy of Sciences, Budapest, $1963,190 \mathrm{pp}$. (mimeog).

A further strategy, als bnsed on .e rrar limits, is the following: the parameters of the problem onn be subjected to randem voristions within their wn ermer limits, in the hepe generating perameter ombination that is equivalont in prectice t the riginal formuleticn yet may show improved convergence characteristics. $/$ /

9 Wrak in pengress.

ANNEX II
Mathematical appendix
The pmolcm stated in Table I follows the condensed format of Tucker (in Graves and Wolfe, 1963). A full algebraic statement is given below:

Primal problem:

Max d
$0_{0}-350-1.1 x_{1}-1.25 x_{2}-3 x_{3}-7.5 x_{4}-\quad x_{5}-2.5 x_{6}-.6 x_{7}-3.0 x_{8}$
Subject to $u_{1}-2000-12.5 x_{1}-7.5 x_{2}-6.0 x_{3}-7.0 x_{4}-15.0 x_{5}-5.0 x_{6}-4.0 x_{7}-11.0 x_{3}$
$0_{2}^{\circ}-50-x_{1}-x_{2}=.5 x_{3}-.2 x_{4}$
$v_{3}-50-.25 x_{2}-x_{3}-x_{4}$
$0_{4}-25$
$\sigma_{5}-25$
$-\quad x_{5}=\quad x_{6}-\quad .8 x_{7}$
$-.2 X_{5}-\quad .5 X_{6} \quad \ddot{i n}_{7}^{-} \quad \ddot{n}_{8}$
and

$$
\begin{aligned}
& v_{1} \ldots 0,1-1, \ldots, 5 \\
& x_{1} \ldots 0,1-1, \ldots, 8
\end{aligned}
$$

Dual problem

Min!
Subject to
$J_{0}-350-2000 \quad Y_{1}=50 \quad Y_{2}-$ $50 \quad Y_{3}-25 \quad Y_{4}-25 \quad Y_{5}$ $J_{1}=1.1-12.5 Y_{1}-\quad Y_{2}$
$J_{2}=-1.250 \quad 7.5 Y_{1^{-}} \quad Y_{2}-\quad .2 \boldsymbol{x}_{3}$
$\mathrm{J}_{3}-\quad .3-6.0 \mathbf{I}_{1}{ }^{-} \quad .5 \mathbf{Y}_{2}-\quad \mathbf{Y}_{3}$
$J_{4}-2.5-7.0 I_{2}=\quad .28_{2}-\quad \mathrm{I}_{3}$
$\mathrm{J}_{5}-1.0-15.0 \mathrm{I}_{1} \quad-\quad \mathrm{Y}_{4}={ }^{-2 Y_{5}}$
J_{6} - 2.5-5.0 $\mathbf{I}_{1} \quad-\quad \mathbf{I}_{4}=.5 \mathbf{Y}_{5}$
$\mathbf{J}_{7}-.6=4.0 \mathbf{Y}_{1} \quad-\quad . \mathrm{EI}_{4}-\quad \mathbf{I}_{5}$
$J_{8}=3.0-11.0 Y_{1}$

- $\quad \mathbf{Y}_{5}$
and

$$
\begin{aligned}
& \mathbf{I}_{1} \geqslant 0,1=1, \ldots, 5 \\
& j_{j}=0,1=1, \ldots, 8
\end{aligned}
$$

The sectoral sub-renblems, f ill owing the Dantzig-inlfe dec imposition method, are:

Sector 1

and

$$
\begin{aligned}
& u_{1}=0, \quad 1=2,3 \\
& x_{j} \div 0, \\
& j=1, \ldots, 4
\end{aligned}
$$

Sector 2

Mex!

$$
\begin{array}{rcccc}
z_{2}-P_{K} & \left(-1.0 x_{5}-2.5 x_{6}-.6 x_{7}-3.0 x_{8}\right)- \\
-P_{L} & \left(-15.0 x_{5}-5.0 x_{6}-4.0 x_{7}-11.0 x_{8}\right) \\
v_{4}-25 & -\quad x_{5} & x_{6}- & .8 x_{7} \\
O_{5}-25 & -.2 x_{5}-.5 x_{6} & x_{7}+ & x_{8}
\end{array}
$$

Subje ot to
and

$$
\begin{aligned}
& \sigma_{1} \geq 0, \\
& 1=4,5 \\
& x_{j}=0, \\
& j-5, \ldots, 8
\end{aligned}
$$

In the above expressions F_{K} and \mathcal{F}_{L} are constants; in particuln $F_{K}=1$. Depending on A_{L} / p_{K} different optima to the sectoral sub-pr bums will bi attained ${ }^{1 / \text { / Designate the total capital and labour rouircments if any }}$ of these optima by $\mathcal{K}_{\mathrm{ts}},-\mathrm{L}_{\mathrm{ts}}$ where t is the index of a given optimum, and 8 is the index of the sector (1 or 2).

1 The optima may bc extrcme-point (vertex) or homguneus solution ins (see Dantzig and Wolfe, 1961). Homgeno us solutions indicant. the the meximand of the sub-problem my be expended with ut limit+; in other words, the specific sectoral res uric constraints dot preclude such an expansion. If such a situation occurred in the full problem, it wold indicate that the problem was un ended; but the solutions th the sectors sub-problems are els subject t the onnstraints on the e nnecting rosures, and thus h mene us solutions are permissible. N no such our in the present problem.

The masticr problem can n w be stated as follows (in Tucker's e ndensed fomat):
Min!

Max!

(The intcrprctetion in torms if rifnary alduraic cxpressions filws the interpretetin of the full priblem.)

In the ab wo formulation, il the efficicnt virtcx silutins ar inaluded in the mister probler. If in these were in fect prosunt, the silution t the master proticm wuld ot ne yicld the orrall optinum. The algorithri is based, hwover, on just a perti=1 list f such vortices which initielly dofine but single foasibl starting sution. Lit any stage if the ilg rithr: the ptimum the menster problem yiclds a set if shad wricus; at these prices, all vertices with positive wolehts have zer prifits, while ther vertices have nugntive profits; n positive profits onn ecur at such an ptimur.

In rder t, test whether the currunt ptimun t: the mester prible: is als) an wornll optimurl, it is attempted t find a now vortcx that will shw a positive profit at currunt shad w prices. Since p_{2} and F_{2} arc given, a profitable now vertex _must have the highest posiblu elgebrnic vnluc for the cxpressi in

$$
\left(-P_{R_{0}} K,-P_{E} \cdot L_{,}\right)
$$

Wherc P_{R} and F_{L} are nls, given The sect ral anb-pr blems sclect the vert x which maximizes the $a b$ ve expressi in in cench suct r. If the algebraic sum of P_{1} and this raximum is pisitive f a sect r, vortcx a is prefitable and the curpent potimum t, the mister prablem is not an verall petimurio

The now vortex is then included in the list of known vortiocs, and the optimization for the mestcr priblcm is repuated. In the ontrary easc the sucrill aptimum hes been atteined.

BIBLI G it. 1 HY

CHENHIY H. B.
The ipplicotion Investmunt Criterin
The Cunrterly J urnnl if Ecanics, No. 266. Feb. 1953, pp 33
CHENEII H. B.
Devel pmont relicius and Irgerams
United Notions Eenmic Bullctin fer Lntin imorica Vil. 3, W. 1, 51-77, Mar $195{ }^{\circ}$

THENELY H. B.
The Interdependence investment Iccisi ns
Stanf rd univcrsity ircss, Stenf rd, Col. 1959, in
W. .bramovitz ct 1 , *Th. 11 cntin fenmic itos urcas.

BHR K. ...
Investmont Criturin for Manufncturine Industrics in
Underciovel ped C untrics. itevicw if enmics and Stentistics, iny 51.0
D. NTZIG, G. B. QLF:
The Decompositi n.lgorithm for Linenr irograms
Ecinmetricn, $V 129, N .4$, let. 61, pp 767-77c
DN:NTZIG. G. B.
n the Significance f Siving Linc.r irgraming with 3 mc
Integer Virinblus.
Econmutrice, VI. 28, N, 1, Jnn 196, pp 3.-44
D.NTZIG G.B.

Linenr :rogramming and Extensi ins
rincet on University Fruss, rincet n, N.J. 1963, pp 625
D RFMAN in.
SIMULLS N I.... \quad KL! li.
Lincer i'rigraming and con mic inilysis.
New York, VcGraw-Hill, 195 527 pp
ECKSTUIN TTT
Invostrent Criterin fremenic Devoloment and the The ry f Intertomporal Welferc Ecmmies.
Quntcrly J urnal of Ecin., Fub 1957, V71, $N: 1,56-35$
G. LENS N

LEIBNSTEIN H
Invistmont Critcrin, Fr ductivity and Ec nomic Devel opmant Quartcriy J urnal of Econ mics, aug 1955, V69, No. 3, 343-37

GMEHY R.E.
Large and $n \times n-C$ nvex friblonis in Lincar imgremming. froccedings if the Sympisium on the Intcrections betweon Math icesincch and High-Spuld C mputing. imcr Math Sic. V. 21 XV. 1963
a MURY R.E.
in the Julation betweun Integer and n n-Integer siluti ins ts Linuar tmerems. pric. Nitinnil cndemy SCI. Feb 1965

HIRSCHMIN

The 3tretcgy f Een mic Du,volymant.
New Haven, C nn. Yalo Univarsity ress, 1950, 217 pp
K. TM.NS T.C.

BECKMLNN R.J.
. ssienment r blems and the Lention icenmic cotivitics Een motrice, V1. 25, Jnn. 1557, 53-76

KHN:I J.
LIT.KT.
C. Mnthumaticnl Invustigntion fomu Eenomic Effucts of Profit-Sharing in Scinlist Firms Eennomitrico. V $13, N, 1$, Jnn 62. 14v-161

KKNAI J

LIT.KT.

TM-Level bl N:ING
Eennmetrion, V1. 33, N. 1, Jnn 1965, 141-169
K SENSTEIN-EMDAN I.
Ir bloms if Industrializntion Enstorn and S uth-Eastorn Eur pép Jurnil, Vil. 43, Nis. 21, 211, Junc and Scp. 1943

KuSENSTEINai، DiN.
Ntes on the The ry of the "Big iush"
 ric of Cinf. Int. Ec ios c, Nuw Yrk
St. Martins russ, 1961, pF 57-11
IUSENSTEIN-i: D.N ;
Dutcmining the Noud for and lenning the Uso f Extornal ries uracs, in "Scionec. Techn) 1 gy and Devol pmont",
 US Givt. © rinting .ffice,
 'reshingt in DC, 1962

UNITED N,TI.NS Minurl in cenmic Development irijects New Yrk 195s. UN Yublicntion, Snles N. 5P.II.G. 5

UNITED N. TI NS, DEp. Eenmic and Socinl .ffoirs, Div. Ind. Duv. Evaluntion irnjects in prodominnntly rivato Entcrprise Ecen mics Selected recodurcs, based on ensc studics, Unitud Nati ins N. w Yrk, Ind. and 'riructivity Bull ! e 5, 7-34, 1, 12

UNITEDNTINS, Ecmmic Cmmissin frair and th. Far Enst Formuinting Industrirl Ducl prant irgenms. United Notions, Bragke, Luv. regrmine S.rivs, I. 2, 1\%61, 137 f

VIET IIISZ T
Fantr, . . S.
Chumical ircossus, ilnt Lentin, and Ee nmis if Selw.
 inalysis" Ec nomyoudu ir ducti n Coprbilitius, C wis Fundntion lenernph I. 1., ily, il.w Y rk, 19t3, Chnp. 6, pp 136-5

VIET.hISZ T.
Scetror Studius in Eenmic Euvippunt lrnnine by ionns of rouss inclysis adels.
In Manc.. S. and brow witz, Hollo, bers, "Stucics in irces: nalysis", Ec romywide ir cheti n Conpobilitius. C whus Fundetion nernph If. 10, 'iliy, Mw Yerk 1963, Chnp 17, of 4 1-415

VIETUIISZ T.
Industri-l Duvilpment inmine N duls with e n nius f Scnlu and Indivisibilitics npors, wignil ici ne asscintin, V1 XII, 1764, /Lund Coneruss, 1563

VIET HISZ T.
Locetionnl Chices in ilannine.
 ikescarch iuport ichell s, Vinr 31, 1765, 115 pp

$6-676$

[^0]: 2/ Note that the so-aalled "dynamic invisible hand" theorem (see Dorfman, Samuelson and Solow, 1958, p. 319) that extends the principle of social efficiency of perfectly competitive markets from a static to a dynamic context guarantees only that such a system, once locked on an efficient growth path, will stay on it; but it cannot direct the system toward a growth path that satisfies exogenously dotermined terininal social objectives.

[^1]: 2/
 There have been mumerous qualitative discussions of the interrelations between industries in the course of economic develomment due to economies of scale and externalities. Lconomies of scale create technical interrelations such as discussed by Chenery; they also lead to complementarity between industries producing consumer goods. External economies arise in education, labor training and activities aimed at securing technical progress; in social-overhead investments

[^2]: 1/ See Lantzig (1963), Chap. 26; Gomory(1963, 1965). For a discussiun, so
 2. Vietorisz (1964:IDP)

 3/ Work in progress

